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Abstract 

The executive functions are crucial for leading a deliberate life which delicately balances the 

considerations posed by ourselves and our surroundings. Several of the most common mental 

illnesses impact executive functions. In order to develop effective treatments, efficient and 

reliable ways of measuring executive functioning are required. One of the most popular tests 

of executive function is the Wisconsin Card Sorting Test (WCST), which has been proposed 

to challenge a range of functions, including working memory, cognitive flexibility, and 

making logical inferences. An fMRI-study was done to investigate the neural substrate for 

performing the WCST, alongside a newly developed auditory adaptation of the test for use 

with the visually impaired. A high-level control condition where the sorting rule was 

disclosed was used, in an attempt to sift out working memory storage functions from 

manipulation and hypothesis generating functions. Contrasting the visual test with the 

auditory one revealed activation limited to the sensory cortices. Contrasting the tests with the 

high level control condition revealed a frontoparietal network including the frontal eye fields 

and the intraparietal sulci. These results highlight the importance of a distributed network of 

brain areas for solving the WCST, which is not limited to the frontal cortex. In addition, the 

lack of a difference between the WCST and the Auditory Sorting Task outside of the sensory 

cortices supports the application of the AST as a substitute for the WCST in the visually 

impaired population. 

 

Keywords: fMRI, wisconsin card sorting test, executive functions, dorsal attention network 
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Sammendrag  

De eksekutive funksjoner er avgjørende for en gjennomtenkt livsførsel som nennsomt ivaretar 

både ens egne og ens omgivelsers hensyn. Flere av de vanligste mentale lidelser forstyrrer 

eksekutive funksjoner. For å utvikle effektive behandlingsformer, er det nødvendig med 

pålitelige og kostnadseffektive måter å måle eksekutiv fungering på. En av de mest populære 

tester av eksekutiv fungering er Wisconsin Card Sorting Test (WCST), som er blitt sagt å 

utfordre en rekke funksjoner, inkludert arbeidsminne, kognitiv fleksibilitet og det å trekke 

logiske slutninger. En fMRI-studie ble gjort for å undersøke det nevrale grunnlaget for 

utførelsen av WCST, i tillegg til en nylig utviklet auditiv tilpasning av testen til bruk med 

synshemmede. En kontrollbetingelse der sorteringsregelen ble oppgitt ble brukt, i et forsøk på 

å sile ut lagringsfunksjoner i arbeidsminne fra bearbeidende og hypoteseproduserende 

funksjoner. Ved sammenlikning av den visuelle testen med den auditive, ble det avslørt 

aktivering begrenset til de sensoriske barker. Ved sammenlikning av testene med 

kontrollbetingelsen, ble det avslørt aktivering i et frontoparietalt nettverk som innbefattet de 

frontale øyefelt og de intraparietale furer. Disse resultatene understreker viktigheten av et 

utstrakt nettverk av hjerneområder for utførelsen av WCST, som ikke er begrenset til 

frontallappen. I tillegg støtter fraværet av ulikhet mellom WCST og Auditory Sorting Task ut 

over de sensoriske barker bruken av AST som erstatning for WCST i den synshemmede 

befolkning. 

 

Nøkkelord: fMRI, wisconsin card sorting test, eksekutive funksjoner, dorsale 

oppmerksomhetsnettverk 
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Preface  

When Professor Karsten Specht asked me if I would like to analyse some fMRI-data 

of an experiment using the Wisconsin Card Sorting Test, I was excited about getting some 

hands-on experience with neuroimaging data. However, the theory surrounding the construct 

“executive functions”, and the epistemological issues about drawing inferences about mental 

functions from performance on a test, were quite overwhelming. Although I’ve learned about 

many interesting lines of research – and many of these revealed a convergence, which always 

fascinates me – the field still seems enormous to me. Luckily, I had the practical processing 

and analysis of the data to relax with when the literature got too hairy.  

The experiment that this thesis is based on was designed and performed by Professor 

Specht and colleagues, but the data were left untreated for reasons not disclosed to me. As I 

knew next to nothing about the handling of this type of data, I was surprised to find that the 

procedure was really quite straightforward. The software tool, SPM, allows for much more 

customisability than is usually presented in the guides, though, and so some experimentation 

was required for me to fully grasp when to do what. When I had tried my hand on some 

example data, I went to PhD Candidate Justyna Beresniewicz to have my skills assessed. 

Although she said I had become proficient, she still graciously spent several hours tweaking 

the MATLAB code, in order to find a more efficient way for me to run the procedures.  

When the final analyses were over, I was met with a new challenge: What do these 

images mean? This set off a long and arduous trek through the literature which I still feel I’ve 

only just started on. What especially caught my attention was how central motivation is to not 

only the executive functions, but also how the processes underlying motivation actually shape 

the perception of reality, such as in schizophrenia. This, however, was something of a trap, as 

the literature on schizophrenia turned out to be bottomless, and this experiment was not 

directly related to that particular subject.  
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In the end, I think I managed to pick out literature that sheds some light on what the 

executive functions are, why they matter, and some ways they can be studied. I know that 

there are several of the theoretical questions discussed in this paper that I will follow with 

great interest also after submission. The analyses, interpretation, and literature search that 

went towards this thesis were very much independently done by myself, with sparse but 

influential guidance provided by my supervisors.  

I would like to thank my supervisor Professor Karsten Specht for his help throughout 

this process, and for his contagious intellectual enthusiasm. I would also like to thank PhD 

Candidate Justyna Beresniewicz for introducing me to SPM and for taking the time to work 

out original MATLAB-scripts for my benefit. I am also grateful to Kristiina Kompus for 

fluidly making the arrangements for me to get involved with this project. Finally, I wish to 

thank my loving and stalwart girlfriend, Maria Befring Hage, for emotional, critical, and 

alimentary support throughout this challenge.  
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 A Frontoparietal Network Underlies both the Standard and an Auditory Adaptation of 

the WCST 

The executive functions are a set of psychological constructs that are thought to 

underlie the concerted use of cognition in the service of achieving goals. The ones that are 

generally included are self-control, interference control, working memory, and cognitive 

flexibility (Diamond, 2013). Many of them are characterised by how they primarily modulate 

other processes, rather than acting alone (Miller & Cohen, 2001). This can make testing them 

difficult, as they have to be inferred from how other functions are used (Miyake & Friedman, 

2012).  

Creating a plan might be an example of an activity where most, if not all, executive 

functions are needed (Owen, 1997; Tanji & Hoshi, 2001). Working memory and imagination 

are needed to envision the faraway goal which motivates the plan. They’re also needed to 

think of all the necessary steps and contingencies towards that goal. Attention has to be 

controlled away from distractions and towards this activity and, by extension, the future. Self-

control must be exerted to finish the plan and not give in to the temptations of doing more 

pleasant things instead. Planning – instead of acting on impulse – is probably what most 

defines these executive functions. They are there to guide behaviour towards goals not 

currently perceived, and to protect against dangers not yet encountered. (Casey et al., 2011; 

Rogers et al., 1999).  

Though the term executive functions didn’t become widely used until the seventies, 

the functions that this term refers to were studied previously. Short-term memory – distinct 

from the working variant according to some, but still a necessary component of it – was 

studied already in the 1950s by Miller (1956). The control of attention was proposed as a 

necessary faculty by Donald Broadbent in 1958. Posner and Petersen (1990) suggested later 

that there must be an “executive” attention system, and Baddeley and Hitch (1974) also 
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included a “Central Executive” in their model of working memory. Although there now is 

general agreement about what to call them as a group, the particular functions can sometimes 

be trickier to define (Holroyd & Yeung, 2012; Miller, 2013). 

In the following sections, the executive functions will be described, together with the 

neural structures and/or processes thought to underlie them. Sometimes the same functions 

will go under different names, and sometimes different functions will go under the same 

name. Efforts have been made to disentangle some of these knots, but some confusion will 

probably remain. Afterwards, there will be a short review of the Wisconsin Card Sorting Test 

(WCST) and its applications. The last part of the introduction will describe the importance of 

dopamine to the executive functions, and how dopamine dysregulation is implicated in 

several conditions displaying as key symptoms problems with executive function. Then the 

present work will describe an experiment investigating on the one hand, a newly developed 

auditory adaptation of the WCST called the Auditory Sorting Task (AST), and on the other 

hand, the neural substrates underlying performance on the WCST. The results of this 

experiment will then finally be discussed in light of the disambiguations of the executive 

functions attempted in the introduction. 

Working Memory 

Memory could be defined as the ability to retain information in the absence of any 

external stimulus. The distinction between short-term and long term memory was shown in 

the case of Henry Molaison, formerly known by his initials H.M., who had crippling 

anterograde amnesia of long term declarative memory, but an intact short term memory after a 

bilateral lesion of the medial temporal lobes (Scoville & Milner, 1957).  

According to Baddeley and Hitch (1974), working memory can be modelled as several 

sensory modality bound buffer components which “rehearse” whatever memories you’re 
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working with. There were originally two of these, the phonological loop which is made up of 

an ability to store memory traces of sound for a very short time and a rehearsal process 

similar to internal speech, and the visuospatial sketchpad which can hold a limited amount of 

objects and their visual and spatial features (Baddeley, 2003). A control system was 

hypothesized to allocate attention between these according to circumstance, termed the 

central executive. The division of working memory into different modalities was motivated 

by findings from dual task paradigms, where performing two tasks simultaneously would be 

more impaired if the tasks were in the same modality than if they were not (Baddeley & 

Hitch, 1974). The idea that memory could be divided in this way is supported by research on 

long-term memory, where recall of a memory in a certain modality is reflected in activity in 

the corresponding sensory cortex (Binder & Desai, 2011). However, working memory was in 

the earliest neuroscientific papers often localised to the frontal cortex (Fuster & Alexander, 

1971; Goldman-Rakic, 1995; Cohen et al., 1997). Does this mean that the frontal cortex can 

represent information from any modality, or does it mean that working memory 

representations are more abstract? What those early studies typically reported was that there is 

sustained neural activity in the frontal cortex that corresponds to the delay in which the 

subject is holding something in memory before giving a response proving that the memory 

was retained (Fuster & Alexander, 1971; Goldman-Rakic, 1995; Cohen et al., 1997). The 

types of memories subjects typically are asked to hold could well be described as sparse. That 

is, they are positions (Goldman-Rakic, 1987), relations (Cohen et al., 1997), contingencies 

(White & Wise, 1999), rules (Wallis, Anderson, & Miller, 2001) and numbers (Paulesu, Frith, 

& Frackowiak, 1993). It may be that the frontal cortex only deals with sparse representations, 

or it could be that the sustained activity is somehow signalling to more posterior areas for 

them to in turn hold the complete representations (Miller & Cohen, 2001; Postle, 2006). 

Zeman et al. (2010) reported a case of such a dissociation between florid mental imagery and 
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abstract visuospatial representations, wherein the subject, MX, showed normal frontal 

activation, but abnormal activation in posterior cortex. Others have shown that working 

memory is not uniquely present in the frontal cortex. Warrington and Shallice (1969) reported 

that a young man who had suffered a strike to his left parietal cortex, displayed a selective 

impairment of verbal working memory. Postle (2006) suggests that the short-term storage of 

information is actually subserved by more posterior areas of the brain, more specifically, the 

areas that are involved in the perception of the same kinds of information. In this regard, 

delay-period activity in the prefrontal cortex (PFC) might reflect a more managerial function, 

where it is biasing posterior cortex to prioritise the to-be-remembered information in some 

way (Corbetta & Shulman, 2002; Miller & Cohen, 2001). Said another way, the PFC could 

play the role of remembering what to remember. One could say that short-term memory 

interference effects of PFC disruption is support for this view (Chao & Knight, 1995; 

Thompson-Schill et al., 2002), but if the PFC is telling posterior cortex to remember 

something, and the PFC doesn’t store information on its own, who is telling the PFC to tell 

posterior cortex to remember? In a lesion study by Petrides (2000), a double dissociation was 

observed where inferotemporal lesions disrupted retention, while dorsolateral PFC lesions 

disrupted the ability to monitor many items at once. This shows that posterior cortex is needed 

to retain information across a delay, while the dorsolateral PFC is not.  

 To summarize, short term memory was early shown to be something different than 

long term memory. It was hypothesized that short term memory was enacted by specific 

modules in the brain, like Baddeley and Hitch’s (1974) components, or the frontal cortex. 

However, consecutive research has led to the assumption that short term memory can be 

performed by most parts of the cortex, and often by the same parts that are involved in 

perception in that modality. Nevertheless it is likely that some sort of control mechanism is 
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affecting what to be remembered, including areas in the frontal cortex (D’Esposito & Postle, 

2015; Miller & Cohen, 2001).  

Inhibition 

The mind is able to imagine many courses of action at any single moment, yet the 

body is only able to do more or less one thing at a time. In order to choose the one thing to do, 

one has to be able to suppress all the other impulses one might have. This ability to suppress 

impulses underlies the very notion of making choices, as were we not able to put an action on 

hold, the choice would already have been made before we were done deciding. This could be 

why Miyake & Friedman (2012), in their factor analysis of executive functions, couldn’t 

separate inhibition-specific variance from variance common to all the executive functions. 

That is, inhibition was found to be central to performance on all measures of executive 

functions.  

The experience of being faced with a choice is captured in the term ‘cognitive 

conflict’. The posterior medial PFC and the anterior cingulate cortex (ACC) have been linked 

to cognitive conflict and performance evaluation (Botvinick, Cohen, & Carter, 2004; 

Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004). Activity in these areas increases 

prior to making a decision between two competing responses (overriding prepotent responses 

or underdetermined responses), and also after making a response that turns out to be wrong. It 

is hypothesized that these areas, either directly or through signals to neighbouring areas, 

adjust the amount of cognitive control that is expended on a task, depending on how well 

things are going (Botvinick et al., 2004).  

Many different tasks where the inhibition of a response is needed regularly engage the 

ACC, like the flanker task (Pardo, Pardo, Janer, & Raichle, 1990), the go/no-go task (Braver, 

Barch, Gray, Molfese, & Snyder, 2001), and the Stroop Test (Botvinick, Nystrom, Fissell, 
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Carter, & Cohen, 1999). The Stroop Test (Stroop, 1935) has shown this frequently (MacLeod 

& MacDonald, 2000). In the Stroop Test, the subject is presented colour names one by one, in 

differently coloured ink. The objective is to pronounce the name of colour of the ink. It is 

regularly shown that people have more difficulty with this task when the presented colour 

name is written in an ink of a different colour.  

Holroyd and Yeung (2012) propose that the ACC is involved in the hierarchical 

maintenance of goals and sub-goals, using these representations to evaluate different action-

options within a broader context. Self-control involves comparing two or more options 

suspected of yielding reward, and choosing the option which yields the larger reward even 

though the other option seems more enticing (Holroyd & Yeung, 2012). How it’s even 

possible for the brain to know that one option is more rewarding while at the same time 

representing a different option as seemingly more rewarding, is quite strange. Partly 

motivated by how lesions of the ACC can result in akinetic mutism (Németh, Hegedüs, 

Molnâr, 1988), Holroyd and Yeung (2012) propose that the ACC is necessary to construe any 

extended behaviour as worthwhile. They argue that any action always takes some immediate 

effort, but that normally, this effort is justified by whatever longer term goals the action leads 

to. What the ACC does, according to Holroyd and Yeung (2012), is link the different action-

options to the expected results, and compare the expected pay-off of each option.  

Persons suffering from addiction seem to have problems with inhibiting whichever 

behaviour they’re addicted to. The reason for this might be that their urges are stronger than 

other people’s urges (Robinson & Berridge, 1993), or it might be that their ability to act 

contrary to their urges is weaker than in other people (Baumeister, Vohs, & Tice, 2007). The 

latter option could for example be a difference in a frontostriatal control network investigated 

by Liston et al. (2006). Both of those might be the case, and there is even a third possible 

factor. Persons with damage to the ventromedial PFC are afflicted by a severe bias towards 
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short-term gratification (Bechara, Damasio, Damasio, & Anderson, 1994), and many addicted 

individuals present with the same bias (Noël, Van der Linden, & Bechara, 2006). It is not that 

they can’t imagine the future consequences of their actions, but it seems those imagined 

consequences don’t influence their affect as they do for other people. If this is the case, then it 

is not really a problem of executive function, but a problem of motivation. They’re acting 

rationally within the premises of their limited ambitions.  

Also information can be inhibited. Patients with damage in PFC are impaired in a 

nonmatch-to-sample task where there are distracting stimuli in the delay (Chao & Knight, 

1995). Attention is also a type of inhibition of information, as everything that is not attended 

to is ignored. Again, patients with damage in the lateral PFC show larger amplitudes in early 

event-related potentials (ERP) taken from sensory cortices, suggesting that they are left more 

open to outside interference (Knight, Hillyard, Woods, & Neville, 1981). 

Rules and Cognitive Flexibility 

Keeping track of and following the rules for behaviour is central to the functions of the 

executive system. Anyone can act goal-directed if there is ever only one goal, and no 

intermediate considerations to take into account. Let’s say you are a five year old and want to 

buy ice cream. You could simply break the piggy bank and buy ice cream for the money 

inside, but then you’d get in trouble with your mother, and so you need to balance the two 

goals of buying ice cream and not getting in trouble with your mother. This is an example of 

how one’s own goals place limitations on each other. Even if one only has one goal, 

limitations can be placed on it from the outside world. There might be a line to get ice cream. 

Now, you could fight the other kids to get ice cream right now, but then you might get 

grounded, and you wouldn’t be able to buy ice cream the next day, so you wait for your turn. 

Navigating considerations like these is what the executive system is for. Behaving “correctly” 
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necessitates being aware of the different goals you have, while also being aware of the 

contexts that determine when pursuing them will be successful or not.  

Following rules is something that engages every part of the executive system. To 

follow a rule, the minimum requirements are that you have one thing you want to do, while 

simultaneously being aware that it is not the right thing to do, i.e. you need to represent in 

your mind two thoughts at once. You also need to be able to inhibit your impulses until you 

have decided. Additionally, a rule is only in special cases always meant to be followed, which 

means a person needs to be able to adapt flexibly to changing circumstances. Finally, a rule is 

by definition a generalisation, dictating how to behave across many specific situations. 

Therefore, to follow a rule, one needs to be able to generalise from specific exemplars. Some 

studies providing insight into how these abilities are manifested in the brain follow below. 

A combined match to sample and non-match to sample task that Wallis et al. (2001) 

used shows the learning of rules by single neurons in the PFC. Monkeys were trained to do 

two types of task, and had to perform either the one or the other, depending on which signal 

they were given. Wallis et al. (2001) showed that there were single neurons in the PFC which 

were selectively responsive to the rules determining which task to perform, independently of 

the stimulus features of the tasks and the rule-signalling cues.  

One experiment done by Buschman, Denovellis, Diogo, Bullock, and Miller (2012) 

explored the mechanisms underlying several of the executive functions discussed above. 

Arrays of electrodes were placed in the dorsolateral PFC of macaque monkeys, while the 

monkeys were making rule based judgements. A cue would tell the monkeys to either attend 

to the colour of a stimulus or to the orientation of the stimulus. The stimulus could be one of 

two colours, and in one of two orientations. Depending on which colour or orientation he 

stimulus was in, the monkey was supposed to look to the left or to the right. One half of the 

electrode pairs registered, in the beta band, synchronous oscillations connected to the colour 
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rule, and the other half registered synchrony connected to the orientation rule. This suggests 

that the rhythm of neural activity plays a role in forming context-dependent ensembles out of 

a jumbled mass of neurons (Buschman et al., 2012). It was also found that after being cued to 

attend to colour, but before the stimulus had appeared, the ensemble that had showed 

synchrony connected to orientation was showing synchrony in the low-frequent alpha band. 

This effect, together with behavioural data showing an increased reaction time for the colour 

task compared to the orientation task, was interpreted as reflecting a need to suppress the 

orientation ensemble (Buschman et al., 2012).  

Another experiment was done on category learning (Antzoulatos & Miller, 2011). 

Two images were made of a distribution of spots, and then several hundred versions of these 

were made by distorting the originals. These several hundred exemplars could thus be 

classified into one of two categories based on which prototype they originated from. Macaque 

monkeys were trained to look to either direction depending on which category it was 

presented. The monkeys would start learning only a few exemplars, so that the task could be 

solved by simple stimulus-response-learning. The number of exemplars would increase, 

however, so that by the end, the monkeys would have to have extrapolated the categories or 

they would fail. Electrodes were recording from the striatum and the PFC. What Antzoulatos 

and Miller (2011) found was that during the early trials, neural activity in the striatum was a 

better predictor of performance than activity in the PFC, but in the later trials, this relationship 

was reversed. In another study (Antzoulatos & Miller, 2014), where these data were 

reanalysed, it was found that, during the middle trials when the monkeys were starting to 

learn the categories, there was an increase in synchronous oscillations between the striatum 

and the PFC. Then, in the final trials, when the monkeys had mastered the categories, there 

was an increase in category-specific synchronous oscillations between the striatum and the 

PFC (Antzoulatos & Miller, 2014). Buschman and Miller (2014) take these results, together 
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with the results from Buschman et al. (2012), as an indication of synchronous oscillations 

being the substrate for cognitive flexibility and set shifting. 

Maintaining task set and shifting task set sound like opposites. But the way these are 

tested suggests that they are more similar than they seem. The ability to maintain task set – or 

concentrate – is often tested by measuring performance in the face of distraction (Fenske & 

Eastwood, 2003) . The mechanisms behind this are generally described as inhibition of 

irrelevant stimuli or information. The ability to shift sets – or cognitive flexibility – is usually 

tested by giving alternating tasks, and measuring the switch cost – reductions in accuracy and 

increases in reaction time (Rogers & Monsell, 1995) – or the number of perseverative 

responses (Lacreuse, Parr, Chennareddi, & Herndon, 2018). Also in the case of flexibility are 

the mechanisms described as inhibition – inhibition of the previous task set. However, 

performance in concentration and flexibility often dissociate, with people performing well in 

one but not the other (Friedman, Miyake, Robinson, & Hewitt, 2011).  

Buschman and Miller (2014) suggest that cognitive flexibility is supported by the 

mixed selectivity of neurons and their ability to dynamically form different ensembles among 

neurons that are all structurally connected. Siegel, Warden, & Miller (2009) propose that one 

way in which two or more ensembles can exist simultaneously without them collapsing into 

one, is by oscillating out of phase with each other.  

 Cognitive flexibility can be defined simply as the ability to shift sets, or it could mean 

something more comprehensive, involving the ability to reconfigure the relations among 

representations (Wiseheart, Viswanathan, & Bialystok, 2016). This ability might be subserved 

by dynamically forming networks as in the studies by Buschman et al. (2012) and Anzoulatos 

and Miller (2011; 2014).  

Bilinguals regularly have to reconfigure the relations among representations when 

flexibly switching from one language to another. It’s been observed that bilinguals exhibit an 
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enhanced concurrent activation of PFC and striatum in response to tasks requiring such 

reconfiguration (Becker, Prat, & Stocco, 2016). Becker and colleagues (2016) compared the 

performance of monolinguals and bilinguals on a cognitive flexibility task, and applied 

dynamic causal modelling to their functional magnetic resonance (fMRI) data. It was shown 

that in monolinguals, activation of the ACC led to reduced activity in the PFC and striatum, 

while in bilinguals activation of the ACC led to a small increase in prefrontal and striatal 

activity. In an earlier study by Prat and Just (2011), it was shown that in people with higher 

working memory capacity, difficult sentences elicit recruitment of the dorsolateral PFC and 

striatum. Wiseheart et al. (2016) found that bilinguals had an advantage in global switch 

costs, but not in local switch costs, compared to monolinguals. They argue that the local 

switch cost reflects simple task preparation more than online cognitive flexibility, and so they 

conclude that the advantage of bilinguals in global switch costs reflects an advantage in 

executive functions.  

Attentional Control and Mind-Wandering 

In 2002, Corbetta and Shulman proposed a model for explaining how attention is 

controlled in the brain. This model was partly based on earlier models by Posner and Petersen 

(1990), and Mesulam (1981). Earlier research (Desimone & Duncan, 1995) had shown that 

attention is a heightened state of activity in the neurons that code for whatever is being 

attended to, in the appropriate sensory (Heinze et al., 1994; Hillyard, Hink, Schwent, & 

Picton, 1973; Petkov et al., 2004), associative (O’Craven, Downing, & Kanwisher, 1999), or 

even hippocampal (Muzzio et al., 2009) parts of the brain. Ignoring something likewise is 

reflected in an inhibited, or lowered state of activity in the corresponding neurons (Mazaheri 

et al., 2014). In the face of changing goals or changing circumstances, what’s important to 

focus on cannot be immutably hard-wired into us, but must be allowed to change with the 
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situation. The parts of the brain responsible for steering our focus in this way are, according to 

Corbetta and Shulman (2002), the superior parietal lobules, the intraparietal sulci (IPS) and 

the frontal eye fields (FEF), collectively called the Dorsal Attention Network (DAN). These 

areas work in concert to signal to sensory and associative areas of cortex to either increase or 

subdue their activity according to what it is most fitting to attend to at any given moment. It is 

thought that the IPS and the FEF contain priority – or salience – maps of the perceptual space 

a person at any given moment is inhabiting (Corbetta & Shulman, 2002), wherein the salience 

of stimuli is affected by a combination of their sensory intensity, learned and/or inborn 

behavioural relevance, and effortful top-down control signals.  

Buschman and Miller (2007) suggest that the IPS is more involved with bottom-up 

attention and that the FEF are more involved with top-down, based on the temporal order they 

become active in the two types of tasks. Recording from several sites, including the FEF and 

the IPS, Buschman and Miller (2009) found that during visual search, the FEF displayed a 

serial activation pattern corresponding to the sequential way in which the animal looked 

through its visual field. This pattern of activity was not found anywhere else. These findings 

suggest that the FEF are directing the IPS during controlled search for a specific stimulus.  

The control of attention seems to work both by enhancing the signals being attended 

to, and by inhibiting the irrelevant signals. Mazaheri et al. (2014) found that making a 

judgement about a stimulus in one modality, while ignoring the other modality, was 

associated with decreases of alpha power in the attended modality’s cortex and increases of 

alpha power in the ignored modality’s cortex. Marshall, O’Shea, Jensen and Bergmann (2015) 

demonstrated that alpha modulations in visual cortex in relation to attention tasks are caused 

by the FEF, when they effectively reduced these by applying transcranial magnetic 

stimulation to the contralateral FEF. Händel, Haarmeier and Jensen (2011) found that amount 

of alpha oscillations in occipital cortex correlated with successful inhibition of attention. 
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Subjects were attending to either the right or the left, and alpha oscillations in the unattended 

hemisphere predicted inability to report stimulus changes on that side. This effect was shown 

to be compromised in adults with attention deficit hyperactivity disorder (ADHD) (Ter 

Huurne et al., 2013). These findings suggest that successful allocating of attention depend not 

only on paying attention to the right things, but also on not paying attention to the wrong 

things. In addition, the close relationship between oscillations and cognition shows up again 

in attention research.  

Buschman and Miller (2010) observed that shifts of attention were not only 

synchronised to a beta (25 Hz) rhythm, but also that each shift occurred within a single 

oscillatory cycle. In 2009, Siegel and colleagues found that neural ensembles reflecting two 

separate items held in working memory were oscillating out of phase with each other. 

Buschman and Miller (2010) speculate what possible benefits rhythmic oscillations could 

bring. Internal synchrony strengthens the integrity of an ensemble, while external synchrony 

could strengthen the effect that one ensemble has on its output targets through temporal 

summation. Also, if computations are done in discrete, phase-locked packets, then 

computations in one area that depend on computations in a different area can be done more 

efficiently, since the ensembles would «know» when the required computations will be ready 

(Buschman & Miller, 2010). These hypothetical effects of rhythmicity would benefit both 

local and network level processing.  

In Womelsdorf and Everling (2015) the whole process of attentional control is 

described, from motivational and goal-setting computations in the PFC, striatum, and limbic 

structures, to salience maps, search directives, and polymodal spatial representations in the 

FEF, IPS and superior colliculus, before finally fully realising in feature-specific modulations 

in sensory cortices. Here it is also emphasised how synchrony between the different nodes of 

the network underlie the different effects of controlled attention, and indeed how synchrony 
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flexibly produces these networks. Since the salience maps of FEF and IPS depend on 

motivation, goals, and context, these must be able to rapidly update in correspondence with 

top-down signals.  

This DAN had been showing up in several neuroimaging studies (Cabeza & Nyberg, 

2000; Corbetta & Shulman, 2002; Hopfinger, Buonocore, & Mangun, 2000; Kastner, Pinsk, 

De Weerd, Desimone, & Ungerleider, 1999), together with a different network that seemed to 

be deactivating concurrently with the DAN’s activating (Gusnard & Raichle, 2001; Fox et al., 

2005). When performing blood-oxygen-level-dependent (BOLD) fMRI one needs to use a 

control condition – sometimes called a baseline or resting state – to compare with. Otherwise, 

the sustained activation in task-related areas would be impossible to interpret. However, 

because a living brain is always active (Raichle, 2006), not only is it hard to detect the tiny 

task-related changes, but also when subtracting the baseline activation, sometimes you get 

negative activation (Stark & Squire, 2001). As the baseline can to such a large degree 

influence the activations that are seen, researchers decided to examine the nature and 

organisation of the brain’s resting, or “default”, state (Gusnard & Raichle, 2001; Fox et al., 

2005). Knowing which areas are typically active in the resting state, could allow for a more 

conscious design of experimental and control conditions in neuroimaging. What was found is 

a particular set of brain areas consistently deactivating when the subject is engaged in some 

experimental task, with these also consistently coming back online when the subject is not 

engaged in a task. These brain areas include the posterior cingulate cortex and precuneus, the 

medial PFC, and the angular gyrus in the parietal lobe (Fox et al., 2005; Shulman et al., 

1997).  

In 2005, Fox et al. investigated these two networks by calculating correlations in 

BOLD time course between six seed regions previously known to be important nodes in these 

networks, and all other voxels. This was done on images taken of three different resting states. 
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Fox et al.’s (2005) work confirmed that these networks – the DAN and the default mode 

network (DMN) – acted as networks also in the absence of any task. That is, their activity 

within network was correlated, and between network their activity was anticorrelated.  

The DMN has been associated with daydreaming (Kucyi & Davis, 2014), but this does 

not mean that it has no productive function. The network has been found to activate when 

subjects are asked to think about their past, their future, or when taking someone else’s 

perspective, such as when reading a story (Spreng, 2012). Importantly, the DMN has been 

found to activate together with prefrontal control structures when performing a task that both 

involved self-reflection and goal-directed cognition (Spreng, Stevens, Chamberlain, Gilmore, 

& Schacter, 2010). This was a task where the subject had to create a plan to reach some 

personal goal they had, and to account for obstacles that they might face on the way.  

Executive Functions Broken Down 

 Miyake and Friedman (2012) applied factor analysis to several different tests of 

executive function to try to overcome the problem of «task-impurity», which refers to how in 

every task meant to test executive function, the score additionally reflects non-executive 

abilities particular to the concrete form of the task. An example of such non-executive 

abilities could be colour processing in the Stroop Test. They did this to look for the essential 

components of these elusive constructs. The main constructs they were interested in were 

updating, shifting and inhibition. A certain amount of variance was shared among all three, 

which was termed “Common EF”, and after accounting for this, inhibition contributed no 

further explanation value, so this was dropped as a separate factor. They also found that the 

factors “Common EF” and “Shifting-specific” were anticorrelated in certain situations 

(Miyake & Friedman, 2012). Working memory is an indispensable executive function, which 

in Miyake and Friedman’s (2012) system would cover at least the “Updating-specific” factor, 
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including the ability to store items across a delay, add new items or otherwise change the 

items held. “Shifting-specific” seems to cover the ability to rapidly switch between tasks, or 

set-shifting, but does not fill the requirements of a more comprehensive definition of 

‘cognitive flexibility’. This last construct would probably include all three of Miyake and 

Friedman’s (2012) factors. What’s interesting is that the last factor, “Inhibition”, was 

absorbed by “Common EF”. This means that all tests of executive function require the ability 

to inhibit responses. As mentioned previously, to inhibit a prepotent response, there needs to 

be represented in a person’s mind both a prepotent response, an alternative response, and the 

ability to override one in favour of the other. In addition to this, two other abilities explain 

performance on tests of executive function, according to Miyake and Friedman (2012). One, 

the ability to temporarily store and update the contents of working memory, and two, the 

ability to rapidly switch between tasks. Being able to concentrate and deliberately control 

one’s attention could be supported by the same process underlying inhibiting prepotent 

responses, which means that control of attention and self-control belong to “Common EF”. 

Allowing one’s attention to wander, then, or allowing new thoughts in to the current mindset, 

could be partially explained by the “Shifting-specific” factor. “Updating-specific” probably 

maps pretty cleanly onto the general usage of the term working memory, except maybe for 

“monitoring”. 

The development of tests of executive functions is an important endeavour. These tests 

are central to both the assessment of clinical therapies and basic research into the neural 

underpinnings of executive functions. Tests of executive function may not be testing 

executive functions directly, yet they are presently the best alternative there is. Though there 

are physiological measures able to some degree to predict executive functioning, such as 

event related potentials (ERP), the relation between specific ERPs and behavioural function is 

not always clear (Downes, Bathelt, & De Haan, 2017). The third option is various forms of 
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behavioural observation, which might hold more ecological validity than formal tests, but are 

costly to perform. One formal test of executive function is the WCST, which will be 

discussed next. 

The Wisconsin Card Sorting Test 

The WCST was presented by Grant and Berg in 1948. In the article from 1948, Grant 

and Berg used the WCST to investigate the relationship between reinforcement and set-

shifting, reinforcement meaning how many correct responses the subject gave before the 

sorting rule was changed. They found that an increased amount of reinforcing trials did not 

make it harder for the subject to change the sorting rule when they were told their answer was 

no longer correct (Grant & Berg, 1948). In the original WCST four stimulus cards were 

presented to the subject, which had either circles, triangles, crosses or stars, in either a blue, 

green, yellow or red colour, on them. The number of symbols on each card varied between 

one to four. The subject was then handed 64 response cards and asked to place them under the 

stimulus cards according to a rule only known to the investigator – the investigator gave 

feedback on whether the sorting was right or wrong. When the rule changed after a number of 

correct sortings, the subject would have to induce that the rule was changed based on no other 

message than the “wrong”-feedback.  

The subject undergoing the WCST has to perform several different mental operations. 

Initially, the to-be-sorted card must be looked at so that its features, or sorting criteria, can be 

clearly perceived. These then must be compared to the features available among the target 

cards. For the very first card, one of the cards has to be picked at random, while for the 

following cards, the gathered evidence has to be remembered and leveraged for choosing 

optimally. If the card is sorted according to the wrong rule, this has to be noted, and then it 

should exclude one possibility for the next round. If the card is sorted according to the right 
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rule, this rule should be remembered, and attention should be allocated to the perceptual 

feature that is the rule. That is, the subject should scan the cards for a certain colour, shape, or 

number (Gazzaley, Cooney, McEvoy, Knight, & D’Esposito, 2005; Petersen, Corbetta, 

Miezin, & Shulman, 1994). Stated briefly, the WCST challenges working memory, the 

control of attention, cognitive flexibility, and logical deduction. 

Milner (1963) later adapted the WCST to her study, where she compared the 

performance on the test of patients with different brain lesions as a result of operations 

performed to relief the patient of epileptic seizures. She concluded that the test was 

specifically sensitive to lesions in the dorsolateral PFC, and that damage to the posterior 

regions had a lesser impact on performance on the sorting test. Although this view about the 

test has been common for many decades, conflicting evidence was provided by Teuber, 

Battersby, and Bender already in 1951. They had administered the test to wounded soldiers, 

and their results showed that the soldiers that performed the worst were those with parieto-

occipital lesions, and not frontal lesions. Anderson, Damasio, Jones, and Tranel (1991) 

investigated this disparity more closely, and concluded that though the test was somewhat 

sensitive to frontal lesions, it was not sufficiently specific to be used as a sole indicator of the 

presence or absence of frontal lesions.  

It would seem, then, that there isn’t a dedicated “card sorting centre” in the brain. 

Lesion studies report effects on performance on the WCST by damage in a number of foci, 

including the dorsolateral PFC (Milner, 1963; Stuss et al. 2000), the medial PFC (Drewe, 

1974), the temporal lobes (Giovagnoli, 2001), the hippocampus (Igarashi et al., 2002), and 

even the cerebellum (Mukhopadhyay et al., 2008). Neuroimaging studies have been no less 

ambiguous, with most of them reporting task related metabolic increases in a distributed 

network of brain areas (Nyhus & Barceló, 2009). In a field made up of complex cognitive 

functions where there is rarely a simple relation between construct, behavioural measure, and 
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neural substrate, it would seem that the WCST manages to stand out as involving a more 

complex set of constructs. 

In addition to the unclear relationship between WCST performance and underlying 

cognitive abilities, and the unclear relationship between these cognitive abilities and their 

underlying neural structures, there seems also to be ambiguities in the scoring of the WCST. 

Heaton (1981) published a formalised manual for the administration, scoring and 

interpretation of the results. The rules included here were that the number of key cards should 

be four and the number of cards in the response deck should be 128. The sorting rule should 

change after ten consecutive correct matches. The performance should be measured using 

sixteen different scales. Many researchers report divergence from these rules (Nyhus & 

Barceló, 2009; Mountain & Snow, 1993), however, and the scoring system in particular is 

often simplified. Bowden et al. (1998) investigated the reliability and internal validity of the 

WCST. They concluded that the different scores all load onto one factor, and that the 

reliability of the test was so low that clinicians ought not to use it until this had improved.  

The variability in the way the WCST is administered makes comparing results from 

different studies less convenient. The involvement of a complex set of cognitive functions and 

brain areas in solving the tasks makes drawing conclusions from test performance 

complicated. Despite these issues, the test continues to be popular. A meta-analysis done in 

2003 by Demakis found that the test is indeed sensitive to frontal damage compared to 

damage in other parts of the brain. Stuss et al. (2000) compared WCST-performance among 

persons with focal lesions in frontal and non-frontal brain areas, while excluding persons with 

language comprehension problems and/or detectable neglect. They found that the patients 

with damage in the frontal areas were significantly impaired, mainly due to perseverative 

errors and set loss errors.  
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Persons with frontal lesions are not the only ones with dysexecutive symptoms. Below 

follows a discussion of the many ways dopamine drives executive functions in light of several 

conditions characterised by both dopamine dysregulation and dysexecutive symptoms. 

Dopamine and Executive Functions 

Many patient groups are known to have problems with executive functions, including 

persons with schizophrenia (Orellana & Slachevsky, 2013), ADHD (Martel, Nikolas, & Nigg, 

2007), addiction (Verdejo-García, Bechara, Recknor, & Pérez-García, 2006), and persons 

with Parkinson’s disease. People with Parkinson’s disease are moderately to severely 

impaired on the WCST (Lange, Brückner, Knebel, Seer, & Kopp, 2018). The catecholamine 

dopamine has been implicated in many conditions in which executive functions also are said 

to be disrupted. These include ADHD (Volkow et al., 2009), substance abuse (Berridge & 

Robinson, 2016), Parkinson’s disease (Fahn, 2008), and schizophrenia (Howes, McCutcheon, 

& Stone, 2015). Although dopamine can have many different effects, depending among other 

things upon concentration, receptor density or which structures are involved (Cools & 

D’Esposito, 2011; Durstewitz & Seamans, 2008), it seems worthwhile to explore what 

possible commonalities exist, given that a single molecule can have such wide ranging 

effects.  

Dopamine is distributed through three pathways in the brain; 1) mesolimbic, from the 

ventral tegmental area to the nucleus accumbens 2) mesocortical, from the ventral tegmental 

area to the frontal cortex 3) nigrostriatal, from the substantia nigra to the striatum (Wickens, 

2009). The mesolimbic pathway is associated with reward and motivation, and is implicated 

in addiction (Berridge & Robinson, 2016). The nigrostriatal is associated with motor action 

selection, and is implicated in Parkinson’s disease (Fahn, 2008). The mesocortical pathway is 

less understood, but it has been hypothesised that dysfunction in this pathway is what’s 
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causing the cognitive and negative symptoms of schizophrenia, and so would be involved in 

executive and social functioning (Weinstein et al., 2017). 

Dopamine and Motivation. One of the earliest discoveries about dopamine’s 

functions was its role in reward and reinforcement. It should be noted, however, that 

dopamine wasn’t yet found to be a neurotransmitter when the first discoveries were made 

(Carlsson, Lindqvist, Magnusson, & Waldeck, 1958). It was found that rats were willing to 

work very hard for the reward of having their mesolimbic pathway electrically stimulated 

(Olds & Milner, 1954), which prompted researchers to conclude that this molecule mediated 

feelings of pleasure. In the same vein, rats were also found to be motivated to acquire 

dopaminergic drugs (Pickens & Harris, 1968). The idea that dopamine equated to pleasure 

was modified later, when “wanting” and “liking” were found to be dissociable (Berridge, 

Venier, & Robinson, 1989). Dopamine in the mesolimbic pathway is now mostly thought to 

underlie motivation (Berridge & Robinson, 2016), although the experience of feeling 

motivated might still be enjoyable in and of itself (Healy, 1989). In a review by Robbins and 

Everitt (1992), two different roles for dopamine are reported in the same brain area, the 

striatum. Blocking dopamine action in the ventral striatum, either through dopamine 

antagonists or through lesions, leads to a state very much like avolition, where the rats don’t 

seek out rewards, like food or mates. Blocking dopamine action in the dorsal striatum, on the 

other hand, seems to abolish the actual consuming of rewards once they are acquired. These 

effects have been doubly dissociated, with rats working for food, but not eating it, and rats not 

working for food, but eating it if placed in front of them (Robbins & Everitt, 1992). Even 

here, we can see that two separable functions, seeking and consuming, still have one thing in 

common, that they both are directed towards rewards. Salamone, Cousins, and Snyder (1997) 

state that “rewards” is not exactly what dopamine is signalling in the mesolimbic pathway, 
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but rather motivational salience in general. This means that dopamine supplies the incentive 

not only to approach pleasurable stimuli, but also the incentive to avoid aversive ones.  

The dorsal striatum, which is the target of the nigrostriatal pathway, has since been 

found to underlie associative learning, habit formation, and motor sequence gating (Yin & 

Knowlton, 2006). Using Antzoulatos and Miller’s (2011; 2014) experiments on category 

learning in macaques as an example, one might imagine that the striatum was learning what to 

do about some pictures to get treats. Perhaps in the beginning it was mapping to each 

individual picture a response that would be good. As more and more new pictures were shown 

to it, the striatum started feeding the PFC all these individual truths, and then the PFC started 

extracting the similarities among all the “look left”-pictures and all the “look-right”-pictures, 

until, in return, it could teach the striatum to ignore the irrelevant differences making the 

pictures unique, and instead only focus on whatever features made the categories what they 

were, and then simply respond as if there were only two pictures. One important thing to point 

out here is that the PFC was only able to extrapolate the categories from the individual 

pictures because there was some commonalities to extrapolate.  

Executive Functioning and Dopamine. Dopamine was also found to play a role in 

executive functions when rhesus monkeys with a regional depletion of dopamine were 

impaired in a delay task (Brozoski, Brown, Rosvold, & Goldman, 1979). Cools and 

D’Esposito (2011) propose that dopamine is central to working memory function, but that the 

optimal concentrations lie in the middle of an inverted U-shaped curve. Because of this, they 

suggest that the baseline levels of dopamine should be taken into account when investigating 

the effects of dopaminergic medication on cognitive abilities. Another proposal in Cools and 

D’Esposito (2011) was that dopamine has opposing effects on the PFC versus the striatum, 

partly motivated by the difference in distribution of D1 versus D2 receptors. Durstewitz and 

Seamans (2008) also proposed different effects of dopamine on cognition, depending on the 
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balance between D1 and D2 binding. They didn’t connect this difference to brain structure, 

though, and instead suggested that there were certain dopamine concentrations more 

amenable to D1-binding and others more amenable to D2-binding.  

In a study by Puig and Miller (2014), it was found that blocking D2-receptors in the 

monkey lateral PFC impaired associative learning, cognitive flexibility (operationalised as 

number of perseverative errors), and motivation. In 2012, Puig and Miller had shown that 

blocking D1-receptors impaired associative learning and cognitive flexibility. There was, 

however, an imbalanced distribution of reduction in associative learning and flexibility, where 

D1-blocking had a stronger effect on learning, while D2-blocking had a stronger effect on 

flexibility. Puig and Miller (2014) suggested that this could indicate that D1 activation is 

involved in maintaining a representation, while D2 activation “destabilizes PFC network 

states favoring the exploration of new strategies” (Puig & Miller, 2014, p. 2985).  

Dopamine has been shown to influence task performance through a modulation of the 

DMN (Nagano-Saito, Liu, Doyon, & Dagher, 2009; Dang et al., 2012). In Nagano-Saito and 

colleagues’ (2009) study, administration of a dopamine receptor agonist made reductions in 

DMN activity sensitive to task complexity, so that increasing task complexity resulted in 

larger reductions in DMN activity. In Dang and colleagues’ (2012) study, higher dopamine 

synthesis capacity in the striatum was correlated with lower performance in shifting among 

object features and a weaker reduction of DMN activity. Whether the study by Dang et al. 

(2012) shows that dopamine is beneficial or detrimental to task performance is equivocal, as a 

higher synthesis capacity is only one aspect of dopamine transmission (Berry et al., 2018; 

Nour, McCutcheon, & Howes, 2018). 

Methylphenidate and dextroamphetamine work by enhancing dopamine action – these 

substances are both prescribed to persons who suffer from ADHD (Seeman & Madras, 2002), 

a condition characterised by impulsivity, hyperactivity and inattentiveness (American 
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Psychiatric Association, 2013). Given the dopaminergic medications’ ability to improve these 

symptoms, it would seem dopamine somehow aids in concentration and willpower. Whether 

it does this by increasing the motivational salience of tasks or whether it does it by 

strengthening control processes’ ability to control, is not known. One group of people who do 

not benefit from dopamine agonists, are those suffering from schizophrenia.  

Dopamine – The Point to Cognition. Dopamine plays a central role in motivating 

behaviour, i.e. it drives a person’s goals. It drives the feeling of importance that behaviourally 

relevant activities have. It also is central to a very basic form of learning, where whatever one 

learns, the dopaminergic “value” of it is also automatically encoded. Though not everything 

one learns is necessarily associated with a dopaminergic valence (Tolman, 1948), things that 

are interesting or that feel important (i.e. things that have been associated with reinforcement) 

are learned faster and better (Rescorla & Wagner, 1972; Treviño, 2016). For these reasons, 

not only is the fast, concrete learning of the basal ganglia enhanced by the right 

concentrations of dopamine, but also the PFC, when trying to maintain something in working 

memory, or staying focused on a task, or trying to inhibit an inappropriate response in favour 

of the more effortful one, is afforded some extra horsepower by dopamine. The strange thing 

is that it is also dopamine that creates the obstacles for the PFC to do its job. When trying to 

stay focused on a task, it is the salience of distracting stimuli that must be overcome, and it is 

dopamine that imbued those stimuli with salience. Normally, the salience of things arises 

organically. Some fundamental things like food or people are salient because they are 

inherently relevant to one’s existence, while other things like a well-equipped kitchen or a 

telephone become salient through their association with food and people, respectively. In 

psychosis, however, salience seems to be transferred to stimuli in a chaotic manner (Kapur, 

2003). 
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Dopamine in Schizophrenia. The final function of dopamine to be discussed here is 

not really a function, but rather a dysfunction. Psychosis is defined as a loss of connection 

with external reality. Symptoms include delusions, hallucinations, and disordered thought and 

speech (American Psychiatric Association, 2013). Psychosis is probably the most 

recognisable feature of schizophrenia, an illness that is also characterised by disorganised 

speech, disorganised behaviour, and negative symptoms (American Psychiatric Association, 

2013). Most pharmacological treatment options for psychosis since the 1950s have been 

antagonistic to dopamine in some way (Howes et al., 2015). This made researchers think that 

dopamine was central to the pathophysiology of schizophrenia (Baumeister & Francis, 2002). 

Although the causes of the condition are not fully understood, most of the theories 

surrounding schizophrenia assume dopamine dysregulation at some point in the causal chain 

(Corcoran, Mujica-Parodi, Yale, Leitman, & Malaspina, 2002; Fletcher & Frith, 2009; Howes 

et al., 2015; Javitt, 2010; Kapur, 2003). Instead of trying to understand the underlying cause 

of schizophrenia, this section will focus on attempts at explaining the role of dopamine in 

schizophrenia and psychosis.  

One theory postulates that psychosis is caused by excessive amounts of dopamine in 

the striatum, and is called the “aberrant salience hypothesis” (Kapur, 2003). Kapur (2003) 

illustrates how excess dopamine imbues normally inconsequential thoughts and stimuli with 

an increased sense of importance, or motivational salience. The idea is then that this abrupt 

sense of importance invites the person with schizophrenia to supply fanciful accounts 

explaining the warped motivational salience of thoughts and environment. Dopamine 

antagonists, then, relaxes this salience and creates some «motivational room» where the 

delusions are allowed to subside and resolve. Kapur (2003) underscores, however, that the 

antipsychotics do not directly dissolve the delusions as if by a supplement of pharmacological 

clarity, they only reduce their salience which creates space for alternative thoughts to emerge. 
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If the delusions are not addressed cognitively during pharmacological treatment, de novo 

psychosis post-treatment often revolves around the same subjects as the original psychosis. 

There have been reports that prognosis worsens with time passed between the first 

episode of psychosis and treatment (Harrison et al., 2001). Seen within the parameters of 

Kapur’s (2003) theory, this might be reflecting a process of learning. Recall that the striatum 

recognises and learns the association between concrete phenomena and their dopaminergic 

value. When in a psychotic state, the dopaminergic value of phenomena is aberrant, according 

to Kapur (2003). The longer it takes before an individual receives treatment, the more time 

the striatum has to learn all these aberrant associations. This would contribute to consolidating 

a very different and fundamentally disordered experience of the world. Assuming that the 

PFC depends on the striatum for reliable and coherent streams of experiences to be able to 

draw out the essences and generalise, a protracted psychosis could disrupt the very basis of 

abstract thought. This would make it hard to recover via cognitive behavioural therapy, for 

instance. In addition, relating to other people would become progressively more difficult, as 

communication relies on an enormous amount of shared assumptions about the world and 

about what’s important in life.  

A possible trajectory from an untreated psychosis towards worsening cognitive 

symptoms was outlined above. However, there have also been reports stating that the 

cognitive symptoms of schizophrenia precede the first episode of psychosis (Caspi et al., 

2003). Findings like these make it difficult to determine the direction of causality between 

psychosis and cognitive symptoms. It is still striking that all of the symptoms of 

schizophrenia can be predicted from various abnormalities in dopamine concentration 

(Durstewitz & Seamans, 2008). 

 People with schizophrenia do not only suffer from psychotic symptoms. The disorder 

is also characterized by negative symptoms which refer to an impairment in normal 
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functioning. The negative symptoms include symptoms related to motivation – avolition, 

asociality and anhedonia – and affect that is blunted, and alogia (Kirkpatrick, Fenton, 

Carpenter, & Marder, 2006). In addition, people with schizophrenia also show deficits in 

executive functions, such as working memory (Forbes, Carrick, McIntosh, & Lawrie, 2009; 

Lee & Park, 2005) and attention (Mesholam-Gately, Giuliano, Goff, Faraone, & Seidman, 

2009). Everett, Lavoie, Gagnon, and Gosselin (2001) report from an experiment comparing 

patients with schizophrenia with controls in the WCST, that the patients with schizophrenia 

made significantly more errors and completed fewer categories. They report that the patients 

with schizophrenia did more perseverative errors, but they also report that considerably more 

trials were needed for them to complete the first category, so their impairment wasn’t 

necessarily specific to perseveration.  

 Using Miyake and Friedman’s (2012) system, what seems to be the issue in the 

schizophrenic brain is an overabundance of “Shifting”, where anything can seem important 

and grab attention. Whether this is in a direct causal relationship with an impoverished 

“Common EF” (inhibition), or if these two features develop in parallel is not clear from the 

research discussed here, though Miyake and Friedman (2012) did point out that these two 

factors were anticorrelated in certain situations. It seems likely, though, that if everything and 

anything can seem important, then this would have an antagonistic relation to the ability to 

deliberately choose one response or thought over another. One could easily conceive how this 

imbalance between shifting and inhibition could lead to avolition. If avolition is defined by 

the lack of motivation to achieve goals, and the way this motivation is represented by the 

brain looks like what Holroyd and Yeung (2012) described, with the ACC setting up a 

hierarchy of salience, basically, then this hierarchy would be impossible to construct if 

anything can seem equally important. This would quite effectively disrupt any long-term 

plans. 
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Kapur (2003) proposes that aberrant salience explains both hallucinations, delusions, 

and disordered thought and speech. These symptoms by themselves seem likely to explain the 

negative and cognitive symptoms of schizophrenia, but the way antipsychotics reduce the 

positive symptoms while not impacting the negative ones (Remington et al., 2016), challenges 

this very intuitive understanding.  

Schizophrenia remains a mysterious condition with several observations that are 

difficult to integrate into one coherent, aetiological theory (Harper, Towers-Evans, & 

MacCabe, 2015). Although the hallucinations and delusions may be the most recognisable 

symptoms, it is actually the cognitive symptoms that have the most profound impact on the 

patient’s life (Green, Kern, & Heaton, 2004; Green, 2006; Bliksted, Videbech, Fagerlund, & 

Frith, 2017). In order to study these, and eventually develop better treatment options, good 

neuropsychological tests are needed. Such tests should be challenging enough to distinguish 

between healthy and patients, while also being sufficiently specific to distinguish between 

different functions. Therefore, it is relevant to uncover exactly which neural structures are 

being engaged by the tests already created. One attempt at this will be described below.  

Experimental Design  

The aim of the study was to develop an auditory adaptation of the WCST, which 

would allow for testing of the visually impaired. The second aim was to explore the 

commonality between the auditory and visual variants of the test, investigating the neural 

substrates of performing the WCST when maintenance of information in short-term memory 

was controlled for. In this study, four different versions of the WCST were used. These could 

be categorised by modality and difficulty level. In the visual modality, there was one original 

WCST, called “Uninstructed Visual”, and one where the subject was informed of the sorting 

rule of the WCST, called “Instructed Visual”. The pattern was the same for the auditory 
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modality. The translation from the visual to the auditory modality was done as follows. 

Instead of decorated cards as stimuli, the subjects were to perform the sorting tasks on speech 

recordings as stimuli. The stimuli varied along three dimensions – voice actor, syllable, and 

number of repetitions. The design and execution of the experiment was done by Professor 

Karsten Specht, while the processing and analysis of the data were performed by the author. 

The following were the hypotheses of the study: 

1) Comparing the visual task with the auditory task will only show differences in sensory 

cortex. 

2) Comparing the uninstructed sorting task with the instructed sorting task will show 

activation more specifically related to executive functions, such as the dorsolateral 

prefrontal cortex, anterior cingulate and parietal cortex. 

3) Comparing average activation across all tasks with rest will show more activation 

related to working memory, possibly in posterior cortex. 

Methods 

Subjects 

16 healthy, male subjects between the ages of 19 and 29 participated in the study. 

They were all right handed as determined by the Edinburgh Inventory (Oldfield, 1971), and 

were naïve to the WCST. Informed consent was acquired from every subject, and the regional 

ethics committee approved the study.  

Materials 

The Edinburgh Inventory. The Edinburgh Inventory (Oldfield, 1971) was 

administered to determine the handedness of the subjects. This inventory includes 15 items 

asking for the subject’s preferred hand to use in different circumstances.  
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3T GE-Signa MRI Scanner. When performing fMRI the BOLD signal is utilized. 

This is an MR-signal that occurs as a result of how the magnetic properties of deoxygenated 

and oxygenated blood differ (Lindquist, 2008). When haemoglobin, which is a metalloprotein 

in the red blood cells, is oxygenated it is diamagnetic, which means that the magnetic force 

repels it. When the oxygen in the haemoglobin is released, it is paramagnetic, which means 

that the magnetic force attracts it. Since there is no oxygen stored inside the neurons, more 

active neurons require more blood. The blood supply in one area is depleted of its oxygen 

faster, when groups of neurons in the area become more active. This leads to a reaction in the 

blood vessels, and they expand. This generates an increased blood flow, and as a result more 

oxygenated blood is sent to the activated group of neurons, which is named the 

heamodynamic response function (HRF) (Lindquist, 2008). The whole process is registered 

by the MR-scanner as a slight reduction in signal right after an area becomes more active, 

swiftly followed by a rising signal strength as the balance between oxygenated and 

deoxygenated blood shifts. Signal strength peaks in most cases at 4-6 seconds after the 

neurons start firing. However, the BOLD-signal can be difficult to detect. The brain is always 

active, and the activity that is evoked when the subject is performing experimental tasks, is 

only a tiny fraction of the overall activity of the brain. To solve this issue, the task or 

behaviour that is to be mapped to a brain area often is repeated multiple times to get an 

increased signal-to-noise ratio. The activation of the target behaviour is recorded along with 

repeated blocks of a control condition. The activation pattern of the control condition is then 

subtracted from the activation of the experimental condition, and it is assumed that the neural 

activity that remains after this subtraction is the activity related to the behaviour of interest 

particularly. This procedure is called cognitive subtraction. A scanner trigger was used to 

allow for coordination between the image acquisition and stimulus presentations.  
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Stimuli Presentation. The auditory stimuli were presented through headphones from 

Nordic Neuro Lab (NNL), which also allowed for two-way communication between subject 

and staff. At the same time the headphones shielded the subjects from high noise levels 

coming from the scanner. The visual stimuli and instructions were displayed on an LCD 

screen, also from NNL. The subjects submitted their responses by pressing the buttons on an 

input unit, also from NNL.  

Stimuli Production. Audio recording and editing was performed with the computer 

software Adobe Audition 2.0, while the four versions of the WCST were created together 

with their presentation order in the computer software E-prime (version 1.1, Psychology 

Software Tools Inc.). E-prime allows for synchronisation between the scanner and the 

presentation of stimuli, through the use of triggers and markers.  

SPM12. Statistical parametric mapping (SPM12) is a set of statistical procedures 

developed by Friston et al. (1994) to analyse neuroimaging data in an experimental setting, 

i.e. to test specific hypotheses. It involves assuming parametric statistical models at each 

voxel, which when tested according to whichever hypothesis one has, results in a map 

showing all voxels that do or do not conform to the hypothesised pattern of activation. A 

software tool designed to implement these procedures was developed by the Wellcome 

Department of Imaging Neuroscience.  

MRIcroGL. Figures showing the activations were made by importing contrast maps 

from SPM12 into MRIcroGL (v1.0.20180623) This software then projected the activations on 

a 3D-rendered model of the brain. MRIcroGL was developed by the McClausland Center of 

University of South Carolina.  
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Design 

The experimental design included two factors with two levels each. The factors were 

labelled “Difficulty” and “Modality”. “Difficulty” had the levels “Instructed” and 

“Uninstructed”, while “Modality” had the levels “Visual” and “Auditory”. Altogether, this 

yielded four different tasks that the subjects were presented with. There were two runs per 

subject, one for each modality. Within each run, blocks of the instructed and the uninstructed 

sorting task were presented in an intermingled fashion. Each task block lasted 60 seconds, 

with 20 second periods of no task in between. In total, there were 24 task blocks, and 12 per 

run. 

Procedure 

The paradigm was built in E-prime (version 1.1). Prior to running the experiment, the 

paradigm was tested in a pilot study done on five subjects. 

Uninstructed Tasks. Two experimental tasks were used. The visual sorting task was 

adapted from the original WCST. In this task, two cards with different symbols, in different 

colours and numbers, were shown following each other. The symbols were either circles, 

squares, stars or triangles; the colours of the symbols were red, blue, green and yellow. The 

number of symbols on each card ranged between one to four. The subjects were to deduce 

what the mutual feature of the presented cards was. To figure this out they would have to try 

different sorting rules, and succeed or fail. The E-Prime program communicated through a 

response screen whether their answer was right, and the subjects had to make changes in their 

sorting rule based on this feedback. When a subject found the right sorting rule, he or she was 

to follow this rule for the following trials. However, this rule changed at each new task block 

in the experiment. When the feedback on the response screen communicated that their choice 
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was now incorrect, the subject would have to adjust their choice of sorting rule and find the 

new correct rule.  

The auditory uninstructed sorting task was an original adaptation of the WCST created 

for the present study, named the Auditory Sorting Task (AST). In the AST, the stimuli to be 

sorted are speech recordings, which vary along three dimensions: syllable (ba, da, pa, ta), 

voice (four different actors), and number of repetitions (one to four). As only the stimuli are 

different between the auditory and the visual task, the AST also follows the delayed matching 

procedure described above. The recordings were captured in Adobe Audition 2.0, inside of an 

echo reduced chamber. Four different male actors read aloud from a list of syllables. During 

the recording, the actors read each syllable several times from a list, and the order of the 

syllables was varied, so that there were no systematic differences in intonation between the 

syllables. The recordings that sounded most neutral and homogeneous in intonation were 

chosen as stimuli for the AST.  

Instructed Tasks. The instructed tasks mirror the two tasks described above, except 

for the inclusion of a message ahead of every task block informing the subject of which 

stimulus feature to attend to. As this obviates the need to test one sorting rule while 

maintaining another rule as a possibility, it was thought that this would be less taxing on the 

executive system. If used as a high level control condition, it was hypothesised that this would 

remove activation related to simple storage of short-term information – as this would be 

functions common to both tasks. What would then be left was thought to be activation related 

to executive functions like set shifting.  

Data Acquisition. Each subject was in the scanner for two runs, once for the visual 

tasks and once for the auditory tasks. The experimental conditions were introduced to the 

subjects prior to entering the scanner, and so they were aware of the variety of sorting 

dimensions. However, they were not explicitly told about how the rules would change. One 
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half of the subjects began with the visual task and the other half began with the auditory task, 

in order to control for learning effects. The subjects were instructed to respond using remote 

controls as to whether two consecutively presented stimuli were the same or not the same 

along the presently applicable dimension. One half of the subjects responded “yes” with their 

right hand while responding “no” with their left hand, and this configuration was reversed for 

the other half of the subjects. Each block in both runs was preceded by a task instruction 

presented on a screen. The visual tasks were shown on the same screen, while the auditory 

tasks were delivered through headphones.  

The data were collected with a 3T GE-Signa MRI scanner. A structural T1-weighted 

image was taken of every subject. The functional images were taken with a T2*-weighting in 

combination with echo-planar imaging. The presentation of stimuli was synchronised with the 

acquisition of the functional images through triggers sent between the scanner and the 

computer running E-prime. 360 whole-brain volumes were gathered in each run. The 

repetition time (TR) was 2.5 seconds, and gaps of one second were left in between the TRs to 

reduce noise when presenting the auditory stimuli. The acquisition time (TA) was 1.5 

seconds. A non-cubic voxel size of 1.72×1.72×4.40 was used within a 64×64 matrix. 

Preprocessing and Statistical Analyses 

Preprocessing and analyses were done using the SPM12 software package (Wellcome 

Centre for Human Neuroimaging, 2014) within MATLAB 9.4 (The MathWorks Inc., 2018). 

The time-series was realigned to the first image, and then unwarped to compensate for 

deformations around air-tissue interfaces. These were then normalised to fit the coordinate 

system of Montreal Neurological Institute, and re-sampled to a voxel size of 2 mm3. Finally, 

the images were smoothed with a Gaussian kernel of FWHM 8 mm to satisfy the assumptions 

of subsequent statistical analyses.  
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The two sessions (auditory and visual) of each participant were modelled separately in 

a blocked design. The canonical HRF was used with no derivatives. Responses were not 

included in the model, but realignment parameters were. The data were filtered with a high-

pass filter of 450 seconds. Contrasts were estimated for the main effects of the experimental 

condition and the instructed condition, as well as the latter's effect subtracted from the 

former's effect. 

Looking at the group effects, a within-subject factorial analysis of variance with 

Modality and Difficulty being the factors was performed. These had two levels each; Visual 

and Auditory, and Instructed and Uninstructed. The contrasts of interest were the main effects 

of the factors, unique effects of Uninstructed versus Instructed, and positive effect of 

condition (average vs. baseline). A conjunction analysis testing against the global null 

hypothesis was performed on the contrast Uninstructed minus Instructed, because of 

suspected undue influence of Modality-specific variance. A threshold of P < 0.05 (FWE-

corrected) was applied to correct for multiple comparisons. Extent threshold was 15. 

Short Explanations of Preprocessing and Analysis Procedures.  

Slice Time Correction. The images resulting from an fMRI-scan are of vertical and 

horizontal slices of the brain, and these images can’t be registered from the whole brain 

simultaneously. This means that between an image of a slice of the bottom of the brain, and 

an image of a slice of the top of the brain, there might be a delay. This needs to be corrected 

to perform analyses of the resulting images. To correct this one can use calculations to see the 

resulting images as if they were registered simultaneously. One way to do this is by temporal 

interpolation, which involves estimating the BOLD signal from what it was just before or just 

after. Another way is through something called phase shift, which involves moving the whole 

time series so that it aligns with a reference slice, for example the middle slice. 
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Realignment and Unwarping. When registering images in an MR-machine, different 

sources can produce noise that affects the results. Head movement during fMRI is a noise-

source that can have a significant impact on the results. Due to head movement, the voxels 

that cover the brain tissue in one area at one point in time could be covering a different area of 

the brain at another point in time. To perform analyses of the brain images one has to correct 

eventual head movements’ impact. This problem is solved by realigning all the obtained 

images of one individual brain, to the first registered image of the current individual. This is 

done by rotating the image, translation of the image, scaling, and shearing. Nonlinear 

transformations, which in this case are called unwarping, are also needed in some cases, 

because of the magnetic field being warped by air-tissue interfaces. 

Co-registration. The fMRI images are also warped to fit the dimensions of a structural 

image, so that the structural image can be used as a background for the activations. This can 

aid in determining the location of ambiguous activations in single subjects. 

Normalization. Every individual brain is built so that they are all unique. This leads to 

voxels not representing the same brain tissue areas when performing fMRI on different brains. 

This represents a problem when working with data obtained from several different subjects, 

and to solve this, the images of every brain has to be warped so that they fit a coordinate 

system that is common for all the imaged brains. The Montreal Neurological Institute (MNI) 

has created one such coordinate system, called the MNI space. Several normal MR brain 

images were combined to create this system (Collins, Neelin, Peters & Evans, 1994). 

Spatial Filtering. Spatial filtering, or spatial smoothing, is the final step in the 

preprocessing of the images. The process of normalising several brains to a single mould 

sometimes leaves residual differences and abrupt borders. These have to be smoothed out in 

order to satisfy the distributional assumptions of later statistical analyses. Even though this 

reduces the images´ spatial resolution, it may also increase the signal-to-noise ratio. 
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After Preprocessing. When fully preprocessed, the images are ready to be analysed. 

First, the images are analysed on a subject to subject, and scanning session by scanning 

session, basis. The first step is to assume a general linear model (GLM) at each individual 

voxel which describes the variation in signal strength across time in terms of the experimental 

conditions, known sources of noise and residual error. This model can be expressed as the 

following equation, Y=Xβ+ε. In the present experiment, there were 8 regressors, two for each 

experimental condition (instructed sorting and uninstructed sorting) and six realignment 

parameters which controlled for head movement. The experimental conditions were 

convolved with the HRF, which accommodates a more natural shape in the BOLD curve 

instead of an abrupt on and off. Since a blocked design was used, there was no need to 

explore more specific convolutions, as these would not be visible anyway across such 

timespans. The betas, or regression coefficients, were estimated using the information known 

to the researcher, such as the onsets of the different experimental blocks and the recorded 

BOLD signal. Looking for the configuration resulting in the least amount of error, SPM12 

calculated the estimated contribution weight of each regressor at each voxel at each timepoint. 

This resulted in a number of maps equal to the number of regressors, with each map showing 

the contributions of one regressor for every voxel in the brain. These maps could then be 

contrasted against each other in different ways, resulting in contrast maps showing for 

example which voxels activated more to condition A versus condition B. The contrasts in 

each voxel could then be tested against the null hypothesis, allowing for inferences about 

causality to be made. Since there were being done tests in numbers proportional to every 

single voxel in the brain, a strict threshold for statistical significance had to be set, to control 

for false positives. The two main approaches to correcting for multiple tests are the 

familywise error rate (FWE) correction and the false discovery rate (FDR) correction. FWE 

controls the rate of any false positives across the whole set of tests performed, while FDR 
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controls the ratio of false positives to false negatives, and so FWE is the more stringent of the 

two. In the present experiment, a version of FWE was used that accounted for the fact that 

most voxels in the brain are correlated with other voxels to some degree, which means that 

the number of truly independent tests is lower than the number of voxels. The FWE-alpha was 

set to 0.05. When the relevant contrast maps for each scanning session for each subject were 

acquired, group analysis, or second level GLM, could commence. The contrast maps of 

interest for each subject were added to a second level GLM which now had a new regressor, 

namely the variance between subjects. The contrast maps used were simply of which voxels 

were significantly more active under Uninstructed Sorting compared to baseline, and which 

voxels were significantly more active under Instructed Sorting compared to baseline. These 

came in two sets, namely Visual and Auditory. From these, a 2x2 analysis of variance was 

performed, allowing for detection of main effects of Modality and of Difficulty, as well as 

interaction effects.  

Results 

The main effect of Modality was seen only in voxels at auditory and visual cortices. A 

pair of clusters stretching from the lateral edges of middle and superior temporal gyrus to the 

posterior insula and central operculum, bilaterally. Another band of activation is seen across 

the calcarine cortex to the lingual gyrus. See Table 1, and Figure 1. 
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Figure 1. Main effect of Modality. A: Inferior aspect, B: Posterior aspect. 

 

 

The Uninstructed minus the Instructed condition, showed bilateral activation across 

inferior occipital gyrus and occipital fusiform gyrus, extending ventrally to the cerebellum 

Table 1     

Main effect of Modality 

Cluster  Voxel  Anatomical location 

p(FWE) Size  p(FWE) F Z  x y z Area 

0.000 2786  0.000 114.43 7.71  -52 -20 0 Left superior 

temporal 

gyrus 

0.000 2126  0.000 111.56 7.65  66 -22 0 Right superior 

temporal 

gyrus 

0.000 843  0.000 60.49 6.24  6 -84 -10 Right lingual 

gyrus 

0.000 247  0.000 58.22 6.15  -36 -70 -18 Left occipital 

fusiform 

gyrus 

0.000 229  0.003 37.25 5.17  28 -70 -22 Right 

occipital 

fusiform 

gyrus 

0.007 27  0.0136 31.37 4.81  -34 -80 4 Left inferior 

occipital 

gyrus 

B

A 

A 
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and medially to the lingual gyrus. There was also a blotch of activation at the medial center of 

supplementary motor area (SMA), as well as bilateral activation at precentral gyrus, on the 

edge of middle frontal gyrus. In addition there was bilateral activation at parietal lobules, 

supramarginal gyrus and angular gyrus. There was also some activation at the right superior 

temporal gyrus, and bilateral activation at anterior insula. See Table 2, and Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2. Uninstructed minus Instructed. A: Left aspect, B: Right aspect. 

 

Table 2 

Uninstructed minus Instructed 

Cluster  Voxel  Anatomical location 

p(FWE

) 

Size  p(FW

E) 

T Z  x y z Area 

0.000 1372  0.000 9.29 7.15  28 -90 -8 Right occipital 

fusiform gyrus, right 

inferior occipital gyrus 

0.000 1087  0.000 8.91 6.96  -20 -90 -14 Left occipital fusiform 

gyrus 

0.000 561  0.000 7.69 6.29  -30 -54 42 Left superior parietal 

lobule 

0.000 502  0.000 7.43 6.14  6 10 52 Right supplementary 

A B

A 
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motor cortex 

0.000 271  0.000 6.95 5.85  42 8 34 Right middle frontal 

gyrus 

0.000 222  0.001 6.29 5.43  60 -24 0 Right superior temporal 

gyrus 

0.000 306  0.001 6.29 5.42  -42 4 28 Left precentral gyrus 

0.001 75  0.004 5.81 5.10  34 24 -2 Right anterior insula 

0.010 23  0.004 5.78 5.07  -52 10 -8 Left temporal pole 

0.006 33  0.005 5.7 5.02  -30 28 -2 Left orbital inferior 

frontal gyrus 

0.000 196  0.006 5.65 4.99  38 -48 38 Right angular gyrus, 

right superior parietal 

lobule 

0.014 16  0.017 5.31 4.74  48 -22 -10 Right middle temporal 

gyrus 

 

In comparison, the Instructed minus the Uninstructed condition revealed almost 

exclusively activation in the precuneus and posterior cingulate cortex. See Table 3, and see 

Figure 3 for combined map of activations exclusive to Uninstructed and activations exclusive 

to Instructed.  

 

 

 

 

 

 

 

 

Figure 3. Green: Instructed minus Uninstructed, Red: Uninstructed minus Instructed. 
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Table 3 

Instructed minus Uninstructed 

Cluster  Voxel  Anatomical location 

p(FWE) Size  p(FWE) T Z  x y z Area 

0.000 1105  0.000 7.74 6.32  6 -58 22 Right 

precuneus 

 

0.001 99  0.000 7.59 6.23  -44 -78 24 Left middle 

occipital 

gyrus 

0.001 76  0.000 6.60 5.62  0 62 -2 Frontal pole 

 

0.013 17  0.005 5.72 5.04  -54 -8 -26 Left middle 

temporal 

gyrus 

 

After applying the conjunction analysis to the Uninstructed minus Instructed contrast, 

a much cleaner version of the same pattern was seen, with clear activation centres at SMA, 

and bilaterally at FEF, IPS, and occipital fusiform gyrus. See Table 4 and Figure 4. 

 

Table 4 

Conjunction analysis of Uninstructed minus Instructed 

Cluster  Voxel  Anatomical location 

p(FWE) Size  p(FWE) T Z  x y z Area 

0.000 131  0.000 6.09 7.77  28 -92 -10 Right occipital 

fusiform gyrus 

0.000 149  0.000 5.39 7.09  -26 -92 -16 Left occipital 

fusiform gyrus 

0.000 574  0.000 5.24 6.95  -32 -50 40 Left superior 

parietal lobule 

0.000 438  0.000 4.75 6.44  6 10 52 Right 

supplementary 

motor cortex 

0.000 173  0.001 3.86 5.46  -42 2 30 Left precentral 

gyrus 

0.000 105  0.002 3.77 5.36  44 6 34 Right 

precentral 

gyrus, right 

middle frontal 

gyrus 

0.000 183  0.002 3.69 5.26  34 -54 40 Right angular 

gyrus, right 

superior 

parietal lobule 
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Figure 4. Conjunction analysis of Uninstructed minus Instructed. A: Inferior aspect, B: 

Superior aspect. 

 

The average positive effect of condition as compared to baseline is shown in Figure 5 

and Table 5. When the conditions were not subtracted from each other, activation was visible 

across the middle and inferior frontal gyri, bilaterally, as well as the ACC. 

 

 

 

 

 

 

 

 

 

Figure 5. Average positive effect of condition. A: Superior aspect, B: Right aspect. 
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Table 5 

Average positive effect of condition 

Cluster 
 

Voxel 
 

Anatomical location 

p(FWE) Size  p(FWE) T Z  x y z Area 

0.000 2684 
 

0.000 14.08 65535 
 

-36 -56 46 Left angular 

gyrus 

0.000 5104 
 

0.000 12.65 65535 
 

42 8 34 Right middle 

frontal gyrus 

0.000 4521 
 

0.000 12.14 65535 
 

-40 6 30 Left 

precentral 

gyrus 

0.000 2148 
 

0.000 10.58 7.75 
 

46 -46 46 Right angular 

gyrus 

0.000 1750 
 

0.000 10.45 7.69 
 

-2 20 48 Left 

supplementary 

motor cortex 

0.000 3238 
 

0.000 9.17 7.09 
 

28 -90 -8 Right 

occipital 

fusiform 

gyrus 

0.002 58 
 

0.000 6.81 5.76 
 

-6 -76 40 Left 

precuneus 

0.000 201 
 

0.000 6.57 5.61 
 

62 -16 -12 Right middle 

temporal 

gyrus 

0.012 20 
 

0.023 5.21 4.67 
 

-12 -10 4 Left thalamus 

 

Discussion 

The goals of this study were to develop an auditory adaptation of the WCST, and to 

investigate the commonality between the auditory and visual variants of the test. It was 

hypothesized that a comparison of the auditory and the visual tasks would only show 

differences in the sensory cortex, and that the uninstructed sorting task would show more 

activation related to executive functions than the instructed sorting task. Comparing average 

activation across all tasks with rest was hypothesized to show activity in dorsolateral PFC as 

well as parietal areas related to attention.  
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Modality Equivalence 

The main effect of Modality did not show activations outside the sensory cortices, 

which can be interpreted as the AST being equivalent to the WCST when it comes to 

engaging the executive system. 

Beauvais, Woods, Delaney, and Fein (2004) evaluated the validity of a tactile version 

of the WCST. They concluded that this version made for the visually impaired successfully 

differentiated between healthy and neurologically unhealthy persons. 80-89% of the 

neurologically and visually impaired were correctly classified by the tactile WCST. The 

present study only looked at healthy individuals, but at least for them, the Auditory WCST 

seems to be equivalent to the Visual WCST (see Figure 1). 

Uninstructed Sorting Minus Instructed Sorting 

The original idea behind using an instructed sorting task as a control condition for the 

sorting task was to cancel out activation related to maintaining information in working 

memory, while leaving in activation related to more purely executive functions, such as 

cognitive flexibility and inferential thinking. In the instructed task, the subjects were told 

along which dimension to compare the two stimuli. To solve this task, one needs to remember 

the instruction, apply attention towards the valid dimension, remember the value the first 

stimulus had along that dimension, then compare it to the value contained in the second 

stimulus. In the uninstructed sorting task, there was no instruction to remember, but in its 

stead there was a need to maintain a working hypothesis about what the valid rule was, and 

continually update this hypothesis as more feedback was acquired. Already at this point one 

could say that an assumption about the paradigm has been violated. The control condition was 

supposed to cancel out activation related to working memory maintenance when subtracted 

from the uninstructed condition. However, the uninstructed task lays a heavier memory load 
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on the subject, given that in addition to the sorting rule and the trial-by-trial stimuli, the 

subject has to remember which rules he or she has tested previously, and what feedback was 

acquired. A solution to this could be to add an extra item or several for the subject to 

remember in the instructed condition. The next issue to discuss are the executive functions 

hypothesised to be unique to the uninstructed task. 

What is unique to the uninstructed task is the need to draw out the sorting rule by 

generating a hypothesis, testing it, and either changing it or confirming it. In addition to 

maintaining the necessary data, which was discussed in the previous paragraph, there is a 

need to simultaneously evaluate the possible inferences that can be drawn from the data and 

decide how to eliminate alternatives in the next trial. In order to do this, one needs to be able 

to sometimes keep a representation firm, and sometimes open it up and change it. To 

summarise, what is demanded to a greater degree in the uninstructed task includes close 

monitoring of contents in working memory and new, exogenous feedback, as well as flexibly 

producing and reiterating hypotheses regarding what the information means and what to do 

with it. Monitoring multiple items in working memory has been associated with the lateral 

PFC (Buschman et al., 2012; Petrides, 2000), while cognitive flexibility to a certain extent 

relies on the same underlying processes – having two thoughts at once is a prerequisite for 

changing one’s mind and for delicately responding differently to different contexts. But as 

have been seen from studies on bilinguals (Becker et al., 2016), on differences in response to 

sentence complexity (Prat & Just, 2010), and on monkeys learning new categories 

(Antzoulatos & Miller, 2011), cognitive flexibility, in terms of actually developing 

representations from the ground up, is predicated on an interplay between the PFC and the 

striatum.  

The term ‘cognitive flexibility’ seems to sometimes refer to the ability to fluidly shift 

sets, and set-shifting tasks seem to be the type of task that engages the ACC in studies on 
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cognitive control (Botvinick et al., 2004). Whether this means that this definition of flexibility 

is equivalent to cognitive control, or that both flexibility and control are needed to solve set-

shifting tasks is not entirely clear. At any rate, set-shifting tasks and cognitive control are 

associated with the ability to inhibit prepotent responses, as well as preparing an attentional 

set or a response set. Set shifting is required in both the instructed and the uninstructed task, 

since which stimuli to respond to changes within the same sorting rule (e.g. yellow triangles 

to yellow crosses, or two repetitions of “ba” to two repetitions of “pa”). It is probably still the 

case, however, that there are greater set-shifting demands in the uninstructed task, given that 

the subject’s inferences will change. In addition, the uninstructed task demands shifting 

between responding according to a hypothesised rule and developing said rule.  

The pattern of activation seen when subtracting the instructed tasks from the 

uninstructed ones, resembles that of the DAN in Corbetta & Shulman (2002), especially so 

after applying the conjunction filter (see Figure 2 and Figure 4). This network was originally 

proposed to underlie the endogenous control of attention towards locations, features, or 

objects, as opposed to letting attention be exogenously captured by salient properties in the 

perceptual field. As mentioned above, shifting attentional set is a function expected to be 

engaged in both the uninstructed and the instructed tasks, but perhaps to a greater degree in 

the uninstructed ones. This task requires a recurring refocusing of attention between the 

different stimulus dimensions, the task feedback, and the hypothesising about which rule is 

currently in effect. The absence of any activation in dorsolateral PFC was a bit surprising, 

though, given this areas known contributions to monitoring of multiple items in working 

memory (Buschman et al., 2012; Petrides, 2000) and cognitive flexibility (Antzoulatos & 

Miller, 2011; Becker et al., 2016). Looking at the average activation across conditions 

compared to baseline, reveals the “missing” lateral PFC activation, covering both medial 

frontal gyrus and inferior frontal gyrus bilaterally (see Figure 5). This means that in the 
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contrast most relevant to the experimental design, activations in lateral PFC were subtracted 

out.  

If the assumption should be held that the design and analysis of this experiment was 

flawless, then one would have to accede to the proposition that in these sorting tasks the 

lateral PFC is only involved in simple maintenance of items in working memory. This would, 

however, go against much literature stating that the storage of working memory 

representations is done elsewhere. It is also unlikely that even if the researchers did 

everything right that it is even possible to control for working memory without also 

subtracting out other functions, such as attention. Lebedev, Messinger, Kralik and Wise 

(2004) found that most neurons in PFC code for attended and not for remembered locations. 

Rushworth, Nixon, Eacott, and Passingham (1997) found that lesions to the ventral PFC in 

monkeys did not affect short term memory. D’Esposito and Postle (1999) reviewed eleven 

reports on memory span in patients with lesions to the dorsolateral PFC, and found that none 

of the 166 patients described showed significant deficits in this regard. So, if the presently 

reported subtracted out activation in PFC does not reflect short term memory maintenance, 

what does it reflect? 

The prefrontal activation might just reflect the fact that the subjects were processing 

the trial information, while using the output of these computations to decide how to respond 

as well as whether or not to recruit the DAN to aid in the task. Even though the uninstructed 

task is clearly more difficult, the instructed task still demands some effort, as it is not an 

everyday thing to compare features in this way. Furthermore, one should assume that the 

subjects were trying their best to perform. If this is the case, then some of the functions 

uniquely engaged by the uninstructed task might have been camouflaged by this common 

activation, as they might not have demanded a sufficiently large haemodynamic response on 

top of the one already there from simply engaging with the tasks. There is no way at present 
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to determine whether the activation seen in the main contrast (uninstructed minus instructed) 

captures all the executive processes unique to the uninstructed task, but the possibility will 

still be entertained in the following sections. 

Sustained attention has been difficult to separate from working memory in studies that 

have tried (Ikkai & Curtis, 2011; Jerde, Merriam, Riggall, Hedges, & Curtis, 2012; Ptak, 

Schnider, & Fellrath, 2017). The uninstructed task probably incurs a higher maintenance cost, 

despite efforts made to equalise. In addition, cognitive effort is associated with an increased 

need to inhibit irrelevant information (Haegens, Osipova, Oostenveld, & Jensen, 2009). The 

DAN partially performs its functions by inhibiting irrelevant information (Händel et al., 

2011). Finally, flexibly switching between different stimulus-pair (or feature-pair) 

comparisons and reconfiguration of plan is likely to depend on a broad network of areas, 

which would increase the need for long-range synchrony and controlling which connections 

oscillate in phase with each other and which oscillate out of phase with each other. Given the 

DAN’s already known involvement with modulating brainwaves across the brain in attention, 

motor intentions, and working memory, one can speculate that the activation seen in the 

present experiment reflects something like a conducting of cognition. Indeed, such phase-

dependent oscillatory codes have been found in the communication between areas equal to or 

close to the FEF and IPS (Antzoulatos & Miller, 2016; Jacob, Hähnke, & Nieder, 2018; 

Salazar, Dotson, Bressler, & Gray, 2012). Whether the “higher level” operations needed to 

perform the WCST take place in a discrete area such as the dorsolateral PFC, or emerge 

through network interactions, is an open question. If the operations are coded in distinct 

phases of neural oscillations, then these might not necessitate a haemodynamic response 

where the operations are taking place (for example the PFC). However, in order for these 

oscillations to stay in rhythm while also flexibly fetching different items from working 

memory, the rhythms across the brain would have to be tightly controlled. A robust 
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haemodynamic response in the DAN would probably be seen both if the operations take place 

in the DAN itself and if the DAN is only supporting the PFC. 

Compared with Lie, Specht, Marshall and Fink (2006), our results suggest activity 

more dorsally in the parietal lobe and more posteriorly, and slightly more laterally, in the 

frontal lobe. The tasks used in the present experiment differ from theirs in that it is actually a 

delayed matching task, while theirs more closely resembles the original WCST where the 

target stimulus and the reference stimuli are simultaneously present. The more ventral 

activation in parietal cortex around the temporoparietal junction in their study could reflect 

that visual attention was moving more between different stimuli. Lie et al. (2006) also 

reported activation in the ACC, which correlated with increasing task demands. In the present 

experiment, there was no activation in ACC in the Uninstructed minus Instructed contrast. It 

is possible that these differing results reflect that in their study, the subjects had to pick a 

response among four alternatives, while in the present experiment, only two alternatives were 

available. However, the fact that the ACC was equally involved in all conditions in the 

present experiment, while correlating with task demands in Lie et al. (2006) is puzzling. 

Comparing their image of the conjunction of each condition minus high-level baseline with 

the Positive effect of condition in the present experiment, yields very similar activations 

bilaterally in the dorsolateral PFC, IPS, SMA, and the ACC.  

A frontoparietal pattern was also found by Specht, Lie, Shah, & Fink (2009), although 

their particular design revealed a laterality effect that the present study wasn’t equipped to 

show. 

Konishi et al. (1998) and Konishi et al. (1999) found activation bilaterally at posterior 

inferior frontal sulcus when subjects were shifting their cognitive sets. Although in our design 

we don’t have the option of extracting the activation specific to set shifting, we also found 

activation at the intersection of precentral gyrus and inferior frontal sulcus.  
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Instructed Sorting Minus Uninstructed Sorting 

As the pattern of activation left in the instructed sorting task after subtracting the 

activation of the uninstructed sorting tasks resembles the DMN (although less canonically 

than how the first contrast resembles the DAN), one might conjecture that the subjects had 

some mental resources left over even while giving responses to the instructed sorting tasks. 

These results should not be taken as evidence that working memory was not active, however, 

because such activity would have been cancelled out by the contrast used.  

In the instructed sorting tasks, attention would only be needed to read the message 

stating which rule is currently in effect, and to compare the first with the second stimulus. 

Attention would be free to wander in between trials. In the uninstructed sorting tasks, 

however, attention would have to be given in between trials as well, because previous 

feedback would have to maintained in order to interpret the next trial. Together with not 

having to switch between sets, this would relieve the need for a frontoparietal attention 

network to control attention and show up on the images. In the instructed sorting tasks, 

attention can flow naturally from rule notification to stimulus 1 to stimulus 2. In the 

uninstructed sorting tasks, however, attention has to be manually controlled to maintain 

previous feedback, then to the stimuli, and back again. Depending on how efficient a strategy 

the subject uses to solve the task, there could be several more switches. Switching is a 

complicated construct, though. On the face of it, one might think that it’s simply about 

releasing a set or a representation, so that a new one can step in. But given what we know 

about the ACC and prepotent responses, it seems switching would also require a controlled 

inhibition of the pre-switch set. And of course, the post-switch set needs to be maintained as 

well. 

Vatansever, Menon, and Stamatakis (2017) compared cerebral bloodflow between 

WCST and a control condition where the to-be-sorted cards were identical to one of the 
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reference cards. That study also showed recruitment of a frontoparietal network similar to the 

one reported here. However, Vatansever et al. (2017) hypothesised that these brain areas 

would be more active in the first five trials of every sorting rule, while the subjects were 

trying to figure out which rule was valid. They therefore proceeded to compare the BOLD 

contrast between trials 1-5 and trials 6-10, which confirmed the DAN’s involvement in the 

early trials. The later trials, however, showed a larger effect in the DMN. Vatansever et al. 

(2017) attribute this to memory processes being more relevant to solving the later trials, and 

so they conclude that the DMN-activation reflects some kind of «autopilot» mode of 

responding when the sorting rule has been learned. 

In a similar paradigm by Provost and Monchi (2015), it was also shown that the DMN 

becomes more active when performing the same task repeatedly over many trials. In that 

study, the subjects were always informed of which rule was currently valid, but in one 

condition the rule would change every trial, and in another it would stay the same for twelve 

trials in a row. Whether the DMN contributes to the execution of familiar tasks, or familiar 

tasks simply allow cognitive resources to be directed towards task-unrelated issues, was 

deemed an open question by Provost and Monchi (2015). The instructed sorting task in the 

present experiment is most similar to Provost and Monchi’s (2015) repeated task condition, 

which is also reflected in the similar activations seen.  

Regarding the Question of Whether the WCST is Suited to Detect Frontal Lesions 

Both conditions show a clear frontal involvement compared to baseline, but the 

activation also covers a wide range of other areas. The present results therefore echo the 

sentiment that the WCST might very well be sensitive to frontal lesions, but in order to also 

be specific to frontal lesions, deficits associated with posterior areas would have to be 
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controlled for. However, the test could be used as an early marker for any deficits at all in 

executive function, since it requires the interplay of so many processes.  

Strategy 

Another factor contributing to performance on the WCST that has not been mentioned 

yet is the ability to perceive the logical contingencies required to interpret the feedback 

properly. When the previously correct sorting rule results in negative feedback, and you try a 

different rule which also results in negative feedback, you should try a third rule rather than 

revert to the original one. Failure to cycle through the rules in the most efficient order, can 

result in errors even after controlling for memory failure, distraction and inflexibility. There is 

also the possibility of getting hung up on the concrete levels of the dimensions, instead of the 

dimensions themselves. So that when receiving negative feedback for placing a yellow card in 

the yellow pile, the next trial you think you should try placing a green card in the green pile. 

Not interpreting the feedback correctly (thinking it was the particular colour that was 

pertinent, and not the higher level dimension) in this case leads to a misguided task set for the 

next trial, which can result in errors not explained by variation in memory, concentration or 

flexibility. 

It is possible, however, that the process of testing out hypotheses about the sorting rule 

is simpler than what it seems like when trying to describe it. For example, testing out the 

hypothesis of colour being the rule only demands a button press and either mentally crossing 

out ‘colour’ if the feedback was negative, or settling into colour as an attentional set if the 

feedback was positive. 

Thoughts on the Relation Between Executive Functions and the World We Inhabit 

The executive functions are grouped by their common quality of sub-serving goal-

directed behaviour through a concurrent consideration of personal goals and how these relate 
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to the many contexts a person inhabits. Sometimes the goals can be too sharply defined, as in 

the myopic schedules of people struggling with addictions. Other times the goals can be too 

vague, leading to nothing quite capturing your attention, as in ADHD. And yet other times, 

one can’t separate the context from one’s own goals, which might be part of the experience of 

schizophrenia. In Western societies today, each person is expected to set his or her own goals 

from a young age, and the expected arrival at these goals is often placed several years – 

sometimes decades – into the future. At the same time, one is expected to understand that 

everybody one meets has their own goals and reasons for acting the way they do, and that 

most everything one sees in a city was designed, produced, consumed, and, eventually, 

thrown away for any number of reasons. That living in an urban environment is a risk factor 

for developing schizophrenia is perhaps not so strange (McDonald & Murray, 2000). If the 

striatum codes for the behavioural relevance of things, and a dysregulated striatum produces 

psychosis, then what we refer to as ‘reality’ may very well be something fundamentally 

defined not objectively, but through intersubjective behavioural relevance. And if that is the 

case, then the social aspect of psychosis should not be underestimated. 

Limitations 

In order to uncover brain activity specifically related to executive functions beyond 

working memory storage functions, it's crucial to have a clear idea about which executive 

functions actually can be divorced from short term memory. After reviewing the literature, 

this has proved more difficult than expected. Although there are studies reporting such 

dissociations (Petrides, 2000), several theories about working memory emphasise how 

keeping information online is a result of there being a top-down signal "asking" for it 

(D’Esposito & Postle, 2015; Miller & Cohen, 2001). In addition, there is a strong possibility 

that so-called "higher" cognition always takes place within working memory, as the 
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manipulation of items in memory could be described as items in memory themselves. Finally, 

if working memory contents can be distinguished by their oscillatory signal, then maybe types 

of executive functions also are separated on this level - and not on a structural level. Future 

experiments on the research questions posed here would benefit from a thorough 

consideration of these possible confounds, and selecting hypotheses with clear implications 

with regards to theory.  

One concrete recommendation for a future study would be to carefully count the 

number of items subjects would need to keep online, and adjust the control conditions 

accordingly. Another concrete recommendation addresses control processes. Since the control 

of responses may well be supported by the same processes that support the control of thoughts 

(Ptak et al., 2017), using a control condition where the subject does not submit overt 

responses could safeguard against this particular confound. The choosing of cards would then 

have to be done automatically by the computer, and in such a way as to provide the subject 

with just enough information to deduce the rule. Finally, the information value of fMRI-data 

can be enhanced by applying dynamic causal modelling, allowing for inferences to be made 

regarding the effective connectivity between clusters (Friston, 2011). At least one such study 

has been done showing different connectivity for working memory and cognitive control 

tasks, respectively (Harding, Yücel, Harrison, Pantelis, & Breakspear, 2015). If a theoretically 

grounded model for the effective connectivity seen in the present results can be produced, 

then applying dynamic causal modelling is recommended. 

Conclusion 

In this brief paper, fMRI-data have been analysed that were from an experiment 

investigating on the one hand, the neural equivalence of an auditory version of the WCST to 

the standard, visual WCST, and on the other hand, the neural substrates of performing the 

WCST when maintenance of information in short-term memory was controlled for. The 



NEURAL SUBSTRATE OF WCST AND AST       64  

results support that this Auditory Sorting Test is indeed neurally equivalent to the WCST 

outside of modality-specific recruitment of sensory cortices. The neural substrate common to 

both AST and WCST covers the lateral prefrontal cortices, the anterior cingulate, the frontal 

eye fields, the supplementary motor area, anterior cingulate, as well as the intraparietal sulci. 

Exactly which roles the particular areas play in these tasks is left for future research to 

determine.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NEURAL SUBSTRATE OF WCST AND AST       65  

References 

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental 

Disorders (5th ed.). Arlington, VA: American Psychiatric Association.  

Anderson, S. W., Damasio, H., Jones, R. D., & Tranel, D. (1991). Wisconsin Card Sorting 

Test performance as a measure of frontal lobe damage. Journal of Clinical and 

Experimental Neuropsychology, 13, 909-922. doi: 10.1080/01688639108405107 

Antzoulatos, E. G., & Miller, E. K. (2011). Differences between neural activity in prefrontal 

cortex and striatum during learning of novel abstract categories. Neuron, 71, 243-249. 

doi: 10.1016/j.neuron.2011.05.040 

Antzoulatos, E. G., & Miller, E. K. (2014). Increases in functional connectivity between 

prefrontal cortex and striatum during category learning. Neuron, 83, 216-225. doi: 

10.1016/j.neuron.2014.05.005 

Antzoulatos, E. G., & Miller, E. K. (2016). Synchronous beta rhythms of frontoparietal 

networks support only behaviorally relevant representations. eLIFE, 5, e17822. doi: 

10.7554/eLife.17822.001 

Baddeley, A. D., & Hitch, G. (1974). Working Memory. In G. H. Bower (Ed.), Psychology of 

Learning and Motivation (Vol. 8, pp. 47-89). doi: 10.1016/S0079-7421(08)60452-1 

Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews 

Neuroscience, 4, 829-839. doi: 10.1038/nrn1201 

Baumeister, A. A., & Francis, J. L. (2002). Historical development of the dopamine 

hypothesis of schizophrenia. Journal of the History of the Neurosciences, 11, 265-277. 

doi: 10.1076/jhin.11.3.265.10391 

Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2007). The strength model of self-

control. Current directions in psychological science, 16, 351-355. doi: 10.1111/j.1467-

8721.2007.00534.x 

https://doi.org/10.1080/01688639108405107
https://doi.org/10.1016/j.neuron.2011.05.040
https://doi.org/10.1016/j.neuron.2014.05.005
https://doi.org/10.7554/eLife.17822.001
https://doi.org/10.1016/S0079-7421(08)60452-1
https://doi.org/10.1038/nrn1201
https://doi.org/10.1076/jhin.11.3.265.10391
https://doi.org/10.1111%2Fj.1467-8721.2007.00534.x
https://doi.org/10.1111%2Fj.1467-8721.2007.00534.x


NEURAL SUBSTRATE OF WCST AND AST       66  

Beauvais, J. E., Woods, S. P., Delaney, R. C., & Fein, D. (2004). Development of a Tactile 

Wisconsin Card Sorting Test. Rehabilitation Psychology, 49, 282-287. doi: 

10.1037/0090-5550.49.4.282 

Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future 

consequences following damage to human prefrontal cortex. Cognition, 50, 7-15. doi: 

10.1016/0010-0277(94)90018-3 

Becker, T. M., Prat, C. S., & Stocco, A. (2016). A network-level analysis of cognitive 

flexibility reveals a differential influence of the anterior cingulate cortex in bilinguals 

versus monolinguals. Neuropsychologia, 85, 62-73. doi: 

10.1016/j.neuropsychologia.2016.01.020 

Berridge, K. C., Venier, I. L., & Robinson, T. E. (1989). Taste reactivity analysis of 6-

hydroxydopamine-induced aphagia: Implications for arousal and anhedonia 

hypotheses of dopamine function. Behavioral Neuroscience, 103, 36-45. doi: 

10.1037/0735-7044.103.1.36 

Berridge, K. C., & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization 

theory of addiction. American Psychologist, 71, 670-679. doi: 10.1037/amp0000059 

Berry, A. S., Shah, V. D., Furman, D. J., White III, R. L., Baker, S. L., O’Neil, J. P., ... & 

Jagust, W. J. (2018). Dopamine synthesis capacity is associated with D2/3 receptor 

binding but not dopamine release. Neuropsychopharmacology, 43, 1201-1211. doi: 

10.1038/npp.2017.180 

Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in 

Cognitive Sciences, 15, 527-536. doi: 10.1016/j.tics.2011.10.001 

Bliksted, V., Videbech, P., Fagerlund, B., & Frith, C. (2017). The effect of positive symptoms 

on social cognition in first-episode schizophrenia is modified by the presence of 

negative symptoms. Neuropsychology, 31, 209-219. doi: 10.1037/neu0000309 

https://psycnet.apa.org/doi/10.1037/0090-5550.49.4.282
https://doi.org/10.1016/0010-0277(94)90018-3
https://doi.org/10.1016/j.neuropsychologia.2016.01.020
https://psycnet.apa.org/doi/10.1037/0735-7044.103.1.36
https://doi.org/10.1037/amp0000059
https://doi.org/10.1038/npp.2017.180
https://doi.org/10.1016/j.tics.2011.10.001
https://doi.org/10.1037/neu0000309


NEURAL SUBSTRATE OF WCST AND AST       67  

Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict 

monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179-

181. doi: 10.1038/46035 

Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior 

cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539-546. doi: 

10.1016/j.tics.2004.10.003 

Bowden, S. C., Fowler, K. S., Bell, R. C., Whelan, G., Clifford, C. C., Ritter, A. J., & Long, 

C. M. (1998). The reliability and internal validity of the Wisconsin Card Sorting 

Test. Neuropsychological Rehabilitation, 8, 243-254. doi: 

http://dx.doi.org/10.1080/713755573 

Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Snyder, A. (2001). Anterior 

cingulate cortex and response conflict: Effects of frequency, inhibition and 

errors. Cerebral Cortex, 11, 825-836. doi: 10.1093/cercor/11.9.825 

Broadbent, D. E. (1958). The selective nature of learning. In D. E. Broadbent, Perception and 

communication (pp. 244-267). Elmsford, NY: Pergamon Press.  

Brozoski, T. J., Brown, R. M., Rosvold, H. E., & Goldman, P. S. (1979). Cognitive deficit 

caused by regional depletion of dopamine in prefrontal cortex of rhesus 

monkey. Science, 205, 929-932. doi:  10.1126/science.112679 

Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in 

the prefrontal and posterior parietal cortices. Science, 315, 1860-1862. doi: 

10.1126/science.1138071 

Buschman, T. J., & Miller, E. K. (2009). Serial, covert shifts of attention during visual search 

are reflected by the frontal eye fields and correlated with population 

oscillations. Neuron, 63, 386-396. doi: 10.1016/j.neuron.2009.06.020 

https://doi.org/10.1038/46035
https://doi.org/10.1016/j.tics.2004.10.003
http://dx.doi.org/10.1080/713755573
https://psycnet.apa.org/doi/10.1093/cercor/11.9.825
https://doi.org/10.1126/science.112679
https://doi.org/10.1126/science.1138071
https://doi.org/10.1016/j.neuron.2009.06.020


NEURAL SUBSTRATE OF WCST AND AST       68  

Buschman, T. J., & Miller, E. K. (2010). Shifting the spotlight of attention: Evidence for 

discrete computations in cognition. Frontiers in Human Neuroscience, 4, 1-9. doi: 

10.3389/fnhum.2010.00194 

Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D., & Miller, E. K. (2012). 

Synchronous oscillatory neural ensembles for rules in the prefrontal 

cortex. Neuron, 76, 838-846. doi: 10.1016/j.neuron.2012.09.029 

Buschman, T. J., & Miller, E. K. (2014). Goal-direction and top-down control. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 369(1655), 1-9. doi: 

10.1098/rstb.2013.0471 

Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and 

fMRI studies. Journal of Cognitive Neuroscience, 12, 1-47. doi: 

10.1162/08989290051137585 

Carlsson, A., Lindqvist, M., Magnusson, T., & Waldeck, B. (1958). On the presence of 3-

hydroxytyramine in brain. Science, 127, 471. doi: 10.1126/science.127.3296.471 

Casey, B. J., Somerville, L. H., Gotlib, I. H., Ayduk, O., Franklin, N. T., Askren, M. K., ... & 

Glover, G. (2011). Behavioral and neural correlates of delay of gratification 40 years 

later. Proceedings of the National Academy of Sciences, 108, 14998-15003. doi: 

10.1073/pnas.1108561108 

Caspi, A., Reichenberg, A., Weiser, M., Rabinowitz, J., Kaplan, Z. E., Knobler, H., ... & 

Davidson, M. (2003). Cognitive performance in schizophrenia patients assessed before 

and following the first psychotic episode. Schizophrenia Research, 65, 87-94. doi: 

10.1016/S0920-9964(03)00056-2 

Chao, L. L., & Knight, R. T. (1995). Human prefrontal lesions increase distractibility to 

irrelevant sensory inputs. Neuroreport: An International Journal for the Rapid 

https://doi.org/10.3389/fnhum.2010.00194
https://doi.org/10.1016/j.neuron.2012.09.029
https://doi.org/10.1098/rstb.2013.0471
https://doi.org/10.1162/08989290051137585
https://doi.org/10.1126/science.127.3296.471
https://doi.org/10.1073/pnas.1108561108
https://doi.org/10.1016/S0920-9964(03)00056-2


NEURAL SUBSTRATE OF WCST AND AST       69  

Communication of Research in Neuroscience, 6, 1605-1610. doi: 10.1097/00001756-

199508000-00005 

Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & 

Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory 

task. Nature, 386, 604-608. doi: 10.1038/386604a0 

Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject 

registration of MR volumetric data in standardized Talairach space. Journal of 

Computer Assisted Tomography, 18, 192-205. doi: 10.1097/00004728-199403000-

00005 

Cools, R., & D'Esposito, M. (2011). Inverted-U–shaped dopamine actions on human working 

memory and cognitive control. Biological Psychiatry, 69(12), e113-e125. doi: 

10.1016/j.biopsych.2011.03.028 

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven 

attention in the brain. Nature Reviews Neuroscience, 3, 201-215. doi: 10.1038/nrn755 

Corcoran, C., Mujica-Parodi, L., Yale, S., Leitman, D., & Malaspina, D. (2002). Could stress 

cause psychosis in individuals vulnerable to schizophrenia?. CNS Spectrums, 7, 33-42. 

doi: 10.1017/S1092852900022240 

Dang, L. C., Donde, A., Madison, C., O'Neil, J. P., & Jagust, W. J. (2012). Striatal dopamine 

influences the default mode network to affect shifting between object features. Journal 

of Cognitive Neuroscience, 24, 1960-1970. doi: 10.1162/jocn_a_00252 

Demakis, G. J. (2003). A meta-analytic review of the sensitivity of the Wisconsin Card 

Sorting Test to frontal and lateralized frontal brain damage. Neuropsychology, 17, 

255-264. doi: http://dx.doi.org/10.1037/0894-4105.17.2.255 

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual 

Review of Neuroscience, 18, 193-222. doi: 10.1146/annurev.ne.18.030195.001205 

https://psycnet.apa.org/doi/10.1097/00001756-199508000-00005
https://psycnet.apa.org/doi/10.1097/00001756-199508000-00005
https://doi.org/10.1038/386604a0
http://dx.doi.org/10.1097/00004728-199403000-00005
http://dx.doi.org/10.1097/00004728-199403000-00005
https://doi.org/10.1016/j.biopsych.2011.03.028
https://doi.org/10.1038/nrn755
https://doi.org/10.1017/S1092852900022240
https://dx.doi.org/10.1162%2Fjocn_a_00252
http://dx.doi.org/10.1037/0894-4105.17.2.255
https://doi.org/10.1146/annurev.ne.18.030195.001205


NEURAL SUBSTRATE OF WCST AND AST       70  

D’Esposito, M., & Postle, B. R. (1999). The dependence of span and delayed-response 

performance on prefrontal cortex. Neuropsychologia, 37, 1303-1315. doi: 

10.1016/S0028-3932(99)00021-4 

D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working 

memory. Annual Review of Psychology, 66, 115-142. doi: 10.1146/annurev-psych-

010814-015031 

Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. doi: 

10.1146/annurev-psych-113011-143750 

Downes, M., Bathelt, J., & De Haan, M. (2017). Event‐related potential measures of 

executive functioning from preschool to adolescence. Developmental Medicine & 

Child Neurology, 59, 581-590. doi: 10.1111/dmcn.13395 

Drewe, E. A. (1974). The effect of type and area of brain lesion on Wisconsin Card Sorting 

Test performance. Cortex, 10, 159-170. doi: 10.1016/S0010-9452(74)80006-7 

Durstewitz, D., & Seamans, J. K. (2008). The dual-state theory of prefrontal cortex dopamine 

function with relevance to catechol-o-methyltransferase genotypes and 

schizophrenia. Biological Psychiatry, 64, 739-749. doi: 

10.1016/j.biopsych.2008.05.015 

Everett, J., Lavoie, K., Gagnon, J. F., & Gosselin, N. (2001). Performance of patients with 

schizophrenia on the Wisconsin Card Sorting Test (WCST). Journal of Psychiatry and 

Neuroscience, 26, 123-130. Retrieved from  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1407748/ 

Fahn, S. (2008). The history of dopamine and levodopa in the treatment of Parkinson's 

disease. Movement disorders: official journal of the Movement Disorder 

Society, 23(S3), S497-S508. doi: 10.1002/mds.22028 

https://psycnet.apa.org/doi/10.1016/S0028-3932(99)00021-4
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-113011-143750
https://doi.org/10.1111/dmcn.13395
https://psycnet.apa.org/doi/10.1016/S0010-9452(74)80006-7
https://doi.org/10.1016/j.biopsych.2008.05.015
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1407748/
https://doi.org/10.1002/mds.22028


NEURAL SUBSTRATE OF WCST AND AST       71  

Fenske, M. J., & Eastwood, J. D. (2003). Modulation of focused attention by faces expressing 

emotion: Evidence from flanker tasks. Emotion, 3, 327-343. doi: 10.1037/1528-

3542.3.4.327 

Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: a Bayesian approach to 

explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10, 

48-58. doi: 10.1038/nrn2536 

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. 

(1994). Statistical parametric maps in functional imaging: A general linear 

approach. Human Brain Mapping, 2, 189-210. doi: 10.1002/hbm.460020402 

Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity, 1, 

13-36. doi: 10.1089/brain.2011.0008 

Forbes, N. F., Carrick, L. A., McIntosh, A. M., & Lawrie, S. M. (2009). Working memory in 

schizophrenia: a meta-analysis. Psychological medicine, 39, 889-905. doi: 

10.1017/S0033291708004558 

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. 

(2005). The human brain is intrinsically organized into dynamic, anticorrelated 

functional networks. Proceedings of the National Academy of Sciences, 102, 9673-

9678. doi: 10.1073/pnas.0504136102 

Friedman, N. P., Miyake, A., Robinson, J. L., & Hewitt, J. K. (2011). Developmental 

trajectories in toddlers' self-restraint predict individual differences in executive 

functions 14 years later: A behavioral genetic analysis. Developmental 

Psychology, 47, 1410-1430. doi: 10.1037/a0023750 

Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term 

memory. Science, 173, 652-654. doi: 10.1126/science.173.3997.652 

https://doi.org/10.1037/1528-3542.3.4.327
https://doi.org/10.1037/1528-3542.3.4.327
https://doi.org/10.1038/nrn2536
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1017/S0033291708004558
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1037/a0023750
https://doi.org/10.1126/science.173.3997.652


NEURAL SUBSTRATE OF WCST AND AST       72  

Gazzaley, A., Cooney, J. W., McEvoy, K., Knight, R. T., & D'Esposito, M. (2005). Top-down 

enhancement and suppression of the magnitude and speed of neural activity. Journal 

of Cognitive Neuroscience, 17, 507-517. doi: 10.1162/0898929053279522  

Giovagnoli, A. R. (2001). Relation of sorting impairment to hippocampal damage in temporal 

lobe epilepsy. Neuropsychologia, 39, 140-150. doi: 10.1016/S0028-3932(00)00104-4 

Goldman-Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child 

Development, 58, 601-622. doi: http://dx.doi.org/10.2307/1130201 

Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14, 477-485. doi: 

https://doi.org/10.1016/0896-6273(95)90304-6 

Grant, D. A., & Berg, E. (1948). A behavioral analysis of degree of reinforcement and ease of 

shifting to new responses in a Weigl-type card-sorting problem. Journal of 

Experimental Psychology, 38, 404-411. doi: 10.1037/h0059831 

Green, M. F., Kern, R. S., & Heaton, R. K. (2004). Longitudinal studies of cognition and 

functional outcome in schizophrenia: implications for MATRICS. Schizophrenia 

Research, 72, 41-51. doi: 10.1016/j.schres.2004.09.009 

Green, M. F. (2006). Cognitive impairment and functional outcome in schizophrenia and 

bipolar disorder. The Journal of Clinical Psychiatry, 67(Suppl. 9), 3-8. Retrieved from 

https://www.psychiatrist.com/jcp/pages/archive.aspx 

Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the 

resting human brain. Nature Reviews Neuroscience, 2, 685-694. doi: 

10.1038/35094500 

Haegens, S., Osipova, D., Oostenveld, R., & Jensen, O. (2010). Somatosensory working 

memory performance in humans depends on both engagement and disengagement of 

regions in a distributed network. Human Brain Mapping, 31, 26-35. doi: 

10.1002/hbm.20842 

https://doi.org/10.1162/0898929053279522
https://psycnet.apa.org/doi/10.1016/S0028-3932(00)00104-4
http://dx.doi.org/10.2307/1130201
https://doi.org/10.1016/0896-6273(95)90304-6
https://psycnet.apa.org/doi/10.1037/h0059831
https://doi.org/10.1016/j.schres.2004.09.009
https://www.psychiatrist.com/jcp/pages/archive.aspx
https://doi.org/10.1038/35094500
https://doi.org/10.1002/hbm.20842


NEURAL SUBSTRATE OF WCST AND AST       73  

Händel, B. F., Haarmeier, T., & Jensen, O. (2011). Alpha oscillations correlate with the 

successful inhibition of unattended stimuli. Journal of Cognitive Neuroscience, 23, 

2494-2502. doi: 10.1162/jocn.2010.21557 

Harding, I. H., Yücel, M., Harrison, B. J., Pantelis, C., & Breakspear, M. (2015). Effective 

connectivity within the frontoparietal control network differentiates cognitive control 

and working memory. NeuroImage, 106, 144-153. doi:  

10.1016/j.neuroimage.2014.11.039 

Harper, S., Towers-Evans, H., & MacCabe, J. (2015). The aetiology of schizophrenia: What 

have the Swedish Medical Registers taught us?. Social Psychiatry and Psychiatric 

Epidemiology, 50, 1471-1479. doi: 10.1007/s00127-015-1081-7 

Harrison, G., Hopper, K. I. M., Craig, T., Laska, E., Siegel, C., Wanderling, J., ... & 

Holmberg, S. K. (2001). Recovery from psychotic illness: A 15-and 25-year 

international follow-up study. The British Journal of Psychiatry, 178, 506-517. doi: 

10.1192/bjp.178.6.506 

Healy, D. (1989). Neuroleptics and psychic indifference: a review. Journal of the Royal 

Society of Medicine, 82, 615-619. doi: 10.1177/014107688908201018 

Heaton, R. K. (1981). Wisconsin Card Sorting Test Manual. Odessa, FL: Psychological 

Assessment Resources. 

Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Münte, T. F., ... & 

Gazzaniga, M. S. (1994). Combined spatial and temporal imaging of brain activity 

during visual selective attention in humans. Nature, 372, 543-546. doi: 

10.1038/372543a0 

Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of 

selective attention in the human brain. Science, 182, 177-180. doi: 

10.1126/science.182.4108.177 

https://doi.org/10.1162/jocn.2010.21557
https://doi.org/10.1016/j.neuroimage.2014.11.039
https://doi.org/10.1007/s00127-015-1081-7
https://doi.org/10.1192/bjp.178.6.506
https://doi.org/10.1177%2F014107688908201018
https://doi.org/10.1038/372543a0
https://psycnet.apa.org/doi/10.1126/science.182.4108.177


NEURAL SUBSTRATE OF WCST AND AST       74  

Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate 

cortex. Trends in Cognitive Sciences, 16, 122-128. doi: 10.1016/j.tics.2011.12.008 

Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-

down attentional control. Nature Neuroscience, 3, 284-291. doi: 10.1038/72999 

Howes, O., McCutcheon, R., & Stone, J. (2015). Glutamate and dopamine in schizophrenia: 

an update for the 21st century. Journal of Psychopharmacology, 29, 97-115. doi: 

10.1177/0269881114563634 

Igarashi, K., Oguni, H., Osawa, M., Awaya, Y., Kato, M., Mimura, M., et al. (2002). 

Wisconsin card sorting test in children with temporal lobe epilepsy. Brain & 

Development, 24, 174–178. doi: 10.1016/S0387-7604(02)00024-4 

Ikkai, A., & Curtis, C. E. (2011). Common neural mechanisms supporting spatial working 

memory, attention and motor intention. Neuropsychologia, 49, 1428-1434. doi: 

10.1016/j.neuropsychologia.2010.12.020 

Jacob, S. N., Hähnke, D., & Nieder, A. (2018). Structuring of abstract working memory 

content by fronto-parietal synchrony in primate cortex. Neuron, 99, 588-597. doi: 

10.1016/j.neuron.2018.07.025 

Javitt, D. C. (2010). Glutamatergic theories of schizophrenia. The Israel Journal of Psychiatry 

and Related Sciences, 47(1), 4-16. Retrieved from http://doctorsonly.co.il/wp-

content/uploads/2011/12/2010_1_2.pdf 

Jerde, T. A., Merriam, E. P., Riggall, A. C., Hedges, J. H., & Curtis, C. E. (2012). Prioritized 

maps of space in human frontoparietal cortex. Journal of Neuroscience, 32, 17382-

17390. doi: 10.1523/JNEUROSCI.3810-12.2012 

Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, 

phenomenology, and pharmacology in schizophrenia. American Journal of 

Psychiatry, 160, 13-23. doi: 10.1176/appi.ajp.160.1.13 

https://doi.org/10.1016/j.tics.2011.12.008
https://doi.org/10.1038/72999
https://doi.org/10.1177/0269881114563634
https://doi.org/10.1016/S0387-7604(02)00024-4
https://doi.org/10.1016/j.neuropsychologia.2010.12.020
https://doi.org/10.1016/j.neuron.2018.07.025
http://doctorsonly.co.il/wp-content/uploads/2011/12/2010_1_2.pdf
http://doctorsonly.co.il/wp-content/uploads/2011/12/2010_1_2.pdf
https://doi.org/10.1523/JNEUROSCI.3810-12.2012
https://doi.org/10.1176/appi.ajp.160.1.13


NEURAL SUBSTRATE OF WCST AND AST       75  

Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). 

Increased activity in human visual cortex during directed attention in the absence of 

visual stimulation. Neuron, 22, 751-761. doi: 10.1016/S0896-6273(00)80734-5 

Kirkpatrick, B., Fenton, W. S., Carpenter, W. T., & Marder, S. R. (2006). The NIMH-

MATRICS consensus statement on negative symptoms. Schizophrenia Bulletin, 32, 

214-219. doi: 10.1093/schbul/sbj053 

Knight, R. T., Hillyard, S. A., Woods, D. L., & Neville, H. J. (1981). The effects of frontal 

cortex lesions on event-related potentials during auditory selective 

attention. Electroencephalography and Clinical Neurophysiology, 52, 571-582. doi: 

10.1016/0013-4694(81)91431-0 

Konishi, S., Nakajima, K., Uchida, I., Kameyama, M., Nakahara, K., Sekihara, K., & 

Miyashita, Y. (1998). Transient activation of inferior prefrontal cortex during 

cognitive set shifting. Nature Neuroscience, 1, 80-84. doi: https://doi.org/10.1038/283 

Konishi, S., Nakajima, K., Uchida, I., Kikyo, H., Kameyama, M., & Miyashita, Y. (1999). 

Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-

related functional MRI. Brain, 122, 981-991. doi: 10.1093/brain/122.5.981 

Kucyi, A., & Davis, K. D. (2014). Dynamic functional connectivity of the default mode 

network tracks daydreaming. Neuroimage, 100, 471-480. doi: 

10.1016/j.neuroimage.2014.06.044 

Lacreuse, A., Parr, L., Chennareddi, L., & Herndon, J. G. (2018). Age-related decline in 

cognitive flexibility in female chimpanzees. Neurobiology of Aging, 72, 83-88. doi: 

10.1016/j.neurobiolaging.2018.08.018 

Lange, F., Brückner, C., Knebel, A., Seer, C., & Kopp, B. (2018). Executive dysfunction in 

Parkinson’s disease: a meta-analysis on the Wisconsin Card Sorting Test 

https://doi.org/10.1016/S0896-6273(00)80734-5
https://doi.org/10.1093/schbul/sbj053
https://doi.org/10.1016/0013-4694(81)91431-0
https://doi.org/10.1038/283
https://doi.org/10.1093/brain/122.5.981
https://doi.org/10.1016/j.neuroimage.2014.06.044
https://doi.org/10.1016/j.neurobiolaging.2018.08.018


NEURAL SUBSTRATE OF WCST AND AST       76  

Literature. Neuroscience & Biobehavioral Reviews, 93, 38-56. doi: 

10.1016/j.neubiorev.2018.06.014 

Lebedev, M. A., Messinger, A., Kralik, J. D., & Wise, S. P. (2004). Representation of 

attended versus remembered locations in prefrontal cortex. PLoS Biology, 2(11), e365. 

doi: 10.1371/journal.pbio.0020365 

Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: A meta-

analysis. Journal of Abnormal Psychology, 114, 599-611. doi: 10.1037/0021-

843X.114.4.599 

Lie, C. H., Specht, K., Marshall, J. C., & Fink, G. R. (2006). Using fMRI to decompose the 

neural processes underlying the Wisconsin Card Sorting Test. Neuroimage, 30, 1038-

1049. doi: 10.1016/j.neuroimage.2005.10.031  

Lindquist, M. A. (2008). The statistical analysis of fMRI data. Statistical science, 23(4), 439-

464. doi: 10.1214/09-STS282 

Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., & Casey, B. J. 

(2006). Frontostriatal microstructure modulates efficient recruitment of cognitive 

control. Cerebral Cortex, 16, 553-560. doi: 10.1093/cercor/bhj003 

MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional interference in the Stroop 

effect: Uncovering the cognitive and neural anatomy of attention. Trends in Cognitive 

Sciences, 4, 383-391. doi: 10.1016/S1364-6613(00)01530-8 

Marshall, T. R., O'Shea, J., Jensen, O., & Bergmann, T. O. (2015). Frontal eye fields control 

attentional modulation of alpha and gamma oscillations in contralateral 

occipitoparietal cortex. Journal of Neuroscience, 35, 1638-1647. doi: 

10.1523/JNEUROSCI.3116-14.2015 

https://doi.org/10.1016/j.neubiorev.2018.06.014
https://doi.org/10.1371/journal.pbio.0020365
https://doi.org/10.1037/0021-843X.114.4.599
https://doi.org/10.1037/0021-843X.114.4.599
https://doi.org/10.1016/j.neuroimage.2005.10.031
https://doi.org/10.1093/cercor/bhj003
https://doi.org/10.1016/S1364-6613(00)01530-8
https://doi.org/10.1523/JNEUROSCI.3116-14.2015


NEURAL SUBSTRATE OF WCST AND AST       77  

Martel, M., Nikolas, M., & Nigg, J. T. (2007). Executive function in adolescents with 

ADHD. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 

1437-1444. doi: 10.1097/chi.0b013e31814cf953 

Mazaheri, A., van Schouwenburg, M. R., Dimitrijevic, A., Denys, D., Cools, R., & Jensen, O. 

(2014). Region-specific modulations in oscillatory alpha activity serve to facilitate 

processing in the visual and auditory modalities. Neuroimage, 87, 356-362. doi: 

10.1016/j.neuroimage.2013.10.052 

McDonald, C., & Murray, R. M. (2000). Early and late environmental risk factors for 

schizophrenia. Brain Research Reviews, 31(2-3), 130-137. doi: 10.1016/S0165-

0173(99)00030-2 

Mesholam-Gately, R. I., Giuliano, A. J., Goff, K. P., Faraone, S. V., & Seidman, L. J. (2009). 

Neurocognition in first-episode schizophrenia: a meta-analytic 

review. Neuropsychology, 23, 315-336. doi: 10.1037/a0014708 

Mesulam, M. M. (1981). A cortical network for directed attention and unilateral 

neglect. Annals of Neurology: Official Journal of the American Neurological 

Association and the Child Neurology Society, 10, 309-325. doi: 

10.1002/ana.410100402 

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our 

capacity for processing information. Psychological Review, 63, 81-97. doi: 

10.1037/h0043158 

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex 

function. Annual Review of Neuroscience, 24, 167-202. doi: 

10.1146/annurev.neuro.24.1.167 

Miller, E. K. (2013). The “working” of working memory. Dialogues in Clinical 

Neuroscience, 15(4), 411-418. Retrieved from https://www.dialogues-cns.org/ 

https://psycnet.apa.org/doi/10.1097/chi.0b013e31814cf953
https://doi.org/10.1016/j.neuroimage.2013.10.052
https://doi.org/10.1016/S0165-0173(99)00030-2
https://doi.org/10.1016/S0165-0173(99)00030-2
https://doi.org/10.1037/a0014708
https://doi.org/10.1002/ana.410100402
https://psycnet.apa.org/doi/10.1037/h0043158
https://doi.org/10.1146/annurev.neuro.24.1.167
https://www.dialogues-cns.org/


NEURAL SUBSTRATE OF WCST AND AST       78  

Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal 

lobes. Archives of Neurology, 9, 90-100. doi: 10.1001/archneur.1963.00460070100010 

Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences 

in executive functions: Four general conclusions. Current Directions in Psychological 

Science, 21, 8-14. doi: 10.1177/0963721411429458 

Mountain, M. A., & Snow, W. G. (1993). Wisconsin Card Sorting Test as a measure of 

frontal pathology: A review. The Clinical Neuropsychologist, 7, 108-118. doi: 

10.1080/13854049308401893 

Mukhopadhyay, P., Dutt, A., Das, S. K., Basu, A., Hazra, A., Dhibar, T., & Roy, T. (2008). 

Identification of neuroanatomical substrates of set-shifting ability: evidence from 

patients with focal brain lesions. Progress in Brain Research, 168, 95-104. doi: 

10.1016/S0079-6123(07)68008-X 

Muzzio, I. A., Levita, L., Kulkarni, J., Monaco, J., Kentros, C., Stead, M., ... & Kandel, E. R. 

(2009). Attention enhances the retrieval and stability of visuospatial and olfactory 

representations in the dorsal hippocampus. PLoS Biology, 7(6), e1000140. doi: 

10.1371/journal.pbio.1000140 

Nagano-Saito, A., Liu, J., Doyon, J., & Dagher, A. (2009). Dopamine modulates default mode 

network deactivation in elderly individuals during the Tower of London 

task. Neuroscience Letters, 458, 1-5. doi: 10.1016/j.neulet.2009.04.025 

Németh, G., Hegedüs, K., & Molnâr, L. (1988). Akinetic mutism associated with bicingular 

lesions: Clinicopathological and functional anatomical correlates. European Archives 

of Psychiatry and Neurological Sciences, 237, 218-222. doi: 10.1007/BF00449910 

Noël, X., Van der Linden, M., & Bechara, A. (2006). The neurocognitive mechanisms of 

decision-making, impulse control, and loss of willpower to resist drugs. Psychiatry 

http://dx.doi.org/10.1001/archneur.1963.00460070100010
https://dx.doi.org/10.1177%2F0963721411429458
https://psycnet.apa.org/doi/10.1080/13854049308401893
https://doi.org/10.1016/S0079-6123(07)68008-X
https://doi.org/10.1371/journal.pbio.1000140
https://doi.org/10.1016/j.neulet.2009.04.025
http://dx.doi.org/10.1007/BF00449910


NEURAL SUBSTRATE OF WCST AND AST       79  

(Edgmont), 3(5), 30-41. Retrieved from  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990622/ 

Nour, M. M., McCutcheon, R., & Howes, O. D. (2018). The Relationship Between Dopamine 

Synthesis Capacity and Release: Implications for 

Psychosis. Neuropsychopharmacology, 43, 1195-1196. doi: 10.1038/npp.2017.293 

Nyhus, E., & Barceló, F. (2009). The Wisconsin Card Sorting Test and the cognitive 

assessment of prefrontal executive functions: a critical update. Brain and 

Cognition, 71, 437-451. doi: 10.1016/j.bandc.2009.03.005 

O'Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the 

units of attentional selection. Nature, 401, 584-587. doi: 10.1038/44134 

Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh 

inventory. Neuropsychologia, 9, 97-113. doi: 10.1016/0028-3932(71)90067-4 

Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of 

septal area and other regions of rat brain. Journal of Comparative and Physiological 

Psychology, 47, 419-427. doi: 10.1037/h0058775 

Orellana, G., & Slachevsky, A. (2013). Executive functioning in schizophrenia. Frontiers in 

Psychiatry, 4, 1-15. doi: 10.3389/fpsyt.2013.00035 

Owen, A. M. (1997). Cognitive planning in humans: Neuropsychological, neuroanatomical 

and neuropharmacological perspectives. Progress in Neurobiology, 53, 431-450. doi: 

10.1016/S0301-0082(97)00042-7 

Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex 

mediates processing selection in the Stroop attentional conflict paradigm. Proceedings 

of the National Academy of Sciences, 87, 256-259. doi: 10.1073/pnas.87.1.256 

Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal 

component of working memory. Nature, 362, 342-345. doi: 10.1038/362342a0 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990622/
https://doi.org/10.1038/npp.2017.293
https://doi.org/10.1016/j.bandc.2009.03.005
https://doi.org/10.1038/44134
https://doi.org/10.1016/0028-3932(71)90067-4
https://psycnet.apa.org/doi/10.1037/h0058775
https://doi.org/10.3389/fpsyt.2013.00035
https://doi.org/10.1016/S0301-0082(97)00042-7
https://doi.org/10.1073/pnas.87.1.256
https://doi.org/10.1038/362342a0


NEURAL SUBSTRATE OF WCST AND AST       80  

Petersen, S. E., Corbetta, M., Miezin, F. M., & Shulman, G. L. (1994). PET studies of parietal 

involvement in spatial attention: comparison of different task types. Canadian Journal 

of Experimental Psychology, 48, 319-338 . doi: 10.1037/1196-1961.48.2.319 

Petkov, C. I., Kang, X., Alho, K., Bertrand, O., Yund, E. W., & Woods, D. L. (2004). 

Attentional modulation of human auditory cortex. Nature Neuroscience, 7, 658-663. 

doi: 10.1038/nn1256 

Petrides, M. (2000). Dissociable roles of mid-dorsolateral prefrontal and anterior 

inferotemporal cortex in visual working memory. Journal of Neuroscience, 20, 7496-

7503. doi: 10.1523/JNEUROSCI.20-19-07496.2000 

Pickens, R., & Harris, W. C. (1968). Self-administration of d-amphetamine by 

rats. Psychopharmacologia, 12, 158-163. doi: 10.1007/BF00401545 

Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual 

Review of Neuroscience, 13, 25-42. doi: 10.1146/annurev.ne.13.030190.000325 

Postle, B. R. (2006). Working memory as an emergent property of the mind and 

brain. Neuroscience, 139, 23-38. doi: 10.1016/j.neuroscience.2005.06.005 

Prat, C. S., & Just, M. A. (2010). Exploring the neural dynamics underpinning individual 

differences in sentence comprehension. Cerebral Cortex, 21, 1747-1760. doi: 

10.1093/cercor/bhq241 

Provost, J. S., & Monchi, O. (2015). Exploration of the dynamics between brain regions 

associated with the default‐mode network and frontostriatal pathway with regards to 

task familiarity. European Journal of Neuroscience, 41, 835-844. doi: 

10.1111/ejn.12821 

Ptak, R., Schnider, A., & Fellrath, J. (2017). The dorsal frontoparietal network: A core system 

for emulated action. Trends in Cognitive Sciences, 21, 589-599. doi: 

10.1016/j.tics.2017.05.002 

https://psycnet.apa.org/doi/10.1037/1196-1961.48.2.319
https://doi.org/10.1038/nn1256
https://psycnet.apa.org/doi/10.1523/JNEUROSCI.20-19-07496.2000
https://psycnet.apa.org/doi/10.1007/BF00401545
https://doi.org/10.1146/annurev.ne.13.030190.000325
https://dx.doi.org/10.1016%2Fj.neuroscience.2005.06.005
https://doi.org/10.1093/cercor/bhq241
https://doi.org/10.1111/ejn.12821
https://doi.org/10.1016/j.tics.2017.05.002


NEURAL SUBSTRATE OF WCST AND AST       81  

Puig, M. V., & Miller, E. K. (2012). The role of prefrontal dopamine D1 receptors in the 

neural mechanisms of associative learning. Neuron, 74, 874-886. doi: 

10.1016/j.neuron.2012.04.018 

Puig, M. V., & Miller, E. K. (2014). Neural substrates of dopamine D2 receptor modulated 

executive functions in the monkey prefrontal cortex. Cerebral Cortex, 25, 2980-2987. 

doi: 10.1093/cercor/bhu096 

Raichle, M. E. (2006). The brain's dark energy. Science, 314, 1249-1250. doi: 

10.1126/science. 1134405 

Remington, G., Foussias, G., Fervaha, G., Agid, O., Takeuchi, H., Lee, J., & Hahn, M. 

(2016). Treating negative symptoms in schizophrenia: an update. Current Treatment 

Options in Psychiatry, 3, 133-150. doi: 10.1007/s40501-016-0075-8 

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in 

the effectiveness of reinforcement and nonreinforcement. In A.H. Black & W. F. 

Prokasy (Eds.), Classical Conditioning II: Current Research and Theory (pp. 64-99). 

New York, NY: Appleton-Century-Crofts. 

Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the 

medial frontal cortex in cognitive control. Science, 306, 443-447. doi: 

10.1126/science.1100301 

Robbins, T. W., & Everitt, B. J. (1992). Functions of dopamine in the dorsal and ventral 

striatum. Seminars in Neuroscience, 4, 119-127. doi: 10.1016/1044-5765(92)90010-Y 

Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-

sensitization theory of addiction. Brain Research Reviews, 18, 247-291. doi: 

10.1016/0165-0173(93)90013-P 

https://doi.org/10.1016/j.neuron.2012.04.018
https://doi.org/10.1093/cercor/bhu096
https://doi.org/10.1126/science.%201134405
https://doi.org/10.1007/s40501-016-0075-8
https://doi.org/10.1126/science.1100301
https://doi.org/10.1016/1044-5765(92)90010-Y
https://psycnet.apa.org/doi/10.1016/0165-0173(93)90013-P


NEURAL SUBSTRATE OF WCST AND AST       82  

Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive 

tasks. Journal of Experimental Psychology: General, 124, 207-231. doi: 

10.1037/0096-3445.124.2.207 

Rogers, R. D., Everitt, B. J., Baldacchino, A., Blackshaw, A. J., Swainson, R., Wynne, K., ... 

& London, M. (1999). Dissociable deficits in the decision-making cognition of chronic 

amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, 

and tryptophan-depleted normal volunteers: Evidence for monoaminergic 

mechanisms. Neuropsychopharmacology, 20, 322-339. doi: 10.1016/S0893-

133X(98)00091-8 

Rushworth, M. F., Nixon, P. D., Eacott, M. J., & Passingham, R. E. (1997). Ventral prefrontal 

cortex is not essential for working memory. Journal of Neuroscience, 17, 4829-4838. 

doi: 10.1523/JNEUROSCI.17-12-04829.1997 

Salamone, J. D., Cousins, M. S., & Snyder, B. J. (1997). Behavioral functions of nucleus 

accumbens dopamine: Empirical and conceptual problems with the anhedonia 

hypothesis. Neuroscience & Biobehavioral Reviews, 21, 341-359. doi: 10.1016/S0149-

7634(96)00017-6 

Salazar, R. F., Dotson, N. M., Bressler, S. L., & Gray, C. M. (2012). Content-specific fronto-

parietal synchronization during visual working memory. Science, 338, 1097-1100. doi: 

10.1126/science.1224000 

Seeman, P., & Madras, B. (2002). Methylphenidate elevates resting dopamine which lowers 

the impulse-triggered release of dopamine: a hypothesis. Behavioural Brain 

Research, 130, 79-83. doi: 10.1016/S0166-4328(01)00435-1  

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal 

lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11-21. doi: 

10.1136/jnnp.20.1.11 

https://psycnet.apa.org/doi/10.1037/0096-3445.124.2.207
https://doi.org/10.1016/S0893-133X(98)00091-8
https://doi.org/10.1016/S0893-133X(98)00091-8
https://doi.org/10.1523/JNEUROSCI.17-12-04829.1997
https://doi.org/10.1016/S0149-7634(96)00017-6
https://doi.org/10.1016/S0149-7634(96)00017-6
https://doi.org/10.1126/science.1224000
http://dx.doi.org/10.1016/S0166-4328(01)00435-1
http://dx.doi.org/10.1136/jnnp.20.1.11


NEURAL SUBSTRATE OF WCST AND AST       83  

Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & 

Petersen, S. E. (1997). Common blood flow changes across visual tasks: II. Decreases 

in cerebral cortex. Journal of Cognitive Neuroscience, 9, 648-663. doi: 

10.1162/jocn.1997.9.5.648 

Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of 

objects in short-term memory. Proceedings of the National Academy of Sciences, 106, 

21341-21346. doi: 10.1073/pnas.0908193106 

Specht, K., Lie, C. H., Shah, N. J., & Fink, G. R. (2009). Disentangling the prefrontal network 

for rule selection by means of a non‐verbal variant of the Wisconsin Card Sorting 

Test. Human Brain Mapping, 30, 1734-1743. doi: 10.1002/hbm.20637 

Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). 

Default network activity, coupled with the frontoparietal control network, supports 

goal-directed cognition. Neuroimage, 53, 303-317. doi: 

10.1016/j.neuroimage.2010.06.016 

Spreng, R. N. (2012). The fallacy of a “task-negative” network. Frontiers in Psychology, 3, 1-

5. doi: 10.3389/fpsyg.2012.00145 

Stark, C. E., & Squire, L. R. (2001). When zero is not zero: the problem of ambiguous 

baseline conditions in fMRI. Proceedings of the National Academy of Sciences, 98, 

12760-12766. doi: 10.1073/pnas.221462998 

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental 

Psychology, 18, 643-662. doi: 10.1037/h0054651 

Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., ... & Izukawa, 

D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and 

posterior brain damage: effects of lesion location and test structure on separable 

https://doi.org/10.1162/jocn.1997.9.5.648
https://doi.org/10.1073/pnas.0908193106
https://doi.org/10.1002/hbm.20637
https://doi.org/10.1016/j.neuroimage.2010.06.016
https://doi.org/10.3389/fpsyg.2012.00145
https://doi.org/10.1073/pnas.221462998
https://psycnet.apa.org/doi/10.1037/h0054651


NEURAL SUBSTRATE OF WCST AND AST       84  

cognitive processes. Neuropsychologia, 38, 388-402. doi: 10.1016/S0028-

3932(99)00093-7 

Tanji, J., & Hoshi, E. (2001). Behavioral planning in the prefrontal cortex. Current Opinion in 

Neurobiology, 11, 164-170. doi: 10.1016/S0959-4388(00)00192-6 

ter Huurne, N., Onnink, M., Kan, C., Franke, B., Buitelaar, J., & Jensen, O. (2013). 

Behavioral consequences of aberrant alpha lateralization in attention-

deficit/hyperactivity disorder. Biological Psychiatry, 74, 227-233. 

doi: 10.1016/j.biopsych.2013.02.001 

Teuber, H. L., Battersby, W. S., & Bender, M. B. (1951). Performance of complex visual 

tasks after cerebral lesions. Journal of Nervous and Mental Disease, 114, 413-429. 

doi: 10.1097/00005053-195111450-00006 

The MathWorks Inc. (2018). MATLAB (Version 9.4, release R2018a) [Computer software]. 

Natick, MA: The MathWorks Inc. Retrieved from 

https://se.mathworks.com/products/matlab.html?s_tid=hp_products_matlab 

Thompson-Schill, S. L., Jonides, J., Marshuetz, C., Smith, E. E., D’Esposito, M., Kan, I. P., ... 

& Swick, D. (2002). Effects of frontal lobe damage on interference effects in working 

memory. Cognitive, Affective, & Behavioral Neuroscience, 2, 109-120. doi: 

 10.3758/CABN.2.2.109 

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189-208. 

doi: 10.1037/h0061626 

Treviño, M. (2016). Associative learning through acquired salience. Frontiers in Behavioral 

Neuroscience, 9, 1-13. doi: 10.3389/fnbeh.2015.00353 

Vatansever, D., Menon, D. K., & Stamatakis, E. A. (2017). Default mode contributions to 

automated information processing. Proceedings of the National Academy of 

Sciences, 114, 12821-12826. doi: 10.1073/pnas.1710521114 

http://dx.doi.org/10.1016/S0028-3932(99)00093-7
http://dx.doi.org/10.1016/S0028-3932(99)00093-7
https://psycnet.apa.org/doi/10.1016/S0959-4388(00)00192-6
https://doi.org/10.1016/j.biopsych.2013.02.001
http://dx.doi.org/10.1097/00005053-195111450-00006
https://se.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
https://doi.org/10.3758/CABN.2.2.109
https://psycnet.apa.org/doi/10.1037/h0061626
https://doi.org/10.3389/fnbeh.2015.00353
https://doi.org/10.1073/pnas.1710521114


NEURAL SUBSTRATE OF WCST AND AST       85  

Verdejo-García, A., Bechara, A., Recknor, E. C., & Pérez-García, M. (2006). Executive 

dysfunction in substance dependent individuals during drug use and abstinence: An 

examination of the behavioral, cognitive and emotional correlates of 

addiction. Journal of the International Neuropsychological Society, 12(3), 405-415. 

doi: 10.1017/S1355617706060486 

Volkow, N. D., Wang, G. J., Kollins, S. H., Wigal, T. L., Newcorn, J. H., Telang, F., ... & 

Pradhan, K. (2009). Evaluating dopamine reward pathway in ADHD: Clinical 

implications. Jama, 302, 1084-1091. doi: 10.1001/jama.2009.1308 

Wallis, J. D., Anderson, K. C., & Miller, E. K. (2001). Single neurons in prefrontal cortex 

encode abstract rules. Nature, 411, 953-956. doi: 10.1038/35082081 

Warrington, E. K., & Shallice, T. (1969). The selective impairment of auditory verbal short-

term memory. Brain, 92, 885-896. doi: 10.1093/brain/92.4.885 

Weinstein, J. J., Chohan, M. O., Slifstein, M., Kegeles, L. S., Moore, H., & Abi-Dargham, A. 

(2017). Pathway-specific dopamine abnormalities in schizophrenia. Biological 

Psychiatry, 81, 31-42. doi: 10.1016/j.biopsych.2016.03.2104 

Wellcome centre for human neuroimaging. (2014). Statistical Parametric Mapping 12 

[Computer software]. London, England: University College London. Retrieved from 

https://www.fil.ion.ucl.ac.uk/spm/ 

White, I. M., & Wise, S. P. (1999). Rule-dependent neuronal activity in the prefrontal 

cortex. Experimental Brain Research, 126, 315-335. doi: 10.1007/s002210050740 

Wickens, A. (2009). Introduction to Biopsychology (3rd ed.). Essex, England: Pearson 

Education. 

Wiseheart, M., Viswanathan, M., & Bialystok, E. (2016). Flexibility in task switching by 

monolinguals and bilinguals. Bilingualism: Language and Cognition, 19, 141-146. 

doi: 10.1017/S1366728914000273 

https://doi.org/10.1017/S1355617706060486
https://doi.org/10.1001/jama.2009.1308
https://doi.org/10.1038/35082081
https://psycnet.apa.org/doi/10.1093/brain/92.4.885
https://doi.org/10.1016/j.biopsych.2016.03.2104
https://www.fil.ion.ucl.ac.uk/spm/
https://doi.org/10.1007/s002210050740
https://dx.doi.org/10.1017%2FS1366728914000273


NEURAL SUBSTRATE OF WCST AND AST       86  

Womelsdorf, T., & Everling, S. (2015). Long-range attention networks: circuit motifs 

underlying endogenously controlled stimulus selection. Trends in Neurosciences, 38, 

682-700. doi: 10.1016/j.tins.2015.08.009 

Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature 

Reviews Neuroscience, 7, 464-476. doi: 10.1038/nrn1919 

Zeman, A. Z., Sala, S. D., Torrens, L. A., Gountouna, V. E., McGonigle, D. J., & Logie, R. H. 

(2010). Loss of imagery phenomenology with intact visuo-spatial task performance: A 

case of ‘blind imagination’. Neuropsychologia, 48, 145-155. doi: 

10.1016/j.neuropsychologia.2009.08.024 

 

https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1038/nrn1919
https://doi.org/10.1016/j.neuropsychologia.2009.08.024

