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Abstract: The phosphoinositide 3-kinase (PI3K) signalling pathway is highly dysregulated in
cancer, leading to elevated PI3K signalling and altered cellular processes that contribute to tumour
development. The pathway is normally orchestrated by class I PI3K enzymes and negatively
regulated by the phosphatase and tensin homologue, PTEN. Endometrial carcinomas harbour
frequent alterations in components of the pathway, including changes in gene copy number and
mutations, in particular in the oncogene PIK3CA, the gene encoding the PI3K catalytic subunit p110α,
and the tumour suppressor PTEN. PIK3CB, encoding the other ubiquitously expressed class I isoform
p110β, is less frequently altered but the few mutations identified to date are oncogenic. This isoform
has received more research interest in recent years, particularly since PTEN-deficient tumours were
found to be reliant on p110β activity to sustain transformation. In this review, we describe the current
understanding of the common and distinct biochemical properties of the p110α and p110β isoforms,
summarise their mutations and highlight how they are targeted in clinical trials in endometrial cancer.
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1. The Phosphoinositide 3-Kinase Pathway

The phosphoinositide 3-kinase (PI3K) signalling pathway is essential for a myriad of cellular
processes and is among the most altered pathways in human cancers, including endometrial
cancer [1,2]. Consequently, many cellular processes, coined as hallmarks of cancer [3], are dysregulated
due to increased PI3K signalling and contribute to tumour development and progression [4–6].

In this review, we aim to give an overview of the mechanism of action of PI3K enzymes in the
context of endometrial cancer, in which the PI3K pathway is highly dysregulated. We first summarise
current understanding on the two ubiquitously expressed isoforms of class I PI3Ks, p110α and p110β,
at the biochemical level and review mutational and other events affecting these two isoforms in
endometrial cancer. Finally, clinical trials employing selective inhibitors for p110α and p110β in
advanced endometrial carcinomas are summarised and outcomes are reviewed when reported.

1.1. Class I PI3K Enzymes

PI3Ks are lipid kinases which phosphorylate the 3’ hydroxyl group on the inositol ring of
the glycerophospholipid phosphatidylinositol (PtdIns), or its derivatives, polyphosphoinositides
(Figure 1A). This family is divided into three main classes: class I, II and class III depending on their

Int. J. Mol. Sci. 2018, 19, 3931; doi:10.3390/ijms19123931 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-3613-5770
http://www.mdpi.com/1422-0067/19/12/3931?type=check_update&version=1
http://dx.doi.org/10.3390/ijms19123931
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 3931 2 of 17

structure and substrate preference [7,8]. Class I PI3Ks, which are further divided into two sub groups,
IA and IB, are heterodimers consisting of a catalytic and a regulatory subunit. Class IA consists of
a catalytic subunit, p110 (α, β or δ, each encoded by separate genes PIK3CA, PIK3CB and PIK3CD)
interacting with one of the regulatory subunits (p85α and splice variants p55α and p50α: encoded
by PIK3R1, p85β: encoded by PIK3R2, p55γ: encoded by PIK3R3). The class IB catalytic subunit
p110γ (encoded by PIK3CG) associates with p84/p87 or p101. In vivo, class I PI3K phosphorylates
PtdIns(4,5)P2 to generate PtdIns(3,4,5)P3 [9,10] (Figure 1B). Both class II and III generate PtdIns3P,
whereas class II can also produce PtdIns(3,4)P2 [11–13]. We refer the reader to other reviews on the
two latter PI3K classes [14,15] as the focus of this review is on class I PI3Ks.

Figure 1. Chemical structure of phosphatidylinositol and phosphoinositide 3-kinase (PI3K) enzyme
reactions. (A) Phosphatidylinositol chemical structure PI(18:0/20:4(5Z,8Z,11Z,14Z)) downloaded from
the LIPID MAPS Structure Database (LM ID: LMGP06010010) [16,17]. Hydroxyl groups located
at positions 3, 4 and 5 of the myo-inositol head group that are targeted by phosphorylation by
polyphosphophoinositide kinases are highlighted in red. (B) Main enzymatic reactions carried out by
the different phosphoinositide 3-kinase (PI3K) classes. Only the inositol head groups are shown with
sites of phosphorylation marked in red. Phosphate groups are indicated with a circled P.

1.2. Activation of Class I PI3Ks and the PI3K Pathway

The activation of class I PI3Ks occurs downstream of the activation of receptor tyrosine
kinases (RTK) (for p110α, p110β and p110δ) or G protein coupled receptors (GPCR) (for p110β
and p110γ) [7,18] (Figure 2). Upon stimulation of tyrosine kinase receptors, phosphorylation of
several tyrosine residues in the intracellular domains leads to the recruitment of the p85/p110 dimer,
which releases the inhibition of the p110 catalytic subunit by p85. The mode of activation by GPCR
involves the interaction between the Gβ/γ heterodimer and the linker present between the C2 and
helical domains in the catalytic unit and their recruitment to the membrane [19,20]. When active
and on the membrane, the p110 catalytic subunit can phosphorylate PtdIns(4,5)P2 to generate
PtdIns(3,4,5)P3 [21]. Target proteins, such as Akt (alias Protein Kinase B), phosphoinositide-dependent
protein kinase 1 (PDK1), as well as Sin1 (component of the mammalian target of rapamycin
complex 2 (mTORC2), can bind to PtdIns(3,4,5)P3 through their plextrin homology (PH) domain,
thus recruiting them to the plasma membrane [22–26]. Akt is then activated by PDK1 and mTORC2
by phosphorylation at Thr308 and Ser473, respectively [27,28]. Activated Akt, in turn, acts as a
downstream signalling molecule, which triggers the activation of multiple other downstream pathways
that participate in many cellular processes.
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Figure 2. Class IA PI3K activation. Class IA PI3Ks consist of a catalytic subunit (p110) and a regulatory
subunit (p85). Upon stimulation of receptor tyrosine kinase (RTK) or G-protein-coupled receptor
(GPCR), the p85-p110 complex is targeted to the membrane via different mechanisms (due to tyrosine
phosphorylation of RTKs or interaction with G-proteins β/γ). The p85 subunit loses its inhibitory effect
on the catalytic activity of p110, and thereafter the p110 subunit phosphorylates phosphatidylinositol
(4,5)-bisphosphate (PIP2) to generate phosphatidylinositol (3,4,5)-triphosphate (PIP3). PIP3 then targets
proteins containing the pleckstrin homology (PH) domain—such as AKT, phosphoinositide-dependent
kinase 1 (PDK1), as well as Sin1 (not shown), part of the mammalian target of rapamycin complex
2 (mTORC2) and locates them to the plasma membrane. AKT is then phosphorylated on Thr308
and Ser473 by PDK1 and mTORC2 respectively. Once these proteins are activated at the membrane,
they trigger a signalling cascade that leads to multiple cellular functions. Phosphate groups are
indicated with a circled P.

To precisely control the pathway, lipid phosphatases regulate the levels of PtdIns(3,4,5)P3.
The tumour suppressor phosphatase and tensin homolog (PTEN) dephosphorylates PtdIns(3,4,5)P3

to PtdIns(4,5)P2, thereby negatively regulating the pathway [29]. Other phosphatases that
dephosphorylate PtdIns(3,4,5)P3 are the 5’ phosphatases, SH2 (Src homology 2)-domain-containing
inositol phosphatase (SHIP) 1 and 2, that produce PtdIns(3,4)P2 [30,31]. The action of these
phosphatases allows PtdIns(3,4,5)P3 to be kept at low levels in resting cells [32].

1.3. Properties of PI3K p110α and p110β and Mode of Activation in Cancer

Both p110α and β are ubiquitously expressed, unlike p110δ and p110γ, for which the expression
tends to be restricted to the immune system [33]. Due to the context of this review, the focus is
on p110α and β. Similarities and differences are summarised for these two isoforms (Table 1 and
Figures 3 and A1) and we refer to two reviews for more detailed information [34,35]. Both p110α and β
are embryonically lethal in homozygous mice knockouts, suggesting non-redundant functions [36,37].
Following these early studies, homozygous knockin mice with inactivating mutations in the ATP
binding site in p110α (D933A) or p110β (D931A) both demonstrated embryonic lethality in an
activity-dependent manner, albeit with different penetrance [38–40]. This strategy had the advantage
of not disrupting the expression and stoichiometry of the catalytic/regulatory PI3K complex. In cell
studies, p110α was shown to have a role in cell survival and p110β in DNA synthesis or cell
proliferation [41–44]. Their distinct cellular localisation can be a feature explaining their different
cellular roles. p110α is predominantly found in the cytoplasm, but can be detected at very low levels
in the nucleus in some cells [45]. p110β is distributed in both the cytoplasm and nucleus including
the nucleolus [43,45,46]. p110β has a nuclear localisation signal in the C2 domain, which is absent
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in p110α ([45], shown in Figures 3 and A1) and plays multiple nuclear roles such as in cell cycle
progression, DNA replication, and repair of DNA double-strand breaks [42,43,45,47].

Figure 3. Domain structure of class IA PI3K catalytic and regulatory subunits. Domain structure
and interaction of the catalytic subunits p110α and p110β and regulatory subunits p85α and p85β.
The regulatory p85 subunit binds to p110 to inhibit and stabilise the lipid kinase. The interlinker
domain of p85 binds to the ABD domain of the p110 subunit to stabilise the kinase (shown with an
arrow). On the other hand, the nSH2 and interlinker domains in p85 have an inhibitory effect on both
p110α and β. In addition, the p110β isoform can be inhibited by the cSH2 domain of p85. The figure
is adapted from Reference [18]. Abbreviations: ABD, adaptor binding domain; RBD, Ras-binding
domain, C2; protein-kinase-C-homology-2 domain, Helical; helical domain, Catalytic; kinase domain;
NLS, nuclear localisation sequence; SH, Src homology; BH, breakpoint-cluster region homology; nSH2,
N-terminal SH2; cSH2, C-terminal SH2, i, interlinker SH2 coiled-coiled domain.

Both enzymes share many structural and biochemical properties, since they use the same substrate
to generate the same product, and thus activate the same effector proteins. They are multidomain
proteins which have the same domain organisation and share the same mode of activation ([48],
Figure 3, see also alignment of p110α and p110β in Figure A1). In particular, class IA p110 catalytic
enzymes harbour an adaptor-binding domain (ABD) which interacts with the inter-SH2 linker (iSH2)
of p85 and promotes stability. In addition, interaction of the N-terminal SH2 domain and iSH2 in p85
with the C2 and helical domain of p110 blocks basal catalytic activity [48]. Phosphorylated tyrosine
residues on activated RTKs bind to the SH2 domains of p85s and release the inhibitory interaction of
these domains with the p110 catalytic subunit. In p110β, an additional inhibitory contact between
the C-terminal catalytic domain of p110 and the C-terminal SH2 domain of p85, entails a different
mechanism to release the inhibitory interaction by phosphorylated RTKs [48,49].

In cancer, alterations in both catalytic isoforms have been reported, albeit at different
frequencies [6]. Since the observation of high mutational frequency in human cancers suggests
PIK3CA as a driver, much research effort has focused on this gene [50]. The most common activating
mutations in PIK3CA are found in the helical domain (E542 and E545) and the kinase domain (H1047)
and activate p110α through different mechanisms, such as reducing the inhibitory effect of p85 or
facilitating the interaction with the lipid membrane [51–53]. In addition, mutations in p85 can lead to
the stimulation of the p110 subunit, as shown not only for p110α but also for p110β [54,55]. A recent
study by Thorpe et al. demonstrated that a decrease in p85α resulted in elevated p85-p110 complex
signalling in vitro, correlating to increased tumour development in breast cancer mouse models [56].
As for PIK3CB, mutations are in general less frequent compared to PIK3CA, and PIK3CB can be
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amplified or overexpressed in some solid tumours [6]. Importantly, p110β can promote oncogenic
transformation when overexpressed in its wild type (WT) form, in contrast to p110α, which requires
the presence of activating mutations [57].

A few key biochemical differences help explain the distinct mode of contribution in
tumourigenesis for both isoforms. Firstly, a critical difference was identified in the C2 domain and
this may explain their differential activation mode. Indeed, N345 in p110α is involved in hydrogen
bond interactions with the iSH2 domain of p85. This residue aligns with K342 in p110β, which
corresponds to oncogenic mutations found in p110α in some cancers, from N345 to K345 ([58], shown
in Figures 3 and A1). This one residue difference decreases the inhibitory interaction of p110β with
p85 [58] and may explain the transforming capacity, at least partially, of WT p110β compared to p110α,
which requires mutation for transformation [57]. Secondly, in contrast to p110α, p110β can be activated
by GPCRs through its direct association with the G protein subunits β/γ [19,59–62] and through the
RAC (ras-related C3 botulinum toxin substrate) small GTPAse [63]. Importantly, activation of p110β
by GPCR was required for cell invasiveness in breast cancer cells [62]. Cell proliferation was also
dependent upon GPCR-mediated activation of p110β in PTEN-negative prostate and endometrial
cancer cells, but not PTEN-positive cells [19].

A few mutations have recently been validated as oncogenic for PIK3CB. These include the helical
domain mutation (E633K), identified in a Her2-positive breast tumour, which leads to increased p110β
association with the membrane and increased basal activity [64]. A mutation in the PIK3CB kinase
domain (D1067V), was shown to occur in several tumour types at low rates [65]. A gain-of-function
mutation in the kinase domain of PIK3CB (E1051) was found to be an oncogenic driver and to promote
cell growth and migration [66]. While studying the selective p110β inhibitor (GSK2636771) on solid
tumours, a patient with castrate-resistant prostate cancer was found to have a mutation (L1049R) in the
PIK3CB gene [67]. Functional characterisation of variants identified from cancer genome sequencing
showed malignant transformation due to a rare mutation (A1048V) in the PIK3CB gene [68]. p110β also
plays a role in the resistance of tumours to inhibitors of p110α [69,70]. A mutation (D1067Y) in PIK3CB
has also been detected in cells resistant to pan-PI3K inhibition, which induced the activation of the
PI3K signalling pathway [71]. Furthermore, p110β activity contributes to tumour progression and its
expression correlates with poor prognosis and metastasis in breast cancer [59,72].

In 2008, a study which aimed to find the lipid kinase required to sustain and drive PI3K signalling
in PTEN-deficient cancers showed that p110β played an essential role in these cancers and that its
lipid kinase activity was required [73]. Later studies showed that, indeed, p110β activity is required
in PTEN-deficient breast, prostate and haematological tumour growth [61,74,75], but not in other
tissues which reported reliance on p110α or both isoforms [76,77]. A recent study showed that the
PI3K pathway in PTEN-null tumours that rely on p110β are regulated by the Crk-like protein (CRKL)
adaptor protein [78]. The study showed that CRKL has a preference to associate with p110β over
p110α, and through its interaction with p110β/p85, it regulates the PI3K signalling pathway.

Table 1. Differences and similarities between p110α and p110β.

Property Description p110α p110β

Gene name PIK3CA PIK3CB

Regulatory subunit 1
p85α, p55α, p50α p85α, p55α, p50α

p85β p85β
p55γ p55γ

Cellular localisation cytoplasm cytoplasm, nucleoplasm, nucleolus
Receptor activation RTKs GPCRs (dominant) and RTKs

Mutations in carcinomas frequent rare
1 p110α and p110β can, in theory, form heterodimers with any of the regulatory subunits, depending on the tissue
of interest [33,79,80]. p85α and p85β are ubiquitously expressed, whereas the expression of the shorter isoforms
p55α, p50α or p55γ is restricted to certain tissues [33,81]. Abbreviations: RTK: receptor tyrosine kinase. GPCR:
G protein-coupled receptor.
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2. Alteration of the PI3K Pathway in Endometrial Cancer

2.1. Endometrial Cancer

Endometrial cancer arises from lesions in the lining of the uterus (also known as the uterine
corpus) which are, in up to 95% of cases, carcinomas with the remaining being sarcomas [82,83].
This gynaecological cancer is highly prevalent in developed countries, is highly associated with
obesity and its incidence is rising [84,85]. Endometrial carcinomas have different histologies and were
traditionally divided into two subtypes, type I and type II, according to the Bokhman classification [86].
Type I accounts for the majority of endometrial cancers and consists of low-grade tumours of
endometrioid histology which are positive for hormone receptors and have a good prognosis [86,87].
These tumours are often referred to as endometrioid endometrial cancers (EEC). In contrast, type II
tumours, also known as non-endometrioid (NEEC), are less common, of high grade, and hormone
receptor negative with a poor prognosis [86,87]. Type II can display the following histologies: serous
adenocarcinomas, clear cell adenocarcinomas and carcinosarcomas [86,87]. More recently, large-scale
sequencing studies of primary endometrioid tumours (UCEC), initiated by The Cancer Genome
Atlas (TCGA) genome network, suggested a classification of endometrial cancers into four major
groups depending on different molecular signatures: (1) Polymerase ε (POLE), ultramutated with
the highest survival outcome; (2) microsatellite instability (MSI), hypermutated with an intermediate
outcome; (3) low copy number (endometrioid) with an intermediate outcome; and (4), high copy
number (serous-like) with the poorest outcome [88]. This molecular classification has been further
compared to and integrated with previous classification properties such as grade, genetic alterations
and histology [87]. Type I tumours are hence considered endometrioid tumours with the following
molecular characterisation: ultramutated POLE, microsatellite instability (MSI), hypermutated and
a low copy number. Type II, including serous or clear cells, consists of the high copy number group.
Specific molecular alterations representing each group can now be selected to evaluate endometrial
tumours for diagnosis.

2.2. Alteration of PI3K PIK3CA and PIK3CB in Endometrial Cancer

The PI3K pathway is the most frequently altered in endometrial cancer [87–89]. The most frequent
mutations are found in the PTEN, PIK3CA and PIK3R1 genes, particularly in type I endometrioid
tumours [88,90–93]. The distribution of mutations of these genes obtained from the endometrial
cancer TCGA study is shown in Figure 4A [88,94,95]. PTEN loss is the most frequent alteration in
endometrioid tumours with a frequency of up to 80% and mutations are often seen in hyperplasias,
considered precursor lesions to endometrial cancer [96–100]. PIK3CA is the second most mutated
gene, with overall frequencies of 25% of tumours according to the Catalog of Somatic Mutations
In Cancer (COSMIC, v86 [101]) as well as of 51% and 53% in TCGA-UCEC (release 13) and the
TCGA endometrial cancer genomic data, respectively ([88,95] Figure 4A,B and Figure A1). Mutations
occur in both type I endometrioid and serous carcinomas ([88,92,98,102–105], Figure 4A). The effect
of PIK3CA mutations on clinical variables is conflicting, as positive and negative associations have
been shown in relation to survival [106]. However, in a recent study of PIK3CA mutations in exon
9, corresponding to part of the helical domain, mutations were associated with poor survival [106].
PIK3CA mutations occur early in endometrial cancer progression and are of high clonality from primary
lesions to metastasis [99,100,106]. Other types of alterations in PIK3CA have also been reported.
PIK3CA mRNA levels were higher in non-endometrioid tumours and increased from primary tumours
to their corresponding metastasis, and high mRNA levels correlated with lower survival [44,106].
In addition, PIK3CA amplification, which is associated with high level PI3K signalling, correlates with
NEEC/type II aggressive endometrial cancer phenotype [88,104,107,108] (Figure 4A).
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Figure 4. Overview of genomic alterations in PI3K pathway genes in endometrial cancer. (A) Overview
of alterations in selected PI3K pathway genes in endometrial cancer, showing mutations and
copy-number alterations, as well as the frequency of alterations. (B) Overview of mutations in
PIK3CA displayed on the p110α protein structure. Note the hotspot mutational sites in p.E524, p.E545,
p.Q546 and p.H1047, i.e., those with the highest number of lesions and the corresponding mutation.
(C) Overview of mutations in PIK3CB displayed on the p110β protein structure by amino acid position.
Panels were generated using the cBioPortal [94,95] with modifications with data from The Cancer
Genome Atlas (TCGA) from a total of 240 patients with endometrial cancer [88]. Each dot corresponds
to the occurrence of a specific mutation in a lesion. Mutations in (B) and (C) are colour-coded according
to the key shown in (A) (green for missense mutations and brown for other in-frame mutations such as
insertion and deletion). Abbreviations: ABD, adaptor binding domain; RBD, Ras-binding domain, C2;
protein-kinase-C-homology-2 domain, Helical; helical domain, Catalytic; kinase domain.

The frequency of PIK3CB mutation is lower compared to the PIK3CA gene, with reported
frequencies of 2% (COSMIC), 10% (TCGA-UCEC, release 13) and 8% (TCGA endometrial cancer
genomic data [88,95], Figure 4B). So far, only two studies have reported the occurrence of PIK3CB
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mutations in endometrial cancer, D1067V and A1048V within the kinase domain, and shown
that they are oncogenic [65,68]. Other mutations were detected in the TCGA genomic study,
highlighting other potential oncogenic mutations, which are to date uncharacterised for their oncogenic
properties (Figure 4C). A more common alteration is an increase of its mRNA levels reported in two
studies [44,109] and by COSMIC (v86) with a frequency of 6.8%. In particular, the mRNA levels
of PIK3CB were shown to be higher in grade 1 endometrioid endometrial lesions when compared
to complex hyperplasias and remained high in higher grades as well as in NEEC tumours [44].
Importantly, high levels of PIK3CB mRNA correlated with lower survival [44]. In cell line studies,
the protein levels of p110β, but not of p110α, were elevated in endometrial cancer cells compared to
non-transformed cells [44]. In addition, gene amplification was also detected, particularly in serous
tumours (Figure 4A). Considering the transforming ability of p110β in its WT state, overexpression of
this isoform may account for tumour development in endometrial cancer. Consistently, knock down of
p110β in endometrial cancer cell lines induced cell death [109].

3. Targeting p110α and p110β in Endometrial Cancer

About 20% of endometrial tumours recur and respond poorly to currently available systemic
therapy. Because the PI3K pathway is frequently altered in endometrial cancer, it is an attractive
target for therapy, as recently validated by large-scale genomic sequencing reports [88,89,100,110,111].
PI3K chemical inhibitors have hence been tested in pre-clinical studies and used to target tumours
with aberrant activation of the pathway.

3.1. PI3K Inhibitor Studies in Endometrial Cancer Cell Lines

A number of pre-clinical studies have been performed using endometrial cancer cell lines to
test the efficacy of pan-PI3K inhibitors as well as selective p110α and p110β inhibitors [44,112,113].
PIK3CA mutant cancer cells were more prone to respond to pan-PI3K or selective p110α inhibition
compared to WT cells [44,113].

Considering the importance of PIK3CB/p110β in PTEN-deficient tumours and the high frequency
of PTEN mutations in endometrial cancer, the effect of p110β selective inhibition was evaluated in
endometrial cancer cell lines, with or without PTEN loss [44,113]. Selective inhibition of p110α and
p110β led to different effects on cell signalling and cell outcomes. p110α activity was correlated with
cell survival and its inhibition led to decreased cell survival in PIK3CA mutant cells but not in WT
cells [44,113]. In contrast, p110β inhibition had no effect on cell survival but rather decreased cell
proliferation in PTEN-deficient cells [44,113]. Considering that endometrial tumours can harbour
alterations in both PIK3CA and PTEN, combination treatment with both p110α and p110β may
increase response efficacy compared to monotherapy [113]. The determination of the genetic status of
PIK3CA and PTEN is of great importance for the most appropriate personalised treatment. In addition,
the presence of genetic alteration in PIK3CB as well as increased levels of p110βmay also influence
treatment outcome in a few cases.

3.2. Clinical Trials in Endometrial Cancer

The pan-PI3K inhibitor Pictilisib (BKM120) was administered to patients with advanced or
metastatic endometrial cancer but adverse side effects were observed, and the clinical trial was
stopped ([114] NCT01397877). In contrast, Pilaralisib (SAR245408; XL147), another pan-PI3K inhibitor,
used in a clinical trial of advanced or recurrent endometrial carcinomas, did not show any severe
adverse events on patients but had only minimal anti-tumour activity ([115] NCT01013324). Finally,
a trial planning to use the pan-PI3K inhibitor Copanlisib (BAY 80-6946) in patients with persistent
or recurrent endometrial cancer with PIK3CA hotspot mutations was suspended (NCT02728258).
Selective inhibitors for p110α and p110β are being used in clinical trials but the results in patients
with endometrial cancer are scarce as they are part of large studies including different types of cancer.
Patients with PIK3CA-altered advanced cancer were treated with the p110α selective inhibitor Alpelisib
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(BYL719) and one patient with endometrial cancer showed a complete response and another showed a
partial response to treatment ([116], NCT01219699). However, the study does not clearly state the total
number of patients with this type of cancer and the respective mutational status.

A phase I trial with the p110β selective inhibitor GSK2636771 in PTEN-deficient solid advanced
cancers, including three patients with endometrial cancer, was completed and reported (Reference [67]
and Table 2). One patient out of three with endometrial cancer benefitted from progression-free
disease for 33 weeks. Intriguingly, this patient did not harbour any mutation or gene copy variation
in PTEN, PIK3CA, PIK3CB or AKT2. As we are writing this review, other clinical trials are currently
recruiting patients with advanced solid tumours harbouring PTEN loss or with PIK3CB mutation
and/or amplification and may include patients with endometrial cancer (Table 2).

Table 2. Completed and planned clinical trials using p110β inhibitors.

Drug Name Molecular Condition
for Trial Types of Cancer Phase ID Number

GSK2636771 PTEN deficiency advanced solid tumours I
NCT01458067

(completed and results
published [67])

GSK2636771 PTEN loss, mutation or
deletion

Advanced-stage
refractory solid cancers II NCT02465060

(recruiting patients)

AZD8186 PTEN loss, mutation or
deletion

Advanced-stage
refractory solid cancers II NCT02465060

(recruiting patients)

AZD8186 (with
docetaxel)

PTEN loss or mutation,
or PIK3CB Mutation

Advanced-stage solid
cancers metastatic or

unresectable
I NCT03218826

(recruiting patients)

Information on clinical trials was retrieved from www.clinicaltrials.gov.

4. Conclusions

Alteration in the PI3K pathway is undoubtedly a key event in endometrial carcinomas with
differences in molecular genetic features throughout histologies, stages and grades. Much of the
research and clinical efforts have focused on PIK3CA/p110α but are starting to include PIK3CB/p110β
in light of its association with loss of PTEN, the most frequent genetic alteration in endometrial
carcinomas. To date, clinical trials include few patients with endometrial cancer, making it challenging
to draw any reliable conclusions on the correlation between the genetic alteration status of the
PI3K pathway and outcomes. Still, a positive outcome was reported for one patient treated with
a selective p110β inhibitor who responded well to the treatment [67]. Several clinical trials with
different p110β inhibitors are recruiting patients with advanced solid cancers with PTEN loss but
also harbouring PIK3CB mutations or amplification. However, it is not yet known whether these will
include endometrial carcinomas.
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Abbreviations

GPCR G protein coupled receptor
PI3K Phosphoinositide 3-kinase
PtdIns Phosphatidylinositol
PtdIns(4,5)P2 Phosphatidylinositol (4,5) bisphosphate
PtdIns(3,4,5)P3 Phosphatidylinositol (3,4,5) triphosphate
PTEN Phosphatase and tensin homologue
RTK Receptor tyrosine kinase
SH2 Src homology 2

Appendix A

Figure A1. Cont.
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Figure A1. Alignment of human p110α (UNIPROT P42336) and p110β (UNIPROT P42338) protein
sequences using the pairwise sequence alignment web tool EMBOSS Needle. Mutations identified in
the TCGA genome-wide sequencing in endometrial cancer are highlighted here for both isoforms with
different colour code.
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