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Chapter 1

Introduction

1.1 Basic theory of fluid mechanics

In this section we begin by introducing some basic theory of fluid mechanics. We will only
present what is most relevant for the current text. The following theory is based mainly
on [1], with some details from [4], and [2].

Consider an inviscid, incompressible fluid occupying a time – dependent domain Ωt in
R3, with the variable t denoting time. Using a Cartesian coordinate system (x, y, z) with the
z-axis pointing vertically upwards, we let i, j and k denote the unit vectors in the positive
x –, y – and z – directions, respectively. The fluid velocity field u(x, y, z, t) = ui + vj +wk
(where u, v and w each depend on (x, y, z, t)) and the pressure field p(x, y, z, t) then obey
the Euler equations

∂u

∂t
+ (u · ∇) u +∇p = −gk, in Ωt, (1.1)

∇ · u = 0, in Ωt, (1.2)

as they are stated in [1], where g denotes the gravitational acceleration, and ∇ =(
∂
∂x
, ∂
∂y
, ∂
∂z

)T
. Equation (1.1) follows from the Navier Stokes equation when the fluid is in-

compressible and inviscid, and equation (1.2) is derived from the equation for conservation
of mass when the assumption of incompressibility is used.

Next, we introduce the vorticity ω of the flow, defined as the curl of the velocity field
u

ω = ∇× u.

It can be shown that ω represents twice the rotation rate of a fluid element, see e.g.
[2], p. 91.

A fluid flow is said to be irrotational if ω = 0. As will be discussed shortly, Helmholtz’
vorticity principle states that if a flow is initially irrotational, then it remains so for all
time.
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By assuming that the flow is irrotational, then u can be written as the gradient of a
velocity potential function φ(x, y, z, t), i.e.,

u = ∇φ. (1.3)

This follows from the fact that

∇× u = (wy − vz, uz − wx, vx − uy)T = (0, 0, 0)T

is identically satisfied when (u, v, w)T = (φx, φy, φz)
T .

From the incompressible continuity equation (1.2) it then follows that φ satisfies the
Laplace equation

∆φ = φxx + φyy + φzz = 0, (1.4)

where ∆ = ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is the Laplace operator.

Assume now that the fluid occupying Ωt is water, bounded below by a fixed surface
at z = −h(x, y), and bounded above by the interface z = η(x, y, t) separating water from
air above it. The interface η(x, y, t) will be referred to as a free surface. The coordinate
system is chosen such that the x and y axes are aligned with the undisturbed free surface
of the water, i.e., z = 0 describes the undisturbed free surface. Assume in addition that
Ωt is unbounded in the x and y direction, that is,

Ωt =
{

(x, y, z)T ∈ R3| x ∈ R, y ∈ R, −h(x, y) < z < η(x, y, t), t ≥ 0
}
.

The bottom boundary z = −h(x, y) is assumed to be impermeable, so that no fluid can
cross it. This means, from the principle of conservation of mass, that the component of the
fluid velocity normal to the bottom must equal the velocity of the bottom normal to itself.
Since the bottom boundary is stationary, we must then have n · u = 0 at z = −h(x, y),
where n is a unit vector normal to the boundary, pointing inward into Ωt.

Since ∇(z + h(x, y)) = (hx, hy, 1)T is normal to the surface z + h(x, y) = 0, pointing
inward into Ωt, we can take n = 1√

h2x+h2y+1
(hx, hy, 1)T , which means from (1.3) and n·u = 0,

that

φxhx + φyhy + φz = 0, on z = −h(x, y). (1.5)

This ensures that no fluid can flow through the fixed boundary at the bottom.
The interface between two fluids is defined by the property that fluid does not cross

it. Thus, at the free surface, separating air and water in this case, a kinematic boundary
condition must apply. The kinematic boundary condition states that the fluid velocity
normal to the free surface must equal the velocity of the free surface normal to itself.
Letting us be the velocity of the free surface, and ns be a unit vector normal to the free
surface, this is equivalent with requiring that

(ns · u) |z=η = ns · us. (1.6)
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The free surface η(x, y, t) is described by the equation f(x, y, z, t) := z − η(x, y, t) = 0,
and a unit vector normal to this surface, pointing out of the liquid, is ns = ∇f/|∇f | =
(−ηx,−ηy, 1) /|∇f |. The normal velocity of the fluid is then ns·∇φ = 1

|∇f | (−φxηx − φyηy + φz).
It is assumed that the velocity of the free surface is purely vertical everywhere, so we can
write us = ηtk. Thus, the normal velocity of the free surface is ns · us = 1

|∇f |ηt, and

according to (1.6), the kinematic boundary condition at the free surface is

ηt + φxηx + φyηy − φz = 0, on z = η(x, y, t). (1.7)

The second boundary condition at the free surface is obtained from (1.1). Making use
of the vector identity

∇
(
|u|2
)

= ∇(u · u) = 2u× (∇× u) + 2(u · ∇)u = 2u× ω + 2(u · ∇)u,

and the anti-commutativity of the cross product, equation (1.1) can be rewritten as

∂u

∂t
+∇

(
1

2
|u|2
)

+ ω × u +∇p = −gk. (1.8)

Since the curl of a gradient vector is the zero vector, we can take the curl of equation
(1.8) to obtain Helmholtz’ equation

∂ω

∂t
+∇× (ω × u) = 0, (1.9)

where we also used the fact that the order in which the curl operator and the t –
derivative is applied can be interchanged.

Now, using ∇ · u = 0 from (1.2), the fact that the divergence of the curl is zero, and
the vector identity

∇× (ω × u) = ω (∇ · u)− u (∇ · ω) + (u · ∇)ω − (ω · ∇) u

= (u · ∇)ω − (ω · ∇) u,

we can rewrite (1.9) as

Dω

Dt
≡ ∂ω

∂t
+ (u · ∇)ω = (ω · ∇) u. (1.10)

Here D
Dt

= ∂
∂t

+ (u · ∇) is the material derivative operator, which when applied to a
physical quantity, such as the vorticity of the fluid, measures the change in that quantity
with time as we follow a specific fluid particle. Obviously, ω = 0 is a possible solution of
(1.10). This solution is unique as long as each component ∂ui

∂xj
of ∇u stays bounded, which

means that if the initial flow is irrotational, then the flow will remain irrotational for all
time. This is referred to as the Helmholtz vorticity principle.
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Returning to (1.8), by assuming irrotational flow and substituting u = ∇φ, we integrate
the third equation (i.e., the z component) in (1.8) with respect to z to obtain

φt +
1

2
|∇φ|2 + (p− p0) + gz = C(t). (1.11)

Here the constant p0, which we separated from the integration constant C(t), denotes
the ambient pressure. Defining a new velocity potential by φ′ = φ−

∫
C(t)dt, substituting

it into (1.11), and assuming that the pressure on the free surface, p|z=η, equals the ambient
pressure, we thus obtain the second boundary condition at the free surface

φt + 1
2
|∇φ|2 + gz = 0, on z = η(x, y, t), (1.12)

where the prime over the new velocity potential has been dropped.
As discussed in [1], the system of equations (1.4), (1.5), (1.7), and (1.12) in the un-

knowns η and φ is difficult to treat numerically and analytically due to the nonlinear nature
of the free surface boundary conditions, and the fact that Ωt depends on time.

From here on, we will only consider fluid flow which is assumed to be uniform in the y
– direction, i.e., the velocity field (and thus the velocity potential) and the free surface do
not depend on y. Additionally, we always assume that the flow is irrotational and inviscid.
The bottom is assumed to be flat and located at z = −h0. The Cartesian coordinate
system can then be considered two dimensional in x and z, with the x – axis aligned with
the undisturbed free surface, and the z – axis pointing vertically upwards, so that the
undisturbed free surface is located at z = 0.

Then equations (1.4), (1.5), (1.7), and (1.12) simplify to

φxx + φzz = 0, in − h0 < z < η(x, t), (1.13)

φz = 0, on z = −h0, (1.14)

ηt + φxηx − φz = 0,

φt +
1

2

(
φ2
x + φ2

z

)
+ gz = 0,

 on z = η(x, t). (1.15)

where x ∈ R, t ≥ 0. Suitable boundary conditions must be chosen for x → ±∞, and
an initial condition must be specified at t = 0.

1.2 Linearized theory of water waves

Next, we introduce some basic theory of gravity waves in water, which will be needed later.
The content in this section is based on [2] and [3].

We start by linearizing the free surface boundary conditions in (1.15). The first equation
in (1.15) may be linearized by noting that the factor ηx in the φxηx term is small compared
to the other terms, presuming that the slope of the waves is small. It then becomes
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ηt ∼= φz

∣∣∣
z=η

. (1.16)

We may linearize further by Taylor expanding the right hand side around z = 0.
This yields

ηt ∼= φz

∣∣∣
z=η

= φz

∣∣∣
z=0

+ ηφzz

∣∣∣
z=0

+ .... (1.17)

Since both φz and η are assumed small, we may neglect quadratic and higher order
terms in φz (and its higher order derivatives) and η on the right hand side to obtain the
following approximation

ηt ∼= φz

∣∣∣
z=0

, (1.18)

valid for a0/λ� 1, where λ is a typical wavelength, as argued in [2].
The second equation in (1.15) linearizes to

φt

∣∣∣
z=η

∼= −gη

after neglecting the terms quadratic in φz and φx, both assumed small.
Using the same reasoning as above, we Taylor expand the left hand side around z = 0

and neglect terms of quadratic order in η and φz (and its higher order derivatives) to obtain

φt

∣∣∣
z=0

∼= −gη, (1.19)

again valid for a0/λ� 1.
The linearized water wave problem is then

φxx + φzz = 0, in − h0 < z < η(x, t), (1.20)

φz = 0, on z = −h0, (1.21)

ηt − φz = 0, on z = 0 (1.22)

φt + gη = 0, on z = 0. (1.23)

Before we can apply the boundary conditions above, we also need an initial condition
for the shape of the free surface η. Since small amplitude water waves tend to become
sinusoidal some time after their generation [3], it is expedient to assume that the free
surface takes the form of a simple travelling wave

η(x, t) = a cos(kx− ωt), (1.24)

so that the intitial condition becomes η(x, 0) = a cos(kx).
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Here k = 2π/λ is the wave number (spatial wave frequency), and ω is the wave’s radian
frequency.

From (1.22) and (1.23) it then follows that φ must be a sine function in kx−ωt, so we
can write

φ = f(z) sin(kx− ωt), (1.25)

where f(z) and ω(k) are functions to be determined.
Now substitute the ansatz (1.25) into the Laplace equation (1.20) to obtain the second

order ODE

d2f

dz2
− k2f = 0,

with general solution

f(z) = Aekz +Be−kz,

where A and B are constants.
Thus the velocity potential becomes

φ =
(
Aekz +Be−kz

)
sin(kx− ωt). (1.26)

To find the constants A and B, first substitute (1.26) into the boundary condition on
the bottom, (1.21), to get

k
(
Ae−kh0 −Bekh0

)
sin(kx− ωt) = 0,

which holds true for all kx− ωt if

B = Ae−2kh0 . (1.27)

Now substitute the ansatz for η from (1.24), and (1.26) into (1.22) to obtain

k(A−B) sin(kx− ωt) = ωa sin(kx− ωt),
which is true for all kx− ωt if

k(A−B) = ωa (1.28)

The two equations (1.27) and (1.28) can now be solved for A and B, and we obtain

A =
aω

k (1− e−2kh0)
, and B =

aωe−2kh0

k (1− e−2kh0)
.

Finally, the velocity potential then becomes

φ =
aω

k

cosh(k(z + h0))

sinh(kh0)
sin(kx− ωt). (1.29)
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Now the horizontal and vertical velocity components u and w are readily obtained by
differentiating (1.29) with respect to x and z, respectively.

They are

u = aω
cosh(k(z + h0))

sinh(kh0)
cos(kx− ωt)

and

w = aω
sinh(k(z + h0))

sinh(kh0)
sin(kx− ωt).

To find a relation between k and ω, substitute (1.24) and (1.29) into (1.23) to get

−aω
2

k

cosh(kh0)

sinh(kh0)
cos(kx− ωt) = −ag cos(kx− ωt),

which simplifies to

ω2 = gk tanh(kh0). (1.30)

Relation (1.30) is the dispersion relation for the linearized water wave problem. As-
suming that the waves are right-travelling, it may be rewritten as

c =
ω

k
=

√
g

k
tanh(kh0), (1.31)

where c is the phase speed of the surface waves. This shows how the phase speed depends
on the wave number k. Because of this, surface waves are called dispersive waves.

From (1.31) we can derive an important approximation for the phase speed for surface
waves of long wavelength in shallow water, that is, for kh0 � 1.

Since tanh(x) ≈ x as x → 0, we can write tanh(kh0) ≈ kh0 as kh0 → 0, and so (1.31)
can be approximated as

c =
√
gh0 (1.32)

for kh0 → 0.
It is important that the wavelength is significantly longer measured relative to the

undisturbed water depth in order for (1.32) to be valid. As noted in [2], it yields better
than 3% accuracy if h0 < 0.07λ. From (1.32) we note that shallow water waves of long
wavelength are non-dispersive.

1.3 Higher order Boussinesq equations

Most of the discussion in this text will be centered around the specific fluid flow regime
where the water waves are of small amplitude and long wavelength, both measured rela-
tive to the undisturbed depth h0. Therefore, it is convenient to introduce the standard
parameters α = a0/h0 and β = h2

0/`
2, where a0 denotes a typical wave amplitude, ` is a

typical wavelength, and h0 is the undisturbed depth as always. The parameters α and β
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measure the relative strength of the nonlinear and dispersive effects in the flow. Assuming
that these effects are nearly balanced, the Stokes number S = α/β must be of order one.

The goal now is to obtain approximations to equations (1.13), (1.14) and (1.15) by
employing an ansatz for the velocity potential in the form of a Taylor series, as is done in
[1]. Since our assumptions on the flow imply that α � 1, β � 1 and S = α/β = O(1), it
is expedient to expand the series in terms of the small parameters α and β. Following [1],
we choose to expand in terms of β as the primary parameter. Then higher order terms in
α and β can be neglected in the series expansions of equations (1.13), (1.14) and (1.15) in
order to approximate the full equations to order of accuracy βn. For the equations to be
expanded in terms of β, it is best to scale the variables such that all dependent quantities
and the initial data are of order one, and the assumptions of small wavelength appear
explicitly connected with small parameters appearing in the equations of motion.

The dimensionless variables to be used are as follows

x = `x̃, z = h0(z̃ − 1), η = a0η̃, t = `t̃/c0, φ = ga0`φ̃/c0, (1.33)

where c0 =
√
gh0 is the linear phase speed approximation for surface waves of long

wavelength relative to the undisturbed depth.
This scaling implies from the chain rule that the derivatives are scaled as ∂

∂x
= ∂

∂x̃
dx̃
dx

=
1
`
∂
∂x̃

, ∂
∂t

= ∂
∂t̃
dt̃
dt

= c0
`
∂
∂t̃

and ∂
∂z

= ∂
∂z̃

dz̃
dz

= 1
h0

∂
∂z̃

. In particular, this implies that the horizontal

fluid velocity component u(x, z, t) is scaled as u = φx = gA`
c0

1
`
φ̃x̃ = gA

c0
φ̃x̃ := gA

c0
ũ.

In the new variables, the equations are

βφ̃x̃x̃ + φ̃z̃z̃ = 0, in 0 < z̃ < 1 + αη̃(x̃, t̃), (1.34)

φ̃z̃ = 0, on z̃ = 0, (1.35)

η̃t̃ + αφ̃x̃η̃x̃ −
1

β
φ̃z̃ = 0,

η̃ + φ̃t̃ +
1

2
αφ̃2

x̃ +
1

2

α

β
φ̃2
z̃ = 0,

 on z̃ = 1 + αη̃(x̃, t̃), (1.36)

for x̃ ∈ R, t̃ > 0.
To simplify the notation, we drop the tilde over the dimensionless variables in further

calculations unless otherwise is stated. The following calculations are all done in the non-
dimensional variables.

Proceeding as in [1], the standard approach is to use an ansatz of the form

φ(x, z, t) =
∞∑
m=0

fm(x, t)zm (1.37)

for the velocity potential. Substituting this into the non-dimensional Laplace equation
(1.34) we get
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β

∞∑
m=0

∂2fm
∂x2

zm +
∞∑
m=0

(m+ 2)(m+ 1)fm+2z
m = 0. (1.38)

Using the boundary condition at the bottom, φz(x, z, t)
∣∣
z=0

= 0, it follows from (1.37)
that f1(x, t) = 0.

Since equation (1.38) must hold for all z ∈ (0, 1 + αη), we get the following recurrence
relation by requiring that the coefficients of terms of order zm for each m = 0, 1, 2, ... on
the left hand side are equal to zero

β
∂2fm
∂x2

+ (m+ 2)(m+ 1)fm+2 = 0,

or

fm+2 = − 1

(m+ 2)(m+ 1)

∂2fm
∂x2

β, (1.39)

for m = 0, 1, 2, ....
Now let F (x, t) = f0(x, t), which, from (1.37), is the velocity potential at the bottom

z = 0. Using (1.39) repeatedly, keeping in mind that f1 = 0, we see that f2 = − 1
2!
∂2F
∂x2

β,

f3 = 0, f4 = − 1
4×3

∂2f2
∂x2

β = 1
4!
∂4F
∂x4

β2, f5 = 0, f6 = − 1
6×5

∂2f4
∂x2

β = − 1
6!
∂6F
∂x6

β3, f7 = 0, ....
Then, formally, we get by induction that

f2k(x, t) =
(−1)k

(2k)!

∂2kF (x, t)

∂x2k
βk, k = 0, 1, 2, ...,

and

f2k+1(x, t) = 0, k = 0, 1, 2, ....

Inserting this into the ansatz (1.37) we get the following expression for the velocity
potential

φ(x, z, t) =
∞∑
k=0

(−1)k

(2k)!

∂2kF (x, t)

∂x2k
z2kβk.

Now insert this series into the non-dimensional free surface boundary conditions (1.36)
and evaluate at z = 1 + αη(x, t) to obtain the following system of equations

ηt + αηx

∞∑
k=0

(−1)k

(2k)!

∂2k+1F

∂x2k+1
(1 + αη)2kβk +

∞∑
k=0

(−1)k

(2k + 1)!

∂2k+2F

∂x2k+2
(1 + αη)2k+1βk = 0 (1.40)

η +
∞∑
k=0

(−1)k

(2k)!

∂2k+1F

∂x2k∂t
(1 + αη)2kβk +

1

2
α

{
∞∑
k=0

(−1)k

(2k)!

∂2k+1F

∂x2k+1
(1 + αη)2kβk

}2

+
1

2
αβ

{
∞∑
k=0

(−1)k

(2k + 1)!

∂2k+2F

∂x2k+2
(1 + αη)2k+1βk

}2

= 0.

(1.41)
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The series in (1.40) and (1.41) may be truncated at terms of order βn, n = 0, 1, 2, ..., to
obtain approximate equations for the free surface η(x, t) and the horizontal fluid velocity
at the bottom, Fx(x, t). In [1], systems of O(α, β), O(αβ, β2) and O(α2β, αβ2, β3) are
derived in this way. By introducing a parameter θ ∈ [0, 1], equations (1.40) and (1.41) can
be transformed into a system of equations instead modelling the horizontal fluid velocity
w := φx(x, z, t)|z=θ at an arbitrary non-dimensional height z = θ, as well as the free surface
η(x, t), as shown in [1].

Before we proceed, we must clarify some notation. By ”n –th order equation” we
always mean that the highest order derivative appearing in the equation is an n–th order
derivative, not that the equation is to n–th order in β. If the equation is to order n in β,
it will be explicitly specified, e.g. by writing O(βn).

As will be shown shortly, a certain equivalent version of the fifth order system to
O(α2β, αβ2, β3) for w(x, t) and η(x, t) derived in [1] has an unbounded dispersion relation
for all θ ∈ [0, 1] \

{
1/
√

5
}

, which is not physically correct, and may lead to instability if

the equations are solved numerically. If the value θ = 1/
√

5 is chosen in the equations, the
fifth order system reduces to a third order system.

In Chapter 2 we will derive a seventh order Boussinesq-type system toO(α3β, α2β2, αβ3, β4)
and investigate whether this system has a better dispersion relation than this particular
fifth order system to O(α2β, αβ2, β3) derived in [1].

Going to a higher order also yields a more accurate approximation of the full equations,
as the neglected terms are of smaller magnitude, assuming long wavelength and small
wave amplitude compared to the undisturbed depth. As far as we can tell, there exists no
literature on the seventh order Boussinesq-type system, its derivation, nor on any of its
properties.

The derivation procedure is the same as in [1], except that we keep the terms of
O(α2β, αβ2, β3) as well. The lower order systems may be derived from the 7th order
Boussinesq system by neglecting higher order terms. As shown in [1] the fifth order
Boussinesq system modelling the fluid velocity w at the non-dimensional height z = θ,
where 0 ≤ θ ≤ 1, can be derived from equations (1.40) and (1.41). Since the procedure is
the same as for the seventh order system, which we derive in Chapter 2, we refer to that
chapter (or [1]) for the details. The fifth order system is then obtained by collecting all
terms of order α2β, αβ2 and β3 in system (2.10), (2.12) and writing O(α2β, αβ2, β3) in
place of those terms.

The fifth order system is then

ηt + wx + α (ηw)x +
1

2

(
θ2 − 1

3

)
βwxxx +

1

2

(
θ2 − 1

)
αβ (ηwxx)x

+
5

24

(
θ2 − 1

5

)2

β2wxxxxx = O(α2β, αβ2, β3)

(1.42)
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ηx + wt +
1

2

(
θ2 − 1

)
βwxxt + αwwx − αβ (ηwxt)x +

1

2

(
θ2 + 1

)
αβwxwxx

+
1

2

(
θ2 − 1

)
αβwwxxx +

5

24

(
θ2 − 1

)(
θ2 − 1

5

)
β2wxxxxt = O(α2β, αβ2, β3).

(1.43)

We now want to investigate whether this system has a bounded and positive dispersion
relation. The linear well-posedness of the system (1.42), (1.43) and many of its variants is
extensively studied in [1], but the particular fifth order BBM-type system we investigate
below is not studied explicitly, except for a short note on BBM systems which describes suf-
ficient conditions for well-posedness for systems of BBM-type. BBM-type systems (named
after Benjamin, Bona and Mahony) may be defined for our purposes as any Boussinesq-
type system obtained from (1.40) and (1.41) (such as system (1.42), (1.43)) where at least
the highest order derivative in both the truncated equations obtained from (1.40) and
(1.41) is of the form ∂n

∂xn−1∂t
, where n is the order of the highest order derivative. It is well

known that systems of BBM-type are well behaved numerically, in the sense that they are
more amenable to numerical integration [12].

To investigate the dispersion relation for the linearized version of equations (1.42) and
(1.43), we linearize these equations around the rest state η = 0 and w = 0 by substituting
w = εw̄ and η = εη̄ into these equations. Here εw̄ and εη̄, where |ε| � 1, are small
perturbations of w and η around their rest states. We neglect terms of O(ε2). It is easy
to see that when these are substituted into the equations, all non-linear terms drop out as
they contain factors of O(ε2), but the rest of the equations remain as before.

The linearized form of (1.42), (1.43) is then

ηt + wx +
1

2

(
θ2 − 1

3

)
βwxxx +

5

24

(
θ2 − 1

5

)2

β2wxxxxx = O(β3) (1.44)

ηx + wt +
1

2

(
θ2 − 1

)
βwxxt +

5

24

(
θ2 − 1

)(
θ2 − 1

5

)
β2wxxxxt = O(β3), (1.45)

where we have dropped the ’bar’ over the new variables.
As shown in [1], equations (1.42) and (1.43) can be altered further by manipulating

lower order terms and inserting these into the equations. Since we are mostly interested in
systems that behave well numerically, BBM-type systems are of particular interest in the
present text.

Following [1], by multiplying (1.42) with β2 and differentiating both sides four times
with respect to x, it follows that

β2wxxxxx = −β2ηxxxxt +O(αβ2, β3). (1.46)

Replacing the last term on the left hand side of equation (1.44) with this, and converting
to dimensional variables gives the following BBM-type system to O(α2β, αβ2, β3)
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ηt + h0wx +
1

2

(
θ2 − 1

3

)
h3

0wxxx −
5

24

(
θ2 − 1

5

)2

h4
0ηxxxxt = 0 (1.47)

wt + gηx −
1

2

(
1− θ2

)
h2

0wxxt +
5

24

(
θ2 − 1

)(
θ2 − 1

5

)
h4

0wxxxxt = 0. (1.48)

Seeking a solution of equations (1.47) and (1.48) of the form η = Aeikx−iωt, w =
Beikx−iωt, where A,B ∈ R \ {0}, we obtain

−ω
[
1− 5

24

(
θ2 − 1

5

)2
h4

0k
4
]
A+ k

[
h0 − 1

2

(
θ2 − 1

3

)
h3

0k
2
]
B = 0, (1.49)

and
gkA− ω

[
1 + 1

2

(
1− θ2

)
h2

0k
2 + 5

24

(
θ2 − 1

) (
θ2 − 1

5

)
h4

0k
4
]
B = 0. (1.50)

This is equivalent with the matrix equation

(
−ω

[
1− 5

24

(
θ2 − 1

5

)2
h4

0k
4
]

k
[
h0 − 1

2

(
θ2 − 1

3

)
h3

0k
2
]

gk −ω
[
1 + 1

2
(1− θ2)h2

0k
2 + 5

24
(θ2 − 1)

(
θ2 − 1

5

)
h4

0k
4
] )(A

B

)
=

(
0

0

)

and since A,B 6= 0 by assumption, the determinant of the matrix above must be zero.
This yields the following dispersion relation

ω2

k2
=

gh0

(
1− 1

2

(
θ2 − 1

3

)
h2

0k
2
)(

1− 5
24

(
θ2 − 1

5

)2
h4

0k
4
) (

1 + 1
2

(1− θ2)h2
0k

2 + 5
24

(θ2 − 1)
(
θ2 − 1

5

)
h4

0k
4
) . (1.51)

Note that when θ2 = 1/5, equation (1.51) becomes ω2

k2
= gh0

k2h20+15

3(2k2h20+5)
which is bounded

above (by its maximum value gh0 at kh0 = 0), and is clearly non-negative for all k. Thus
the linearized version of system (1.42), (1.43) has a bounded and positive dispersion relation
for θ2 = 1/5.

Since the first two roots of the polynomial 1− 5
24

(
θ2 − 1

5

)2
h4

0k
4 are k1,2 = ± 4

√
24

5h40(θ2−1/5)2

when θ2 6= 1/5, which are real for all values of θ, the dispersion relation (1.51) may become

unbounded (in the limiting sense) for any fixed θ ∈ [0, 1] \
{

1√
5

}
. Plotting the dispersion

relation for such θ suggests that it is always unbounded for these values of θ.
As will be shown in Chapter 3, when the Fourier transform is taken of the fifth order

system for the purpose of numerically solving the equations, we are dividing by the func-
tions appearing in the denominator of dispersion relation, hence, if θ ∈ [0, 1] \

{
1/
√

5
}

we
are dividing by zero for some values of k.

It is also important that the dispersion relation stays bounded, positive and approaches
zero for large kh0 like the dispersion relation for the full water wave problem (1.30), because
an unbounded dispersion relation is physically incorrect. The dispersion relation should
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tend to zero as the wavenumbers k become large, such that both the phase velocity ω/k
and the group velocity dω/dk tend to zero as well for large k, as was argued in [12]. This
implies that fine scale features of the solution do not propagate, which in turn means that
the system responds weakly to artificial short wave components that may be generated
during a numerical computation, as argued in [12]. The phase velocity and the group
velocity should also be bounded above over all wavenumbers, hence the importance of the
bounded dispersion relation.

Note also that the fifth order system (1.42) (with the wxxxxx term replaced by −ηxxxxt),
(1.43) reduces to a third order system and is no longer a BBM–type system when θ =

√
1/5.

Therefore the fifth order BBM-type system (1.42), (1.43) is not so interesting for our
purposes, and we will derive a seventh order system instead. This is done in Chapter 2.

In order to investigate whether the linearized system (1.42), (1.43) has a bounded and
positive dispersion relation for a larger range of θ-values, one can also replace the βwxxx
term in (1.42) by a t-derivative, in a similar way as was done above. We will obtain a system
that is formally equivalent up to the same order of α and β as the standard fifth order
system (1.42), (1.43). We will nevertheless first derive a general seventh order Boussinesq
system and investigate whether this system has a better dispersion relation. Then all other
formally equivalent fifth order systems can be easily obtained by neglecting higher order
terms in the various seventh order systems we derive in Chapter 2.

We can replace terms in the equations by manipulating lower order terms, and inserting
these into the original equations, still keeping the formal order of approximation. Solving
(1.42) for wx, differentiating both sides n−1 times with respect to x, and multiplying both
sides by βm (m ≥ 1) gives

βm∂nxw = −βm∂n−1
x ηt − αβm∂nx (ηw)− 1

2

(
θ2 − 1

3

)
βm+1∂n+2

x w − 1

2

(
θ2 − 1

)
αβm+1∂nx (ηwxx)

− 5

24

(
θ2 − 1

5

)2

βm+2∂n+4
x w +O(α2βm+1, αβm+2, βm+3).

(1.52)
(Higher order terms are included here for use in later equations).

Thus we can write

βwxxx = −βηxxt − αβ (ηw)xxx −
1

2

(
θ2 − 1

3

)
β2wxxxxx −

1

2

(
θ2 − 1

)
αβ2 (ηwxx)xxx

− 5

24

(
θ2 − 1

5

)2

β3wxxxxxxx +O(α2β2, αβ3, β4),

(1.53)

β2wxxxxx = −β2ηxxxxt − αβ2 (ηw)xxxxx −
1

2

(
θ2 − 1

3

)
β3wxxxxxxx +O(αβ3, β4), (1.54)

and
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β3wxxxxxxx = −β3ηxxxxxxt +O(αβ3, β4). (1.55)

Inserting (1.55) into (1.54) yields

β2wxxxxx = −β2ηxxxxt − αβ2 (ηw)xxxxx +
1

2

(
θ2 − 1

3

)
β3ηxxxxxxt +O(αβ3, β4), (1.56)

and inserting (1.56), (1.55) into (1.53) we obtain

βwxxx = −βηxxt − αβ (ηw)xxx +
1

2

(
θ2 − 1

3

)
β2ηxxxxt −

1

2

(
θ2 − 1

)
αβ2 (ηwxx)xxx

+
1

2

(
θ2 − 1

3

)
αβ2 (ηw)xxxxx −

1

360

(
15θ4 − 30θ2 + 7

)
β3ηxxxxxxt +O(α2β2, αβ3, β4),

(1.57)
after simplifying.

These relations can be used to transform the Boussinesq equations into a formally
equivalent system where all the ∂n

∂xn
derivatives on the linear terms are replaced by ∂n

∂xn−1∂t

terms. The purpose of this is to obtain a system that is more well behaved numerically.
In order to remove t-derivatives on the nonlinear terms appearing in the equations,

some other relations are needed. This is useful for easily taking the Fourier transform of
the equations later. Solving (1.43) for wt and differentiating both sides three times with
respect to x, we obtain

wxxxt = −ηxxxx +O(α, β). (1.58)

Likewise, solving (1.43) for wt and differentiating once with respect to x yields

wxt = −ηxx − α (wwx)x −
1

2

(
θ2 − 1

)
βwxxxt +O(αβ, β2). (1.59)

Now insert (1.58) into (1.59) to obtain

wxt = −ηxx − α (wwx)x +
1

2

(
θ2 − 1

)
βηxxxx +O(αβ, β2). (1.60)

Relations (1.58) and (1.60) will be made use of later when the equations are solved
numerically.



Chapter 2

Seventh order Boussinesq systems
and their properties

In this chapter, we derive multiple equivalent seventh order Boussinesq systems of equations
modelling the horizontal fluid velocity w(x, t) at a non-dimensional height z = θ in the
fluid column, where 0 ≤ θ ≤ 1, as well as the free surface η(x, t). We derive dispersion
relations for linearized versions of the seventh order systems, and discuss requirements on
the parameter θ which make the systems well behaved numerically, in the sense that the
dispersion relations remain bounded and non-negative for all wavenumbers k. The results
presented in this chapter, including the seventh order systems and all their properties,
have, to our knowledge, not been derived or discussed before in other literature.

21
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2.1 Derivation of the seventh order Boussinesq sys-

tem

In the derivation of the general seventh order system, we use the notation ∂nf(x,t)
∂xm∂tp

= fxmtp
where m+p = n. The procedure is the same as in [1], the only difference is that we include
terms of one higher order in α and β and their products. Expanding (1.40), (1.41) and
keeping terms of order β3, αβ2 and α2β we get from (1.40)

ηt + αηx

[
Fx −

1

2
Fx3 (1 + αη)2 β +

1

4!
Fx5 (1 + αη)4 β2 +O(β3)

]
+

[
Fx2 (1 + αη)− 1

3!
Fx4 (1 + αη)3 β +

1

5!
Fx6 (1 + αη)5 β2 − 1

7!
Fx8 (1 + αη)7 β3 +O(β4)

]
=

ηt + αηx

[
Fx −

1

2
Fx3 (1 + 2αη) β +

1

4!
Fx5 (1) β2

]
+

[
Fx2 (1 + αη)− 1

3!
Fx4

(
1 + 3αη + 3α2η2

)
β +

1

5!
Fx6 (1 + 5αη) β2 − 1

7!
Fx8(1)β3

]
+O(α3β, α2β2, αβ3, β4)

= ηt + ηxFxα−
1

2
Fx3ηx (1 + 2αη)αβ +

1

24
Fx5ηxαβ

2

+Fx2 (1 + αη)− 1

6
Fx4

(
1 + 3αη + 3α2η2

)
β +

1

120
Fx6 (1 + 5αη) β2

− 1

5040
Fx8β

3 +O(α3β, α2β2, αβ3, β4) = 0.

(2.1)

Let u = Fx as in [1], and insert this into the last equation of (2.1) to get

ηt + ηxuα−
1

2
ux2ηx (1 + 2αη)αβ +

1

24
ux4ηxαβ

2

+ux (1 + αη)− 1

6
ux3
(
1 + 3αη + 3α2η2

)
β +

1

120
ux5 (1 + 5αη) β2

− 1

5040
ux7β

3 +O(α3β, α2β2, αβ3, β4) = 0.

(2.2)
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From (1.41) we get

η +

[
Ft −

1

2
Ftx2 (1 + αη)2 β +

1

4!
Ftx4 (1 + αη)4 β2 − 1

6!
Ftx6 (1 + αη)6 β3 +O(β4)

]
+

1

2
α
{[

Fx −
1

2
Fx3 (1 + αη)2 β +

1

4!
Fx5 (1 + αη)4 β2 +O(β3)

]
×

×
[
Fx −

1

2
Fx3 (1 + αη)2 β +

1

4!
Fx5 (1 + αη)4 β2 +O(β3)

]}
+

1

2
αβ

{[
Fx2 (1 + αη)− 1

3!
Fx4 (1 + αη)3 β +O(β2)

] [
Fx2 (1 + αη)− 1

3!
Fx4 (1 + αη)3 β +O(β2)

]}
+O(α3β, α2β2, αβ3, β4) = η +

[
Ft −

1

2
Ftx2 (1 + αη)2 β +

1

4!
Ftx4 (1 + 4αη) β2 − 1

6!
Ftx6(1)β3

]
+

1

2
α
{
Fx

[
Fx −

1

2
Fx3 (1 + αη)2 β +

1

4!
Fx5 (1 + αη)4 β2 +O(β3)

]
−1

2
Fx3

[
Fx (1 + αη)2 β − 1

2
Fx3 (1 + αη)4 β2 +O(β3)

]
+

1

4!
Fx5

[
Fx (1 + αη)4 β2 +O(β3)

]
+O(β3)

}
+

1

2

{
Fx2

[
Fx2(1 + αη)2αβ − 1

3!
Fx4(1 + αη)4αβ2 +O(αβ3, β4)

]
− 1

3!
Fx4

[
Fx2(1 + αη)4αβ2 +O(αβ3, β4)

]
+O(αβ3, β4)

}
+O(α3β, α2β2, αβ3, β4)

= η +

[
Ft −

1

2
Ftx2 (1 + αη)2 β +

1

4!
Ftx4 (1 + 4αη) β2 − 1

6!
Ftx6β

3

]
+

1

2
α
{
Fx

[
Fx −

1

2
Fx3 (1 + 2αη) β +

1

4!
Fx5(1)β2

]
−1

2
Fx3

[
Fx (1 + 2αη) β − 1

2
Fx3 (1) β2

]
+

1

4!
Fx5Fx (1) β2

}
+

1

2

{
Fx2

[
Fx2(1 + 2αη)αβ − 1

3!
Fx4(1)αβ2

]
− 1

3!
Fx4Fx2(1)αβ2

}
+O(α3β, α2β2, αβ3, β4)

= η + Ft −
1

2
Ftx2 (1 + αη)2 β +

1

24
Ftx4 (1 + 4αη) β2 − 1

720
Ftx6β

3

+
1

2
α

{
(Fx)

2 − Fx3Fx (1 + 2αη) β +
1

12
Fx5Fxβ

2 +
1

4
(Fx3)

2 β2

}
+

1

2
(Fx2)

2 (1 + 2αη)αβ − 1

6
Fx4Fx2αβ

2 +O(α3β, α2β2, αβ3, β4)

= η + Ft −
1

2
Ftx2 (1 + αη)2 β +

1

24
Ftx4 (1 + 4αη) β2

+
1

2
α (Fx)

2 − 1

2
Fx3Fx (1 + 2αη)αβ +

1

24
Fx5Fxαβ

2 +
1

8
(Fx3)

2 αβ2

+
1

2
(Fx2)

2 (1 + 2αη)αβ − 1

6
Fx4Fx2αβ

2 − 1

720
Ftx6β

3 +O(α3β, α2β2, αβ3, β4) = 0.

(2.3)
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Next, differentiate the last equation in (2.3) with respect to x and substitute u = Fx
as above to get

ηx + Fxt −
1

2
Ftx3 (1 + αη)2 β − Ftx2 (1 + αη) ηxαβ +

[
1

24
Ftx5 (1 + 4αη) β2 +

1

24
Ftx4 (4αηx) β

2

]
+αFxFx2 −

1

2
αβ [(Fx4Fx + Fx3Fx2) (1 + 2αη) + 2Fx3Fxαηx] +

[
1

24
Fx6Fxαβ

2 +
1

24
Fx5Fx2αβ

2

]
+

1

4
Fx3Fx4αβ

2 +
1

2
αβ
[
2Fx2Fx3(1 + 2αη) + 2 (Fx2)

2 αηx
]
− 1

6
Fx5Fx2αβ

2 − 1

6
Fx4Fx3αβ

2

− 1

720
Ftx7β

3 +O(α3β, α2β2, αβ3, β4) =

ηx + ut −
1

2
utx2 (1 + αη)2 β − utx (1 + αη) ηxαβ +

1

24
utx4 (1 + 4αη) β2 +

1

24
utx3 (4αηx) β

2

+αuux −
1

2
αβ [(ux3u+ ux2ux) (1 + 2αη) + 2ux2uαηx] +

1

24
ux5uαβ

2 +
1

24
ux4uxαβ

2

+
1

4
ux2ux3αβ

2 +
1

2
αβ
[
2uxux2(1 + 2αη) + 2 (ux)

2 αηx
]
− 1

6
ux4uxαβ

2 − 1

6
ux3ux2αβ

2

− 1

720
utx6β

3 +O(α3β, α2β2, αβ3, β4) =

ηx + ut + αuux −
1

2
utx2 (1 + αη)2 β − utxηx (1 + αη)αβ +

1

24
utx4 (1 + 4αη) β2 +

1

6
utx3 (αηx) β

2

−1

2
αβ [(ux3u+ ux2ux) (1 + 2αη) + 2ux2uαηx] +

1

24
[ux5u+ ux4ux + 6ux2ux3 ]αβ

2

+αβ
[
uxux2(1 + 2αη) + (ux)

2 αηx
]
− 1

6
ux4uxαβ

2 − 1

6
ux3ux2αβ

2

− 1

720
utx6β

3 +O(α3β, α2β2, αβ3, β4) = 0

(2.4)
Proceding as in [1], we define w = φx|z=θ as the horizontal velocity at the dimensional

height z = (θ− 1)h0, with 0 ≤ θ ≤ 1, and a formal use of Taylor’s formula with remainder
gives

w = φx|z=θ = Fx − 1
2
βθ2Fx3 + 1

4!
β2θ4Fx5 − 1

6!
β3θ6Fx7 +O(β4)

= u− 1
2
βθ2ux2 + 1

4!
β2θ4ux4 − 1

6!
β3θ6ux6 +O(β4)

(2.5)

as β → 0 (see the expression for the velocity potential φ(x, z, t) derived in Section 1.3).
Recalling the definition of the Fourier transform in the spatial variable x of a function

f , given by

f̂(k) =

∫ +∞

−∞
e−ikxf(x)dx

and using the standard result ̂∂n
∂xn

f(x, t) = (ik)nf̂(k, t),
we get
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ŵ =

[
1 +

1

2
βθ2k2 +

1

4!
β2θ4k4 +

1

6!
β3θ6k6

]
û+O(β4)

after taking the Fourier transform of (2.5).

Next, invert the positive Fourier multiplier to get

û =

[
1 +

1

2
βθ2k2 +

1

4!
β2θ4k4 +

1

6!
β3θ6k6

]−1

ŵ +O(β4)

=

[
1−

(
−1

2
βθ2k2 − 1

4!
β2θ4k4 − 1

6!
β3θ6k6

)]−1

ŵ +O(β4)

=
[
1 +

(
−1

2
βθ2k2 − 1

4!
β2θ4k4 − 1

6!
β3θ6k6

)
+

(
−1

2
βθ2k2 − 1

4!
β2θ4k4 − 1

6!
β3θ6k6

)2

+

(
−1

2
βθ2k2 − 1

4!
β2θ4k4 − 1

6!
β3θ6k6

)3

+O(β4)
]
ŵ +O(β4)

=
[
1− 1

2
βθ2k2 − 1

4!
β2θ4k4 − 1

6!
β3θ6k6 +

(
1

4
β2θ4k4 +

1

24
β3θ6k6 +O(β4)

)
+

(
−1

8
β3θ6k6 +O(β4)

)
+O(β4)

]
ŵ +O(β4)

=

[
1− 1

2
βθ2k2 +

5

24
β2θ4k4 − 61

720
β3θ6k6

]
ŵ +O(β4).

(2.6)

This is equivalent with

û = ŵ +
1

2
βθ2(ik)2ŵ +

5

24
β2θ4(ik)4ŵ +

61

720
β3θ6(ik)6ŵ +O(β4)

= ŵ +
1

2
βθ2ŵx2 +

5

24
β2θ4ŵx4 +

61

720
β3θ6ŵx6 +O(β4).

(2.7)

Finally, taking the inverse Fourier transform of (2.7) yields

u = w +
1

2
βθ2wx2 +

5

24
β2θ4wx4 +

61

720
β3θ6wx6 +O(β4). (2.8)

Inserting (2.8) into (2.2) and neglecting terms of O(α3β, α2β2, αβ3, β4) gives
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ηt +

[
w +

1

2
βθ2wx2 +

5

24
β2θ4wx4 +O(β3)

]
ηxα−

1

2
ηx(1 + 2αη)αβ

[
wx2 +

1

2
βθ2wx4 +O(β2)

]
+

1

24
ηxαβ

2 [wx4 +O(β)] + (1 + αη)

[
wx +

1

2
βθ2wx3 +

5

24
β2θ4wx5 +

61

720
β3θ6wx7 +O(β4)

]
−1

6
(1 + 3αη + 3α2η2)β

[
wx3 +

1

2
βθ2wx5 +

5

24
β2θ4wx7 +O(β3)

]
+

1

120
(1 + 5αη)β2

[
wx5 +

1

2
βθ2wx7 +O(β2)

]
− 1

5040
β3 [wx7 +O(β)]

+O(α3β, α2β2, αβ3, β4)

= ηt +

[
w +

1

2
βθ2wx2 +

5

24
β2θ4wx4

]
ηxα−

1

2
ηxαβ

[
wx2 +

1

2
βθ2wx4

]
− ηxηwx2α2β +

1

24
ηxαβ

2wx4

+

[
wx +

1

2
βθ2wx3 +

5

24
β2θ4wx5 +

61

720
β3θ6wx7

]
+ αη

[
wx +

1

2
βθ2wx3 +

5

24
β2θ4wx5

]
−1

6
β

[
wx3 +

1

2
βθ2wx5 +

5

24
β2θ4wx7

]
− 1

2
η αβ

[
wx3 +

1

2
βθ2wx5

]
− 1

2
η2α2βwx3

+
1

120
β2

[
wx5 +

1

2
βθ2wx7

]
+

1

24
ηwx5αβ

2 − 1

5040
β3wx7 +O(α3β, α2β2, αβ3, β4) = 0.

(2.9)

Collecting terms in the last equation above, we end up with the first equation of the
desired system to O(α3β, α2β2, αβ3, β4)

ηt + wx + α (ηw)x +
1

2

(
θ2 − 1

3

)
βwxxx +

1

2

(
θ2 − 1

)
αβ(ηwxx)x

+
5

24

(
θ2 − 1

5

)2
β2wxxxxx −

1

2
α2β

(
η2wxx

)
x

+
5

24

(
θ2 − 1

5

) (
θ2 − 1

)
αβ2 (ηwxxxx)x

+
1

5040

(
7θ2
(
61θ4 − 25θ2 + 3

)
− 1
)
β3wxxxxxxx +O(α3β, α2β2, αβ3, β4) = 0.

(2.10)

Similarly, inserting (2.8) into the last equation in (2.4) and neglecting terms ofO(α3β, α2β2, αβ3, β4)
yields
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ηx +

[
wt +

1

2
βθ2wx2t +

5

24
β2θ4wx4t +

61

720
β3θ6wx6t +O(β4)

]
+α

[
w +

1

2
βθ2wx2 +

5

24
β2θ4wx4 +O(β3)

] [
wx +

1

2
βθ2wx3 +

5

24
β2θ4wx5 +O(β3)

]
−1

2
(1 + αη)2β

[
wx2t +

1

2
βθ2wx4t +

5

24
β2θ4wx6t +O(β3)

]
− ηx(1 + αη)αβ

[
wxt +

1

2
βθ2wx3t +O(β2)

]
+

1

24
(1 + 4αη)β2

[
wx4t +

1

2
βθ2wx6t +O(β2)

]
+

1

6
ηxαβ

2 [wx3t +O(β)]

−1

2
αβ(1 + 2αη)

{[
w +

1

2
βθ2wx2 +O(β2)

] [
wx3 +

1

2
βθ2wx5 +O(β2)

]
+

[
wx +

1

2
βθ2wx3 +O(β2)

] [
wx2 +

1

2
βθ2wx4 +O(β2)

]}
− α2βηx [w +O(β)] [wx2 +O(β)]

+
1

24
αβ2 {[w +O(β)] [wx5 +O(β)] + [wx +O(β)] [wx4 +O(β)] + 6 [wx2 +O(β)] [wx3 +O(β)]}

+αβ(1 + 2αη)

[
wx +

1

2
βθ2wx3 +O(β2)

] [
wx2 +

1

2
βθ2wx4 +O(β2)

]
+ ηxα

2β [wx +O(β)] [wx +O(β)]

−1

6
αβ2 [wx +O(β)] [wx4 +O(β)]− 1

6
αβ2 [wx2 +O(β)] [wx3 +O(β)]− 1

720
β3 [wx6t +O(β)]

+O(α3β, α2β2, αβ3, β4)

= ηx + wt +
1

2
βθ2wx2t +

5

24
β2θ4wx4t +

61

720
β3θ6wx6t

+

{
αw

[
wx +

1

2
βθ2wx3 +

5

24
β2θ4wx5

]
+

1

2
αβθ2wx2

[
wx +

1

2
βθ2wx3

]
+

5

24
αβ2θ4wx4wx

}
+

{[
−1

2
βwx2t −

1

4
β2θ2wx4t −

5

48
β3θ4wx6t

]
+

[
−αβηwx2t −

1

2
αβ2θ2ηwx4t

]
− 1

2
α2βη2wx2t

}
+

{[
−αβηxwxt −

1

2
αβ2θ2ηxwx3t

]
− α2βηηxwxt

}
+

{[
1

24
β2wx4t +

1

48
β3θ2wx6t

]
+

1

6
αβ2ηwx4t

}
+

1

6
αβ2ηxwx3t

−1

2
αβ

{[
wwx3 +

1

2
βθ2wwx5 +

1

2
βθ2wx2wx3 +O(β2)

]
+

[
wxwx2 +

1

2
βθ2wxwx4 +

1

2
βθ2wx2wx3 +O(β2)

]}
−ηα2β {[wwx3 +O(β)] + [wxwx2 +O(β)]} − α2βηxwwx2 +

1

24
αβ2 [wwx5 + wxwx4 + 6wx2wx3 ]

+αβ

[
wxwx2 +

1

2
βθ2wxwx4 +

1

2
βθ2wx2wx3 +O(β2)

]
+ 2ηα2β [wxwx2 +O(β)]

+ηxα
2β (wx)

2 − 1

6
αβ2wxwx4 −

1

6
αβ2wx2wx3 −

1

720
β3wx6t +O(α3β, α2β2, αβ3, β4) =
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= ηx + wt +
1

2
βθ2wx2t +

5

24
β2θ4wx4t +

61

720
β3θ6wx6t

+αwwx +
1

2
αβθ2wwx3 +

5

24
αβ2θ4wwx5 +

1

2
αβθ2wxwx2 +

1

4
αβ2θ4wx2wx3 +

5

24
αβ2θ4wxwx4

−1

2
βwx2t −

1

4
β2θ2wx4t −

5

48
β3θ4wx6t − αβηwx2t −

1

2
αβ2θ2ηwx4t −

1

2
α2βη2wx2t

−αβηxwxt −
1

2
αβ2θ2ηxwx3t − α2βηηxwxt +

1

24
β2wx4t +

1

48
β3θ2wx6t +

1

6
αβ2ηwx4t +

1

6
αβ2ηxwx3t

−1

2
αβwwx3 −

1

4
αβ2θ2wwx5 −

1

4
αβ2θ2wx2wx3 −

1

2
αβwxwx2 −

1

4
αβ2θ2wxwx4 −

1

4
αβ2θ2wx2wx3

−ηα2β {wwx3 + wxwx2} − α2βηxwwx2 +
1

24
αβ2 [wwx5 + wxwx4 + 6wx2wx3 ]

+αβ

[
wxwx2 +

1

2
βθ2wxwx4 +

1

2
βθ2wx2wx3

]
+ 2ηα2βwxwx2 + ηxα

2β (wx)
2 − 1

6
αβ2wxwx4

−1

6
αβ2wx2wx3 −

1

720
β3wx6t +O(α3β, α2β2, αβ3, β4) = 0

(2.11)
Finally, collecting terms in the last equation in (2.11), we end up with the second

equation of the desired system

ηx + wt + αwwx +
1

2

(
θ2 − 1

)
βwxxt − αβ(ηwxt)x +

1

2

(
θ2 − 1

)
αβwwxxx

+
1

2

(
1 + θ2

)
αβwxwxx +

5

24

(
θ2 − 1

5

) (
θ2 − 1

)
β2wxxxxt −

1

2
α2β

(
η2wxt

)
x
− α2βw(ηwxx)x

+α2βwx(ηwx)x −
1

2

(
θ2 − 1

3

)
αβ2(ηwxxxt)x +

5

24

(
θ2 − 1

5

) (
θ2 − 1

)
αβ2wwxxxxx

+

(
5

24

(
θ2 + 3

5

)2 − 1

5

)
αβ2wxwxxxx +

1

4

(
θ4 + 1

3

)
αβ2wxxwxxx

+
1

720

(
θ2 − 1

) (
61θ4 − 14θ2 + 1

)
β3wxxxxxxt +O(α3β, α2β2, αβ3, β4) = 0.

(2.12)
Note that when θ = 0 in equations (2.12) and (2.10), they reduce to (2.2) and the last

equation in (2.4), as expected, since z = θ = 0 gives the horizontal fluid velocity u(x, t) at
the bottom z = −h0 (in dimensional variables).

We now want to investigate which values of θ ∈ [0, 1] give a bounded and positive
dispersion relation for the linearized version of system (2.10), (2.12).

Since systems of BBM type are more amenable to numerical integration, we substitute
the relation β3wx7 = −β3ηx6t +O(αβ3, β4) in the last term of (2.10) in order to obtain a
BBM-type system. (More general systems can be derived from (2.10), (2.12) by introducing
other parameters, such as is done for the fifth order system in [1], but since we are mostly
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interested in solving these equations numerically, only BBM-type systems are considered
here.) The linearized versions of equation (2.10) with the last term replaced, and equation
(2.12) in dimensional variables are

ηt+h0wx+
1

2

(
θ2 − 1

3

)
h3

0wx3+
5

24

(
θ2 − 1

5

)2

h5
0wx5−

1

5040

(
7θ2
(
61θ4 − 25θ2 + 3

)
− 1
)
h6

0ηx6t = 0

(2.13)

gηx+wt+
1

2

(
θ2 − 1

)
h2

0wx2t+
5

24

(
θ2 − 1

5

)(
θ2 − 1

)
h4

0wx4t+
1

720

(
θ2 − 1

) (
61θ4 − 14θ2 + 1

)
h6

0wx6t = 0

(2.14)
to order β4.
Proceeding as with the fifth order system, we seek a solution of the form η = Aeikx−iωt, w =

Beikx−iωt, which gives

−ω
[
1 + 1

5040

(
7θ2
(
61θ4 − 25θ2 + 3

)
− 1
)
h6

0k
6
]
A+ kh0

[
1− 1

2

(
θ2 − 1

3

)
k2h2

0 + 5
24

(
θ2 − 1

5

)2
k4h4

0

]
B = 0,

gkA− ω
[
1− 1

2

(
θ2 − 1

)
h2

0k
2 + 5

24

(
θ2 − 1

5

) (
θ2 − 1

)
h4

0k
4 − 1

720

(
θ2 − 1

) (
61θ4 − 14θ2 + 1

)
h6

0k
6
]
B = 0.

Rewriting this as a matrix equation and requiring that the determinant of the coefficient
matrix is zero gives the following dispersion relation

ω2

k2
= gh0

f0(k, θ)

f1(k, θ)f2(k, θ)
(2.15)

where

f0(k, θ) = 1− 1

2

(
θ2 − 1

3

)
k2h2

0 +
5

24

(
θ2 − 1

5

)2

h4
0k

4,

f1(k, θ) =1 +
1

5040

(
7θ2
(
61θ4 − 25θ2 + 3

)
− 1
)
h6

0k
6

=1 +
1

5040

(
427θ6 − 175θ4 + 21θ2 − 1

)
h6

0k
6,

and

f2(k, θ) = 1−1

2

(
θ2 − 1

)
h2

0k
2+

5

24

(
θ2 − 1

5

)(
θ2 − 1

)
h4

0k
4− 1

720

(
θ2 − 1

) (
61θ4 − 14θ2 + 1

)
h6

0k
6.

First, note in particular that this dispersion relation becomes singular when θ = 0.
Indeed, when θ = 0, eq. (2.15) reduces to

ω2

k2
= − 30240((kh0)4 + 20(kh0)2 + 120)

((kh0)6 − 5040)((kh0)6 + 30(kh0)4 + 360(kh0)2 + 720)
. (2.16)
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One of the real roots of the sixth degree polynomial (kh0)6−5040 in k is k1 = 1
h0

6
√

5040.
It is easy to check that the limits of the right hand side of (2.16) as k → k1 from the left
and right side are +∞ and −∞, respectively. Hence the dispersion relation (2.16) becomes
unbounded for these values of k. This shows why we needed to introduce θ in (2.2) and
the last equation in (2.4), since these equations, which model the horizontal fluid velocity
u(x, t) at the bottom z = −h0 (in dimensional variables), are not well behaved numerically.

It turns out that the dispersion relation (2.15) is bounded above and positive for all
wavenumbers k when s0 ≤ θ2 ≤ 1, where

s0 =
1

1281

(
175 +

3

√
759304− 71736

√
102 + 2

3

√
94913 + 8967

√
102

)
≈ 0.2511.

To prove this, we first show that f1(k, θ) ≥ 1 for all θ2 ∈ [s0, 1] , k ∈ R, h0 > 0.
Let s = θ2 and consider the function

p(k, s) =
1

5040

(
427s3 − 175s2 + 21s− 1

)
k6h6

0. (2.17)

The discriminant of the cubic polynomial p0(s) := 427s3 − 175s2 + 21s − 1 appearing
in (2.17) is ∆s = −426496 < 0, so p0(s) has one real root and two non-real, complex
conjugate roots. Its real root can be found from the cubic formula, and it is

θ2 = s = s0 =
1

1281

(
175 +

3

√
759304− 71736

√
102 + 2

3

√
94913 + 8967

√
102

)
≈ 0.2511.

Since p0(s = 0) = −1 < 0, and p0(s = 1) = 272 > 0, we conclude that p0(s) ≥ 0 for
s = θ2 ≥ s0, and p0(s) < 0 for s = θ2 < s0. It follows that

p(k, s) =
1

5040

(
427s3 − 175s2 + 21s− 1

)
k6h6

0 ≥ 0 (2.18)

for any s = θ2 ∈ [s0, 1] and any k ∈ R, h0 > 0. Now add 1 to both sides of inequality
(2.18) to conclude that f1(k, θ) ≥ 1 for any θ2 ∈ [s0, 1], k ∈ R, h0 > 0.

Note that if θ2 < s0, then p0 < 0 and there exists some k ∈ R such that

1

5040

(
427θ6 − 175θ4 + 21θ2 − 1

)
k6h6

0 = −1

and hence f1 = 0. Thus the dispersion relation (2.15) may become unbounded for θ2 ∈
(0, s0).

Next, we show that f2(k, θ) ≥ 1 for all θ2 ∈ [0, 1] , k ∈ R. Let r = h2
0k

2. We begin by
looking at the sign of the polynomial

p1(r, θ) = 1− 5

12

(
θ2 − 1

5

)
r +

1

360

(
61θ4 − 14θ2 + 1

)
r2. (2.19)

Treating p1 as a quadratic polynomial in r, with coefficients depending on θ, its dis-
criminant is

∆r(θ) =
1

720
(−363θ4 + 62θ2 − 3).
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Note that 61θ4 − 14θ2 + 1 has no real roots, so p1 is always a quadratic polynomial in r.
Since ∆r < 0 for all θ ∈ R, it follows that the polynomial (2.19) has no real roots r, for
any fixed value of θ ∈ R. Moreover, we have p1(r, θ)|r=0 = 1 > 0 for any fixed θ ∈ R. Thus
the following inequality is true for any fixed θ ∈ R and all r = (kh0)2 ≥ 0

p1(r, θ) = 1− 5

12

(
θ2 − 1

5

)
r +

1

360

(
61θ4 − 14θ2 + 1

)
r2 > 0. (2.20)

Now assume 0 ≤ θ2 < 1 and r = (kh0)2 > 0, and multiply both sides of inequality
(2.20) by −1

2
(θ2 − 1)r > 0. Then add 1 to both sides to obtain

1− 1

2

(
θ2 − 1

)
r+

5

24

(
θ2 − 1

5

)(
θ2 − 1

)
r2− 1

720

(
θ2 − 1

) (
61θ4 − 14θ2 + 1

)
r3 > 1. (2.21)

Inequality (2.21) is true for any fixed θ2 ∈ [0, 1) and all r > 0. Since r = (kh0)2, the
expression on the left hand side of inequality (2.21) is equal to f2(k, θ), and we have shown
that f2(k, θ) > 1 for any fixed θ2 ∈ [0, 1) and all kh0 6= 0. Looking at the expression
for f2(k, θ), we have f2 = 1 when kh0 = 0 or when θ = 1. Thus, we have shown that
f2(k, θ) ≥ 1 for all k ∈ R, h0 > 0, for any fixed θ2 ∈ [0, 1].

In order to prove that the dispersion relation (2.15) is always positive for θ2 ∈ [s0, 1],
k ∈ R, we need to show that f0(k, θ) > 0 for such θ, k. Again letting r = (kh0)2, we have

f0(r, θ) = 1− 1

2

(
θ2 − 1

3

)
r +

5

24

(
θ2 − 1

5

)2

r2.

The discriminant of the quadratic polynomial f0(r, θ) in r is

∆r =
1

180
(−105θ4 + 30θ2 − 1).

Since ∆r < 0 for θ2 > 1
105

(
15 + 2

√
30
)
≈ 0.2472, and 1

105

(
15 + 2

√
30
)
< s0, it follows

that f0(r, θ) has no real roots r for any fixed θ2 ∈ [s0, 1] (it is obviously also always a
quadratic polynomial in r for such θ). Since f0(r, θ)|r=0 = 1 > 0 for any θ ∈ R, we have
f0(k, θ) > 0 for any fixed θ2 ∈ [s0, 1], k ∈ R, h0 > 0. From the discussion above, we
conclude that the dispersion relation (2.15) is positive for any θ2 ∈ [s0, 1], k ∈ R h0 > 0.

Since we have shown that f1(k, θ) ≥ 1 and f2(k, θ) ≥ 1 for all k ∈ R, h0 > 0 when
θ2 ∈ [s0, 1], the dispersion relation (2.15) has no singularities for these values of θ, k and
h0.

Now fix any θ2 ∈ [s0, 1]. Note that since 1/5 < s0, the polynomial in the numerator of
(2.15) is always of degree 4 in kh0, while the expanded polynomial in the denominator of
(2.15) is of degree 12 in kh0, provided s0 < θ2 < 1 (it is easy to check that 61θ4− 14θ2 + 1
has no real roots). If θ2 = s0 or θ2 = 1, the expanded polynomial in the denominator is
of degree 6 in kh0. In either case, the polynomial in the denominator is of higher degree
in kh0 than the polynomial in the numerator of (2.15). Thus, for any fixed θ2 ∈ [s0, 1] the
dispersion relation (2.15) remains bounded above as kh0 → ±∞, since the denominator
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dominates the numerator for large k, h0. Hence we have proved the fact that the dispersion
relation (2.15) is bounded above and positive for θ2 ∈ [s0, 1], k ∈ R and h0 > 0.

Note that there may exist values of θ2 ∈ (0, s0) for which the dispersion relation (2.15)
is bounded above and positive for all k ∈ R as well, but there is no guarantee for this, as
there always exist k ∈ R such that f1 = 0 for these values of θ. Plotting the dispersion
relation for θ2 ∈ (0, s0) suggests that the dispersion relation is always unbounded for some
k ∈ R for such θ.

If both sides of the dispersion relation is multiplied by k2, so that ω2 is a function of k,
the numerator on the right hand side is a polynomial of degree 6 in k, for any θ2 ∈ [s0, 1].
Since the polynomial in the numerator is of degree 12 in kh0 when θ2 ∈ (s0, 1), ω2 will stay
bounded for any θ2 ∈ (s0, 1).

A plot of the dispersion relation (2.15) for
√
s0 ≤ θ ≤ 1 is shown in Figure (2.1).

Figure 2.1: Plot of the dispersion relation (2.15) for the linearized seventh order BBM system
(2.13), (2.14) for

√
s0 ≤ θ ≤ 1
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2.2 Seventh order system of pure BBM type

Another interesting equivalent system to consider is when ∂n

∂xn
derivatives in the linear

terms are replaced by ∂n

∂xn−1∂t
derivatives in (2.10), for all n ≥ 3.

Inserting relations (1.55),(1.56) and (1.57) into (2.10) we obtain

ηt + wx + α (ηw)x −
1

2

(
θ2 − 1

3

)
βηxxt +

1

2

(
θ2 − 1

)
αβ (ηwxx)x

−1

2

(
θ2 − 1

3

)
αβ (ηw)xxx +

1

360

(
15θ4 − 30θ2 + 7

)
β2ηxxxxt

−1

4

(
θ2 − 1

3

)(
θ2 − 1

)
αβ2 (ηwxx)xxx +

1

360

(
15θ4 − 30θ2 + 7

)
αβ2 (ηw)xxxxx

+
5

24

(
θ2 − 1

5

)(
θ2 − 1

)
αβ2 (ηwxxxx)x −

1

2
α2β

(
η2wxx

)
x

− 1

15120

(
21θ6 − 105θ4 + 147θ2 − 31

)
β3ηxxxxxxt +O(α3β, α2β2, αβ3, β4) = 0

(2.22)

after simplifying.
The system (2.22), (2.12) will be referred to as the seventh order system of pure BBM

type.
The linearized version of (2.22) is

ηt + wx −
1

2

(
θ2 − 1

3

)
βηx2t +

1

360

(
15θ4 − 30θ2 + 7

)
β2ηx4t

− 1

15120

(
21θ6 − 105θ4 + 147θ2 − 31

)
β3ηx6t +O(β4) = 0.

(2.23)

The linear system (2.23), (2.14) in dimensional variables leads to the dispersion relation

ω2

k2
= gh0

1

f2(k, θ)f3(k, θ)
(2.24)

where

f3(k, θ) = 1+
1

2

(
θ2 − 1

3

)
h2

0k
2+

1

360

(
15θ4 − 30θ2 + 7

)
h4

0k
4+

1

15120

(
21θ6 − 105θ4 + 147θ2 − 31

)
h6

0k
6

(2.25)
and f2(k, θ) is as defined in (2.15).
We now investigate which θ ∈ [0, 1] make the dispersion relation (2.24) bounded and

positive. Let r ∈ R, and consider the polynomial

F (r, θ) = 1+
1

2

(
θ2 − 1

3

)
r+

1

360

(
15θ4 − 30θ2 + 7

)
r2+

1

15120

(
21θ6 − 105θ4 + 147θ2 − 31

)
r3.

(2.26)
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Note that f3(k, θ) is equal to F (r, θ) when r is evaluated at (kh0)2 ≥ 0.
A general cubic polynomial ax3 + bx2 + cx + d has discriminant ∆ = 18abcd− 4b3d +

b2c2 − 4ac3 − 27a2d2. If ∆ > 0, the equation has three distinct real roots. If ∆ = 0 then
the equation has a multiple root and all its roots are real. If ∆ < 0, then the equation has
two non-real complex conjugate roots and one real root. If the highest order coefficient a
in the cubic polynomial is zero, the discriminant becomes b2c2 − 4b3d = b2(c2 − 4bd), i.e.,
b2 times the discriminant of the quadratic polynomial bx2 + cx + d. Thus, if the leading
coefficient of a cubic polynomial is zero, its discriminant computed from the formula for
a cubic polynomial has the same sign as the discriminant computed from the formula for
the discriminant of the quadratic polynomial bx2 + cx+ d.

Treating F (r, θ) in eq. (2.26) as a cubic polynomial in r with coefficients depending on
θ, its discriminant is found to be

∆r(θ) =
1

571536000

(
−46305θ12 + 330750θ10 − 465255θ8 + 37380θ6 − 400575θ4 + 219870θ2 − 29017

)
.

(2.27)
We look at the sign of the polynomial

δr(θ) := −46305θ12 + 330750θ10 − 465255θ8 + 37380θ6 − 400575θ4 + 219870θ2 − 29017.

To analyze the sign of the 12th degree polynomial δr(θ) for θ ∈ [0, 1], we will use
Sturm’s theorem, which we state below.

Sturm’s theorem

The Sturm sequence of a polynomial P (x) of one real variable, with real coefficients is
the sequence S(x) = {P0(x), P1(x), ...} of polynomials P0(x), P1(x), ..., defined by

P0 = P, P1 = P ′, Pi+1 = −Rem(Pi−1, Pi)

for i ≥ 1, where P ′ is the derivative of P and Rem(Pi−1, Pi) is the remainder of the
Euclidean division of Pi−1 by Pi, that is, Pi+1 satisfies Pi−1 = PiQi−Pi+1, where Qi is the
quotient when Pi−1 is divided by Pi, for i ≥ 1. The length of the Sturm sequence is at
most the degree of P .

The number of sign variations at x0 of the Sturm sequence is the number of sign
changes in the sequence P0(x0), P1(x0), P2(x0)..., ignoring zeros. We denote the number of
sign variations by N(x0).

Sturm’s theorem states that if P is a square-free polynomial, then the number of real
roots of P in the half-open interval (a, b] is N(a) − N(b). Furthermore, if the polyno-
mial P is not square-free, then N(a) − N(b) is the number of real roots of P in (a, b], if
neither a nor b is a multiple root of P . Each multiple root of P in (a, b) is counted only once.
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For more information on Sturm’s theorem, see [13], [14], [15] or [16]. A proof of Sturm’s
theorem is given in [15], p. 220.

We will use Sturm’s theorem to show that δr(θ) has no real roots in the interval (0, 1].
It is easy to check that neither θ = 0 nor θ = 1 are roots of δr(θ).

The Sturm sequence of δr(θ) is

S(θ) = {P0(θ), P1(θ), ..., P12(θ)} , (2.28)

where
P0(θ) = δr(θ),

P1(θ) =
d

dθ
δr(θ) = −555660θ11 +3307500θ9−3722040θ7 +224280θ5−1602300θ3 +439740θ,

P2(θ) = −55125θ10 + 155085θ8 − 18690θ6 + 267050θ4 − 183225θ2 + 29017

P3(θ) = −8721216θ9

5
+

17668224θ7

5
+ 2467584θ5 − 244608θ3 − 3681216θ

25

P4(θ) = −4471005θ8

103
+

9957570θ6

103
− 28302400θ4

103
+

18392850θ2

103
− 29017

P5(θ) =
305049600θ7

869
− 11739329280θ5

869
+

6448055808θ3

869
− 6196951296θ

6083

P6(θ) =
8334858273θ6

5296
− 8510169717θ4

13240
− 1392804231θ2

26480
+ 29017

P7(θ) =
5304796768131840θ5

396898013
− 2949674292880896θ3

396898013
+

406901812160256θ

396898013

P8(θ) = −76418823813239117θ4

328918450405
+

57006860664537742θ2

328918450405
− 29017

P9(θ) = −27714629666796277244928θ3

10916974830462731
+

7031394280275830012928θ

10916974830462731

P10(θ) = −147403359170393006848275θ2

1288812763522892357
+ 29017

P11(θ) =
188421397432861509607424θ

49134453056797668949425

P12(θ) = −29017.
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Note that the greatest common divisor of the polynomials δr(θ) and d
dθ
δr(θ) is equal to

1, so the polynomial δr(θ) is square-free, i.e., it has no repeated roots (see [13]).
Evaluating the Sturm sequence (2.28) at θ = 0 gives

S(0) = {P0(0), P1(0), ..., P12(0)}
={−29017, 0, 29017, 0,−29017, 0, 29017, 0,−29017, 0,

29017, 0,−29017}
(2.29)

and evaluating (2.28) at θ = 1 gives

S(1) = {P0(1), P1(1), ..., P12(1)}

=
{
− 353152,−1908480, 194112,

96628224

25
,

− 7411736

103
,−41100518400

6083
,
1201475893

1324
,
2762024287411200

396898013
,

− 5791237964820652

65783690081
,−20683235386520447232000

10916974830462731
,

− 110005879211249239325206

1288812763522892357
,
188421397432861509607424

49134453056797668949425
,−29017

}
.

(2.30)

Going from left to right in the sequence (2.29), we see that there are six sign changes
(ignoring zeros), hence N(0) = 6. Likewise, we see that there are six sign changes in
(2.30), so N(1) = 6. Thus N(0)−N(1) = 0, and by Sturm’s theorem the polynomial δr(θ)
has no real roots in (0, 1]. Moreover, when θ = 0 we have δr = −29017 < 0, and since
∆r(θ) = 1

571536000
δr(θ), we have shown that ∆r(θ) has no real roots in [0, 1].

Since ∆r(θ = 0) = − 29017
571536000

< 0, we conclude that the discriminant ∆r(θ) < 0 for all
θ ∈ [0, 1].

Note that if θ ∈ [0, 1] is chosen such that the coefficient a(θ) := 1
15120

(21θ6 − 105θ4 + 147θ2 − 31)
in front of the cubic term r3 in (2.26) is zero, then the discriminant ∆r(θ) (eq. (2.27))
computed from the formula for a cubic polynomial has the same sign as the discriminant
computed from the formula for a quadratic polynomial. We will show later that a(θ) has
exactly one real root θ in the interval (0, 1), which we denote by

√
s1. Thus, the quadratic

polynomial F (r, θ)|θ=√s1 in (2.26) has no real roots r for θ =
√
s1, and the fourth de-

gree polynomial f3(k, θ)|θ=√s1 in (2.25) has four non-real roots, and it is positive for all
k ∈ R, h0 > 0, since f3(k = 0, θ =

√
s1) = 1 > 0.

The fact that ∆r(θ) < 0 for all θ ∈ [0, 1], implies that the cubic polynomial F (r, θ) in
r, where r ∈ R, has two non-real roots (complex conjugates), call them r1 and r2, and one
real root which we denote by r3, for any fixed θ ∈ [0, 1] \

{√
s1

}
.

The roots of the sixth degree polynomial f3(k, θ) in kh0 (eq. (2.25)), for the same

fixed θ ∈ [0, 1] \
{√

s1

}
, are then k1,2 = 1

h0
(r1)

1
2 , k3,4 = 1

h0
(r2)

1
2 , k5,6 = ± 1

h0

√
r3,

where (r1)
1
2 and (r2)

1
2 both denote double valued square roots of the non-real numbers

r1 and r2. Since the n-th root of a non-real number is always non-real, we always have
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k1,2,3,4 ∈ C \ R. If r3 < 0, then all 6 roots k1,2,3,4,5,6 of f3(k, θ) are non-real, and the
dispersion relation has no singularities for any k ∈ R, and it remains bounded above for
all k. Since f2(k, θ) ≥ 1, f3(k, θ) > 0 for all such θ and for all k ∈ R, h0 > 0, the dispersion
relation is also positive for all such k, h0, θ. If r3 ≥ 0, then k5,6 ∈ R and the dispersion
relation becomes singular at these values of k.

Thus, in order to determine which values of θ give a bounded and positive dispersion
relation (2.24), we need to investigate which choices of θ ∈ [0, 1] \

{√
s1

}
give r3 < 0. For

this we will use Descartes’ rule of signs on the cubic polynomial F (r, θ). (See ? below for
an alternative proof without using Descartes’ rule of signs.)

Descartes’ rule of signs states that if the terms of a single-variable polynomial p(x)
with real coefficients are ordered by descending variable exponent, then the number of
positive roots of p(x) is either equal to the number of sign differences between consecutive
nonzero coefficients, or is less than it by a positive, even integer. Multiple roots are counted
separately.

The number of negative roots of p(x) can be found by substituting x 7→ −x in p(x),
and counting the number of positive roots using Descartes’ rule of signs on the polynomial
p(−x).

For more information on Descartes’ rule of signs, see [13], [16].

To apply Descartes’ rule of signs on F (r, θ), where r ∈ R, it will be treated as a single
variable cubic polynomial in r, with coefficients depending on θ.

Write
F (r, θ) = a(θ)r3 + b(θ)r2 + c(θ)r + 1 (2.31)

where a(θ) = 1
15120

(21θ6 − 105θ4 + 147θ2 − 31), b(θ) = 1
360

(15θ4 − 30θ2 + 7), c(θ) =
1
2

(
θ2 − 1

3

)
, and r ∈ R.

First note that a(θ) is a cubic polynomial in s := θ2, and its roots can be found from the

cubic formula. Its only real root is s1 = θ2 = 1
3

(
5− 2 3

√
1
7
(11− 6

√
2)− 2 3

√
1
7
(11 + 6

√
2)

)
≈

0.2549 (the discriminant of a(s) treated as a cubic polynomial in s = θ2 is ∆s = − 1
19289340000

<
0, by the same formula used above for calculating ∆r(θ), so it has only one real root, which
must be s1). Furthermore, we have a(s = 1) = 2

945
> 0 and a(s = 0) = − 31

15120
< 0, so

a(θ) > 0 for θ2 > s1, and a(θ) < 0 for θ2 < s1.

Next, the roots of b(s) are found to be s2 = θ2 = 1 − 2
√

2
15
≈ 0.26970, and s3 =

θ2 = 1 + 2
√

2
15
≈ 1.7303, where s = θ2 as before. Since b(s = 1) = − 1

45
< 0 and

b(s = 0) = 7
360

> 0, we have b(θ) > 0 for s = θ2 < s2 and b(θ) < 0 for s2 < s = θ2 ≤ 1.
It is obvious that r = 0 is not a root of (2.31), so the only possibilities are r > 0 and

r < 0.
First consider the case when 1

3
< θ2 ≤ 1. Then c(θ) > 0, a(θ) > 0 and b(θ) < 0,

so we can write F (r, θ) = +a(θ)r3 − |b(θ)|r2 + c(θ)r + 1. Going from left to right in this
polynomial, we see that there is a total of two sign changes between each coefficient. This
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implies that F (r, θ) has either two positive, real roots r, or zero positive, real roots r, for
any fixed θ2 ∈

(
1
3
, 1
]
. Since we already know that F (r, θ) has two non-real roots and one

real root from the discussion above, we can conclude that F (r, θ) has zero real, positive
roots, and one negative real root. (This can also be verified by substituting r 7→ −r and
counting the number of positive roots of F (−r, θ), which shows that F (r, θ) has exactly one
negative real root.) Thus, for any fixed θ2 ∈

(
1
3
, 1
]
, the sixth degree polynomial f3(k, θ)

has only non-real roots, and the dispersion relation is non-singular. The dispersion relation
(2.24) is bounded above and positive for these values of θ.

Next, consider the case s2 < θ2 < 1
3
. Then b(θ) < 0, a(θ) > 0, and c(θ) < 0, so we

can write F (r, θ) = +a(θ)r3 − |b(θ)|r2 − |c(θ)|r + 1. There are again two sign changes in
this equation, so Descartes’ rule of signs implies, by the same argument used above, that
F (r, θ) has zero positive roots, and thus must have one negative root. Thus the dispersion
relation (2.24) is bounded above and positive for s2 < θ2 < 1

3
as well.

The next case to consider is s1 < θ2 < s2. Then we have b(θ) > 0, a(θ) > 0, c(θ) < 0, so
F (r, θ) = +a(θ)r3 +b(θ)r2−|c(θ)|r+1. By Descartes’ rule of signs and the same arguments
as above, since there are two sign changes, we again conclude that the dispersion relation
(2.24) is bounded above and positive s1 < θ2 < s2 as well.

The final interval to investigate is 0 ≤ θ2 < s1. For such θ2, we have a(θ) < 0, b(θ) > 0,
and c(θ) < 0. Thus we can write F (r, θ) = −|a(θ)|r3 + b(θ)r2 − |c(θ)|r + 1. Here there
are three sign changes, which means that F (r, θ) has either three positive roots, or one
positive root, by Descartes’ rule of signs. Again, since we already know that F (r, θ) has
two non-real roots and one real root, we can conclude that F (r, θ) has one positive real
root r3 for 0 ≤ θ2 < s1. This means that the sixth degree polynomial f3(k, θ) in kh0 has
two real roots k5,6 = ± 1

h0

√
r3 for such θ2, and the dispersion relation becomes singular

at these values of k. The dispersion relation (2.24) is thus not bounded for all k when
0 ≤ θ2 < s1.

Finally, we look at the cases θ2 = 1
3
, and θ2 = s2. When θ2 = 1

3
, we have b(θ) < 0,

a(θ) > 0 and c(θ) = 0, so F (r, θ) = +a(θ)r3 − |b(θ)|r2 + 1. Here there are again two sign
changes, so we conclude by the same arguments as above that the dispersion relation (2.24)
is bounded above and positive for θ2 = 1

3
.

When θ2 = s2, we have b(θ) = 0, a(θ) > 0 and c(θ) < 0, and so F (r, θ) = +a(θ)r3 −
|c(θ)|r+ 1. Again, there are two sign changes, so the dispersion relation (2.24) is bounded
above and positive for θ2 = s2.

For the final case θ2 = s1, we know from above that the fourth degree polynomial
f3(k, θ)|θ2=s1 is always positive, hence (2.24) is bounded above and positive.

To summarize, we have shown that

• Given any fixed θ ∈ [0, 1]\
{√

s1

}
, the cubic polynomial F (r, θ) in r ∈ R (eq. (2.26)),

with coefficients depending on θ, has two non-real roots r1 and r2, and one real root
r3 (by Sturm’s theorem). If θ =

√
s1, the quadratic polynomial F (r, θ)|θ=√s1 has two

non-real roots.

• Given any fixed θ2 ∈ (s1, 1], the cubic polynomial F (r, θ) in r has two non-real roots
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r1 = |r1|eiφ1 and r2 = |r2|eiφ2 , where φ1, φ2 6= jπ, j ∈ Z are the arguments of r1 and
r2, and one negative real root r3 = −|r3| (by Descartes’ rule of signs).

For such a fixed θ2 ∈ (s1, 1], the sixth degree polynomial f3(k, θ) (eq. (2.25)) in
kh0 has six non-real roots given by k1,2 = ± 1

h0

√
|r1|eiφ1/2, k3,4 = ± 1

h0

√
|r2|eiφ2/2 and

k5,6 = ± 1
h0

√
|r3|i. When θ2 = s1, the fourth degree polynomial f3(k, θ)|θ2=s1 in (2.25)

is always positive, as discussed above.

• Since f3(k, θ)|k=0 = 1 > 0, for any fixed θ2 ∈ [s1, 1], and it has no real roots for such
θ, we have f3(k, θ) > 0 for all k ∈ R, h0 > 0, for any fixed θ2 ∈ [s1, 1].

From the above discussion, and the fact that f2(k, θ) ≥ 1 for all θ2 ∈ [0, 1] and all
k ∈ R, h0 > 0, we conclude that the dispersion relation (2.24) for the linearized seventh
order pure BBM system is bounded above and positive for

0.2549 ≈ 1

3

(
5− 2

3

√
1

7
(11− 6

√
2)− 2

3

√
1

7
(11 + 6

√
2)

)
= s1 ≤ θ2 ≤ 1.

? ALTERNATIVE PROOF:
For any polynomial P (x) of odd degree we have

lim
x→∞

P (x) =

{
+∞ if C > 0,

−∞ if C < 0,
(2.32)

and

lim
x→−∞

P (x) =

{
−∞ if C > 0,

+∞ if C < 0,
(2.33)

where C ∈ R is the coefficient of the highest power in x of the polynomial P (x). From
(2.32), (2.33), the fact that the cubic polynomial F (r, θ) has exactly one real root r3 for any
fixed θ ∈ [0, 1] \

{√
s1

}
, and that F (r, θ) must pass through the point F (r, θ)|r=0 = 1, it is

clear that F (r, θ) has a negative root r3 if and only if the highest order coefficient a(θ) =
1

15120
(21θ6 − 105θ4 + 147θ2 − 31) > 0. (If a(θ) = 0, i.e. θ =

√
s1, then F (r, θ) becomes

a quadratic polynomial in r which has no real roots, so the fourth degree polynomial
f3(k, θ)|θ=√s1 in (2.25) is positive for all k ∈ R for θ =

√
s1 (see the discussion below eq.

(2.30)).)
Note that a(θ) is a cubic polynomial in s := θ2, and its roots can be found from the cu-

bic formula. Its only real root is s1 = θ2 = 1
3

(
5− 2 3

√
1
7
(11− 6

√
2)− 2 3

√
1
7
(11 + 6

√
2)

)
≈

0.2549 (the discriminant of a(s) treated as a cubic polynomial in s = θ2 is ∆s = − 1
19289340000

<
0, by the same formula used above for calculating ∆r(θ), so it has only one real root, which
must be s1). Furthermore, we have a(s = 1) = 2

945
> 0 and a(s = 0) = − 31

15120
< 0, so
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a(θ) > 0 for θ2 > s1, and a(θ) < 0 for θ2 < s1. Hence, for any fixed θ2 ∈ (s1, 1], F (r, θ)
has one negative real root r3 = −|r3| and two non-real roots r1 = |r1|eiφ1 and r2 = |r2|eiφ2 ,
where φ1, φ2 6= jπ, j ∈ Z are the arguments of r1 and r2.

For such a fixed θ2 ∈ (s1, 1], the sixth degree polynomial f3(k, θ) (eq. (2.25)) in kh0

has six non-real roots given by k1,2 = ± 1
h0

√
|r1|eiφ1/2, k3,4 = ± 1

h0

√
|r2|eiφ2/2 and k5,6 =

± 1
h0

√
|r3|i.

Since f3(k, θ)|k=0 = 1 > 0, for any fixed θ2 ∈ [s1, 1], and it has no real roots for such θ,
we have f3(k, θ) > 0 for all k ∈ R, h0 > 0, for any fixed θ2 ∈ [s1, 1].

The alternative proof is obviously much less work, but we include both versions to
illustrate the usefulness of Descartes’ rule of signs, which can be employed to study more
complicated dispersion relations, for example for even higher order systems.

The dispersion relation (2.24) for the linearized seventh order system of pure BBM-type
is shown in Figure (2.2) below.

Figure 2.2: Plot of the dispersion relation (2.24) for the linearized seventh order system of pure
BBM-type for

√
s1 ≤ θ ≤ 1.
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2.3 Comparison of dispersion relations

In this section, we compare dispersion relations for the third, fifth and seventh order BBM
- type systems, for different values of θ, with the dispersion relation for the full water wave
problem eq. (1.30).

First note that the dispersion relation for the full water wave problem (1.30) may be
rewritten as

ω2

k2
=
gh0

kh0

tanh(kh0) = c2
0

tanh(kh0)

kh0

. (2.34)

The lower order pure BBM type systems can be derived from the seventh order equa-
tions.

Collecting terms of order αβ and order β2 in (2.10) and (2.12) and writing O(αβ, β2)
in place of those terms, we obtain the widely studied third order Boussinesq system

ηt + wx + α (ηw)x +
1

2

(
θ2 − 1

3

)
βwxxx +O(αβ, β2) = 0, (2.35)

ηx + wt + αwwx +
1

2

(
θ2 − 1

)
βwxxt +O(αβ, β2) = 0. (2.36)

Now replace the βwxxx term in (2.35) using relation (1.53) to obtain the well known
3rd order system of pure BBM - type

ηt + wx + α (ηw)x −
1

2

(
θ2 − 1

3

)
βηxxt +O(αβ, β2) = 0, (2.37)

ηx + wt + αwwx +
1

2

(
θ2 − 1

)
βwxxt +O(αβ, β2) = 0. (2.38)

Its dispersion relation is

ω2

k2
= gh0

1(
1 +

(
θ2 − 1

3

)
k2h2

0

) (
1− 1

2
(θ2 − 1) k2h2

0

) . (2.39)

From (2.39) we see that 1− 1
2

(θ2 − 1) k2h2
0 ≥ 1 for all θ ∈ [0, 1], k ∈ R, h0 > 0, and that

1 +
(
θ2 − 1

3

)
k2h2

0 ≥ 1 if θ2 ∈ [1
3
, 1], k ∈ R, h0 > 0. If θ2 ∈

[
0, 1

3

)
, then there always exists

some k ∈ R such that 1 +
(
θ2 − 1

3

)
k2h2

0 = 0 and the dispersion relation (2.39) becomes
singular for these values of θ. Hence the dispersion relation (2.39) is bounded above and
positive for θ2 ∈

[
1
3
, 1
]
, k ∈ R, h0 > 0. This was also discussed in [10].

The linearized seventh order Boussinesq system (2.10), (2.12) with no terms/derivatives
replaced has dispersion relation

ω2

k2
= gh0

f4(k, θ)

f2(k, θ)
(2.40)
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where

f4(k, θ) =1− 1

2

(
θ2 − 1

3

)
(kh0)2 +

5

24

(
θ2 − 1

5

)2

(kh0)4 − 1

5040

(
7θ2
(
61θ4 − 25θ2 + 3)

)
− 1
)

(kh0)6

=1− f1(k, θ) + f0(k, θ)

and f2(k, θ) is as defined in (2.15).
When θ = 11/25 this becomes

ω2

k2
= gh0

6029083(kh0)6 + 656250(kh0)4 + 5373046875(kh0)2 + 76904296875

63 (84 (9374(kh0)4 + 15625(kh0)2 + 5859375) (kh0)2 + 1220703125)
, (2.41)

which is always positive, and the denominator obviously has no real roots.
Since the fifth order BBM -type system where only the wxxxxx term is replaced by

−ηxxxxt has an unbounded dispersion relation for all θ2 6= 1/5 (as discussed earlier), and
the fifth order system reduces to a third order system that is not of BBM-type when
the value θ2 = 1/5 is chosen, we only look at the fifth order system of pure BBM type
instead. The fifth order system of pure BBM type can be obtained by neglecting terms of
O(α2β, αβ2, β3) in the seventh order pure BBM system. The linearized fifth order system
of pure BBM type is then obtained as

ηt + wx −
1

2

(
θ2 − 1

3

)
βηxxt +

1

360

(
15θ4 − 30θ2 + 7

)
β2ηxxxxt +O(β3) = 0 (2.42)

ηx + wt +
1

2

(
θ2 − 1

)
βwxxt +

5

24

(
θ2 − 1

)(
θ2 − 1

5

)
β2wxxxxt +O(β3) = 0. (2.43)

Its dispersion relation is

ω2

k2
= gh0

1

g1(k, θ)g2(k, θ)
(2.44)

Where

g1(k, θ) = 1 +
1

2

(
θ2 − 1

3

)
(kh0)2 +

1

360

(
15θ4 − 30θ2 + 7

)
(kh0)4

g2(k, θ) = 1− 1

2
(θ2 − 1)(kh0)2 +

5

24

(
θ2 − 1

)(
θ2 − 1

5

)
(kh0)4

It can be shown that this dispersion relation is bounded and positive for θ2 ∈ [0, 1/5].
The choice of θ plays a large role in how the dispersion relations look. For instance,

looking at the dispersion relation (2.24) for the seventh order pure BBM-type system,
we see that the magnitude of the coefficient in front of the highest degree k12h12

0 in the
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expanded denominator determines how rapidly the dispersion relation approaches zero
as kh0 becomes large. If the coeffient in front of the highest order term k12h12

0 in the
dispersion relation is as small as possible, then the dispersion relation will remain closer to
the dispersion relation for the full water wave problem as kh0 gets larger. The dispersion
relation (2.15) has a term in the numerator which balances out the denominator, and hence
this dispersion relation will remain closer to the dispersion relation for the full water wave
problem as kh0 gets larger. For the dispersion relation (2.40) the situation appears to
be even better, since unless θ =

√
s0 or θ = 1, this dispersion relation has sixth degree

polynomials in kh0 in both the denominator and the numerator. Thus, this dispersion
relation will remain much closer to tanh(kh0)

kh0
than the other dispersion relations as kh0

gets large. In some cases, these dispersion relations remain close to the full water wave
dispersion relation for relatively large kh0, but they approach zero too slowly (or never

approach zero at all) as kh0 grows larger and thus diverges from the curve for tanh(kh0)
kh0

for
such kh0, which is not physically correct, and can cause problems numerically as there is
no control over the phase velocity or the group velocity of the finer scale components, as
was argued in [12]. The system (2.10), (2.12) is also not a BBM-type system, so it is more
difficult to treat numerically. From the grid lines in Figures (2.1) and (2.2) it appears that
values of θ chosen closer to the endpoints of the intervals in which the dispersion relation
is bounded and positive yield a closer approximation to the dispersion relation for the full
water wave problem, as the dispersion relations have larger magnitudes for values of θ close
to the endpoints. It must be noted that if one of the endpoints is chosen as the value of θ,
then one of the highest degree terms in the seventh order systems drop out. This is also
true for the fifth and third order systems.

Plots of various dispersion relations for the different systems are shown in Figure (2.3).
As expected, the dispersion relation (2.40) for the seventh order Boussinesq system (2.10),

(2.12) with θ = 11/25, indicated by a blue line, remains closest to tanh(kh0)
kh0

(indicated by
a black line) in the interval shown in the figure. However, since this dispersion relation
does not approach zero as kh0 → ±∞ (it in fact approaches 6029083/49607208 ≈ 0.12), it
eventually intersects the full dispersion relation at around |kh0| ≈ 7.5, and remains above

the full dispersion relation tanh(kh0)
kh0

(which approaches zero as kh0 → ±∞) for all |kh0|
greater than ≈ 7.5. One might try other values of θ to find a dispersion relation that
remains closer for a larger interval of kh0, and gets closer to zero for large kh0. All other
dispersion relations shown in Figure (2.24) approach zero as kh0 → ±∞. In general, it
appears that the dispersion relations for the seventh order BBM-type systems always stay
closer to tanh(kh0)

kh0
for small kh0 than the lower order BBM-type systems, at least as long

as similar values of θ are chosen for the different order systems. That is, if we compare
the dispersion relation for the seventh order pure BBM-type system with the dispersion
relation for the fifth order pure BBM-type system, and we choose a value of θ in the interval
θ2 ∈ [s1, 1] that is close to the endpoints (such that the dispersion relation has the largest
magnitude as kh0 increases), and also choose a θ2 close to the endpoints of the interval
for which the fifth order pure BBM-type system has a bounded and positive dispersion
relation (such that this dispersion relation has the largest magnitude as well), then the



44CHAPTER 2. SEVENTHORDER BOUSSINESQ SYSTEMS AND THEIR PROPERTIES

dispersion relations for the seventh order system remains closer to tanh(kh0)
kh0

than the fifth
order dispersion relation does. This is indicated in Figure (2.24), where the dispersion
relation (2.24) for the seventh order pure BBM-type system with θ = 0.52 (indicated by a
green line) is compared to the dispersion relation for the linearized fifth order pure BBM-
type system (2.44) with θ =

√
1/6 (indicated by a yellow line). The red line shows the

dispersion relation (2.15) for the linearized seventh order BBM-type system with θ = 0.52,

and as expected, this dispersion relation remains closer to tanh(kh0)
kh0

for all kh0 due to the
term f0(k, θ) in the numerator balancing out the 12th degree polynomial f1(k, θ)f2(k, θ)
in the denominator. Finally, the purple line shows the dispersion relation (2.39) for the
third order pure BBM-type system with θ = 0.95. As can be seen from the figure, the fifth
and seventh order BBM-type dispersion stay much closer to tanh(kh0)

kh0
for small kh0, but as

|kh0| → 4, the seventh order and fifth order dispersion relations actually intersect the third
order dispersion relation and remain (very) slightly below the third order dispersion relation
for large kh0. This is expected, due to the higher degree polynomials in the denominators
of the seventh and fifth order pure BBM-type dispersion relations, which cause more rapid
decay as kh0 increases.

-4 -3 -2 -1 0 1 2 3 4
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5th order pure BBM, = (1/6)
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7th order Boussinesq, =11/25

Figure 2.3: Comparison of the dispersion relation (2.24) for the linearized seventh order system
of pure BBM-type with θ = 0.52, the dispersion relation (2.15) for the linearized seventh order
BBM system with θ = 0.52, the dispersion relation (2.41) for the seventh order Boussinesq system
(with no terms replaced) (θ = 11/25), the dispersion relation for the linearized fifth order pure
BBM system with θ =

√
1/6, the dispersion relation for the linearized third order BBM system

with θ = 0.95, and the dispersion relation for the full water wave problem (2.34).



Chapter 3

Numerical experiments

In this chapter we solve the seventh order systems numerically, using various initial condi-
tions, to illustrate the behaviour of the equations. To solve the equations numerically, we
use Fourier collocation methods with periodic boundary conditions on the domain [0, L].
The equations are discretized using the discrete Fourier transform, and the resulting sys-
tems of ordinary differential equations are solved numerically using a fourth order Runge-
Kutta method. The numerical scheme is implemented in MATLAB. A similar method was
used in [7] for a single equation, here we will do the same for a system of two equations.
This chapter is only meant as a brief illustration of the behaviour of the various BBM-type
systems, for more in depth information on spectral collocation methods, refer to [9].

3.1 Third order pure BBM-type system, convergence

tests

We begin by verifying that the numerical scheme converges for the third order pure BBM
system, which has exact solitary wave solutions. The L2 norm is used to measure the error
between the numerical solution and the exact solution.

We use the discrete L2 norm, as used in [7], defined as

||v||L2 =

√√√√ 1

N

N∑
j=1

|v(xj)|2

so that the relative L2 error is

||v − vN ||L2

||v||L2

, (3.1)

where vN(xj), j = 1, 2, ..., N , is the numerically approximated solution at a time t, and
v(xj) is the exact solution for j = 1, 2, ..., N at a time t.

We test convergence with the third order pure BBM type system (2.37), (2.38) in
dimensional variables, with θ =

√
7/9.

45
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This system features exact solitary wave solutions, originally derived in [8], given by

η(x, t) = A0 sech2 (λ (x− x0 − Cst))
w(x, t) = W0 sech2 (λ (x− x0 − Cst))

(3.2)

where

W0 =

√
3g

A0 + 3h0

A0, Cs =
3h0 + 2A0√

3h0 (A0 + 3h0)

√
gh0, λ =

3

2h0

√
A0

2A0 + 3h0

,

h0 is the undisturbed depth, g is the gravitational acceleration, and A0 is the amplitude of
the solitary wave (see also [10] or [5]).

The problem in dimensional variables is then

ηt + h0wx + (ηw)x −
1

2

(
θ2 − 1

3

)
h2

0ηxxt = 0, (3.3)

gηx + wt +
1

2

(
w2
)
x

+
1

2

(
θ2 − 1

)
h2

0wxxt = 0, (3.4)

to O(αβ, β2), where x ∈ (0, L) and t > 0, and we use (3.2) as initial condition, θ =√
7/9.
Since we are assuming periodic boundary conditions on the domain [0, L], we first

translate the interval [0, L] into [0, 2π] before taking the Fourier transform of the equations.
This is done by introducing the change of variables x 7→ ax, where a = L

2π
, and defining

ξ(x, t) = η(ax, t), v(x, t) = w(ax, t). This implies from the chain rule that ∂
∂x
7→ 1

a
∂
∂x

. With
this change of variables the system (3.3), (3.4) becomes

a2ξt(x, t) + ah0vx(x, t) + a (ξ(x, t)v(x, t))x −
1

2

(
θ2 − 1

3

)
h2

0ξxxt(x, t) = 0, (3.5)

agξx(x, t) + a2vt(x, t) +
a

2

(
v2(x, t)

)
x

+
1

2

(
θ2 − 1

)
h2

0vxxt(x, t) = 0, (3.6)

for x ∈ [0, 2π], t ≥ 0.
Taking the Fourier transform in the spatial variable x of equations (3.5), (3.6) yields

a2ξ̂t(k, t) + ah0ikv̂(k, t) + aik(̂ξv)(k, t) +
1

2

(
θ2 − 1

3

)
h2

0k
2ξ̂t(k, t) = 0, (3.7)

for t > 0 with ξ̂(k, t = 0) = F(ξ(x, 0)), and

agikξ̂(k, t) + a2v̂t(k, t) +
a

2
ik(̂v2)(k, t)− 1

2

(
θ2 − 1

)
h2

0k
2v̂t(k, t) = 0. (3.8)

for t > 0 with ξ̂(k, t = 0) = F(ξ(x, 0)), and
These equations may be rewritten as



3.1. THIRD ORDER PURE BBM-TYPE SYSTEM, CONVERGENCE TESTS 47

ξ̂t(k, t) = − ik

a
(
1 + 1

2

(
θ2 − 1

3

)
h2

0k
2/a2

) (h0v̂(k, t) + (̂ξv)(k, t)
)
, (3.9)

v̂t(k, t) = − ik

a
(
1− 1

2
(θ2 − 1)h2

0k
2/a2

) (gξ̂(k, t) +
1

2
(̂v2)(k, t)

)
. (3.10)

Note that the expressions 1+ 1
2

(
θ2 − 1

3

)
h2

0k
2/a2 and 1− 1

2
(θ2 − 1)h2

0k
2/a2 in the denom-

inators of (3.9) and (3.10) are precisely the functions appearing in the dispersion relation
(2.39), evaluated at k/a. Since θ =

√
7/9 in this case, and the dispersion relation (2.39)

is non-singular for θ2 ∈ [1/3, 1], this ensures we are never dividing by zero.
We proceed by discretizing equations (3.9) and (3.10) in Fourier space, using the discrete

Fourier transform, denoted here by F . The discretized version of (3.9) is

ξ̂t(k, t) = − ik

a
(
1 + 1

2

(
θ2 − 1

3

)
h2

0k
2/a2

) (h0v̂(k, t) + F
((

F−1(ξ̂)
) (

F−1(v̂)
))

(k, t)
)
,

(3.11)
for k = −N

2
+ 1, ..., N

2
, t > 0,

ξ̂t(k, t) = 0 for k = N
2

, t > 0,

with initial condition ξ̂(k, 0) = F (ξ(x, 0)) = 2π
N

∑N
j=1 e

−ikxjξ(xj, 0) for k = −N
2

+

1, ..., N
2

.
The discretized version of equation (3.10) is

v̂t(k, t) = − ik

a
(
1− 1

2
(θ2 − 1)h2

0k
2/a2

) (gξ̂(k, t) +
1

2
F
((

F−1v̂
)2
)

(k, t)

)
, (3.12)

for k = −N
2

+ 1, ..., N
2

, t > 0, v̂t(k, t) = 0 for k = N
2

, t > 0, with initial condition

v̂(k, 0) = F (v(x, 0)) = 2π
N

∑N
j=1 e

−ikxjv(xj, 0) for k = −N
2

+ 1, ..., N
2

.
The discrete Fourier transform is implemented numerically using MATLAB’s built in

Fast Fourier Transform function fft and the Inverse Fast Fourier Transform function ifft.
Equations (3.11) and (3.12) are both systems of N ordinary differential equations for

the discrete Fourier coefficients ξ̂(k, t) and v̂(k, t), for k = −N
2

+ 1, ..., N
2

. The nonlinear
terms ξv and v2 appearing in these equations are treated pseudospectrally [9], in the sense
that the products of the nonlinear terms are taken in the physical space before taking the
Fourier transform.

We solve the coupled system of 2N ordinary differential equations using a fourth order
Runge-Kutta method implemented in MATLAB.

The fourth order Runge Kutta method (RK4) for a system dx(t)
dt

= f(x(t), t) of m ODE’s
is

xn+1 = xn +
∆t

6
(k1 + 2k2 + 2k3 + k4) ,

where
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∆t = 0.2× (0.5)p−1 L2 error for η Rη L2 error for w Rw

p = 1 0.001084338954903 0.001121379001679
p = 2 6.846446228660445e-05 15.8380 7.080110394023327e-05 15.8384
p = 3 4.284123005436054e-06 15.9810 4.430312328965367e-06 15.9811
p = 4 2.677412582051853e-07 16.0010 2.768763272647687e-07 16.0011
p = 5 1.673091451697128e-08 16.0028 1.730169955784558e-08 16.0028
p = 6 1.045553820488500e-09 16.0020 1.081224647945483e-09 16.0019
p = 7 6.545896835295415e-11 15.9727 6.772136813103757e-11 15.9658
p = 8 5.845947610408335e-12 11.1973 6.353704618024995e-12 10.6586
p = 9 4.236622994029508e-12 1.37990 4.797209561139811e-12 1.32450

Table 3.1: L2 errors and convergence rate for the RK4 method. The convergence rate is the
ratio of successive L2-errors. Rη is the convergence rate for η and Rw is the convergence rate for
w.

k1 = f(xn, tn) ,

k2 = f(xn + ∆t
2
k1, tn + ∆t

2
) ,

k3 = f(xn + ∆t
2
k2, tn + ∆t

2
) ,

k4 = f(xn + ∆tk3, tn + ∆t) ,

and ∆t is the time step.
To check that the method is correctly implemented in MATLAB, we run convergence

tests from t = 0 to t = Tmax with the initial conditions (3.2) at t = 0, θ =
√

7/9, and
compute the relative L2 error (3.1) from the numerical solution obtained at t = Tmax and
the exact solution at the same time Tmax. We use N = 1024 grid points, Tmax = 5 s,
L = 200 m, h0 = 2 m, x0 = L/3, and the amplitude of the solitary wave is A0 = 0.5 m.
We start with the time step ∆t = 0.2 s, and in successive runs we halve the timestep while
keeping all other parameters fixed, i.e., for simulation p the time step is ∆t = 0.2×(0.5)p−1.
The results are given in Table (3.1). As can be seen from the table, the convergence rate
is fourth order, since halving the time step results in a 16 times reduction of the error.
A similar test was also run with the same parameters but with N = 2048 instead, which
yielded similar results.

Spatial convergence is tested in Table (3.2). Here we keep the parameters L = 100,
A0 = 0.5 m, h0 = 1 m, x0 = L/2 and ∆t = 0.0001 s fixed, and we double the number
of grid points N in each successive simulation. The convergence rate in Table (3.2) is
exponential, which is called spectral accuracy. This shows that the numerical scheme is
correctly implemented in MATLAB.

Plots of the numerically obtained solution η(x, t) and w(x, t) of the third order pure
BBM-type system with initial condition (3.2) are shown in Figures (3.1) and (3.2). In
these figures, the parameters A0 = 1 m, h0 = 2 m, L = 100, θ =

√
7/9 and Tmax = 10 s

were used.



3.1. THIRD ORDER PURE BBM-TYPE SYSTEM, CONVERGENCE TESTS 49

∆t N L2 error for η Rη L2 error for w Rw

0.0001 64 0.040054013348561 0.036178604449950
0.0001 128 2.452905558521918e-04 0.0016e+05 2.565531063910353e-04 0.0014e+05
0.0001 256 2.796703973017485e-09 0.8771e+05 3.482178364372149e-09 0.7368e+05
0.0001 512 1.440649320748695e-14 1.9413e+05 1.625254052201758e-14 2.1425e+05
0.0001 1024 2.8002e-12 0.005145 2.9900e-12 0.005436

Table 3.2: L2 errors and convergence rate due to spatial discretization. The convergence rate is
the ratio of successive L2-errors. Rη is the convergence rate for η and Rw is the convergence rate
for w.

Figure 3.1: Space-time plot of the solitary wave solution η(x, t) of the third order pure BBM
system obtained numerically with the RK4 method, using initial condition (3.2). Here h0 = 2 m,
A0 = 1 m.
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Figure 3.2: Plot of the numerical solution η(x, t) (left panel) and w(x, t) (right panel) of the
third order pure BBM system at t = 7 s, obtained using (3.2) as initial condition. The parameters
and initial conditions are the same as used in the space-time plot in Figure (3.1). The wave is
right-moving.
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3.2 Seventh order pure BBM-type system

We now turn to the seventh order equations. In many practical situations, α is generally
smaller than β by a substantial amount. In such cases, it can be justified to make the
assumption that α = O(β3). With this assumption, the pure BBM-type system (2.22),
(2.12) reduces to

ηt + wx + α (ηw)x −
1

2

(
θ2 − 1

3

)
βηxxt +

1

360

(
15θ4 − 30θ2 + 7

)
β2ηxxxxt

− 1

15120

(
21θ6 − 105θ4 + 147θ2 − 31

)
β3ηxxxxxxt +O(αβ, β4) = 0,

(3.13)

ηx + wt + αwwx +
1

2

(
θ2 − 1

)
βwxxt +

5

24

(
θ2 − 1

5

) (
θ2 − 1

)
β2wxxxxt

+
1

720

(
θ2 − 1

) (
61θ4 − 14θ2 + 1

)
β3wxxxxxxt +O(αβ, β4) = 0.

(3.14)

Note that the only non-linear terms in equations (3.13), (3.14) are α (ηw)x in (3.13)
and αwwx in (3.14).

Proceeding in exactly the same way as for the third order system, we first convert
to dimensional variables, neglecting terms of O(αβ, β4). Then we translate the problem
onto the interval [0, 2π] using the same scaling as for the third order system, and take the
Fourier transform of the resulting equations. The equations are then discretized using the
discrete Fourier transform.

The discretized version of (3.13) is

ξ̂t(k, t) = − 1

a6

ik

f3(k/a, θ)

(
a5h0v̂(k, t) + a5F

((
F−1(ξ̂)

) (
F−1(v̂)

))
(k, t)

)
, (3.15)

for k = −N
2

+ 1, ..., N
2

, t > 0,

ξ̂t(k, t) = 0 for k = N
2

, t > 0,

with initial condition ξ̂(k, 0) = F (ξ(x, 0)) = 2π
N

∑N
j=1 e

−ikxjξ(xj, 0) for k = −N
2

+

1, ..., N
2

.
Here

f3(k/a, θ) =1 +
1

2

(
θ2 − 1

3

)
h2

0k
2/a2 +

1

360

(
15θ4 − 30θ2 + 7

)
h4

0k
4/a4

+
1

15120

(
21θ6 − 105θ4 + 147θ2 − 31

)
h6

0k
6/a6

is as defined in the dispersion relation (2.24), evaluated at k/a.
The discretized version of equation (3.14) is
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v̂t(k, t) = − 1

a6

ik

f2(k/a, θ)

(
a5gξ̂(k, t) +

1

2
a5F

((
F−1v̂

)2
)

(k, t)

)
, (3.16)

for k = −N
2

+ 1, ..., N
2

, t > 0, v̂t(k, t) = 0 for k = N
2

, t > 0, with initial condition

v̂(k, 0) = F (v(x, 0)) = 2π
N

∑N
j=1 e

−ikxjv(xj, 0) for k = −N
2

+ 1, ..., N
2

.
Here

f2(k/a, θ) =1− 1

2

(
θ2 − 1

)
h2

0k
2/a2 +

5

24

(
θ2 − 1

5

)(
θ2 − 1

)
h4

0k
4/a4

− 1

720

(
θ2 − 1

) (
61θ4 − 14θ2 + 1

)
h6

0k
6/a6

is as defined in the dispersion relation (2.15), evaluated at k/a.
Choosing a value of θ ∈ [

√
s1, 1] ensures that we are never dividing by zero.

Plots of the solution obtained from the seventh order pure BBM system with α = O(β3)
are shown in the figures below. Using the same initial condition as the exact solution (3.2),
with θ =

√
7/9, we get the result shown in Figure (3.3). The exact solution (3.2) of the

third order equations obviously does not satisfy the seventh order equations, so we get
components of left and right moving waves with low amplitudes. This can also be seen in
the plot of the horizontal velocity w(x, t) in Figure (3.3), where the velocity is negative for
some values of x. The amplitude of the wave is also increasing slightly with time.

In figures (3.4) and (3.5) we use the initial conditions η(x, 0) = 0.5 sech(0.2(x− L/2)),
with L = 200 m, and w(x, 0) = 0.1. Here h0 = 2 m and θ =

√
7/9 as before. As can be

seen from the figures, the initial profile splits into a left-moving and right-moving solitary
wave. This is expected of any BBM type system of equations, since these systems model
waves propagating in two directions.
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Figure 3.3: Plot of the numerical solution η(x, t) (left panel) and w(x, t) (right panel) of the
seventh order pure BBM system, with α = O(β3) at t = 20 s. The initial condition (3.2) with
θ =

√
7/9, A0 = 0.5 m, h0 = 2 m was used. Since (3.2) is not an exact solution of the seventh

order system, we get small amplitude waves emerging from the tallest wave. Since the velocity
w(x, t) is slightly negative for some values of x, some of the small-amplitude waves are moving
to the left. The amplitude of the tallest wave also slightly increases with time from the initial
maximum amplitude A0 = 0.5.

Figure 3.4: Space-time plot of the numerical solution η(x, t) of the seventh order pure BBM
system, with α = O(β3). The initial surface η(x, 0) = 0.5 sech(0.2(x − L/2)), with L = 200 m,
splits into a left and right moving wave. Here h0 = 2 m, and the initial velocity was w(x, 0) = 0.1
m/s.
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Figure 3.5: Plot of the numerical solution η(x, t) (left panel) and w(x, t) (right panel) of the
seventh order pure BBM system, with α = O(β3) at t = 8 s. The parameters and initial
conditions are the same as used in the space-time plot in Figure (3.4). Note how the velocity
w(x, t) is negative for the leftmost wave at x ≈ 60 m, and the velocity is positive for the rightmost
wave located at x ≈ 140 m. The peak of the leftmost wave is travelling to the left with a slightly
lower speed (≈ 0.43 m/s) than the peak of rightmost wave, which is travelling to the right with
a speed ≈ 0.63 m/s. This is due to the small positive initial velocity w(x, 0) = 0.1 m/s.
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We shall now solve the full seventh order system of pure BBM-type (2.23), (2.12)
numerically in a similar manner. Before we can proceed, we replace the nonlinear terms
containing t-derivatives in (2.12) using relations (1.58) and (1.60), removing the nonlinear
terms with t-derivatives, so that we can isolate the t - derivatives of η and w after taking
the Fourier transform. Inserting these relations into (2.12) we obtain

ηx + wt + αwwx +
1

2

(
θ2 − 1

)
βwxxt

+
{
αβ (ηηxx)x + α2β (η (wwx)x)x − 1
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+O(α3β, α2β2, αβ3, β4) = 0.

(3.17)

after simplifying. The new terms are indicated by the curly brackets. The system we
are solving numerically is then (2.23) and (3.17).

Note that the dispersion relation for the linearized system remains the same as before,
and is given by eq. (2.24).

Proceeding as with the third order system above, we convert the equations to dimen-
sional variables, neglect terms of O(α3β, α2β2, αβ3, β4), then transform the interval [0, L]
into [0, 2π] using the same change of variables as was used for the third order system, and
finally we take the Fourier transform F in the spatial variable x of the resulting equations.

Equation (2.23) then becomes
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where
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is as defined in the dispersion relation (2.24), evaluated at k/a.
Equation (3.17) becomes

v̂t(k, t) = − 1
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where
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is as defined in the dispersion relation (2.15), evaluated at k/a.
We discretize equations (3.18) and (3.19) in Fourier space using the discrete Fourier

transform as for the third order system.
The discretized version of (3.18) is
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(3.20)

for k = −N
2

+ 1, ..., N
2

, t > 0,

ξ̂t(k, t) = 0 for k = N
2

, t > 0,

with initial condition ξ̂(k, 0) = F (ξ(x, 0)) = 2π
N

∑N
j=1 e

−ikxjξ(xj, 0) for k = −N
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+
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The discretized version of (3.19) is

v̂t(k, t) = − 1

a6

1

f2(k/a, θ)

(
a5gikξ̂ + a5F

(
F−1(v̂)F−1 (ikv̂)

)
+a3gh0ikF

(
F−1(ξ̂)F−1

(
−k2ξ̂

))
+a3h0ikF

(
F−1(ξ̂)F−1

(
ikF

(
F−1(v̂)F−1 (ikv̂)

)))
−1

2
aik
(
θ2 − 1

)
gh3

0F
(
F−1(ξ̂)F−1

(
k4ξ̂
))

+

+1
2
a3
(
θ2 − 1

)
h2

0F
(
F−1(v̂)F−1

(
−ik3v̂

))
+1

2
a3
(
1 + θ2

)
h2

0F
(
F−1 (ikv̂) F−1

(
−k2v̂

))
+1

2
a3gikF

((
F−1(ξ̂)

)2

F−1
(
−k2ξ̂

))
−a3h0F

(
F−1(v̂)F−1

(
ikF

(
F−1(ξ̂)F−1

(
−k2v̂

))))
+a3h0F

(
F−1 (ikv̂) F−1

(
ikF

(
F−1(ξ̂)F−1 (ikv̂)

)))
+1

2
a
(
θ2 − 1

3

)
gh3

0ikF
(
F−1(ξ̂)F−1

(
k4ξ̂
))

+ 5
24
a
(
θ2 − 1

5

) (
θ2 − 1

)
h4

0F
(
F−1(v̂)F−1

(
ik5v̂

))
+a
(

5
24

(
θ2 + 3

5

)2 − 1
5

)
h4

0F
(
F−1 (ikv̂) F−1

(
k4v̂
))

+1
4
a
(
θ4 + 1

3

)
h4

0F
(
F−1

(
−k2v̂

)
F−1

(
−ik3v̂

)) )

(3.21)

for k = −N
2

+ 1, ..., N
2

, t > 0, v̂t(k, t) = 0 for k = N
2

, t > 0, with initial condition

v̂(k, 0) = F (v(x, 0)) = 2π
N

∑N
j=1 e

−ikxjv(xj, 0) for k = −N
2

+ 1, ..., N
2

.
In most of the simulations we ran, there was little observable difference between the

solutions of the full seventh order pure BBM type system and the seventh order pure BBM
type system with α = O(β3), except that the full seventh order pure BBM system appeared
more sensitive to large amplitude, short wavelength initial conditions unless h0 was large
enough (at least twice the amplitude of the tallest wave), and was less stable in these cases
over long time intervals. This is possibly due to aliasing errors from the pseudospectral
treatment of the numerous nonlinear terms, accumulating over time. A possible fix for this
could be to implement a de-aliasing filter by using, for instance, the standard two-thirds
rule, which was not done in our experiments for the time being.
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Chapter 4

Some further comments on our
published article

Attached in the next chapter is our article which was published in Physics of Fluids. The
article discusses applications of the Boussinesq systems discussed throughout this thesis,
specifically how it is possible to determine whether a wave modeled by a BBM-type system
starts breaking using a convective breaking criterion. Here we make a few comments on
some details in the attached article.

The average flow depth behind the bore was calculated by locating each peak and
trough in the wavetrain using MATLAB’s built in findpeaks function, and averaging the
result. We argue that, since the experiments were carried out by Wilkinson and Banner
in 1977, when proper digitizing software was unavailable, it would be almost impossible
to take the average of every single point on the free surface of the photographed undular
bore from the physical experiments. Since Wilkinson and Banner did not define the mean
depth behind the bore in [11] (outside of a sketch on a figure), we argue that they surely
did something similar to calculate the mean depth behind the bore front.

We also numerically integrated the entire free surface η obtained from the numerical
simulation, from the leftmost peak to the rightmost peak in the wavetrain, and calculated
the true average of the function from this. Using this as the mean depth behind the bore
front yielded similar results, our findings for the critical bore strength and Froude number
were still within 5% of the values obtained by Wilkinson and Banner.

A few corrections regarding the published article must be made:

• On page 7, line 8, it should be 0 ≤ θ ≤ 1

• In Table II, simulation 2, the weir velocity Uw should be Uw = 0.706 m/s, and in
Table II, simulation 3, the weir velocity Uw should be Uw = 0.713 m/s. The rest of
the values in Table II are correct.

The figures from [11] were digitized using Engauge Digitizer, and thereafter imported
into MATLAB.
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Chapter 5

Published article

In this chapter, our article which was published online in Physics of Fluids on March 22.,
2019 is presented.
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ABSTRACT
If a weir is dragged through a wave flume, the upstream flow takes the form of an undular bore propagating ahead of the weir. It was found
previously in the work of Wilkinson and Banner (“Undular bores,” in 6th Australian Hydraulics and Fluid Mechanics Conference, Adelaide,
Australia, 1977) that the leading wave of the undular bore will break if the bore strength given by the ratio of downstream to upstream flow
depth exceeds a certain value. In the present work, a Boussinesq system is used to study the situation in a numerical wave tank. It is found
that if a convective breaking criterion is used to indicate wave breaking, then the critical bore strength of the numerical model agrees with the
experimental value of Wilkinson and Banner up to an error of less than 2%.
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I. INTRODUCTION

A river bore is an upstream-propagating transition between two
different flow depths usually caused by tidal forces. Similar flows
can also be realized in controlled environments such as wave flumes,
and a number of laboratory studies have been conducted in order to
bring to light some of the main features of bores. One of the first in-
depth investigations of undular bores in the laboratory was carried
out by Favre in a dedicated wave flume,1 and Favre’s results have
been examined theoretically from a number of angles. For exam-
ple, the initial formation of the free-surface oscillations was under
study in Refs. 2–4, and the energy balance at the bore front has been
reviewed in Refs. 5–9. Dissipative effects were considered in Refs. 10
and 11, and the breaking of the leading oscillations in the bore was
studied in Ref. 12.

Favre’s experimental results highlighted in particular the tran-
sition between purely undular and partially turbulent bores in terms
of the bore strength defined as the ratio of downstream to upstream
flow depth, and the main purpose of the present work is to explore
whether the critical bore strength can be found using standard wave
models such as the classical Boussinesq system.

Favre himself used the shallow-water Saint-Venant system with
frictional terms to describe the flow. One weakness of the shallow-
water system is that it fails to describe the transition between undular

and breaking bores because in the shallow-water theory, all waves
eventually break (see Ref. 13, chap. 13.11, or, Ref. 14 chap. 11.3).
On the other hand, the Boussinesq models incorporate dispersion,
and small-amplitude waves do not feature the typical steepening
observed in the shallow-water theory.15 Therefore, wave breaking
cannot be observed directly in the Boussinesq equations, but one
may use a convective criterion comparing the crest speed of the lead-
ing wave to the fluid particle speed near the crest as a diagnostic
for wave breaking. In these terms, a wave breaking criterion may
be defined by saying that a wave starts to break when the horizon-
tal component of the fluid velocity near the wavecrest exceeds the
wavecrest velocity.

An initial study using this wave-breaking criterion in the con-
text of Boussinesq modeling of Favre’s experiments gave good qual-
itative results but was quantitatively inconclusive.16 The relatively
poor agreement with the experiments may be partially due to vortic-
ity created by the discharge used to generate the undular bore. The
existence of vorticity in a similar situation was also found in Refs.
17 and 18, and a mathematical inquiry into the Favre results also
suggested that vorticity might be present in such flows.19

In the current work, we investigate the wave breaking onset
in the leading wave in a bore created by moving a weir through
a wave tank. Such experiments were carried out by Wilkinson and
Banner,20 and as shown in Fig. 1, this generating mechanism yields
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FIG. 1. Generating mechanisms for
undular bores. Left panel: Undular bore
created by a constant discharge imposed
on the left-hand side of the wavetank.
Right panel: Undular bore created by a
moving weir through upstream influence.
Note that the bore front propagates at a
speed U which is generally larger than
the speed Uw of the weir. The differ-
ence is exaggerated by the length of the
arrows. The undisturbed depth is h0, and
the average flow depth behind the bore
is a0 + h0.

bores that are markedly different from the ones created by a forced
inflow. Favre found that wave breaking occurred when the bore
strength was larger than 1.28. By contrast, in the experiments carried
out by Wilkinson and Banner, the critical bore strength was found
to be about 1.38. As will be shown in the body of the present paper, if
the convective wave-breaking criterion is used in connection with a
Boussinesq model in the case of a bore generated by a moving weir,
then the critical bore strength may be found numerically to within
an error of less than 2%. The plan of the paper is as follows. In Sec. II,
the Boussinesq system used in the study of the undular bore is intro-
duced. In Sec. III, the wave breaking criterion is explained in detail.
The numerical experiments are described in Sec. IV, and the results
are discussed in the Conclusion.

II. UNDULAR BORES AND BOUSSINESQ-TYPE
SYSTEMS

In the experiments by Wilkinson and Banner, a moving weir
is used to generate an undular bore (see Fig. 1 for an illustration
of the geometric setup). The weir is placed at the bottom of a wave
flume and dragged along the tank. As the weir is moving, it creates
a mound of fluid propagating ahead of the weir itself. This phe-
nomenon is well known to experimentalists and is sometimes called
upstream influence.23 The borefront develops oscillations (which in
this case are often called undulations), and at first sight, the result-
ing undular bore seems similar to the bore featuring in the work of
Favre.1 However, as already mentioned, there are some important
differences between these two flows. In particular, vorticity seems
to be an important factor in the bores generated by a constant dis-
charge, while as far as we can tell, vorticity is a minor effect in the
bore generated by the moving weir. Some authors have pointed out
the importance of bottom friction on the appearance of an undu-
lar bore.10,7 Indeed, in a river bore, if the conditions are right, a
nearly steady profile of undulations can be observed. However, in the
present case, the main focus is on the onset of wave breaking which
happens on relatively short time scales where dissipative effects do
not have a major impact.

A bore may be characterized either by the bore strength already
mentioned or using the Froude number. The Froude number is
defined by Fr = U/

√
gh0, where U is the velocity of the bore front,

h0 is the undisturbed (upstream) depth, and g is the gravitational
acceleration.24–26 While the Froude number seems to be more com-
mon in the literature, in the present case, since we are aiming for

a favorable comparison with the experimental work in Ref. 20, it
is expedient to use the same parameter as in that work to quantify
the strength of the bore. Given the average downstream flow depth
a0 + h0, the bore strength is defined as the ratio of flow depths by
r = a0+h0

h0
.

As a side note, we should mention that recent work suggests
that a single parameter such as the Froude number or bore strength
may not be sufficient to classify bores and hydraulic jumps. For
example, the authors of Ref. 27 proposed an additional parameter
related to the vorticity of the flow. However, in the present case, such
an extension is unnecessary.

Boussinesq systems are approximations of the full Euler equa-
tions valid for long waves of small amplitude if the fluid is incom-
pressible and inviscid and the flow is irrotational.28,15 Due to their
relative simplicity, Boussinesq models are frequently used to model
various surface wave phenomena. Since the undular bores described
in Ref. 20 have small amplitudes and long wavelengths relative to
the undisturbed depth, it is natural to use a Boussinesq model in the
current situation.

Here, and in the rest of this article, a Cartesian coordinate sys-
tem (x, z) is chosen such that z = η(x, t) describes the free surface η,
the undisturbed free surface is at z = 0, and the bottom of the wave
tank is located at z = −h0. Moreover, u(x, t) is the horizontal fluid
velocity at the fixed height z = (

√
7/9−1)h0. We use the Boussinesq

system

ηt + h0ux + (ηu)x −
2
9h

2
0ηxxt = 0,

ut + gηx + uux − 1
9h

2
0uxxt = 0,

(1)

to simulate an undular bore. The Boussinesq system (1) was intro-
duced in Ref. 21. It is valid in the Boussinesq scaling regime, which
applies when the parameters α = a/h0 and β = h2

0/`2 are small and
of the same order of magnitude. Here a is a typical wave amplitude,
` is a typical wavelength, and h0 is the undisturbed depth, and the
parameters α and β describe the relative strength of nonlinear and
dispersive effects in the flow.

System (1) is a coupled system of two regularized long-wave
equations. Using the same rationale as the authors of Refs. 2 and
22 who introduced the Benjamin-Bona-Mahony (BBM) equation,
it can be surmised that this system is more amenable to numerical
methods than a number of other Boussinesq systems that were dis-
cussed in Ref. 21. In fact, the system can be solved efficiently using a
Fourier-spectral collocation method.
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As shown in Ref. 21, the system has exact solutions which can
be used to test the convergence of numerical codes. The system can
also be extended to accommodate time-dependent bathymetry. This
was first done in Ref. 29, and in the present case, a time-dependent,
spatially varying bottom topography h(x, t) is included in these equa-
tions to model the weir moving along the bottom of the wave tank.
The precise version of (1) to be used, including all parameter-values
and some details on the numerical discretization, is given in the
Appendix.

In Sec. III, it is shown how the full fluid velocity field is recon-
structed from these variables, using an asymptotic expansion of the
velocity potential. It will be shown that once a solution of (1) is avail-
able and the wave crest velocity is known, then a local convective
criterion can be taken as an indication of whether the wave starts
breaking or not. Denoting the crest speed by U and the horizon-
tal component of the fluid particle velocity by u(x, z, t), we say that
the wave breaks if u(x, η(x, t), t) > U. This convective wave break-
ing criterion is standard in the study of breaking waves (see Ref.
30 and references therein) but has not been tested in the current
situation.

III. WAVE BREAKING CRITERION
FOR THE BOUSSINESQ SYSTEM

In order to understand the wavebreaking criterion, a look at
the derivation of the Boussinesq system (1) is in order. Since this
derivation is well known, we just summarize a few points of impor-
tance. For a more detailed discussion, the reader is referred to Refs.
16 and 13. As discussed above, since the bottom of the wave tank
is constant away from the weir, and given by z = −h0 near the
leading wave crest behind the bore front, the following discussion
is based on the Boussinesq system (1). It is assumed that α and
β are small and of the same order so that Eq. (1) are valid and
higher order terms in α and β can be neglected in the following
derivation.

With the assumptions of irrotational flow of an inviscid and
incompressible fluid, a velocity potential φ(x, z, t) can be introduced.
The surface wave problem is then formulated in terms of the velocity
potential as

φxx + φzz = 0, −h0 < z < η(x, t),

φz = 0, z = −h0,

with the free-surface boundary conditions

ηt + φxηx = φz ,

φt + 1
2(φ

2
x + φ2

z) + gη = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
z = η(x, t).

As discussed in Ref. 13, since the total depth is small, an ansatz of

the form φ(x, z, t) =
∞
∑
0
(z + h0)nfn(x, t) is suggested for the veloc-

ity potential. Inserting this into the Laplace equation and using the
boundary condition on the bottom gives

φ(x, z, t) = f − 1
2
(z + h0)2fxx (2)

to second order in β. Note that f = f0 is the velocity potential at the
bottom z = −h0 and that φx(x, z, t) = fx(x, t) − 1

2(z + h0)2fxxx(x, t)
is the horizontal velocity at a height z in the fluid.

Using this relation, it is possible to derive systems of equations
such as (1) where the horizontal velocity is modeled at a prescribed
depth z = (

√
7/9 − 1)h0. Letting u(x, t) = φx(x, z, t)∣z=(√7/9−1)h0

be

the horizontal velocity at z = (
√

7/9 − 1)h0, we obtain

fx = u +
7

18
h2

0uxx (3)

to order β2. Combining (3) and (2) gives

φx(x, z, t) ≈ u(x, t) +
1
2
(7

9
h2

0 − (z + h0)2)uxx(x, t) (4)

up to O(β2).
Equation (4) can be used to approximate the horizontal fluid

velocity field at any point (x, z) in the fluid domain. As discussed in
Ref. 16, we assume that wave breaking commences when the hor-
izontal fluid particle velocity at the leading wave crest exceeds the
local phase velocity of the wave crest, denoted by U. Evaluating (4)
at z = η(x, t) yields the following breaking criterion:

A wave solution (η(x, t),u(x, t)) of system (1) starts breaking if

u(x, t) +
1
2
(7

9
h2

0 − (η(x, t) + h0)2)uxx(x, t) > U. (5)

This criterion is illustrated in Fig. 2. From (5), it follows that once
a solution (η(x, t),u(x, t)) of the BBM system (A2) is available,

FIG. 2. Convective wave breaking crite-
rion. The left panel shows a wave with
horizontal particle velocity less than crest
velocity. This wave is not breaking. The
right panel shows a case where the hori-
zontal particle velocity exceeds the crest
velocity. This wave is breaking.
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the onset of wave breaking can be predicted provided the wave
propagation speed U is known.

IV. NUMERICAL EXPERIMENTS
We consider quasi-twodimensional fluid flow in a numerical

wave tank of length L. The coordinate system (x, z) is as defined
in Sec. II, with the positive z direction taken vertically upwards
and the horizontal x-axis along the undisturbed free surface of the
fluid. The bottom of the wave tank is located at z = −h0, and the
undisturbed free surface is located at z = 0, as shown in Fig. 3.
The numerical domain is x ∈ [0, L], and the fluid domain is then
(0,L)× (−h(x, t), η(x, t)), where z = −h(x, t) describes the weir and
the bottom of the tank, and z = η(x, t) is the free surface as usual.

In the numerical simulation used in the present study, sys-
tem (A2) is approximated using a spectral collocation method cou-
pled with a 4-stage Runge-Kutta time integration scheme. At each
time step, the resulting linear system is solved using a precondi-
tioned conjugate gradient method. As the bore is generated by a weir
moving along the bottom of the tank, we use initial values of zero
surface displacement and zero initial velocity, i.e., η(x, 0) = 0 and
u(x, 0) = 0.

Wilkinson and Banner conducted numerous experiments with
varying undisturbed fluid depths and showed experimentally that
undular bores may persist up to bore strength r = 1.377. Since the
goal of this paper is to obtain favorable results in comparison with
Wilkinson and Banner,20 we used the same parameters as in that
work. Accordingly, a weir of height 25 mm and length 150 mm was
used in our simulation. As the value of h0 is not consistently specified
in Ref. 20 for a given Froude number, we have chosen to use the fluid
depth h0 = 0.06 m in all simulations shown, except the computations
shown in Fig. 4. In this case, the undisturbed depth was specified
in Ref. 20 to be h0 = 0.053 m. We chose to run the simulations for
t = 15 s as larger time intervals seemed to have little impact on the

TABLE I. Parameters used in the numerical simulation.

Parameter Symbol Units Value

Undisturbed depth h0 m 0.06
Tank length L m 50
Weir height A mm 25
Weir width mm 150
Time interval length T s 15

eventual bore strength r. The parameters used in our simulation are
summarized in Table I. The function

z = −h(x, t) = A
2
(1 + tanh(κt

√
g/h0 −m))

× exp(−(w(x/h0 − σ −Uwt/h0))2) − h0 (6)

with the parameters A = 0.025 m, κ = 0.2, m = 2, w = 1.22, σ = 100,
and h0 = 0.06 m is used to model the weir moving along the bottom
of the tank. The speed Uw at which the weir is moving along the
bottom of the tank is the only parameter which is varied, while the
rest of the parameters in (6) are held fixed.

In order to test the validity of the numerical simulations, we
first run a test with a purely undular bore. We choose the case
shown in Fig. 3, page 372 from,20 which features a Froude number
Fr = 1.24, and is far from the breaking regime. In this case only, in
order to obtain a good match with the experimental data, we have
used the undisturbed depth h0 = 0.053 m. Figure 3 from Ref. 20 is
shown in Fig. 4 in digitalized form, alongside the numerical approx-
imation of η obtained in our simulation. As can be seen, there is
relatively good correspondence between the experimental data and
numerical simulation. In particular, the wavelengths and amplitudes
of the bores agree very well.

FIG. 3. Undular bore generated by a moving weir at the
bottom of the tank z = −h0 = −0.06 m.

FIG. 4. Digitized form of Fig. 3 in Ref. 20, Fr = 1.24 superim-
posed with a plot of η obtained from the numerical simula-
tion with Fr = 1.24. The fluid depth is h0 = 0.053 m, and the
x-axis is aligned with the undisturbed water line. The bottom
of the flume is indicated by a solid line at z = −0.053 m.
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FIG. 5. Left panel: The horizontal par-
ticle speed does not exceed the phase
speed, so the bore is purely undular.
This corresponds to the bore strength
r = 1.38. Right panel: The horizontal par-
ticle speed curve intersects the propa-
gation speed curve at t = 15 s, and the
leading wave starts breaking. This corre-
sponds to the bore strength r = 1.40 as
can be seen in the plot of the undular
bore in Fig. 3.

Since the bottom is described by the constant function z = −h0
near the leading wavecrest, Eq. (4) can be applied in approximating
the particle velocity there. At each time step tn = n∆t in the sim-
ulation, the position xn of the leading wave crest is located. From
this sequence of values, the local phase velocity Un of the wavecrest
is estimated by a fourth-order, backwards finite-difference formula.
The fluid particle velocity at the leading wavecrest behind the bore
front is estimated from (4) with z = η(xn, tn) at each time step.

As Uw is increased manually in each new run, the wave crest
velocity and the horizontal fluid particle velocity also increase.
Eventually the fluid particle velocity exceeds the phase velocity of

the wave, and wave breaking commences. The process is illustrated
in Fig. 5. In the left panel, the value of r is 1.38 and no intersection is
taking place at times t ≤ 15 s. As shown in the right panel of Fig. 5,
the particle velocity curve first intersects the phase velocity curve at
t = 15 s for the value r = 1.40 which is therefore just above the critical
bore strength for the current setup. The corresponding weir velocity
is Uw = 0.724 m/s.

Table II tabulates whether the bore is breaking or not for differ-
ent values of the bore strength r obtained numerically. Each row in
Table II contains values of r and FrU obtained from a fixed value of
Uw . We find the critical value of the bore strength in Table II to be

TABLE II. Wave breaking in the numerical model for different Froude numbers and bore strengths at t = 15 s. The critical
bore strength is r = 1.395.

Simulation r = 1 + a0/h0 FrU = U/
√
gh0 U (m/s) Uw (m/s) Breaking/non-breaking

1 1.35 1.319 1.012 0.675 Not breaking
2 1.38 1.344 1.031 0.698 Not breaking
3 1.39 1.350 1.036 0.706 Not breaking
4 1.40 1.358 1.042 0.724 Breaking
5 1.41 1.375 1.055 0.744 Breaking
6 1.43 1.388 1.065 0.760 Breaking

FIG. 6. Relation between the flow-depth
ratio r and the Froude number Fr. The
critical bore strength is indicated with a
dashed horizontal line. Left panel: Exper-
iments by Wilkinson and Banner.20

The critical bore strength is r = 1.377.
Right panel: Numerical simulations using
Boussinesq system. The critical bore
strength is r = 1.395.
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r = 1.395, between the values 1.39 which does not feature breaking,
and 1.40 which does lead to breaking. As an additional comparison,
we also include the Froude numbers FrU = U/

√
gh0, where U is the

phase speed of the leading wave behind the borefront, approximated
numerically at t = 15 s by the method described above.

Comparing the results in Table II with the ones in Ref. 20, we
see that the numerical critical bore strength r = 1.395 is about 1.3%
higher than the experimental value r = 1.377 in Ref. 20 and that
FrU = 1.358 is about 4.5% larger than Fr = 1.3 in Ref. 20, so the
results are relatively close in both cases. The data are also represented
in Fig. 6, where the left panel shows data from the experiments in
Ref. 20, and the right panel shows data based on our numerical
simulations.

V. CONCLUSION
In this work, it has been shown that the transition from laminar

to partially turbulent flow in an undular bore can be captured with
a standard weakly nonlinear dispersive system of Boussinesq type.
Reference is made to two experimental studies: the experiments of
Favre1 and the experiments of Wilkinson and Banner.20 The partic-
ular quantity of interest is the bore strength r given by the ratio of
downstream to upstream flow depths.

In previous work, it was shown that using a convective wave-
breaking criterion leads to qualitative agreement with the experi-
ments of Favre in the sense that the Boussinesq system features a
critical ratio indicating the commencement of wave breaking.16,31
However, the quantitative agreement between the numerical exper-
iments in Refs. 16 and 31 was not very good. The discrepancy may
possibly be ascribed to the appearance of vorticity in the undular
bore, such as suggested in Refs. 17 and 19. Indeed, it was argued in
Ref. 27 that a single parameter such as the bore strength r or the
Froude number Fr may not be sufficient to classify bores, even in the
case where the flow is quasi-two-dimensional. In the present case
of a bore generated by a moving weir, it was found that the bore
strength r can be used as an effective diagnostic parameter to predict
whether a bore will break or not. The critical bore strength signal-
ing the demarcation between laminar and turbulent flow was found
experimentally to be about 1.377.20 Our numerical simulations indi-
cate that the leading wave breaks at a bore strength of 1.395. Thus,
experiment and simulation coincide up to an error of less than 2%.

The separate comparison using the Froude number FrU
= U/

√
gh0 for the phase speed of the leading wave crest behind

the bore front, which was found to be FrU = 1.358 when the bore
started breaking, is also fairly close to the critical Froude number
Fr = 1.3 in Ref. 20. Using this parameter as an indicator for the
onset of breaking yields agreement between experiment and numer-
ical simulation with an error of less than 5%. Additionally, Fig. 4
shows that the shape of the free surface of the bore obtained numer-
ically for non-breaking bores is very similar to the free surface in Ref.
20. This further validates the results obtained from the model used
in this work.

One may ask whether the bore strength r or the Froude number
Fr is a better indicator for whether a bore features incipient break-
ing. While the Froude number is probably more commonly used
than the bore strength, the present study found slightly better agree-
ment between theory and experiment if the bore strength was used
as a parameter. Indeed it can also be observed in the left panel of

Fig. 6 that the relation between Fr and r is slightly nonlinear in the
experimental measurements.

To put our findings into context, it should be mentioned that
wave breaking in an undular bore is a special case of wave breaking
on a planar beach, a phenomenon which has been studied widely. It
is not immediately clear whether the convective breaking criterion
can be used in this case as well. Recent work paints a complicated
picture. The experiments described in Ref. 32 point to the convective
criterion as being a good indicator for the commencement of wave
breaking. On the other hand, if the wave breaking criterion is to be
used in a numerical model in order to switch between a dispersive
system and a hyperbolic system (in order to exploit the dissipative
nature of numerical approximations to hyperbolic systems), then the
convective breaking criterion should possibly be sharpened in order
to give the waves time to adjust (see Refs. 36–38 and the references
therein).

Indeed, the detection of wave breaking through various wave
breaking criteria has been researched by a number of groups for
many years. As explained in Ref. 33, there are essentially three classes
of criteria. Geometric criteria are based on the shape and in partic-
ular the steepness of the waves close to breaking, while kinematic
criteria such as used here are based on violation of the kinematic free
surface boundary condition. As it generally seems to be understood
that no dynamic insight or advance warning of imminent breaking
is provided by geometric and kinematic criteria,34 dynamic criteria
based on evaluation of the energy flux such as proposed in Refs. 35
and 30 seem to be favored at the moment.

Recently a new parameter based on crest speed and local energy
flux and density has been put forward as a diagnostic for the initia-
tion of wave breaking. As shown in Ref. 30, using this parameter
reduces to a sharpened convective criterion when evaluated at the
free surface. However, it has been tested mainly in deep and inter-
mediate water,30,39 and it is not clear at this point whether this
diagnostic will work in shallow water such as in the current situation.

It should also be noted that there have been extensive efforts
to understand various aspects of wave breaking using numerical
approximations of the full Euler equations. In particular, in the case
of potential flow, we mention the work on overturning breakers
reported in Refs. 40 and 41. On the other hand, some authors have
advocated the use of conservative Boussinesq system42 or indeed for
the use of fully nonlinear long-wave systems, such as the Serre or
Green-Naghdi equations43,44 in order to study wave breaking on a
slope (see Ref. 45 for example). However, in the present case, no such
extension is needed.
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APPENDIX: BOUSSINESQ SYSTEMS
WITH MOVING BATHYMETRY

In order to simulate an undular bore generated by a moving
weir numerically, a BBM-BBM type system is used in this work.
In Ref. 29, the following system describing unsteady fluid flow in
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one horizontal dimension over a time dependent, spatially varying
bottom topography is derived:

ηt + ((h + η)u)x + {Ah2[(uhx)x + hxux]

+ ah2(hu)xx − bh
2ηtx}x + Ã(h2htx)x + ht = 0,

ut + gηx + uux + {Bgh[(hxηx)x + hxηxx]

+ cgh2ηxxx − dh2utxx} − Bhhttx = 0.

(A1)

Here u = u(x, t) is the horizontal fluid velocity at the height
z = (θ − 1)h0, where 0 < θ < 1, η(x, t) is the free surface, and
h(x, t) describes the bottom topography. The parameter θ is an
arbitrary modeling parameter which has been chosen to be equal
to

√
7/9 in the body of this paper. The definitions of the further

parameters used in the system are as follows:

ã = θ − 1/2, b̃ = −A, c̃ = −B,

A = 1
2 [

1
3 − (θ − 1)2], B = 1 − θ, Ã = µã − (1 − µ)b̃,

a = 1
2(θ

2 − 1
3)µ, b = 1

2(θ
2 − 1

3)(1 − µ),

c = 1
2(1 − θ2)ν, d = 1

2(1 − θ2)(1 − ν),

where µ, ν ∈ R. Taking µ = ν = 0 in (A1) gives

ηt − b(h2ηxt)x + ((h + η)u)x

+ {2Ah2hxux + Ah2hxxu}x − b̃(h
2hxt)x + ht = 0,

ut + gηx + uux + Bghhxxηx + 2Bghhxηxx

− dh2uxxt − Bhhxtt = 0,

(A2)

where b = 1
2(θ

2 − 1
3), d = 1

2(1 − θ2). The BBM-BBM type sys-
tem (A2) with the boundary and initial conditions stated in Sec. IV
is used to simulate an undular bore numerically in this work. Like
system (1), this system is valid under the Boussinesq approximation.
As discussed earlier, the time dependent bottom h(x, t) is included
in Eq. (A2) to model the weir moving along the bottom of the wave
tank.

The numerical approximation of this system is effected by a
pseudo-spectral collocation method based on a Fourier basis. This
discretization entails the imposition of periodic boundary condi-
tions. In the present one-dimensional case, this choice does not pose
a serious problem since the numerical domain [0, L] can be made
large enough to prevent wave interactions at the far ends on either
side. Rescaling the equations to the numerical interval [0, 2π] intro-
duces a scaling factor λ = L/(2π). Using the standard collocation
points xj = 2πj

N for j = 0, 1, . . ., N − 1 yields the first-order col-
location derivative matrix DN and the corresponding second-order
matrix DN ,2, such as detailed in Refs. 46 and 47. Defining the N × N
identity matrix by IN , and the discrete unknowns as ΣN and UN , the
semi-discrete system is written as

[λ3IN − λbDNdiag(h2
N)DN]ΣN

t

= −DN[2Ah2
N DNhN DN(UN) + ADN,2hN h2

N UN]

−λ2DN(hNUN) − λADN(h2
NDN(hN)t)

−λ2DN(ΣNUN) − λ3(hN)t ,

[λ3IN − λd diag(h2
N)DN,2]UN

t

= −λ2gDNΣN − λ2 1
2
DN(UNUN) − 2BghN DNhN DN,2ΣN

−BghNDN,2hN DNΣN + λ2BhNDN(hN)tt ,

where hN is defined by [hN(t)]j = h(xj, t). This system of N ordi-
nary differential equations is integrated using a 4-stage Runge-Kutta
method. The most demanding operation is the inversion of the
time-dependent matrices on the left-hand side of these equations
which has to be performed at each time step. The inversion is per-
formed using a preconditioned conjugate gradient (PCG) method
(see Ref. 48). The scheme has been tested for convergence in Ref. 49.
Alternative methods for the numerical discretization of these equa-
tions are finite-element methods29 or finite-difference methods.16
These methods would allow for straightforward incorporation of
various boundary conditions, but in the present case, that is not
necessary.
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