
UNIVERSITY OF BERGEN

DEPARTMENT OF INFORMATICS

ALGORITHMS

Complexity of Edge-Editing to a
Connected Graph of Bounded Degrees

Student:
Øyvind Stette HAARBERG

Supervisor:
Petr A. GOLOVACH

Master Thesis

2019

Abstract

In the EDGE EDITING TO A CONNECTED GRAPH OF BOUNDED DEGREES problem we
are given a graph G, an integer k and a function f that assigns each vertex in G an integer
bound on the degree. The task is to answer if there exists some connected graph H on the

same set of vertices such that for every vertex in H the degree is within the function
bound, and the size of the symmetric difference between the edge set of G and the edge
set of H is at most k. In this thesis we have considered both an upper bound and a lower

bound. For the upper bound we show that the problem is NP-complete, and give a
polynomial kernel with O(k3) vertices and O(k4) edges. In addition we give a

2O(k) · |V (G)|O(1) FPT algorithm based on random separation, which we show is
asymptotically optimal assuming ETH. For the lower bound we give a polynomial

algorithm using matching techniques.

ii

Acknowledgements

First of all I would like to thank my supervisor, Petr Golovach, for all his guidance and
help during the writing of this thesis. I would also like to thank my fellow algorithms

students for all the help and fun distractions throughout my studies.

Finally I would like to thank my family for all the support thoughout the years.

iii

iv

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Set theory . 5

2.2 Graphs . 6

2.3 Algorithms and Complexity theory . 9

2.3.1 Running time . 10

2.3.2 Reductions . 11

2.4 f -matching . 12

3 Upper Bounded Degrees 17
3.1 Problem statement . 17

3.1.1 Definitions . 18

3.2 Connection Lemma . 19

3.2.1 Non-deleting connection Lemma 20

3.2.2 General connection Lemma . 22

3.3 Polynomial kernel . 25

3.3.1 Reduction Rules . 26

3.3.2 Analysis . 38

3.4 2O(k) · nO(1) algorithm . 41

3.4.1 X -SUPPORTING SUBGRAPH . 42

3.4.2 Solution skeleton . 45

3.4.3 Reobtaining the solution . 48

3.4.4 Randomized algorithm . 57

v

CONTENTS CONTENTS

3.5 NP-Completeness . 59

4 Lower Bounded Degrees 63
4.1 Problem statement . 63
4.2 Polynomial algorithm . 64
4.3 Analysis and results . 67

5 Conclusion 69
5.1 Summary . 69
5.2 Open problems and future work . 69

Bibliography 71

vi

Chapter 1
Introduction

Graphs can be used as a powerful tool for modeling several kinds of abstractions. There
are several notions of graphs, but in general they consist of some vertices joined together
by edges. Whenever one models something in a graph the vertices are some distinct ele-
ments, and the edges represent relationships between these elements. A lot of theoretical
computer science is concerned with the study of graphs and their properties, which can
give us useful information or knowledge about any other structure which can be modeled
as a graph.

Sometimes we are interested in how far a graph is from some desired property. This
question can be viewed as an editing problem, where we ask if the graph can be modified
a limited number of times to achieve the desired property. The changes we consider is
some set of allowed editing operations, where the more common ones are vertex deletion,
edge deletion and edge addition. Other operations that might be considered include vertex

addition and edge contraction. Some well-known problems of this variety are FEEDBACK

VERTEX SET where we want to remove a certain number of vertices from a directed graph
and obtain a graph without cycles, or CLUSTER EDITING in which we want to obtain a
graph where every component is a clique. Other problems that might not seem to be editing
problems on the surface have natural formulations as editing problems: In the MINIMUM

VERTEX COVER problem where we given a graph, and want to find a minimum set of
vertices (a vertex cover) such that every edge in the graph is incident to at least one of
the vertices of the vertex cover, we can instead ask for a minimum set of vertex deletions
such that the graph after edits is an independent set. For HAMILTONIAN CYCLE where
the question is whether there exists a cycle on all the vertices in the given graph, we can
instead ask whether there exists some set of edge deletions such that the resulting graph is

1

CHAPTER 1. INTRODUCTION

a cycle on all vertices in the graph.

We can divide the properties we are looking for in graphs between hereditary and non-

hereditary non-trivial properties. A hereditary property is a property that if it holds for
some graph G, then it also holds for any subgraph H ⊆ G. A non-hereditary property is
a property where this does not hold. A non-trivial property is a property that holds for an
infinite number of graphs, and does not hold for an infinite number of graphs. An example
of a hereditary graph property is having a vertex cover of size k: If we can cover all edges
with k vertices in G then it must also be possible for any subgraph of G. An example
of a non-hereditary property is connectivity, as even though G is a connected graph a
subgraph might exclude some critical set of vertices or edges such that the subgraph is not
connected.

An early landmark in the study of graph editing problems was by Lewis and Yannakis
[17], when they showed that graph editing for non-trivial hereditary properties by vertex
deletion is NP-complete. When considering editing by edge-addition or -deletion to reach
some graph class, Natanzon, Shamir and Sharan [22] proved the NP-hardness for several
graph classes, which was later extended by Burzyn, Bonomo and Durán [1].

As graph editing problems are often NP-complete the framework of parameterized
complexity as pioneered by Downey and Fellows [8] is useful for further analyzing the
complexity of editing problems. Cai [2] showed that editing problems with vertex deletion,
edge addition and edge deletion are fixed parameter tractable for hereditary properties if
the properties can be be characterized by a finite number forbidden induced subgraphs.
The results for hereditary properties were later extended by Khot and Raman [16] where
they parameterized by the number of edits.

There are no broad results for editing problems when considering non-hereditary prop-
erties such as degree constraints or connectivity, but Moser and Thilikos [21] studied the
probem of whether it is possible to obtain a r-regular subgraph of some graph by deleting
at most k vertices. This study was extended by Mathieson and Szeider [19], who stud-
ied several variations of DEGREE CONSTRAINT EDITING problems. In DEGREE CON-
STRAINT EDITING you are given some graph G, a function δ : V (G) → 2{0,...,d} of
permitted degrees, and a budget k for edits, and you want to answer if it is possible to edit
the graph using at most k operations such that for all vertices v in the graph d(v) ∈ δ(v)

holds. The editing operations they considered are some combination of vertex deletion,
edge addition and edge deletion. As the function for permitted degrees is very general in
that every vertex has a separate set of allowed degrees ≤ d, they also looked at variations
where the target degrees for every vertex was a singleton. In particular they showed that if
the target degree for each vertex is a single integer and the permitted editing operations are

2

CHAPTER 1. INTRODUCTION

edge additions and edge deletions the problem is solvable in polynomial time. Without any
restriction on the set of permitted degrees they showed that the problem is W[1]-hard for
any combination of the editing operations of vertex deletion, edge addition and edge dele-
tion. Vertex deletions cause the problem to be W[1]-hard even for singleton degrees when
parameterized by the number of edits only. When parameterizing by d and k they showed
that the problem is FPT but did not provide an algorithm (the proof was non-constructive),
and they also proved a polynomial kernel if only vertex or edge deletions are permitted in
the case of singleton degrees.

Golovach [12] later gave an explicit FPT algorithm for DEGREE CONSTRAINT EDIT-
ING when parameterized by d and k for the editing operations of vertex deletion, edge
deletion and edge addition, but showed that unless NP ⊆ co-NP / poly the problem does
not admit a polynomial kernel with the same parameterization. As a natural extension to
the classification of degree-constrained editing Golovach [13] looked at the problem of
editing to a connected graph of given singleton degrees when the editing operations are
edge deletion and edge addition (EDGE EDITING TO A CONNECTED GRAPH OF GIVEN

DEGREES), and gave a polynomial kernel parameterized by d+ k. The case when the tar-
get degree was the same for all vertices (EDITING TO A CONNECTED F-DEGREE GRAPH)
was shown to be FPT parameterized by k. This result was later improved upon by Fomin
et. al. [9] who gave a 2O(k) · nO(1) algorithm for this problem using color coding and
matroids.

An interesting extension of EDGE EDITING TO A CONNECTED GRAPH OF GIVEN

DEGREES is to consider the degree constraint as a bound and not a singleton value. This
degree constraint is more free than giving an exact degree for every vertex, but at the same
time more strict than having the very broad degree constraint considered by Mathieson
and Szeider [19] for DEGREE CONSTRAINT EDITING. For instance one could have some
data network with some existing connections between nodes, and some upper limitation
for each node on how many different connections it can handle. The question of whether
a connected network obeying the connectivity constraints of the nodes can be obtained
by adding or removing at most k connections is the first of the two problems treated in
this thesis, namely EDGE EDITING TO A CONNECTED GRAPH OF UPPER BOUNDED

DEGREES, or EDITUBD for short.

EDGE EDITING TO A CONNECTED GRAPH OF UPPER BOUNDED DEGREES

Input: A graph G = (V,E), an integer k, a function f : V (G)→ Z+

Question: Does a set A ⊆
(
V (G)

2

)
exist such that G′ = (V (G), E(G)4A) is a

connected graph, all vertices v in V (G′) has d(v) ≤ f(v), and |A| ≤ k?

In this thesis we give a polynomial kernel for this problem with O(k3) vertices and

3

CHAPTER 1. INTRODUCTION

O(k4) edges. As the output of the kernelization algorithm has a lot of structure we are also
able to give a 2O(k) ·nO(1) algorithm based random separation techniques as pioneered by
Cai et. al. [3]. The section on EDITUBD is rounded off with a proof of NP-completeness
and giving a lower bound for the running time of any algorithm based on the Exponential

Time Hypothesis (ETH), allowing us to conclude that a single exponential time algorithm
is asymptotically optimal assuming ETH.

The other problem considered in this thesis is the lower bounded version of EDITUBD:
EDGE EDITING TO A CONNECTED GRAPH OF LOWER BOUNDED DEGREES, or ED-
ITLBD for short. This problem can for instance map to a problem where you are given
some communication network with existing links between entities, and each entity in the
network has some minimum requirement of the number of other entities it can contact di-
rectly. The problem of deciding if at most k connections can be added or removed to fulfill
the individual requirements of the entities and also connect the entire network together can
be formulated as an instance of EDITLBD.

EDGE EDITING TO A CONNECTED GRAPH OF LOWER BOUNDED DEGREES

Input: A graph G = (V,E), an integer k, a function f : V (G)→ Z+

Question: Does a set A ⊆
(
V (G)

2

)
exist such that G′ = (V (G), E(G)4A) is a

connected graph, all vertices v in V (G′) has d(v) ≥ f(v), and |A| ≤ k?

In the chapter after we EDITUBD we provide a polynomial algorithm for EDITLBD
based on matching techniques.

4

Chapter 2
Preliminaries

2.1 Set theory

A set is an unordered collection of distinct objects. Throughout this thesis we will use the
common notation for sets with relations membership (∈, /∈), subset (⊂,⊆), union (∪) and
intersection (∩). For two sets A and B the symmetric difference A4B is the union of A
and B without the intersection of A and B (A4B = (A ∪B) \ (A ∩B)).

Set builder notation will generally be used when defining sets in this thesis, but we will
also refer to some common symbols for some useful sets: ∅ denotes the empty set, the set
with no elements. Z refers to the set of all integers, with Z+ = {0, 1, 2, . . . } being the
set of non-negative integers. N refers to the set of natural numbers {1, 2, 3, . . . }. Another
way we construct sets is by choosing all subsets of a certain size from another set. If A is
a set and k is the size of the subsets of A we want,

(
A
k

)
is the set of all k-sized subsets of

A.

We say that a set is inclusion-wise maximal or simply maximal according to some
property if no strict supersets exist such that the superset also has the same property. Sim-
ilarily we say that a set is inclusion-wise minimal or simply minimal if no strict subset
exists according to some property. The biggest maximal set of all maximal sets that has
some property is a maximum set, and similarily the smallest minimal set of all minimal
sets that has some property is a minimum set.

5

2.2. GRAPHS CHAPTER 2. PRELIMINARIES

2.2 Graphs

A graph G is a tuple G = (V,E) of the set of vertices V and the set of edges E obeying
E ⊆

(
V
2

)
, such that the elements of E are sets with two elements of V .

Figure 2.1: Example simple graph

Figure 2.1 shows a drawing of a simple graph, where the vertices are the circles, and
the edges are drawn as lines between the vertices that they connect. The vertex set of a
graph G is referred to as V (G), and likewise the edge set of a graph G is referred to as
E(G). When there is no ambiguity we will use V and E to refer to the vertex set and
edge set respectively. If the graph we are referring to is unambiguous we let n denote the
number of vertices |V |, and m denote the number of edges |E|.

We say that an edge e is incident to a vertex v if v ∈ e. If an edge e = {u, v} is in
E(G), we say that the vertices u and v are adjacent. Often we will refer to an edge by the
vertices that it is incident to, so a uv-edge is an edge {u, v}.

In an undirected graph the sets are unordered sets, so the edge {u, v} and {v, u} is the
same edge. This thesis deals only with undirected graphs. In a simple graph we do not
allow self-loops, which are edges from and to the same vertex ({v, v} is a self-loop on the
vertex v). In this thesis we only consider finite graphs, so for any graph |V | and |E| is
finite.

A multigraph is a graph G = (V,E) where we can have multiple edges between the
same pair of vertices. We do this by introducing a mapping function E →

(
V
2

)
∪ V that

assigns each edge the vertices it is incident to. This allows us multiple “copies” of the
same edge, as two edges can be between the same pair of vertices. For convenience we
will assume that the mapping function is defined for the edges we are working with in a
multigraph, such that we will never explicitly refer to this mapping function but instead
refer to the edges by the vertices they map to – even if referring to the vertices no longer
uniquely identifies an edge. In multigraphs we allow for (multi-)self-loops, which are
edges of the form {v, v}. The multiplicity of a {u, v}-edge in a multigraph is the number
of edges in the edge set that maps to the vertices u and v. Figure 2.2 shows a drawing of a
multigraph with some multiedges and self-loops.

6

CHAPTER 2. PRELIMINARIES 2.2. GRAPHS

Figure 2.2: An example multigraph with self-loops

If G is a graph and S is a subset of
(
V (G)

2

)
(or a set of edges that map to sets in(

V (G)
2

)
∪V (G) in the case of multigraphs), thenG−S = (V (G), E(G)\S), andG+S =

(V (G), E(G) ∪ S). If G is a graph and T is a set of vertices, then G − T = G′ with
V (G′) = V (G) \ T and E(G′) = {{u, v} ∈ E(G) | u, v /∈ T}. For convenience we will
sometimes be more imprecise and write G− e or G+ e instead of G− {e} or G+ {e} if
e is a single element.

IfG is a graph andA is a subset of
(
V (G)

2

)
(or “edges” that map to vertices in

(
V (G)

2

)
∪

V (G) in the case of multigraphs), we define the symmetric difference G4A as the graph
G′ = (V (G), E(G)4A), where every edge e that is in both E(G) and A is removed, and
every edge that is in A but not in E(G) is added. Informally we refer to the edges of A
that are in G as edge deletions, and edges of A that aren’t in G as edge additions.

For the definitions of G − S and G4A we abuse notation somewhat, and refer to the
elements of A or S as edges even though some elements in A or S aren’t edges of G.

We define the degree dG(v) of a vertex v in a graph G to be the number of edges in
E(G) where v is one of the vertices. If the graph we are referring to is unambiguous we
skip theG in the subscript. For a self-loop {v, v} we count v twice as it has two endpoints,
so each self-loop contributes 2 to the degree of a vertex.

For a simple graph G we define the complement G of a graph G as the graph on the
same vertices, but for every pair of vertices connected by an edge in G there is no edge in
G, and for every pair of vertices not connected by an edge in G they are connected by an
edge in G.

A subgraph G′ ⊆ G is a graph where V (G′) ⊆ V (G) and E(G′) ⊆ E(G). An
induced subgraph G[S] of G (where S is a set of vertices) is a subgraph of G where the
vertex set is the intersection of V (G) and S, and the edge set is the set of edges where both
endpoints are in S. An edge-induced subgraph G[T] of G on a set of edges T ⊆ E(G) is
a subgraph G′ with E(G′) = T and V (G′) =

⋃
{u,v}∈T

{u, v}. We use the same notation

for subgraphs induced on both a set of vertices and a set of edges.

A path is an ordered sequence of distinct vertices where for every adjacent pair of
vertices in the sequence there exists an edge betwee these two vertices. A u, v-path is a

7

2.2. GRAPHS CHAPTER 2. PRELIMINARIES

path starting at vertex u and ending in vertex v. A cycle is an ordered sequence of vertices
where the first and last vertex are the same, all the other vertices are distinct, and for every
pair of adjacent vertices in the sequence an edge between these vertices exist in the graph.
If we have self-loops in a graph a self-loop is a cycle.

Two vertices u, v are connected if there exits a path from u to v. We also consider a
vertex to be connected to itself, even without self-loops. A connected component C =

G[A] where A ⊆ V (G) is an induced subgraph on a maximal set of vertices A such that
for every two vertices in C there exists a path between them in C. A connected component
can be a single vertex. We say that a graph as a whole is connected if there is only one
connected component in the graph. We use the shorthand C =

⋃
Ci∈G

{Ci} where each Ci

is a connected component to denote the set of connected components of a graph G. Two
vertices u, v are edge-biconnected if after the removal of any edge in G, u and v are still
connected.

An independent set is a set of vertices I such that the induced subgraph G[I] has no
two distinct vertices that are pairwise adjacent. Note that with this definition we might
have edges in a graph induced on an independent set in the form of self-loops.

If for an edge e there exists two vertices u, v such that u and v are connected in G, but
in G− e the they are not connected, the we call e a bridge, or a cut edge. If an edge is not
a bridge, then it must be a part of some cycle, and we call e a non-bridge edge or a cycle

edge.
Trees are connected graphs without any cycles. A tree with n vertices has exactly

n − 1 edges, and every edge is a bridge [6, 1.5.3]. If all the connected components of
a graph are trees then the graph is a forest (thus a tree is also a forest with only one
component). A spanning graph H is a subgraph of some graph G with all the vertices of
G (V (H) = V (H)), but not necessarily all the edges. A spanning forest of a graph G is a
spanning subgraph of G which is a forest with the same number of connected components
as G.

We can contract an edge e between two distinct vertices u, v by replacing u and v with
a new vertex v′. The edge e is removed from the graph, and all other edges originally
incident to u or v are now incident to v′ instead. If there are multiedges parallel to e these
become self-loops on v′. Figure 2.3 shows an example contraction of an uv-edge.

We define merging of two non-adjacent vertices u, v as follows: Let v′ be the new
vertex representing the merging of u and v, so V (G′) = (V (G) \ {u, v}) ∪ {v′}. Every
non-loop edge {u, c} ∈ E(G) or {v, c} ∈ E(G) is replaced the edge {v′, c} to E(G′).
Every loop {u, u} or {v, v} is replaced by the loop {v′, v′}.

8

CHAPTER 2. PRELIMINARIES 2.3. ALGORITHMS AND COMPLEXITY THEORY

u v

v’

Figure 2.3: Example contraction

2.3 Algorithms and Complexity theory

We will now introduce some definitions that allow us to formally define a parameterized
decision problem. An alphabet is a fixed and finite non-empty set of symbols, commonly
denoted as Σ. All possible strings on an alphabet is denoted as Σ∗. For any given string
I we say that |I| is the length of I , measured as the number of symbols in the string. A
language L over an alphabet Σ is a subset of all the strings in our alphabet, L ⊆ Σ∗.

We define a decision problem as a language L over some alphabet Σ∗. For any string
I ∈ Σ∗, if I ∈ L we say that I is a YES-instance, and if I /∈ L we say that I is a
NO-instance of the language L. A parameterized decision problem is some language
L ⊆ Σ∗ × N, where for an instance (x, k) ∈ Σ∗ × N, k is the parameter. Similarily as
for decision problems we define that for an instance (x, k) ∈ Σ∗ × N of a parameterized
problem, (x, k) is a YES-instance if (x, k) ∈ L, and a NO-instance if (x, k) /∈ L. We will
informally refer to both parameterized decision problems and decision problems as simply
problems.

In this thesis we will present algorithms for decision problems. An algorithm can be
formalized in the framework of Turing machines, which is a mathematical model of com-
putation. We will be slightly informal and regard an algorithm as some computational
procedure to solve some problem. For a more comprehensive introduction to Turing ma-
chines, languages and decision problems we refer to the book Introduction to the Theory

of Computation by Sipser [23]. As we are dealing with decision problems, our algorithms
for those will take as input some instance I , the problem instance or simply instance, and
answer either YES or NO upon halting. The problems we deal with in this thesis deal with
graphs, but we can encode any object including graphs and functions as strings.

9

2.3. ALGORITHMS AND COMPLEXITY THEORY CHAPTER 2. PRELIMINARIES

2.3.1 Running time

To understand the complexity of an algorithm we will look at the running time of the
algorithm. We measure the running time as the number of basic computational steps the
algorithm takes to give an answer to an instance. The number of steps taken can vary
depending on the input, so the running time of an algorithm is measured as some function
f : N→ N of the size of the input. Giving an upper bound on the runtime of an algorithm
is captured by big-O notation: If we have an algorithm A with running time f(|I|), and a
function g : N → N, if f(|I|) ∈ O(g(|I|)) we say that the running time of A is bounded
by g(|I|).

We group the running time complexity of problems in complexity classes, where for
our thesis the especially relevant ones are P, the problems that can be decided in time
bounded by some polynomial in the size of the input (f(x) ∈ |x|O(1)), NP, the problems
that can be decided in time bounded by some polynomial on a non-deterministic Turing
machine, and FPT, the parameterized problems that can be decided in time f(x, k) ∈
g(k) · |x|O(1) for some computable function g. NP can equivalently be defined as the class
of languages that can be verified in polynomial time [23].

A motivation for the complexity class of FPT, or Fixed Parameter Tractable is to gain
a better understanding of the complexity of problems that are in NP. For instance, the NP-
complete problem of finding a set of vertices S of size k in a graph G such that G − S is
an independent set (the VERTEX COVER problem [11]) can be done in time 2ck · nO(1)

for some constant c > 0, meaning that vertex cover is FPT [4]. However the problem
of finding a coloring of the vertices of a graph using at most k different colors such that
no edge is incident to vertices of the same color (the VERTEX COLORING problem [11])
for k ≥ 3 has no algorithm of the form f(k) · nO(1) unless P = NP, as 3-COLORING is
NP-complete [11].

This apparent difference in complexity for NP-complete problems are captured in the
W-hierarchy [7], which defines a hierarchy of complexity classes within NP, with

W[0] ⊆W[1] ⊆W[2] ⊆ · · · ⊆ XP ⊆ NP

A working hypothesis is that W[i] ⊂W[j] for all i < j. W[0] is the complexity class
of FPT, and W[1] is the lowest class of problems in the hierarchy that are believed to not be
FPT. An example of a problem that is complete for W[1] is CLIQUE [5, Theorem 13.18],
where the problem is finding a set of vertices S of size k such that every two vertices in
G[S] is pairwise adjacent. Showing that a problem is at least as hard as any problem in
W[1] would mean that any FPT algorithm for the problem causes some collapse in the
W-hierarchy. XP is the class of parameterized problems solvable in timeO(|x|f(k)) for an

10

CHAPTER 2. PRELIMINARIES 2.3. ALGORITHMS AND COMPLEXITY THEORY

instance (x, k) and some computable function f : Z+ → Z+.

For a more thorough treatment of parameterized complexity we refer to the book Pa-

rameterized Algorithms by Cygan et. al. [5].

2.3.2 Reductions

To better understand the complexity of problems it is useful to compare the difficulty of
different problems with one another. One way of doing this is by introducing reductions

from some problem A to another problem B. A safe reduction is a function φ : Σ∗ → Σ∗

such that for any instance I , I is a YES-instance of A if and only if φ(I) is a YES-instance
of problem B. If the running time of φ can be bounded by some polynomial in the size
of the instance, we say that φ is a polynomial reduction. We can construct algorithms as a
series of reduction rules, which are reductions to and from the same problem. We say that
a reduction rule is safe if the reduction rule preserves the instance, i.e. I ∈ L if and only
if I ′ ∈ L.

The existence of some polynomial reduction from problem A to problem B means
that problem A can be solved by any algorithm that solves B, in addition to the running
time of the reduction function. This is useful for showing that problems belong to the
class NP-hard, which is the class of the problems at least as hard as any problem in NP.
The problems that are both in NP and are NP-hard belong to the class NP-complete, the
hardest problems in NP. If we have a problem A that is known to be NP-complete, a
polynomial time reduction from A to B means that we can solve A by first reducing to B
in polynomial time, and then solving B, and therefore B must be NP-hard.

Another type of reductions we consider in this thesis are kernelization algorithms (or
simply kernels), which is a particular kind of parameterized preprocessing algorithms. A
parameterized preprocessing algorithm takes some instance (x, k) of some parameterized
problem A and outputs an instance (x′, k′) such that (x, k) is a YES-instance of A if and
only if (x′, k′) is a YES-instance of A. If a preprocessing algorithm φ runs in polynomial
time, and we can bound the maximum size of the output instance (x′, k′) for any input
instance by some computable function g : Z+ → Z+ depending only on k, we say that
φ is a kernelization algorithm. Here we have no requirement for the function g other than
computability, but in practice we look for kernels bounded by a polynomial function g,
which we call polynomial kernels. Kernels fit into the notion of FPT, since a problem has
a kernel if and only if it also has a FPT algorithm [5, Lemma 2.2].

For a more in-depth look at kernels we refer to the books Parameterized Algorithms

by Cygan et. al. [5], and Kernelization: Theory of Parameterized Preprocessing by Fomin
et. al. [10].

11

2.4. F -MATCHING CHAPTER 2. PRELIMINARIES

To show that problems belong in the same class in the W-hierarchy polynomial reduc-
tions are no longer sufficient. This is because any NP-complete problem can be reduced to
any other NP-complete problem using a polynomial reduction, and we have no way of sep-
arating the complexity classes. For this reason we also have parameterized reductions [5,
Chapter 13.1]. A parameterized reduction takes some instance (I, k) of a parameterized
problem A, and outputs an instance (I ′, k′) of a parameterized problem B such that

1. (I, k) is a YES-instance of A if and only if (I ′, k′) is a YES-instance of B

2. k′ ≤ g(k) for some computable function g

3. the running time of the reduction is bounded by f(k) · |I|O(1) for some computable
function f

Parameterized reductions are also useful for showing complexity lower bounds based
on ETH [15].

Conjecture 2.3.1 (Exponential-Time Hypothesis, ETH). Let δq be the infinimum of the

constants c for which there exists an algorithm solving q-SAT for q ≥ 3 in time O∗(2cn).

Then δ3 > 0.

If ETH holds we have a lower bound on the running time for any algorithm solving 3-
SAT, as the consequence of ETH is that no subexponential algorithm can exist that solves
3-SAT. We can combine this with parameterized reductions from 3-SAT to other problems,
and thus obtain lower bounds based on ETH.

2.4 f -matching

A f -matching is a generalization of matching, where instead of requiring a matching to at
most have one edge incident to each vertex, we can have a vertex v matched f(v) times.
As for the general matching problem we can solve the problem of finding a maximum f -
matching in polynomial time. Figure 2.4 shows an example graph where we want to find
a maximum f -matching, where the function values f are indicated next to the vertices.

f -MATCHING

Input: A multigraph G = (V,E) where the maximum multiplicity of any multi-
edge is c and a function f : V (G)→ Z+

Output: A maximum set of edges S ⊆ E s.t. every vertex v in G[S] has degree
≤ f(v).

12

CHAPTER 2. PRELIMINARIES 2.4. F -MATCHING

3

2

1 1

3

1

Figure 2.4: An example multigraph we want to find f -matching in

The problem and the construction used to solve it are from Lovasz’ and Plummer’s
book on Matching Theory [18], but they consider the slightly different subproblem of
finding a perfect f -matching (where every vertex v in G is matched exactly f(v) times).
We are interested in the maximum possible f -matching in G, but we will use the same
construction as the one used to find a perfect f -matching to do this, adopted for multi-
graphs.

Constructing the matching graph: The graph G′ which we will find a matching in is
constructed as follows: For every vertex v in G, add f(v) vertices v1, v2, ..., vf(v) to G′.
For all non-self-loops e between vertices {u, v} in G add two new vertices e1 and e2, and
the edge {e1, e2} to G′. Then add all edges between ui and e1, and all the edges between
e2 and vj in G′ for all is and js. For self-loops on a vertex u we do the same, except in
this case both e1 and e2 are adjacent to all vertices ui. We consider each multiedge as
a separate edge. Figure 2.5 shows the graph G′ corresponding to the graph in figure 2.4,
where the duplicated f(v) vertices are colored in blue, and the vertices added for the edges
in G are colored in red. Note that G′ will always be a simple graph, even though the input
graph could be a multigraph.

Figure 2.5: The graph G′ corresponding to the example graph in figure 2.4

We have a mapping from a f -matching M in G to a matching M ′ in G′ as follows:
Every uv-edge e in M has its corresponding pair of {ui, e1} and {e2, vj}-edges in M ′

for some yet unmatched ui and vj . For every uv-edge e in G that is not in M , either its
corresponding {e1, e2} edge is in M ′, or one of {ui, e1} or {e2, vj} is in M ′.

Any maximal matching in M ′ that only matches one of the vertices e1 or e2 for some

13

2.4. F -MATCHING CHAPTER 2. PRELIMINARIES

pair of vertices corresponding to an edge e in G can be altered to a maximal matching in
M ′ of the same size where both these vertices are matched. This is done by removing the
edge incident to the the matched vertex e1 or e2, and adding the edge {e1, e2}. For this
reason we will assume that when we map from a maximal matching in G′ for every e ∈ G
the corresponding vertices e1 and e2 are matched, and when we map from any f -matching
M in G the vertices e1 and e2 are always matched in M ′.

Lemma 2.4.1 (f -matching to matching). We have a maximum f -matching M in G if and

only if the corresponding matching M ′ mapped from M is a maximum matching in G′.

Proof. We begin by showing that we can map any maximal f -matching M in G of size
k to a matching M ′ in G′ of size k + |V (G)|. Every uv-edge e ∈ M causes us to have
the edges {ui, e1} and {e2, vj} in M ′ for some i and j. Every uv-edge e ∈ (E(G)−M)

causes us to have the edge {e1, e2} inM ′. This mapping never matches any vertex created
for any edges in G twice due to the fact that vertices e1 and e2 are only matched as part
of the mapping from this particular edge, and the number of times we maximally match a
vertex ui due to this rule is f(u), so every matched ui can be distinct for any such vertex.
From the mapping rule we know that for each edge e ∈ E(G) we add either one edge to
M ′ if e /∈M , or two edges if e ∈M . Thus the size of the obtained matching M ′ must be
equal to

|M ′| = 2|M |+ |E(G)−M | = |E(G)|+ |M |

and it follows that if |M | = k the size of M ′ must be k + |E(G)|.
We will now show that if we have a maximal matching M ′ of size k + |E(G)| in

G′ the mapped f -matching M in G is a valid f -matching of size k. First, the mapped
f -matching M from M ′ must be valid, as we only add the uv-edge e to M if we have
edges {ui, e1} and {vj , e2} in M ′. This can happen at most once for each edge, and
the maximum number of vertices ui that can be matched is exactly f(u), so the mapped
f -matching must be valid.

As we have a maximal matching in G′, we can assume that all vertices e1 and e2 for
every edge e in G are matched. If for an edge e in G the edge {e1, e2} is in M ′, we do
not add any edges to M . If for an edge e in G the we have the edges {ui, e1} and {vj , e2}
in M ′, we add the edge e to M . Then, for every pair of e1, e2-vertices we either have
two edges matched in M ′, or one edge matched in M ′. As a consequence the minimum
size of a maximal matching in G′ is equal to |E(G)|. If we have two edges matched for
a pair e1, e2 we add the corresponding edge e to the f -matching M . We have a total of
|E(G)| e1, e2-pairs in G′, so the size of the mapped matching M from M ′ is equal to

14

CHAPTER 2. PRELIMINARIES 2.4. F -MATCHING

|M ′| − |E(G)|, and we have proven that a maximal matching of size k + |E(G)| in M ′

maps to a f -matching in G of size k.

Finally we have to show that we have a maximum f -matching M in G of size k
if and only if we have a maximum matching M ′ in G′ of size |E(G)| + k. Assume
that we have a maximum f -matching in G, but the mapped matching M ′ in G′ is not a
maximum matching. That means that we have a matchingB inG′ such that |B| > |M ′| =
|M | + |E(G)|. As B is a maximum matching it must also be maximal, so we can obtain
a mapped f -matching B′ in G of size |B| − |E(G)| > |M |+ |E(G)|, and this is a bigger
matching than the maximum matching we started with, which is a contradiction. The
same argument works when initially starting with a maximum matching in G′, so we have
a maximum f -matching M in G if and only if the mapped matching M ′ is a maximum
matching in G′.

The running time of this algorithm depends on the number of additional edges and
vertices needed, as well as the running time of the matching algorithm used.

To give a reasonable bound on the running time of the algorithm we have introduced
a parameter for the maximum multiplicity of multiedges c. We will therefore bound the
running time by the number of vertices |V |, and the maximum multiplicity of any multi-
edge c. This analysis also works for simple graphs, as in a simple graph c = 1. We can
also bound the function for any individual vertex v by setting f ′(v) = min(f(v), d(v)) as
our function instead, as we can never match a vertex more times than the number edges
incident to it.

The number of additional vertices added is
∑

v∈V (G)

f(v) ≤
∑

v∈V (G)

d(v) ≤ |V |2 · c, in

addition to two new vertices per edge in the graph. For every vertex we add d(v) · f(v) ≤
d(v)2 ≤ |V |2 · c edges, and we add one extra edge per edge in G.

Thus the maximum number of vertices in the matching graph is 2|E| + |V |2 · c, and
the maximum number of edges is |V |3 · c2 + |E|. We know that |E| ≤ |V |2 · c, which
gives us a bound of 2 · |V |2 · c + |V |2 · c ∈ O(|V |2 · c) for the number of vertices in our
matching graph, and |V |3 · c2 + |V |2 · c ∈ O(|V |3 · c2) for the number of edges in our
matching graph.

The fastest general algorithm for finding the maximum matching in a graph is by Mi-
cali and Vazirani [20], achieving a running time of O(

√
n ·m) for a graph with n vertices

and m edges. If we substitute in the bounds for the number of edges and vertices in our
auxilliary matching graph we obtain a running time bound of

O(
√
|V |2 · c · (|V |3 · c2)) = O(|V |4 · c2.5)

15

2.4. F -MATCHING CHAPTER 2. PRELIMINARIES

We summarize these results in the following Theorem:

Theorem 2.4.2 (f -matching). Given a multigraph G with maximum edge multiplicity c

and a function f : V (G) → Z+, we can find a maximum f -matching M in G in time

O(|V (G)|4 · c2.5). If G is a simple graph the maximum edge multiplicity c is 1, and the

running time is then bounded by O(|V (G)|4).

16

Chapter 3
Upper Bounded Degrees

In this chapter, we will look at the EDGE EDITING TO A CONNECTED GRAPH OF UPPER

BOUNDED DEGREES (EDITUBD) problem and its complexity. The problem was already
stated for simple graphs in the introduction, but in this chapter we will work with the
multigraph version.

3.1 Problem statement

EDGE EDITING TO A CONNECTED GRAPH OF UPPER BOUNDED DEGREES

Input: A multigraph G = (V,E), an integer k, a function f : V (G)→ Z+

Question: Does a set A of edges exist, such that G′ = G4A is a connected graph,
all vertices v in V (G′) has d(v) ≤ f(v), and |A| ≤ k?

When constructing algorithms it turned out to be useful to consider the multigraph
version of EDITUBD. This is not an issue, as the answer for an instance where G is
simple graph stays the same:

Lemma 3.1.1 (Preservation of instance). In the case where G is a simple graph, (G, f, k)

is a YES-instance of EDITUBD when G′ is restricted to simple graphs if and only if

(G, f, k) is a YES-instance of EDITUBD where G′ is permitted to be a multigraph.

Proof. The forward direction of this equivalence follows from the fact that any simple
graph is also a valid multigraph. If a simple graph G′ can be constructed using ≤ k edits
on G, the same set of edge deletions and additions is also a solution if multigraphs are
permitted.

17

3.1. PROBLEM STATEMENT CHAPTER 3. UPPER BOUNDED DEGREES

The reverse direction does not immediatly follow, as even thoughG initially is a simple
graph, the solution graph G′ could be a multigraph. If (G, f, k) is a YES-instance when
multigraphs are permitted we know that we obtain a graphG′ with at most k edits such that
G′ is connected and has no unsatisfied vertices. Assume that G′ has some multiedge or
self-loop e. As G initially has no multiedges or self-loops, the multiedge or self-loop must
be from an edge addition. If G′ is a connected graph with no violated degree constraints,
then G′ − e must also be a connected graph with no violated degree constraints: The
removal of e does not disconnect any components, and the degree constraint is an upper
bound and thus the removal of any edge cannot cause a satisfied constraint to become
violated. As e comes from an editing operation, omitting this operation will not make us
go over budget. Then any solution that adds multiedges or self-loops will also be solutions
if these multiedges or self-loops are not added.

3.1.1 Definitions

We will now define some notation used in this chapter in particular. For these definitions
we let (G, f, k) be an instance of EDITUBD.

Definition 3.1.1 (Unsatisfied vertices and X). If a vertex v in G has a higher degree than
the function f allows (d(v) > f(v)), then we say that v is unsatisfied. The set of all
unsatisfied vertices in the graph is X , or X(G) if we are dealing with multiple graphs.
Any vertex v in G that is not unsatisfied is a satisfied vertex.

We also have some additional definitions for components that doesn’t have any unsat-
isfied vertices.

Definition 3.1.2 (free). For any connected component C ∈ C with no unsatisfied vertices,
let

free(C) =
∑

v∈V (C)

(f(v)− d(v))

be the free capacity of a component, and for any set of connected components with no
unsatisfied vertices D ⊆ C

free(D) =
∑
C∈D

free(C)

be the sum of all free capacities for the components of D.

Definition 3.1.3 (total). For any connected component C ∈ C let

total(C) = free(C) + 2(|E(C)| − |V (C)|+ 1)

18

CHAPTER 3. UPPER BOUNDED DEGREES 3.2. CONNECTION LEMMA

be the total capacity of a component, and for any set of connected components with no
unsatisfied vertices D ⊆ C

total(D) =
∑
C∈D

total(C)

be the sum of all total capacities for the components of D.
The cycle edges in a component are the edges that contribute to the total capacity.

They provide capacity in the sense that they can be deleted without disconnecting any
components.

Definition 3.1.4 (Cfull). Let Cfull be the set of all connected components which has 0 free
capacity and at least 1 total capacity. If a component C is in Cfull, we call this a full

component.

Definition 3.1.5 (Csated). Let Csated be the set of all connected components that has 0 total
capacity. If a component C is in Csated, we call this a sated component or tree. The reason
for why a sated component must be a tree is because it has zero cycle edges (otherwise it
would have some total capacity), and a connected component without any cycle edges is a
tree.

1
3 1

2 1 Sated tree

1
3

2 2 Full component

1
3

2 2

3

3

2

Other components

Figure 3.1: Example components when all degree constraints are satisfied (degree con-
straints are shown above each node)

3.2 Connection Lemma

Now we will show that if all the degree constraints in a particular instance (G, f, k) are
satisfied, the question of whether the graph can be connected together or not can be solved

19

3.2. CONNECTION LEMMA CHAPTER 3. UPPER BOUNDED DEGREES

just by looking at some basic properties of the connected components of our graph. We
say that all degree constraints in the graph are satisfied if the set of unsatisfied vertices X
is the empty set, or equivalently that for all vertices v in the graph, d(v) ≤ f(v).

3.2.1 Non-deleting connection Lemma

Lemma 3.2.1. If every vertex v inG has d(v) ≤ f(v), and we have at least two connected

components in the graph, then the graph can be made into a connected graph within the

budget k without violating the degree constraint f using only edge additions if and only if:

∀C ∈ C : free(C) ≥ 1 (3.1)

free(C) ≥ 2(|C| − 1) (3.2)

k ≥ |C| − 1 (3.3)

Proof. We will first prove the forward direction of the Lemma. The proof is by induction
on the size of C.

Base case (|C| = 2): We have that k is at least one, and both our components C1, C2

have free(C1) ≥ 1 and free(C2) ≥ 1. As free(C1) ≥ 1, there exists a vertex v in C1

such that d(v) − f(v) ≥ 1. By the same argument we have a vertex u in C2 such that
d(u) − f(u) ≥ 1. If we add an edge between u and v, we join the two components, and
add 1 to the degree of both u and v. Both the difference between the degree and degree
limit of u and v is now at least 0, so all our degree constraints are still satisfied. We have
also joined our two components, so our graph is now connected.

Inductive step (|C| > 2): Assume that we can connect the graph G when |C| = h, and
all the conditions above are satisfied. From this assumption we must prove that we can
connect the graph when |C| = h+ 1.

Let C1, C2 be the two components with the highest free capacity in C. As in the
previous case, we have a vertex u inC1 and v inC2 such that u has degree at most f(u)−1,
and v has degree at most f(v)− 1. Let C ′ be the new component we get after connecting
C1 and C2 by adding an edge between u and v. As we reduce both the size of C and k
by one, and we don’t connect to any vertices that does not have free connection spots, the
only way we can break the conditions after connecting C ′ is if C ′ has free capacity = 0.

C ′ has free capacity free(C1)+free(C2)−2 (we remove one free connection spot from
each). If C ′ has free capacity 0, that means that both C1 and C2 have free capacity 1. Then

20

CHAPTER 3. UPPER BOUNDED DEGREES 3.2. CONNECTION LEMMA

all components in C has free capacity 1 (the minimum free capacity for each component
is 1, and we selected the two components with highest free capacity). Then free(C) = |C|,
but since |C| ≥ 3, that means condition 2 is not satisfied.

Since the forward direction of the Lemma holds for the base case and the inductive
step, this holds for any number of components in the graph (as long as all the conditions
in the Lemma are satisified).

We show the other direction of the implication by proving that it is impossible to
connect the graph with only edge additions if we violate any of the conditions listed in the
Lemma. Since the Lemma is only valid if all the degree constraints are satisfied, we keep
this assumption through all the different cases.

Violating condition 3.1: Condition 1 states that for every component, we have at least
one vertex v in that component which has f(v)− d(v) ≥ 1. Targeting a contradiction, we
assume that we have a component C where there is no such vertex, and we are still able to
connect the entire graph using only edge additions without violating any degree constraint.
To connect C to the rest of the components, we must add at least one edge to one vertex in
C to some vertex in a different connected component. However this can’t be done without
violating a degree constraint, as for every vertex v in C the degree constraint is already
tight with d(v) = f(v).

Violating condition 3.2: Condition 3.2 states that the sum of the free capacity of all
the components must be greater than or equal to the twice the number of components,
minus two. Assume that this is not true, such that

free(C) < 2(|C| − 1)

To connect the graph, we need to add |C| − 1 edges, as every edge addition merges at
most two components. For every edge addition we must connect two vertices u, v such
that we don’t violate the degree constraint for either of the vertices. This means that for
every pair of components C1, C2 we want to merge we require a vertex u ∈ C1 : d(u) <

f(u), and a vertex v ∈ C2 : d(v) < f(v). Since the value of free(C) is the sum of the
difference in degree and function value for all the vertices in each component, and we add
one edge between two vertices in different connected components each time we connect
components, we will run out of valid vertices to add edges between if condition 3.2 is
violated.

Violating condition 3.3: If condition 3.3 is violated, then k < |C| − 1. Since we have
|C| components, and every edge addition can at most reduce the number of components by

21

3.2. CONNECTION LEMMA CHAPTER 3. UPPER BOUNDED DEGREES

1, we need at least |C|−1 edge additions to connect the graph. Therefore we can’t connect
the graph if k < |C| − 1, as every edge addition uses 1 of our budget.

As we can’t violate any of the conditions of the Lemma without encountering a con-
tradiction, the reverse direction of the Lemma is proved.

3.2.2 General connection Lemma

The connection Lemma in the previous section gives us a useful property about the prob-
lem of connecting components using only edge additions. However we can state the nec-
essary conditions for connecting the entire graph if all the degree constraints are already
satisfied. By using this Lemma we can solve the decision problem in polynomial time if
all the degree constraints are satisfied, by traversing the graph and counting the different
kinds of components we have, as well as the total and free capacity of the graph.

Lemma 3.2.2 (General connection Lemma). If all degree constraints are satisfied and

we have more than one component then the graph can be connected within the budget k

without violating the degree constraint f if and only if:

total(C) ≥ 2(|C| − 1) (3.1)

k ≥ x+ (|C| − 1) + |Cfull|+ 2|Csated| (3.2)

Where

x = max

{
|C| − 1− |Cfull| − b

free(C)
2
c, 0
}

Proof. First we show the forward direction of the equivalence with a set of operations that
reduces to a YES-instance of Lemma 3.2.1.

Base case (|Csated| + |Cfull| = 0): If no component Ci ∈ C is either sated or full, we
know that every component Ci has free(Ci) ≥ 1, so condition 1 of Lemma 3.2.1 is already
satisfied. To satisfy condition 2 of Lemma 3.2.1, we must have free(C) ≥ 2(|C| − 1). The
remaining free capacity we need is 2(|C| − 1)− free(C).

Since we have zero of both sated and full components, the total budget k we have
available is ≥ 2|C| − 2 −

⌊
free(C)

2

⌋
. As we need |C| − 1 connections to connect every

component by Lemma 3.2.1, we have ≥ |C − 1| −
⌊

free(C)
2

⌋
budget left to gain enough

free capacity. Every cycle edge that we delete increases free(C) by 2, so by deleting

22

CHAPTER 3. UPPER BOUNDED DEGREES 3.2. CONNECTION LEMMA

|C − 1| −
⌊

free(C)
2

⌋
cycle edges we have enough free capacity to apply Lemma 3.2.1. We

know that we have enough cycle edges to delete, as total(C) ≥ 2(|C| − 1), where the
contribution to total which is not from free capacity is from cycle edges. Therefore we can
connect all components if |Csated|+ |Cfull| = 0.

Inductive hypothesis: In the inductive step we want to show that assuming Lemma
3.2.2 holds for j = |Csated|, l = |Cfull|, then Lemma 3.2.2 also holds for the two cases

|Csated| = j + 1, |Cfull| = l (1)

and
|Csated| = j, |Cfull| = l + 1 (2)

When we have j = |Csated|, l = |Cfull|, the budget k we have for deletions and additions is
k ≥ x+ (|C| − 1) + l + 2 · j.

|Csated| = j+1, |Cfull| = l: By the inductive hypothesis we can connect all components
when j = |Csated|, l = |Cfull|, so we need to show that by this also applies when we have
one more sated component.

If we delete any edge in a sated tree, we get two components, each with free capacity
of 1. Condition 1 of the Lemma still holds, as we increased total capacity by 2, and number
of components by 1. Since we increased the number of components by 1, we need one
more total edge addition to connect all components. The x part of our budget does not
change after deleting an edge in our sated component, as we increase free(C) by 2, but
also increase |C| by 1.

After doing the above edge deletion, we have a case where j = |Csated|, l = |Cfull|.
The only difference is we used one edge deletion, and we have increased our number of
components by one. The extra component requires one extra edge addition compared to
the case where j = |Csated|, l = |Cfull|. However we have one extra budget, as Lemma
3.2.2 gives two edits per sated component. Therefore if we can connect all components if
j = |Csated|, l = |Cfull|, we can also connect all components if j + 1 = |Csated|, l = |Cfull|.

|Csated| = j, |Cfull| = l+ 1: By assumption we can connect all components if |Csated| =
j, |Cfull| = l. When |Cfull| = l + 1, we delete a cycle edge in one of the full components.
Now we have a case where |Csated| = j, |Cfull| = l, so if we still satisfy condition 1 and 2
of Lemma 3.2.2 we can connect all components if |Csated| = j, |Cfull| = l + 1.

Condition 1 holds true after deleting an edge in a sated component, as we don’t change
either the total of C, or the number of components.

Condition 2 also holds as the budget from x does not change (we increase free by 2

23

3.2. CONNECTION LEMMA CHAPTER 3. UPPER BOUNDED DEGREES

when we delete a cycle edge, and reduce |Cfull| by one), and we know that we can connect
all components if |Csated| = j, |Cfull| = l, where we have one less full component and one
less k.

Since we only used one edit to go to this case, and we require one less edit, we can
connect all components if |Csated| = j, |Cfull| = l + 1.

As we can connect all components if we have 0 of both sated and full components,
and assuming we can connect if we have j sated and l full components shows that we
can connect both if we have j + 1 or l + 1 of sated or full components, we can connect
all components without violating the degree constraints if the conditions of Lemma 3.2.2
holds.

We now show the reverse direction by assuming that we can still connect the graph
without violating the degree constraints within our budget even while violating a condition
of the Lemma, and thus obtaining a contradiction.

Condition 3.1 does not hold: If condition 3.1 does not hold, then we have less total
capacity for all our components than 2(|C|−1). The relation of total capacity for the graph
with the number of components never change if all degree constraints are satisfied:

If we delete a cycle edge, the total capacity of the graph does not change and we keep
the same number of components. If we delete a non-cycle edge, we gain 2 total capacity,
but we increase the number of components by 1. If we connect two components by adding
an edge between two vertices with free capacity, we decrease the total capacity by 2, but
reduce the number of components by 1. If we add an edge between two vertices with free
capacity in the same component, neither the total capacity nor the number of components
change.

If we have exactly one component, the total capacity must therefore be less than 0 if
total(C) < 2(|C| − 1), which means we must have a vertex with f(v) < d(v). Therefore
the only way to connect all components if total(C) < 2(|C| − 1) is to violate a degree
constraint, which is a contradiction.

Condition 3.2 does not hold: Assume that k < x+ (|C − 1) + |Cfull|+ 2|Csated|, and
that we can still connect all components without violating a degree constraint.

As all full components have no free capacity to connect to other components, we need
to delete a cycle edge in each full component to connect them together. This uses |Cfull|
edits.

As every sated component can’t be connected without violating a degree constraint,
we need to split them up by deleting any edge in them to gain 2 components with free
capacity of 1. This uses |Csated| edge deletions, and increases the number of components

24

CHAPTER 3. UPPER BOUNDED DEGREES 3.3. POLYNOMIAL KERNEL

by |Csated|.

We know from Lemma 3.2.1 that we need free(C) ≥ 2(|C| − 1). Let C′ denote the
components after doing the deletions above. Every deletion of a cycle edge increases
free(C′) by 2. The remaining capacity we need is 2(|C| − 1)− free(C)− 2|Cfull|, requiring
|C| − 1 − |Cfull| −

⌊
free(C)

2

⌋
edits. After this we must connect all components together,

requiring |C′| − 1 = |C| − 1 + |Csated| edge additions. This is exactly the value that k is
smaller than, and we conclude that we can’t connect all components without violating any
degree constraints if k < x+ (|C| − 1) + |Cfull|+ 2|Csated|.

3.3 Polynomial kernel

In this section we will provide a polynomial kernel for EDGE EDITING TO A CONNECTED

GRAPH OF UPPER BOUNDED DEGREES. The general idea behind the reduction rules
is from the insight provided by Lemma 3.2.2 (the general connection Lemma), which
tells us that after satisfying all degree constraints only certain properties of the connected
components determine whether the instance is a YES-instance or a NO-instance. Any edge
deletion that satisfies degree constraints must be incident to some vertex in X , which the
kernelization algorithm utilizes by compressing the graph outside of X .

G−X

X

Figure 3.2: Example input graph, focused on X

25

3.3. POLYNOMIAL KERNEL CHAPTER 3. UPPER BOUNDED DEGREES

3.3.1 Reduction Rules

Every reduction rule in this section takes as input an instance of EDITUBD as a tuple
(G, f, k) (sometimes referred to as the original instance), and outputs a modified instance
as the tuple (G′, f ′, k′) (sometimes referred to as the reduced instance).

The rules are applied in the order listed, such that in the case where two reduction
rules can be applied to an instance, we always apply the first of these two rules. All of the
reduction rules run in polynomial time, as they rely on identifying simple properties in the
graph and then doing a bounded modification on the instance.

As we always output a reduced instance, even if we could give the answer to the
problem instance, these two trivial instances are defined for convenience.

Definition 3.3.1 (Trivial NO-instance). Let V (G) = {u, v}, E(G) = ∅, f(u) = f(v) = 0

and k = 0. This is a NO-instance by Lemma 3.2.2.

Definition 3.3.2 (Trivial YES-instance). Let V (G) = {u}, E(G) = ∅, f(u) = 0 and
k = 0 in (G, f, k). This is a YES-instance, as all degree constraints are satisfied and the
graph is connected.

Reduction Rule 1 (Out of budget). If

1

2

∑
v∈X

(d(v)− f(v)) + |C| − 1 > k

output the trivial NO-instance.

This safety of this reduction rule is guaranteed by the following Lemma.

Lemma 3.3.1. Reduction rule 1 is safe, and runs in linear (O(|V |+ |E|)) time.

Proof. For reduction rule 1 to be safe, we must show that if

1

2

∑
v∈X

(d(v)− f(v)) + |C| − 1 > k

we have a NO-instance.
Let’s assume by contradiction that it is not true, i.e. even if

1

2

∑
v∈X

(d(v)− f(v)) + |C| − 1 > k

we have a YES-instance. Then there is a set of edge additions and deletions A such that
G4A is a connected graph with no unsatisfied vertices, with |A| ≤ k. Let G′ be the

26

CHAPTER 3. UPPER BOUNDED DEGREES 3.3. POLYNOMIAL KERNEL

graph obtained after all the edits of A. As A is a solution every vertex v in G′ must have
d(v) ≤ f(v). Every edge deletion reduces the degree of two vertices, so we must have at
least

1

2

∑
v∈X

(d(v)− f(v))

edge deletions in A. As G′ is connected, and every edge addition can at most reduce the
number of components with 1, we have at least |C| − 1 edge additions in A. Therefore,

|A| ≥ 1

2

∑
v∈X

(d(v)− f(v)) + |C| − 1 > k

and |A| is both ≤ k and > k from our assumption that we had a YES-instance.

Later reduction rules will merge vertices outside ofX together to the reduce the size of
the instance. We must take care not to merge certain kinds of components however, since
if we merge a sated tree into a single vertex we have a single vertex with f(v) = 0 which
immediately turns this into a NO-instance.

Reduction Rule 2 (Sated tree removal). If we have a component C with no unsatisfied
vertices that is a sated tree, then delete an arbitrary edge in C.

Lemma 3.3.2. Reduction rule 2 is safe.

1
3 1

2 1
1

3 1

2 1

Figure 3.3: Splitting a sated tree

Proof. In Lemma 3.2.2 we show that the graph can be connected after satisfying the degree
constraints if and only if conditions

total(C) ≥ 2(|C|+ |Csated| − 1) (3.1)

k ≥ x+ (|C| − 1) + |Cfull|+ 2|Csated| (3.2)

hold.

27

3.3. POLYNOMIAL KERNEL CHAPTER 3. UPPER BOUNDED DEGREES

Assume that our original (G, f, k) is a YES-instance, and that after applying the previ-
ous reduction rule it is a NO-instance. Then we have a setA such thatG4A is a connected
graph where every vertex v has degree less than or equal to f(v), and that |A| < k. Let
A′ ⊆ A be an inclusion-wise minimal set of the pairs of vertices that correspond to edge
deletions that satisfy degree constraints. As every vertex in C is satisfied, the component
C is the same in the graph G′ = G4A′. Also, as we know that this is a YES-instance,
we know that the conditions of Lemma 3.2.2 still holds. If we now delete an arbitrary
edge in C in G′, the first condition still holds as we add two to total, remove one sated
component, and increase the number of components by two. For this to be a NO-instance
we must therefore violate the second condition of the Lemma after deletion. After the
deletion of an arbitrary edge in C, k is 1 smaller and we have one more component, but
Csated is one less. As the calculation for x is also the same the inequality still holds. There-
fore if we have a YES-instance before deleting an arbitrary edge in C, we will still have a
YES-instance after deleting an arbitrary edge in C.

For the reverse direction of the proof we must show that if we have a YES-instance after
applying the reduction rule, then we had a YES-instance after applying the reduction rule.
As we have a YES-instance with (G′, f ′, k′), we have a set of edge additions and deletions
that satisfies the entire graph and connects all vertices. Take A to be the minimum subset
of edge deletions from the solution set that satisfies all degree constraints. A must also
satisfy all degree constraints in G, as we have not altered any components adjacent to X
in G′. In G′4A we know that since it is a YES-instance, the general connection Lemma
is satisfied.

If we look at G4A the difference is that we have one more budget (k = k′ + 1), and
we have one more sated components, but two less components with a combined total of
one. Thus if the conditions for the general connection Lemma hold in G′4A then they
must also hold in G4A and we have a YES-instance in our original instance if we have it
after the reduction rule is applied.

Now we want to reduce the size of our instance, and the way we will do this is by
contracting vertices outside of X that are in the same component.

Reduction Rule 3 (Component contraction). If a component C in G−X has more than 2
vertices, contract an uv-edge where both u and v are different vertices in C. The function
f for the new vertex v′ is set to f(u) + f(v)− 2.

Lemma 3.3.3. Reduction rule 3 is safe.

Proof. First we show that if we originally have a YES-instance then the contraction of u
and v into v′ as done in reduction rule 3 still leaves us with a YES-instance.

28

CHAPTER 3. UPPER BOUNDED DEGREES 3.3. POLYNOMIAL KERNEL

As our original graph is a YES-instance, there exists some set of edits A that satisfies
all the degree constraints, connects the graph, and is of size ≤ k. For any set B ⊆ A the
instance (G4B, k− |B|, f) must also be a YES-instance. If we take A′ to be the minimal
subset of A that satisfies all degree constraints, (G4A′, k − |A′|, f) is a YES-instance.
From Lemma 3.2.2 we know that only the total(C), k and the number components, as
well as the number sated and full components matter for connecting all components if all
degree constraints are satisfied.

The contraction of two adjacent vertices does not change the number of components,
and it can’t make a non-sated or non-full component into a sated or full component. There-
fore the graph obtained after contraction of two adjacent vertices outside of X must be a
YES-instance if it was a YES-instance before contraction.

We will now show that if our reduced instance (G′, f ′, k) after the application of reduc-
tion rule 3 is a YES-instance, then our original instance (G, f, k) is also a YES-instance.
Since (G′, f ′, k) is a YES-instance, we know that there exists a set of edges A, |A| ≤ k

such that G′4A is a connected graph, and every vertex v in G′4A has d(v) ≤ f ′(v).
Take B ⊆ A to be all the edges of A which does not include v′. For all edges that corre-
spond to edge deletions in A \ B of the form {v′, w} for some vertex w 6= v′, we know
that either the edge {u,w} or {v, w} exists in G as the adjacent component contraction
does not create new edges adjacent to v′ other than those adjacent to either u or v. For the
edge deletions that correspond to the form {v′, v′}, we know that these edges must exist
as either {u, v}, {u, u} or {v, v} inG. Therefore we can map every edge deletion inA\B
to either an edge deletion of the corresponding edge adjacent to u, v or both. Note that
all these edge deletions can’t disconnect u and v, as the component contraction “removes”
one edge {u, v} from the reduced instance.

Let A′ be the set of edges that maps all edge deletions incident to v′ as well as all
the pairs in B. G4A′ can’t have any vertices with violated degree constraints. Assume
otherwise, that there exists a vertex x in G4A′ such that d(x) > f(x). Then x must have
violated the degree constraint in G′4A as well, as we have removed the same number of
edges incident to x in G4A′ as in G′4A.

Next, A \ A′ can contain some edge additions to connect the graph. We can take the
first f(v)− d(v) edge additions of the form {v′, w} and add an edge {v, w} instead. The
remaining edge additions incident to v′ in A \ A′ can be mapped to {u,w} instead. This
won’t violate the degree constraints of either u or v, as the degree constraints of v′ is not
violated in G′4A, and f ′(v′) = f(v) + f(u) − 2. Let A∗ be A′ with all the remaining
edge additions remapped as described above. Then |A∗| = |A|, and G4A∗ must be a
connected graph with no violated degree constraints: Assume to the contrary that G4A∗

29

3.3. POLYNOMIAL KERNEL CHAPTER 3. UPPER BOUNDED DEGREES

is not connected. Since the only change in the reduction is for vertices incident to u or
v, there must be some vertex that is disconnected from the u, v-component. This would
mean that the same vertex is disconnected from the v′-component in G′4A.

At last, all the degree constraints in G4A∗ must be satisfied. We have already ex-
cluded u or v from being unsatisfied, so if any degree constraints are violated it must be
for some other vertex w. Then w must violate its degree constraints in G′4A as well, as
exactly the same number of edges incident to w is added and removed, and f(w) = f ′(w).

Therefore if (G′, f ′, k) is a YES-instance with the set A, (G, f, k) is also a YES-
instance with the set A∗.

The three previous reduction rules rely on identifying simple properties in our instance
graph. Therefore we can implement all these reduction rules in linear time.

Claim 1. The conditions of reduction rules 1, 2 and 3 can be checked and performed in

time O(|V |+ |E|).

Proof. We run a depth first search (DFS) on the input graph, where we count the number
of components, the total sum of d(v) − f(v) for all unsatisfied vertices, and calculate the
total capacity of any component with only unsatisfied vertices. These properties allows us
to determine if any of the reduction rules 1, 2 or 3 applies. All the mentioned reduction
rules take linear time to implement: Outputting the trivial NO-instance in the case of 1
takes constant time. Deleting an edge in the case of 2 takes time linear to the degrees
of the vertices incident to the deleted edge. Contracting an edge takes linear time in the
degrees of the two vertices we contract. Therefore all these reduction rules can be checked
and applied in time O(|V |+ |E|).

Observe that after exhaustively applying reduction rule 3 the graph G − X is an in-
dependent set (even though there might be some edges, they are only self-loops). All our
components of G −X consists of single vertices, so we can’t reduce our instance further
by doing further contractions inside components. Now we will also merge separate ver-
tices of G −X if we can show that they will always belong to the same component after
fixing all our degree constraints.

Reduction Rule 4 (Join components). For two distinct vertices u, v inX , letC ⊆ V (G)−
X be the set of satisfied vertices that are adjacent to both u and v. If both u and v both
have ≥ 2k + 1 edges to vertices of C, merge two different vertices c1 and c2 into a new
vertex c′.

The function value f ′(c′) is set as f(c1) + f(c2).

30

CHAPTER 3. UPPER BOUNDED DEGREES 3.3. POLYNOMIAL KERNEL

...

X...

X

...

...

Figure 3.4: Merging two vertices of G−X

Lemma 3.3.4. Reduction rule 4 is safe.

Proof. First we will show that given that this is a YES-instance, we can always obtain a
solution that keeps all of the vertices in C connected using u and v as connection points,
meaning that we also have a YES-instance after application of reduction rule 4.

From Lemma 3.2.2 we know that the only properties of the graph that determines
whether we can connect all components within our budget after all degree constraints are
satisfied is the number of components (including the number of full and sated components)
and the total capacity of all components. The reduction rule preserves all the original
edges, so the only way we can go from a YES-instance to a NO-instance is if we alter any
of these properties of the graph.

We have a YES-instance, so we have a set of of edits B such that all of G is connected
without violating any of the degree constraints, and |B| ≤ k. Since u and v are in X , B
must have some edge deletions of vertices adjacent to u and v. LetA ⊆ B be the minimum
set of edge deletions that satisy all degree constraints in the graph, and let A′ ⊆ A be A
except any edges between u, v and vertices of C. As (G, f, k) is a YES-instance with the
setB, it still holds that (G4A, f, k−|A|) is a YES-instance asA is a subset of the solution
B.

Let G′ be the graph obtained by G4A. From Lemma 3.2.2 we know that G′ satisfies
the conditions of the Lemma, since all degree constraints in G′ are satisfied and we have
a YES-instance. In the graph G4A′ there is at most two vertices that violate the degree
constraints, u and v. To satisfy the degree constraints of u and v in G4A′, we must delete
d(u)− f(u) edges adjacent to u and d(v)− f(v) edges adjacent to v.

We can satisfy the degree constraint of u by deleting d(u)−f(u) edges between u and
C making sure that at least one copy each of the edge {u, c1} and {u, c2} remains. Let
D be the set of vertices now disconnected from u after the above deletions. We can then
satisfy the degree constraint of v by deleting d(v) − f(v) edges between v and C \ D,

31

3.3. POLYNOMIAL KERNEL CHAPTER 3. UPPER BOUNDED DEGREES

making sure to keep at least one edge {v, c1}.

After the above deletions the edge constraints of u and v are both satisfied, and for
any two vertices in u, v ∪ C they are adjacent to at least one of u or v, and both u and v
are adjacent to c1. Thus the entirety of C ∪ {u, v} is a connected component. The only
way for this to be a NO-instance after satisfying the degree constraints of u and v is if the
conditions of Lemma 3.2.2 no longer holds after merging c1 and c2 into one vertex. This
means that either total(C) < 2(|C| − 1) or k < x+ (|C| − 1) + |Cfull|+ 2|Csated|. Observe
that total(C) and free(C) must remain unchanged from G′, so only the number or type of
components must cause this to be a NO-instance. As the deletions above ensure that we
don’t create more connected components, and the u, v, C-component is clearly not a sated
or full component as we have deleted edges adjacent to a satisfied vertex guaranteeing a
free connection spot, we still have a YES-instance after applying the rule.

We will now show that if we have a YES-instance after applying reduction rule 4, we
also had a YES-instance before applying the reduction rule. The way we will do this is
by obtaining a solution in our original instance by modifying the existing solution in our
reduced instance.

Let (G, f, k) be our original instance and (G′, f ′, k) be our instance after applying the
reduction rule. There exists a set A of edge deletions and additions such that G′4A is a
connected graph, ∀v ∈ V (G′4A) : d(v) ≤ f(v) and |A| ≤ k. Take A′ ⊆ A to be the
minimum set of edge deletions that satisfies all degree constraints in G′. (G′4A′, f ′, k −
|A′|) must fulfill the conditions of the general connection Lemma 3.2.2, as it is a YES-
instance.

Now we want to show that it is possible to edit A′ into another set B such that
(G4B, f, k − |B|) fulfills the conditions of the general connection Lemma. We know
that both u and v can be in the same component as c′ in G′4A′, as both u and v has at
least two edges to c′ each, and we can map over the edge deletions.

For any vertex x /∈ {u, v} incident to c′ that has edge deletions of the form {x, c′} in
A′, this component will either have no edges incident to c′ in G′4A, or at least one edge
incident. If it has no edges incident, it means x does not have to be adjacent to c′ in our
solution, so it also does not have to be adjacent to either c1 or c2 in the original graph. If
it has at least one edge {x, c′} in G′4A, we must ensure that it is in the same component
as c1 and c2 after deleting to satisfy edge constraints.

Thus we only need for a vertex x /∈ {u, v} that is adjacent to c′ inG′4A′ to be adjacent
to either c1 or c2, as the vertices u, v link them together into one connected component. To
satisfy x’s degree constraint we can delete as many edges of the form {x, c1} or {x, c2} as
there are edges {x, c′} in A′. We know that there are at least 2k + 1 edges between c1 or

32

CHAPTER 3. UPPER BOUNDED DEGREES 3.3. POLYNOMIAL KERNEL

c2 and u or v, so it is always possible to delete enough edges without disconnecting any
of the vertices c1, c2, u or v as we can have at most k deletions. This way we do not create
components in our graph, we use the same number of deletions as we would in G′4A′,
and we fix the same amount of degree violations. Then for any vertex x /∈ {u, v} it is
possible to remap the deletions and still maintain a YES-instance.

The reduction rule 4 requires that we for every pair of vertices inX identify the vertices
of G−X that are adjacent to both of these vertices.

Claim 2. Reduction rule 4 can be done in time O(|V |2 · (|V |+ |E|)).

Proof. For any pair of vertices v, u in X , we can check how many edges each have to
common vertices of G − X by running a graph search from u and v, identifying the
vertices they are both adjacent to, and after that count the number of edges. As we do
this for every pair of vertices in X , this must be done

(|X|
2

)
times. A graph search takes

time O(|V | + |E|), so an upper bound the time required for identifying the number of
edges to common vertices of all pairs of X is O(|V |2 · (|V |+ |E|). Merging together two
vertices takes time proportional to the degrees of these vertices, so the total running time
of checking if this reduction rule applies and running it is bounded by O(|V |2 · (|V | +
|E|)).

The previous rule for contractions reduce the number of vertices in G − X that are
adjacent to at least two vertices of X . However we have no bound on the number of
vertices that are adajcent to only one component of X , so we want to limit this kind of
component as well. We do this by utilizing the fact that we can only interact with a limited
number of such components when editing according to our budget, so if we keep the best
ones to do edits with in this step we can discard the ones that we never have to do edits
with if we have a solution.

Reduction Rule 5 (Irrelevant component removal). For a vertex x ∈ X , let C ⊆ V (G)−
X be the set of vertices that are incident to only x. If |C| > k

2 + (f(x)− d(x)), let Cedges

be the first f(x)−d(x) vertices in C sorted in descending order on free capacity and Cloops

be the
⌊
k
2

⌋
first members of C \ Cedges sorted on highest number of self-loops to fewest.

Remove a vertex c in C \ (Cedges ∪ Cloops) and reduce f(x) by the number of {x, c}-
edges in E(G), such that dG′(x)− f ′(x) = dG(x)− f(x).

Figure 3.5 illustrates a case when reduction rule 5 can apply.

Lemma 3.3.5. Reduction rule 5 is safe.

33

3.3. POLYNOMIAL KERNEL CHAPTER 3. UPPER BOUNDED DEGREES

v ∈ X

... ...

Figure 3.5: A vertex in G−X (colored red here) that can be removed

Proof. We have to show that we have a YES-instance before applying reduction rule 5
if and only if the instance after applying the reduction rule is a YES-instance. First we
will show the forward direction of the equivalence. Assume that we have a YES-instance
before applying reduction rule 5. Then we have a set of edge deletions and additions A
such that G4A is connected, ∀v ∈ V (G4A) : f(v) ≥ d(v), and |A| ≤ k. Targeting a
contradiction we assume that after removing c from C according to the reduction rule that
we obtain a NO-instance.

Take A′ ⊆ A to be the edge deletions in A that satisfies all unsatisfied vertices in X
except any edges in adjacent to C, then (G′ = G4A′, f, k− |A′|) is also a YES-instance.
The only vertex maybe not satisfied in G′ is x, and x can be satisfied by only deleting
edges between x and vertices of C. Since we now have a NO-instance, removing c from
G must either cause us to create more components when satisfying x, or reduce total(C)
below the threshold 2(|C| − 1), or creates more sated or full components after all degree
constraints are satisfied.

Removing c can’t cause us to create more components when satisfying x than before
removing c, as we create more components when we fully disconnect a component from
x, and we keep the d(x)− f(x) components in C with the most multiedges to x. Then for
this to be a NO-instance we must either reduce total(C) below the threshold, or increase
the number of sated or full components. As we keep the

⌊
k
2

⌋
components in C with the

highest number of self-loops, we are guaranteed to keep enough cycle edges to ensure that
the total capacity of our components have the maximum contribution from x. Finally, we
see that we never create more sated or full components when deleting edges to satisfy x,
as all the remaining edge deletions must create at least one free connection spot each.

We will now show the reverse direction of the equivalence. If we have a YES-instance
after applying reduction rule 5, then we have a set A of set of edge additions and deletions
that connects the entire graph and satisfies all degree constraints in G′. The same set
of edge additions and removals must also satisfy the graph G, as c is part of the same

34

CHAPTER 3. UPPER BOUNDED DEGREES 3.3. POLYNOMIAL KERNEL

connected component as x so it won’t be disconnected, and the extra edges that c contribute
to the degree limit of x are already accounted for as dG(x)− f(x) = dG′(x)− f ′(x).

Reduction rule 5 requires that we for each vertex in X identify the vertices of G−X
that are adjacent to only this vertex, and sorting them based on number of multiedges or
the number of self-loops.

Claim 3. Reduction rule 5 can be done in time O(|V | · (|E|+ |V | log |V |)).

Proof. For each vertex v in X we identify the vertices that are adjacent to v only, which
can be done by scanning through the edge set E. We then do two sorts on the vertices of
G−X adjacent to v only, and sorting a list of n elements can be done in time O(n log n)

with for example merge sort. Removing a vertex from the graph can be done in linear
time. Therefore the running time of identifying if reduction rule 5 applies and performing
it is bounded by O(|V | · (|E|+ |V | log |V |)).

We have now bounded the number of components in our graph, so we will now bound
the maximum number of edges in our graph. We do this by observing that if we have
more copies of an edge than what can possibly be deleted, we only need to keep a certain
number of these edges. The same argumentation holds for any self-loops in our graph.

Reduction Rule 6 (Irrelevant edge removal). If we have a multiedge of multiplicity ≥
k+ 1 remove one of these edges such that the multiplicity is reduced by one. If this was a
non-self-loop between some vertices u and v set f ′(u) = f(u)− 1 and f ′(v) = f(v)− 1.
For self-loops on a vertex u we set f ′(u) = f(u)− 2.

Lemma 3.3.6. Reduction rule 6 is safe, and can be done in time O(E).

Proof. We have to show that we have a YES-instance before applying reduction rule 6 if
and only if the instance after applying the reduction rule is a YES-instance.

First we will show the forward direction of the equivalence. As (G, f, k) is a YES-
instance, we know that there exists a set of edge additions and deletions A that satisfies
all the degree constraints and connects G, and |A| ≤ k. If we take A′ to be the pairs
corresponding to edge deletions in A that contribute to satisfying a degree constraint, we
know that Lemma 3.2.2 returns YES for the instance (G4A′, f, k − |A′|).

All degree constraints are satisfied inG′4A′: Assume otherwise, that we have a vertex
x such that f(x) < d(x) inG′4A′, but f(x) ≥ d(x) inG4A′. Then either the number of
edges incident to x ∈ G′ removed byA′ is less than the number of edges incident to x ∈ G
removed by A′, or the difference between the degree of x and the degree constraints f(x)

35

3.3. POLYNOMIAL KERNEL CHAPTER 3. UPPER BOUNDED DEGREES

is bigger in G′ than in G. As A′ can remove at most k edges, and we only remove an edge
from G to G′ if the multiplicity of a multiedge is more than k + 1, we must remove the
same amount of edges incident to x in both G and G′. The difference between the number
of edges incident to x and the degree constraint of x cannot be different in G and G′, as
when we remove one edge (or two in the case of a self-loop) incident to x we reduce the
degree constraint of x by one (or two in the case of a self-loop). Thus all degree constraints
are satsified in G′4A′, and we are able to apply Lemma 3.2.2 to obtain a solution for our
instance. Assume for a contradiction that (G′4A′, f ′, k − |A′|) is a NO-instance.

As the number of edges that must be deleted incident to each unsatisfied vertex is
unchanged in G′, and we can always delete as many of one edge in G′ as in G, we must
break one of conditions 3.1 or 3.2 for it to be a NO-instance. We can never have more
components in G′4A′ than in G4A′, as we can remove at most k edges between two
vertices, and any edge that exists in G but not in G′ must be a multi-edge with multiplicity
of at least k + 1. Then if condition 3.1 does not hold it must be because total(G′4A′) is
less than what is needed compared to the number of connected components inG′4A′. We
know thatG4A′ has at most k+1−|A′| components due toG4A′ being a YES-instance
with budget k − |A′|, so G′4A′ also has at most k + 1− |A′| components. For 3.1 to be
violated, we must then have that total(G′4A′) < 2(k − |A′|). As we have at least k + 1

uv-edges inG′, we will have at least k+1−|A′| uv-edges left inG′4A′. Since uv-edges
past the first are cycle edges, we know that the total capacity of G′ must be at least two
times the number of uv-edges minus one, or ≥ 2(k − |A′|). This contradicts the fact that
3.1 is violated for our instance.

Then for (G′4A′, f ′, k− |A′|) to be a NO-instance, 3.2 must be violated. We already
know that the number of components in G4A′ and G′4A′ is the same, so we can only
violate 3.2 if we have more sated or full components in G′4A′ than in G4A′, or we have
less free capacity in G′4A′ than in G4A′. As we have at least one cycle edge left in the
component where we removed an edge in this reduction, we can’t have more sated trees
in G′4A′ than in G4A′ because the component of u and v will never be a sated tree. We
also can’t have more full components inG′4A′, as the only component we alter compared
to G4A′ is the component of u and v, and the relative difference between each vertex’s
degree constraint and number of incident edges is the same in bothG andG′. For the same
reason the free capacity of G′4A′ must be the same as the free capacity of G4A′.

We see that there is no way that (G′4A′, f ′, k−|A′|) is a NO-instance if (G4A′, f, k−
|A′|) is a YES-instance, which concludes the proof of the forward direction.

We will now show the reverse direction of the equivalence by showing that given that
(G′, f ′, k) is a YES-instance, then (G, f, k) must be a YES-instance. As our reduced

36

CHAPTER 3. UPPER BOUNDED DEGREES 3.3. POLYNOMIAL KERNEL

instance is a YES-instance, we have a set minimum set of edge additions and deletions
that connects the entire graph and satisfies all degree constraints A, which is of size at
most k. This set A must also satisfy all degree constraints in G′: Assume otherwise, that
G4A has a vertex x which is not satisfied. As the difference in the degree constraint and
number of edges incident for x is the same in both G and G′, then A must remove fewer
edges or add more edges incident to x in G than in G′. If A removes fewer edges, then
this must be because some edge in A does not exist in G – but as E(G′) ⊆ E(G) this
can’t happen. If A can’t add any more edges in G than in G′, as the only edge that differs
between G and G′ is the uv-edge, which won’t be added multiples of as u and v already
are in the same component and A is minimal.

As all degree constraints are satisfied in G4A, the only way that A is not a solution
to (G, f, k) is if we have more than one component in G4A. Assume that this is the
case, that we have at least two different connected components such that there is no path
between some pair of vertices c1 and c2 in G4A, but there is a path between c1 and c2
in G′4A. Then all the edges of the path between c1 and c2 can’t exist in G4A, but as
E(G′) ⊆ E(G) we know that all the edges in G′4A must also exist in G4A.

Since A satisfies all degree constraints in G4A, the graph G4A is connected and
|A| ≤ k, (G, f, k) must be a YES-instance if (G′, f ′, k) is a YES-instance.

For the running time of this reduction, it is easy to see that we can see if this reduc-
tion rule applies by scanning through the set of edges and counting the number of edges
that map to the same pair of vertices, which takes time O(|E|). Removing an edge and
adjusting the degree constraint of the incident vertices can be done within the same time
bound.

The one remaining thing we can’t bound by any of the reduction rules is the maximum
size of the degree constraint of any vertex. This last reduction rule gives us an upper bound
on the maximum degree constraint for any vertex dependent on k only.

Reduction Rule 7. If a vertex v in G has f(v) > |V (G)| · (k + 1), set f ′(v) = |V (G)| ·
(k + 1).

Lemma 3.3.7. Reduction rule 7 is safe, and can be done in time O(|V |).

Proof. Assume that (G, f, k) is a YES-instance, and that (G, f ′, k) is a NO-instance. The
maximum degree any vertex can have in our graph is |V (G)| · (k+ 1), as we have at most
|V (G)| distinct multiedegs, and reduction rule 6 ensures that the maximum multiplicity of
any multiedge is k+ 1. Thus the reduction rule won’t make satisfied vertex unsatisfied, as
v has to be satisfied under both degree constraints.

37

3.3. POLYNOMIAL KERNEL CHAPTER 3. UPPER BOUNDED DEGREES

The maximum number of edge additions incident to v in any solution is k, as this is
the size of our budget. Assuming that we have a solution of minimal size the only reason
to add edges incident to v is to connect components to v. Therefore v can’t have any edges
to some other vertex u if a solution requires edge additions incident to v. If this is the case
then the maximum number of distinct multiedges incident to v inGmust be≤ |V (G)|−1,
and then the maximum degree of v is at most ≤ (|V (G)| − 1)(k + 1) due to reduction
rule 6. Therefore any case when a minimal solution adds edges incident to v as part of
the solution for (G, f, k), the reduction in the degree constraint for v will never cause v
to be unsatisfied with the same set of edge additions or deletions in (G, f ′, k), and our
assumption that (G, f ′, k) is a NO-instance can’t be true.

For the reverse direction it is easy to see that any solution for (G, f ′, k) must also
work for (G, f, k) as the instances are the same except for a more lax degree constraint in
f compared to f ′.

Reduction rule 7 can be done in time |V | by simply scanning through the function
values for every vertex, and setting it lower if it exceeds the bound.

If no reduction rule applies we have our fully reduced instance. We will now bound
the size of this final instance, to show that the reduction rules constitute a kernel.

X

Figure 3.6: How a final instance could look like

3.3.2 Analysis

The running time of every reduction rule is polynomial. Every reduction rule reduces
either the number of edges or the number of vertices except reduction rule 7, which can
be done in time O(|V (G)|). As a consequence the maximum number of reduction rules
we can apply are bounded by a polynomial depending on the size of the input graph, and
combining this with the fact that every reduction rule takes time polynomial in the size of
the instance the kernelization algorithm takes polynomial time.

38

CHAPTER 3. UPPER BOUNDED DEGREES 3.3. POLYNOMIAL KERNEL

To give a bound on the number of vertices and edges in our reduced instance, we must
observe the effects of exhaustively applying all the reduction rules.

Bounding the number of vertices

The bound on the number of vertices is obtained by looking at four different kinds of
vertices we can have in the graph after no more reductions can take place, and bounding
the number of each kind of vertex. In our reduced instance every vertex is either in X ,
disconnected from X , adjacent to only one vertex in X or adjacent to two or more vertices
of X . Note that since every component of G −X is a single vertex due to reduction rule
3, we will refer to the components of G−X as vertices here.

The number of vertices in X is bounded by 2k, since each vertex in X needs at least
one edge incident to it removed, and we can at most remove k edges. Reduction rule 1
ensures that we reject instances where |X| is too big.

The number of vertices that can be disconnected from X is bounded by k + 1, the
total number of components we have in the graph. Since we can connect at most k + 1

components by edge additions, reduction rule 1 rejects instances where we have too many
components.

For vertices outside of X that are adjacent to only one vertex of X we know that we
have at most 2k per vertex in X , since otherwise reduction rule 5 would apply.

The number of vertices outside of X adjacent to two or more vertices of X is bounded
from the fact that for any pair of vertices of X , there are at most 2k + 1 different vertices
that are adjacent to these two vertices. This is due to reduction rule 4, which joins vertices
together if there exists two vertices of X that have more than 2k + 1 combined edges to
the same set of vertices outside of X .

The number of vertices is therefore bounded by

2k · 2k + 4k2 · (2k + 1) + k + 1 = 8k3 + 8k2 + k + 1

which is O(k3) vertices.

Bounding the number of edges

In our reduced instance all edges are either self-loops, internal inX or crossing betweenX
and G−X (the only edges of G−X are self-loops). The maximum number of self-loops
any vertex v can have is k + 1, as otherwise reduction rule 6 would apply. As our reduced
instance has at most 8k3 + 8k2 + k + 1 vertices, we have at most

39

3.3. POLYNOMIAL KERNEL CHAPTER 3. UPPER BOUNDED DEGREES

(k + 1) · (8k3 + 8k2 + k + 1) = 8k4 + 16k3 + 9k2 + 2k + 1

self-loops in our reduced instance.

The number of different multiedges internal in X is
(|X|

2

)
, and as the multiplicity of

any multiedge is at most k + 1, the maximum total number of edges internal in X is

(
|X|
2

)
· (k + 1) ≤

(
2k

2

)
· (k + 1) = k(2k − 1)(k + 1) = 2k3 + k2 − k

For every pair of vertices in X we have at most 2k+ 1 vertices of G−X that are adja-
cent to those two vertices of X , as otherwise reduction rule 4 would apply. The maximum
number of edges we can have in such a case is if one of the two vertices of X always has
the maximum k+ 1 edges to each of these vertices of G−X , while the other vertex of X
only has one edge to each of these common vertices (as otherwise reduction rule 4 would
again apply). This gives a maximum of(

|X|
2

)
· (2k + 1)(k + 2) ≤ k(2k − 1)(2k + 1)(k + 2) =

(k2 + 2k)(4k2 − 1) = 8k4 + 4k3 − k2 − 2k

edges to vertices of G−X that is adjacent to at least two vertices in X .

Every vertex in X has at most 2k vertices in G − X which is only adjacent to that
vertex, and the maximum number of edges between a vertex inX and a private component
is at most k+ 1, giving an upper bound of 2k · (k+ 1) edges between private components
and vertices in X .

In summary we have at most

8k4 + 16k3 + 9k2 + 2k + 1 + 2k3 + k2 − k + 8k4 + 4k3 − k2 − 2k =

16k4 + 22k3 + 9k2 − k + 1

edges in our reduced instance, or O(k4) edges in total.

Theorem 3.3.8. EDITUBD has a polynomial kernel with O(k3) vertices and O(k4)

edges, with at most 2k vertices in the reduced graph being unsatisified (members of the set

40

CHAPTER 3. UPPER BOUNDED DEGREES 3.4. 2O(K) ·NO(1) ALGORITHM

X). The graph induced on the satisfied vertices is an independent set, and the maximum

degree constraint f for any vertex is O(k4).

Proof. The previous bounding of the number of vertices and edges gives us the maxi-
mum size bound for our reduced instance. The fact that reduction rule 3 does not apply
guarantees that the graph induced on the vertices that are not satisfied is an independent
set.

The bound on the maximum degree constraint comes from reduction rule 7, as the
maximum degree contraint for any vertex is |V (G)| · (k + 1) and |V (G)| ∈ O(k3) then
the maximum degree constraint for any vertex is O(k4).

From the kernelization algorithm we also obtain a FPT algorithm that exploits the
bounded number of edges that can contribute to satisfying degree constraints, which we
combine with the general connection Lemma to check if the graph can be connected after
satisfying all degree constraints.

Theorem 3.3.9. EDGE EDITING TO A CONNECTED GRAPH OF UPPER BOUNDED DE-
GREES has a FPT algorithm with running time 2O(k log k) · nO(1)

Proof. After exhaustively applying the above reduction rules, the maximum number of
edges we can have in an instance is bounded by 16k4 + 22k3 + 9k2 − k + 1. By running
a brute force deletion of at most k of these edges, checking if all degree constraints are
satisfied and if so checking if the graph can be connected using the general connection
Lemma (3.2.2), we have a

(16k4 + 22k3 + 9k2 − k + 1)k · nO(1) ∈ 2O(k log k) · nO(1)

algorithm for EDGE EDITING TO A CONNECTED GRAPH OF UPPER BOUNDED DE-
GREES.

3.4 Single exponential algorithm

After running our kernelization algorithm, we will have a graph with a very particular
structure: The components of G − X are single vertices with some potential self-loops.
As we have no edges from a vertex of G −X to another of G −X , all connectivity runs
through the vertices of X . Additionally the size of X is at most 2k.

We now want to solve the rest of the problem, which we will do by trying to find the
set of edge deletions needed to satisfy all the degree constraints in our graph. If we find

41

3.4. 2O(K) ·NO(1) ALGORITHM CHAPTER 3. UPPER BOUNDED DEGREES

any set that satisfies the degree constraints we can just make use of the general connection
Lemma to give the answer to our instance in polynomial time.

The approach we will take for finding this set of edges to delete is to use the structure
in the graph obtained after kernelization in combination with a random coloring of edges
in the graph to guess how the vertices ofX are separated after the edges that satisfy degree
constraints in a YES-instance are deleted. The technique

3.4.1 X -SUPPORTING SUBGRAPH

We want to show that due to the structure of the reduced instance after the kernelization,
there exists a edge-induced subgraph of size linear to X that preserves both connectivity
and edge-biconnectivity between vertices of X . The structural properties of the post-
kernelization graph we exploit is the fact that we can separate the graph into two sets of
vertices U = X and I = V (G)−X , such that I is an independent set.

If we have such a structure, the following Lemma guarantees the existence of a U -
supporting subgraph of linear size. We will denote a subgraph that preserves connectivity
and edge-biconnectivity for any set of vertices A to be an A-supporting subgraph.

Lemma 3.4.1 (U -supporting subgraph of linear size). For any G = (U ∪ I, E), where

|U | ≥ 1 and I is an independent set there exists a subgraph H ⊆ G of at most 5(|U | −
1) edges such that if u, v ∈ U are connected or edge-biconnected in G they are also

connected or edge-biconnected in H .

The way we will show this Lemma is by constructing the subgraphH , and then proving
that this construction means that H is a U -supporting subgraph.

Construction of H

Find a set of edges constituting a spanning forest of G, and remove all edges incident to
vertices in I that have degree 1 in this spanning forest obtaining a set of edges F . Add all
vertices in I which have edges incident in the set of edges F to U ′, U ′ = V (G[F]) ∪ U ,
and let I ′ = I − U ′. Let G′ be the graph G− F .

Lemma 3.4.2. The spanning forest F uses at most 2|U | − 2 edges.

Proof. We will show the size of the spanning forest by induction on the size of U . In
the base case of |U | = 1 the only edges that are found in the original spanning forest are
edges between the one vertex of U and vertices in I . As we don’t add any cycle edges, the
maximum degree of any vertex of I in this spanning forest is 1, and the spanning forest F
will have 0 edges in total. Since 2|U | − 2 = 2 · 1− 2 = 0 the base case holds.

42

CHAPTER 3. UPPER BOUNDED DEGREES 3.4. 2O(K) ·NO(1) ALGORITHM

For the inductive step we assume that if |U | is k, then the set of edges F is of size
≤ 2k− 2. We must now show that given this assumption, if the size of U is k+ 1 then the
size of F is at most 2(k + 1)− 2.

When the size of U is k + 1, we find the initial spanning forest and set of edges F as
usual. If we remove a leaf vertex u of U from the graphG[F], and again remove any edges
to vertices in I that has degree 1, we know that this set of edges F ′ must be of size at most
2k− 2 due to our inductive hypothesis. We can extend this set of edges to include u using
at most two edges, as u is a leaf in G[F], and the shortest path from u to a U -vertex must
be at most two edges long as I is an independent set.

In conclusion the size bound for F of 2(|U | − 1) is proven by induction on the size of
the set U .

Now, do the same for the graph G′. Find a spanning forest in G′, and let F ′ be the
edges of this spanning forest without any edges to vertices of I ′ that has degree one in the
spanning forest of G′.

Lemma 3.4.3. The spanning forest F ′ uses at most 3(|U | − 1) edges.

Proof. Again we will use induction on the size of U to prove the size of the spanning
forest.

For the base case when |U | = 1, the only edges that are found in the original spanning
forest are edges between the one vertex of U and vertices in I . Since we remove all
vertices of I with degree 1, none of the edges will be added to the final set of edges F ′,
and |F ′| = 0 ≤ 3(|U | − 1) = 0.

In the inductive step we assume that if the size of U is k, then the size of the set of
edges F ′ is at most 3(k − 1). We will now show that with this assumption we can show
that if the size of U is k + 1 then the size of the resulting set of edges F ′ is at most
3(k + 1− 1) = 3k.

If we consider the graph G−u where u ∈ U is some leaf vertex in the graph G[F ′] we
now have a graph where the size of U = k, so here we will find a set of edges F ′′ of size
at most 3(k − 1) by our inductive hypothesis. Adding u back into the graph will extend
the size of U by one, and the size of U ′ by at most 2. This is because we only add vertices
from I to U ′ if they have degree at least two in the spanning forest of G. The maximum
number of edges in a spanning forest is |V | − 1, so increasing |V | by one we have at most
one more edge in the initial spanning forest. If we have an additional edge in the spanning
forest it must be an edge incident to u and some other vertex. Thus at most one vertex
different from u will have a higher degree, so at most one more vertex can be added to U ′.
Assume that i is a vertex in I that is added to U ′ when u gets added back into the graph.

43

3.4. 2O(K) ·NO(1) ALGORITHM CHAPTER 3. UPPER BOUNDED DEGREES

Connecting i back to the graph G′[F ′′] takes at most one edge, as i was originally a part
of I . Connecting u back to the graph G′[F ′′] takes at most two edges, as u was a leaf in
G′[F ′], and the shortest path from u to any vertex in U ′ is at most 2 edges long.

As adding u back into the graph F ′ would be extended by at most 3 edges we have
shown the size bound for F ′ by induction.

Let F ∗ be the combined set of edges from F and F ′, F ∗ = F ∪ F ′. Let H be the
edge-induced subgraph of G with edge set F ∗. Since |F ∗| is bounded by 5(|U | − 1) H

has ≤ 5(|U | − 1) edges. Now we must show that H is an U -supporting subgraph.

Claim 4. u, v ∈ U ⊆ G are edge-(bi)connected in G if and only if u, v are edge-

(bi)connected in H .

Proof. We will first prove the statement for connectivity, and then for edge-biconnectivity.

u, v ∈ U are connected in G if and only if u, v are connected in H

First, observe that since u and v are in the set U and are connected in G, they are also in
the subgraph H . Targeting a contradiction, we assume that u, v are connected in G, but
are not connected in H . As u, v are connected in G, there exists a u, v-path in G. Then u
and v must belong to the same connected component in the spanning forest of G. All the
edges in the spanning forest ofG except edges to leaves outside of U were added. Then an
edge of the u, v-path in G must be one of the leaf edges – but this cannot be true as both
u, v are in U and a u, v-path can’t go through a non-related leaf in the spanning forest.
Thus if u and v are connected in G, they must be connected in H .

For the reverse direction, we know that u, v are connected in H , so there exists a
u, v−path in H . As H ⊆ G the same path must exist in G, and u and v are therefore
connected in G if they are connected in H .

u, v ∈ U are edge-biconnected in G if and only if u, v are edge-biconnected in H

We prove the forward direction first: Assume that even though u, v are edge-biconnected
in G, there exists an edge e ∈ H such that H − e causes u, v to no longer be connected.
Since e was added to H , it must be part of the first or second spanning forest in G.

If it was part of the second spanning forest, then deleting e can’t possibly disconnect
u and v, as they are connected with only the edges of the first spanning forest if they
are connected in G. Therefore e must be added as part of first spanning forest. Since
removing e from H disconnects u and v, e must be an edge of a u, v-path in H . As u

44

CHAPTER 3. UPPER BOUNDED DEGREES 3.4. 2O(K) ·NO(1) ALGORITHM

and v are edge-biconnected in G, they must be connected in G − e. Then there exists a
u, v-path in G− e.

If we look at the vertices of the u, v-path in G − e it must at one point leave the
component of u in H , and at some point enter the component of v in H . Let u′ be the last
vertex in U ′ of the u, v-path that is in the component of u in H − e, and v′ be the first
vertex of U ′ in the u, v-path that enters the component of v in H − e. We might add some
edges of the u′, v′-path to H as part of the first spanning forest F , meaning that u′ and v′

might not be in the same connected component in G− F . However, every vertex incident
to any edge added by F is a member of U ′. Any edge {a, b} of the u′, v′-path not added
by F would cause a and b to be in the same connected component in the spanning forest
of G − F , and as a and b are in U ′ the edges of F ′ must cause a and b to be connected
in H − e. Then for every edge of the u′, v′-path in G − e this edge was either added to
H by the first spanning forest, or the edge is between two vertices of U ′ that are in the
same connected spanning forest in G − F , and thus the vertices must also be connected
with the edges of F ′ which are added to H . Note that e can’t be any of these edges, as the
u′, v′-path exists in G − e, and e was added as in the first set of edges F . Thus we can
construct another path from u to v if e is deleted by taking the path from u to u′, then from
u′ to v′ where for every pair of vertices in the u′, v′-path in G there must exist some path
between them in H − e and lastly from v′ to v, even if e is deleted.

As we know that if any edge e is removed from H and u and v are two biconnected
vertices in G, they would still be connected in H . Therefore u and v are edge-biconnected
in H if they are edge-biconnected in G.

For the reverse direction, we know that u, v are edge-biconnected in H . As H is a
subgraph of G we can never find a single edge to remove that disconnects u and v in G if
they are edge-biconnected in H .

Thus we have a linear sized U -supporting subgraph, H . If we take the graph that we
obtain after exhaustively applying all the reduction rules of the kernel, X will also have a
X-supporting subgraph of size ≤ 5(|X| − 1) ≤ 5(2k − 1) = 10k − 5 edges.

3.4.2 Solution skeleton

Now that we have shown that we can find a X-supporting subgraph of linear size, we will
now define a solution skeleton for a YES-instance. To make reduction rules easier we will
define this solution skeleton for a subset of the solution A∗ for any YES-instance which
only satisfies degree constraints and disconnects the least amount of components of any
such subset of any valid solution.

45

3.4. 2O(K) ·NO(1) ALGORITHM CHAPTER 3. UPPER BOUNDED DEGREES

If the instance (G, f, k) is YES-instance, we know that there exists some family of sets
of edge deletions that satisfies all degree constraints and does not change the graph into
a NO-instance if all the deletions are applied (A = {A ⊆ E(G) | (G′ = G4A, f, k −
|A|) is a YES-instance ∧ X(G′) = ∅}). We take A∗ ∈ A to be the smallest set of edges
that gives the minimum number of components in G′ over all sets in A.

X

Figure 3.7: An example set of edge deletions that satisfies all degree constraints, in red

In figure 3.7 we can observe that the vertices of X(G) are separated into some com-
ponents, marked with the black circles.

If we apply the deletions of A∗ to our graph G, we will end up with a graph where
every vertex has satisfied its degree constraint. The issue is that we do not know the setA∗

for our instance. To work around this we will instead show that we can reobtain the set A∗

if we have some extra information about which edges we definitly can’t delete, and which
edges might be deleted. The information about what edges we can’t delete we denote as a
solution skeleton for our YES-instance. Obviously the solution skeleton only makes sense
if we are dealing with a YES-instance.

In the graph G′ = G4A∗ we know that a X(G)-supporting subgraph with at most
10k − 5 < 10k edges exist. The edges of this subgraph are part of the solution skeleton
for G.

Additionally the solution skeleton needs to encode some extra information about the
vertices ofG−X which has some incident edges inA∗. If any such vertex has any incident
edges that aren’t self-loops in G4A∗, we require that any one of these edges are in the
solution skeleton. The maximum number of edges required to be in the solution skeleton
by this rule is at most k, as we can delete at most k edges and the maximum required by
this rule is if every edge deletion is an edge incident to k different vertices of G−X .

Thus the size of the solution skeleton is at most 10k − 5 + k < 11k edges. The
maximum size of A∗ in the graph is k, as that is our budget. If we have correctly encoded
the information that the edges of the solution skeleton must never be deleted, as well as

46

CHAPTER 3. UPPER BOUNDED DEGREES 3.4. 2O(K) ·NO(1) ALGORITHM

X

Figure 3.8: The edges of the X-supporting subgraph colored in green, and the solution
edges colored red.

the information that the edges of the solution A∗ can be deleted, we will show that we can
delete a set of edges that satisfies all degree constraints and maintains that the resulting
graph and remaining budget still is a YES-instance.

To encode the information needed for this we introduce a coloring of the edges in our
instance. Every edge will be colored either red or green, where red edges may be deleted,
and green edges can never be deleted. If all the edges of the solution skeleton of A∗ are
colored green and all the edges of A∗ are colored red we have encoded the information
about our solution and solution skeleton that we wished to encode, and way say that this
is a correct coloring. Since the number of edges that must be colored correctly is less
than 11k + k = 12k we can randomly color every edge either red or green with equal
probability and obtain a correct coloring with probability ≥ 1

212k
.

X

Figure 3.9: A coloring of the edges of an example solution (red), and the corresponding
solution skeleton (green)

Edges that are colored black in figure 3.9 indicate edges that aren’t a part of the solution
or the corresponding solution skeleton, and can therefore be colored either red or green.

47

3.4. 2O(K) ·NO(1) ALGORITHM CHAPTER 3. UPPER BOUNDED DEGREES

3.4.3 Reobtaining the solution

To make matters more explicit for this section we define the combination of our previous
instance and a given coloring as a new problem. We define this problem to answer YES if
the instance of EDITUBD is a YES-instance and the coloring c correctly colors the edges
of the solutionA∗ red and the associated solution skeleton withA∗ green. Any edge not in
A∗ or the corresponding solution skeleton can have any color. This allows us to construct
an algorithm using reduction rules that are safe due to preserving the instance. Note that we
also assume that the graph G has the properties guaranteed by the kernelization algorithm
(Theorem 3.3.8).

CORRECTLY COLORED EDITUBD
Input: A graph G = (V,E), functions f : V (G) → Z+ and c : E(G) →

{red, green}, and a budget k.
Question: Is (G, f, k) a YES-instance of EDITUBD where the c colors set of

edges that satisfy degree constraints with minimum number of new
components A∗ red, and all the edges of the solution skeleton of A∗

green?

Note that for all reductions that only involve edge deletions that also reduce k by the
appropriate amount the reverse direction of this implication is trivial, as we only use edit-
ing operations permitted by the budget and problem to alter the graph. For any recoloring
of the edges (changes to c) we have to show that given a correct coloring the new coloring
is also correct.

This algorithm finds the set of edges to delete that satisfies all vertices of X , while
disconnecting the minimum number of components with this coloring. If we end up with
more than one component and k ≥ 0 after satisfying all vertices we use the general con-
nection Lemma to give the final answer to our instance.

The first steps taken in reobtaining the solution is to use the information that c pro-
vides if it is a correct coloring of a YES-instance, by deleting any edges that add extra
connectivity between vertices of X .

Reduction Rule 1 (Connectivity-adding edges). Let Ggreen be the edge-induced subgraph
of G induced on all edges colored green, and Cgreen be the set of connected components of
Ggreen.

If there exists a red edge e from an unsatisfied vertex v in one component Ci ∈ Cgreen

to another unsatisfied vertex u in a component Cj ∈ Cgreen with i 6= j, delete the edge e
and reduce k by 1.

48

CHAPTER 3. UPPER BOUNDED DEGREES 3.4. 2O(K) ·NO(1) ALGORITHM

If there exists a vertex w of G − X that has non-self-loop edges to two or more dif-
ferent components of Cgreen, delete all red edges going to different components than the
component of w in Cgreen and reduce k by the number of edges deleted.

Lemma 3.4.4. The instance (G′, f, k′, c) after applying rule 1 is a YES-instance if and

only if (G, f, k, c) is a YES-instance.

Proof. For the forward direction of this proof we assume that (G, f, k, c) is a YES-instance,
i.e. c is a correct coloring of the solution skeleton and the graph can be made connected
while satisfying all degree constraints in k or less edge edits. As c is a correct coloring
every vertex ofX will be in the connected component Cgreen that it is in before deleting any
edges. The edge e merges two connected components of Cgreen, so if c is correctly colored
then e must be deleted.

If we have a vertex of G − X such that it connects different components of Cgreen

with red edges, all these red connection edges must be deleted if this is a correct coloring.
Finally, the solution skeleton requires that any vertex of G − X which has some but not
all non self-loop edges incident deleted in the solution must have at least one edge colored
green – if no edges are colored green and we have to delete an edge incident to this vertex
then the fact that this is a correct coloring requires that we delete all non-self-loops.

The reverse direction of this proof is trivial, as we only do legal edits permitted by the
problem definitions using our budget. We also don’t change the coloring c, so if c is a
correct coloring in our reduced instance, it must also be a correct coloring in our original
instance.

Claim 5. Reduction rule 1 can be checked and implemented in time O(|V | · |E|).

Proof. We first obtain the graph Ggreen in time O(|V |+ |E|). After this we run a DFS on
Ggreen to identify the onnected components of Ggreen. We can identify all red edges that go
between different components ofGgreen by running through the set of edges, and removing
all the required edges or adjusting k is within the time bound of O(|V | · |E|).

Reduction Rule 2 (Edge-biconnectivity adding edges). Let Ggreen be the edge-induced
subgraph of G induced on all edges colored green, and Gbiconn be the edge-biconnected
components of Ggreen.

If we have a red edge e from an unsatisfied vertex u in Ci ∈ Gbiconn to an unsatisfied
vertex v in Cj ∈ Gbiconn, where Ci 6= Cj , delete e and reduce k by one.

49

3.4. 2O(K) ·NO(1) ALGORITHM CHAPTER 3. UPPER BOUNDED DEGREES

If there exists a vertex w of G − X that has non-self-loop edges to two or more dif-
ferent components of Gbiconn, delete all red edges going to different components than the
component of w in Gbiconn and reduce k by the number of edges deleted.

Lemma 3.4.5. Reduction rule 2 is safe.

Proof. This is the same proof as the one for 1, but now we delete edges that provide
edge-biconnectivity instead of connectivity over our green edges.

The reverse direction is true for the same reason as well, we only do edge deletions of
red edges and we reduce k by the number of edge deletions. The coloring is not changed.

Claim 6. Reduction rule 2 can be checked and implemented in time O(|V | · |E|).

Proof. We first obtain the graph Ggreen in time O(|V |+ |E|). We then find all the bridges
in Ggreen with DFS [24] and remove them from Ggreen, obtaining G′green, in which the
connected components are Gbiconn. As a graph has at most |V | − 1 bridge edges, and re-
moving each edge in an adjacency list representation takes time proportional to the number
of edges incident to a vertex, this is bounded by O(|V | · |E|). After this we run a DFS
on G′green to identify the edge-biconnected components of G′green. We can identify all red
edges that go between different components ofGbiconn by running through the set of edges,
and removing an edge or adjusting k is within the time bound of O(|V | · |E|).

We can now deal with any vertex v in G −X that has only red edges incident that is
adjacent to two or more vertices inX . If our coloring is correct we either have to delete all
edges incident to v, or keep all edges incident to v. This is because if we deleted some but
not all edges incident to v in A∗, at least one of the edges of v would be colored green in
a correct coloring of the solution skeleton. However we will never have to delete all edges
incident to v in a correctly colored solution, as this would contradict the fact that we have
colored a solution which creates the minimum number of new components.

Reduction Rule 3. If we have a vertex v in G −X connected to two or more vertices in
X and v and all edges incident to v′ that aren’t self-loops are colored red, recolor all of v’s
non-self-loop edges to green.

Lemma 3.4.6. If (G, f, k, c) is YES-instance before recoloring the edges incident to v

according to 3 the instance after recoloring the edges incident to v will also be a YES-

instance.

Proof. Assume for a contradiction that in a correctly colored solution we will delete all
edges incident to v. Then we create one more component, while satisfying some degree

50

CHAPTER 3. UPPER BOUNDED DEGREES 3.4. 2O(K) ·NO(1) ALGORITHM

constraints. However, we could satisfy the same number of degree constraints without
deleting every edge incident to v: As v is adjacent to at least two vertices of X , x1 and
x2 in G, we know that x1 and x2 have to be edge-biconnected after deleting all the edges
incident to v. Otherwise we would have deleted all the edges incident during deletion step
1 or 2, as the red edges incident to v would provide additional connectivity over the green
edges in the graph. Seeing as x1 and x2 are edge-biconnected, we could instead of deleting
all the edges incident to v keep one edge between v and x1 (or with x2) and instead delete
an edge that provides biconnectivity between x1 and x2. Then we would satisfy the same
number of degree constraints, but we have created one fewer components to do so – which
contradicts the fact that we have a correctly colored solution in which we create as few
components as possible.

Because of this the edges incident to v will never be deleted in a correctly colored
solution, and we can therefore safely recolor these edges to be green as they never will
be deleted in a correctly colored solution. This means that if we have a correctly colored
solution before recoloring the edges of v, we will also have a correctly colored solution
after recoloring the edges of v.

The reverse direction of the proof is trivial, as the edges incident to v does not con-
tribute to connectivity or edge-biconnectivity they can’t be a part of the solution skeleton.
As they aren’t a part of the solution skeleton they can safely be recolored red instead of
green, as there is no requirement for any coloring of edges that aren’t part of the solution
A∗ or the solution skeleton.

Claim 7. The reduction 3 can be done in time O(|V |+ |E|).

Proof. We can do this reduction by scanning through the edges incident to every vertex of
G −X that isn’t a self-loop. If all these edges are colored red in c, and we have edges to
at least two different vertices of X , we change the coloring of these edges to green. This
takes time proportional with the degree of every vertex in G −X , which is bounded as a
whole by O(|V |+ |E|).

Now we want delete edges in X to satisfy degree constraints. We want to optimize
the number of degree constraints each edge deletion contributes to, which in our case
corresponds to a maximum f -matching of red edges internal in X .

Reduction Rule 4. Let A be the set of red edges with no endpoints in G−X , and let G∗

be the edge-induced subgraph on A. Let B be the edges of the maximum h-matching in
G∗ with the function h(v) = d(v)− f(v).

Output the new instance (G′ = G4B, f, k′ = k − |B|, c). This rule only applies if A
is non-empty.

51

3.4. 2O(K) ·NO(1) ALGORITHM CHAPTER 3. UPPER BOUNDED DEGREES

Lemma 3.4.7. Reduction rule 4 is safe.

Proof. We will first show the forward direction. Assume that while (G, f, k, c) is a YES-
instance the reduced instance (G′, f, k′, c) is a NO-instance. As our original instance is
a YES-instance we must have some set of edges A∗ that when deleted satisfies all de-
gree constraints in G while creating a minimum number of new components, such that
(G4A∗, f, k−|A∗|) is still a YES-instance. Additionally c colors all the edges of A∗ red,
and the edges of the solution skeleton of A∗ green. However (G4B, f, k − |B|, c) is not
a YES-instance, which means that deleting the edges of B causes G′ to be a NO-instance.

If (G4B, f, k − |B|) is a NO-instance then any set of edges C that satisfies degree
constraints inG4B must cause (G4(C∪B), f, k−|C∪B|) to be a NO-instance according
to Lemma 3.2.2 (the general connection Lemma). The relevant conditions that can be
violated in the general connection Lemma is either the budget being too small, having too
many components, or having too many sated or full components, as the relation between
the total capacity in our graph and the number of components is constant in a graph with
no violated degree constraints.

Firstly we can see that since the edges B are a maximum h-matching of red edges be-
tween the vertices of X , where we match each vertex in X at most the difference between
the degree and the degree constraint for each vertex, any set of deletions that satisfy all de-
gree constraints in G can’t contain more deletions that lower the degree of two unsatisfied
vertices than B. Therefore the number of edges deleted in this step is optimal. We also
note that we will never disconnect components in this reduction rule, as that would mean
that we have red edges that provide connectivity between vertices ofX , which would have
been deleted during previous reduction rules.

Assume that we are forced to disconnect more components later as a result deleting
the set of edges B. Then there must be a red bridge edge e that is deleted later to satisfy
the degree constraints of a vertex in X . The edge e can’t be between two vertices of X , as
that would mean that two vertices in X are only connected by a red edge, so this red edge
would have been deleted in an earlier reduction rule. Therefore emust be between a vertex
v of X and a vertex which has its degree constraints satisfied. We only delete edges of this
kind when all the red edges incident to v are bridges. As the degree constraint for v has
to be satsified in the optimal solution as well, if we are not deleting e we must still delete
some bridge to satsify v. Then we would have to create one additional component, and
therefore choosing these edges for our solution will never disconnect more components
than necessary.

Assume that we are forced to create more sated components as a result of deleting
the h-matching edges. Then we have a component C that after satisfying the degree con-

52

CHAPTER 3. UPPER BOUNDED DEGREES 3.4. 2O(K) ·NO(1) ALGORITHM

straints has no cycle edges and no surplus capacity. The kernelization algorithm guarantees
that no sated components are in the graph G −X , due to reduction rule 2. Therefore this
sated component must have some vertex of X in it. The only edges we delete as part of
this reduction are edges between two vertices ofX . For any edge we delete here, we know
that this edge can’t provide biconnectivity between vertices of X , as otherwise it would
already be removed. Then any edge added in this step can’t create any components with
no cycle edges, as that would mean that we only have bridges left in the component, and
we can’t create any more sated components in this step than the optimal solution if we
have a correctly colored YES-instance.

If any extra sated components are created due to this step, it must therefore be because
deleting the h-matching edges forces us to later delete edges that cause a component to be
sated, while in an optimal solution we would not have to create this extra sated component.
As we only create sated components when we delete edges to satisfy degree constraints
of some vertex v, the only red edges adjacent to v when we create the sated component
are bridges. If the component of v is going to become a sated component, then the only
red edges incident to v that are bridges must be to vertices not in X . We have only red
bridges if there is no other way of satisfying the degree constraint of v, so in the optimal
solution we must still disconnect a component to satisfy v. Since this is a YES-instance,
there must be a way to satisfy v without creating a sated component in this case, so we are
never forced to create extra sated components due to this step.

Finally, assume that we are forced to create more full components as a result of delet-
ing the matching edges such that (G′, f, k′, c) is a NO-instance. As we require at most one
extra edge deletion per full component in the graph (Lemma 3.2.2), the number of compo-
nents we disconnect as part of satisfying all degree constraints with the edges of A∗ must
be the same number as the components we create as a result of the matching edges B be-
ing added. Also, the number of edge deletions used to satisfy all degree constraints in the
optimal solution must be strictly less than the number of extra full components due to the
edges deleted, as we can always transform a full component into a connectable component
by deleting a cycle edge in the component.

Since we will create too many full components after deleting the matching edges, there
must exist some vertex v inX for which deleted the matching edges causes the component
of v to become full when satisfying degree constraints. This will either be because deleting
the matching edges satisfies all degree constraints in the component, but it is then full, or
we will have to make a sated component later when satisfying degree constraints. If the
component is full immediately after removing the matching edges, there can’t exist a set
of edges that satisfies the degree constraints of this component with the same number of

53

3.4. 2O(K) ·NO(1) ALGORITHM CHAPTER 3. UPPER BOUNDED DEGREES

edge deletions without making the component full. This is because we never alter the
connectivity of the component in this step, so we always deal with the same vertices as
part of the component. As a component is full if we have no free connection spots but
it does have some cycle edges, and we only delete edges between vertices of X in this
step, we must use at least one more edge deletion to have free connection spots in this
component in any case.

If we have a correctly colored set of edges in a YES-instance, then we can’t be forced
to create more full components after this than in the optimal solution. The only times
we create a full component is if we delete a bridge, and the remaining component for the
vertex v in X for which we are deleting an incident edge has no free capacity. Since this
is forced, it means that there are no bridges to components with free capacity that we can
consider, and this must also be the case for an optimal solution that disconnects as few
components as possible. We never have the case that we can satisfy the same component
using fewer bridge deletions, as we will prioritize deleting non-bridges first, and the only
edges left that we can delete to satisfy the remaining degree constraints for any vertex in
X is either to a component that is only incident to a single vertex of X , or it is an edge to
a vertex that is in X before this reduction was made – and these edges can never become
bridges as that would mean that they provide extra connectivity between two vertices of
X and would therefore have to be colored green.

The reverse direction of the safety of this reduction rule follows from the fact that
we can always obtain G′ by deleting the edges of the h-matching, so if (G′, f, k′, c) is a
YES-instance then (G, f, k, c) must also be a YES-instance as we can go to the instance
(G′, f, k′, c) by only doing legal edits on the graph.

Claim 8. Reduction rule 4 can be done in time O(|V |4 · k2.5).

Proof. We obtain the graph induced on A in time O(|V | + |E|). We must then do a h-
matching in this graph, which has at most 2k vertices. The running time of h-matching
depends on both the maximum number of vertices, and the maximum edge multiplicity in
our graph 2.4.2. The maximum edge multiplicity in our graph is k + 1, which gives us a
running time of the h-matching of O(|V |4 · k2.5), which dominates the running time of
this reduction rule.

Observe that after this step is done, there will be no red edges with both endpoints
in X in G, as that would contradict the fact that we deleted the maximum h-matching
between unsatisfied vertices with the permitted matching edges per vertex being the dif-
ference between their upper bound on degree and the lower bound on the degree. If any
such edge existed in G then we could clearly extend the h-matching by this edge that has

54

CHAPTER 3. UPPER BOUNDED DEGREES 3.4. 2O(K) ·NO(1) ALGORITHM

two endpoints in vertices of X . Therefore we only have edges with one vertex in X that
can be deleted to satisfy the remaining vertices.

Now all the vertices of G −X has either at least one green edge to a vertex in X , or
they are adjacent to only one vertex of X . As we have found the optimal number of edges
to delete that satisfy two degree constraints, all the remaining degree constraints must be
satisfied by deleting edges that are incident to only one unsatisfied vertex. Any red edge is
eligible for deletion, but we want to disconnect as few vertices as possible.

Only vertices of G−X which are adjacent to only one vertex of X can be potentially
disconnected, as otherwise they must have at least one green edge to some other vertex in
X . The only thing we have to watch out for now is which bridges to delete if we have a
choice. As we will show in the proof for the following reduction rule, the optimal way is
to minimize the number of sated components we create when we have to disconnect.

Reduction Rule 5. While we have any vertex v in X we pick a red edge e incident to v
to delete, in the following priority:

1. A non-bridge

2. A bridge to a vertex u which has f(u) = d(u).

3. Any other bridge

If v does not have any red edges incident we answer NO.

Lemma 3.4.8. Reduction rule 5 is safe.

Proof. In this step we do one of three things: deleting a non-bridge edge, deleting a bridge
edge, or outputting NO. We have to show that assuming this is a correctly colored YES-
instance, all of these actions are safe.

First assume that we have a YES-instance and that after deleting a non-bridge e we no
longer have a YES-instance. Since we satisfy the maximum number of degree constraints
per deletion at this step, the fact that this causes a NO-instance must mean that after this
deletion we will either disconnect more components than which are necessary in an opti-
mal solution, or we have more sated and/or full components after the deletion as the use
of the budget k is as small as possible (due to the connection Lemma 3.2.2).

If we don’t disconnect any components connected to v then the resulting component
with v cannot be either a sated or full component, as v is adjacent to a vertex that was
satisfied before having at least one incident edge removed. Then for this to become a NO-
instance it must be because of deleting a bridge edge. Assume therefore that we have a
YES-instance, and that after deleting a bridge edge e we no longer have a YES-instance.

55

3.4. 2O(K) ·NO(1) ALGORITHM CHAPTER 3. UPPER BOUNDED DEGREES

The bridge deleted can’t disconnect any more components than already necessary, as
all the edges incident to v must clearly be bridges, and the same amount of edges incident
to v must be deleted in any solution. Then there is some other edge e′ incident to v which
could be deleted instead of e to maintain a YES-instance. The edge e′ has to be a bridge,
as otherwise we would never delete e over e′.

As we can’t create more components than necessary with this rule, assume instead that
we create more sated or full components than an optimal solution requires. For the com-
ponent of v to be sated or full we must be totally disconnected from every component that
has some free capacity or some extra cycle edges. Assume that it is possible to disconnect
the same number of components, but we can have fewer sated or full components in an
optimal solution. We must delete the same number of edges incident to v to satisfy the
degree constraint, so if there are only bridge edges to delete then we have to disconnect
some component from v. As it is possible to create fewer sated or full components in
this case, we know that we have at least one component adjacent with free capacity (or
otherwise we would create a full component after deletion), and this edge was deleted in
our reduction but in an optimal solution we do not delete this edge. We will not delete this
edge if we have bridges to components without any free capacity, so as we deleted this
edge and therefore created one extra full component, there are no bridges to components
with no free capacity incident to v. Then the optimal solution also has to create an extra
sated component in this case: As we have to delete an edge incident to v to satisfy the
degree constraint and deleting an edge to a component with free capacity will create an
extra full component, the edge to the other component has to be the only edge to an other
component that can be deleted. Then we have to delete this edge anyway, as the edge is
the only eligible edge for deletion, and v hasn’t satisfied its degree constraint.

Finally we have to show that it is safe to answer NO if we have no red edges incident
to v. As we have a correctly colored instance, the edges that are part of the solution that
satisfies all degree constraints must be colored red. However, since v is not satisfied and
there are no red edges incident to v we must conclude that it is impossible to satisfy the
degree constraints of v if the instance is a correctly colored YES-instance.

Claim 9. Reduction rule 5 can be done in time O(|V |+ |E|).

Proof. To perform reduction rule 5 we must for a vertex in X check which edge to delete
according to the rule, and delete the edge. Both identifying the vertices of X , identifying
which edge to delete according to the rule, and deleting an edge can be done in time
O(|V |+ |E|).

56

CHAPTER 3. UPPER BOUNDED DEGREES 3.4. 2O(K) ·NO(1) ALGORITHM

After exhaustively applying reduction rule 5, G is a graph with no unsatisfied vertices
– if not, it was impossible to delete enough edges adjacent to a vertex in X with this
coloring. If k ≥ 0 we can then use the general connection Lemma (3.2.2) to see if this is
a YES-instance or a NO-instance in time O(|V |+ |E|).

Since every reduction rule for reobtaining the solution takes polynomial time, and
either reduces the parameter k or does a recoloring of edges where the maximum number
of edges to recolor is clearly bounded by |E|, the algorithm as a whole takes polynomial
time.

3.4.4 Randomized algorithm

Now we have all the parts necessary for a randomized algorithm for our problem.

Theorem 3.4.9 (Randomized algorithm for EDITUBD). EDGE EDITING TO A CON-
NECTED GRAPH OF UPPER BOUNDED DEGREES has a randomized algorithm that runs

in polynomial time and outputs YES if this is a YES-instance with probability ≥ 1
212k

, and

NO otherwise.

Proof. First we run the kernelization algorithm on our instance, which runs in polynomial
time. Then we randomly color all edges independent of each other either green or red, with
probability 1

2 . After this we try to delete the necessary edges to satisfy degree constraints,
given that this coloring is correct. Reobtaining the solution takes polynomial time. If
this instance is a YES-instance we will color the necessary < 12k edges of the solution
edges A∗ and its corresponding solution skeleton to reobtain the solution with probability
at least 1

212k
. Reobtaining the solution works if we have a correct coloring, so this gives

us a randomized algorithm that runs in polynomial time with success probability at least
1

212k
.

Success probability here is defined as the chance that if this particular instance is a
YES-instance, then the algorithm will also output YES. Note that for any NO-instance,
the algorithm will always answer NO. If we repeat this algorithm 212k times, we have a
probability of answering YES given that this is a YES-instance of at least 1

e [5, Chapter 5]:

(1− 1

212k
)2

12k

≤ (e−
1

212k)2
12k

=
1

e

We therefore have a randomized algorith for EDITUBD which has a success probabil-
ity ≥ 1

e independent of k with a running time of 212k · nO(1).

57

3.4. 2O(K) ·NO(1) ALGORITHM CHAPTER 3. UPPER BOUNDED DEGREES

Derandomization

Even if we can obtain any probability bound we want for our algorithm with enough repeti-
tions, we still can’t give a 100% certainity that any NO-answer is correct with this method.
However, if we are able to go through all the different possible ways to color a solution
skeleton, we guarantee that we will hit the correct coloring at least once if it exists. The
Theorem for the construction of the universal set and also the definition of an universal set
is both by Cygan et. al. [5, Chapter 5.6].

Definition 3.4.1 ((n, k)-universal set). An (n, k)-universal set is a family U of subsets of
[n] such that for any S ⊆ [n] of size k, the family {A∩S : A ∈ U} contains all 2k subsets
of S.

If we take n to be the number of edges we have in our instance after kernelization,
and take k to be the maximum size of our solution A∗ plus the edges of the corresponding
solution skeleton, then if we iterate through the separations of the (O(k4), 12k)-universal

set, then one of these sets has to correctly separate the edges of the solution A∗ and the
solution skeleton if this is a YES-instance. The way we obtain a coloring from one of the
sets in the universal set is by coloring every edge in the set one color, and every edge not in
the set the other color. As we hit every subset we will necessarily obtain a correct coloring
of the needed edges. From the same chapter in [5] we have a Theorem that states that we
can construct this universal of limited size in limited time:

Theorem 3.4.10. For any n, k ≥ 1 one can construct an (n, k)-universal set of size

2kkO(log k) log n in time 2kkO(log k)n log n.

This Theorem allows us to prove the following result:

Theorem 3.4.11. EDGE EDITING TO A CONNECTED GRAPH OF UPPER BOUNDED DE-
GREES has a deterministic algorithm that runs in time 2O(k) · nO(1).

Proof. We apply Theorem 3.4.10 and obtain an (16k4, 12k)-universal set of size

212k(12k)O(log 12k) log 16k4

in time
212k(12k)O(log 12k)16k4 log 16k4

If we go through each of the

212k(12k)O(log 12k) log 16k4

58

CHAPTER 3. UPPER BOUNDED DEGREES 3.5. NP-COMPLETENESS

colorings defined by the universal set and try to reobtain the solution in polynomial
time, then we have a deterministic algorithm for our problem with running time of

212k(12k)O(log 12k)16k4 log 16k4 + 212k(12k)O(log 12k) log 16k4 · nO(1)

∈ 2O(k) · nO(1)

.

The proof is slightly imprecise, as the bound on the number of edges after kernelization
isn’t exactly 16k4, but this does not change the final asymptotic bound on the runtime of
the algorithm.

3.5 NP-Completeness

As we now have demonstrated the existence of a polynomial kernel and a single expo-
nential FPT algorithm we will round off the chapter on EDITUBD by proving that is
NP-complete, and giving a lower bound for the running time assuming ETH.

Theorem 3.5.1. EDITUBD is NP-complete, and assuming ETH holds no algorithm with

running time 2o(k) · nO(1) exists.

Proof. To show that a problem P is NP-complete, it is sufficient to show that it is both
NP-hard and in NP. First, we show that it is NP-hard by reducing an arbitrary instance of
a known NP-complete problem to EDITUBD in polynomial time. The problem we reduce
from is HAMILTONIAN CYCLE, which is NP-complete [11].

HAMILTONIAN CYCLE

Input: An undirected simple graph G = (V,E)

Question: Does a cycle C exist in G such that V (C) = V (G)?

As this is a parameterized reduction where the parameter k is linear in size with regards
to the number of vertices and edges in the graph, we also obtain the ETH lower bound from
this reduction. This is because HAMILTONIAN CYCLE has a linear reduction from 3-SAT,
meaning that any 2o(n+m) algorithm would violate ETH [5, Theorem 14.6].

59

3.5. NP-COMPLETENESS CHAPTER 3. UPPER BOUNDED DEGREES

EDITUBD is NP-hard

Claim: G is a YES-instance of HAMILTONIAN CYCLE if and only if the same graph with
the degree constraint f(v) = 2 for every vertex in G, and budget k = |E(G)| − |V (G)| is
a YES-instance of EDITUBD.

Forward direction: HAMILTONIAN CYCLE with G is a YES-instance, so there exists
a cycle C in G with V (C) = V (G). Since there are |V (G)| vertices in the cycle, it
also has |V (G)| edges. The number of edges not in the cycle is |E(G)| − |V (G)|. Let
GC = (V (G), E(C)) be the graph G with all edges other than the ones in the cycle
removed. Every vertex in GC has degree 2, and GC is a connected graph. Since GC can
be obtained fromG by removing |E(G)|−|V (G)| = k edges, and it satisfies the constraint
on degrees and connectivity, we have a YES-instance of EDITUBD.

Backward direction: If EDITUBD is a YES-instance, we have constructed a graph
G′ with ≤ k edge additions and deletions, where G′ is connected and every vertex in G′

has degree of at most 2. A connected graph where every vertex has degree 2 has a cycle
[25, Lemma 6.1], which must necessarily be the entire graph as the graph is connected. If
every vertex in G′ has degree 2, then G′ must be a cycle, and if all edges in G′ exist in G
then a Hamiltonian cycle exists in G as well.

In any graph,
∑

v∈V d(v) = 2|E| [25, Handshaking Lemma]. All vertices in G′ has
degree 2. Assume otherwise, that there exists a vertex v in G′ with d(v) < 2. Since G′ is
connected, v must have degree 1. With the sum of degrees equaling 2|E| and one vertex
having degree 1, we must have at least one other vertex with odd degree, as any even
number plus an odd number must be odd. All vertices in G′ has degree of at most 2, so we
have at least two vertices that have degree 1.

|E(G′)| = 1

2

∑
v∈V (G′)

d(v) ≤ 2|V (G′)| − 2

2
= |V (G′)| − 1

To have ≤ |G′| − 1 edges in G′, we must have removed ≥ |E(G)| − (|V (G′)| − 1) =

|E(G)| − |V (G)| + 1 edges from G. However, this contradicts the maximum number of
edits we can do, which is k = |E(G)| − |V (G)| < |E(G)| − |V (G)| + 1, with our only
assumption being the existence of a vertex in G′ with degree less than 2.

G′ is a connected graph with all vertices having degree 2, so it must be a cycle with all
the nodes in the graph. As the vertices of G and G′ are the same, we only need to show
that all the edges of the cycle exist in G.

2|E(G′)| =
∑

v∈V (G′)

d(v) =
∑

v∈V (G′)

2 = 2|V (G′)|

60

CHAPTER 3. UPPER BOUNDED DEGREES 3.5. NP-COMPLETENESS

Since G and G′ has the same vertices, |V (G)| = |V (G′)|. The difference in number
of edges between G and G′ is

|E(G)| − |E(G′)| = 2|E(G)| − 2|V (G)|
2

= |E(G)| − |V (G)| = k

As G′ has k less edges than G, and the total number of edits ≤ k, all the operations
we did must be edge deletions. Then as G′ is a cycle with all the vertices of G, and
all the edges in G′ exists in G, HAMILTONIAN CYCLE is a YES-instance. Therefore
EDITUBD is NP-hard, and as we have a linear reduction from HAMILTONIAN CYCLE

any 2o(k) · nO(1) algorithm for EDITUBD would contradict ETH.

EDITUBD is in NP

Now, for EDITUBD to be NP-complete, all that remains is showing that it is in NP.
Given a solution A to an instance (G, k, f) of EDITUBD, we must verify in polyno-

mial time that it is a valid solution.
Verify that |A| ≤ k. Construct G′ by going through the edges in A and either add the

edge if it does not exist in G, or deleting the edge if it exists in G. Now, scan through G′,
and for each vertex v verify that d(v) ≤ f(v). If this holds for every vertex, we finally
check that the entire graph is connected. If this is true then we have a valid solution, and
if it is not the solution is invalid.

The verifier runs in polynomial time, and as EDITUBD is both in NP and NP-hard, it
is NP-complete.

Any algorithm with a running time of 2o(k) · nO(1) would violate ETH, so assuming
ETH holds the algorithm from section 3.4 with a running time of 2O(k) · nO(1) cannot be
significantly improved. Of course, this is slightly misleading due to the constant factor
hidden in the exponent with the bigO notation. Nevertheless this shows an asymptotically
tight bound for EDITUBD assuming ETH.

61

3.5. NP-COMPLETENESS CHAPTER 3. UPPER BOUNDED DEGREES

62

Chapter 4
Lower Bounded Degrees

4.1 Problem statement

We already introduced this problem in the introduction, but we state it again here for
convenience.

EDGE EDITING TO A CONNECTED GRAPH OF LOWER BOUNDED DEGREES

Input: A graph G = (V,E), an integer k, a function f : V (G)→ Z+

Question: Does a set A ⊆
(
V (G)

2

)
exist such that G′ = (V (G), E(G)4A) is a

connected graph, all vertices v in V (G′) has d(v) ≥ f(v), and |A| ≤ k?

EDGE EDITING TO A CONNECTED GRAPH OF LOWER BOUNDED DEGREES, or
EDITLBD for short, is similar to EDITUBD, but now we have a lower bound and not
an upper bound. It is easy to see that we don’t have to consider any edge deletions in
this version of the problem, as any solution with an edge deletion will also be a solution
without that edge deletion.

Due to the way the minimum degree requirement and the connectivity requirement are
both inclined toward edge addition, we can hope that this problem is easier than the upper-
bounded version. Indeed this is the case, and we will give a polynomial time algorithm for
EDITLBD.

First we will for convenience define what we mean by an unsatisfied vertex and the set
X:

Definition 4.1.1 (Unsatisfied vertex and X). We say that a vertex v in G is unsatisfied

if d(v) < f(v). The set X ⊆ V (G) = {v | d(v) < f(v)} is the set of all unsatisfied
vertices. Any vertex not in X is a satisfied vertex.

63

4.2. POLYNOMIAL ALGORITHM CHAPTER 4. LOWER BOUNDED DEGREES

In this section we will assume that for every vertex in the graph f(v) < |V | holds, as
the maximum degree of a vertex in a simple graph is |V | − 1, which happens when it is
adjacent to every other vertex in the graph.

4.2 Polynomial algorithm

The polynomial algorithm is constructed as a series of reduction rules, which with exhaus-
tive application will give the answer to the given instance of EDITLBD. All the reduction
rules take polynomial time, and will be executed a polynomial number of times, resulting
in a polynomial algorithm.

The first reduction we will do is alter the lower bound function to ensure that every
connected component has at least one unsatisfied vertex, which removes some edge cases
from later consideration.

Reduction Rule 1. If we more than one connected component in our graph and a con-
nected component C in our graph which has no unsatisfied vertices, pick an arbitrary
vertex v in C and set f ′(v) = d(v) + 1.

Lemma 4.2.1. Reduction rule 1 is safe.

Proof. For the forward direction we assume that (G, f, k) is a YES-instance. Then there
exists a set of edges A such that G4A is a connected graph with all degree constraints f
satisfied, and |A| ≤ k. As C is connected to the rest of the graph, we must have an edge
{u, c} in A where c ∈ C and u /∈ C . Then A′ = A − {u, c} + {u, v} must also be a
solution, as we still connect the component C to the rest of the graph, and as c already has
enough edges to satisfy its degree constraints c must also be satisifed in G − A′. As A′

adds one edge incident to v, A′ is also a solution for (G, f ′, k) as all degree constraints are
satisfied and the entire graph is connected.

For the reverse direction we assume that (G, f ′, k) is a YES-instance, so we have a set
of edges A such that G4A is a connected graph and all degree constraints f ′ are satisfied.
Then the same set A will satisfy the instance (G, f, k) as the degree constraints are the
same for every vertex except v, where it is less strict.

After exhaustive application of reduction rule 4.2.1 every connected component in the
graph has at least one unsatisfied vertex.

The solution for the problem will gradually be built as a set of edges to add to the graph
S which is initally empty, constructed using a series of reduction rules. The safety of the
reduction rules depend on the fact that |S| is at any time the ≤ least amount of edges that

64

CHAPTER 4. LOWER BOUNDED DEGREES 4.2. POLYNOMIAL ALGORITHM

must be added to connect the entire graph and satisfy all degree constraints. For S = ∅
this is obviously true.

The reduction rules are applied in the listed order, if the conditions of the reduction
rule applies.

Reduction Rule 2. If there exists some unsatisfied vertices in G+ S, let G′ = G[X] and
g : V (G′)→ Z+, g(v) = f(v)− dG(v)). Find the edges M of the maximum g-matching
in G′, and set S = M . While there exists any unsatisfied vertex v in G+ S add any edge
{v, c} ∈ E(G− S) to S, where c is any vertex of G.

Lemma 4.2.2. After applying reduction rule 2, |S| is equal to or smaller than the minimum

number of edges that needs to be added to satisfy all degree constraints in G and connect

the graph.

Proof. When satisfying degree constraints, the most we can do in one operation is to add
an edge between two vertices that does not satisfy the degree constraint. If we find the
maximum number of edges that satisfies two degree constraints, we know that this gives
us a lower bound on the number of edges needed to solve this problem. The possible
edges that satisifies two degree constraints are the edges between two unsatisfied vertices
in G that does not exist in G. However, we can’t add more than f(v) − d(v) edges to an
unsatisfied vertex v without satisfying it. Finding the maximum number of edges that can
satisfy two degree constraints in this way corresponds exactly to the g-matching problem
in G′ with the function value g. Thus the size of S must be fine after the edges of the
g-matching are added.

Then for the reduction rule to not be safe we must add too many edges after the g-
matching edges are added. Assume that this is the case, ie. that we add a set of edges
after the g-matching ending up with S, but there exists some set B such that all vertices in
G − B are satisfied, and that the size of B is less than S. As every edge in S satisfies at
least one degree constraint, for B to be smaller then it has to have more edges that satisfies
two degree constraints. However this can’t be true, as the number of edges that satisfy two
degree constraints in S corresponds to a maximum g-matching, so B can only be smaller
if the matching is not a maximum g-matching.

As all degree constraints are now satisfied, the remaining reduction rules will connect
as many components as possible without increasing the size of S needlessly. To do this
we will remap edges in S to become bridges while satisfying the same number of vertices
whenever possible, as then we both satisfy degree constraints and merge components at
the same time.

65

4.2. POLYNOMIAL ALGORITHM CHAPTER 4. LOWER BOUNDED DEGREES

Reduction Rule 3 (Solution is too big). If |S| > k, output NO.

Lemma 4.2.3. Reduction rule 3 is safe.

Proof. As |S| is smaller or equal to the minimum number of edges required to be added
to solve this instance, we can’t solve this instance if we must use more than k edits.

Reduction Rule 4 (Solution found). If G + S is a connected graph, and all degree con-
straints are satisfied, output YES.

Lemma 4.2.4. Reduction rule 4 is safe.

Proof. As |S| ≤ k and G+S satisfies both the degree constraints and connects the graph,
S is a solution of our original problem and we can just output YES.

Reduction Rule 5 (Matching reordering). If we have edges {u, v} and {a, b} in S, where
u and a are in different connected components in G+ S, and either {u, v} or {a, b} is not
a bridge in G+ S, let S′ = (S \ {{u, v}, {a, b}}) ∪ {{u, a}, {v, b}}.

Lemma 4.2.5. Reduction rule 5 is safe.

Proof. Since |S| = |S′| and we do not have any unsatisfied vertices in G + S′, this
reduction does not violate the fact that there can’t exist any smaller set than S that fixes all
degree constraints and also connects the graph.

After exhaustively applying the previous reduction rules we have no unsatisfied ver-
tices, and all of the edges in S are bridges. The initial guarantee on the optimal size of S
comes from the fact that there does not exist a smaller set of edge additions that satisfies
all degree constraints. We also know that the optimal way of connecting a set of connected
components is by only adding bridges, reducing the number of connected components by
one for each bridge added. As we already have only bridges added, if we still have more
than one connected component we must add more bridges between components to the
graph.

Reduction Rule 6 (Connect remaining components). If we have more than one connected
component inG+S pick two vertices c1, c2 from different connected components inG+S

and add the edge {c1, c2} to S.

Lemma 4.2.6. Reduction rule 6 is safe.

Proof. As every edge in S is a bridge, we can’t connect more components with the same
or smaller number of edge additions. Since the edge {c1, c2} must also be a bridge (as

66

CHAPTER 4. LOWER BOUNDED DEGREES 4.3. ANALYSIS AND RESULTS

otherwise c1 and c2 must be part of the same connected component), we still use the
optimal number of edge additions needed to satisfy all degree constraints and connect the
entire graph.

At any time at least one of the reduction rules listed will apply, as we have covered the
cases where we actually have a solution, when the solution is too big, and the final case
when we haven’t connected all components in G + S. Thus the reduction rules provided
gives us a deterministic algorithm for any instance of EDITLBD.

4.3 Analysis and results

The running time of our algorithm depends on the time needed for each step, and the
number of steps taken.

Theorem 4.3.1 (EDITLBD algorithm). Given an instance (G, f, k) of EDITLBD we can

in time O(|V (G)|4) answer YES if (G, f, k) is a YES-instance, or NO if (G, f, k) is a

NO-instance.

Proof. The first reduction rule where we make sure that every connected component has
at least one unsatisfied vertex can be done in linear time by searching through each con-
nected component and setting one vertex to be unsatisfied if none of the vertices of a given
component are unsatisfied. After this we do a f -matching in an auxilliary graph with a
subset of our vertices, which runs in time O(|V |4) as this is a simple graph (Theorem
2.4.2).

After the first two reduction rules, the remaining steps are done by reduction rules
3, 4, 5 and 6. These reduction rules can be both checked and done in time bounded by
O(|V | + |E|) (linear time): Reduction rule 3 only identifying if the size of S is bigger
than our budget. The remaining reduction rules requires constructing the graph G + S,
which can be done in linear time. Seeing if all degree constraints are satisfied inG+S can
be done by running a graph search through the graph, which takes linear time. Identifying
the bridges in the graph can be done with DFS [24], which at the same time can identify
the connected components of our graph. Altering the set S can also be done in linear time.

The reduction rules that modify S decreases the number of components in G + S by
one every time the reduction rule applies. As there are at most |V | components in our graph
these reduction rules can apply at most |V | times. Then the running time of the reduction
rules except for the f -matching is bounded byO(|V |(|V |+ |E|)). Combining both results
the running time of the algorithm is bounded byO(|V |·(|V |+|E|)+|V |4) = O(|V |4). The

67

4.3. ANALYSIS AND RESULTS CHAPTER 4. LOWER BOUNDED DEGREES

dominating part of the running time of our algorithm is the f -matching in the auxilliary
graph.

68

Chapter 5
Conclusion

5.1 Summary

We have shown that EDITUBD is FPT when parameterized by the number of edits k,
and both given a polynomial kernel with O(k4) edges and O(k3) vertices, and an algo-
rithm based on the technique of random separation with the running time 2O(k) · nO(1),
which is asymptotically optimal assuming that ETH holds. For EDITLBD we have given
a polynomial time algorithm based on matching techniques.

5.2 Open problems and future work

Since we know that deleting the correct edges to satisfy all the degree constraints is the
hard part of EDITUBD, can the kernel be asymptotically improved especially regarding
the number of edges?

An interesting extension of the two problems considered in this thesis is the combina-
tion of both a lower and an upper bound on the degree constraint:

EDGE EDITING TO CONNECTED GRAPH WITH INTERVAL BOUNDED DEGREES

Input: A graph G = (V,E), an integer k, two functions f : V (G) → Z+ and
g : V (G)→ Z+

Question: Does a set A ⊆
(
V (G)

2

)
exist, such that G′ = (V,E′), E′ = E4A is a

connected graph, ∀v ∈ V (G′) : g(v) ≤ dG′(v) ≤ f(v), and |A| ≤ k?

As this problem can encode the problem of EDGE EDITING TO A CONNECTED GRAPH

OF GIVEN DEGREES by setting f(v) = g(v) for all vertices this problem must be at least

69

5.2. OPEN PROBLEMS AND FUTURE WORK CHAPTER 5. CONCLUSION

as hard as the connected problem with exact degree constraints.
A natural extension to EDITLBD and EDITUBD is to allow for the additional editing

operation of vertex deletion or potentially edge contraction.
In the same way that considering bounded degrees is a variation on EDGE EDITING

TO A CONNECTED GRAPH OF GIVEN DEGREES, we can consider a bounded version
of EDGE EDITING TO A GRAPH OF GIVEN DEGREE SEQUENCE [14], where instead of
achieving the exact degree sequence specified we instead ask if we can edit to a connected
graph with a degree sequence that is bounded by the given degree sequence. Similar to the
problem for a given degree sequence neither the lower bounded or upper bounded version
of this problem is FPT parameterized by k only, but additional parameterization such as
maximum degree is unknown.

70

Bibliography

[1] Burzyn, P., Bonomo, F., and Durán, G. (2006). NP-completeness results for edge
modification problems. Discrete Applied Mathematics, 154(13):1824–1844.

[2] Cai, L. (1996). Fixed-parameter tractability of graph modification problems for hered-
itary properties. Inf. Process. Lett., 58(4):171–176.

[3] Cai, L., Chan, S. M., and Chan, S. O. (2006). Random separation: A new method for
solving fixed-cardinality optimization problems. In Bodlaender, H. L. and Langston,
M. A., editors, Parameterized and Exact Computation, Second International Workshop,

IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings, volume 4169
of Lecture Notes in Computer Science, pages 239–250. Springer.

[4] Chen, J., Kanj, I. A., and Xia, G. (2006). Improved parameterized upper bounds for
vertex cover. In Kralovic, R. and Urzyczyn, P., editors, Mathematical Foundations

of Computer Science 2006, 31st International Symposium, MFCS 2006, Stará Lesná,

Slovakia, August 28-September 1, 2006, Proceedings, volume 4162 of Lecture Notes in

Computer Science, pages 238–249. Springer.

[5] Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., and Saurabh, S. (2015). Parameterized Algorithms. Springer.

[6] Diestel, R. (2012). Graph Theory, 4th Edition, volume 173 of Graduate texts in math-

ematics. Springer.

[7] Downey, R. G. and Fellows, M. R. (1995). Fixed-parameter tractability and complete-
ness II: On completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–131.

71

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Downey, R. G. and Fellows, M. R. (1999). Parameterized Complexity. Monographs
in Computer Science. Springer.

[9] Fomin, F. V., Golovach, P. A., Panolan, F., and Saurabh, S. (2016). Editing to con-
nected f-degree graph. In Ollinger, N. and Vollmer, H., editors, 33rd Symposium on

Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans,

France, volume 47 of LIPIcs, pages 36:1–36:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik.

[10] Fomin, F. V., Lokshtanov, D., Saurabh, S., and Zehavi, M. (2019). Kernelization:

Theory of Parameterized Preprocessing. Cambridge University Press.

[11] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman.

[12] Golovach, P. A. (2015). Editing to a graph of given degrees. Theor. Comput. Sci.,
591:72–84.

[13] Golovach, P. A. (2017). Editing to a connected graph of given degrees. Inf. Comput.,
256:131–147.

[14] Golovach, P. A. and Mertzios, G. B. (2017). Graph editing to a given degree se-
quence. Theor. Comput. Sci., 665:1–12.

[15] Impagliazzo, R. and Paturi, R. (2001). On the complexity of k-sat. J. Comput. Syst.

Sci., 62(2):367–375.

[16] Khot, S. and Raman, V. (2002). Parameterized complexity of finding subgraphs with
hereditary properties. Theor. Comput. Sci., 289(2):997–1008.

[17] Lewis, J. M. and Yannakakis, M. (1980). The node-deletion problem for hereditary
properties is NP-complete. J. Comput. Syst. Sci., 20(2):219–230.

[18] Lovász, L. and Plummer, M. D. (2009). Matching theory, volume 367. American
Mathematical Soc.

[19] Mathieson, L. and Szeider, S. (2012). Editing graphs to satisfy degree constraints: A
parameterized approach. J. Comput. Syst. Sci., 78(1):179–191.

[20] Micali, S. and Vazirani, V. V. (1980). An O(
√
|V | · |E|) algorithm for finding maxi-

mum matching in general graphs. In 21st Annual Symposium on Foundations of Com-

puter Science, Syracuse, New York, USA, 13-15 October 1980, pages 17–27. IEEE
Computer Society.

72

BIBLIOGRAPHY BIBLIOGRAPHY

[21] Moser, H. and Thilikos, D. M. (2006). Parameterized complexity of finding regular
induced subgraphs. In Broersma, H., Dantchev, S. S., Johnson, M., and Szeider, S.,
editors, Algorithms and Complexity in Durham 2006 - Proceedings of the Second ACiD

Workshop, 18-20 September 2006, Durham, UK, volume 7 of Texts in Algorithmics,
pages 107–118. King’s College, London.

[22] Natanzon, A., Shamir, R., and Sharan, R. (2001). Complexity classification of some
edge modification problems. Discrete Applied Mathematics, 113(1):109–128.

[23] Sipser, M. (1997). Introduction to the theory of computation. PWS Publishing Com-
pany.

[24] Tarjan, R. E. (1974). A note on finding the bridges of a graph. Inf. Process. Lett.,
2(6):160–161.

[25] Wilson, R. J. (1979). Introduction to graph theory. Pearson Education India.

73

	Introduction
	Preliminaries
	Set theory
	Graphs
	Algorithms and Complexity theory
	Running time
	Reductions

	f-matching

	Upper Bounded Degrees
	Problem statement
	Definitions

	Connection Lemma
	Non-deleting connection Lemma
	General connection Lemma

	Polynomial kernel
	Reduction Rules
	Analysis

	2O(k) nO(1) algorithm
	X-supporting subgraph
	Solution skeleton
	Reobtaining the solution
	Randomized algorithm

	NP-Completeness

	Lower Bounded Degrees
	Problem statement
	Polynomial algorithm
	Analysis and results

	Conclusion
	Summary
	Open problems and future work

	Bibliography

