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Abstract

In this thesis, we study the iterative solution of coupled flow, mechanics and trans-

port in deformable porous media. The system is modeled by the quasi-static Biot

equations and the advection-diffusion-reaction equation. This model is analyzed

numerically by using a variation of the well-known Fixed Stress Splitting method.

The spatial discretization employed is piecewise linear Galerkin finite elements for

mechanics and transport, and lowest order Raviart-Thomas elements for flow. Addi-

tionally, the backward Euler method is employed for the time discretization. Three

different alternatives for the stabilization constant introduced by the fixed stress

splitting scheme are analyzed, and the optimal choice for this constant is found.

The scheme is also analyzed with and without the stabilization terms introduced by

linearization of the reaction term in the transport equation, and the result is that

this has no impact on the iteration count for the scheme. Moreover, four different

reaction terms are studied, and the result is that they are all convergent. We also

study the efficiency of the fixed stress splitting scheme by comparing it with two

different monolithic schemes. One where only the Biot equations are solved mono-

lithically, and one were the whole system is solved monolithically. The conclusion

is that the fixed stress splitting scheme is the most efficient method for solving our

system of equations for finer meshes. For coarser meshes, the choice of method is of

little consequence. Furthermore, two different domains are studied, the unit square

and the L-shaped domain. Performing convergence tests on the system, give results

that are consistent with the optimal theoretical convergence rates for both domains.
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Chapter 1

Introduction

1.1 Introduction

Porous media is found everywhere around us. In the sand on the beach we walk on,

the sponge we clear the blackboard with, the ground beneath us, and even inside

our bodies. It is defined as a material containing pores and a solid skeleton. To

describe the porous media, a partial differential equation is required. In realistic

models, the equations can be problematic to solve analytically, in which case a

numerical method is needed. An example of a realistic application of the theory

of porous media concerns the modeling of a tumor. The tumor can be viewed as

a deformable porous medium with a fluid flow that may cause, or be affected by,

solid deformation. Furthermore, the fluid flow can be coupled with the transport

of a substance of interest. This substance can for example be oxygen or a growth

stopping medicament.

For this thesis, we will consider the quasi-static Biot equations coupled with the

transport equation. The quasi-static Biot equations models a linearly elastic porous

medium saturated with a slightly compressible fluid, and have previously been used

to partly describe tumor growth (Xue et al., 2016). The equations are based on

the balance of momentum, mass conservation and Darcy’s law, with application to

infinitesimally deforming, fully saturated porous media. The existence, uniqueness,

and regularity of the Biot equations was studied in Showalter (2000).
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There are two approaches that accurately solves numerically coupled flow and me-

chanics. One approach is a monolithic scheme, where the equations are fully coupled

and solved simultaneously, achieving unconditional stability and convergence for

well-posed problems. The other approach is a sequential implicit method. Here, the

coupled problem is partitioned into sub-problems (i.e. flow and mechanics) that are

solved sequentially, usually by an already existing, robust simulator, which causes

this approach to be more flexible and less computationally expensive (Settari and

Mourits, 1998).

Among these sequential implicit methods, the Fixed Stress Splitting method stands

out as the optimal choice for the quasi-static Biot equations (Kim et al., 2011). This

method is unconditionally stable by Von Neumann analysis (Kim et al., 2009) and

globally convergent (Mikelić and Wheeler, 2013) for slightly compressible flow in

heterogeneous porous media (Both et al., 2017). It is an iterative method that fixes

the total mean stress field by introducing a tuning parameter when the sub-problem

for the flow is solved. The sub-problem for the mechanics is then solved using the

computed pressure from the previously solved flow sub-problem. This process is

iterated until convergence is reached.

We want to couple the Biot equations with the transport equation in order to further

advance the model to include transport of a substance. This is an important step in

order to create a more realistic model that in the future may be used for modeling

tumor growth.

The transport equation we will consider is an advection-diffusion-reaction equation

which models how a substance is transferred within the fluid. The advection de-

scribes the movement of the substance within the medium by transportation of the

flow field, the diffusion describes the movement of the substance from an area of

high concentration to an area of low concentration, and the reaction describes the

creation or destruction of the substance as a reaction to itself. This equation will be

coupled with the Biot equations in the sense that the flow field used in the transport

equation will be the Darcy flux from the approximated solution of the Biot equa-

tions.

To avoid influence by steep concentration gradients in the transport equation, which

happens if the equation is advection-dominant, we need the employed numerical

method to have minimal oscillation and numerical diffusion. In Kim et al. (2009) it
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was shown that this was indeed the case for the fixed stress splitting method, hence

this will follow when coupling the Biot equations with the transport equation, as

the concentration does not have any impact on the pressure or displacement. The

transport equation is linearized and stabilized by the use of the L-scheme, such as

in e.g. (List and Radu, 2016), (Borregales et al., 2018), (Brun et al., 2019).

For discretization of the Biot equations, we consider a mixed formulation for the

mass conservation equation, which provides an accurate Darcy velocity and a flow

approximation that is locally mass conservative when discretizing using the finite

element method. The Biot equations and the transport equation is then discretized

by using a finite element method. To simplify the presentation, we consider a fixed

time domain and the unit square. Following this we consider an L-shaped domain,

limited on the outer edges by the unit square.

Furthermore, we want to study different tuning parameters for the fixed stress split-

ting scheme on both domains to find the optimal choice. The stabilization terms

introduced by linearization of the reaction term in the transport equation are also

studied. Moreover, different reaction terms for the transport equation are analyzed.

The efficiency of the fixed stress splitting scheme is examined by comparing the time

elapsed for this scheme with the time elapsed for two different monolithic schemes.

Lastly, the convergence rates of our numerical schemes are analyzed in order to

validate our model.

The analysis in this thesis is presented for fully saturated flow and nonlinear trans-

port. An extension to unsaturated flow can be studied following the approach de-

veloped in Both et al. (2019).

1.2 Outline

Chapter 2 and 3 introduces the basic concepts, equations and ideas used in this

thesis. Specifically, in Section 2.1 the Darcy law is explained in detail, while in

Section 2.2 the mass conservation law is derived and is connected to the Darcy law.

Moreover, in Section 2.3 the transport equation is presented and explained, and in

Section 2.4 the Biot equations are introduced and explained in detail. Furthermore,
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in Section 3.1 discretization in time is explained in detail, and in Section 3.2 the

finite element method is made clear. Finally, in Section 3.3 an iterative scheme is

explained in general, and the iterative schemes usually employed when modeling

flow in porous media are presented and discussed.

Section 3.4 presents the assumptions made on our model and extends the previ-

ously presented concepts and ideas to the Biot equations and transport equation.

Moreover, a fixed stress splitting iterative scheme is presented for our model.

In Chapter 4, the problem data is accounted for, the numerical results are presented

and an analysis on the data is performed and presented.

Finally, in Chapter 5.1 the conclusion and further work is discussed.
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Chapter 2

Mathematical Modeling

In this thesis we consider a fully saturated elastic porous medium. To get a better

understanding of the relevant mathematical models, we first explain the definition

of a porous medium.

A porous medium is defined as a material containing pores and a solid skeleton,

which in our case is deformable. The porous media should have a specific perme-

ability, whose value is uniquely determined by the pore geometry (Dullien, 1979).

The permeability of a porous medium is defined as a measure of how easily a fluid

can flow through the medium. For a fluid to be able to flow through the media,

the pores have to be interconnected (Pettersen, 1990). An example of how a porous

media can present itself is given in Figure 2.1.
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Figure 2.1: An example of a porous media with grey parts being the solid grains,
i.e. the solid skeleton, and the white part being the pores.

The phase of the porous medium depends on the number of fluids present in the

pores. If there is only one fluid, the porous medium is defined as single-phase, while

if there are two or several fluids present, it is defined as two-phase or multi-phase,

respectively (Bear, 1988). The fluid can be either a gas or a liquid, for instance

oxygen or water. Some examples of deformable porous media are sponges, sand and

tumors.

To simplify the calculations of porous media, a representative elementary volume

method, i.e. a REV method, is often used to define the local properties of a porous

medium. This method is a smoothing procedure where you give one mathematical

point in space the properties of a certain volume, the REV, of material surrounding

this point. The reason for using this method is that porosity and permeability

cannot be defined or measured at single points, considering that a porous medium is

a collection of solid grains and voids. When deciding the size of the REV, it has to

be large enough to contain a substantial number of pores, so that we can find a mean

global property, but also small enough so that we can approximate the parameter

variations by continuous functions (Bear, 1988).
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Figure 2.2: An example of a REV from the porous media in Figure 2.1.

Two of the notions which are relevant for flow in porous media are saturation and

porosity. Saturation describes how much there is of each content in a porous medium,

for instance how much water there is in comparison to air in the voids. In this case,

the water is called the wetting phase and the air is called the nonwetting phase.

Nevertheless, there can be several phases in a flow in porous media, and the sum of

the saturations of all the phases is always equal to one in a fully saturated porous

medium. The saturation of phase α is defined as (Bear, 1988)

sα =
volume of phase α

volume of voids in REV
,

where sα ∈ (0, 1) and ∑
α

sα = 1 .

Porosity on the other hand, describes how porous the medium is. It is defined as

the ratio of volume of the void space to the volume of the REV (Bear, 1988)

φ =
volume of voids

volume of REV
, (2.1)

where φ ∈ (0, 1).
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2.1 Darcy’s law

The Darcy law is one of the most important equations in porous media. It was

Henry Darcy who in 1856 introduced the idea and performed the experiments that

eventually led to the Darcy law. The most famous experiment Darcy performed was

when he packed a column full of sand and then let water flow through it. He made

several observations in this experiment, including that the volumetric flow rate qDarcy

is proportional to the difference in height, that the flow rate is proportional to the

cross-sectional area of the column, and that the flow rate is inversely proportional

to the distance between the measurement points, `.

ℓ

Δℎ

Cross-sectional
area

������

������

Figure 2.3: Illustration of Darcy’s experiment, inspired by (Nordbotten and Celia,
2011).

With his experiments he managed to predict the amount of water that would flow

through the sand filters. This law describes the flow in porous media and can be

expressed as

w = κ
h2 − h1

`
,

where w is the volumetric flux, κ is a coefficient of proportionality, h2 and h1 are

the heights up to which the water in the tubes penetrating the column rises, and `

is the length of the column (Nordbotten and Celia, 2011).

The coefficient of proportionality is called the hydraulic conductivity and is given
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by

κ =
kρg

µ
,

where k is the permeability, dependent on the porous medium, ρ is the density of

the fluid, g is the gravitational acceleration constant, and µ is the dynamic viscosity

of the fluid. This is a function of both porous medium and fluid, and it indicates the

ease with which a fluid flows through the material (Nordbotten and Celia, 2011).

The state of a fluid is described by its energy, hence we can derive the hydraulic

head from the energy equation defined by mgh = pV + mgz. In other words, the

potential energy is equal to the pressure potential plus the gravity potential. This

will then lead to the hydraulic head being defined as h = p
ρg

+ z, where z is the

height opposite the gravitational direction measured from a reference level we call

datum. When saying that the fluid state can be described by its energy, we have

made two assumptions:

A1: That the fluid flow is so slow that the kinetic energy can be neglected.

A2: That the fluid is not influenced by temperature or dissolved substances.

Writing the Darcy law in a differential form, it reads

w = −κ∇h ,

with h being the hydraulic head. In a porous medium, a fluid will flow from regions

with higher values of h to regions with lower values of h (Nordbotten and Celia,

2011).

2.2 Mass conservation

When solving for fluid flow in a porous medium, we need to introduce another

equation in order to obtain a complete system, as the Darcy law has a number of

unknowns that is larger than the number of equations. The equation introduced

is the mass conservation equation. The governing idea of this equation is that the

change of mass in an arbitrary volume, W , within the domain, Ω, is balanced by the

net mass flow into the volume through its boundary and by any mass added to the



Chapter 2. Mathematical Modeling 10

volume not associated to the boundary flux. This idea is described by the equation

∫
Ω

∂m

∂t
dV = −

∫
∂Ω

fνmdA+

∫
Ω

ΨdV , (2.2)

where m is mass per total volume of porous media, f is the mass flux vector, νm is

the outward unit vector of ∂Ω and Ψ is the sink/source within the volume. When

Ψ is known external sources or equal to zero, m is a locally conserved quantity for

the system and Equation 2.2 is named the mass conservation law (Nordbotten and

Celia, 2011).

In the mass conservation law we define m = ρφ = mass
volume of REV

and f = ρw. Using

these definitions and the Gauss’ theorem, our equation becomes∫
W

(∂ρφ
∂t

+∇ · (ρw −Ψ)
)
dV = 0 ,

which holds for arbitrary volumes W . This gives us our final equation for mass

conservation of the fluid in differential form as

∂ρφ

∂t
+∇ · (ρw) = Ψ . (2.3)

Coupling Equation 2.3 with the Darcy law, we get an equal number of equations

and unknowns, hence we now have a complete system and can solve for fluid flow

in a porous medium. The final system for single-phase flow reads

w = −k
µ

(∇p− ρg) , (2.4)

∂ρφ

∂t
+∇ · ρw = Ψ , (2.5)

where φ is the porosity given by Equation 2.1, and Ψ is the source/sink term within

the volume (Nordbotten and Celia, 2011).

The Biot model is an extension of the above system to the case of an elastic solid

skeleton.
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2.3 Transport equation

When the source/sink term within the volume is represented by internal changes of

the system, Equation 2.2 is called a transport equation.

In this thesis the transport equation, which models mass transfer in our system,

reads

∂tc−∇ ·
(
D∇c−wc

)
= Sc +R(c) , (2.6)

where c is the concentration, D is the mass diffusivity, and w is the flow field, which

in this case is the Darcy flux, i.e. w = −κ∇h. The pure source/sink term, Sc,

describes the creation or destruction of substance in the system, and the reaction

term, R(c), describes the creation or destruction of the substance as a reaction to

itself.

The diffusive term in Equation 2.6 is ∇·
(
D∇c

)
. This term describes the movement

of substance from an area of high concentration to an area of low concentration.

The advective term in Equation 2.6 is ∇ ·
(
wc
)
. This describes the movement of

substance with the flow field w within the medium.

2.4 Biot equations

In one of his first articles, Maurice A. Biot explains consolidation and how the

mechanics of this phenomenon can be applied to an elastic, porous material (Biot,

1941). This theory is important to derive the Biot equations that will be used in

our modeling. We will assume, as Biot did, that ”the skeleton is purely elastic and

contains a compressible viscous fluid” (Biot, 1955).

The Biot equations results in a system of coupled equations that models flow in

deformable porous media. The quasi-static system which models a linearly elastic

porous medium and is saturated with a slightly compressible fluid can be represented

by a momentum conservation equation, and a mass conservation equation, together

with the Darcy law. A quasi-static system is a system where the strain rate is very

low, meaning that the load is applied so slowly that the structure deforms very
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slowly. These equations read

−∇ ·
[
2µε(u) + λ∇ · u

]
+ α∇p = f , (2.7)

∂t

( p
M

+ α∇ · u
)

+∇ ·w = Sf , (2.8)

K−1w +∇p = ρfg , (2.9)

where µ and λ are the Lamé parameters, ε(u) = 0.5(∇u +∇u>) is the linearized

strain tensor, u is the displacement, α is the Biot-Willis constant which accounts for

the pressure-deformation coupling, p is the fluid pressure, f and Sf are source terms,

M is the Biot modulus, w is the Darcy flux, K is the permeability tensor divided by

fluid viscosity, ρf is the fluid density, and g is the gravity vector (Showalter, 2000),

(Both et al., 2017).

The equations are fully coupled since they have a physical connection in that fast

compression of the medium relative to the fluid flow rate leads to increased pore pres-

sure, and an increase in pore pressure induces a dilation of the medium (Showalter,

2000).

Equation 2.7 represents the linear momentum balance of the system. This is derived

from a simple stress formulation, −∇ · σ = f with σ = 2µε(u) + λ∇ · uI − αpI

being the poroelastic stress (Coussy, 2004). As Equation 2.7 is derived using the

St Venant-Kirchhoff-model, we can only allow small deformations in our problem.

This is due to the fact that the St Venant-Kirchhoff-model can be unstable for large

strains and rotations (Dyke and Hoger, 2000).

The Lamé parameters µ and λ are the shear and dilation moduli of elasticity, re-

spectively. The term −αpI represents the additional isotropic stress contribution

coming from the saturating fluid within the porous material (Showalter, 2000).

Equation 2.8 represents the mass conservation of the fluid. Since we consider only

a slightly compressible fluid, we can assume mass conservation is equal to volume

conservation, and Equation 2.3 will then read

∂V

∂t
+∇ · (ρw) = Ψ ,

with V being the volume of the fluid. The volume of the fluid is defined as saturation



13 2.4. Biot equations

of the fluid, sw, times the porosity of the system, φ. As we consider a fully saturated

flow, sw = 1 and consequently V = φ. The porosity is dependent on the volumetric

deformation, ∇ · u, and the fluid pressure, p (Dyke and Hoger, 2000). It changes

linearly and reads

V = φ(u, p) = φ0 + α∇ · (u− u0) +
1

M
(p− p0) ,

where φ0 is the initial porosity, u0 is the initial displacement and p0 is the initial

fluid pressure.

The term α∇ ·u represents the additional fluid content due to local volume change.

One over the Biot modulus, 1
M

, is a constant combining the compressibility and

porosity and describes the amount of fluid which can be forced into the medium

(Showalter, 2000).

Equation 2.9 is simply the Darcy law, which is explained in detail in Section 2.1.
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Chapter 3

Numerical Scheme

When solving the coupled model with the Biot equations 2.7, 2.8, 2.9 and the trans-

port equation 2.6 numerically, we employ the open-source finite element library

FEniCS (Logg et al., 2012). FEniCS is a computing platform for solving partial dif-

ferential equations, where scientific models are translated to finite element code. In

this chapter we will explain some of the mathematics behind this software, starting

with time discretization.

3.1 Time discretization

To discretize means to transform a continuum into a discrete, finite subspace. When

doing so, the functions defined on the continuum are restricted to the discrete set,

allowing restricted functions which are easier to solve. For a time-dependent prob-

lem, the domain often observed is the interval [0, T ], where T is the final time. If

a uniform time discretization is desired, this interval is then partitioned with nodes

chosen as 0 = t0 < t1 < . . . < tn < tn+1 = T , where ti = ih and h = 1
(n+1)

(Cheney,

2001).

The basic idea behind numerical methods is to discretize the given continuous prob-

lem, with infinitely many degrees of freedom, in order to achieve a discrete problem

with a finite number of unknowns. With a finite number of unknowns, the problem

is now computational (Johnson, 1987).
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There are several numerical methods for approximating the solution of the time-

dependent problem given as y′(t) = f(t, y) ,

y(0) = y0 .

The methods usually use an equation, that differs between the methods, to numer-

ically estimate the exact solution, {y(tn)}n=0,1,.., of the time-dependent problem.

This is done in each node, which in this regard is in each time step. The method is

iterated until the sequence of numerically estimated values, {yn}n=1,2,3.., converges,

or a stopping criterion is reached (Iserles, 2008). A widely used numerical method

for the time-dependent problem is the backward Euler method. In this method the

next approximated value, yn+1, is found by

yn+1 = yn + hf(tn+1, yn+1) , (3.1)

where, yn+1 and yn is the approximated value of y(tn) and y(tn+1), respectively, h is

the time step and f(tn+1, yn+1) is the function y′(t) evaluated at the next time step

t = tn+1.

By rearranging Equation 3.1, we obtain

yn+1 − yn
h

= f(tn+1, yn+1) .

This is an implicit method, which means that the new approximation yn+1 is present

on both sides of the equation. In order to solve the equation for yn+1, an iterative

solver or a nonlinear solver should be implemented.

The backward Euler method is a numerically stable method, though computationally

expensive since a linear system must be solved at each iteration.

3.2 Finite Element Method

The finite element method is used to approximate the solutions of boundary value

problems, which are differential equations together with boundary conditions. These
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problems are often used to model physical behavior, for example in association with

waves, electrostatics or fluid flow. Many such problems cannot be solved analytically,

in which case the finite element method is very useful.

The method goes as follows, where the first step is to reformulate the given differ-

ential equation and boundary conditions to a variational formulation,

Find u ∈ V such that a(u, v) = 〈`, v〉 ∀v ∈ V , (3.2)

where u is the solution of the boundary value problem, v is a test function, V is

the Hilbert space which contains the test function v, and 〈·, ·〉 denotes the inner

product.

Definition 3.1 (Hilbert space). A Hilbert space is a complete, normed vector

space V with ‖x‖ =
√
〈x, x〉 ∀x ∈ V . y

Furthermore, a : V × V → R is a symmetric positive bilinear form and ` : V → R
is a linear functional (Braess, 2007).

The variational formulation is achieved by multiplying the differential equation in

the boundary value problem with the test function v, and then integrating over the

domain the equation lies in.

For example, if the differential equation is given as the Poisson equation−∇ · ∇u = f in Ω ,

u = 0 on ∂Ω ,

where Ω is a connected bounded domain in Rn, ∂Ω is the boundary of Ω and f is

a continuous function on Ω. Then by multiplying u with v and integrating over Ω,

the variational formulation 3.2 becomes

Find u ∈ V such that

∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx ∀v ∈ V .

The boundary conditions are divided into essential and natural boundary conditions,

where the essential ones are explicitly built into the function space, while the natural

ones has to be implicitly forced (Braess, 2007). These boundary conditions are called
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Dirichlet and Neumann boundary conditions, respectively.

The next step in the finite element method is to construct a mesh of the given

domain. This is done by partitioning the domain into elements, which for the two-

dimensional case can be either triangles or quadrilaterals, and consider functions

which reduce to a polynomial in each element (Braess, 2007). The vertices of the

elements are defined to be the nodes of the domain.

An approximation space Vh ⊂ V can then be constructed. The approximation space

is spanned by a set of basis functions ϕi and is finite dimensional. This approach of

discretization in the finite element method is called the Galerkin method (Knabner

and Angermann, 2003). In a discrete form, 3.2 now reads,

Find uh ∈ Vh such that a(uh, vh) = 〈`, vh〉 ∀vh ∈ Vh . (3.3)

Since Vh is a finite dimensional space, it is now possible to find the solution explicitly.

Furthermore, we find the approximated linear system by first defining the approxi-

mated solution uh as the sum of all basis functions multiplied by ηi, where the ηi’s

are the coefficients in the expansion of uh in the basis functions ϕi, and N is the

dimension of Vh,

uh =
N∑
i=1

ηiϕi .

We then substitute the approximated solution into 3.3, test with vh = ϕj, and

rewrite it as a linear system,

N∑
i=1

aijηi = bj ∀j = 1 : N ,

where aij = a(ϕi, ϕj) and bj = 〈`, ϕj〉. This is now a complete system with N

equations and N unknowns. By solving this linear system for the ηi’s, we will

approximate the solution of the given boundary value problem.

We then study the error to see if our approximation is accurate enough. How the

error is studied in this thesis is discussed in Section 4.2.
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3.3 Iterative schemes

Iterative schemes are used to find the approximated solution of a problem. Iteration

refers to a repetitive process, which is the principle behind these schemes. In the first

step, an initial guess for the solution has to be made in order to initiate the iterative

process. This initial guess is then used to compute a sequence of approximate

solutions of increasing accuracy. The algorithm for a fixed-point iterative scheme

reads,

For x0 given, let xn+1 = Fxn, n = 0, 1, 2, ... ,

where x0 is the initial guess, xn is the approximated solution from the previous step

and xn+1 is the approximated solution for this step (Cheney, 2001). This is repeated

until the approximated solution is sufficiently close to the real solution.

There are several ways to perform iteration on a set of equations. In the coupling

of flow and mechanics in porous media, one approach which is commonly used, and

extensively researched, is a splitting-based iterative method. In this method the

two systems are split into two sub-problems which can be solved directly. If the sub-

problem for the mechanics is solved first, the method is referred to as the undrained

split or drained split iterative method, while if the sub-problem for the flow is solved

first, the method is referred to as the fixed stress split or fixed strain split iterative

method.

In the drained split method, the pressure field is frozen when solving the mechanics

sub-problem, meaning there is no change in pressure. When the sub-problem for

the flow is solved, the displacement field is frozen.

In the fixed strain split method, the strain field is frozen when the flow sub-problem

is solved. Following this, the sub-problem for the mechanics is solved exactly.

These two methods are conditionally stable, depending on the strength of the cou-

pling between the two sub-problems. This can cause oscillations in the numerical

solutions obtained, making them an unattractive choice for our problem (Kim et al.,

2009).

In the undrained split method, the fluid mass in each gridblock remains constant,

while the pressure is allowed to change locally when solving the mechanics sub-
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problem.

In the fixed stress split method, the total mean stress field is frozen when solving

the flow sub-problem. To keep the rate of mean stress constant, a stabilization

parameter defined by L = α2

Kdr
is introduced. It has been analyzed in literature that

in the case of convergence, the stabilization terms vanish, hence introducing this

parameter does not alter the equation for convergent systems. The sub-problem for

the mechanics is then solved exactly.

These two methods are unconditionally stable, and do not depend on the coupling

between the sub-problems. In the research done by Kim et al. (2009), the fixed

stress split method is proven to converge faster than the undrained split method

when performing a von Neumann stability analysis. This is proved extensively and

for more generalized cases in (Mikelić and Wheeler, 2013). In (Mikelić and Wheeler,

2013) they also prove that choosing L = α2

2Kdr
causes the fixed stress split iterative

method to converge even faster. This, in addition to having no oscillations in the

numerical solutions, makes the fixed stress split iterative method the best choice

for the problem studied in this thesis. The fixed stress split method is used on the

Biot equations in (Bause et al., 2017), (Both et al., 2017), (Borregales et al., 2018),

(Both et al., 2019), (Storvik et al., 2018), (Brun et al., 2019), (Borregales et al.,

2019) where it has proven to be a stable, robust method. In (Bause et al., 2017) and

(Storvik et al., 2018) they focused on optimizing L by two different approaches, in

(Both et al., 2017) a heterogeneous porous media is considered, while in (Borregales

et al., 2018) non-linearities in the fluid flow and mechanical deformation are studied.

Both et al. (2019) studied an unsaturated media where the Biot model is coupled

with the Richardson equation, and an Anderson acceleration is applied, and Brun

et al. (2019) studied a thermo-poroelastic five-field model. Finally, in (Borregales

et al., 2019) a parallel-in-time fixed stress splitting scheme is studied.
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3.4 Extension to the Biot Equations and Trans-

port Equation

Before extending these numerical schemes to the Biot equations, 2.7, 2.8, 2.9, and

the transport equation, 2.6, we need to make a few assumptions on the mathematical

model and data:

A1: µ, λ, α,M,D are all positive.

A2: The fluid viscosity is constant.

A3: K is symmetric, bounded and constant in time.

A4: We are considering a two-dimensional problem, hence g is zero.

A5: u = 0, p = 0, c = 0 on the boundary, for simplicity.

A6: u = u0, p = p0, c = c0 are initial conditions.

We will now apply the finite element method from Section 3.2 on the Biot equations,

2.7, 2.8, 2.9. A mixed formulation is applied for the flow in order to define flux

as a separate unknown and thereby obtain a system of first-order equations for the

flow. This approach is commonly used, as it is locally mass conservative and the

computation of the flux is explicit (Almani et al., 2016).

Consider a space-time domain Ω× (0, T ) with Ω ⊂ R2. Partition Ω into triangular

elements with linear Galerkin elements for the displacement, discontinuous Galerkin

elements for the pressure and lowest order Raviart-Thomas elements for the flux.

These elements are chosen in such a way that the system of equations become sparse

and consequently unexpensive to solve computationally. The time interval (0, T ) is

discretized with nodes chosen as 0 = t0 < t1 < . . . < tn < tn+1 = T , n ∈ N, and step

size chosen as ∆t = 1
(n+1)

, as previously demonstrated in Section 3.1.

With these space discretizations, we can now define the approximation spaces for the

Biot equations. Let Th be a regular triangulation of Ω with mesh size h, EΩ be the

set of all interior edges, and P0,P1 be the spaces of constant and linear polynomials
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respectively. Then the approximation spaces are given by

V h =
{
vh ∈ [H1

0 (Ω)]2 | ∀T ∈ Th, vh|T ∈ [P1]2
}
,

(3.4)

Qh =
{
qh ∈ L2(Ω) | ∀T ∈ Th, qh|T ∈ P0

}
,

(3.5)

Zh =
{
zh ∈ H(div; Ω) | ∀T ∈ Th ∃a ∈ R2 ∃b ∈ R ∀x ∈ T, zh(x) = a+ bx

and ∀E ∈ EΩ, [z]E · νE = 0
}
,

(3.6)

where L2(Ω) is the Hilbert space of square integrable functions, H1
0 (Ω) is the Hilbert

space of square integrable functions which vanishes on the domain boundary, admit-

ting weak derivatives of first order in the same space, and H(div; Ω) is the Hilbert

space of vector-valued square integrable functions admitting a weak divergence in

the same space. The same discretization was used in e.g. (Both et al., 2017). For

more details on the discretization of H(div) see e.g. (Bahriawati and Carstensen,

2005).

As there is a time derivative present in Equation 2.8, this term should be discretized

in time. Since we plan on using an iterative approach, an implicit method is clearly

the most appropriate choice for the time discretization. We will use a backward

Euler method, which was presented in Section 3.1. The reason for choosing this

particular discretization is the stability it provides for large time steps. The Biot

equations models an infinitesimally deforming porous media, hence it is important

to observe the model for a longer period of time. In this thesis we will observe the

model for 10 seconds.

The backward Euler method replaces ∂tp in Equation 2.8 with pn+1−pn
∆t

, and we can

now solve the complete system of Biot equations without a time derivative present.

Remark 1 (Notation). In the following, two indices will at times be present. To

clarify, the one denoted by n is the time step, and the other, which is denoted by i,

is the iteration index.

Let the initial conditions (u0
h, p

0
h,w

0
h) ∈ V h × Qh × Zh be given. The discrete
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variational formulation, as seen in e.g. (Both et al., 2017), for the Biot equations

then reads:

Given (un−1
h , pn−1

h ,wn−1
h ) ∈ V h ×Qh ×Zh for all n ∈ N, n ≥ 1, find (unh, p

n
h,w

n
h) ∈

V h ×Qh ×Zh such that for all (vh, qh, zh) ∈ V h ×Qh ×Zh

〈2µε(unh), ε(vh)〉+ 〈λ∇ · unh,∇ · vh〉 − 〈αpnh,∇ · vh〉 = 〈f ,vh〉 , (3.7)〈
1

M
pnh, qh

〉
+ 〈α∇ · unh, qh〉+ ∆t〈∇ ·wn

h, qh〉 =

∆t〈Sf , qh〉+

〈
1

M
pn−1
h , qh

〉
+ 〈α∇ · un−1

h , qh〉 , (3.8)

〈K−1wn
h, zh〉 − 〈pnh,∇ · zh〉 = 0 . (3.9)

This system of equations can now be solved as a fully coupled system, or the flow

and mechanics can be decoupled and solved in an iterative way, as presented in

Section 3.3. We will choose the latter approach for this thesis, as the fixed stress

split iterative method has shown to be a good choice for our problem.

Furthermore, we also need to discretize the transport equation, 2.6, in space and

time to be able to solve the Biot equations and the transport equation simultaneously.

To discretize in space, we follow the finite element method from Section 3.2.

Consider the same space-time domain as for the Biot equations. Partition now Ω into

triangular elements with linear Galerkin elements. The time interval is partitioned

such as for the Biot equations. With these discretizations, the approximation space

for the transport equation is given by

Bh =
{
bh ∈ H1(Ω) | ∀T ∈ Th, bh|T ∈ P1

}
. (3.10)

Since there is a time derivative present in Equation 2.6 as well, the backward Euler

method is applied here too. ∂tc is replaced with cn+1−cn
∆t

, removing the time derivative

in this equation as well.

Let the initial condition c0
h ∈ Bh be given. The discrete variational formulation for

the transport equation then reads:
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Given cn−1
h ∈ Bh for all n ∈ N, n ≥ 1, find cnh ∈ Bh such that for all bh ∈ Bh

〈cnh, bh〉+ ∆t〈D∇cnh,∇bh〉+ ∆t〈∇cnh ·wn
h, bh〉+ ∆t〈cnh∇ ·wn

h, bh〉 =

∆t〈Sc, bh〉+ ∆t〈R(cnh), bh〉+ 〈cn−1
h , bh〉 . (3.11)

We will now use the fixed stress split iterative method to approximate the Biot

equations 3.7, 3.8, 3.9 and the transport equation 3.11. For linearization of the

reaction term in Equation 3.11, the L-scheme is employed as a linearization technique

as well as stabilization, such as in e.g. (List and Radu, 2016), (Borregales et al.,

2018), (Brun et al., 2019).

By initializing un,0h = un−1
h , pn,0h = pn−1

h , wn,0
h = wn−1

h , and cn,0h = cn−1
h , the fixed

stress split iterative method gives us a sequence of approximations (un,ih , p
n,i
h ,w

n,i
h , c

n,i
h ),

i ≥ 0. The flow sub-problem is solved first while the total mean stress field is frozen,

meaning that σβ = σ0 + Kdr∇ · u − αp is kept constant by introducing the tun-

ing parameter L (Both et al., 2017). Next, the mechanics sub-problem is solved

using the approximated solution for pressure from the flow sub-problem. After this,

the transport equation is solved using the approximated solution for the flux. This

iteration process is continued until a specified tolerance is reached.

The iterative procedure consists of three steps which reads as follows:

Step 1: For i ≥ 1, find (pn,ih ,w
n,i
h ) ∈ Qh × Zh given (un,i−1

h , pn,i−1
h ,wn,i−1

h ) ∈
V h ×Qh ×Zh such that for all (qh, zh) ∈ Qh ×Zh there holds〈(

1

M
+ L1

)
pn,ih , qh

〉
+ ∆t 〈∇ ·wn,i

h , qh〉 = ∆t〈Sf , qh〉+

〈
1

M
pn−1
h , qh

〉
+ 〈α∇ · un−1

h , qh〉

+ 〈L1p
n,i−1
h , qh〉 − 〈α∇ · un,i−1

h , qh〉 ,
(3.12)

〈K−1wn,i
h , zh〉 − 〈p

n,i
h ,∇ · zh〉 = 0 . (3.13)

Step 2: Find un,ih ∈ V h given pn,ih ∈ Qh such that for all vh ∈ V h there holds

〈2µε(un,ih ), ε(vh)〉+ 〈λ∇ · un,ih ,∇ · vh〉 = 〈f ,vh〉+ 〈αpn,ih ,∇ · vh〉 . (3.14)
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Step 3: Find cn,ih ∈ Bh given wn,i
h ∈ Zh, c

n,i−1
h ∈ Bh such that for all bh ∈ Bh there

holds

〈cn,ih , bh〉+ ∆t〈D∇cn,ih ,∇bh〉+ ∆t〈∇cn,ih ·w
n,i
h , bh〉+ ∆t〈cn,ih ∇ ·w

n,i
h , bh〉+ 〈L2c

n,i
h , bh〉 =

∆t〈Sc, bh〉+ ∆t〈R(cn,i−1
h ), bh〉+ 〈cn−1

h , bh〉+ 〈L2c
n,i−1
h , bh〉 .

(3.15)

Remark 2. We want to call attention to the different L’s, and specify these two.

L1 is the stabilization term introduced by the the fixed stress splitting scheme, as

discussed in Section 3.3, and L2 is the stabilization term introduced to linearize the

reaction term and to stabilize the iterative scheme, given as a positive constant. L2

should be chosen as small as possible in order to increase convergence rate, but also

large enough to ensure a stabilizing effect (List and Radu, 2016).

We now have an algorithm on how to solve the decoupled Biot equations coupled

with the nonlinear transport equation.
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Chapter 4

Numerical Results

In this chapter we will analyze the robustness of the fixed stress split iterative method

when coupling the Biot equations 2.7, 2.8, 2.9, with the the transport equation 2.6.

Furthermore, we will study the efficiency of this iterative method compared to the

monolithic approach.

We will consider three different test cases for the reaction term in the transport

equation;

1. R(c) = 0 .

2. R(c) = Ac .

3. R(c) = Ac
A+c

.

4. R(c) = c2 .

On two domains;

1. The unit square.

2. The L-shaped domain.

4.1 Code validation

For the implementation of this scheme, we use FEniCS software (Langtangen and

Logg, 2017). The stopping criterion employed is ‖(ui, pi,wi, ci)−(ui−1, pi−1,wi−1, ci−1)‖ ≤
δa + δr‖(ui, pi,wi, ci)‖, δa, δr > 0, where δa, δr are the absolute and relative toler-
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ances, respectively. In other words, this is saying that the error for the displacement,

pressure, flux and concentration at each iteration, should be smaller than an abso-

lute tolerance plus a relative tolerance multiplied with the associated norm. The

physical parameters used in our numerical analysis are the same as the ones used in

(Mikelić et al., 2014) for the Mandel’s problem, a benchmark problem for validating

coupled flow in elastic porous media. These parameters, and a few others we use in

our model, are given in Table 4.1.

Symbol Quantity Value

µ First Lamé parameter 2.475 ×109

λ Second Lamé parameter 1.650 ×109

α Biot-Willis constant 1.0

M Biot modulus 1.650 ×1010

D Mass diffusivity 0.465

A Reaction coefficient 0.5

K
Permeability tensor divided

by fluid viscosity
1.0 ×10−14

d Dimension 2

ξ Pressurescale 1.0 ×1012

δa Absolute tolerance 1.0 ×10−8

δr Relative tolerance 1.0 ×10−8

T Final time 10.0

∆t Time step size 1.0

h Space step size for the unit square 0.25, 0.125, 0.0625, 0.03125

hmin Smallest space step size for the L-shape 0.06132, 0.03066, 0.01533, 0.00767

Table 4.1: Input parameters for our problem.

We will test the scheme with three different tuning parameters, introduced by the

fixed stress splitting method, to find the optimal choice for our model. The tuning

parameters we will evaluate are;

1. L = α2

2µ
d

+λ
.

2. L = α2

2
(

2µ
d

+λ
) .

3. L = α2

2λ
.
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We will also test the scheme with and without the stabilization terms introduced

by linearization of the reaction term in the transport equation. The stabilization

parameters, denoted as L2 in our scheme, evaluated are;

1. L2 = 0 .

2. L2 = 1.0× 102 .

3. L2 = 1.0× 10−2 .

4. L2 = 1.0× 106 .

5. L2 = 1.0× 10−6 .

To construct a test problem for this scheme, we use the method of manufactured

solutions. We observe that the size of the physical values differs greatly, so we add

a pressurescale parameter, ξ, to our exact solution of the pressure in order to scale

the equations.

4.1.1 The unit square

If we choose our domain to be Ω = (0, 1) × (0, 1) ⊂ R2, the exact solutions for the

displacement, pressure, flux and concentration reads,

u(x, y, t) =

[
txy(x− 1)(y − 1)

txy(x− 1)(y − 1)

]
, (4.1)

p(x, y, t) = ξtxy(x− 1)(y − 1) , (4.2)

w(x, y, t) = −K ∇p =

[
Kξt(y2 − 2xy2 + 2xy − y)

Kξt(x2 − 2x2y + 2xy − x)

]
, (4.3)

c(x, y, t) = txy(x− 1)(y − 1) . (4.4)
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Plugging these into the equations, 2.7, 2.8, 2.9, 2.6, we obtain the source terms;

f =

[
αξyt(y − 1)(2x− 1)− 4µty(y − 1)− µt[(2x− 1)(2y − 1) + 2x(x− 1)]

αξxt(x− 1)(2y − 1)− 4µtx(x− 1)− µt[(2x− 1)(2y − 1) + 2y(y − 1)]

− λt[(2x− 1)(2y − 1) + 2y(y − 1)]

− λt[(2x− 1)(2y − 1) + 2x(x− 1)]

]
,

Sf =
1

M
ξ(xy(x− 1)(y − 1)) + 2ξKt(x(x− 1) + y(y − 1))

+ α((2x− 1)(y − 1)y + (2y − 1)(x− 1)x) ,

Sc = Dt(−2x2 + 2x) +Dt(−2y2 + 2y)−R(c)− ξKt2(x− 2xy + 2x2y − x2)2

−ξKt2(y − 2xy + 2xy2 − y2)2 + xy(x− 1)(y − 1)

+ξKt2(−2x2 + 2x)(x2y2 − x2y − xy2 + xy)

+ξKt2(−2y2 + 2y)(x2y2 − x2y − xy2 + xy) .

We solve the equations 3.12, 3.13, 3.14, 3.15, with these source functions on the right-

hand side and the exact solutions for the displacement, pressure and concentration as

Dirichlet boundary conditions. Since we are using a mixed-formulation for the flow,

the Dirichlet boundary condition for the pressure is applied as a natural boundary

condition in Equation 3.12 and Equation 3.13.

Following this, we refine the mesh four times in order to analyze the mesh depen-

dency and convergence of the method. Here, we show an example of the coarsest

and finest mesh tested. We use the same meshes for the pressure, flux, displacement

and concentration.
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(a) 4x4 mesh (b) 32x32 mesh

The refinement is caused by taking h to be smaller which again leads to smaller

triangles. When the triangles are smaller, the approximated solution is computed

in several areas, which gives a solution that is closer to the exact solution.

The approximated solutions we obtain for the finest mesh at the final time T = 10s

are given in the following plots;
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(a) Concentration, ch (b) Flux wh and magnitude

(c) Displacement uh and magnitude

Figure 4.2: Approximated solutions for concentration, flux and displacement at
T = 10s.

Remark 3 (Plots). As the concentration, pressure and the two components of

the displacement have the same exact solutions, we only show the plot for the

concentration. The other plots look exactly the same, only with different values.

For the displacement we also show a plot of its magnitude.

By examining the plots and comparing them to the exact solutions, we understand

that our scheme approximate the solutions properly.

We now observe the iteration count for different time steps in relation to different

tuning parameters L.
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Figure 4.3: L1 = α2

2µ
d

+λ
, L2 = α2

2
(

2µ
d

+λ
) , L3 = α2

2λ
.

Clearly, L2 = α2

2
(

2µ
d

+λ
) gives the best result with the fewest amount of iterations.

This is the same result as was shown in (Mikelić and Wheeler, 2013) and (Both

et al., 2017), where L = α2

2( 2µ
d

+λ)
was indeed the optimal choice for L.

Also, the number of iterations should be the same for each mesh size, which is indeed

the case in these results.

When we want to test the number of iterations needed to solve only the transport

equation, we use the Darcy flux computed at the final iteration of the Biot equations

as the flow field in the transport equation, and then iterate the transport equation

separately. Testing with different stabilization parameters, L2, for the transport

equation, did not alter the number of iterations in any case. Consequently, we

can conclude that our scheme is not sensitive to the stabilization of the transport

equation. Additionally, different reaction terms did not change the results, and

we draw the conclusion that our method is stable for different choices of R(c). In

Table 4.2 we plot the number of iterations needed to solve the transport equation

for different reaction terms and stabilization parameters. The number of iterations

is the same for every mesh size and is not affected by an implicit or explicit reaction

term. When R(c) = 0, the number of iterations is the same as when there is a

reaction term present.
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R(c) = Ac R(c) = Ac
A+c

R(c) = c2

L2 = 0 3 3 3

L2 = 1.0× 102 3 3 3

L2 = 1.0× 10−2 3 3 3

L2 = 1.0× 106 3 3 3

L2 = 1.0× 10−6 3 3 3

Table 4.2: Number of iterations for the transport equation for different reaction
terms and stabilization constants.

4.1.2 The L-shaped domain

For the L-shaped domain, which we define as Ω = (0, 1)× (0, 1)\(0.5, 1)× (0.5, 1) ⊂
R2, we use the same exact solutions and source functions, and we solve the same

equations, as for the unit square. The boundary conditions are the same as for the

unit square on the boundaries Γ1 = {0} × (0, 1), Γ2 = (0, 1)× {0}, Γ3 = (0, 0.5)×
{1}, Γ4 = {1} × (0, 0.5). For the boundaries Γ5 = {0.5} × (0.5, 1), Γ6 = (0.5, 1)×
{0.5}, we apply Neumann boundary conditions for the pressure, displacement and

concentration. The Neumann boundary conditions are obtained by multiplying the

derivative of the exact solutions with the normal vector of the associated boundary.

They appear on the right hand side of the equations, where they are multiplied

with the associated test functions and integrated over the belonging boundary. The

Neumann boundary condition for the pressure is applied as an essential boundary

condition in this case, since we are using a mixed formulation for the flow.

We perform a mesh refinement four times for this mesh as well. The plots show the

coarsest and finest mesh tested for the L-shaped domain. We use the same meshes

for the pressure, flux, displacement and concentration.
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(a) Coarse mesh, hmin = 0.06132. (b) Fine mesh, hmin = 0.00767.

The approximated solutions we obtain for the finest mesh in this domain are given

in the following plots. We will plot the same time step and types of plots as for the

unit square.

(a) Concentration, ch (b) Flux wh and magnitude

(c) Displacement uh and magnitude

Figure 4.5: Approximated solutions for concentration, flux and displacement at
T = 10s.

As a result of choosing Neumann boundary conditions on Γ5, Γ6, we observe that
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the plots in the L-shaped domain are exactly the same as the plots in the unit square,

except that they are missing the top right square. If we had chosen homogeneous

Dirichlet boundary conditions on the whole boundary, the plots of concentration,

pressure and displacement would be zero on the whole boundary and the exact

solutions defined in equations 4.1, 4.2, 4.3, 4.4 would no longer be valid.

We now observe the iteration count for different time steps in relation to different

tuning parameters L.

Figure 4.6: L1 = α2

2µ
d

+λ
, L2 = α2

2
(

2µ
d

+λ
) , L3 = α2

2λ
.

We observe that the tuning parameter that gives the lowest amount of iterations

is L2 = α2

2
(

2µ
d

+λ
) , which is expected. The number of iterations is the same for the

different mesh sizes, and for the different reaction terms. These results are the same

as for the unit square, and follows the articles published by (Mikelić and Wheeler,

2013), (Both et al., 2017).

When testing the number of iterations needed to solve the transport equation in the

L-shaped domain, we use the same approach as for the unit square. The number of

iterations is the same for all cases tested in this domain as well. We refer to Table

4.2 for the results. A change in mesh size, or choosing an explicit or implicit reaction

term, does not influence the number of iterations in this domain either.
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4.1.3 Analysis

Following this, we compare the numerical solutions with the exact analytical solu-

tions to observe the errors. An analyzation of the asymptotic behavior of the error

at different space step sizes h can tell us if the program works.

Another test to see if our program works is the iteration count. It was demonstrated

in (Both et al., 2017) that the convergence was not influenced by a change in the

mesh, hence the iteration count should be the same when we refine the mesh. It

is shown in Table 4.3 that this is indeed the case for our simulation. We plot the

iteration count for L = α2

2( 2µ
d

+λ)
.

Unit square L-shape

h 0.25 0.125 0.0625 0.03125 0.06132 0.03066 0.01533 0.00767

i 39 39 39 39 39 39 39 39

Table 4.3: Here h is the space step size and i is the number of iterations at the final
time step.

4.1.4 Monolithic scheme

We will now study the efficiency of the fixed stress split iterative method by compar-

ing the elapsed time after solving the system iteratively, with the elapsed time after

solving the system monolithically. Two different monolithic schemes are considered.

Case 1

In this case, only the Biot equations are solved monolithically, while the transport

equation is solved iteratively. The Darcy flux approximated in the fully coupled

Biot equations will be used as the flow field in the transport equation. We will use

the same stopping criterion for the concentration here, as we did in the fixed stress

splitting method.

This procedure consists of two steps which reads as follows:

Step 1: Find (pnh,w
n
h,u

n
h) ∈ Qh×Zh×V h given (pn−1

h ,wn−1
h ,un−1

h ) ∈ Qh×Zh×V h
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such that for all (qh, zh,vh) ∈ Qh ×Zh × V h there holds

〈K−1wn
h, zh〉 − 〈pnh,∇ · zh〉+

〈
1

M
pnh, qh

〉
+ ∆t 〈∇ ·wn

h, qh〉+ 〈2µε(unh), ε(vh)〉

+ 〈λ∇ · unh,∇ · vh〉 − 〈αpnh,∇ · vh〉+ 〈α∇ · unh, qh〉

=

〈
1

M
pn−1
h , qh

〉
+ ∆t〈Sf , qh〉+ 〈α∇ · un−1

h , qh〉+ 〈f ,vh〉 .

Step 2: Find cn,ih ∈ Bh given wn
h ∈ Zh, c

n,i−1
h ∈ Bh, c

n−1
h ∈ Bh such that for all

bh ∈ Bh there holds

〈cn,ih , bh〉+ ∆t〈D∇cn,ih ,∇bh〉+ ∆t〈∇cn,ih ·w
n
h, bh〉+ ∆t〈cn,ih ∇ ·w

n
h, bh〉+ 〈L2c

n,i
h , bh〉 =

∆t〈Sc, bh〉+ ∆t〈R(cn,i−1
h ), bh〉+ 〈cn−1

h , bh〉+ 〈L2c
n,i−1
h , bh〉 .

Case 2

In this case, both the Biot equations and the transport equation are solved in a

monolithic manner. This is done by first solving the Biot equations monolithically,

and then use the Darcy flux approximated in the fully coupled Biot equations as the

flow field in the transport equation. The stopping criterion for this iterative process

is the same as the one used for the fixed stress splitting method.

This procedure consists of two steps which reads as follows:

Step 1: Find (pn,ih ,w
n,i
h ,u

n,i
h ) ∈ Qh ×Zh × V h given (pn,i−1

h ,wn,i−1
h ,un,i−1

h ) ∈ Qh ×
Zh × V h and (pn−1

h ,wn−1
h ,un−1

h ) ∈ Qh × Zh × V h such that for all (qh, zh,vh) ∈
Qh ×Zh × V h there holds

〈K−1wn,i
h , zh〉 − 〈p

n,i
h ,∇ · zh〉+

〈
1

M
pn,ih , qh

〉
+ ∆t 〈∇ ·wn,i

h , qh〉+ 〈2µε(un,ih ), ε(vh)〉

+ 〈λ∇ · un,ih ,∇ · vh〉 − 〈αp
n,i
h ,∇ · vh〉+ 〈α∇ · un,ih , qh〉

=

〈
1

M
pn−1
h , qh

〉
+ ∆t〈Sf , qh〉+ 〈α∇ · un−1

h , qh〉+ 〈f ,vh〉 .

Step 2: Find cn,ih ∈ Bh given wn,i
h ∈ Zh, c

n,i−1
h ∈ Bh, c

n−1
h ∈ Bh such that for all
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bh ∈ Bh there holds

〈cn,ih , bh〉+ ∆t〈D∇cn,ih ,∇bh〉+ ∆t〈∇cn,ih ·w
n,i
h , bh〉+ ∆t〈cn,ih ∇ ·w

n,i
h , bh〉+ 〈L2c

n,i
h , bh〉 =

∆t〈Sc, bh〉+ ∆t〈R(cn,i−1
h ), bh〉+ 〈cn−1

h , bh〉+ 〈L2c
n,i−1
h , bh〉 .

The efficiency of the different methods in the unit square are plotted in Figure 4.7.

We have studied the difference in elapsed time between the fixed stress splitting

scheme with the optimal tuning parameter L = α2

2
(

2µ
d

+λ
) , Case 1, where the Biot

equations are solved monolithically and the transport equation iteratively, and Case

2, where both the Biot equations and the transport equation is solved monolithically.

The computations were performed on a MacBook Air with a 1.6 GHz Intel Core i5

processor. For a more realistic plot of the efficiency for the unit square, we increase

the number of refinements of the mesh to five, and accordingly the final space step

size is h = 0.015625.

Figure 4.7: Time elapsed after computing the system for different mesh sizes in the
unit square.

By studying this plot, we notice the rapid increase in time elapsed when refining the

mesh from a 32x32 mesh to a 64x64 mesh for Case 2. Case 1, with monolithically

solved Biot equations and iteratively solved transport equation, also increases quite

fast when refining the mesh in this interval. The fixed stress splitting method has

only a slight increase in the same interval, and is consequently the fastest method

for the 64x64 mesh.
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We now consider the L-shaped domain. The efficiency for this domain is plotted in

Figure 4.8, and the schemes we study are the same as for the unit square.

Figure 4.8: Time elapsed after computing the system for different mesh sizes in the
L-shaped domain.

Please note that the step sizes are smaller than for the unit square, hence the number

of unknowns are greater for the L-shaped domain and consequently the time elapsed

is longer. In this plot as well, the fixed stress splitting method appears to be the

best method for solving our system. The method is much faster than Case 1 and

Case 2 for the finest mesh we tested, though slightly slower than the other methods

for the coarser meshes.

After studying both Figure 4.7 and Figure 4.8, our conclusion is that for finer meshes,

the fixed stress splitting method is the most efficient method for our system of

equations. However, as we observe that there is only a slight difference in the time

elapsed for the different methods when h is large, the choice of method is of little

consequence for the coarser meshes.

4.2 Convergence studies

We will now observe the convergence rate, that is how fast the error approaches zero

when the resolution is increased. The L2-norm of the error is obtained by taking

the L2-norm of the approximated solutions at the final time minus the associated
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exact solutions, ‖eh‖ = ‖(uh, ph,wh, ch) − (u, p,w, c)‖. If this error is bounded

by the space step size h to some power p, and the approximated solution goes

to the exact solution when h → 0, the method converges. To find how fast the

approximated solution goes to the exact solution, we can observe the convergence

rate p in ‖eh‖ ≤ Chp, where C is some constant. This is done by replacing ”≤” with

”=” and using logarithms. The convergence rate is then obtained by computing

p =

log

(
‖eh2‖
‖eh1‖

)
log
(
h2
h1

) ,

where eh1 and eh2 are the errors at the last time step for two different space step

sizes, h1 and h2.

Looking at the approximation spaces 3.4, 3.5, 3.6, 3.10, we see from the functions in

each triangle that the convergence rates should be 1 for the flux and pressure, and

2 for the displacement and concentration. This means that the flux and pressure

converges linearly, while the displacement and concentration converges quadratically

(Knabner and Angermann, 2003). When computing the convergence rates for the

flux, pressure, displacement and concentration in accordance with the previously

mentioned method, we see that this is indeed the case for our problem. In the

following plots we have drawn a line with that corresponding slope for reference, 1

for flux and pressure, and 2 for displacement and concentration.
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(a) Error in flux, the reference line has a slope of 1. (b) Error in pressure, the reference line has a slope
of 1.

(c) Error in displacement, the reference line has a
slope of 2.

(d) Error in concentration, the reference line has a
slope of 2.

Figure 4.9: Plots of error and step size in the unit square. Please notice the difference
in the axes.
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(a) Error in flux, the reference line has a slope of 1. (b) Error in pressure, the reference line has a slope
of 1.

(c) Error in displacement, the reference line has a
slope of 2.

(d) Error in concentration, the reference line has a
slope of 2.

Figure 4.10: Plots of error and step size in the L-shaped domain. Please notice the
difference in the axes.

These plots demonstrate clearly that the convergence rates are correct in accordance

with the approximation spaces, which implies that our proposed iterative solution

scheme for solving the Biot model coupled with a transport equation is performing

robustly and efficiently.
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

In this thesis, the quasi-static Biot equations, which models flow and mechanics

in a linearly elastic deformable porous media, have been coupled one-way with a

transport equation and studied numerically. The fixed stress splitting method has

been adapted to fit this situation and has been tested on a test problem. Three

different tuning parameters were proposed, and we found that the optimal choice

was L = α2

2
(

2µ
d

+λ
) . Furthermore, four different reaction terms were studied for the

transport equation. They were all convergent. The stabilizing parameter, introduced

by linearizing the reaction term, has been studied, and we found that our scheme was

not sensitive to the choice of this parameter. Moreover, two domains were studied,

the unit square and the L-shaped domain, and the results were the same on both.

Following this, we compared the efficiency of the fixed stress splitting scheme with

the efficiency of two different monolithic schemes. One where the Biot equations

are solved monolithically, and the transport equation is solved iteratively, and one

where both are solved monolithically. The result was that the fixed stress splitting

scheme was the most efficient scheme for finer meshes, while for coarser meshes, the

choice of method was of little consequence.

Convergence tests on the problem gave the expected convergence rates in both do-

mains, thus we can conclude that the method works well for a one-way coupling
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between the quasi-static Biot equations and the nonlinear transport equation in two

dimensions. To the best of our knowledge, the coupling between the transport equa-

tion and the quasi-static Biot equations has not been reported in literature yet.

Even though we only tested the scheme on a test problem, this work has showed

that the Biot equations and the nonlinear transport equation can be coupled and

solved iteratively using the proposed methodology, and yields satisfying results.

5.2 Future work

We suggest extending the model to three dimensions to be able to create a more

realistic model that can be applied to a realistic tumor problem. For further testing

of the coupling connection between the Biot equations and the transport equation,

it is necessary to implement a realistic problem, for example the Mandel’s problem,

in order to compare the numerical results with the experimental results. Addition-

ally, a two-way coupling of the Biot equations and transport equation should be

implemented and tested. A validation of the model assumptions should also be per-

formed. We observe that the stabilization term in the transport equation does not

affect the number of iterations. To get a precise understanding of this phenomenon,

additional analysis is needed. Furthermore, a theoretical analysis of the convergence

of the scheme should be performed to further validate the coupling of the Biot model

with reactive transport.
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Bause, M., Radu, F., and Köcher, U. (2017). Space-time finite element approxima-

tion of the biot poroelasticity system with iterative coupling. Computer Methods

in Applied Mechanics and Engineering, 320:745–768.

Bear, J. (1988). Dynamics of Fluids in Porous Media. NY: Dover.

Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of

Applied Physics, 12(2):155–164.

Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic

solid. Journal of Applied Physics, 26(2):182–185.

Borregales, M., Kumar, K., Radu, F. A., Rodrigo, C., and Gaspar, F. J. (2019).

A partially parallel-in-time fixed-stress splitting method for biot’s consolidation

model. Computers & Mathematics with Applications, 77(6):1466–1478.

Borregales, M., Radu, F., Kumar, K., and M. Nordbotten, J. (2018). Robust itera-

tive schemes for non-linear poromechanics. Computational Geosciences, 22:1021–

1038.

Both, J., Borregales, M., Nordbotten, J., Kumar, K., and Radu, F. (2017). Ro-



45 Bibliography

bust fixed stress splitting for biot’s equations in heterogeneous media. Applied

Mathematics Letters, 68:101–108.

Both, J., Kumar, K., Martin Nordbotten, J., and Radu, F. (2019). Anderson acceler-

ated fixed-stress splitting schemes for consolidation of unsaturated porous media.

Computers & Mathematics with Applications, 77:1479–1502.

Braess, D. (2007). Finite Elements: Theory, Fast Solvers, and Applications in Solid

Mechanics. Cambridge University Press, 3rd edition.

Brun, M., Elyes, A., Berre, I., Martin Nordbotten, J., and Radu, F. (2019). Mono-

lithic and splitting based solution schemes for fully coupled quasi-static thermo-

poroelasticity with nonlinear convective transport. arXiv:1902.05783.

Cheney, W. (2001). Analysis for Applied Mathematics. Springer.

Coussy, O. (2004). Poromechanics. John Wiley & Sons.

Dullien, F. A. L. (1979). Porous Media Fluid Transport and Pore Structure. Aca-

demic Press, 1st edition.

Dyke, T. J. V. and Hoger, A. (2000). A comparison of second-order constitutive

theories for hyperelastic materials. International Journal of Solids and Structures,

37(41):5873–5917.

Iserles, A. (2008). A First Course in the Numerical Analysis of Differential Equa-

tions. Cambridge Texts in Applied Mathematics. Cambridge University Press,

2nd edition.

Johnson, C. (1987). Numerical solution of partial differential equations by the finite

element method. Studentlitteratur, Lund.

Kim, J., Tchelepi, H., and Juanes, R. (2009). Stability, accuracy and efficiency of

sequential methods for coupled flow and geomechanics. SPE Journal, 16:249–262.

Kim, J., Tchelepi, H., and Juanes, R. (2011). Stability and convergence of sequential

methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits.

Computer Methods in Applied Mechanics and Engineering, 200(13):1591–1606.

Knabner, P. and Angermann, L. (2003). Numerical Methods for Elliptic and



Bibliography 46

Parabolic Partial Differential Equations. Number Vol. 44 in Texts in Applied

Mathematics. Springer.

Langtangen, H. P. and Logg, A. (2017). Solving PDEs in Python: The FEniCS

Tutorial I. Springer Publishing Company, Incorporated, 1st edition.

List, F. and Radu, F. A. (2016). A study on iterative methods for solving richards’

equation. Computational Geosciences, 20(2):341–353.

Logg, A., Mardal, K.-A., Wells, G. N., et al. (2012). Automated Solution of Differ-

ential Equations by the Finite Element Method. Springer.

Mikelić, A., Wang, B., and Wheeler, M. F. (2014). Numerical convergence study of

iterative coupling for coupled flow and geomechanics. Computational Geosciences,

18(3):325–341.
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