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Preface 

 

This thesis submitted for the degree Philosophiae Doctor at the University of Bergen, 

consists of five papers and two research reports along with an introduction to the work. 

The papers are based on work performed at the Centre for Integrated Petroleum 

Research at the University of Bergen in the period 2003-2006.  Simulation work 

performed during a research period at University of Texas at Austin in spring 2005 is 

summarized in a research report.  

 

The papers include different approaches to the topic of foam and foam-oil interactions. 

Paper 1-3 address the topic through studies of static foam experiments, whereas Paper 

4 includes results from dynamic core flooding experiments. The static and dynamic 

foam properties of a fluorinated surfactant and alpha olefin sulfonate are compared. 

Paper 5 and 6 include studies of gravity segregation of foam in small scale model 

reservoirs, while Paper 7 is a report from a foam potential study from a field in the 

North Sea.  
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Chapter 1: Introduction 

1 Introduction 
This thesis focuses on the properties of foam, especially foam properties related to 

foam-oil interactions. Foam is a mix of gas, water and a foamer where the large gas 

volume is dispersed as bubbles in a continuous liquid phase (Figure 1). Since the 

foam is thermodynamic unstable, it is important to predict or investigate the foam 

stability.  

 

 

Figure 1: Illustration of foam structure and foam components. 
 

The fundamental understanding of foam has expanded during the last decades. There 

have been significant advances in applications and understanding of its nature and 

physical behavior. Bikerman (1973) presented basic foam theory and describe a 

variety of experimental methods. Schramm (1994B, 2005), Prud’homme and Kahn 

(1996), and Exerowa and Kruglyakov (1998) presents a wide range of fundamental 

foam theory and different technical applications involving foam, that will be 

discussed later in relation to this study. 

 

Foam is today widely applied in a large variety of industrial branches. For instance 

foam can be used to improve gas sweep efficiency in a reservoir or to shut off gas 

production in a well. This can increase oil production. Several of the field projects 

have been successful, both technically and economically (Aarra et al., 1996, 2002, 

Aarra and Skauge, 2000, Blaker et al., 2002). Other examples are the use of foam in 

fire fighting, in environmental remediation processes, and in many everyday personal 
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Introduction 

care products. In enhanced oil recovery and in environmental remediation processes 

foam is used to control mobility. To achieve good mobility control it is important that 

the foam is stable. One of the key questions of foam stability is the tolerance in the 

presence of oil. Foam can be stable in presence of oil or oil can destabilize the foam. 

The properties of the oil are important for whether it will be stabilizing or 

destabilizing. Foam-oil interaction is a complex phenomenon, which is not yet fully 

understood.    

 

In this thesis several important issues of foam have been investigated systematically, 

changing a few parameters at a time. This work has especially focused on trying to 

get a better understanding of foam-oil interactions, foam stability, and foam 

propagation, which are important factors for the different applications mentioned. 

This study adds new results to these areas and hopefully contributes to an increased 

understanding in different fields of foam. 

 

This thesis first presents some fundamental theory. The theory has been included to 

describe foam and related foam phenomena more carefully, and to support the 

discussion.  

 

In order to understand the influence of oil on foam, fundamental experimental studies 

were performed. This thesis has investigated foam systematically, beginning with 

fundamental static bulk foam tests. Main findings in these static experiments were 

further investigated in dynamic core flooding experiments. In addition simulations of 

foam gravity segregation have been preformed in a small scale model (length scale = 

15-150 m x 3-30 m). The gas and liquid phases mixed in the foam will, due to 

buoyancy, separate in different flow paths after some distance. An extended 

segregation length may improve the area sweep and thereby improve the oil 

production. Simulations are also important for prediction of foam potential in a 

reservoir. The thesis also includes a foam potential evaluation simulations of a North 

Sea field.  
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The first three papers in the thesis mainly present results from static foam tests. The 

first paper, Paper 1, considers foam-oil interactions using an alpha olefin sulfonate. 

The static foam properties have been investigated by variation in surfactant 

concentration, amount of added oil, and variation in polarity of the oil phase. In the 

second paper, Paper 2, results from static foam experiments using a fluorinated 

surfactant are compared to the foam tests results from Paper 1. The third paper,  

Paper 3, presents and compares static foam experiments using a low surfactant 

concentration of fluorinated surfactant or alpha olefin sulfonate. The static foam 

properties for the two surfactants were investigated by using different low surfactant 

concentrations, varying amounts of different alkanes as well as crude oils. Bulk 

surfactant solution properties were measured to try to get a better understanding of 

foam stability, and to try to identify any correlations between bulk properties and 

foam stability. 

 

In the forth paper, Paper 4, dynamic core flooding experiments using each of the two 

surfactants are discussed. The core flooding experiments in porous media (Berea 

cores) are performed at 120 bar and 50° C. Experiments were made with three 

different crude oils, all from North Sea oil reservoirs, and in addition experiments 

was made without oil. The sequence of experiments described was completed with 

the two different surfactants utilized in this thesis. Results from these dynamic 

flooding experiments are compared to the static bulk foam results. 

 

Paper 5 and Paper 6 consider foam simulation experiments to investigate gravity 

segregation of injected liquid and gas. Especially we have focused on different 

injection methods influence on the gravity segregation length in cylindrical, 

homogenous reservoirs. The main issue for these experiments was to see if non-

uniform co-injection of water and gas or injection of water above gas improved the 

gravity segregation of foam in a reservoir, compared to uniform co-injection. Several 

injection methods were considered in the foam simulations using the STARS 

simulator from CMG.  
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In the last paper, Paper 7, application of foam treatment is investigated. The 

simulation study includes a production well treatment and also an injection well 

treatment. The case study is a section of a North Sea oil reservoir.   
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Theory 

2 Surfactant 

2.1 Basic Principles 
A surfactant is a molecule that has a hydrophobic hydrocarbon chain and a 

hydrophilic head group, see Figure 2. The surfactant can be anionic, cationic or 

zwitterionic. Surfactants are surface active components, and will therefore have a 

great influence on the surface or interfacial properties in a solution. In this study a 

C14-C16 alpha olefin sulfonate (AOS) and a Perfluoroalkyl betaine (FS-500) have 

been used. The AOS is an anionic surfactant and FS-500 is zwitterionic. Both 

surfactants are commercial available. Fluor surfactants are known to generate stable 

foam (Dalland et al., 1992, Mannhardt et al., 2000), and AOS has been used in 

several successful field applications (Aarra et al., 1997, 2002, Blaker et al., 2002, 

Skauge et al. 2002).  

 

Above the critical micelle concentration (cmc) the surfactant molecules aggregate in 

micelles. The micelles have an ordered structure that is dependent on the hydrophilic 

and hydrophobic properties of the surfactant. The micelle structure is also dependent 

on the polarity and the composition of the solution, e.g. addition of electrolytes will 

reduce the cmc. The spherical shaped micelles formed at cmc can reorganize to rod-

like micelles, and further into multilayer laminar structures if the surfactant 

concentration is increased beyond the cmc (Kodama, 1973, Porte et al., 1984, 

Christian and Scamehorn, 1995). See Figure 2 on the next page. Transition between 

the spherical micelle structure and more elongated micelles can be investigated using 

several types of experiments, including light-scattering, speed of sound and viscosity 

measurements.  
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CMC

Figure 2: Different micelle structures (Evans and Wennerström, 1999) 

 

Below cmc the movement of the water molecules is restricted due to the orientation 

of water molecules around the hydrophobic part of the surfactant. The ability of water 

molecules to move increases due to less hydrophobic interactions when the micelles 

are formed (Israelachvili, 1991). This transfer of the hydrophobic chain out of the 

water and into the interior of the micelles drives the micellization. As the surfactants 

head groups come close together the repulsion between them will oppose the 

micellization process (Evans and Wennerström, 1999). The occurrence of cmc is the 

result of these two competing factors. 

 

Many physical-chemical properties, such as conductance, speed of sound and surface 

tension, will change dramatically when the surfactant concentration reaches the cmc. 

A surfactant will in general reduce the surface or interfacial tension of the solvent 

(Evans and Wennerström, 1999). An increasing surfactant concentration will reduce 

the surface tension below the critical micelle concentration, and the surface tension is 

approximately constant above the cmc (See Figure 1 in Paper 1). Above the cmc, an 

increased surfactant concentration will increase the number of micelles, while the 

monomer concentration remains constant.  

 

The cmc value can be measured in many different ways (Lindman and Wennerström, 

1980). In Paper 1 and Paper 2 surface tension measurements were used to find the 

cmc, and in Paper 3 the speed of sound method was used. Viscosity measurements 

and the speed of sound methods were also used to identify any transformation from 

spherical to more complex micelle structures in Paper 3.  
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2.2 Surface and interfacial tension   
Surface/interfacial tension (σ) is defined as free energy (G) per area (AG) (Atkins, 

1998):  

 

GdA
dG

=σ       ( 2.1 ) 

 

Methods that are frequently used for measuring the surface/interfacial tension are; 

e.g. Wilhemly plate, drop weight or volume, spinning drop and Pendant drop. A 

number of the most common methods are summarized and described by Schramm 

(2005). In this study the Pendant drop method has been used to measure the surface 

and interfacial tension. The Pendant drop method, and also the spinning drop method, 

is based on the Young-Laplace equations. The general Young-Laplace equation is 

given as: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=−=∆

21

11
RR

ppp ABBA σ    ( 2.2 ) 

 
where the pressure difference ∆p is the pressure difference between pressure in phase 

A (pA) and pressure in phase B (pB). σ AB is the surface/interfacial tension between 

phase A and phase B, and the two principal radiuses R1 and R2 are orthogonal and 

tangents of the surface. 

 

2.3 Micellar solubilization 
One of the most important properties of aqueous micellar solutions is their ability to 

enhance the solubility of otherwise sparingly soluble components (Høiland and 

Blokhus, 2003). This is referred to as the micellar solubilization process (Schramm, 

1994B). Solubilization is relevant in many fields such as enhanced oil recovery, 

cosmetics, and detergents. The mechanisms for solubilization are described in detail 

by Christian and Scamehorn (1995), Evans and Wennerström (1999), Miller (2003), 
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and Høiland and Blokhus (2003). Equilibrium exists between the amount of solute 

solubilized in the micelles and how much simply dissolved in the water solution 

(Miller, 2003). The solubilization will therefore be dependent on the total solubility 

limit in the solution. In general large molecules are less soluble than smaller 

molecules. 

 

  

Figure 3: Solubilization of an organic component in a micelle (Christian and 
Scamehorn, 1995). 

 

Nonpolar solutes such as alkanes will tend to solubilize in the micelle core, while 

more polar molecules will in general be anchored to the micelle surface. Addition of 

an alkane to a spherical micelle is expected to cause an increase in micelle volume 

and in the micelle aggregation number (Almgren and Swarup, 1982, Malliaris, 1987). 

The transition from spheres to rod like micelles usually causes moderate increase in 

the extent of solubility of alkanes (Christian and Scamehorn, 1995). 
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3 Foam 

3.1 Basic Principles 
Foam is a structured two phase compressible fluid with a systematic hexagonal foam 

texture as shown in the Figure 4 (Schramm and Wassmuth, 1994). Foam is a mix of 

gas, water and a foamer, and consists of liquid films/lamellas and Plateau borders. A 

Plateau border is the connection point of three lamellas, at an angle of 120°       

(Figure 4). In three dimensions, four Plateau borders meet at a point at the tetrahedral 

(~109°) angle. The large gas volume is dispersed as bubbles in a continuous liquid 

phase. The gas is in this way made discontinuous, and the gas mobility will be 

decreased in a porous medium. The liquid films in the foam are stabilized by 

surfactants to prevent bubble coalescence. Foam is thermodynamic unstable, and 

stability of the thin liquid films are important for foam stability.  

 

 
Figure 4: Illustration of a foam system in 2D (Schramm and Wassmuth, 1994) 
 

3.2 Film stability 
The stability of foam may be understood by investigating the liquid film separating 

two gas bubbles. Forces acting in the liquid films and the dependence on film 

thickness have not been measured in this thesis. However, since stability of foam is 
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closely connected to the stability of films and film rupture, understanding foam 

stability mechanisms and foam forces are a necessary foundation for understanding 

foam stability.  

 

In a foam lamella the polar head groups of the surfactant are oriented into the interior 

of the film, and the non-polar tails toward the gas phase (Figure 5). In order to 

determine the stability of a foam film, thinning and coalescence have to be 

considered. 

 

 
Figure 5: Foam film (Schramm and Wassmuth, 1994). 
 

Processes and properties those are important for foam stability is gravity drainage, 

capillary suction, surface elasticity, surface and bulk viscosity, electric double-layer 

repulsion, dispersion force attraction, and steric repulsion (Schramm and Wassmuth, 

1994). These processes are described in this chapter.  

 

Foam is destabilized by capillary suction and diffusion coalescence. Immediately 

after foam generation the liquid will start to drain out of the lamellas (Schramm, 

2005). After some time the lamellas will get more planar, and the capillary forces will 

become competitive to the gravity force. The pressure is lower in the Plateau borders 

than in the thin films. The liquid will therefore tend to flow towards the plateau 

borders causing thinning of the films (Figure 6). Thinning of the lamellas can lead to 

film rupture and coalescence of bubbles. This can cause foam collapse.  
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Figure 6: Pressure drop (∆P) causes flow of liquid towards the Plateau border. 

 

A foam film must be somewhat elastic in order to be able to withstand deformation 

without rupturing. If a liquid film is expanded, the surfactant concentration will 

decrease in the expanded area, see Figure 7. This expansion causes an increased local 

surface tension that provides increased resistance to further expansions, and this 

produces immediately contraction of the surface. Thus, the contraction induces the 

liquid to flow towards the film thinning area. In this way the process will tend to 

resist film thinning. This is called the Gibbs-Marangoni effect.  

 

 
Figure 7: Surface elasticity of a foam film (Schramm and Wassmuth, 1994). 

 

An increased surface and bulk viscosity do not normally contribute directly to 

stabilize the film, but rather act as resistances to the thinning and rupturing processes.   

 

A charged interface will influence the distribution of nearby ions. Ions of opposite 

charge are attracted to the interface and equal charged ions are repelled. In this way 

an electrical double layer is formed. Because the interfaces on each side of the liquid 
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films are equivalent, any interfacial charge will be equally carried on each side of the 

film (Figure 8).  

 

 

Figure 8: Eletrical double layers in a foam film. 
 

Presence of ionic surfactants at the interface in the foam film will stabilize the film 

and induce a repulsive force that opposes the film thinning process. This is called the 

Electric double-layer repulsion (Israelachvili, 1991, Schramm and Wassmuth, 1994). 

The magnitude of the force will depend on the charge density and the film thickness. 

 

The stability of a foam film separating two gas bubbles will depend on the forces that 

tend to disjoin or separate the two interfaces (Israelachvili, 1991). The force per unit 

area is called the disjoining pressure (Π). The Disjoining pressure represents the net 

pressure difference between the gas phase in the bubbles and the bulk phase in the 

lamellas. The forces that contribute to the disjoining pressure are: 

1. van der Waals forces 

2. electrostatic forces 

3. structural/solvation forces 

 

In the classical Derjaguin-Landau-Verwey-Overbekk (DLVO) theory, introduced 

around 1940, explain the interactions between two colloids using only the van der 

Waals and electrostatic forces. However these two forces do not include the effect of 

hydrogen bounding and specific ion-water interactions. The DLVO theory only 
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considers how electrical double layer repulsion balances against the van der Waals 

forces. The concepts of the early DLVO theory and complementary theory of the 

disjoining pressure theory are explained in further detail by Derjaguin et al. (1987) 

and Verwey and Overbeek (1948).   

 

The attractive van der Waals forces, the repulsive electric double-layer forces and the 

structural forces are dependent on distance. The total forces will therefore vary in 

magnitude as well as in sign, depending on the film thickness, see Figure 9. 

Overlapping of charged surfaces give rise to repulsive or attractive structural forces, 

depending on the type of structural features and on the specific changes in the 

structure of the liquid in the overlap zone (Derjaguin et al., 1987) 

 

 

ΠE
ΠT

ΠS

ΠW

Figure 9: Illustration of disjoining pressure isotherm (ΠT) that includes contributions 
from electrostatic (ΠE), van der Waals forces (ΠW) and structural/steric forces (ΠS) 
(Schramm, 2005).  

 

van der Waals forces: Neutral molecules exert forces of attraction on each other that 

are caused by electrical interactions between permanent or induced dipoles. For 

molecules, the force varies inversely with the sixth power of the intermolecular 

distance.  
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Electrostatic forces: Surfactant molecules are adsorbed on each of the gas-liquid 

interfaces in a foam film, and thereby creating charged surfaces. Gas bubbles with the 

liquid films between them will in this way be stabilized by the repulsive forces 

created when two equally charged interfaces approach each other and their electric 

double layers overlap.  

 

Structural forces: In addition to the effect of hydrogen bounding and ion-water 

interactions, the surfactant will play an important role in the film structural forces. At 

surfactant concentrations several times the cmc, the structural force inside the film is 

important (Wasan et al., 1994). This ordered micellar structure within the film was 

found to enhance the film stability (Nikolov and Wasan, 1989, Nikolov et al., 1989). 

A long range colloid crystal like structure is formed because of the internal layering 

of micelles inside the film. The film will undergo a stepwise layer-by-layer film 

thinning process of such an ordered film structure. Below the cmc, the film formation 

and lifetime are dependent on the capillary pressure. In this way the thinning process 

of a lamella is dependent on the surfactant concentration. Mechanisms of thinning 

processes are described in further detail by Wasan et al. (1994). The structural forces 

are shorter ranged than the van der Waals and electrostatic forces. 

 

3.3 Foam Stability in presence of oil 
Presence of oil may influence the foam stability. Model oils, e.g. alkanes, are often 

used to investigate foam-oil interactions. Since their composition and basic properties 

are well known, they can be used to examine specific effects in foam-oil interactions, 

e.g. molecular weight variation. Crude oils have complex compositions and 

properties. They consist of different hydrocarbons, small amounts of oxygen, sulfur 

and nitrogen and also some components that contain different metals (Speight, 1998). 

The hydrocarbons contain different amounts of paraffin, aromatics and naphtene, and 

have different physical and chemical properties e.g. viscosity and density.      

 

Oil can be solubilized in the micelles, or it can remain as emulsions or as a 

continuous oil phase in the liquid films. The orientation of the oil and the properties 
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of the oil are important for whether or not the oil will influence the foam. The 

dependence on surfactant concentration, brine composition, temperature and pressure 

are also important for the foam stability in presence of oil. There are four main 

theories for explaining foam stability in presence of oil:  

 

1. Spreading and entering coefficients 

2. Lamella number 

3. Bridging coefficient 

4. Pseudo-emulsion film theory. 

 

3.3.1 Spreading and entering coefficients 
In the literature foam stability in the presence of oil is related to a negative entering 

coefficient (E) which implies a negative spreading coefficient (S) (Schramm, 1994, 

Aarra et al., 1997, Mannhardt and Svorstøl, 1999, Mannhardt et al., 2000). The 

spreading and entering coefficients are calculated by using interfacial and surface 

tensions: 

 

o/gw/ow/g σσσ −−=S      ( 3.1 ) 

 

o/gw/ow/g σσσ −+=E      ( 3.2 ) 

 

σw/g is the surface tension between water and gas, σw/o is the interfacial tension 

between water and oil, and σo/g is the surface tension between oil and gas. 

 

By definition the oil will spread at the surface and break the foam if the spreading 

coefficient is positive. If the spreading coefficient is negative, the oil will remain as a 

droplet at the surface, and this is by theory a necessary condition for stable foam. 

Rowlinson and Widom (1984) claimed that theoretically the spreading coefficient 
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never can be positive at equilibrium. The non-spreading oil, S<0, and the spreading 

oil, S>0, scenario is illustrated in Figure 10. 

 

 

Figure 10: Illustration of: a) a non-spreading system and b) a spreading system 
 

The role of oil spreading for antifoam activity is a subject of ongoing debate in the 

literature (Koczo et al., 1992, Garrett, 1993, Exerowa and Kruglyakov, 1998, 

Kruglyakov and Vilkova, 1999, Denkov, 2004). A good correlation is often found 

between antifoam ability and the positive spreading coefficient, but recent studies 

have raised doubts about this correlation.   

 

3.3.2 Lamella number 
The lamella number is another method of determine stability of oil transport in foam. 

It represents the tendency of an oil phase to become emulsified and imbibed into a 

foam lamella (Schramm and Novosad, 1990). A suggested simplified expression for 

the lamella number (L) is:  

 

ow

gwL
/

/15,0
σ
σ
⋅=      ( 3.3 ) 

 

Based on this theory, oils can be defined to give unstable foam, moderately stable 

foam or they are defined to show little interaction on foam. From experiments in a 

microvisual cell, Schramm and Novosad (1990, 1992) have defined three types of 
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foams, A, B, and C. For type A foams the lamella number is less than 1, for type B 

foams 1<L<7, and for type C foams L> 7. Type A foams are believed to show best 

stability in the presence of oil, as this condition refer to both negative entering and 

spreading coefficients. These foams are believed to show little interactions with crude 

oil. Type B foams have a negative spreading coefficient and a positive entering 

coefficient. These foams are defined to have moderately stability to oil. Type C 

foams are defined to give unstable foam. Both spreading and entering coefficient are 

positive for these foams. Figure 11 illustrates if or how oil is imbibed in the lamella 

in flowing foam.  

 

 

Figure 11: Illustration of type A, B and C foam, defined by the lamella number when in 
contact with oil (Schramm and Novosad, 1990). 
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3.3.3 Bridging coefficient 
Another parameter often calculated when discussing antifoam efficiency of oil 

additives to foam is the bridging coefficient (B) (Garrett, 1980, Exerowa and 

Kruglyakov, 1998, Denkov, 2004). The equation for the bridging coefficient is given 

as: 

 

2
o/g

2
w/o

2
w/g σσσ −+=B     ( 3.4 ) 

 

An illustration of bridging of an oil droplet in a liquid film is given in Figure 12. 

 

 

Figure 12: Illustration of an oil bridge  
 
For the oil to behave as an antifoaming agent it is necessary, though not sufficient, 

that the bridging coefficient is positive. Even when the spreading coefficient is 

negative, the foam will become unstable once the drop has entered both the liquid 

films surfaces so that it spans the film, provided that the bridging coefficient is 

positive. A very good discussion of the bridging coefficient is given in Denkov 

(2004). 

 

3.3.4 Pseudo-emulsion film theory 
Raterman (1989), Manlowe and Radke (1990), Koczo et al. (1992) and Wasan et al. 

(1994) relate foam stability in the presence of oil to the stability of a pseudo-emulsion 

film. A pseudo-emulsion film is the thin liquid film between the oil droplet and the 
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gas phase. If the pseudo-emulsion film is stable, the oil will stay in the lamella. If the 

pseudo-emulsion film is ruptured, the oil may form a lens at the gas-water interface, 

and this can break the foam down. The creation and rupture of a pseudo-emulsion 

film is shown in Figure 13.  

 

Figure 13: Pseudo-emulsion film 
 

Lobo and Wasan (1993) reported that the pseudo-emulsion film thinned in discrete 

steps, which indicated the presence of an ordered micellar structure within the film. 

This structure was found to enhance the film stability (Lobo and Wasan, 1993).   

 

3.4 Foam experimental methods 
Bulk foam experiments, microvisual cell observations, core flooding experiments and 

simulations are some of the main methods used to investigate foam stability. In this 

study we have performed static bulk foam experiments (Paper 1-3) and dynamic core 

flooding experiments (Paper 4). In addition, we have simulated foam gravity 

segregation in model reservoirs (Paper 5-6), and estimated the foam potential in a real 

field case in the North Sea (Paper 7).  

 

3.4.1 Static and dynamic bulk foam tests 
The stability of bulk foam can be investigated in many different ways (Bikerman, 

1973, Schramm and Wassmuth, 1994, Nishioka et al., 1996). Bulk foam experiments 

can be static or dynamic. The static foam height experiments presented in Paper 1-3 
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are performed by mixing, see Figure 14. After foam generation, the foam height 

decline is measured over time. Dynamic foam is one that has reached a state of 

dynamic equilibrium between rates of formation and decay. These experiments can 

be performed by continuously mixing or gas injection. Dynamic bulk foam 

experiments were not performed in this study.  

 

 
Figure 14: Experimental setup for the static bulk foam experiments 
 

3.4.2 Microvisual cell observations 
To try to increase the understanding of fluid flow in porous media, microvisual cell 

observations are important. A microvisual cell is a 2D simplification of a reservoir 

porous media. The pore network in the microvisual cell is usually enlarged compared 

to real core material. In microvisual cells and core flooding experiments, foam 

generation and foam propagation in porous media can be investigated. Fundamental 

bubble creation, destruction and movement are often studied in microvisual cells 

(Ransohoff and Radke, 1988). Foam-oil interaction is another major subject 

investigated in such cells (Kuhlman 1990, Schramm and Novosad, 1990, 1992, 

Schramm et al., 1993, Kuhlman et al., 1994). Microvisual cell experiments have not 

been included in this study. 
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3.4.3 Core flooding 
Core flooding experiments with oil, at Sorw, and without oil were performed in this 

study. The results are presented in Paper 5. The experimental setup for the core 

flooding experiments is given in Figure 15. The pressure tabs P1-P3 are located at the 

inlet, outlet and about 3/5of the core length from the inlet. The experiments were 

conducted at 50° C and an outlet pressure of 120 bar. 

 

 

 

  core 

Production  
cylinders Visual 

   cell

Figure 15: Experimental setup for the core flooding experiments 
 

A great number of core flooding experiments have been performed during the years 

to evaluate the properties of foam stability and foam generation in the presence of oil 

(Schramm, 1994B, Aarra and Skauge, 1994, Mannhardt and Svorstøl, 1999, 2001, 

Mannhardt et. al., 2000). 

 

3.4.4 Simulations 
Foam simulations can be used to investigate bubble movement in a capillary tube or 

at pore scale. Simulations can also be used in order to try to predict foam propagation 

in a small model or in a field reservoir. Investigation of injection methods and foam 

properties that may improve the sweep efficiency can also be done (Shi and Rossen, 

1998, 1998B, Rossen et al., 1999, Cheng et al., 2000). Different injection methods 
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influence on gravity segregation of foam was considered in Paper 5 and Paper 6. 

Production potential in a field is predicted by simulations (Surguchev et al., 1995, 

Aarra et al., 2002, Skauge et al., 2002). Foam potential simulations for a production 

well and an injection well treatment for a North Sea reservoir were performed in this 

study (Paper 7). Foam simulations will be explained in further detail in chapter 4.  

 

3.4.5 Static and dynamic foam 
Static and dynamic foam have different properties. A static foam is one in which the 

rate of foam formation is zero; the foam once formed, is allowed to collapse without 

regeneration (Nishioka et al., 1996). In such foam experiments, performed by mixing 

with oil present, the oil will be forced into the lamellas during mixing. After 

generation, the oil may drain out of the lamellas. In dynamic foam experiments foam 

is generated continuously. For dynamic foam in porous media the situation will be 

different than for static foam. If oil is present in a core and foam is injected, the foam 

will at some point contact the residual oil phase in the porous media. The different 

mechanisms described in the previous chapter will be important for the stability of 

the foam in presence of oil, and whether or not the oil will be present in the lamellas.  

 

3.5 Foam in a porous media 
Foam generation in porous media is dependent on injection rate and foam quality. 

Foam quality is the gas volume fraction of the total injected fluid rate. In a porous 

media the bobble size and flow are restricted by the pores. The mechanisms 

controlling transport and mobility of foam in porous media are complex, and a great 

number of different models and simulations have been done to try to better describe 

and understand these processes (Xu and Rossen, 2003, Chen and Yortsos, 2004). 

Fundamentals of foam transport in porous media are summarized by Kovseck and 

Radke (1994). Capillary pressure and interaction with the reservoir rock is important 

for foam flow in porous media (Mannhardt et al., 1998). Using some assumptions, the 

fractional flow theory can be applied to predict dynamic foam displacement. Fixed 

capillary pressure and one dimensional flow are two of the assumptions used. This is 
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explained in further detail by e.g. Rossen and Zhou (1995) and Rossen et al. (1999). 

Gauglitz et al. (2002) summarize a grate number of studies performed to examine 

foam generation.  

 

Foam does not alter the water relative permeability function, but changes it indirectly 

by increasing the trapped gas saturation and thereby decreasing the water saturation 

(Bernard et al., 1965). The ability of foam to reduce gas mobility depends strongly on 

its texture i.e. bubble size or number of lamella per unit volume (Kovscek and Radke, 

1994). Foam greatly reduces gas mobility by trapping a portion of bubbles and 

resisting movement of flowing bubbles. In addition, blocking of pore throats due to 

gas films is important (Lake, 1989). 

 

3.5.1 Mechanisms of Lamella Creation 
Foam texture is the result of competing processes of lamella creation, trapping, 

mobilization and destruction. The three pore-level events that lead to foam formation 

are snap-off, lamella division, and leave-behind, see Figure 16 - Figure 18. These 

processes are explained in detail by Ransohoff and Radke (1988), Kovscek and 

Radke (1994), and by Rossen (1996). 

 

Lamellas are created by snap-off in the pore throats, see Figure 16. Snap-off depends 

on local dynamic capillary pressure in a pore throat (Rossen, 1996).  
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tion of snap-off mechanisms: a) gas entry into liquid filled 

etting collar formation prior to breakup, c) liquid lens 
ff and Radke, 1988). 

ellas are created between neighboring pore bodies 

saturated porous medium, see Figure 17. No separate gas 

on mechanism, so the gas remains as a 

hoff and Radke, 1988).  

 
Figure 17: Schematic illustration of the leave-behind mechanism: a) gas invasion,         
b) stable lens (Ransohoff and Radke, 1988).  

 

Lamella division is different from the two other generation mechanisms because it 

requires a moving lamella. This means that some kind of foam generation have 

occurred in advance. Lamella division can happen when a foam bubble splits at a 

Figure 16: Schematic illustra
pore-throat, b) gas finger and w
after snap-off (Ransoho

 

In the leave-behind process lam

when gas enters a surfactant 

bubbles are formed by this foam generati

continuous phase (Ranso
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point where the flow branches in two different directions (Ransohoff and Radke, 

1988), see Figure 18.  

 

 
igure 18 Schematic illustration of the lamella division mechanism: A lamella is 
owing from the left to the right. a) gas bubble approaching branch point, b) divided 

 exists a critical velocity for homogenous porous medium 

bove which snap-off and lamella division become the dominant generation 

dke, 1988). Below 

F
fl
gas bubbles (Ransohoff and Radke, 1988). 

 

Snap-off is the dominant foam generation mechanism, especially for co-injection 

(Kovscek and Radke, 1994). Lamella division and leave-behind can only occur 

during drainage. There

a

mechanisms, causing formation of strong foam (Ransohoff and Ra

this velocity the foam is weaker and is caused by the leave-behind mechanism. 
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3.5.2 Foam Flow 
There are two different models that describe gas and liquid flow in porous media

bubble train model (Falls et. al., 1986), and the breaking-reforming model (Holm

1968).  

 

: The 

, 

 
F
2

igure 19: Schematic illustration of bubble train in porous medium (Xu and Rossen, 
003) 

alls et. al. (1986) explains the bubble train model. The gas flows in bobbles 

parated by the lamellas. The gas bobbles flow after each other in a long chain 

edia.  

to 

o move over a large distance (Holm, 1968). The gas bobbles will therefore 

reak and reform all the way through the porous media. The liquid flow occurs 

through the continuous film network of the bubbles.       

 

3.5.3 Limiting capillary pressure and foam flow regimes 
Foam flow behavior can be explained in terms of bubble texture, which is dependent 

e 

apillary pressure (pc) defined as the difference between the gas and liquid pressures. 

f pc 

am 

ases, water saturation rises, and the capillary pressure 

lls again. In this way a foam system regulates itself to maintain pc near pc* (Rossen, 

e 

used the concept of limiting capillary pressure.

 

F

se

through the porous m

 

In the breaking and reforming model the individual gas bobbles are not considered 

be able t

b

on the foam film stability. The stability of a thin aqueous film depends on the averag

c

Khatib et al. (1988) found that foam collapse occurred around a single value o

called the limiting capillary pressure (pc*). If pc rises above pc* in a system the fo

coarsens, gas mobility incre

fa

1996). The limiting capillary pressure varies with surfactant, gas velocity, and 

permeability (Khatib et al., 1988). Most existing theories for foam flow regimes hav
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Figure 20: Schematic illustration of the effect of various factors on contour plot of the 
two foam regimes. The figure shows contours for several values of pressure gradient
Alvarez et al. (2001). 

 

It has been established that foam exhibits two flow regimes that are mainly gov

by foam quality and total flow rate. The transition between the two regimes occurs at 

a specific foam quality, represented as limit gas

s 

erned 

 fractional flow (fg*) as shown in 

igure 20. The two foam regimes were first identified by Osterloh and Jante (1992) 

and later confirmed to be a part of a general foam behavior (Alvarez et al., 2001). In 

the low-quality regime the pressure gradient is nearly independent of liquid velocity. 

In the high-quality regime pressure gradient is nearly independent of gas velocity. 

The capillary pressure is close to the limiting capillary pressure in the high-quality 

regime. Since pc and water saturation (Sw) are related, Sw will remain constant in this 

regime as well, independent of gas and liquid flow rate (Persoff et al., 1991, Ettinger 

and Radke, 1992). In the model, found by Alvarez et al. (2001), the mobility was 

 

ow regimes have been found in many studies e.g. Vassenden et al. (1998B) and 

it, 

F

controlled by trapping and mobilization in the low-quality regime, and by 

coalescence in the high-quality regime. Indications of the presence of these two foam

fl

Romero et al. (2002). Polymer enhanced foams did not show this two regime 

behavior (Romero et al., 2002). In addition to experiments, many simulation model 

studies have been performed to investigate the two foam regimes (de Vries and W

1990, Vassenden and Holt, 1998, Rossen et al., 1999, Cheng et al., 2000).  
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3.5.4 Characterizing foam 
Foam can be characterized in many different ways. Visually foam can have differen

bubble size, bubble density and lamella thickness. In some cases it is possible to see

whether or not oil is present in the liquid films. The configuration of the oil in the 

liquid films may also be observed. Stability of foam is another way of characterizing 

foam, as explained in the previous sections. In dynamic foam experiments in porou

media foam is often characterized with regard to flow resistance. If two or 

immiscible fluids are simultaneous flowing through the porous media, such as for 

foam, the relative permeability for each fluid is needed to describe the flow. Darc

law can be used to calculate the fluid flow for each fluid (Marle, 1981, Lake, 1

 

t 

 

s 

more 

y’s 

989). 
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     ( 3.5 ) 

 

In the equation above Qi is the injection rate of phase i, A is the area, k is the 

apter 

 

permeability, kri is the relative permeability for phase i, µi is the viscosity for phase i, 

∆Pi is the pressure difference across the porous media for phase i, and ∆L is the 

length of the porous media. In foam i is gas or liquid. This equation assumes a 

horizontal, linear isothermal fluid flow without gravity.  

 

To reduce the gas mobility is one of the main goals in enhanced oil recovery (Ch

3.6.1). Gas is the discontinuous phase in a foam system, and the gas mobility will 

therefore be decreased in foam. The mobility is therefore another important factor for

fluid flow in a porous media. The phase mobility (λi) is given as: 

 

i

ri
i

kk
µ

λ
⋅

=   

 is 

    ( 3.6 ) 

 

To have an effective displacement process, where fluid 1 displacing fluid 2, it

beneficial to have a mobility ratio (M) equal or less than 1. 
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2

1

λ
λ

=M       ( 3.7 ) 

 

λ1 and λ2 are the mobility for fluid 1 and fluid 2 respectively.   

 

To characterize the strength of the generated foam, the mobility reduction factor 

(MRF) is often defined (Schramm, 1994B, Aarra et al., 1997, Mannhardt et. al. 2000): 

 

 
foamno

foamP∆
=     ( 3.8 )     

P
MRF

−∆

ous medium 

 

In the S  be described in further 

detail in Chapter 4.  

.5.5 Foam-oil interactions in porous media 
are even more complex than foam-oil 

ability. The oil may also destabilize the foam by spreading 

pontaneously on the fo e 

the stabilizing interface. An illustration of spreading, entering and emulsifying in 

owing foam lamellas are given in Figure 21. 

 

∆Pfoam and ∆Pno-foam are the measured differential pressure across the por

with and without foam respectively.  

TARS simulator the MFR is named fmmob. This will

 

3
Foam-oil interactions in porous media 

interactions in static foam tests. The foam forming surfactants may be adsorbed by 

the porous media or absorbed by the oil. Pore structure and wettability altering may 

also influence the foam st

s am film or by emulsifying and allowing oil drops to ruptur

fl
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Foam lamella

pore

oil

Figure 21: Illustration of interaction behaviors that can occur when foam lamella move 
along a thin pore and come into cont ith an oil phase (Schramm and Novosad, 
1990). 
 

In the literature most data suggest that oil may limit the foam efficiency. Some define 

a critical oil saturation for which foam cannot be formed above (see discussion by 

Schramm, 1994). But several papers show that it is possible to generate strong foams 

at relatively high oil saturations (Aarra et. al., 1997, Mannhardt and Svorstøl 1999, 

Mannhardt et. al. 2000).  

 

applications 
Foam has a large variety of applications. How to determine and predict foam stability 

are major issues for use of foam. In some applications temperature dependent 

es are important. Other important properties are foam generation rate, 

ructure, and drainage properties. Foam can be used as mobility controller in 

act w

3.6 Foam 

stability is important, in other applications foam stability in presence of oil or other 

additiv

st

enhanced oil recovery or environmental remediation processes, in firefighting of 

burning fuel, and in many everyday food and personal care products. In addition, 

foam can be used in mineral flotation and separation, and in textile industry. 
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Schramm (1994B, 2005) and Prud’homme and Kahn (1996) presents more detailed 

information about these applications in their books. In this study three applications 

at are directly related to foam-oil interactions or mobility control are presented in 

further detail. 

 

e use of 

uce 

il 

ce a foam region around the production well. This method was used in 

e foam pilot test at the Oseberg Field in the North Sea (Aarra et al., 1996). 

 

th

 

3.6.1 Enhanced oil recovery 
In producing the oil from a reservoir, on average about two thirds of oil originally in

place is left in the reservoir at the end of water flooding (Schramm, 2005). Th

foam to improve oil recovery includes control of gas mobility and to shut off 

unwanted gas production in production wells. Usually, the foam is intended to red

gas mobility in those zones already flooded by gas.  

 

In production wells foam can be used to shut off gas production, see Figure 22. As o

is being produced from a field, the gas oil contact will start to sink, and the gas can 

cone so that the well starts to produce gas instead of oil. One approach to reduce an 

inflow is to pla

th

foam

gas

oil
(a) (b)

  

 

Figure 22: Illustration of how foam can be used to shut off gas production (A), and 
r use of foam to control gas mobility (B): a) poor area sweep, b) gas 

hanneling and c) gravity override 
scenarios fo
c

(c)

(a) (b)

(c)

(a) (b)

(c)

A B 
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Foam can also be used to improve gas sweep efficiency in a reservoir, like in the 

Snorre field in the North Sea (Skauge et 

rise to the top of the reser

to viscous instability in the reservoir. 

improve problems like poor area sweep, ga

illustration in Figure 22. A Foam-Assi

injection method is often used in injection 

Blaker et al., 2002, Skauge et al. 2002).  

 

field applications in the North Sea area in the recent 

s were 

ed. To 

Svorstøl, 1999) and without (Mannhardt 

ed. Also large scale core flooding 

nd 

am 

al., 2002). Gas has low density and tends to 

voir and override the oil rich zones. High gas mobility leads 

By reducing the gas mobility, foam can 

s channeling, and gravity override, see 

sted-Water-Alternating-Gas (FAWAG) 

well foam applications (Aarra et al., 2002, 

There have been many foam 

years (Hanssen et al., 1994, Aarra et al., 1997, Chukwueke et al., 1998, Aarra and 

Skauge, 2000, Blaker et al., 2002, Skauge et al. 2002). Several of these project

successful, both technically and economically. There remain, however, many 

challenges in the description of foam properties and in, particularly, the prediction of 

foam behavior. One of the most important factors in enhanced oil recovery 

application using foam is the influence of oil on foam stability. Foam placement is 

another of the critical factors for field tests. In order to understand the influence of oil 

saturation on foam, more fundamental experimental studies have been perform

prepare for a field testes on the Snorre field, core flooding experiments both with 

(Svorstøl et al., 1996 and Mannhardt and 

and Svorstøl, 2001) crude oil was perform

experiments were done to investigate foam propagation rate (Vassenden et al., 

1998B). Several foam field applications are summarized by Hanssen et al. (1994) a

Blaker et al. (2002). 

 

3.6.2 Environment 
Foam can be used in environmental remediation processes. In a surfactant/fo

process for remediation of aquifers, polluted by a dense non-aqueous phase liquid 

pollutant, foam can be used for mobility controlled displacement of the substances 

that pollute the aquifer (Figure 23). Lab and field demonstration of such processes are 

described by Hirasaki et al. (1997, 1997B). It is expected that by use of only 
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surfactant flooding, in a heterogenic polluted field, a large portion of the solution w

flow through the high permeable areas and channels, so that some pollutant is

low permeability zones. For aquifer remediation it is not sufficient to clean the 

pollutant from the high permeable layers because the remaining amount will dissolve 

from the lower perme

ill 

 left in 

able layers and slowly diffuse into the ground water. In a 

milar way as in enhanced oil recovery, foam can be used to reduce the mobility of 

the injected fluid in high permeability layers. Foam may force the fluid into lower 

s 

si

permeability layers, and thereby improve the sweep efficiency. To perform a 

successful remediation process, it is therefore important to know if the pollutant ha

any negative effect on foam stability.    

 

 

Figure 23: Illustration of foam assisted surfactant flood for the displacement and
production of pollutant.  
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3.6.3 Fire fighting  
Use of foam for firefighting is described by Briggs (1996) and Schramm (2005). 

Cooling the fuel below the self-igniting temperature, providing a barrier between the 

fuel and air, or other methods to reduce air supply, are some of the important methods 

to extinguish a fire (Figure 24).  

 

 

Figure 24: Illustration of the mechanisms of fire fighting foam. The foam blanket and 
e aqueous film will reduce oxygen supply. 

liquid hydrocarbons, it is likely to sink below the surface 

ng hydrocarbons and would be useless for such kind of fires. Foam has 

g agent. It has a low density and will 

 the fuel and create a barrier and thereby reduce the air 

y of 

 is hydrocarbon and temperature dependent (Briggs, 

996). Firefighting foams may also be used in non-fire situations e.g. to cover toxic 

spills.    

 

 

th
 

Since water is denser than 

of the burni

properties that make it a good firefightin

therefore float on top of

supply, but foam stability in presence of the fuel is of course important. A categor

fluorinated surfactants used for firefighting have interfacial characteristics, such that 

a thin aqueous film spread across the fuel surface. This liquid film will limit the 

oxygen supply. This phenomenon

1
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4 Simulation 

4.1 STARS foam model  
STARS, developed by the Computer Modeling Group (CMG) of Calgary, Canada, 

are the most widely used commercial foam simulator. STARS is a three-phase multi 

component thermal and steam additive simulator. STARS can be used to simulate 

polymer, gel, emulsion and foam applications. For such cases the stabilized droplets 

or bubbles can be treated as components in the carrying phase. More complex 

problems like adsorption, blockage, dispersion and so forth can be considered. For 

FM) is used as a weighting 

t foam 

 can 

simplicity, foam mobility reduction is determined through a modified gas relative 

ess interpolation factor (permeability curve. A dimensionl

factor to determine gas relative permeability for a certain foam strength. The linear 

interpolation, FM is unity without foam, and decreases with the increasing foam 

strength (fmmob increases). At the lower limit of FM (i.e., FM = 0), the lowes

mobility is determined by a reference gas relative permeability. In this sense, FM

be expressed as  

 

XFfmmob
FM

⋅+
=

1
1     ( 4.1 ) 

 

fmmob is the reference mobility reduction factor, and FX consists of 6 dependent 

nctions (F1-F6) that scale fmmob (Equation 4.2 and 4.3).  

   ( 4.2 ) 

 

The Functions F1-F6 are dependent on the following properties; surfactant 

concentration, water saturation, oil saturation, gas velocity, capillary number and 

critical capillary number, respectively. 

 

 

fu
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where in the F1 function WS is the surfactant concentration in the grid block, fmsurf 

is the critical surfactant concentration, epsurf is the parameter that controls the gas 

mobility’s dependence on the surfactant concentration. In the F2 function Sw is the 

water saturation in the grid block, fmdry is the critical water saturation and epdry 

regulates the slope of the relative permeability curve near the critical water saturation. 

In F3 So is the oil saturation in the grid block, fmoil is the maximum oil saturation for 

stable foam and epoil is the parameter that decides the oil saturation’s effect on the 

FM function. In the expression for F4 vg is the gas velocity, vgcoef is the gas velocity 

constant, thinfac is also a function constant, and vgexpn is the gas velocity exponent. 

In the functions F5 and F6 Nc is the capillary number, fmcap is the capillary number 

for reference foam, fmgcp is the critical capillary number for foam generation, and 

epcap and epgcp are exponents that control the capillary number’s effect on the FM 

function. F1 and F2 are used in Paper 5-6, only F1 is used in Paper 7. 

  

In STARS foam is formed instantly everywhere gas, water and surfactant are present 

simultaneously. Vassenden et al. (1998B) found that foam propagated slower than the 

surfactant. It appeared that foam propagation was not limited by surfactant retention, 

but was delayed due to gravity segregation and presence of oil in the porous media.   

 

4.2 Gravity segregation 
When surfactant solution and gas or pre-generated foam is injected into a reservoir, 

the gas and liquid will eventually segregate into different flow path, see Figure 25. 

This segregation is caused by the fluids different density. It is favorable to increase 

the extension of the three phase area, the mixed flow zone. Increasing this zone will 

increase the sweep efficiency and thereby increase the oil recovery in the reservoir.  
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A useful model for gra

Stone (1982) and furth

vity segregation is the Stone-Jenkins model, presented by 

er evaluated by Jenkins (1984). The model was first presented 

nd water in a homogeneous porous medium at 

 an override zone with only gas flowing 

 

for uniform co-injection of gas a

steady-state. Stone assumed that in this case, fluid portioning in the reservoir is 

characterized by three regions of uniform saturation, with sharp boundaries between 

them, see Figure 25: 

• a mixed zone with both gas and water flowing. 

•

• an underride zone with only water flowing 

 
rg 

Figure 25: Schematic figure of the three zones in a cross-section of a foam flooded 

 
reservoir. 

he assumptions for the Stone and Jenkins model are explained in further detail by 

Stone (1982) and Jenkins (198 del gives us the 

imensionless position, where gas and liquid flow completely segregates. The 

Shi and Rossen, 1998). The formula for a 

ylindrical reservoir is given as: 

T

4). The Stone-Jenkins mo

d

position is called the segregation length (rg in a cylindrical reservoir and Lg in a 

rectangular reservoir). The formulas for a rectangular reservoir are presented 

elsewhere (Stone, 1982, Jenkins, 1984, 

c
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t 

t, 

 

where r is the outer radius of the reservoir, qt is the total injection rate, kz the 

permeability in vertical direction, ∆ρ the density difference between water/surfactan

solution and gas, aH the horizontal area between the wells, and g the gravity constan

9,81 m/s2. krg and krw are the relative permeability for gas and for water with the 

respective viscosities µg and µw. 
 

Later, Shi and Rossen (1998) have shown that the model also applies to foam 

displacements. For foam flow in a radial reservoir the equation is given below.  

 

rwz

wt
g kgk

fq
r

⋅⋅⋅∆⋅
⋅

=
πρ

    ( 4.5 ) 

 

fw is the water fractional flow in the foam 

 

It has been shown that these equations fit simulations of gas-water flow over a wide 

range of parameter values, and even simulations of foam injection, in spite of the 

complexity of foam behavior (Shi and Rossen, 1998, Holt and Vassenden, 1996, 

1997, Cheng et al., 2000). In two dimensional laboratory experiments the observed 

gas-water segregation was in good agreement with segregation theory, whereas foam 

segregation appears to be slower than predicted from theory (Holt and Vassenden, 

ents reported by Vassenden et al. (1998B) did not 1997). The 1 m sandpack experim

match the Stone-Jenkins model. In their 10 m sandpack the results were complex, 

therefore it was hard to say if the segregation was in line with theory.  

 

Many simulations have been performed to investigate different foam models and 

injection strategies, especially for the Surfactant-Alternating-Gas (SAG) process (Shi 
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and Rossen, 1998B, Shan and Rossen, 2004). Both these papers found that a SAG

process at fixed injection pressure better controlled gravity override in homogenous 

reservoirs then either continuous injection of foam or a fixed-injection rate SAG

process.  

 

Stone (2004) propose

 

 

d injection of liquid in an interval above gas in the injection 

well a  Paper 6 the effect of 

differ t d (Illustrated in Figure 26). The 

theor en and van Duijn (2004).          

In addition to co-injection over the entire interval, the following strategies were used: 

• Co-injection of gas and liquid over a portion of the interval,  

• Injection of liquid above gas over the entire formation interval,  

• Injection of liquid above gas in the bottom of the reservoir (Paper 5)  

• Injection of liquid above gas in separate zones well separated from each other     

(Paper 6).  

 

as  way to increase reservoir sweep. In Paper 5 and

en  injection strategies for foam is considere

y in Paper 6 is an extension of the work by Ross

 

gas 
and 

water

uniform co-injection

water

simultaneous, separate
injection: entire interval

gas

gas 
and 

water

non-uniform co-injection

water

simultaneous, separate 
injection: partial intervals

gas

gas 
and 

water

uniform co-injection

gas 
and 

water

uniform co-injection

water

simultaneous, separate
injection: entire interval

gas

water

simultaneous, separate
injection: entire interval

gas

gas 
and 

water

non-uniform co-injection

gas 
and 

water

non-uniform co-injection

water

simultaneous, separate 
injection: partial intervals

gas

water

simultaneous, separate 
injection: partial intervals

gas

 
 

gas 
and 

water

non-uniform co-injection

gas 
and 

water

non-uniform co-injection

gas 
and 

water

non-uniform co-injection

 
Figure 26: Schematic illustration of injection strategies considered in the simulations. 
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Theory 

4.3 Field scale simulation 
To try to predict the effect of the use of foam in an oil field, simulations and 

experimental work are important tools. Field scale simulations to estimate the foam 

potential on a field in the North Sea were performed using the STARS simulator from 

MG. The details are presented in Paper 7. The production on the field started 

l P-1.  

/or 

 

C

October 1 2003. Gas was observed earlier than expected in the production wel

A production well test was simulated to evaluate if foam had a potential for reducing 

gas inflow to this well. Foam potential for both a production well, and an injection 

well treatment were simulated in order to estimate any increase oil production and

decrease in gas oil ratio (GOR).  

 

 

P-2 
P-1 

I-A

     Gas 
saturation 

Figure 27: Illustration of the section of the field used in the simulations. 

 

The generated history matched ECLIPSE files were used as the basis for the 

construction of the STARS files. The injection method and injection quantities 

chosen in the simulations are similar to that used in earlier simulation work 

(Surguchev et al., 1995, Aarra et al., 1996, Aarra and Skauge, 2000, Blaker et al., 

2002, Skauge et al., 2002). The sensitivity to reservoir and foam properties was 

analyzed for a section of the reservoir (Figure 27). The segment consisted of two 

production well, P-1 and P-2, and one injection well, I-A.  
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Chapter 5: Static foam tests 

Main results 
W l 

i ted 

in this chapter. Our main focus has been to investigate foam-oil interactions using 

static foam tests. We have investigated some of the main findings from these static 

e We 

h l scale 

a y 

a

field in the North Sea was done. Simulations of a production well treatment, and an 

i

 

5 a
The

foam tests using alpha olefin sulfonate was performed to investigate foam-oil 

interactions. Experiments with variation in surfactant concentration, in amount of oil 

and in polarity of the oil phase were compared. In Paper 2 static foam tests using the 

fluorinated surfactant were compared to the alpha olefin sulfonate results. In Paper 3 

results from static foam experiments for the two surfactants using a low surfactant 

concentration are compared. Experiments without oil and experiments varying 

amounts of alkanes as well as crude oil in both synthetic sea water and in 1wt% NaCl 

solution were performed. In addition, bulk solution properties for the two surfactants 

were measured to try to explain some of our findings.  

 

5.1 Surfactant concentration 
The s ulfonate (AOS) and a perfluoroalkyl betaine     

(FS-500). This study showed that foam was generated below cmc for both surfactants. 

The cmc was in the same range, 0,0022wt% for the AOS and 0,0028wt% for FS-500. 

Foam height increased with surfactant concentration. Both surfactants reached a 

c

e have used different experimental methods to investigate stability of foam, foam-oi

nteractions and foam propagation. A summary of our main findings will be presen

xperiments further in core flooding experiments at high pressure and temperature. 

ave also performed a simulation study of gravity segregation of foam in a smal

nd simple model. An extended segregation length will increase the sweep efficienc

nd thereby improve the petroleum production. Finally, a foam potential study of a 

njection well treatment of a production-injector well pair, were performed. 

St tic foam tests 
 results of the static foam experiments are reported in Paper 1-3. In Paper 1, static 

urfactants are an alpha-olefin s

onstant maximum foam height at a certain concentration, 0,5wt% for AOS and 

41 



Main results 

0,1wt% for FS-500 (Figure 28). AOS did show a multiple step increase in foam height. 

reased 

 

mc, is 

The foam column height did not change when the AOS concentration was inc

from 0,01wt% to 0,1wt%. Nikolov et al. (1986) report that above a certain surfactant

concentration after cmc, the stability of a foam increases sharply with surfactant 

concentration. An increased foam stability, at concentrations several times the c

reported to be caused by the formation of a microstructure in the draining foam films 

(Wasan et al., 1994, Nikolov et al., 1986) The films will have a stepwise thinning 

process. 
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 and 

004) studied micellization 

f C12-C18 alpha-olefin sulfonate. No transition from spherical to cylindrical micellar 

shape was observed for the experimental concentration range 0wt%-3wt%. They used 

Figure 28: Foam height as a function of surfactant concentration for AOS and FS
Foam height was measured 4 hours after foam generation (Paper 2).  

 

The literature suggests that with an increase in the concentration of the surfactant, 

tendency can exist for surfactant micelles to change from spherical to cylindrical

then to lamellar structures (Kodama, 1973, Porte et al., 1984, Christian and 

Scamehorn, 1995). See Figure 2 in chapter 2. Abed et al. (2

o
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Chapter 5: Static foam tests 

0-0,5wt% NaCl solution, a significant lower salt concentration than in seawater used in 

29 

of 

d 

 the 

icellar state (Brun et al., 1978). For FS-500 neither the speed of sound nor the foam 

height changed significantly at the cmc. 

our experiments.  

 

Viscosity measurements indicated a change in micelle structure close to the 

concentration for maximum foam height for each of the two surfactants (see Figure 

for the AOS results and Figure 3 in Paper 3 for FS-500 results). The speed of sound 

results was different for the two surfactants, but both set of results indicated an abrupt 

change in speed of sound close to the concentration where the foam height increases. 

In the AOS system the cmc can be detected both by a sudden reduction in the speed 

sound, and by a sudden change in the foam height. The fact that the slope of the spee

of sound curve becomes more negative indicated a higher compressibility of

m
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Figure 29: Relative foam height, relative viscosity and speed of sound measurements as a 
function of AOS concentrations. Foam heights were measured 4h after foam generation 
(Paper 3). 
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5.2 Alkanes 
Short chain alkanes tended to destabilize foam, while long chain alkanes produced 

stable foam using 0,5wt% AOS and 1wt% alkane (Figure 30).  
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Figure 30: Foam column height after 4 hours for tests using 0,5wt% AOS surfactant and 
1wt% alkane in synthetic sea water as a function of the number of carbons in the 
alkanes chain. The grey line indicates foam height in tests without oil (Paper 1 and 
Paper 2). 

 
Similar results were reported by Suffridge et al. (1989) and Aveyard et al. (1993), as 

they found that lower molecular weight alkanes offered a more adverse environment to 

foam than alkanes with higher molecular weight in the surfactant systems they used. 

 foam tests and 

as blockage tests they performed. Octane, dodecane and hexadecane were used in 

nt 

t a high 

On the other hand Meling and Hanssen (1990) did not find any general correlation 

between destabilization of foam and oil molecular weight in the bulk

g

their experiments. Schramm and Novosad (1992) found a molecular weight depende

foam stability using crude oil, as foam stability in presence of crude oil decreased as 

molecular weight of the crude oil decreased. Kuhlman (1990) also found tha

concentration of light hydrocarbons in the oil destabilized the foam. 
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Chapter 5: Static foam tests 

Using 0,1wt% AOS indicated similar results for the influence of alkane molecular 

weight as for foam test using 0,5wt% AOS (Figure 4 in Paper 3). The stability of foam 

sing lower AOS surfactant concentration was poor. 

d 

ne 

or 1wt% of alkane using FS-500, 17-18 cm foam was generated in every foam test 

using each of the different alkanes, which was similar to the foam height in foam tests 

without oil. For pentane the foam height was nearly twice the foam height seen with 

the other alkanes or in tests without oil. A reduction in the surfactant concentration 

from 0,5wt% to 0,1wt% did not seem to influence foam height for the FS-500 

surfactant. Using 0,01wt% surfactant the foam height was reduced to 2-5 cm for the 

different alkanes.  

 

Increasing the amount of alkane to 5 or 10wt% did not influence the foam height for 

foam testes using 0,5wt% AOS or FS-500. For AOS no oil phase between the liquid 

and foam columns were observed. All of the oil must therefore be in the foam 

structure, even for a 10wt% content of alkane. Dispersed oil droplets are often 

effective antifoam agents, but Koczo et al. (1992) found that emulsified oil increased 

the foam stability if the pseudo-emulsion film was stable, because oil drops in the 

u

 

Another interesting result was that it appeared that long chained alkanes produced 

more stable foam as compared to AOS without oil in brine. Arnaudov et al. (2000) an

Denkov (2004) documented similar results for the surfactants they used. Draining of 

liquid films was slower with than without oil present. The Plateau borders were also 

thicker for the long chain alkanes than for the short ones. Foam Plateau borders for the 

short alkanes were visually similar to foam Plateau borders in tests without oil. 

Aveyard et al. (1993) also reported thicker lamellas in foam with added hexadeca

than lamellas in foam with addition of shorter chain alkanes.   

 

F

Plateau borders inhibits the liquid drainage.  
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5.2.1 Solubilization 
e 

ffect the result as tests 

ith and without the addition of dye gave equal results. Again, it appeared to be a 

difference between long versus short chained alkanes. For AOS decane and alkanes 

with shorter chain length are distributed both in the foam and in the bulk brine phase, 

thus, they have a higher ability to solubilize in the aggregates. The long chain alkanes 

did not color the brine phase, only the foam. This indicated that these molecules are 

not solubilized in the micelles. This variation in solubilization with alkane length is in 

line with solubility in water results summarized by McAuliffe (1979). For the 

fluorinated surfactant the change in solubilization is between C5 and C7. Pentane 

solubilized in the micelles, while heptane and longer alkanes did not. Foam stability in 

presence of oil seems to be related to transport properties within the foam for the AOS 

surfactant. 

 

ing 

ts (B), and lamella numbers (L) for the two surfactants using different 

ombinations of alkane chain length and surfactant concentrations are presented in 

The spreading coefficients and lamella numbers were all indicating stable foam for all 

alkanes using FS-500. This was consistent with the static foam experiments using 

Adding a dye (Oil Red) to the alkane phase clearly showed the distribution of alkan

between the foam and bulk brine phase. The dye itself did not a

w

5.2.2 Spreading-, entering, and bridging-coefficient, and lamella number 
Tables including all the spreading coefficients (S), entering coefficients (E), bridg

coefficien

c

Paper 2 and Paper 3. All the values are equilibrium values. The lamella numbers are 

calculated using the simplified expression and assumptions presented in chapter 3.3.2. 

For the AOS surfactant the spreading coefficients are positive for all alkanes using 

0,001wt% or 0,5wt% AOS. In foam tests, using 0,01wt% surfactant, spreading 

coefficient values are close to zero or slightly negative. The lamella numbers indicate 

moderately stable foam for all measured combinations, and the bridging coefficients 

are large and positive in most cases. The variation in foam stability for the AOS 

surfactant was neither reflected in the spreading coefficient values, nor for the other 

calculated parameters (E, L or B).  
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0,5wt% or 0,01wt% surfactant, though for 0,001wt% surfactant the foam stability w

poor. 

 

as 

he variation in spreading coefficients is mainly caused by the different surface 

   

 is 

 

san (1993) found that 

e structure and stability of the pseudo-emulsion film was important for the foam 

 

cohol and oil polarity 
ethanol generated 18-20 cm foam and experiments using octanol 

enerated about 0,5 cm foam for both surfactants. The FS-500 was stable for all 

 foam 

 oil 

T

tensions for the two surfactants. The surface tension for the AOS surfactant is         

24 mN/m, and for FS-500 it is 14 mN/m. A lower surface tension for the surfactant 

will as indicated in the formula in chapter 3.3.1, reduce the spreading coefficient 

value. 

 

The stability of the pseudo-emulsion film has not been measured in this study. It

therefore still open that pseudo-emulsions can play an important role in foam stability

even for both surfactants. Koczo et al. (1992) and Lobo and Wa

th

stability in presence of oil in the foaming systems they investigated. The relationship

between the spreading/entering coefficients and the foam stability is not general 

because it does not take into account the properties of the pseudo-emulsion film 

(Koczo et al., 1992). 

 

5.3 Effect of al
Foam tests using m

g

concentrations of butanol, while AOS foam was only stable using butanol 

concentrations less than 5wt%.  

 

The foam height was reduced from 17,5 cm in foam tests without oil to 2-4,5 cm

in tests using xylene or toluen. The result was similar for both surfactants. Based on 

these studies, it is difficult to make a general conclusion regarding the influence of

polarity on foam stability.  
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5.4 Crude oil 
The 9 different crude oils used in this study, denoted oil a-i, were obtained from North

Sea oil reservoirs. Oil g, h, i are denoted oil 1, 2, 3 respectively in Paper 4. For the 

AOS surfactant the crude oils showed different abilities in destabilizing the foam in

experiments using 0,5wt% AOS and 1wt% crude oil (Figure 31). For the crude oils 

that generated stable foam, oil b, d-f and h, the foam heights were 13-20 cm after 4 

hours. The foam heights were only 1cm after 4 hours for the other crude oils      

(Figure 31). Reducing the AOS concentration to 0,1wt% decreased the foam height 

from 13-20 cm to 1cm in foam tests using the stable crude oils b, d-f and h. Two 

examples are shown in Figure 5 in Paper 3.  
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Figure 31: The plot shows foam column height as a function of time for the different 
crude oils using 1wt% oil and 0,5wt% AOS in synthetic sea water. 

 

A multivariate data analyzes were performed to try to explain why some crude oils 

destabilized the foam while others g

 

enerated foams that were stable in presence of oil 

 foam tests using 0,5wt% AOS. Physical and chemical properties including acid and in

base number, paraffin and asphaltene content, interfacial tension, spreading 

coefficient, viscosity, and foam column height for oil a-f were included in the 
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analyzes. (Density, viscosity, and interfacial tension for the crude oils were measured, 

and the spreading coefficient was calculated. Asphaltene and paraffin content, and acid 

nd base number are reported by Skauge et al. (1999)). The influence of the physical 

as 

oam experiments were also done using 5wt% of crude oil in 0,5wt% AOS in 

nthetic sea water. In these experiments, the foam height was 2-5 cm for all the crude 

r 

nce 

t% 

ght was stable for more than a week. The foam heights were   

6-18 cm for 0,5wt% and equal for 0,1wt% surfactant. Reducing the surfactant 

concentration to 0,01wt%, the foam was still stable for all oils, but the foam heights 

a

and chemical properties is complex, and no direct correlation to foam stability w

found. No single value was found to explain the complex foam-oil interactions 

observed.  

 

Static f

sy

oils (Figure 7 in Paper 1). Using 1wt% NaCl instead of synthetic sea water in simila

tests with 5wt% of crude oil increased the foam stability for some of the crude oils. A 

similar result as for 1wt% of crude oil in synthetic sea water was obtained. These 

experiments show that a reduced ionic strength increased foam stability in the prese

of oil for the AOS surfactant.  

 

The stability of the foam was similar for all the crude oils in foam tests using 0,5w

FS-500. The foam hei

1

were only 1-3 cm. 
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5.4.1 Foam texture 
The foam texture and oil configuration in foam were very different for the stable and 

moderately stable crude oils using the AOS surfactant. Crude oil b and d generated 

stable foam with thick oil filled liquid films (Figure 32). The foam height was stable 

for 2-3 days for these crude oils.  

 

 
Figure 32: The picture shows foam with 
abundant oil in the Plateau borders. The 
foam is from a foam test using 1wt% of 
oil b and 0,5wt% AOS in synthetic sea 
water. The picture is taken 24 hours 
after mixing and is enlarged 3 times. 

 
Figure 33: The picture show foam with 
thin Plateau borders and oil in the 
junction of the Plateau borders. The foam 
is from a foam test using 5wt% of oil e 
and 0,5wt% AOS in synthetic seawater. 
The picture is taken 24 hours after mixing 
and it is 4 times enlarges. 

 

Foam stability for oil e-f and h was relatively stable for some hours using AOS, but the

rained out of the foam, and left oil in the Plateau border wedges during the first hours 

. Foam 

at the 

1cm
1cm

 

foam was almost completely broken down after 1 day. In these tests most of the oil 

d

(Figure 33). The Plateau borders in these tests were thin. 

   

Visually, the FS-500 foam (Figure 34) had a denser bubble concentration than the 

AOS foam. It was also significantly more stable over time than the AOS foam

tests using the FS-500 surfactant could be stable for weeks. Figure 35 shows th
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oil is present as droplets in the lamellas. During the process of foam lamella thinning, 

the oil droplets are left in the Plateau borders, as indicated in Figure 34. 

 

 
Figure 34: 1wt% of crude oil I in 
synthetic sea water using 0,5wt% 
fluorinated surfactant. The picture is 
taken one day after mixing. 

 
Figure 35: Static foam experiment using 
1wt% crude oil i and 0,5wt% FS-50
synthetic sea water. The crude oil fo
droplets in the Plateau borders. The 

0 in 
rms 

picture is taken a few hours after 
mixing. 

er 

 and in 

able 1: Spreading coefficients, entering coefficients, lamella numbers and bridging 
oefficients at equilibrium for the AOS surfactant. 

Crude 
oil 

Spreading 
coefficient 

Entering 
coefficient 

Lamella 
number 

Bridging 
coefficient

 

5.4.2 Spreading-, entering-, and bridging-coefficient, and lamella numb
The spreading coefficient, entering coefficient, lamella number and bridging 

coefficient for all the crude oils are presented in Table 1 for the AOS surfactant,

Table 2 for the FS-500. 

 

T
c

Oil a 11,1 11,9 10,4 489 
Oil b   4,6   5,6   8,1 250 
Oil c   4,2   5,6   5,8 241 
Oil d   7,3   7,9 12,3 353 
Oil e   5,4   9,0   2,3 340 
Oil f   4,7   7,9   2,5 303 
Oil g -3,2 -0,4   2,5 -85 
Oil h -0,2   0,6 11,6   13 
Oil i -5,9 -5,0   9,5     -337 

 

1cm 0,5cm
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All the coefficients for the AOS are positive for most of the crude oils and the lamella 

re a lack of correlation between the calculated 

alues in Table 1 and static foam stability.  

 

Table 2: Spreading coefficients, entering coefficients, lamella numbers and bridging 
coefficients at equilibrium for the FS-500 surfactant. 

Crude 
oil 

Spreading 
coefficient 

Entering 
coefficient 

Lamella 
number 

Bridging 
coefficient

number indicate moderately or low stability foam. The spreading coefficients are 

negative for oil g and oil i, and also slightly negative for oil h. The entering- and 

bridging coefficient also indicate stable foam for oil g and oil i. Oil b and oil d-g 

generated stable foam. It is therefo

v

Oil a   -2,7  6,7 0,4    72 
Oil b   -8,3 -1,7 0,7 -164 
Oil c   -8,9 -2,9 0,8 -204 
Oil d   -4,8  8,0 0,3     84 
Oil e   -8,4  2,0 0,5    -88 
Oil f   -6,3  3,1 0,5    -29 
Oil g -15,0 -5,4 0,5 -403 
Oil h -14,8 -7,6 0,7 -477 
Oil i -21,9    -10,1 0,4 -776 

 

For the fluorinated surfactant all the calcu ted spreading coefficients and lamella 

ance  

ecess

t. Four of the entering coefficients are positive; 

r the sur

indication that these oils generate less stable foam in the static ents than 

 

la

numbers indicated stable foam in accord

positive bridging coefficient. This is a n

foam to behave as an antifoaming agen

this indicates that these oils may ente

 with theory. Two of the crude oils have

ary, but not sufficient, criterion for the 

face of the lamellas. There is no 

foam experim

the other oils. 
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6 Core flooding 
The results 

om core flooding experiments were compared to results from static foam tests (Paper 

1-3). The role of similarity or lack thereof between static and dynamic foam tests is a 

subject of ongoing debate in the literature.  

 

6.1 Core flooding experiments without oil  
In experiments without oil AOS and FS-500 generated foam with similar strength, 

both in the static foam tests and in the dynamic foam experiments. gation 

l for th  two s

in Paper 4). 

an in the first part of the core, indicating 

generation of even stronger foam. This is cons nts 

erformed by Mannhardt and Svorstøl (1999, 2001) and Mannhardt et al. (2000). 

 

ant in cores with residual oil saturation. First we wanted to 

ompare dynamic foam properties for the oils decane and hexadecane since the static 

foam properties were quite different for these oils using the AOS surfactant. 

 core in some way. Flooding 

e e d indicated similar blocking effect. In 

bo  c pressure increase rapidly, and 

reached a high pressure level in short time. The blocking might be caused by emulsion 

formation. Gel like particles were observed, but foam was never observed in the visual 

cell during the experime

 

Because alkanes caused blocking problems, ontinued the flooding study using 

ree crude oils, oil g, h, i (Oil 1, 2, 3 in Paper 4). The main disadvantage of using 

crude oils is their complex composition compared to model oils. This makes it more 

The results from the core flooding experiments are presented in Paper 4. 

fr

The propa

rate was also approximately equa

experiments without oil (Figure 2 

part of the core was about 1,5 times higher th

e urfactants in the core flooding 

The differential pressure (dP) in the last 

istent with core flooding experime

p

6.2 Core flooding experiments with residual oil 
In Paper 4 we have examined foam generation capability for an alpha olefin sulfonate 

and a fluorinated surfact

c

Unfortunately, these model oils tended to block the

xperim nts through

ore  filt

 10 µm an

er e ime

 5 µm me

n  d

tal filters 

iffe ial th the  and xper ts the rent

nts.  

we c

th
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difficult to identify composition parameters and oil properties that are important for 

stable foam generation. On the other hand using crude oil is closer to real applicati

than simple alkane oils. No tendency to block the core was observed in any of the

experiments.  

 

on 

se 

strength 
oam strength seemed to be independent of presence of oil in the core flooding 

 

foam tests. AOS gene strength for the different crude 

oils in the core flooding experiments. The correlation between the static and dynamic 

foam experiments was poor for the AOS. 

 

6.2.1 Foam 
F

experiments using FS-500 (Figure 36). Consistent with results observed in the static

rated foam with differing foam 
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Figure 36: Differential pressure as a function of pore volume injected fluid for the core 
flooding experi
presents the total core dP, and the thinner lin

ments using AOS (left plot), and FS-500 (right plot). The thicker line 
e presents dP over the last part of the core 

aper 4). 

 

In the core flooding experiments with oil, FS-500 generated foam that has equal foam 

strength throughout the core or stronger foam in the first part of the core (Table 4 in 

Paper 4). The AOS surfactant again showed stronger foam in the last part of the core, 

similar to the experiment without oil. 

(P
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Chapter 6: Core flooding 

6.2.2 Foam propagatio
Foam propagation rate was

n 
 influenced by residual oil saturation. AOS surfactant 

showed a faster propagation rate in comparison to the propagation rate with the  

FS-500 surfactant, which was significantly delayed in the presence of Sorw (Figure 37). 
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nd 

Figure 37: Differential pressure as a function of pore volume injected fluid for the 
pressure tab located 17,8 cm from the inlet end of the core (Paper 4). 

 

6.3 Foam texture in the visual cell 
The visual cell at the outlet of the core was used to indicate the presence of foam

experiment. Further, it was used to observe the time needed for the foam to propagate 

through the whole core. In experiments without oil foam was observed in the visua

cell after about 2 hours for both surfactants. Using AOS surfactant and residual crude 

oil, foam was observed after approximately equal time as without oil, while it took 

more than 20 hours for foam t

e

glass, because the foam is so dense (Figure 38). Figure 39 shows one example of a 

core flooding experiment with crude oil present. The foam is usually light brown, a
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it is possible to see the bubbles. The two surfactants generate foams that were visuall

similar both with and without oil.   

 

y 

 
Figure 38: FS-500 reference foam in the 
visual cell during the core flooding 
experiment   

Figure 39: Foam in the visual cell during 
the core flooding experiment using oil g 
and AOS.  

 
 

0,5cm

0,5cm 
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7 Simulation  

7.1 Gravity segregation  
The gravity segregation study is presented in Paper 5 and Paper 6. In Paper 5 several 

reservoir parameters and foam properties have been varied to test the different 

injection methods (Figure 24 in chapter 4). These parameters are the reservoir size, 

the ratio between the horizontal and vertical permeability, the mobility reduction 

factor and other foam parameters in STAR

and the permeability in the horizontal direc

Paper 5 show that the segregation length is almost identical for the four injection 

methods, when all other parameters including injection rate are fixed. However, the 

segregation length apparently increased somewhat as water was injected in the upper 

half reservoir and gas in the bottom half reservoir. The shape of the foam bank is 

different for the four injection methods for simulations with foam. In this way the 

total area swept by foam may vary for the different injection strategies.  

 

When comparing the simulation results to the Stone-Jenkins model (Stone, 1982, 

Jenkins, 1984), there is a quite good match for the segregation length of foam. The 

     

co-injection of water and gas. The model was later modified to fit uniform foam 

injection (Shi and Rossen, 1998). Even if the model is derived for uniform injection, 

rm injection methods as well.   

 

S. In some experiments the foam quality 

tion were also varied. The simulations in 

original Stone-Jenkins model, as described in chapter 4, is derived for uniform   

apparently it can be used for other non-unifo

 

The reservoir in Paper 6 is 20 m thick and has a radius of 120 m. One of the 

reservoirs sizes used in Paper 5 has similar reservoir size, but the number of grids is

significantly larger in Paper 6 than in Paper 5. In Paper 5, we used only 500 grid 

blocks, but in Paper 6, the number of grid blocks was 3200. This improved our 

results.  
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Figure 40: Example of the simulation mo
saturation, the size is given in ft. Th

 

del in Paper 5. The figure shows 
e boundary of the foam bank is not sh

Because of the improvements of the numerical

boundaries are sharper (compare Figure 40 and Figure 41-Figure 44). The conclusion 

 also somewhat different. There is little or no change in segregation length at fixed 

injection rate, in the case of uniform injection and only injection in a restricted 

interval. This is true for both co-injecting fluids and injecting water above gas. The 

volume of reservoir swept by gas may be affected by these different injection 

strategies, as found in our earlier study as well (Paper 5). At fixed total injection rate, 

injection of water above gas gives deeper penetration before complete segregation 

than co-injection does, but again, exactly where the two fluids are injected does not 

affect the segregation length. Stone (2004) also found that simultaneous injection of 

gas and water, injecting gas low in the formation and injecting water in a separate site 

above, improved the gravity segregation length. Figure 41-Figure 44 presents one set 

of simulations using the different injection strategies. The injector is located to the 

left and the producer to the right. 

 

 

 

 

the gas 
arp.  

 dispersion in Paper 6, the foam bank 

is
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Chapter 7: Simulation 

 
Figure 43: Steady-state water 
saturation for injection of gas in the 
bottom 15 m and liquid in the top 5 m 
of the vertical interval. Gravity 
segregation occurs 48 m from the 
injection well. 

Figure 41: Steady-state water 
saturation for uniform co-injection of 
gas and liquid (foam) along the entire 
vertical interval. Gravity segregation 
occurs 45 m from the injection well. 
 

  

rg = 48m rg = 45m 

rg = 43,5m rg = 51m 

Figure 42: Steady-state water 
saturation for co-injection of gas and 
liquid (foam) in the bottom 5 m (10 grid 
blocks) of the vertical interval. Gravity 
segregation occurs 43,5 m from the 
injection well. 

Figure 44: Steady-state water 
 the 

bottom 3,5 m of the vertical interval 

rs 

The best strategy to improve sweep efficiency if injection pressure is limited is to use 

the entire formation height for injection. Injection of water in an interval above gas, 

where the intervals are chosen to minimize injection well pressure, will therefore be 

the optimal injection strategy. Shi and Rossen (1998B), and Shan and Rossen (2004), 

saturation for injection of gas in

and liquid in the 1,5 m immediately 
above this. Gravity segregation occu
51 m from the injection well. 
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found that fixed injection pressure better controlled gravity override in homogenous 

reservoirs than either continuous injection of foam, or a fixed-injection rate for the 

SAG process.  

 

The gravity segregation model presented by Rossen and van Duijn (2004) has been 

further developed and improved in Paper 6. The computer simulations described 

above, confirm the predictions of the theory. The distance to the point of segregation 

in every case is within 3 m, of that predicted by theory.  

r 

r 

 

 

7.2 Field scale simulation 
In Paper 7 the foam potential for a production well and an injection well treatment fo

a North Sea reservoir are presented. A history matched eclipse simulation model was 

converted to the STARS simulation model used in the foam potential study. All the 

details for the simulation setup and injection methods are described in the paper. 

Injection methods and foam properties are similar to methods and properties in earlie

field tests (Surguchev et al., 1995, Aarra et al., 1996, 2002, Blaker et al., 2002,

Skauge et al., 2002). Only the mobility reduction factor was varied in the sensitivity 

study. The no foam case represents a scenario in which equal amount of water as 

surfactant solution is injected, and the two cases have equally amounts of gas 

injected. 

 

Production well 

Simulations of production well treatment of well P-1 showed a significant reduction

in gas oil ratio for the foam cases.

 

 Using cycles of two days of surfactant injection, 

nd one day of gas injection, the gas inflow to the well was delayed for 1-4 months 

ependent on the mobility reduction factor (MRF), see Figure 46. MRF values 

etween 10 and 300 were used in the simulations. During the simulation period    

ay 1 2005 to June 5 2008 the cumulative oil production was increased by 34·103 

Sm3 (Figure 45), and the gas storage potential was 7,04·107 Sm3 for the foam case 

using MRF 100. In the simulations for the production well treatment in the Oseberg 

a

d

b

M
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field the foam was estimated to delay ough by 50-100 days, and to 

increase the oil production by 21-100·103 tons (Aarra et al., 1996)  
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Figure 45: Cumulative oil production for the no foam and MRF 100 cases for the 
production well treatment as a function of time (Paper 7). 
 

When increasing the injection period 7 times, the increased injection volume of 

surfactant showed improved foam performance. Using this injection period of 2 

weeks for the surfactant, and 1 week for the gas showed that the gas oil ratio was 

reduced for 6 months compared to a no foam case (Figure 46). 
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Figure 46: Gas oil ratio as a function of time using different MRF values in the 
production well treatment 
 

Injection well 

Injection well treatment simulations of well pair P-2 and I-A were performed. The

simulations showed an increase in gas storage potential and increased oil recovery, in 

the range of 155 kSm  for simulations using MRF 100 compared to the no foam

simulation case (Figure 47). Similar gas storage potential and oil recovery potential 

were reported by Aarra et al. (2002). Unfortunately, the increased oil production is

significantly delayed, and this complicates the evaluation of the results. 
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Figure 47: Cumulative oil production for the no foam, MRF 10, and MRF 100 cases for 
the injection well treatment as a function of time (Paper 7). 
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8 Summary 
The results of these experimental studies show that foam is generated below cmc for 

both the alpha olefin sulfonate and the FS-500 surfactant. Even in experiments using 

an addition of oil, foam is generated below the cmc concentration, but the stability 

was poor in these tests. In experiments without oil foam height increased with 

increasing surfactant concentration for both surfactants, but AOS did show a multiple 

step increase in foam height. Both surfactants reached a constant maximum foam 

height at 0,1-0,5wt%, and this might be related to the bulk micelle structure. Changes 

in ionic strength and composition did not affect the foam height in experiments 

without oil. For the AOS surfactant a reduced ionic strength increased foam stability 

in the presence of oil. 

 

We found that solubilization was an important mechanism for the stability of foam in 

presence of alkanes. The limit for solubilization was different for the two surfactants. 

Using AOS, decane and alkanes with lower molecular weight were solubilized in the 

entane was solubilized, but alkanes with higher molecular weight were not. Foam 

 

 core flooding 

xperiments. The crude oils showed different abilities in destabilizing the foam in 

experiments using AOS, while FS-500 generated stable foam in all static tests in 

presence of oil. A multivariate data analyzes was performed for the AOS surfactant 

results from the bulk foam tests using addition of different crude oils. Physical and 

chemical properties for the different crude oils were included in the analyzes. No 

single parameter or property could explain the complex interactions observed in the 

static foam tests. 

 

Foam was generated in all core flooding experiments with and without oil for both 

surfactants. The AOS generated foam with varying foam strength for the different 

micelles, and these light alkanes broke or destabilized the foam. Using FS-500, 

p

tests using pentane gave significantly more foam than using other alkanes.  

 

Foam can be stable in presence of oil using both surfactants, but FS-500 generated

more stable foam than AOS in presence of oil, both in static and

e
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Summary  

crude oils in the core flooding experiments. The correlation between the static and 

dynamic experiments was poor for this surfactant. The strength of the FS-500 foam 

was similar in core flooding experiments with and without oil. This is consistent with 

the FS-500 results from the static foam tests. Foam propagation rate was influenced 

by residual oil saturation. AOS generated weaker foam than the FS-500, but the 

propagation rate was more rapid for the AOS in presence of residual oil saturation 

(Sorw). From observations in a visual cell and pressure measurements the AOS 

surfactant showed a faster propagation rate in comparison to the propagation rate 

using the FS-500 surfactant, which was significantly delayed in the presence of 

residual oil saturation. The surfactants generated foam with similar strength and 

 general spreading, entering, and bridging coefficients and the lamella numbers 

 foam with the FS-500 and destabilization of foam with the AOS 

sion 

t fixed total injection rate, injection of water above gas gave an increased 

segregation length compared to co-injection. Whether the fluids were uniformly 

injected over all or any portion of the formation interval did not affect the segregation 

length. When injection pressure is fixed, the predicted benefit from injection of water 

above gas is significant greater than using fixed injection rate. The simulations 

showed a significant effect of numerical dispersion.  

 

Simulations of a production well treatment showed a significant reduction in gas oil 

ratio using foam injection. The oil production was also increased. The complex 

reservoir properties complicated the evaluation of the injection well treatment results. 

 

propagation rate in core flooding experiments without oil. 

 

In

indicated stable

surfactant. In spite of this several static and all dynamic foam tests using AOS 

generated stable foam. The variation in spreading coefficient is mainly caused by the 

different surface tension for the two surfactants. The stability of the pseudo-emul

film has not been measured in this study. It is therefore still open that pseudo-

emulsions can play an important role in foam stability even for both surfactants. 

 

A

Gas storage potential and oil recovery were increased, but were significantly delayed.  
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9 Further work 

 

 

on 

 

prove understanding this correlation.  

asured for 

tatic conditions; it would therefore be interesting to investigate properties like the 

S 

s 

ea of interest. Is the solubility determining for the foam stability 

nd can other theories, like the pseudo-emulsion film give an explanation? Stability 

 

In this study we have investigated foam and especially foam-oil interactions. Various 

experiments and simulations have been done and the results examined. The different 

experimental methods have been performed to do a systematic investigation of foam

and foam-oil interactions. The goal of this study has been to try to elucidate and

improve the understanding of foam and to try to identify possible correlations 

between static and dynamic foam properties. Our results have shown that correlati

between static and dynamic properties is complex, and further investigation is 

needed. It was difficult to find any direct correlation between static and dynamic

foam tests for the AOS surfactant. More experiments using a larger variation in foam 

and oil parameters may im

 

Two surfactants have been used in this study. The FS-500 seems to be more tolerant 

to oil and produces stable foam at lower surfactant concentration than the AOS. What 

mechanisms makes FS-500 a more stable surfactant than the AOS surfactant? The 

surfactant surface tension seems to be important for foam stability. Can further 

measurements of the physical or chemical foam and oil properties improve our 

understanding of foam-oil interactions? Some of the foam properties are me

s

dynamic surface or interfacial tension.  

 

A further study of the oil configuration in the foam films may also improve our 

understanding of foam-oil stability. Our experimental results indicate that it is 

difficult to find any general correlation between foam stability and the spreading 

coefficient, entering coefficient, lamella number or bridging coefficient theory. 

Solubility and solubilization seems to be an important factor, especially for the AO

surfactant. Measurement of solubility and solubilization in the two surfactant system

is therefore one ar

a

of the pseudo-emulsion film has been suggested to be important, so to try to identify

this mechanism in our systems may be important.  

65 



Further work 

A few suggestions to further investigate the challenges described here and to impro

our understanding of foam are given below. 

 

In this study 9 different crude oils were used in our static experiments, and 3 of them

were used in the dynamic core flooding experiments. These oils have different 

composition, physical and chemical properties. Increasing the number of crude oils

the data set will give a larger amount of results, and this might give a better 

understanding of the foam-oil interaction mechanisms. The large amount of data m

be analyzed by multivariate data analyzes or other methods to try to identify 

important oil properties for predicting foam stability. 

 

ve 

 

 in 

ay 

ur static foam experiments, in Paper 1-Paper 3, have produced many interesting 

500 

of 

 is 

r foam stability, and for the foam-oil interactions in dynamic experiments. 

ed 

res 

resting to see if the oil 

turation is different for cores from experiments using AOS and cores from 

ong 

O

results. In Paper 3 we present static foam experiments using low surfactant 

concentrations. It was found that the FS-500 generated stable foam at a lower 

surfactant concentration than the AOS. Results also show that reducing the FS-

surfactant concentration from 0,5wt% to 0,1wt% did not influence the foam stability. 

All the core flooding experiments in Paper 4 are performed at a surfactant 

concentration of 0,5wt%. To perform core flooding experiments as a function 

surfactant concentration may indicate how important the surfactant concentration

fo

 

The core flooding experiments presented in Paper 4 showed that the AOS generat

weaker foam than the FS-500, and the propagation rate was more rapid for the AOS 

in presence of residual oil saturation after water flooding. It would therefore be 

interesting to investigate the residual oil saturation after foam flooding in the co

used in these experiments. Especially it would be inte

sa

experiments using FS-500. We would also like to compare foam propagation and 

foam generation in the core flooding experiments to the residual oil saturation al

the cores.  
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Chapter 9: Further work 

Experiments using polymer enhanced foam is a topic of interest. Earlier work has 

shown that addition of polymer to water continuous foam can improve gas-blocking 

ability. Core flooding experiments performance using polymers may be compared to 

static polymer foam stability. In this concern it would also be interesting to 

investigate any effect of polymer both in the bulk solution and in the interfaces. 

 

67 



 

   Nomenclature  

   area (Darcy’s law, equation 3.5) 

cmc  critical micelle concentration   

pcap  exponent that control the capillary number’s effect on the FM 

FX  consists of 6 dependent functions F1-F6 that scale fmmob

gas fractional flow at the transition between the two foam regimes 

surface free energy 

OR  gas oil ratio 

h  reservoir height (Figure 25)   

 
A

AG  area (surface tension definition, equation 2.1) 

AOS   alpha olefin sulfonate 

aH   the horizontal area between the wells  

B  bridging coefficient 

BPR  back pressure regulator (Figure 15) 

DLVO  Derjaguin-Landau-Verwey-Overbekk theory 

E  entering coefficient 

e

epdry  regulates the slope of the relative permeability curve near the critical water 

saturation 

epgcp  exponent that controls the capillary number’s effect on the FM 

epoil  exponent that controls the oil saturation’s effect on the FM 

epsurf  exponent that controls the surfactant concentration’s effect on FM 

F1-F6  dependent functions used in STARS 

FAWAG foam assisted water alternating gas  

FM  dimensionless interpolation factor 

FS-500  fluorinated surfactant 

fg*  

fmcap  the capillary number for reference foam 

fmdry  the critical water saturation 

fmgcp  the critical capillary number for foam generation 

fmmob  reference mobility reduction factor used in STARS 

fmoil  the maximum oil saturation for stable foam 

fmsurf  the critical surfactant concentration 

fw  water fractional flow in the foam 

g   gravity constant, 9,81 m/s2

G   

G
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I-A  Injection well in the North Sea field  

k  permeability 

kri  relative permeability of phase i 

krg  relative permeability of gas 

krw  relative permeability of water 

kz  permeability in vertical direction 

L  lamella number 

Lg  segregation length in a rectangular reservoir 

M   mobility ratio 

MRF  mobility reduction factor 

Nc  capillary number 

P  pressure (Figure 6) 

P1  pressure tab 1, located at the inlet (Figure 15) 

P2  pressure tab 2, located at the outlet (Figure 15) 

P3  pressure tab 3, located 3/5 of the core length from the inlet (Figure 15) 

P-1  production well 1 in the North Sea field 

P-2  production well 2 in the North Sea field 

dP  differential pressure (core flooding experiments) 

pA  pressure in phase A 

pB  pressure in phase B 

pc   capillary pressure 

pc
*

   limiting capillary pressure 

qt  total injection rate  

Qi  injection rate of phase i 

r  outer radius of the reservoir 

R1  principal radius 1 

R2  principal radius 2 

rg  segregation length in a cylindrical reservoir 

S  spreading coefficient 

SAG  surfactant alternating gas 

So  oil saturation in the grid block 

Sorw  residual oil saturation after water flooding 

Sw  water saturation (in equation 4.3 used as water saturation in the grid block) 

thinfac  function constant used in equation 4.3 
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vg  gas velocity

vgcoef  gas velocity 

  

constant 

xpn

e B 

  

∆Pno-foam  ross the porous medium without foam  

 isotherm (Figure 9) 

herm (Figure 9) 

 (Figure 9) 

nd phase B 

g  gas 

o  water and oil 

vge   gas velocity exponent  

WS  surfactant concentration in the grid block 

 

 

Greek letters: 

P∇   pressure gradient (Figure 20) 

∆L   length of porous media 

∆p   pressure difference between phase A and phas

∆P   pressure drop (Figure 6) 

∆Pi    pressure across the porous medium for phase i 

∆Pfoam  pressure across the porous medium with foam 

pressure ac

∆ρ  density difference between water/surfactant solution and gas 

λi   mobility of phase i 

λ1  mobility of fluid 1 

λ2  mobility of fluid 2 

µg  gas viscosity 

µi  viscosity of phase i 

µw  water viscosity 

Π   disjoining pressure isotherm  

ΠE   electrostatic disjoining pressure isotherm (Figure 9) 

ΠS   structural/steric forces disjoining pressure

ΠT   total disjoining pressure isot

ΠW   van der Waals forces disjoining pressure isotherm

σ   surface/interfacial tension  

σ AB  surface/interfacial tension between phase A a

σo/g  surface tension between oil and gas 

σw/  surface tension between water and

σw/   interfacial tension between
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