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ABSTRACT 
 
Feature selection is an important method for finding underlying processes and systems 
in microarray gene expression data. Microarray experiments often involve questions 
such as which genes are changing between classes of samples. Given a gene 
expression dataset and sample class labels, feature selection methods aim at extracting 
features that allow classification of a new example into one of the classes. We present 
a novel method based on mixture models for feature selection and sample 
classification applied to gene expression data. We show that the method is able to 
compete with and even outperforms existing methods in terms of classification 
accuracy on a set previously published datasets. 
  

INTRODUCTION 
 
The primary focus of this paper is on developing a methodology allowing more 
flexible probability models to capture the distribution of a gene’s expression values 
across a set of microarrays. Most existing methods for identification of differentially 
expressed genes, for feature selection, and for class prediction, assume that a gene’s 
expression values is normally distributed within each class of arrays. We investigate 
whether this assumption sometimes is inappropriate and whether superior results can 
be obtained using more flexible models. We investigate mixture models and develop 
methods for estimating a mixture model from a set of expression measurements, for 
utilizing these models in feature subset selection, and in class prediction. The methods 
allow for multi-class analysis and prediction. We analyze the effectiveness of the 
approach on a range of typical data sets and compare the results to those obtained 
using existing methods. Our novel method in most cases gives prediction accuracies 
about the same as the other methods and in some cases it produces superior results. 
  
Background and terminology 
Microarrays can be used to obtain measurements of transcript abundance for 
thousands of genes in parallel [1, 2]. A microarray typically contains probes for all 
genes in the genome of the organism under study in addition to control probes used 
for calibration and quality control. Microarray experiments often aim to investigate 
the difference, in terms of gene expression patterns, between different classes of 
biological samples or to follow the behavior of a biological system in time through a 
biological process of interest [3-5]. In the first case, the samples in each class have 
some genotypic of phenotypic feature in common that is not shared across the groups. 
The features defining the classes should be characterized using other information and 
not be based on the microarray data. For instance, each class could contain samples of 
tissue with one specific cancer form or one class could contain cancerous tissue 
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samples and another benign samples. In such cases, one is interested in finding which 
genes have different expression pattern between the classes and such genes can be 
found by using methods for identification of differentially expressed genes such as the 
t-test or SAM [6]. For each gene one reports to be differentially expressed between 
the classes, one often also reports a p-value that is the probability of observing an 
expression pattern difference of the observed magnitude under the null-hypothesis 
that there is no difference in expression between the classes. Since thousands of genes 
are analyzed, one needs to correct for multiple testing, and since Bonferroni 
correction in most cases is overly conservative, one typically reports the false 
discovery rate (FDR) for a list as an estimate of the proportion of genes on the list that 
might be false positives [7]. We will refer to this analysis as marker gene 
identification. Most methods are best suited for analyzing experiments with two 
classes, but there are also methods for multi-class analysis.  

In addition to producing lists of genes and groups of genes showing 
differential expression between pre-defined groups of samples, one is often interested 
in finding out whether the expression patterns of the different classes are sufficiently 
different to allow prediction, i.e., to predict which class a new un-labeled sample 
belongs to. This type of analysis is referred to as class prediction [8, 9]. In a number 
of cases it has been shown that microarray gene expression data allows prediction of 
disease type or outcome with a precision that is higher than that obtained using 
previously established methods (e.g. [10]). Different classification methods have been 
successfully applied including linear discriminants, support vector machines, neural 
networks, and k-nearest neighbors classification [1, 11, 12]. 

In order to estimate the prediction accuracy that can be expected, a method 
known as cross-validation is typically used. This involves training the classifier on the 
expression data for a subset of the samples (training set) and testing the learned 
classifier on the held-back examples (test set). An additional analysis sometimes done 
is to check if the accuracy obtained is better than what would be obtained if there was 
no systematic difference between the classes under analysis [13]. This can be done by 
a performing an analysis of the same data set for a number of permutations, each 
permutation randomly scrambling the relationship between the samples and the 
classes, and recording for how many of the permuted data sets one obtains a 
prediction accuracy as high as that obtained on the real data set. 

Performing class prediction on typical microarray gene expression data sets, 
one is faced with a problem known as the curse of dimensionality. The number of 
features is in the thousands while the number of examples in each class is at best in 
the tens, and many classification methods will not work well, or at all, in such cases. 
In addition, a majority of the features (genes) will carry no information relevant for 
the difference between the classes and only add noise making classification even 
harder. Therefore it is desirable to limit the set of features to a smaller number either 
by selecting a subset of the features to be used for classification or by defining a set of 
new features based on the original ones. The former option is known as feature subset 
selection (FSS) [14]. Methods for identification of marker genes can also be 
appropriate for identifying features useful for classification. The evaluation of features 
in the FSS step should somehow be consistent with the working of the classifier to be 
employed on the selected feature set. One way to ensure this is to use the classifier to 
evaluate feature sets, known as wrapper method for FSS [15]. Alternatively, in filter 
methods, the FSS step uses a separate method for assessing features and sets of 
feature in order to produce a feature set to be used in the classification step. 
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Many methods commonly applied for marker gene identification, for feature 
subset selection, and for classification make the assumption that the expression values 
obtained for a gene in samples in any one class follows a parametric statistical 
distribution, typically the normal distribution. This includes methods such as t-tests, 
regularized t-tests such as SAM and empirical bayes, and linear discriminants. Even if 
the assumption appears to be supported and at least give useful results in many cases, 
there is reason to believe that cases exist where this assumption is far from 
appropriate. One reason is that a pre-defined class may in fact be composed of sub-
classes each with different expression patterns. For instance in a group of cancer 
patients with similar phenotype, there could be different genomic alterations each 
giving rise to distinct expression patterns all resulting in similar observable clinical 
characteristics [9, 16]. Methods for clustering and class discovery could be used to 
look for such subclasses in cases where class prediction gives lower than desired 
prediction accuracy. Alternatively one could apply methods allowing more flexible 
modeling of gene expression values.  

Mixture models are statistical models that express one probability density 
function as a weighted sum of a number of simpler functions, for example normal 
distributions [17]. Mixture models have been used in bioinformatics, for example as 
Dirichlet mixtures in sequence analysis [18] and more recently in the analysis of 
microarray gene expression data, e.g., Pan et al used them to estimate the number of 
replicates needed in an experiment [19] and McLachlan et al used them in clustering 
[17]. 
 
Overview of novel method 
For each gene, we construct a mixture model capturing its distribution of expression 
values, across the samples in each class. The mixture model is simply a sum of normal 
distributions, one for each observed expression value centered at the observed value, 
and all normal distributions having the same variance and equal weight in the mixture. 
The variance is chosen so that the resulting mixture model becomes a smooth function 
and so that its cumulative distribution approximates the empirical cumulative 
distribution. 
 For feature selection we calculate a statistic for each gene reflecting how well 
it is suited for classifying one class (target class) versus the rest. The statistic is 
calculated based on the mixture models for that gene for each of the classes and is 
simply the probability of classification error given the mixture models for the sample 
classes. The statistic thus reflects the probability of a vote for the wrong class status 
assuming that the mixture models accurately estimate the true probability distributions 
for each of the classes. 
 For class prediction, each class is treated separately as target-class versus the 
rest, and the chosen features are used to accumulate votes for/against membership in 
the target class. The class that receives the most votes in favor of membership is the 
one predicted for the new sample. 
 Finally we explore how mixture models can be used in unsupervised data 
analysis. One simple approach is to estimate both a normal distribution and a mixture 
model for each gene in each class and evaluate the difference between the two 
probability density functions. We argue that a larger difference reflects a higher 
chance that the gene reveals the existence of subclasses or expression outliers.  
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MATERIALS AND METHODS 
 
Mixture Models 
A mixture model is a model composed of two or more independent probability 
distributions. We explore characterizing the distribution of a gene’s expression values 
across a set of samples by a mixture of normal distributions. Each distribution in the 
mixture model may have an individual mean and variance. The combined probability 
density function is then defined as the weighted sum of the component probability 
functions. For a mixture of p equally weighted normal distributions we get:  
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Here P(x) is the modeled probability density function and p is the number of 
components in the model. In our implementation, each gene is modeled with one 
mixture model for each class of samples. Given an expression profile for gene 
i, , we model the distribution of expression values with the mixture 
model  
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The contributing normal distributions have the same standard deviation σi, and are 
centered at the observed expression values for that gene. The cumulative distribution 
of the mixture will fit better to the cumulative distribution of the observed expression 
values the smaller we set σi. The challenge is to find an appropriate σi, so that the 
cumulative distribution of the mixture is neither under- (too large σi) nor over-fitted 
(too small σi) to the cumulative distribution of the observed data (see Figure 1). 
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Figure 1: Too low (left) standard deviation leads to overfitting while too high standard deviation 
(right) decreases flexibility. Whole lines represent the mixture model probability density 
function defined by a mixture model with one normal distribution per data point (indicated by 
squares on the horizontal axis). Dotted lines represent the standard normal distribution 
estimated from the same data points. 
 
The fit between our mixture model and the cumulative distribution of the observed 
expression levels can be quantified using the Kolmogorov-Smirnov (KS) goodness of 
fit [20]. We devised a simple search method to find a value for σi (for each gene i) so 
that the KS fit is equal to the median expected KS fit for normal distributed data.  This 
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search method works reasonably well in most cases. However, in some cases this 
approach leads to severe over- or under-fitting, and in addition it is rather time-
consuming. A simpler, yet more successful approach is to define σi as a function 
depending on the empirical standard deviation si and the number of observations p. 
We found that the following function leads to a mixture that approximately follows 
the normal distribution if the data is normal distributed, while it otherwise follows the 
distribution of the data points well. 
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Tests performed using the KS statistic for goodness of fit, shows that the resulting 
mixture fits well to the data. The KS statistics obtained with the mixture model are in 
a reasonable range compared to a distribution of KS statistics from simulations, e.g. 
the distributions are approximately the same but with smaller variance using the 
mixture model. The simulations used randomly drawn observations from a normal 
distribution, and the KS statistics from the normal distribution fit to these data points. 
 
One might argue that the described mixture model could have been simplified to a 
mixture of fewer normal distributions, as the described model contains many 
parameters. Estimating the optimal number of normal distributions together with 
parameters for each of these is far from trivial. Our proposed scheme leads to 
straightforward parameter estimation and, importantly, the resulting model fits well to 
the cumulative distribution of the observed data points and give excellent results in a 
practical setting (see Results).  
 
Parameter estimation in the presence of sample classes 
In the presence of sample classes, we will estimate one standard deviation σi,j for each 
gene i for each sample class j. This will be based on the standard deviation calculated 
from the observed expression values that can be calculated for each class separately 
and optionally pooled over the classes. This leads to the following adjustments to the 
function for σi,j: 
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leading to a σi,j  for a class that is based on the standard deviation in that class only (si,j 
is the standard deviation of the expression measurements for gene i in class j, and pj is 
the size of class j). Alternatively, we can calculate si,pooled, the standard deviation 
pooled over all sample classes, resulting in 

)2ln(
,

,
j

pooledi
ji p

s
=σ , 

leading to a σi,j  for each class that depends on the standard deviation across all classes. 
We refer to the mixture model using a group-wise standard deviation as MMg and the 
mixture model using a pooled standard deviation as MMp. 
 
Class prediction and feature selection for two classes. 
We first consider the case with two sample classes. We describe a simple scheme for 
predicting the class of a new sample X based on its expression values (x1,x2,…,xK) for 
the K genes in the selected feature set. It is assumed that a mixture model fi,j has been 
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defined for each gene i in each of the two classes (j=1,2). The class predicted for X is 
the one that receives the most votes where each of the K genes gives a vote for either 
class 1 or class 2. Gene i gives a vote for class 1 if fi,1(xi)≥ fi,2(xi), for class 2 if fi,2(xi)> 
fi,1(xi). In other words, a vote is given for the class that has the mixture model with the 
highest probability for the observed expression value. If both classes receive the same 
number of votes, it is counted as a wrong classification. 
 
In the training phase, we are given a set of sample expression profiles, some 
belonging to class 1 and some to class 2. The number of features to be used is given as 
a parameter K. In order to perform feature subset selection, we estimate for every 
gene a mixture model for each of the two classes. Let us assume that the mixture 
models reflect the underlying distribution of gene expression values in each of the two 
classes and consequently that future examples will follow the same distribution. It is 
then easy to see that the probability of gene i giving a vote for the wrong class is 

, where the first (respectively, 

second) element is the probability that gene i will contribute a vote for class 1 (2) if it 
comes from class 2 (1) (see Figure 2). 
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Figure 2: A feature in the prostate dataset (row #5808) shown with the two groups in different 
colors (group1 = red and group2 = blue). The mixture model (MMg) is in solid and the 
corresponding normal distribution is dotted. The chart illustrates the mixture model scoring Si, 
so that the striped pattern for the mixture models (right plot) and corresponding normal 
distributions (left plot). When scoring for the red class, the red striped area corresponds to the 
first element, P(1|2), of the equation and the blue striped area corresponds to the second 
element, P(2|1), of the equation above. 
 
 The feature subset selection procedure is 

(1) Estimate mixture models fi,1 and f,i2 for each gene i, 
(2) Calculate Si for each gene i, 
(3) Select the K genes with the lowest Si values. 

 
Extension to more than two classes 
We extend the voting scheme to be used in the multi-class case by first considering 
each class separately performing a one-versus-rest voting resulting in a number of 
votes for the class (positive votes) and a number of votes for “the others” (negative 
votes), and based on this assigning the sample to the class that received the most 
positive votes. We choose to perform the voting based on one MM for each gene and 
each sample class. Assume that we have C classes and that the sample to be classified 
has expression values X=(x1,x2,…,xK). Considering class 1 and gene i, a positive vote 
(in favor of class 1) results if fi,1(xi) is larger than each of fi,2(xi), …, fi,C(xi). Since 
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different genes may be better suited to distinguish each class from the rest, we 
propose a FSS method that identifies in an independent manner a set of K genes for 
each class. For class 1 we calculate for each gene i the statistic 
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where the first (respectively, second) integral is the probability that gene i will 
contribute a vote for class 1 (against class 1) if it comes from one of the other classes 
(class 1). The measure is the probability of gene i contributing an incorrect vote under 
the assumption that the mixture models fi,j capture the underlying probabilities. The 
present formulation corresponds to assuming equal prior probabilities for each class; 
the equation could be extended to take into account different priors, but this will not 
be explored in this paper. The feature subset selection procedure for more than two 
classes becomes 

(1) Estimate mixture models fi,1, fi,2,…, fi,C for each gene i, 
(2) For each class c 

a. Calculate Si
c for each gene i, 

b. Select as feature set for class c the p genes with the lowest Si
c values. 

It should be noted that if this is applied on a problem with two classes, it results in the 
approach described above for two classes. In this case, the same genes will be chosen 
by FSS for each of the two classes. 
 
Diagonal Linear Discriminant Analysis 
For comparison purposes, we have used diagonal linear discriminant analysis (DLDA) 
which has shown to perform surprisingly well [21]. DLDA is a maximum likelihood 
discriminant rule for multivariate normal class densities and, in contrast to mixture 
models, it assumes a normal distribution of values for each class. The classifier rule is 
a simple linear rule that assigns class membership to the class k that minimizes  
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where p is the number of features,  is the expression of gene j, jx kjμ  is the sample 

mean of gene j in class k and  is the pooled variance for gene j. 2
jσ

 
Two class DLDA 
For two-class data, the feature selection for DLDA is done by simply scoring each 
gene using Wilcoxon statistics applied to class 1 vs. class 2 and picking the top p 
genes from the list. A sample is classified as class 1 if C1 < C2, and otherwise to class 
2. The genes x1… xp are from the top of the Wilcoxon score list. 
 
Extension to more than two classes  
The classification rule is a simple extension of that for two classes so that a Ci is 
calculated for each class i=1,….,k and the sample is classified according to the 
smallest value. The feature set is produced by merging the one-versus-all Wilcoxon 
score lists for each class so that the same number of genes from each list is included in 
the merged list. The merging procedure selects one feature at the time from each of 
the class feature lists. If feature with index j is already selected from one of the other 
class lists, j+1 is added instead. 
 
Estimating prediction accuracy by cross-validation 
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We performed two basic forms of cross-validation. The first is known as leave one out 
cross-validation (LOOCV). Here FSS and estimation of gene- and class-specific 
mixture models is done on all but one of the available examples, and this is used to 
classify the one remaining example. This is repeated so that each example is held back 
once and the prediction accuracy is reported as the proportion of examples that are 
correctly classified. One advantage with this method is that it will always produce the 
same results since there is no random element in the procedure itself (theoretically 
differences can occur in the case of ties in FSS and in the number of votes for each 
class). However, one can argue that better estimates of the prediction accuracy can be 
obtained by using a larger subset of the examples as test set. For this reason we also 
use leave one third out cross-validation (LOTOCV). Here a third of the samples are 
left out in the training phase and used to test the prediction accuracy. The procedure 
should be balanced so that the training and test sets contain approximately the same 
proportion of each of the classes. In LOTOCV, one will perform training on two-
thirds of the examples and testing on the remaining and repeat this many times 
reporting the average prediction accuracy obtained. This procedure should be also be 
balanced so that each example is included as test example the same number of times. 
Specifically, for the data sets analyzed in this study (see Results) there are some “hard 
cases” (samples that are easily assigned to the wrong class) and the accuracy will 
strongly depend on how many times these were included in the test set. We refer to 
this (doubly) balanced version of LOTOCV as balanced (BLOTOCV). 

 

RESULTS 
 
In this section we present results on the performance of the new methods for feature 
subset selection and class prediction on a number of publicly available data sets for 
which other investigators have reported results obtained using a number of previously 
published methods. We use in particular the Dettling et al paper [21] that compare the 
prediction accuracy obtained using a number of different class prediction methods 
among them Diagonal Linear Discriminant (DLD) classification and Wilcoxon feature 
scoring. Dettling et al do not provide sufficient details to allow precise reproduction 
of results. Therefore we include DLD/Wilcoxon in our tests to allow indirect 
comparison of the MM based methods to those included by Dettling et al. In this 
section we first give a brief description of the data sets used. Then we present the 
results of an analysis leading to the choice of a particular number of features to be 
used in our class prediction experiments. The results obtained using our MM based 
method on the Dettling et al data sets are presented and finally we present some 
preliminary results regarding use of the MM based method for identification of 
interesting features.  
 
Data sets 
We downloaded the datasets (see Table 1) from Dettling et al’s web site at 
http://stat.ethz.ch/~dettling/bagboost.html and used the preprocessed expression data 
matrices available there.  
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Dataset Number of genes, 
samples 

Number and sizes of  
sample classes 

Leukemia [9] 3571, 72 2 (25, 47) 
Prostate [14] 6033, 102 2 (52, 50) 
Lymphoma [4] 4026, 42 3 (42,9,11) 
SRBCT [12] 2308, 63 4 (23, 20, 12, 8) 
Brain tumor [22] 5597, 42 5 (10, 10, 10, 4, 8) 
Colon [5] 2000, 62 2 (40, 22) 

 
Table 1: Summary data about the data sets used to test the feature selection 
and class prediction methods. See original publications and Dettling et al for 
more information on the datasets. 

 
Choosing the number of features to be used 
The accuracy obtained in class prediction depends on the feature sets utilized and in 
particular on the number of features used. For the MM based methods we utilized the 
feature scoring described in the Methods section and used the top p features for class 
prediction. We chose to limit our analysis to one particular value of p and we 
performed a BLOTOCV analysis using DLDA for different p values (ranging from 5 
to 500) on all the datasets and on two of the datasets (colon and brain) using MM to 
have a basis for choosing an appropriate value for p. The value p=99 seemed to be a 
reasonable number of features to use in subsequent testing (See figure 3). 
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Figure 3: Success rate using different feature sizes. Prediction success rate is 
estimated using a BLOTOCV for all datasets described above. Datasets in the legend 
without suffix are based on our own implementation of the DLDA method described 
in the Methods section. MMp corresponds to the pooled standard deviation and MMg 
corresponds to the group-based standard deviation (see details in the Methods 
section). Note that the spacing of points along the x-axis is not linear. Success rate 
using 99 features is included for comparison to Dettling’s implementation of bagboost 
DLDA in Table 3. 
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Effect of balancing LOTOCV 
The results obtained using leave-one-third-out-cross-validation (LOTOCV) method is 
highly dependent on the number of times “hard cases” have been included in the test 
set (see Methods). In balanced LOTOCV we simply ensure that every sample is left 
out (included in test set) exactly once every three LOTOCV cycles. We performed a 
comparison between prediction accuracies estimated using LOTOCV and BLOTOCV 
where we 100 times estimated the prediction accuracy using 51 LOTOCV 
(respectively BLOTOCV) cycles and the Wilcoxon/DLDA FSS/class prediction 
methods and recorded the estimates for each of the 100 runs. The results are 
summarized in Figure 4 that shows that the prediction accuracies obtained using 
BLOTOCV are more consistent (less spread) than those obtained using LOTOCV. 
Note that this analysis shows the variation of the mean prediction rate over 100 sets of 
51 LOTOCV cycles – while Figure 2 in Dettling et al shows the variation of 
prediction rate over 50 LOTOCV cycles. 
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Figure 4: Unbalanced predictions vs. balanced cross-validation for the colon data set. 
By making sure every sample is included in the test set the same number of times, 
prediction results are less dependent on how many times the hard-cases are included 
in the test set. 
 
Prediction rates on the cancer data sets estimated using LOOCV 
We performed a comparative analysis using our MM based method as well as the 
Wilcoxon/DLDA method on the data sets summarized in Table 1. For the MM 
method we used both the class specific standard deviation (MMg) and the pooled 
standard deviation (MMp) in order to better understand the relative merits of the two 
in practical application.  We performed LOOCV on the 6 datasets using the two MM 
based methods as well as DLDA using features selected using Wilcoxon. The results 
are summarized in Table 2. We see that prediction accuracy obtained using MMg and 
MMp are relatively similar, and both show equally good or superior prediction rates 
compared to the DLDA method. The LOOCV method has shown to lead to biased 
misclassification rates [23], but the results can be directly compared to prediction 
rates from other methods so we have included the comparison. 
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DataSet MMp MMg DLDA 
SRBCT 98.4% 98.4% 96.8% 
Lymphoma 98.4% 100.0% 96.8% 
Colon 87.1% 90.3% 87.1% 
Leukemia 98.6% 97.2% 97.2% 
Brain 97.6% 95.2 76.2% 
Prostate 92.2% 92.2% 80.4% 
Average 95.4% 95.6% 89.1% 

 
Table 2: LOOCV prediction success rates on different datasets (column 1). The 
second column show the prediction accuracy obtained using the mixture model 
method with a pooled standard deviation. The third column shows the accuracy 
obtained using group standard deviation. The fourth column gives the accuracy 
obtained using DLDA. In all cases, 99 features (genes) are used. The best result for 
each dataset is marked in bold. 

 
Prediction rates estimated using BLOTOCV 
 
The six datasets (Table 1) were analyzed using BLOTOCV with 51 cycles so that 
each sample was included in the test set 17 times. The results obtained are 
summarized in Table 3. Table 3 includes the prediction rates obtained using our 
implementation of Wilcoxon/DLDA, our two MM methods, and for reference it also 
contains the Wilcoxon/DLDA results obtained by Dettling along with Dettling’s 
BagBoost method. The results show that our method using mixture models are very 
competitive and in particular that the MMp is on average the best method among 
those tested on these data sets with the current parameters.  

In the analysis we keep track of how many times each sample is misclassified. 
Based on this we identify hard cases. If a sample is misclassified often, this may be 
interpreted as an indication that the sample has been mislabeled. For instance, in the 
leukemia dataset, all samples except sample #5 were always correctly classified using 
either DLDA or the MM based methods. One of these (sample #67) is also classified 
incorrectly in the LOOCV procedure. The mixture model classified these samples 
incorrectly 14 and 16 times respectively which corresponds to approximately 87 and 
100 percent of the classifications. Two of the incorrectly classified samples (samples 
#66 and #67) are also reported as hard cases in other studies ([11]) including the 
original publication ([9]). The fact that sample #66 is classified incorrectly almost 
every time in the BLOTOCV procedure, but correctly classified in the LOOCV 
procedure can be an indication of overfitting when too many of the samples are in the 
training set. 
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DataSet MMp  MMg  DLDA DDLDA  Bagboost 
SRBCT 98.3% 96.6% 94.9% 91.1%  98.8% 
Lymphoma 98.0% 99.0% 97.7% 94.7%  98.4% 
Colon 86.5% 86.1% 83.2% 85.2%  83.9% 
Leukemia 97.0% 95.6% 96.7% 97.0%  95.9% 
Brain 83.6% 70.9% 70.7% 72.8%  76.1% 
Prostate 86.9% 86.7% 80.74% 86.3%  92.5% 
Average 91.7% 89.2% 87.3% 87.9% 90.9% 
 
Table 3: Prediction rates using a balanced leave one third out cross validation 
compared to results given in Dettling et al. Columns two and three show prediction 
rates obtained using our mixture model based methods (pooled and group based 
standard deviation). The fourth column (DLDA) gives the results of our own 
implementation of DLDA. The fifth column (DDLDA) is Dettling’s prediction rate 
for DLDA. The last column gives prediction rates for Dettling’s Bagboost. The two 
last columns contain numbers from Dettling’s paper. The best method for each 
dataset is marked in bold. 

 
Another interesting case is the brain dataset group “primitive neuro-ectodermal 
tumors” (samples #36, #38 and #40). While 7 of these are classified correctly using 
the LOOCV, three of them are misclassified every validation cycle in the BLOTOCV. 
This can also be an indication of overfitting, but it is strange that only this class is 
affected and not any of the other classes. If class size is a success factor, the 4-sample 
class “human cerebella” should show lower score, which is not the case (none of these 
were incorrectly classified using LOOCV but one sample (# 30) was misclassified 9 
times using BLOTOCV). By studying the feature sets we found only a few good 
features separating the “primitive neuro-ectodermal tumors” from the rest. We 
reduced the feature set size to remove bad features from the classifier and the success 
rate increased for all but two classes (#38 and #40) which now showed a 100% 
misclassification rate. This could be an indication of mislabeling of these two samples. 
 
Finding irregular distributions 
We can compare each mixture model fi to a normal distribution estimated from the 
same observed expression values (having probability density function ni), by plotting 
the two probability density functions together (e.g., Figure 5). We can measure the 
deviation between the two functions fi and ni by calculating the measure Si substituting 
fi for fi,1 and ni for fi,2. The smaller the value for Si, the larger deviation is between the 
two functions. To visually analyze the most irregular distributions, we sort the 
mixture models by their Si values and present each mixture model as a graph. This can 
be used to interactively analyze whether a class might contain subclasses and may 
serve as a complement to performing clustering and class discovery. This may reveal 
irregular expression analogous to the COPA (cancer outlier profile analysis) analysis 
proposed by Tomlins et. al [24]. 
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Figure 5: Finding irregular distributions: top: A gene from the prostate datset (row #5016). 
Solid lines are the two mixture models (MMg) and dotted lines represent the standard normal 
distribution. Lower left: the difference between red group (mean = 2.0, stdev = 2.0) mixture 
model and normal distribution. Lower right: normal distribution deviation for the blue group 
(mean = 0.0, stdev = 1.0) 
 

DISCUSSION 
 
We have shown that classification using a mixture model can outperform popular 
methods such as DLDA. The success rate of our proposed method (and other 
methods) does however depend on parameters such as the number of features used 
and the number of hard-cases in the dataset. The number of features has a significant 
effect on the error rate of both mixture models and DLDA. Further analysis is 
required to explore the relative merits of these and other methods on a representative 
set of data sets using a variety of parameter values. We can see that on datasets with 
few hard-cases (such as lymphoma and leukemia) both mixture models and DLDA 
have low error rates which is also consistent with other classifier studies.  
 
The relatively high success rates using mixture models compared to the success rate 
using models assuming normal distribution of gene expression (such as DLDA), 
indicates that our assumption that normal distributions may sometimes be 
inappropriate and lead to sub-optimal prediction rates, is correct. Further studies 
should compare the distributions from features chosen by mixture model scoring and 
methods such as t-score to verify this.  
 
The presence of (unkown) sub-classes with distinct genotypic features may lead to 
distributions that cannot be well described using normal distributions. Such cases can 
arise in different settings, and in particular for cancer such cases are known to exist 
[24]. Further studies should compare mixture model classification to other 
classification methods for different data types. 
 
Presently we let the mixture model contain one normal distribution per observed data 
point. This alleviates the need to search for an optimal (or at least appropriate) number 
of components and parameters for each of these. Such an analysis would be time 
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consuming. On the other hand reducing the number of components to a smaller 
number, would produce more compact and easily interpretable feature descriptors. 
Furthermore the number of components and how the data points fit to these, would be 
valuable information if one were to search for presence of sub-classes or in other 
ways explore patterns within the pre-defined classes. The present approach produces 
good results in the tests that we have performed. Alternative approaches should be 
explored, and analyses performed to find out in which cases the current approach is 
sufficient.  
 
We see that success rates vary between our MMp and MMg implementation and none 
of them are superior for all datasets. This suggests that the choice of standard 
deviation is an important success factor. Further studies should explore the relations 
of success rates between the two variants and patterns in the dataset to see if it is 
possible to choose one of the methods prior to classification. It is also possible that a 
third way of estimating a standard deviation exist that will ensure a stable superior 
success rate. We also leave the search for such method for further studies.  
 
The mixture model framework contains methods for finding features with 
discriminate power, visualization methods for exploring expression distribution, 
methods for determining class membership (including certainty in form of 
misclassification rate) and cross validation functionality (LOOCV and LOTOCV). 
This framework is now included in the J-Express analysis tool [25], but should also be 
included in more accessible tools such as R or as web-tools. This will however be left 
for future work.  
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