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ABSTRACT

Microarray experiments generate data sets with
information on the expression levels of thousands
of genes in a set of biological samples. Unfortun-
ately, such experiments often produce multiple
missing expression values, normally due to various
experimental problems. As many algorithms for
gene expression analysis require a complete data
matrix as input, the missing values have to be estim-
ated in order to analyze the available data.
Alternatively, genes and arrays can be removed
until no missing values remain. However, for genes
or arrays with only a small number of missing
values, it is desirable to impute those values. For
the subsequent analysis to be as informative as
possible, it is essential that the estimates for the
missing gene expression values are accurate. A
small amount of badly estimated missing values in
the data might be enough for clustering methods,
such as hierachical clustering or K-means cluster-
ing, to produce misleading results. Thus, accurate
methods for missing value estimation are needed.
We present novel methods for estimation of missing
values in microarray data sets that are based on the
least squares principle, and that utilize correlations
between both genes and arrays. For this set of
methods, we use the common reference name
LSimpute. We compare the estimation accuracy of
our methods with the widely used KNNimpute on
three complete data matrices from public data sets
by randomly knocking out data (labeling as miss-
ing). From these tests, we conclude that our
LSimpute methods produce estimates that con-
sistently are more accurate than those obtained
using KNNimpute. Additionally, we examine a more
classic approach to missing value estimation based
on expectation maximization (EM). We refer to our
EM implementations as EMimpute, and the estimate
errors using the EMimpute methods are compared
with those our novel methods produce. The results
indicate that on average, the estimates from our

best performing LSimpute method are at least
as accurate as those from the best EMimpute
algorithm.

INTRODUCTION

Microarrays are used to obtain simultaneous measurements of
the transcript abundance of thousands of genes in cell samples,
revealing snapshots of the transcriptional state under a variety
of conditions. Examples of application of microarrays are in
studies of differential expression in different cell states (1±4),
and for time series studies (5,6). The data produced by
microarray experiments can be analyzed by various methods
to order and visualize the information inherent in the data (7).
For a number of reasons, it is not always possible to obtain a
usable quantitation of all spots on an array; typical reasons
include spotting problems, scratches on the slide, dust or
hybridization failures. This in turn results in values missing
from the gene expression matrix. Thus in every microarray
project, one needs to determine how to treat missing values.
Repeating the experiment is often not a realistic option, for
economic reasons or because of limitations in available
biological material.

Analysis results obtained using clustering algorithms, such
as hierarchical clustering (8), K-means clustering and self-
organizing maps (9), or data dimension reduction and
projection methods such as singular value decomposition
(10) or principal component analysis (11), will be in¯uenced
by the estimates replacing the missing values. Thus it is
desirable to have accurate estimates of the missing values to
get results from the analysis methods that are as realistic as
possible. The data from microarray experiments are normally
given as a matrix of expression levels of genes (rows) under
different experimental conditions (columns). In two-channel
experiments involving competitive hybridization, the levels
are most often given as log2 transformed ratios. In such data
sets, missing values are sometimes replaced by zeros (2) or,
less often, by the average expression level for the gene (`row
average'). The comparative study by Troyanskaya et al. (12)
demonstrated that these simple approaches are far from
optimal, as they do not utilize the correlation structure in the
data.

In this paper, we propose specialized methods utilizing the
least squares principle to estimate missing values using
correlations between genes and between arrays. In the
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following, we refer to these methods collectively as LSimpute.
The least squares principle is based on minimizing the sum of
squared errors of a regression model. We describe two basic
LSimpute methods, one estimation method utilizing correl-
ations between genes (LSimpute_gene) and the other using
correlations between arrays as a basis for the estimation
(LSimpute_array). The motivation for using gene correlations
as the basis for the estimation is the cellular co-regulation of
genes in functional processes. The expression pro®les
obtained from the different arrays (represented by columns
in the expression matrix) may also be correlated as our data set
might contain array hybridizations of biological samples
obtained from similar tissues or from neighboring time points
in time series experiments. If different columns represent
measurements obtained from biologically similar samples, we
expect the corresponding columns in the gene expression
matrix to be correlated. This can be exploited when missing
values are to be estimated. However, in experiments where the
samples are biologically very diverse, array expression
patterns may provide a poor basis for estimation. Further-
more, we describe procedures for making weighted averages
of the estimates from LSimpute_gene and LSimpute_array
into combined estimates. We examine two variants of estimate
combination that uses a bootstrapping approach for parameter
(weight) estimation. The ®rst, LSimpute_combined, uses a
®xed global weighting of the estimates from the basic
LSimpute methods, while the second, LSimpute_adaptive,
uses an adaptive weighting scheme taking the data correlation
structure into consideration to determine an appropriate
weighting. The bootstrapping gives information on the relative
strength of LSimpute_gene and LSimpute_array by re-
estimating the same non-missing values with both methods,
thereby estimating the joint error distribution associated with
these methods. This information is in turn used to assign
weights to the estimates. Additionally, we examine a classic
approach to missing value estimation using expectation
maximization (EM). We refer to our implementation of EM-
based imputation as EMimpute, and we evaluate two variants,
EMimpute_gene and EMimpute_array, utilizing, respectively,
gene and array covariance structure for estimation of missing
values.

We present a comparative study of the methods described
above including the KNNimpute method. The methods are
tested on three public data sets, taken from a Listeria
monocytogenes infection time series study (13), a study of
gene expression in several cancer cell lines also known as the
NCI60 data set (14), and a study of gene expression in diffuse
large B-cell lymphomas (2). The tests are performed on
subsets of these data sets where no values are missing,
generated by removing genes and arrays until no missing
values remain. Missing values are simulated by randomly
labeling a percentage of the non-missing elements in the
matrix as missing. The ability of an imputation algorithm to
produce accurate estimates of these elements is given a score,
the root mean squared deviation (RMSD) between the true
values and the estimated values, that allows for comparison of
its success in predicting the missing values. In addition, we
study the distribution of actual missing values in the three
example data sets, assessing the in¯uence this might have on
real cases of missing value estimation.

The rest of the paper is structured as follows. In Materials
and Methods, we give a detailed description of the methods
and describe how the empirical evaluation was performed. In
the Results, we study the distrubution of missing values in real
cases, exempli®ed by the three test data sets mentioned above.
We also describe the results of a comparison between our
LSimpute methods, the EMimpute and the KNNimpute
methods on the three test data sets. In the Discussion, we
sum up our ®ndings.

MATERIALS AND METHODS

Here we describe the two basic methods, LSimpute_gene and
LSimpute_array, for imputation of missing data based on the
least squares principle. LSimpute_gene is based on correlation
between genes, while LSimpute_array is based on correlation
between arrays. Furthermore, we propose two procedures for
weighted combination of the estimates from the basic methods
into combined estimates. The combined estimates are
designed so that they are expected to be (e.g. on average) as
least as accurate as each of the component estimates. Software
implementing the novel methods described in this paper can be
downloaded from http://www.ii.uib.no/~trondb/imputation/.

It is common to write the linear regression model for y given
x as y = a + bx + e, where e is the error term for which the
variance is minimized when estimating the model (parameters
a and b) with least squares. In single regression, the estimate
of a and b is Ãa = yÅ ± ÃbxÅ and

Ãb � sxy

sxx

; where sxy � 1

nÿ 1

Xn

j� 1

�xj ÿ x��yj ÿ y�

is the empirical covariance between x and y,

sxx � 1

nÿ 1

Xn

j� 1

�xj ÿ x�2

is the empirical variance of x, and n is the number of
observations (number of times x and y have been observed
together). Here xÅ and yÅ are the averages over x1,...,xn and
y1,...,yn. Thus the least squares estimate of a variable y given a
variable x can be written as

Ãy � y� sxy

syy

�xÿ x�:

The corresponding model for multiple regression, e.g. a
model for y1,...,yl given x1,...,xk, is yi = ai + bi1x1 + bi2x2 +...+
bikxk + e. It can be shown that the least squares estimate for this
model can be formulated as yÃi = yÅi + Syix

Sxx
±1 (x ± xÅ) (15), where

x = [x1, x2,...,xk]T, xÅ = [xÅ1,xÅ2,...xÅk]T, Syix
= [syix1

,syix2
,...syixk

] and

Sxx �
sx1x1

sx1x2
::: sx1xk

::: :::
::: :::

sxkx1
sxkx2

::: sxkxk

2664
3775:

The single regression model has two parameters to be
estimated, while the multiple regression model has l(k + 1)
parameters. It is essential for good estimation of the
parameters that many observations are available. The number
of parameters in a model should only be a fraction of the

e34 Nucleic Acids Research, 2004, Vol. 32, No. 3 PAGE 2 OF 8



number of observations and, as a rule of thumb, there should
be at least 5±10 times as many observations as parameters.
When it comes to microarray data, it is common to have
measurements for thousands of genes and a limited set of
arrays, normally between 20 and 100. Given that we want to
use correlations between genes as the basis for missing value
estimation, the observations are the arrays. Thus multiple
regression using gene correlations is only feasible when a
small number of genes is included in the model. In addition,
missing values in the data cause problems for estimation of the
covariances. If missing values are present, there will often be
few arrays where none of the genes in the model have missing
values. To use all arrays in the covariance estimation, each
missing value must be set to a value before estimation, for
instance the row/gene mean.

Viewing the problem from another perspective, using
correlations between arrays as the basis for missing value
estimation, using a multiple regression model does not
represent a problem as the genes normally outnumber the
arrays by a large margin. However, before the covariance
matrix is to be computed, one needs to perform an (inter-
mediate) imputation of missing values. For this imputation, a
row/gene mean can be used to substitute missing values.

The LSimpute_gene method

Since multiple regression for gene correlations is not feasible
for more than a few genes, we propose using a weighted
average of several single regression estimates of the same
missing value. Given a missing value in the data matrix for
gene y, only the k genes x1,...,xk most correlated with y are
included in the prediction model. In addition, none of x1,...,xk

is allowed to have a missing value in the same array as the
missing value to be estimated. When determining which are
the most correlated genes, we use the absolute correlation
values since both positive and negative correlation between
genes is equally well suited for regression. The correlation
between genes xi and y is determined by only including arrays
where both genes have non-missing values in the computation.
Given the k closest correlated genes, k estimates yÃ1,...,yÃk of the
missing value are computed by single regression from each of
x1,...,xk. Experimentation with different numbers of genes to
be included in the estimation indicated that 10 was a suitable
number for k in the LSimpute_gene method (data not shown).
However, for other data sets, another value for k might be
more appropriate. For each single regression estimate yÃi, the
parameters ai and bi are based only on arrays where neither y
nor xi have missing values. Finally, a weighted average of the
estimates is computed. The weighting is designed to give the
genes most correlated with y the largest weights, as these are
expected to give the best estimates of the missing value. Given
the estimated correlation ryxi

between genes y and xi, the
weight wi assigned to the estimate yÃi is

wi �
r2

yxi

1ÿ r2
yxi
� e

 !2

;

where e = 10±6. In this formula, the numerator approaches 1
with increasing absolute correlation, while the denominator
approaches e. Thus strong correlations will give large weights,
and weak correlations will give small weights. The constant e

(arbitrarily set to 10±6) is added to the denominator to avoid
division by zero. The weights are scaled so that they sum to 1.
We arrived as this speci®c weight formula by experimentation
rather than theoretical arguments.

The LSimpute_array method

Since there are normally a lot more genes than arrays in a
microarray study, multiple regression models can easily be
applied to estimate missing values based on correlation
between arrays. Given a gene y that has l missing values
ym1

,...,yml
and k non-missing values yn1

,...,ynk
, de®ne y(1) =

[ym1
,...,yml

]T and y(2) = [yn1
,...,ynk

]T. Then the least squares
estimate of y(1) given y(2) is yÃ (1) = yÅ (1) + Sy(1)y(2)S±1

y(2)y(2) (y(2) ±
yÅ (2)), where yÅ (1) = [yÅm1

,...,yÅml
]T are the array mean expression

levels, i.e. the average log ratio on each array, and the
elements of Sy(1)y(2) and Sy(2)y(2) are empirical covariances
between arrays. To estimate the array mean expression levels
and covariances, we ®rst substitute all missing values in the
data by the estimates from the gene-based method, and then
compute the covariances as if the data are complete. We found
that this approach gave better estimates than when substituting
the missing values with row mean or column mean. Column
mean substitution of missing values resulted in the worst
estimates (data not shown).

Combining the gene and array based estimates

Since LSimpute_gene and LSimpute_array take different
correlations into consideration when estimating missing
values, the deviations from the true values will not be
completely correlated. We therefore propose combining the
methods by taking weighted averages of the estimates from
LSimpute_gene and LSimpute_array, such that on average we
expect the new estimates to be at least as good as the best
estimates from the two component methods.

Given a missing value y that we want to estimate using the
LSimpute_gene estimate yÃg and the LSimpute_array estimate
yÃa, we must determine the mixing coef®cient pÎ[0,1] for the
combined estimate yÃc = pyÃg + (1 ± p)yÃa. First we explore the
possibility of using one p for all estimates, referred to as
LSimpute_combined, assuming that the ratio of the squared
errors is the same for all estimated elements. Using this global
model, with one p for all combined estimates, we determine p
by re-estimating 5% of the known values by marking them as
missing. Taking the deviations between estimated values and
the known values ea = yÃa ± y and eg = yÃg ± y, the best global
mixing coef®cient between the methods in order to minimize
the sum of squared errors can be determined. The best global
mixing coef®cient is the value p* that minimizes the sum of
squared errors Sec

2 = S[p2eg
2 + 2p(1 ± p)egea + (1 ± p)2ea

2] for
the re-estimated data; thus we expect this global p to minimize
the sum of squared errors for the missing data as well. Note
that Sec

2 < min(Sea
2, Seg

2). So under the assumption that the
joint distribution of ea and eg is the same for the re-estimated
data as for the missing values, the average squared error of
LSimpute_combined will be smaller or equal to that of the
best of its two component methods.

The global model does not take into consideration that the
ratio of squared errors may vary depending on the correlation
structure in the data. Speci®cally, we expect the estimates
from LSimpute_gene to be much more accurate for genes in
strongly correlated clusters than for other genes. Plotting the
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absolute correlation of the highest correlated gene used in
gene-based estimation against log(eg

2) ± log(ea
2), i.e. the log

ratio of the squared errors, we observe that the gene-based
squared errors are smaller relative to array-based squared
errors when gene correlation is high (Fig. 1). We therefore
propose an adaptive weighting that takes into consideration
the relationship between the squared errors of the
LSimpute_gene and LSimpute_array estimates given the
gene correlation strength. This method is referred to as
LSimpute_adaptive. The adaptive weighting is determined by
re-estimating 5% of the known values in the data matrix. From
these estimates and for each maximum gene absolute correl-
ation used in estimation rmax, the best weighting p given rmax

can be calculated. Thus for each pair of estimates yÃa and yÃg and
the corresponding rmax for LSimpute_gene, the weights for
combining these estimates are determined by looking at the
best weighting given the same rmax for the re-estimated data.
The best p given a speci®c rmax is determined by collecting all
observations of errors ea and eg for the re-estimated data in the
interval rmax 6 0.05, and then calculating p for these
observations. For extreme values of rmax, we demand that
there are at least 100 observations as a basis for estimation of
p. Thus we expand the interval until 100 observations are
included if the interval rmax 6 0.05 contains too few
observations.

Estimating missing values with the EM algorithm

Estimating missing values is a classical problem in statistics,
and iterative algorithms based on the EM algorithm are widely
used. We adopt an implementation of the EM algorithm for
missing value estimation described by Johnson and Wichern
(15). This algorithm uses the same estimation model for
prediction as the multiple regression model described previ-
ously. The difference is that instead of the empirical
covariance matrix S, we use S, the maximum likelihood
estimate of the covariance matrix. The EM algorithm iterates
while updating estimates of missing values and covariance
matrix until the estimates stabilize. Thus the estimates are

found by gradual convergence of covariance and missing
value estimates.

We apply the algorithm for both gene-based and array-
based estimation. The EM algorithm for gene-based estima-
tion, referred to as EMimpute_gene, ®rst selects 10 genes by
the procedure that is used by LSimpute_gene. Thus
EMimpute_gene will use the same genes for estimation as
our gene-based method, and direct comparison of the RMSD
with our non-iterative gene-based method is reasonable.
Missing values are initialized to row/gene mean. Since the
number of arrays in our three test data sets varies from 39 to
65, we have from four to six times as many arrays as genes in
the estimation model. This is an absolute minimum for gene-
based multiple regression, and ideally we should have at least
twice as many arrays. If there are fewer arrays than in the test
data sets used here, a reasonable multiple regression model
cannot be computed.

Array-based estimation using EM, referred to as
EMimpute_array, is done in the same manner as for
LSimpute_array, except that the EM algorithm iteratively
updates the estimates of the covariance matrix and missing
values. Missing values are initialized to row/gene mean, as
this results in faster convergence than starting with column/
array mean (data not shown).

Evaluating imputation methods

To evaluate missing value imputation methods, we use data
sets with no missing values. Some elements from the complete
data are then marked as missing, and re-estimated using an
imputation method. The accuracy of a set of imputation
methods can then be compared by computing a statistic
quantifying the deviation between the estimated and the true
values for each imputation method. To evaluate the estimates
made by each imputation method, the RMSD is computed.
This gives small values for the method that best minimizes the
squared deviations between the estimated values and the real
values. The imputation method achieving the smallest RMSD
gives the most correct picture of the complete data matrix
when estimated values are included.

Figure 1. Maximum gene correlation versus log ratio of squared errors.
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Troyanskaya et al. (12) report the best results for K between
10 and 20. As a consequence of this, we choose to perform
mutiple tests with KNNimpute using K = 5, 10, 15, 20 and 25.

We perform the tests by randomly removing (marking as
missing) 5±25% (5, 10, 15, 20 and 25) of the data and re-
estimating the missing values using the alternative imputation
methods. Thus we get several estimates for each missing
value, one for each imputation method used. To obtain results
unbiased with regard to which portion of the data is missing,
we run 100 independent rounds of this procedure and use the
average RMSD from these as the performance metric for each
imputation method.

Data sets

Data sets are chosen to represent different types of experi-
ments in order to obtain results likely to hold for microarray
experiment data in general. Speci®cally, we select three data
sets from two cancer studies and one time series study. One
data set comes from the NCI60 study (14). Here we selected
the data from ®gure 3 in Ross et al. (14), and removed all
genes with missing values, resulting in a 2069 3 64 data
matrix. The second data set comes from a lymphoma study (2).
Here we selected the data from Figure 1, and we ®rst removed
all arrays with >5% missing values, and then all genes with
missing values, resulting in a 2317 3 65 data matrix. The
third data set is from an infection time series study (13).
Here we downloaded all the time course data (the ®le
allTimeCourses.pcl), and removed all genes with missing
values, resulting in a 6850 3 39 data matrix. The data sets
were downloaded from the supplementary web pages accom-
panying the papers: http://llmpp.nih.gov/lymphoma/, web
supplement to the lymphoma study, http://genome-www.
stanford.edu/listeria/gut/, web supplement to the time series
study, and http://genome-www.stanford.edu/nci60/index.
shtml, web supplement to the NCI60 study.

RESULTS

Troyanskaya et al. (12) have shown that correlation between
gene expression pro®les is useful in the imputation of missing
values. This will only be the case for gene pro®les where the
proportion of values that are missing is relatively low. We
therefore analyzed the three data sets referred to above to ®nd
out how common it is for genes to have only a few values
missing. As Table 1 shows, for most genes with missing
values, only a few percent are missing. The time series data set
has 6850 out of 16 838 genes without missing values in 39
arrays, which is the set used for testing the imputation
methods. It is interesting to observe that for 6597 of the genes

having missing values, <15% of the values are missing per
gene. In the lymphoma data set, only 854 out of 4026 genes are
without missing values in all 96 arrays. However, no genes
have >20% of the values missing. The NCI60 data set shows a
similar pattern, where 2069 out of 6830 genes are without
missing values, but 4489 of the remaining 4761 genes have
<15% missing values.

These results indicate ®rst of all that missing values is a
common problem that has to be addressed. At the same time,
they show that the structure of the missing values in these
three data sets is such that it is likely to allow imputation
methods to make reliable estimates of the missing values for
most of the genes. If missing values are dominating an
expression pro®le for a gene, for instance if a gene has 70%
missing values, few measurements remain to determine how
the gene is correlated with other genes in the data set.
However, since the example data sets show that most values
are present for each gene, the basis for determining the
correlation structure between genes is relatively good.
Determining how the arrays are correlated appears to be a
smaller problem since typically measurements are present for
thousands of genes. However, if we are to impute values for a
gene with many missing values, fewer arrays can be included
in the array-based multiple regression model used for
estimation in LSimpute_array, most probably leading to less
accurate estimates.

We compare the LSimpute and EMimpute methods with
KNNimpute (12), to see whether these methods represent an
improvement over previously proposed methods. At present,
KNNimpute is a widely used method for missing value
imputation. The estimates from the KNNimpute method are
sensitive to the choice of the parameter K, the number of gene
neighbors used to estimate the missing values. Because of this,
we have tested KNNimpute over a range of values for K, and
only report the best results obtained here. Comparing the
results obtained using the methods LSimpute_gene,
LSimpute_array, EMimpute_gene and EMimpute_array with
the results obtained using KNNimpute, we found that all these
methods give a smaller RMSD than KNNimpute when 5% of
the data are missing. The results are summarized in Figure 2
and Table 2. Due to the time it takes to run one iteration of
EMimpute_gene (see below), this method is only tested with 5
and 10% missing values. Table 2 also lists the ratio of the
RMSD between KNNimpute and the other methods for easier
assessment of relative improvement compared with
KNNimpute. LSimpute_gene gives a 4.4±9.7% smaller
RMSD than KNNimpute with 5% missing values, while
LSimpute_array gives a 6.8±19.8% smaller RMSD
EMimpute_gene gives a 2.6±8.5% smaller RMSD than
KNNimpute with 5% missing values, while EMimpute_
array gives a 5.0±21.7% smaller RMSD. The results clearly
favor the array-based estimation methods, as in two of three
data sets they give markedly more accurate estimates than
gene-based estimation methods. For the lymphoma data set,
the RMSD obtained using array-based estimation is margin-
ally worse. The difference is 1.3% comparing LSimpute_gene
with LSimpute_array, and 3.5% comparing EMimpute_gene
with EMimpute_array. In this case, LSimpute_gene and
EMimpute_gene have approximately the same RMSD value,
with only a 0.3% difference in favor of EMimpute. Overall,
these results indicate that LSimpute_gene performs better than

Table 1. Number of genes with different percentages of missing values in
three example data sets

Missing values (%) Lymphoma NCI60 Time series

0 854 2069 6850
>0±5 1560 3734 3272
>5±10 797 581 2182
>10±15 530 174 1143
>15±20 285 106 867
>20 0 166 2524
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EMimpute_gene, while EMimpute_array may be a bit better
overall than LSimpute_array. Somewhat surprisingly, we
found that for two of the data sets, KNNimpute gave the best
performance using K = 5 (NCI60 and lymphoma), while K =
10 gave the best performance for the last data set (time series).
Troyanskaya et al. (12) reported that KNNimpute produced
the most accurate estimates when K had a value in the range
10±20.

We performed a set of tests to evaluate how the methods for
combining array- and gene-based estimates perform relative to
the other methods. The results are summarized in Figure 2 and
Table 3 and show that LSimpute_combined gives a smaller
RMSD than each of its two component methods
(LSimpute_gene and LSimpute_array), although only mar-
ginally for two of the data sets (NCI60 and time series). The

marginal improvement over the best of the two, the array-
based method, is an effect of the relatively large difference in
RMSD between LSimpute_gene and LSimpute_array. For the
lymphoma data, the accuracy (RMSD) of the two component
methods is more even, and therefore a relatively large
improvement compared with the better of the two is obtained
by combining them. Our empirical results indicate that by
combining the gene- and array-based methods, we obtain
estimates that are at least as good as when using the best of
the two. The lack of signi®cant improvement for
LSimpute_combined over its component methods in the
time series data set is a result of the nature of this data set.
The data set contains several similar infection time series with
different mutants of L.monocytogenes. Baldwin et al. (13)
report that a difference in host response was undetectable
using different mutants. From this, we can practically view the
time series as replicated experiments, and therefore we are not
surprised by the superiority of the LSimpute_array over
LSimpute_gene in estimating the missing values. Still, we
expect that LSimpute_combined will give an estimate at least
as accurate as each of the component methods, as it takes into
consideration the relative strengths of the two underlying
methods.

Using the adaptive estimation model implemented in
LSimpute_adaptive, we get an additional improvement for
the NCI60 and lymphoma data sets compared with
LSimpute_combined. Thus by performing an adaptive weight-
ing of the estimates from LSimpute_gene and LSimpute_array
based on the structure of the data, we obtain the most accurate
estimates (lowest RMSD) of all methods tested in this
study. Performance for the time series data set is equal to
that of LSimpute_combined, and approximately equal to
LSimpute_array. Thus the nature of the time series data set,
containing several closely related cell samples on different
arrays, causes array correlations to be the best basis for
missing value prediction. Overall, using LSimpute_adaptive,
we see an improvement in RMSD of 18±20% compared with
KNNimpute for all three data sets.

We want to test whether the prediction errors obtained using
our most successful method, LSimpute_adaptive, are signi®-
cantly smaller on average compared with the prediction errors
we obtained using KNNimpute. For this purpose, we use a
paired t-test, where the observations are the differences in the
size of the errors made by the two methods. By taking the
difference di = |ei,KNN| ± |ei,adaptive| for each missing value
(i = 1, 2, ¼, n, where n is the number of missing values), we
can test whether the average difference in size of prediction
error

d � 1

n

X
di

is signi®cantly larger than 0. Here ei,KNN and ei,adaptive are the
errors made by KNNimpute and LSimpute_adaptive,
respectively, when estimating missing value number i. The
formula for t:

t � d

sd=
���
n
p ;

where sd is the empirical standard deviation of the dis, is
t-distributed with n ± 1 degrees of freedom (df) under the null

Figure 2. Comparison of estimation error (RMSD) for the methods on three
data sets.
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hypothesis. Our null hypothesis states that d = 0, while the
alternative hypothesis states that dÅ > 0, e.g that KNNimpute on
average makes larger prediction errors.

We test whether the average difference in size of prediction
error is signi®cant for our three data sets by marking 5% of the
values in each of our three data sets as missing, and taking the
corresponding dis as our observations. Given these observa-
tions, the t-statistic for the lymphoma data set scored 22.89,
corresponding to a P-value of 1.86 3 10±112 (df = 7529). For
the NCI60 data set, the t-statistic scored 25.68, corresponding
to a P-value of 5.31 3 10±139 (df = 6620). For the time series
data set, the t-statistic scored 34.22, corresponding to a P-
value of 2.16 3 10±246 (df = 13 356). Thus we can conclude
that the average estimation error is signi®cantly larger using
KNNimpute than that obtained using LSimpute_adaptive.

Finally, we comment on the running time required by the
methods we study. All methods have been tested on a
computer with a 2.8 GHz Pentium4 CPU running under Linux.
For KNNimpute, we used an optimized compilation of the
original C++ code made by Troyanskaya et al. (12). All other
methods have been implemented in Java, and Java is started
with the option ±server that optimizes Java applications. The
time required to run one round of missing value imputation is

recorded for all methods and summarized in Table 4. Note that
the running time for LSimpute_array includes the time it takes
to run LSimpute_gene, which is done in order to initialize the
missing values before array-based estimation. Our most CPU-
intensive LSimpute method, LSimpute_adaptive, runs equally
fast or faster than KNNimpute in all cases except one. We also
note that EMimpute_array is relatively fast, considering that it
is an iterative method, while EMimpute_gene is by far the
slowest method.

DISCUSSION

The process of replacing missing values in a data matrix is an
important part of the analysis of every microarray experiment,
as most analysis methods require that the input data matrix is
complete. Thus the quality of the missing value estimates is
essential to get a picture of the complete data that is as realistic
as possible when performing clustering or using other analysis
methods. As demonstrated by our three example data sets, a
large portion of the genes have only a few values missing.
Thus the distribution of missing values in real data is not likely
to prevent determination of the correlation structure between
genes or arrays, and estimation of the missing values is likely

Table 4. Summary of time usage of all methods with different percentages of missing values; all results are in seconds

Method\%missing Lymphoma NCI60 Time series
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

KNNimpute 150 259 338 396 417 113 200 264 302 323 482 830 1079 1239 1325
LSimpute_gene 30 30 29 28 27 24 24 23 23 21 155 194 177 167 158
LSimpute_array 36 35 33 32 31 29 28 27 26 25 159 199 182 172 162
LSimpute_combined 68 67 66 61 56 56 54 52 50 48 375 378 375 356 333
LSimpute_adaptive 141 137 131 124 112 114 108 102 98 92 818 831 792 766 716
EMimpute_gene 221 504 964 1818 3149 186 439 865 1684 3303 510 1297 3150 5027 6600
EMimpute_array 24 25 26 29 29 75 50 41 34 29 16 16 18 19 20

Table 2. Comparison of basic LSimpute methods and EMimpute methods against KNNimpute with 5% missing data

Lymphoma K = 5 NCI60 K = 5 Time series K = 10
RMSD RMSD ratio

versus KNNimpute
RMSD RMSD ratio

versus KNNimpute
RMSD RMSD ratio

versus KNNimpute

KNNimpute 0.4828 0.5656 0.3157
LSimpute_gene 0.4437 0.9189 0.5404 0.9555 0.2853 0.9035
LSimpute_array 0.4498 0.9316 0.4648 0.8218 0.2533 0.8022
EMimpute_gene 0.4419 0.9152 0.5507 0.9736 0.3041 0.9633
EMimpute_array 0.4586 0.9500 0.4430 0.7832 0.2536 0.8034

Table 3. Comparison of basic and combined LSimpute methods and EMimpute methods against KNNimpute with 10% missing data

Lymphoma K = 5 NCI60 K = 5 Time series K = 10
RMSD RMSD ratio

versus KNNimpute
RMSD RMSD ratio

versus KNNimpute
RMSD RMSD ratio versus

KNNimpute

KNNimpute 0.4947 0.5732 0.3204
LSimpute_gene 0.4518 0.9132 0.5456 0.9520 0.2900 0.9050
LSimpute_array 0.4578 0.9254 0.4980 0.8689 0.2570 0.8019
LSimpute_combined 0.4202 0.8494 0.4874 0.8504 0.2563 0.7998
LSimpute_adaptive 0.4058 0.8202 0.4694 0.8190 0.2563 0.7999
EMimpute_gene 0.4590 0.9278 0.5654 0.9865 0.3245 1.0128
EMimpute_array 0.4671 0.9442 0.4906 0.8559 0.2572 0.8028
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to be accurate. However, the experimenter should be cautious
of the missing value structure in the data given as input to
imputation methods. Any arrays or genes having too many
missing values should be removed before the missing values
are estimated for the remaining data.

Here we demonstrate that least squares-based methods
taking advantage of both gene and array correlations provide
fast and accurate methods for estimating missing values in
microarray data. The studied methods are demonstrated to
perform better than KNNimpute on three example data sets
with 5±25% of the data missing. While KNNimpute ®nds
positively correlated genes by Euclidean distance, the
LSimpute methods are able to include negative correlation
between genes in the estimation model. In addition, we
explore the possibility of exploiting correlation between
arrays in estimation and show that this produces superior
results in some cases. The success of array correlation-based
estimates depends on the similarity of the samples. The
stronger the similarity, the more successful we expect this
approach to be. With samples taken from very diverse tissues,
array correlations will probably provide a weak basis for
missing value estimation. Furthermore, we demonstrate that
the strengths of the gene- and array-based approaches to
estimation can be combined, exempli®ed by the methods
LSimpute_combined and LSimpute_adaptive. Our tests with
LSimpute_combined and LSimpute_adaptive on data sets
with 10% missing values reveals an RMSD between missing
value estimates and the real values that is 15±20% smaller
than that obtained using KNNimpute.

To study the impact missing value imputation has on
downstream analysis, e.g. clustering, one can use data sets
with no missing values and compare clustering results with
original data with those obtained using re-estimated data. In
order to evaluate the performance of alternative imputation
methods on data sets that do include missing values, clustering
can be done based on data obtained using the alternative
imputation methods and the results evaluated for instance
using the method suggested by Gibbons and Roth (16) for
comparing gene annotations with clustering systems. Such
studies would be informative about how large an impact the
choice of imputation method has on cluster analysis.
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