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Ethanol exists in two conformations, anti and gauche. When gauche-ethanol is core-ionized at
the methyl carbon, strong repulsion between the hydroxyl proton and the ionized methyl group
leads to a change in conformation, from gauche to anti. Franck-Condon analysis based on the
harmonic oscillator approximation is not able to describe well the nuclear dynamics accompanying
the electronic event. A vibrational adiabatic approach to Franck-Condon analysis of systems with
a few highly displaced oscillators coupled to a bath of harmonic oscillators is presented in a general
way. The theory is subsequently applied to the lineshape of the carbon 1s photoelectron spectrum
of ethanol, with very good results.

I. INTRODUCTION

Nuclear dynamics following a primary electronic ex-
citation or ionization event is a rich source of informa-
tion about the initial and final electronic states involved
in the process. This has been known for a long time
for valence spectroscopies such as ultraviolet and visi-
ble absorption spectroscopy (UV-vis), ultraviolet photo-
electron spectroscopy (UPS), fluorescence spectroscopy
and others. [1] Recently and thanks to the technical de-
velopment of third generation synchrotrons and high-
resolution electron spectrometers, x-ray absorption and
photoelectron spectroscopies have reached a state where
the fine-structure in these spectra can be used to explore
the nuclear dynamics following ionization.

Theory has proven an indispensible tool for extract-
ing information about molecular structure, vibrational
modes and force constants from the lineshape or vi-
brational fine structure in the electronic spectra. The
accepted standard for this kind of calculations is the
Franck-Condon principle in conjunction with the har-
monic oscillator approximation for the vibrational states.
This requires optimization of the molecular structure of
the initial and final states involved in the electronic tran-
sition, as well calculation of force-constant matrices (Hes-
sian) for both states. This can be done routinely for the
electronic ground state and goes from routine to very dif-
ficult depending on the complexity of the electronic final
state. In our work on core-ionized molecules, [2–5] we
have been able to simplify the electronic problem by rep-
resenting the ionized core by an effective core potential.
This makes it possible to address the ionized final state
with the same ease as the electronic ground state.

While the harmonic model is extremely useful, an-
harmonic effects are readily seen in the spacing or rela-
tive intensities in vibrational progressions in well-resolved
spectra. This is interesting in its own right, and for
small molecules anharmonicity may be quantitatively ac-
counted for in the theoretical model. If the electronic fi-
nal state is dissociative, the vibrational envelope becomes
broad and featureless. While providing proof for dissoci-
ation, the lack of structure in the band makes a detailed

analysis of the anharmonicity of the potential energy sur-
face unwarranted. Between these extreme cases are elec-
tronic events that induce a conformational change in the
molecule. A typical scenario for this kind of nuclear dy-
namics is large displacement along one or very few vibra-
tional modes and small displacements in the remaining
modes. We have very recently had the opportunity to
report on the first observation of conformational change
upon inner-shell ionization. [6]

Ethanol exists in two conformations differing in inter-
nal rotational angle of the hydroxyl moiety about the
CO axis. [7–10] The anti conformation corresponds to
a dihedral HOCC angle of 180o while the gauche con-
formation has a dihedral angle of 60o. Ionization of a
carbon 1s electron of the methyl carbon in the gauche
conformation generates the ion in a state with strong
Coulomb repulsion between the hydroxyl hydrogen and
the now positively charged methyl group. Ionization
is consequently followed by internal rotation about the
carbon–carbon bond and strong excitation of the HOCC
torsional mode. The relevant potential energy curves are
highly anharmonic as is evident in Fig. 1. Neither an all-
harmonic model nor a simple model in which the HOCC
torsion is treated separately from the remaining 20 har-
monic modes, are able to provide satisfactory description
of the observed lineshape in the C1s photoelectron spec-
trum. On the other hand, a fully coupled anharmonic de-
scription of the 21 mode vibrational problem in ethanol
is a truly major undertaking. Moreover, since most of
the modes undergo only small displacement it may be
possible to extract the correct dynamics without a fully
coupled description.

Perturbation theory has proved to be the most cost-
effective method to treat mechanical anharmonicity prob-
lems in small molecules [11]. Luis et al. conducted
a perturbational study on ClO2 to obtain a Franck-
Condon profile including effects from mechanical anhar-
monicity [12]. However, as the size of molecule increases
many states that contribute to the Franck-Condon pro-
file tend to be degenerate or near-degenerate, and the
perturbational treatment leads to unphysically large cor-
rections to the zeroth-order wavefunctions. Matsunaga
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FIG. 1: Computed vibrational energy in the HOCC torsional
mode, for the ground state of ethanol (solid line) and the
molecule that is core-ionized at the CH3 carbon (dashed line).

et al. developed an algorithm specifically designed for
computing anharmonic vibrational states for polyatomic
molecules with degeneracies occurring for excited vibra-
tional states [13]. It is referring to as DPT2-VSCF -
degenerate second order perturbational correction to vi-
brational self-consistent field energies. The degeneracy of
states is lifted at the first order. DPT2-VSCF provides
improvements over non-degenerate perturbation theory
and gives results which are in very good accordance with
experimental results for hydrogen peroxide and other
small molecules. However, this algorithm is very time
consuming for a case like ethanol, where there are hun-
dreds of states carrying significant Franck-Condon inten-
sity.

In this work we propose a theoretical approach for com-
puting Franck-Condon factors in the case of a few highly
excited anharmonic oscillators that are coupled to a set
of weakly excited harmonic oscillators. Our approach is
reminiscent of reaction path hamiltonian theory, [14] and
more precisely, the basis set method advocated by Makri
and Miller for describing a one-dimensional reaction co-
ordinate coupled to a bath of many harmonic oscilla-
tors. [15] In that and later works [16, 17] the focus was on
reaction kinetics or vibrational properties associated with
a single electronic state, whereas here the aim is to com-
pute Franck-Condon profiles associated with electronic
transitions. The fully coupled many-dimensional vibra-
tional problem is reduced to a (possibly large) number of
low-dimensional vibrational problems that are identified
in a well-defined screening process. The methodology is
applied to the case of 1s ionization of methyl carbon in

the gauche conformation of ethanol.

II. THEORY

We will be concerned with Franck-Condon theory of
vibrational transitions accompanying an electronic exci-
tation or ionization event. The formalism is well estab-
lished in the case of harmonic oscillators and we will re-
view the one-dimensional case as a way of introducing
some nomenclature. Next, we extend this formalism in
the spirit of the adiabatic basis set method of Makri and
Miller [15], to cover the case of large geometric relax-
ation in a low-dimensional coordinate space, coupled to
a (possibly large) set of oscillators that are intrinsically
harmonic and only weakly excited.

A. The harmonic approximation

Starting from a set of internal coordinates S, the mass-
weighted normal coordinates Q−Qeq may be represented
by the transformation matrix L as S = L(Q−Qeq). [18]
In the harmonic approximation, the many-dimensional
vibrational hamiltonian decomposes into a sum of one-
dimensional operators pertaining to each of the normal
coordinates. A generic single-mode harmonic hamilto-
nian may be written

ĥ = − h̄
2

2
d2

dQ2
+

1
2
ω2Q2, (1)

where ω is the angular frequency of the normal mode.
Introducing a dimensionless normal coordinate q defined
by q = γ

1
2Q where γ = ω/h̄, the harmonic hamiltonian

becomes

ĥ = h̄2γ

(
−1

2
d2

dq2
+

1
2
q2
)

(2)

Normalized with respect to the mass-weighted normal
coordinate Q, the corresponding stationary eigenstates
may be given in terms of Hermite polynomials Hn as

φn(q) =
(γ
π

) 1
4

(2nn!)−1/2
Hn(q)e−q2/2 (3)

In the case of an electronic transition in a system with
only one vibrational degree of freedom, initial- and final-
state normal coordinates are related through Qinit = Q−
δQ, where δQ denotes the initial equilibrium geometry
relative to that of the final state. The probability for a
monopole transition from initial-state ninit to final state
n is given by the square of the integral

In =
∫
φn(γ

1
2Q)φninit

(
γ

1
2
init(Q− δQ)

)
dQ (4)

To be specific we will take the initial vibrational state
to be the ground state, ninit = 0. The Ansbacher for-
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mulae [19] for Franck-Condon integrals take on a partic-
ularly simple form in terms of the ratio of angular fre-
quencies, β2 = ωinit/ω(= γinit/γ), and the displacement

in final-state reduced coordinates, δq = γ
1
2 δQ:

I0 [β, δq] =

√
2β

1 + β2
exp

[
−1

2
δq2

β2

1 + β2

]
I1 [β, δq] = δq

β2

1 + β2

√
2 I0 [β, δq] (5)

In>1 [β, δq] = δq
β2

1 + β2

√
2
n
In−1 [β, δq] +

1− β2

1 + β2

√
n− 1
n

In−2 [β, δq]

In the multi-dimensional case, the normal coordinates
associated with two different electronic states are gener-
ally not in one-to-one correspondence but rather related
by a linear transformation. This is known as the Duschin-
sky effect, and a large variety of methods have been de-
vised to include it in the calculation of Franck-Condon
factors. [20]

B. Coupling model

For a molecule undergoing substantial changes in ge-
ometry in the wake of an electronic transition, such as
a change of conformation or dissociation of a bond, the
relaxation process is likely to sample anharmonic por-
tions of the final-state potential energy surface. While
the harmonic model may not be able to give a satisfac-
tory description of the full process, it may still be useful
for most of the vibrational modes, in particular those un-
dergoing only minor displacements. This picture suggests
that the basis set method originally developed by Makri
and Miller to describe a one-dimensional reaction coordi-
nate coupled to a bath of many harmonic oscillators, [15]
may be useful also to the calculation of Franck-Condon
factors. The model presented below is closely related to
that in Ref. [15], although it differs both with respect to
the effective hamiltonian and the Ansatz made for the
wave function. We will retain the adiabatic approxima-
tion, namely that the excitation level of each of the quasi-

harmonic oscillators remain good quantum numbers.
We assume a set of normal modes defined with re-

spect to the final-state equilibrium geometry. The mass-
weighted normal coordinates that describe the large am-
plitude relaxation from the initial-state equilibrium are
collectively denoted by Z, with the corresponding di-
mensionless coordinates given by z. For simplicity, the
corresponding normal modes are also referred to by Z.
The remaining set of NHO oscillators are assumed to re-
main harmonic in the course of the electronic transition.
Consistent with the preceding section, we will use sym-
bols Q and q for these, in complete analogy to Z and
z. Since the Z modes may undergo large displacements,
coupling terms to the quasiharmonic modes may be of
the same order of magnitude as the harmonic potentials
and should be included on an equal footing. To keep the
formalism transparent, we have chosen not to take into
account the Duschinsky effect, although this would be
quite straight forward to do. Consistent with our neglect
of the Duschinsky effect, we will omit explicit coupling
between Q modes in the hamiltonian.

The hamiltonian describing the Z modes is denoted
by Ĥz and may include any sophistication required. In
our applications, we have included only mechanical an-
harmonicity, meaning that the kinetic energy operator
is approximated by its harmonic counterpart. This is a
limitation that may easily be lifted and does not limit
the generality of our approach. The hamiltonian for the
coupled system is chosen as

Ĥ = Ĥz +
NHO∑
k=1

h̄2γk

(
−1

2
d2

dq2k
+

1
2
q2k +Ak(z)qk +Bk(z)q2k

)

= Ĥz −
1
2

NHO∑
k=1

h̄2γk
A2

k

1 + 2Bk
+

NHO∑
k=1

h̄2γk

[
−1

2
d2

dq2k
+

1
2

(1 + 2Bk)
(
qk +

Ak

1 + 2Bk

)2
]

= Ĥz −
1
2

NHO∑
k=1

h̄2γk
A2

k

1 + 2Bk
+

NHO∑
k=1

h̄2γ́k

(
−1

2
d2

dq́2k
+

1
2
q́2k

)
(6)



4

where

γ́k = γk (1 + 2Bk)1/2 (7)

and

q́k = (1 + 2Bk)1/4

(
qk +

Ak

1 + 2Bk

)
= γ́

1
2
k

(
Qk + γ

− 1
2

k

Ak

1 + 2Bk

) (8)

Note that since all coordinates are assumed to be nor-
mal coordinates, Ak is of order two or higher in the z
variables, while Bk is of order one or higher. Symmetry
or numerical happenstance may shift the leading term to
higher order. In accordance with our hypothesis of the
NHO q modes conducting harmonic oscillations, we will
adopt the following Ansatz for an approximation to the
wavefunction:

Ψ(z, q́)ni = ψi(n)(z)
NHO∏
k=1

φnk
(q́k) (9)

Applying the hamiltonian to this function gives

ĤΨni(z, q́) =

[
Ĥ0 + h̄2

NHO∑
k=1

γ́knk

]
Ψni(z, q́) (10)

where we have introduced

Ĥ0 = Ĥz −
1
2
h̄2

NHO∑
k=1

(
γk

A2
k

1 + 2Bk
− γ́k

)
(11)

Projection of eq. 10 onto the product function for the
quasiharmonic modes, leads to the following equation in
the anharmonic z degrees of freedom only:(

Ĥ0 + h̄2n†γ́
)
ψi(n)(z) = Eniψi(n)(z), (12)

which in principle must be solved numerically for every
state (ni) of interest. In actual applications to Franck-
Condon factors, we find it necessary to retain the nk-
specific term in eq. 12, i.e. h̄2γ́knk, only for quasihar-
monic modes that are very strongly coupled to the Z
modes. Morover, in this derivation, the effect of the ki-
netic energy operators in z on the φnk

(q́k) has been omit-
ted. To the next order of approximation, one may take
into account the contribution to kinetic energy coming
from the z-dependency of Ak. Within the adiabatic ap-
proximation, this adds a term (1/2)h̄2γj(dAk/dzj)2(1 +
2Bk)−3/2(nk+1/2) to the effective potential for each pair
of (qk, zj). In our applications this term turns out to be
insignificant and will be omitted in the following.

We will be interested in computing Franck-Condon in-
tegrals between final-state solutions and the initial state
given by

Ψinit(z,q) = ψinit(z)
NHO∏
k=1

φ0k
(qinit,k) (13)

This notation implies the neglect of Duschinsky rotations
between the two states, and, moreover, that coupling be-
tween Z and Q modes is assumed negligible in the initial
state. The overlap integral reads

Ini =
∫
ψi(n)(z)

[
NHO∏
k=1

∫
φnk

(q́k)φ0k
(qinit,k)dQk

]
ψinit(z)dZ (14)

where ∫
φnk

(q́k)φ0k
(qinit,k)dQk =

∫
φnk

(
γ́

1
2
k (Qk + γ

− 1
2

k

Ak

1 + 2Bk
)
)
φ0k

(
γ

1
2
init,kQinit,k

)
dQk

=
∫
φnk

(
γ́

1
2
k (Qk + γ

− 1
2

k

Ak

1 + 2Bk
)
)
φ0k

(
γ

1
2
init,k(Qk − δQk)

)
dQk

=
∫
φnk

(
γ́

1
2
k Q
)
φ0k

(
γ

1
2
init,k(Q− δQk − γ

− 1
2

k

Ak

1 + 2Bk
)
)
dQ (15)

= Ink

[
β́k, δq́k

]

where

β́2
k = γinit,k/γ́k = β2

k(1 + 2Bk)−
1
2 (16)

and

δq́k = γ́
1
2
k

[
δQk + γ

− 1
2

k

Ak

1 + 2Bk

]
= (1 + 2Bk)

1
4

[
δqk +

Ak

1 + 2Bk

] (17)
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The Franck-Condon integral in eq. 14 is thus given by

Ini =
∫
ψi(n)(z)

(
NHO∏
k=1

Ink

[
β́k, δq́k

])
ψinit(z)dZ (18)

1. Simplifications

We consider the two-dimensional case in which there
is a single z mode and a single q mode. The preceding
equation 18 simplifies to

Ini =
∫
ψi(n)(z)In

[
β́, δq́

]
ψinit(z)dZ (19)

For every state n of mode q, and every state i(n) of the z
mode, the Franck-Condon intensity for transition to the
two-mode state (n,i) is given as the square of Ini. The
total energy of this state is given by eigenvalue Eni as it
appears in eq. 12.

Assume now that γ́ varies only insignificantly with z.
This allows us to treat the term h̄2nγ́ as a constant in
eq. 12, in which case the solutions of eq. 12 are indepen-
dent of n and may be labeled by i alone. Moreover, if the
h̄2nγ́ term is dropped from the hamiltonian altogether,
the z energy levels are independent of i. In this case, the
total energy of the two-mode state (n,i) is obtained as
Ei + h̄2nγ́ and the corresponding Franck-Condon intensi-
ties may be computed from a single set of ψi(z) functions
for all n. Finally, if In

[
β́, δq́

]
varies only slowly with z in

the sampled region, the integral may be factorized into
q and z contributions. Similar considerations are use-
ful also in the many-dimensional case as summarized in
Fig. 2. Following the flowchart, all quasinormal modes
that are vibrationally excited may be classified into four
groups, characterized by whether or not their harmonic
frequency and/or Franck-Condon integrals vary with z.
This opens for well justified simplifications of the working
equations in each case.

III. COMPUTATIONAL DETAILS

A. Electronic and geometric structures

The electronic structure calculations were conducted
using three different levels of theory, all in conjunc-
tion with Dunning triple-ζ basis sets augmented with
6-311G(d,p) polarization functions [21, 22]. Some tests
were carried out with the more elaborate aug-cc-pVTZ
basis set, but at the B3LYP level of theory differences be-
tween the results obtained with the two basis sets were
inconsequential to our study.

The hybrid density functional method B3LYP was
used as implemented [23] in the Gaussian-03 set of
programs [24] for computing harmonic frequencies and

normal coordinates for neutral and C1s-ionized ethanol
as well as anharmonic corrections including the mode-
coupling potential. The numerical integration was car-
ried out on an ultrafine grid. For the ionized species,
the core hole was described by an effective core poten-
tial [25, 26].

Franck-Condon factors are particularly sensitive to
changes in geometries that occur during ionization, and
we found that the geometry changes computed by means
of B3LYP were too inaccurate for use in the present study
of mode-coupling effects. Hence, the neutral and C1s-
ionized species were reoptimized in their anti conforma-
tion using a highly accurate ab initio approach; Coupled-
Cluster with Single and Double excitations and including
a perturbational estimate of the contribution from Triple
excitations [CCSD(T)]. For the gauche conformations
which belongs to the C1 point group, these calculations
were not feasible. Rather, corrections to bond lengths
and angles were obtained as differences between B3LYP
and CCSD(T) values as obtained for the anti conforma-
tion. While these calculations used an ECP approach to
describe the ionized core, we found that there are minor
yet in the present context, significant differences between
calculations in which the core hole is treated explicitly
(Hole-State calculations; HSC) and those in which it is
simulated by the effective core potential (ECP). For a
corrected geometry, G, of the core-ionized state, we as-
sume that the corrections are additive and write

Gcorr = GECP
CCSD(T ) − (GHSC

RHF −GECP
RHF ) (20)

The principal result of this correction is to decrease the
predicted contraction of the C–C bond (by 0.15 pm and
0.18 for anti - and gauche-ethanol,) and C–O bonds (by
0.26 pm for both conformations).

B. Computing mode-coupling terms: Ak(z1) and
Bk(z1)

The nomenclature used here is introduced in sec. II.
In order to evaluate coupling coefficients between mode
z1 and mode qk, say, we have used a finite-difference ap-
proach in normal coordinates. Starting from the anti -
conformation (the lowest energy structure of ethanol ion-
ized at the CH3 carbon), the L matrix is computed ac-
cording to Ref. [27]. The change in symmetry coordinates
induced by a displacement δqk is given by the product of
δqk,γ−1/2

k and the associated column vector in L. This
true also for z1, and the total displacement in symmetry
coordinates is added to the starting geometry to define
the modified geometry. The energy E(z1, δqk) is com-
puted for each modified geometry, and the energy contri-
bution due to mode coupling, W (z1, δqk), may be identi-
fied as

W (z1, δqk) = E(z1, δqk) + E(0, 0)
−E(0, δqk)− E(z1, 0)

(21)
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FIG. 2: Scheme for analyzing the coupling contribution from each individual quasinormal mode.

The coupling form, when truncated at the second order,
reads

W (z1, δqk) =
[
Ak(z1)δqk +Bk(z1)δq2k

]
h̄2γk (22)

It may be noticed that the terms between the square
brackets are dimensionless. To determine Ak(z1) and
Bk(z1) terms, a minimum of two distortions along the qk
coordinate is needed for every value of z1. Using symmet-
ric distortions, i.e. ±δqk, one obtains expressions that are
correct to O(δq3k) for Ak and O(δq4k) for Bk:

Ak(z1) =
W (z1,+δqk)−W (z1,−δqk)

2h̄2γkδqk
(23)

and

Bk(z1) =
W (z1,+δqk) +W (z1,−δqk)

2h̄2γkδq2k
(24)

The resulting functions were checked against those ob-
tained from difference formulae correct to two orders
higher than those just quoted. The z1 dependency of
the A and B coefficients were mapped out on an equidis-
tant grid with step size 0.45 (corresponding to steps of
0.2 amu1/2Å in Z1).

C. Lineshape models

To each site of ionization and conformation, a set of
Franck-Condon factors are computed and transformed
into a continuous lineshape model by convolution with
broadening functions that reflect the natural linewidth,
Gaussian resolution, and the interaction between the
photoelectron and the Auger electron emitted in the de-
excitation of the core-hole state. The latter interaction is
described using Eq.(12) from van der Straten et al. [28].
The four resultant lineshapes (one for each different core-
ionized carbon) are fit by least-squares techniques [29] to
the experimental data with the adiabatic energy position
of each profile, three independent intensity parameters as
well as a constant background as fitting parameters.

IV. APPLICATION TO ETHANOL

In this section we apply the proposed coupling model
to the case of C1s photoionization of gauche ethanol in
its vibrational ground state. As described in the In-
troduction, 1s ionization of the methyl carbon takes the
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molecule to a potential energy surface (PES) for which
the gauche structure is no longer an equilibrium point.
The molecule subsequently undergoes large relaxation in
the HOCC torsional angle. Formally, the adiabatic tran-
sition corresponds to a change from gauche to the anti
conformation, although a vanishing FC factor dictates
that this transition is not seen in the photoelectron spec-
trum.

The normal coordinate corresponding to HOCC tor-
sion is strongly anharmonic and undergoes a large dis-
placement and is labeled Z1 according to the nomencla-
ture introduced in the preceding section. The remaining
normal coordinates change considerably less and coupling
between Z1 and the other normal coordinates is, with one
exception, well represented by the model defined in eq. 6.
The exception is internal rotation of the methyl moiety,
for which we find it necessary to include coupling to Z1

in a bivariate power expansion up through fifth order in
both coordinates. To facilitate this within the present
formalism, we include the methyl rotation coordinate as
Z2, although we will not compute explicit coupling terms
between Z2 and the remaining 19 pseudoharmonic nor-
mal coordinates. The one-dimensional final-state poten-
tials are expressed as polynomials of order six in z1 and
second order in z2. The (z1, z2)-eigenproblem in eq. 12 is
solved in a product basis of harmonic oscillator functions,
of dimension 15×10.

FIG. 3: (a) Left: Torsional potential along the HOCC(z1)
coordinate in the final state, in the harmonic approximation
(full line) and including terms of higher order in z1 (dotted);
Right: Two-dimensional Franck-Condon profiles in (z1, z2), in
the harmonc approximation (dotted), including single-mode
anharmonic terms (full line) and including both single-mode
and mode-coupling anharmonic terms (dashed).

Fig. 3(a) shows the final-state torsional potential in the
z1 coordinate, with and without anharmonic corrections.
The anharmonic terms in the z1 potential makes the tor-
sion about the C–O bond stiffer, and the net effect is to
broaden the associated Franck-Condon profile and shift
it to higher energy, cf Fig. 3(b). Inclusion of coupling to
z2 has an even larger impact on the FC profile, acting
in the same direction as the described for the unimode
anharmonicity.

In order to take into account coupling between z1 and
the 19 quasinormal coordinates, the latter are classified
according to the algorithm laid out in Fig. 2. First,

FIG. 4: (a) Left: Variation in the harmonic frequency due
to coupling to the HOCC (z1) coordinate of four modes; Q1

(CCO bending, solid line), Q2 (COH+CCH bending dotted
line), Q3 (CO stretching, dashed), and Q4 (CC stretching,
circles). (b) Right: Two-dimensional Franck-Condon profiles
in the (z1,q1) coordinates, differing in whether (dotted line) or
not (dashed line) the effective z1 potential in eq. 12 includes
the excitation level of the Q1 mode.

the variation in harmonic frequency is mapped out as
a function of z1, cf. Fig. 4(a). Only for two of the Q-
modes, the CCO bending mode (Q1) and a mode involv-
ing CCH and COH bending (Q2), does the vibrational
frequency change appreciably over a range of 2.0 u

1
2 Å in

Z1, and more so for Q1 than Q2 (80 cm−1 vs 30 cm−1).
Only for the first of the two does inclusion of n1-specific
terms in the effective (z1, z2) hamiltonian in eq. 12 lead
to discernible changes in the Franck-Condon profile, cf.
Fig. 4(b). Even in this case the impact is very modest.

Next, we explore how the one-dimensional Franck-
Condon factors for the quasiharmonic modes vary with
z1 as a result of coupling terms. For each mode, the
dependency on z1 is conveniently represented by the so-
called S factor, found as the ratio between I1 and I0 in
eqns. 5. This quantity is shown in Fig. 5 as a function
of z1 for the four modes for which it varies the most.
While the S factors for two of the bending modes (Q1

and Q2) vary significantly with Z1, the change is much
less for the C–O stretching mode (Q3) and negligible
for C–C stretching (Q4). To illustrate how this trans-
lates into Franck-Condon profiles, Fig. 6 shows the two-
dimensional FC profiles as z1-dependent integrals lead to
FC profiles which differ significantly from those obtained
using equilibrium geometries, i.e. at a single value of z1.
For both Q1 and Q2, the mean vibrational energy shifts
to lower energy and the width of the FC envelope de-
creases. This can be understood from Fig. 5 since the S
factor drops as one departs from z1 = 0.

From the preceding discussion, one may conclude that
for four normal modes, coupling to the HOCC torsional
mode may have significant impact on the Franck-Condon
lineshape associated with carbon 1s ionization of the
methyl moiety in gauche ethanol. The interacting modes
include methyl rotation and three quasiharmonic nor-
mal modes (CCO,Q2, CO), in addition to HOCC torsion.
The remaining 16 modes show negligible coupling to the
HOCC modes and are treated as uncoupled oscillators,
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FIG. 5: Z1-dependent S factor of the CCO mode (solid line),
Q2 (dotted line), the C–O mode (dashed line), and the C–
C mode (circles). The anti geometry is taken as a reference
point.

FIG. 6: Effect of using z1-dependent integrals on the 2-
mode FC envelope of (A) HOCC-CCO model, (B) HOCC-Q2

model, and (C) HOCC-CO model. The solid line represents
the harmonic FC integrals, i.e. integrals evaluated at z1=0,
while the dotted line is obtained according to eq. 19.

either Morse (symmetric CH3 stretching) or harmonic
oscillators (15 modes). The Franck-Condon (FC) profile
obtained on the basis of the five coupled modes is sub-
sequently convoluted with FC factors for the remaining
16 modes. The effect of mode coupling on the total FC
profile is shown in Fig. 7, where the main effect is seen
to be a shift toward lower mean vibrational energy and
reduction in linewidth. There are also changes to the
shape of the profile.

A. Theory vs experiment

The experimental carbon 1s photoelectron spectrum of
gas-phase ethanol as obtained under conditions described
in Ref. [6], is shown as circles in Fig. 8. It consists of two
main peaks, corresponding to ionization of the methyl
carbon (left, at low energy) and the functionalized car-
bon (right, at high ionization energy). Both structures
receive contributions from both the gauche and anti con-
formations of ethanol. In order to model the spectrum
one needs FC envelopes pertaining to each of the two

FIG. 7: Vibrational envelope associated with C1s ionization of
the methyl end of gauche ethanol. The solid line corresponds
to a model of uncoupled oscillators, whereas the dotted line
corresponds the coupling model outlined in the text.

conformations as well as the two sites of ionization, i.e.
four contributions. Only ionization of the methyl moi-
ety and in the gauche conformation of ethanol, leads to
large geometric relaxation to the extent that a coupled-
mode treatment is required. This leads to the FC profile
shown in Fig. 7, which may be combined with FC pro-
files based on the harmonic oscillator approximation for
C1s ionization of anti -ethanol and for ionization of the
functionalized carbon in gauche ethanol, cf the appendix
for details.

The resulting model spectrum is fit in the least-squares
sense to the experimental spectrum by taking the anti -
to-gauche intensity ratio and the adiabatic energy posi-
tions as fitting parameters. The best fit is obtained when
the anti -to-gauche ratio is around 0.41:0.59, cf the full
drawn line in Fig. 8. This number may be compared to
the relative populations of 62% and 38% of gauche- and
anti -conformations, respectively, as obtained by Pearson
et al. [30]. The agreement between theory and exper-
iment is very satisfying, cf the leftmost main structure
in Fig. 8. More than reproducing the overall lineshape,
details like the low-energy shoulder of the spectrum and
the flattening on the high-energy side of the methyl peak
are satisfactorly accounted for.

V. CONCLUSIONS

A model has been presented for computing Franck-
Condon factors for systems which undergoes large geo-
metric changes in only a few normal coordinates. The
model reduces the anharmonic oscillator problem to a
few-body problem, albeit with corrections due to cou-
pling to harmonic modes. The approach works very well
for core-ionization of ethanol.
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FIG. 8: Experimental (circles) and theoretical (solid line) car-
bon 1s photoelectron spectrum of ethanol. The individual
contributions from the anti (dotted lines) and gauche (dashed
lines) conformations are also shown.
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TABLE I: Geometry change upon C1s ionization in anti- and
gauche conformers of ethanol. Bond length changes in pm
and angles in degrees.

C∗H2OH C∗H3

Coordinate anti gauche anti gauche
C-C -0.49 -1.55 0.75 0.03
C-O -3.11 -2.91 -4.44 -4.21
O-H 1.12 1.09 0.45 0.41
C2H(t) -0.38 -0.37 -5.63 -5.72
C1H -5.67 -5.34 -0.33 -0.01
C2H -0.41 -0.44 -5.32 -5.43
CCO 0.24 2.34 -4.90 -9.76
HOC -0.53 -0.87 2.57 2.95
H(t)C2C1 -2.07 -2.14 1.74 1.58

APPENDIX A: FC ANALYSIS OF THE
REMAINING CARBON SITES

The fact that ethanol offers two inequivalent carbon
sites and also exists in two different conformations, im-
plies that there are altogether four different contribu-
tions to the C1s photoelectron spectrum of this molecule.
Only the methyl carbon in the gauche conformer gives
rise to large structural relaxation following C1s ioniza-

tion. For the remaining three combinations, we pre-
pare C1s lineshape models in the harmonic approxima-
tion. This involves calculation of the equilibrium geome-
tries and normal modes for the neutral and core-ionized
molecules [31, 32], cf the geometry changes upon core-
ionizing as shown in Tab. A. Core-ionizing the function-
alized carbon leads to almost identical vibrational struc-
tures for the two conformations, see Fig. 8. The vibra-
tional structure consists of a shoulder at around 150 meV
higher energy than the main peak, corresponding to ex-
citation of the C–O and C–C stretching modes and the
CCH bending mode. The first excited state of the C∗–H
stretching mode gives rise to a satellite at 420 meV above
the adiabate.

If we consider ionization of the methyl moiety in the
anti conformation of ethanol, the ionization event is ac-
companied by vibrational excitations of the CCO bend-
ing mode at 58 and 116 meV vibrational energy and with
intensities of 72% (ν = 1) and 28%(ν = 2) of the main
peak. Additional singly excited states in C–C and C–O
stretching modes and the CCH bending mode contribute
to a broad main peak. The satellite at 420 meV is due
to the singly excited state of the C∗–H stretching mode.




