
University of Bergen

Department of Informatics
Algorithms

Maximum Number of Edges in
Graphs Under Various Constraints

Student: H̊avard Stuberg
Supervisor: Pinar Heggernes

Masters Thesis
June, 2019

ii

iii

Acknowledgements

I would like to thank my supervisor Pinar Heggernes for all the help, guidance and
encouragement I have received while working on this thesis. I also want to thank
Paloma Lima for her help and suggestions.

iv

v

Contents

1 Introduction 1

1.1 Notation and Definitions . 1

1.2 Graph Classes . 3

1.2.1 Chordal Graphs . 3

1.2.2 Interval Graphs . 4

1.2.3 Split Graphs . 5

1.2.4 Trivially Perfect Graphs . 5

1.2.5 Cographs . 6

1.2.6 Graph Class Hierarchy . 7

1.3 Overview of the Thesis . 8

2 Bounding the Number of Edges in a Graph 9

2.1 Maximum Degree and Matching Number 12

2.2 Maximum Degree and Induced Matching Number 16

3 Bounded Matching Number and Maximum Degree 19

3.1 Chordal Graphs . 20

3.1.1 Cliques and Stars . 20

3.1.2 Test Results . 21

3.2 Trivially Perfect Graphs . 23

3.3 Interval Graphs . 24

4 Bounded Induced Matching Number and Maximum Degree 29

4.1 Chordal Graphs . 30

vi CONTENTS

4.2 Interval Graphs . 32

4.3 Split Graphs . 33

4.4 Cographs . 35

5 Conclusion 37

5.1 The Practical Framework for Testing Hypotheses 37

5.1.1 Generating Graphs . 38

5.1.2 Testing the Graphs . 40

5.2 A Related Problem: Minimal Feedback Vertex Sets in Chordal Graphs 41

5.2.1 Maximum Number of Minimal Feedback Vertex Sets in Chordal
Graphs . 41

5.2.2 Number of Minimal Feedback Vertex Sets in Sun-Graphs 44

5.3 Summary . 45

5.4 Open Problems . 47

Bibliography 49

1

Chapter 1

Introduction

A graph is a mathematical structure used to model relationships between objects. A
common example of how graphs can be used is the modelling of different transportation
systems. Everything from the transportation of packets in computer networks to flights
between airports can be modelled with graphs. In the latter example, the airports are
represented by vertices, while a pair of vertices are connected by an edge if there is a
flight between the corresponding airports.

Sometimes we know that an algorithm we are designing will be used on graphs that
share some common property. Suppose that an airline advertises that they can take
you from anywhere to anywhere on earth with at most two intermediate stops, and
consider the graph modelling the direct flights of this airline. This graph has the
property that for every pair of vertices, we can start in one vertex and end up at the
other by going along at most three edges. This is an example of a property that, for
some problems, may help us design a faster algorithm.

In this thesis, we will be looking at several variants of an extremal graph theory
problem. In general, the objective for an extremal graph theory problem is to find
the minimum or maximum of some property of a graph under some constraints. The
property may, for example, be the number of vertices, edges or connected components.
An example of an extremal graph theory problem could be the following. For graphs
which have the property that the shortest path between every pair of vertices uses at
most three edges, what is the minimum number of edges such a graph on n vertices
can have?

1.1 Notation and Definitions

A graph G is defined as a pair G = (V,E) where V is a finite set and E ⊆ V ×V . The
elements in V are called vertices, and the elements in E are called edges. For a graph

2 CHAPTER 1. INTRODUCTION

G, V (G) and E(G) denote the vertex set and edge set of G. In directed graphs, an
edge uv ∈ E has start point u and endpoint v. In a simple undirected graph uv = vu
and uu /∈ E. All graphs in this thesis are simple and undirected. In an undirected
graph we say that both u and v are endpoints of an edge uv ∈ E. If uv ∈ E, then
u and v are adjacent, and the edge uv is said to be incident to u and v. For a set of
edges E ′ ⊆ E, V (E ′) is the set of all vertices incident to an edge in E ′. The degree of
a vertex v is the number of edges incident to v and is denoted deg(v). The maximum
degree of a vertex in G is denoted ∆(G). The neighbourhood of a vertex v, is the set
of all vertices adjacent to v and is denoted N(v).

A path of length n is a sequence of vertices v0, v1, . . . , vn−1 where vivi+1 ∈ E, for
i = 0, 1, . . . , n− 2. A cycle of length n is a sequence of vertices, v0, v1, . . . , vn−1 where
v(i mod n)v((i+1) mod n) ∈ E, for i = 0, 1, . . . , n− 1. For a subset of vertices S ⊆ V , the
induced subgraph G[S] is the graph whose vertex set is S and whose edge set is all
edges from E with both endpoints in S. For an integer k, Ck is a graph that consists of
a single cycle on k vertices. Pk is a graph that consists of a single path on k vertices.
A graph is Ck-free if it does not contain Ck as an induced subgraph, likewise a graph
is Pk-free if it does not contain Pk as an induced subgraph.

A graph is connected if there is a path between every pair of its vertices. A connected
component in a graph is a set of its vertices in which every pair of vertices is connected
by a path. A tree is a graph that is both connected and acyclic. For a set of vertices
S ⊂ V (G), and two vertices s, t ∈ V (G) \ S, S is called an s, t-seperator if s and t
are in different connected components in G[V \ S]. A minimal s, t-seperator is a set
S ∈ V (G) such that no subset of S is an s, t-seperator.

A complete graph is a graph where every pair of vertices are adjacent. A complete
graph on k vertices is denoted Kk. A clique in a graph G = (V,E), is a subset of
vertices K ⊆ V such that the induced subgraph G[K] is a complete graph. K is a
maximal clique if no superset of K is a clique. A clique of largest size is maximum.
A complete bipartite graph is a graph whose vertex set can be partitioned into two
sets V1 and V2, such that every vertex in V1 is adjacent to every vertex in V2 while no
edge has both endpoints in the same set. The complete bipartite graph with vertex
sets of size k1 and k2, is denoted Kk1,k2 . If k1 = 1, then Kk1,k2 is called a k2-star. K1,3

is called a claw.

In a graph G, a vertex u is universal if for all v ∈ V (G)\{u} we have that uv ∈ E(G).
A vertex u ∈ V (G) is simplicial if G[N(u)] is a complete graph.

A matching M in a graph is a set of edges no two of which share a common endpoint.
The matching number of a graph is the size of a maximum matching and is denoted
ν(G). A graph G = (V,E) has a perfect matching if 2ν(G) = |V |, and a near-perfect
matching if 2ν(G) = |V |−1. G is factor-critical if G[V \{v}] has a perfect matching for
all v ∈ V . An induced matching M in a graph is a matching such that G[V (M)] = M .

1.2. GRAPH CLASSES 3

The induced matching number of a graph is the size of a maximum induced matching
and is denoted µ(G).

For a graph G = (V,E), an independent set is a subset of vertices I ⊆ V such that
no pair of vertices in I are adjacent. The chromatic number of a graph is the fewest
number of independent sets needed to cover the vertices V (G) and is denoted χ(G).
The clique number of a graph is the number of vertices in a maximum clique of G and
is denoted ω(G).

1.2 Graph Classes

A graph class is an infinite set of graphs which share some common property. In the
introduction, we described an example of a graph class, namely connected graphs that
do not have induced paths containing more than 3 edges, thus 4 vertices. The longest
induced path in such a graph is P4, and therefore these graphs are connected and
P5-free. Studying a particular graph class might give us results relevant only for that
graph class, but it is also insightful to see how properties of different graph classes
vary. Results for a specific graph class may help us understand the problem better in
general. Also, understanding the properties of a graph class might result in a more
efficient algorithm for that graph class for some other problem.

There are some problems whose solutions require so much time or space that they can
not be used in practice on large inputs. We say that these problems are intractable.
Even though a graph problem is intractable on general graphs, it might have an efficient
solution when restricted to particular graph classes. There are many examples of such
problems, like computing the chromatic number, maximum induced matching, largest
clique and largest independent set [20]. However, all of these problems have efficient
solutions on, for example, chordal graphs [13].

1.2.1 Chordal Graphs

A chordal graph is a graph with no induced cycle of length four or more. Equivalently,
a graph is chordal if there is an edge connecting non-consecutive vertices in every
cycle on more than three vertices. Such an edge is called a chord. Chordal graphs
have many practical applications; we find examples of such applications in sparse ma-
trix multiplication [3], database management, knowledge-based systems and computer
vision [14]. Chordal graphs are also referred to as triangulated, perfect elimination,
monotone transitive and rigid circuit graphs, which reflects that chordal graphs have
been studied in many different settings.

Equivalent definitions of chordal graphs are graphs that have a perfect elimination or-

4 CHAPTER 1. INTRODUCTION

dering and graphs where every minimal separator is a clique [9]. A perfect elimination
ordering is an ordering of the vertices v1, v2, . . . , vn such that for all i, we have that
G[N(vi) \ {v1, v2, . . . , vi−1}] is a complete graph.

A clique tree T of a chordal graphG is a tree in which each node Ti ∈ V (T) corresponds
to a maximal clique Ki in G, such that for Ti, Tj ∈ V (T) we have that if Ki ∩Kj 6= ∅
then TiTj ∈ E(T). We will thus treat a tree node Ti as a set of vertices of G.

Figure 1.1: Example of a chordal graph. Figure 1.2: Example of a graph that is
not chordal (because the outer cycle is

induced and of length 4).

1.2.2 Interval Graphs

A graph G = (V,E) is an interval graph if every vertex can be assigned an interval on
the real line such that the intervals of a pair of vertices v1, v2 ∈ V intersect if and only
if v1v2 ∈ E. Interval graphs have many practical applications. In particular, they can
be used to model problems that have a one-dimensional, or linear, component. This
component could, for instance, be time or distance.

Every interval graph is chordal. To see this, let {v1, v2, . . . , vn} be the vertices in
a chordless cycle on more than three vertices in an interval graph G. Consider an
interval representation of the graph G[{v1, v2, . . . , vn}]. Since G[{v1, v2, . . . , vn}] is the
chordless cycle Cn, the degree of every vertex in this graph is exactly two. If we
consider the interval with start point furthest left on the real line, we see that if this
vertex is adjacent to two vertices, the degree of its neighbours cannot both be two.
We get that G[{v1, v2, . . . , vn}] is not Cn, which means that every interval graph is
chordal.

A unit interval graph is a graph that can be represented by a set of intervals of equal
length. Unit interval graphs are exactly those interval graphs that do not contain K1,3

as an induced subgraph [12].

1.2. GRAPH CLASSES 5

Figure 1.3: Example of an interval graph
which is not unit interval.

Figure 1.4: An interval representation of
the graph in Figure 1.3.

1.2.3 Split Graphs

A split graph G = (V,E) is a graph whose vertex set can be split into a clique and an
independent set. Let K ⊆ V and I = V \K. If K is a clique and I is an independent
set then (K, I) is a split partition of G.

Every split graph is chordal. This is easy to see since a chordless cycle on more than
three vertices in a split graph with split partition (K, I) cannot contain more than two
vertices from K. Since I is an independent set, there are no cycles in G that contain
more than one vertex from I. Hence no split graph has an induced cycle on more than
three vertices.

Neither the class of split graphs nor the class of interval graphs is a subset of the other.
An example of a graph that is interval but not split is P5. The graph in Figure 1.5 is
an example of a graph that is split but not interval.

Figure 1.5: Example of a split graph.

1.2.4 Trivially Perfect Graphs

A graph is perfect if its chromatic number is equal to the size of the largest clique. A
perfect graph is trivially perfect if ω(H) = χ(H) for all induced subgraphs H of G.
The class of trivially perfect graphs is exactly the class of graphs that are both P4-free
and C4-free [4]. If a graph is trivially perfect, then every connected induced subgraph
H has a universal vertex [23].

Since every connected trivially perfect graph has a universal vertex, and every sub-
graph of a trivially perfect graph is trivially perfect, it follows that a trivially perfect

6 CHAPTER 1. INTRODUCTION

graph has an interval representation such that a pair of intervals are either disjoint
or one is contained in the other. We can construct such an interval representation by
repeatedly removing vertices that is universal in a connected component. We assign
a subset of the interval of the universal vertex to each of the connected components
that results when removing this vertex.

In the next section we are going to introduce cographs, and we will see that since
trivially perfect graphs are P4-free every trivially perfect graph is a cograph.

Figure 1.6: Example of a trivially perfect graph.

1.2.5 Cographs

The last graph class we will introduce is the class of cographs, it is the only graph
class we will be studying that is not a subclass of chordal graphs. Before we define
cographs, we need to define the complement of a graph and disjoint union of graphs.
The complement G of a graph G = (V,E), is a graph whose vertex set is V and
whose edge set contains every pair of vertices not in E. The disjoint union of graphs
G1, G2, . . . Gk, is a graph G = (V,E) where V = V (G1) ∪ V (G2) ∪ · · · ∪ V (Gk) and
E = E(G1) ∪ E(G2) ∪ · · · ∪ E(G3).

Cographs are defined as graphs that can be generated by taking the complement
or disjoint union of other cographs. With a graph that consists of a single vertex
defined to be a cograph, these two rules create an infinite set of graphs. Interestingly,
this turns out to be exactly the class of P4-free graphs [6]. We see that in contrast to
chordal graphs, which can be characterised by an infinite number of forbidden induced
subgraphs, cographs can be characterised by a single forbidden induced subgraph.

A cotree is a structure to represent a cograph, and every cotree uniquely defines a
cograph [6]. A cotree is a rooted tree where internal nodes are labelled 1 or 0 while
the leaves represent vertices. A pair of vertices in a cograph are adjacent if their
lowest common ancestor in the cotree of G is labelled 1. For every cotree, there is an
equivalent cotree in which the parent of a node labelled 0 is labelled 1, and the parent
of a node labelled 1 is labelled 0. With this added restriction on the structure of a
cotree, there is a unique cotree representation for every cograph [6].

To see that there is no induced path on more than three vertices in a graph represented
by a cotree, consider the cotree in Figure 1.8. There is a path c → d → e on three

1.2. GRAPH CLASSES 7

vertices, to get a path on four vertices we need to add a leaf to the cotree such that
the new vertex is adjacent to only c or e. It is easy to see that if the lowest common
ancestor of this new leaf and c is 1 then the lowest common ancestor of d and the new
vertex is also 1.

a

b

e

d c

Figure 1.7: Example of a cograph.

1

0 d

1 e

a b c

Figure 1.8: The cotree of the cograph in
Figure 1.7.

1.2.6 Graph Class Hierarchy

We have introduced several graph classes in the preceding sections explaining how
these relate to each other. Figure 1.9 gives us an overview of the graph classes we
have introduced. In this figure, an arrow represents the subset relation, meaning that
A → B indicates A ⊆ B. For example, the arrow from interval to chordal indicates
that all interval graphs are chordal.

General graphs

Chordal

IntervalSplit

Cographs

Unit interval Trivially perfect

Figure 1.9: Relationship between graph classes. Note that the graph classes we have
introduced are all perfect [13].

8 CHAPTER 1. INTRODUCTION

1.3 Overview of the Thesis

With the given definitions, we are now ready to present the main content of this thesis.
This thesis is organized as follows. In the next chapter, we will give a more thorough
introduction to the problems we are going to study in this thesis. We will also present
the previously known results for these problems.

In Chapter 3, we are going to study the maximum number of edges in chordal graphs
whose matching number and maximum degree are bounded. In this chapter, we are
going to present the main result of this thesis, a tight bound on the number of edges
in edge-extremal interval graphs.

In Chapter 4, we are going to initiate the study of the maximum number of edges in
graphs whose induced matching number and maximum degree are bounded. We will
solve the problem for interval graphs, split graphs and cographs.

We will use practical tests in both Chapter 3 and Chapter 4 to test some conjectures
and hypotheses. In Chapter 5 we are going to describe the practical framework for
this kind of testing. We will also take a quick look at a related extremal graph theory
problem and give a summary of the work we have done on this thesis.

9

Chapter 2

Bounding the Number of Edges in
a Graph

In this thesis, we will be studying problems that seek to determine the maximum
number of edges in graphs under some constraints. We get a trivial example if the
constraint is on the number of vertices. Let n be an upper bound on the number of
vertices. This gives n(n−1)

2
as the upper bound on the number of edges. If a graph

has as many edges as the upper bound, under the given constraints, then we call the
graph edge-extremal.

Figure 2.1: A graph on 8 vertices. Figure 2.2: An edge-extremal
graph on 8 vertices.

When we have such a general result for general graphs, we can then study the same
question on graphs belonging to various graph classes. For example, we can observe
that the extremal graph for the general case, a complete graph on n vertices, is Ck-free
for k > 3. Therefore we can conclude that, for k > 3, an edge-extremal Ck-free graph
on n vertices is a complete graph. What if we chose a graph class that cannot have
a complete graph as an edge-extremal graph? Consider the class of C3-free graphs.
What is the maximum number of edges in C3-free graphs on n vertices? As a warm
up to our topic of study, let us resolve this question.

10 CHAPTER 2. BOUNDING THE NUMBER OF EDGES IN A GRAPH

Lemma 2.1. A C3-free graph on n vertices has at most
⌊
n2

4

⌋
edges.1

Proof. We first observe that the complete bipartite graph Kbn2 c,dn2 e has
⌊
n2

4

⌋
edges.

It remains to show that this graph is edge-extremal. Assume for contradiction that

there is a C3-free graph G on n vertices such that |E(G)| >
⌊
n2

4

⌋
.

We observe that for every edge uv ∈ E(G), we have that deg(u) + deg(v) ≤ n, since
otherwise, there is a vertex w ∈ N(u) ∩N(v) such that {u, v, w} is an induced C3 in
G. It follows that Kbn2 c,dn2 e has the maximum number of vertices of degree

⌈
n
2

⌉
. Since

the minimum degree of a vertex in this graph is
⌊
n
2

⌋
and |E(G)| > |E(Kbn2 c,dn2 e)|, we

have that ∆(G) >
⌈
n
2

⌉
.

Let v be a vertex in V such that deg(v) = ∆(G). We have that deg(v) =
⌈
n
2

⌉
+ l, for

1 ≤ l < n. For every vertex u ∈ N(v), we have that deg(u) ≤ n − deg(v). It follows
that there are at most n − deg(v) vertices of degree at most deg(v), the remaining
deg(v) vertices has degree at most n− deg(v). We get the following upper bound on
the number of edges in G.

|E(G)| = 1

2

∑
u∈V

deg(u) ≤ 1

2

(
(n− deg(v))deg(v) + deg(v)(n− deg(v))

)
≤ 1

2

(
(n− deg(v))deg(v) + deg(v)(n− deg(v)

)
= deg(v)(n− deg(v))

= (
⌈n

2

⌉
+ l)(n−

⌈n
2

⌉
− l)

First, let n be even. In this case we have that

|E(G)| = 1

2

∑
u∈V

deg(u) ≤ (
n

2
+ l)(n− n

2
− l) =

n2

4
− l2 < |E(Kn

2
,n
2
)| = |E(Kbn2 c,dn2 e)|

If n is odd, n = 2k + 1, we have that

|E(G)| = 1

2

∑
u∈V

deg(u) ≤ (
⌈n

2

⌉
+ l)(n−

⌈n
2

⌉
− l) = (k + 1 + l)(2k + 1− (k + 1)− l)

= (k + 1 + l)(k − l)

Substituting n−1
2

for k we get

|E(G)| ≤ k(k + 1)− l(l + 1) =
(n+ 1)(n− 1)

4
− l(l + 1) < |E(Kbn2 c,dn2 e)|

1After proving this result, we found out that it is a known result by Mantel [15]. It is also special
case of a more general result on the number of edges in Kk-free graphs [22].

11

We get that |E(G)| < |E(Kbn2 c,dn2 e)|, which is a contradiction.

For C3-free graphs on n vertices, we have that Kbn2 c,dn2 e is edge-extremal, and
⌊
n2

4

⌋
is a tight upper bound on the number of edges. We see that by restricting the graph
class we are looking at to C3-free graphs, the maximum number of edges is around
half the maximum number of edges for general graphs.

Figure 2.3: An edge-extremal C3-free graph on 8 vertices.

Recall the question from Chapter 1, which asks for minimum instead of maximum: For
graphs which have the property that the shortest path between every pair of vertices
uses at most three edges, what is the minimum number of edges a graph on n vertices
may have? Since this graph has to be connected, the minimum number of edges is at
least n − 1. For this problem, there are multiple edge-extremal graphs; every graph
with n− 1 edges that satisfies the property that the shortest path between every pair
of vertices is of length at most three, is edge-extremal. The complete bipartite graph,
K1,n−1, is an example of an edge-extremal graph for this problem. K1,n−1 is also called
an (n− 1)-star.

What if we put a constraint on the maximum degree instead of the number of vertices?
It is easy to see that the number of edges is not bounded in this case. For graphs that
satisfy ∆(G) < i, we can get an arbitrary number of edges with disjoint cliques of size
at most i or an arbitrarily long path.

. . .

Figure 2.4: A long path.

. . .

Figure 2.5: An arbitrary number of cliques.

Using maximum degree alone will not give a bound on the number of edges, but if
we bound both the maximum degree and the matching number, we will see that the
number of edges is bounded. First, observe that there is no upper bound on the
number of edges in graphs bounded by just their matching number, either. A k-star
has matching number 1, and k edges. Since the size of the star does not change

12 CHAPTER 2. BOUNDING THE NUMBER OF EDGES IN A GRAPH

the matching number, we can construct a graph with an arbitrary number of edges,
although the matching number is 1.

...

Figure 2.6: A star.

2.1 Maximum Degree and Matching Number

When we put a constraint on both the matching number and the maximum degree of
a graph, then neither stars, cliques or paths can be used to construct a graph with
an arbitrary number of edges. A single clique and a path both have a perfect or
near-perfect matching, while a k-star has a vertex of degree k.

For general graphs, the solution to this problem is known, and we will be presenting
the solution after introducing some notation. Let MC(i, j) be all graphs G in a graph
class C that satisfies the constraints ∆(G) < i and ν(G) < j. Let GEN be the class of
all general graphs. Balachandran and Khare [1] proved an exact bound on the number
of edges in graphs belonging to MGEN (i, j).

Theorem 2.2 (Balachandran and Khare [1]). For an edge-extremal general graph
G ∈MGEN (i, j), we have that

|E(G)| = (i− 1)(j − 1) +

⌊
i− 1

2

⌋⌊
j − 1⌈
i−1
2

⌉⌋ .
How an edge-extremal graph is constructed depends on whether i is odd or even. For

odd i, a graph consisting of
⌊
j−1
i−1
2

⌋
disjoint cliques on i vertices and j − 1− i−1

2

⌊
j−1
i−1
2

⌋

Figure 2.7: An edge-extremal graph in MGEN (5, 6).

2.1. MAXIMUM DEGREE AND MATCHING NUMBER 13

disjoint (i− 1)-stars is edge-extremal. An example of an edge-extremal graph is given
in Figure 2.7.

For even i, a clique of size i has a perfect matching. By modifying a clique of size i, we
can increase the number of edges by i−1− i

2
without increasing the matching number.

We do this by removing a maximum matching and adding a new vertex adjacent to
every vertex in the resulting subgraph but one. An example of an edge-extremal graph
for even i is given in Figure 2.8.

Figure 2.8: An edge-extremal graph in MGEN (6, 6).

Observe that for most i and j, the edge-extremal graphs have at least one connected
component which is a star. A natural question to ask might be what the maximum
number of edges is in graphs that do not contain K1,3, the smallest star, as an induced
subgraph. Dibek, Ekim and Heggernes [8] have studied this problem. Let CF denote
the class of claw-free graphs.

Theorem 2.3 (Dibek, Ekim and Heggernes [8]). For an edge-extremal graph G ∈
MCF(i, j) we have that

1. if i ≥ 2j, then |E(G)| = (2j − 1)(j − 1),

2. if i < 2j, then |E(G)| = (i− 1)(j − 1) +
⌊
i−1
2

⌋ ⌊
j−1
d i−1

2 e

⌋
.

For i ≥ 2j K2j−1 is a unique edge-extremal graph, which means that for bounding
the number of edges in claw-free graphs, in contrast to general graphs, it is sufficient
to bound the matching number. For i < 2j, the authors gave two types of claw-free
graphs which can be used to construct edge-extremal graphs in MCF(i, j).

Theorem 2.4 (Dibek, Ekim and Heggernes [8]). If i < 2j, then an edge-extremal
graph in MCF(i, j) can be constructed by taking{

q − 1 copies of Ki and 1 copy of Ri+2r,i−1 , if i is odd

q − 1 copies of R′i+1,i−1 and 1 copy of R′i+2r+1,i−1 , if i is even

where q and r are the quotient and remainder of the division of j − 1 by
⌈
i−1
2

⌉
. So,

we have that (j − 1) = q
⌊
i−1
2

⌋
+ r.

14 CHAPTER 2. BOUNDING THE NUMBER OF EDGES IN A GRAPH

The graph Ra,b has vertex set {v0, v1, v2, . . . , va−1} and a vertex vr is adjacent to vr− b
2
,

vr− b
2
+1, . . . , vr+ b

2
−1, vr+ b

2
where indices are of modulo a.

Figure 2.9: R11,6

Note that when a is even, Ra,b has a perfect matching. Similar to the situation for
edge-extremal graphs in MGEN (i, j), there is a graph with a higher number of edges
that is similar to Ra,b for even i. Let Ra,b−1 = (V,E), the vertex set of this graph R′a,b
is V and its edge set is E ∪ E ′. Without going into any details, E ′ is defined by the
following sequence.

{1, 1 +
b+ 1

2
, 1 + 2

b+ 1

2
, . . . , 1 + (

a

m
− 1)

b+ 1

2
,

2, 2 +
b+ 1

2
, 2 + 2

b+ 1

2
, . . . , 2 + (

a

m
− 1)

b+ 1

2
,

. . . ,

m,m+
b+ 1

2
,m+ 2

b+ 1

2
, . . . ,m+ (

a

m
− 1)

b+ 1

2
},

where m is the greatest common divisor of a and b + 1, and the vertices are labelled
from 1 to a in the order they appear around the circle. There is an edge connecting
the vertices corresponding to the first and second element of the sequence, third and
fourth element, fifth and sixth etc.

Figure 2.10: R′11,7

We see that for even i, the edge-extremal graphs in MGEN (i, j) or MCF(i, j) are not
chordal. Therefore, along the lines of the previous discussion, it might be interesting
to study the maximum number of edges for chordal graphs. The solution for chordal
graphs is so far not known, but Måland [17] studied two subclasses of chordal graphs,

2.1. MAXIMUM DEGREE AND MATCHING NUMBER 15

namely split graphs and unit interval graphs. The results for those graphs give us a
lower bound on the number of edges in edge-extremal chordal graphs. Let SPLIT
be the class of split graphs, and UNIT the class of unit interval graphs.

Theorem 2.5 (Måland [17]). For an edge-extremal graph G ∈MSPLIT (i, j), we have
that

1. if i− 1 ≤ 2(j − 1) + 1, then |E(G)| = i(i−1)
2

,

2. if i − 1 > 2(j − 1) + 1, then |E(G)| = max{ (2(j−1)+1(2(j−1))
2

, (i − 1)(j − 1) −
(j−1)((j−1)−1)

2
}.

In the first case, Ki is an edge-extremal graph. In the second case, depending on which
term is largest, either K2(j−1)+1 or a split graph on i vertices where |C| = j − 1 and
every vertex in C is adjacent to every vertex in I, is edge-extremal. If we instead look
at the disjoint union of split graphs, the edge-extremal graphs have exactly (i−1)(j−1)

edges for even i and (i− 1)(j − 1) +
⌊
i−1
2

⌋ ⌊
j−1
d i−1

2 e

⌋
edges for odd i.

Unit interval graphs are both chordal and claw-free. For most i and j, the edge-
extremal graphs found for general graphs, claw-free graphs and split graphs are not
unit interval graphs. Måland found that the edge-extremal unit interval graphs consist
of disjoint cliques of varying size.

Theorem 2.6 (Måland [17]). For an edge-extremal graph G ∈ MUNIT (i, j) we have
that

1. if i is odd, then |E(G)| = i(j − 1) + (2r + 1− i)r, r = (j − 1) mod i−1
2

,

2. if i is even, then |E(G)| = (i− 1)(j − 1)−R,
where R = min{(i− 2(p+ 1))p, (i− 2(s+ 1))s},
a = i

2
, b = i−2

2
, j − 1 = q1a + r1 = q2b + r2, p = max{0, r2 − q2}, s =

min{q1 + r2, b− 1}.

Note that for even i we have (i− 1)(j− 1) as an upper bound on the number of edges
for both split graphs and unit interval graphs. This study by Måland left open the
case for interval graphs. In fact, the problem for interval graphs has remained open
until now. In Chapter 3 we will be looking further at this problem for chordal graphs
and we will resolve the problem on interval graphs.

16 CHAPTER 2. BOUNDING THE NUMBER OF EDGES IN A GRAPH

2.2 Maximum Degree and Induced Matching Num-

ber

What if we, instead of bounding the matching number, bound the induced matching
number? Since the induced matching number of a graph is at most the same as
the matching number, bounding the induced matching number does not bound the
number of edges. Similar to the problem introduced in the previous section, we will
bound the number of edges by setting a constraint on maximum degree in addition
to the induced matching number. This problem does not seem to have been studied
before, and in Chapter 4 we will initiate the study of this problem.

So far in this chapter, MC(i, j) has denoted the set of all graphs in a graph class C that
satisfies ∆(G) < i and ν(G) < j. To differentiate if the constraint is on the matching
number or induced matching number, Mν,C(i, j) will from now on be the set of all
graphs in a graph class C that satisfies ∆(G) < i and ν(G) < i, while Mµ,C(i, j) will
denote the set of all graphs G in a graph class C that satisfies ∆(G) < i and µ(G) < j.

To see that the number of edges in edge-extremal graphs in Mν,C(i, j) and Mµ,C(i, j)
are not necessarily equal, consider the examples of edge-extremal graphs in Mν,C(i, j).
The induced matching number of each connected component in these graphs is one.
Consequently, no edge-extremal graph in Mµ,C(i, j) contains a star since the other
connected components have a higher number of edges with the same induced matching
number.

Figure 2.11: Edge-extremal graph in Mν,GEN (6, 6).

Consider a clique with an even number of vertices. The procedure of deleting a perfect
matching and adding a vertex adjacent to all but one of the vertices in the clique does
not increase the matching number or the induced matching number. This means that
a graph that consists of disjoint cliques do not give the maximum number of edges
for graphs in Mµ,GEN (i, j). Repeating this procedure for another perfect matching in
the clique does increase the matching number, but the induced matching number still
does not change. In fact, the procedure can be repeated for every perfect matching of
the clique without increasing the induced matching number.

We see that by repeating this procedure, we get a complete bipartite graph. A complete
bipartite graph has maximum induced matching 1 and (i−1)2 edges. This means that
a graph that consists of j − 1 disjoint copies of Ki−1,i−1 is in Mµ,GEN (i, j). This graph

2.2. MAXIMUM DEGREE AND INDUCED MATCHING NUMBER 17

→ → →

Figure 2.12: By repeating the procedure for every perfect matching in a clique we
get a disjoint union of complete bipartite graph and an isolated vertex.

has (i − 1)2(j − 1) edges, in comparison to i(i−1)
2

(j − 1) edges for disjoint cliques. In
Chapter 4 we will see that the edge-extremal cographs are disjoint union of complete
bipartite graphs. However, we will see that there are general graphs with a higher
number of edges.

18 CHAPTER 2. BOUNDING THE NUMBER OF EDGES IN A GRAPH

19

Chapter 3

Chordal Graphs Whose Matching
Number and Maximum Degree are
Bounded

In this chapter, we aim to get an insight into how edge-extremal chordal graphs may
be constructed. The examples we gave in the previous chapter of edge-extremal graphs
in Mν,GEN (i, j) for odd i, belong to the graph classes we will consider in this chapter.
Our objective for this chapter is finding the maximum number of edges when i is even.
In the previous chapter, we saw that (i−1)(j−1) is an upper bound on the number of
edges for two subclasses of chordal graphs when i is even. In this chapter we will add
interval graphs to that list. In fact, we will see that, for all i and j, an edge-extremal
interval graph has (i− 1)(j − 1) edges.

The graph classes we will consider in this chapter have in common that they contain
stars. At first, this might not seem that significant, but for graph classes which include
stars, we may assume that there is no vertex whose removal reduces the matching
number, by the following observation.

Observation 3.1. For a graph G with a vertex v such that ν(G \ {v}) < ν(G), the
disjoint union of G \ {v} and an (i− 1)-star, has at least as many edges as G without
exceeding the constraints set for the matching number and maximum degree of the
graph.

This tells us that there is an edge-extremal component that consists of stars and
components with no vertices whose removal reduces the matching number. Gallai’s
lemma tells us that a graph that has this property is factor-critical.

Theorem 3.2 (Gallai’s lemma). If a graph G is connected and ν(G \ {v}) = ν(G) for
all v ∈ V (G), then G is factor-critical.

20 CHAPTER 3. BOUNDED MATCHING NUMBER AND MAXIMUM DEGREE

Recall that the definition of a factor-critical graph is a graph in which every subgraph
of n − 1 vertices has a perfect matching, which implies that |V (G)| = 2ν(G) + 1. It
follows that, for graph classes C that contain stars, if there is a graph in Mν,C(i, j)
with more than (i− 1)(j − 1) edges, there is a connected graph G ∈ Mν,C(i, j) where
|V (G)| = 2(j − 1) + 1 and |E(G)| > (i− 1)(j − 1) for some i and j.

3.1 Chordal Graphs

In this section, we will investigate a hypothesis on how edge-extremal chordal graphs
can be constructed. We will also be running tests on chordal graphs to see how many
edges the graphs we are able to generate have, for given i and j. Let CHO be the
class of chordal graphs. In the previous chapter, we saw that for even i, (i− 1)(j − 1)
is an upper bound on the number of edges for graphs in both Mν,SPLIT (i, j) and
Mν,UNIT (i, j). Since a graph of disjoint stars is chordal, we have that for all i and j
the edge-extremal chordal graphs have at least (i− 1)(j − 1) edges.

. . .

j − 1 × (i− 1)-star

Figure 3.1: Chordal graph with (i− 1)(j − 1) edges.

3.1.1 Cliques and Stars

One hypothesis is that the edge-extremal graphs for even i, as for odd i, consist of
disjoint cliques and stars. Assuming that this hypothesis is true, Observation 3.2 gives
us the number of edges in edge-extremal chordal graphs.

Observation 3.3. Let G be a graph that consists of disjoint cliques and stars, and
that satisfies ∆(G) < i and ν(G) < j. If i is even, then the maximum number of edges
G can have is (i− 1)(j − 1).

Proof. An (i − 1)-star has i − 1 edges and matching number 1, which means that a
graph that is a disjoint union of j− 1 copies of an (i− 1)-star has (i− 1)(j− 1) edges.
If there is a graph with a higher number of edges, there has to be a complete graph K
such that |E(K)|

ν(K)
> i− 1. Since ∆(G) < i, we may have cliques on up to i vertices. We

3.1. CHORDAL GRAPHS 21

will consider cliques on even and odd number of vertices separately. First consider a
clique on i− 2k vertices, k ≥ 0. Since i− 2k is even, the clique has matching number
i−2k
2

. We get that

|E(K)|
ν(K)

=
1

i−2k
2

(i− 2k)(i− 1− 2k)

2
=

2

i− 2k

(i− 2k)(i− 1− 2k)

2
= i−1−2k ≤ i−1.

Consider a clique on i−1−2k vertices. Since i−1−2k is odd the clique has matching
number i−2−2k

2
. In this case, we get that

|E(K)|
ν(K)

=
1

i−2−2k
2

(i− 1− 2k)(i− 2− 2k)

2
= i− 1− 2k ≤ i− 1.

Which implies that for graphs that consist of disjoint union of cliques and stars, the
maximum number of edges is (i− 1)(j − 1).

We also observe that for an edge-extremal graph in Mν,CHO(i, j), the number of max-
imal cliques in G cannot be two. Since such a graph has a perfect or near-perfect
matching and there is a vertex adjacent to every other vertex in the graph, we may
add an edge between every non-adjacent pair of vertices. In the next section, we
will run practical tests to see if it enables us to make additional observations on the
structure of edge-extremal chordal graphs.

3.1.2 Test Results

Since we have a hypothesis about edge-extremal chordal graphs, but no proof, we
generated chordal graphs for various i and j, to see how these look like, and what kind
of bounds we could deduce from them. If we were to find a chordal graph with more
than (i−1)(j−1) edges we could immediately discard our hypothesis. In this section,
we will be presenting the results we got after testing every chordal graph on up to 13
vertices.

We did not find a chordal graph with more than (i− 1)(j− 1) edges, we did, however,
find chordal graphs with (i − 1)(j − 1) edges which did not consist of just cliques
and stars. We present these results in Tables 3.1 and 3.2. In Table 3.2 the entries
correspond to the maximum number of edges found for given i and j. The entries in
Table 3.1 are corresponding graphs we found with (i− 1)(j − 1) edges.

We see that the graphs on the first row are all stars. Apart from stars and complete
graphs, there are eight entries in Table 3.1 for graphs with (i− 1)(j − 1) edges, these
are G1, G2, . . . , G8. These graphs are depicted below. Although these are not disjoint
union of cliques and stars, they can be turned into disjoint unions of cliques and

22 CHAPTER 3. BOUNDED MATCHING NUMBER AND MAXIMUM DEGREE

i
2 4 6 8 10 12

2 K2 K1,3 K1,5 K1,7 K1,9 K1,11

3 - K4 G5 - - -
j 4 - G1 K6 - - -

5 - G2 G6 K8 - -
6 - G3 G7 - K10 -
7 - G4 G8 - - K12

Table 3.1:
Chordal graphs with
(i− 1)(j − 1) edges.

i
2 4 6 8 10 12

2 1 3 5 7 9 11
3 - 6 10 13 17 21

j 4 - 9 15 18 24 30
5 - 12 20 28 30 38
6 - 15 25 31 45 47
7 - 18 30 34 46 66

Table 3.2: Maximum number
of edges in connected chordal
graphs for various i and j.

stars with a few modifications. For G1, G2 and G3 this can be done by changing one
endpoint of at most two edges.

Figure 3.2: G1 Figure 3.3: G2 Figure 3.4: G3

Figure 3.5: G′1 Figure 3.6: G′2 Figure 3.7: G′3

G4 is similar to G2, and it can be turned into a graph that consists of cliques of size
four in a similar manner to G2. G5 is two stars that share a common vertex. For G6

we get the disjoint union of clique and a star by changing one endpoint of two edges.

Figure 3.8: G4 Figure 3.9: G5 Figure 3.10: G6

From Observation 3.3, we have that for even i, we get (i− 1)(j− 1) edges with cliques
of size i and i− 1. G7 can be seen as two cliques of size i− 1 connected by an (i− 1)-
star. G8 is similar to G2, instead of cliques on four vertices we have cliques on six
vertices.

3.2. TRIVIALLY PERFECT GRAPHS 23

Figure 3.11: G7 Figure 3.12: G8

We have not listed every chordal graph we found with (i − 1)(j − 1) edges here, but
all of them can be said to be similar to graphs that consist of just cliques and stars.
In fact, all of them can be turned into graphs that only consists of disjoint cliques
and stars by making modifications similar to the ones we have made for the graphs
presented in this section.

The graphs we have presented in this section share some common properties. We found
that, apart from cliques on i−1 vertices, there is no chordal graph on up to 13 vertices
with (i − 1)(j − 1) edges that is factor-critical. Also, every graph we have presented
in this section is interval. There are, however, chordal graphs with (i−1)(j−1) edges
that are not interval graphs. An example of such a graph is given in Figure 3.13, this
graph has the same matching number, maximum degree and number of edges as G4.

Figure 3.13: A chordal graph with (i− 1)(j − 1) edges that is not an interval graph.

In the next sections we will prove that for even i, no graph in Mν,INT (i, j) has more
than (i−1)(j−1) edges. In particular, we will see that every graph we have presented
in this section, apart from the graph in Figure 3.13, is edge-extremal in Mν,INT (i, j).
But first, we will start with a subclass of interval graphs, namely trivially perfect
graphs.

3.2 Trivially Perfect Graphs

In this section, we will solve the edge-extremal problem for trivially perfect graphs.
Let T P be the class of trivially perfect graphs. Since a graph that consists of disjoint
stars is trivially perfect, Figure 3.1 gives us a trivially perfect graph with (i−1)(j−1)
edges.

24 CHAPTER 3. BOUNDED MATCHING NUMBER AND MAXIMUM DEGREE

Theorem 3.4. For an edge-extremal graph G ∈Mν,T P(i, j) we have that

1. if i is odd, then |E(G)| = (i− 1)(j − 1) +
⌊
i−1
2

⌋ ⌊
j−1
d i−1

2 e

⌋
,

2. if i is even, then |E(G)| = (i− 1)(j − 1).

Proof. The case when i is odd follows from that the edge-extremal graphs in
Mν,GEN (i, j) we described in Chapter 2 are trivially perfect.

The proof for the case when i is even is by contradiction. Suppose we have a trivially
perfect graph G such that |E(G)| > (i − 1)(j − 1). For a connected component C
in G let iC = ∆(C) + 1 and jC = ν(C) + 1. Since |E(G)| > (i − 1)(j − 1), G has
a connected component C, where |E(C)| > (iC − 1)(jC − i). Consider a vertex v
that is universal in C. Similar to the argument in the introduction to this chapter, if
ν(C − {v}) < ν(C), then the disjoint union of an (iC − 1)-star and C − {v} has the
same matching number, maximum degree and number of edges as C. We can remove
such vertices until C has no universal vertex whose removal reduces the matching
number. If removing a universal vertex does not decrease the matching number,
then the connected component has a near-perfect matching. If C has a near-perfect
matching, |C| ≤ i and C has the maximum number of edges given iC and jC , then we
have that C is a clique. Since i is even we have that |C| ≤ i− 1. Observation 3.3 tells
us that |E(C)| ≤ (iC − 1)(jC − i). This is a contradiction.

3.3 Interval Graphs

In this section, we will solve the edge-extremal problem for interval graphs. Let INT
be the class of interval graphs. For even i, recall that (i− 1)(j− 1) is an upper bound
on the number of edges for graphs in Mν,UNIT (i, j), a proper subset of Mν,INT (i, j).
Depending on i and j this number could not always be reached. Since a disjoint union
of stars is interval, the edge-extremal interval graphs has at least (i− 1)(j − 1) edges.

To prove that no interval graph exceeds (i − 1)(j − 1) edges, we will first prove that
there is an edge-extremal interval graph that has no connected component with more
than i vertices.

Lemma 3.5. For all i and j, there is an edge-extremal graph in Mν,INT (i, j) with no
connected component that has more than i vertices.

Proof. Assume there is a graph G ∈ Mν,INT (i, j) that has a connected component
with more than i vertices. We will present a procedure to construct a new graph
G′ ∈ Mν,INT (i, j) with no connected component with more than i vertices with at

3.3. INTERVAL GRAPHS 25

least as many edges. Let C be a connected component in G with more than i vertices.
If C has a vertex whose removal reduces the matching number, we may by Observation
3.1 then remove this vertex and add an (i − 1)-star to the graph. If we have that
|V (C)| ≤ i after iteratively removing such vertices then we are done.

By Gallai’s lemma we now have that |V (C)| = 2ν(C) + 1. Consider an interval
representation of C, and let v1, v2, . . . , vi, . . . , v|V (C)| be the vertices of C ordered by
the start point of the intervals representing the vertices. Let Vi = {v1, v2, . . . , vi}.
We construct a new graph G′ by taking the disjoint union of Ki and G[V \ Vi]. We
claim that if G is an edge-extremal graph, then so is G′. To do this we need to verify
that (1) ∆(G′) < i, (2) ν(G′) < j and (3) |E(G′)| ≥ |E(G)|.

(1) Since ∆(Ki) = i− 1 and ∆(G) < i, we have that ∆(G′) < i.

(2) The number of vertices in G′ is

|V (G)| − i+ |V (Ki)| = 2ν(G) + 1− i+ i = 2ν(G) + 1.

Which means that we have the following upper bound on the matching number
of G′

ν(G′) ≤
⌊
|V (G′)|

2

⌋
=

⌊
2ν(G) + 1

2

⌋
= ν(G) < j.

(3) We need to verify that |{vavb ∈ E(G) | va ∈ Vi ∧ vb ∈ V \ Vi}| ≤ |E(Ki)| −
|E(G[Vi])|. Since the vertices are sorted by the start point of their interval in
the interval representation of G, for vertices va ∈ Vi \ {vi} and vb ∈ V \ Vi, if
the interval of va intersects the interval of vb, the interval of va also intersects
the interval of vi. In other words, for a < i and b > i, if vavb ∈ E(G) then
vavi ∈ E(G), which means that vi is adjacent to every vertex in Vi\{vi} adjacent
to some vertex in V \ Vi. Since |Vi \ {vi}| = i − 1 and d(vi) < i, we have that
if vi is adjacent to p vertices in V \ Vi, then there are at least p vertices in Vi
which vi is not adjacent to. For a vertex u ∈ Vi that vi is not adjacent to, we
have that u is not adjacent to any vertex in V \ Vi and thereby we have that
d(u) ≤ i − 2. Since vi is adjacent to every vertex of degree i − 1 in Vi, we
can change the interval of vi such that vi is first in the sorted list and adjacent

v1

v2 vk

vi

vi+1

.

Figure 3.14: Any interval crossing the dashed line intersects the interval of vi.

26 CHAPTER 3. BOUNDED MATCHING NUMBER AND MAXIMUM DEGREE

to every vertex in Vi \ {vi}. By doing this we get a graph that belongs to
Mν,INT (i, j) with at least as many edges. We can repeat this procedure until
there are no edges incident to vertices in both Vi and V \ Vi. It follows that
|{vavb ∈ E(G) | va ∈ Vi ∧ vb ∈ V \ Vi}| ≤ |E(Ki)| − |E(G[Vi])|.

We construct the new graph by repeating this procedure until G does not contain any
connected components with more than i vertices.

We will use the preceding lemma to prove the upper bound, but first, as an example of
how the procedure works, we will be running the procedure on G6 from the previous
section. Notice that none of the graphs with (i − 1)(j − 1) edges from the preceding
section are factor-critical. In the proof, it was important that we could assume that the
edge-extremal graphs are all factor-critical since then we know that |V (G)| = 2ν(G)+1.
However, this is still the case for G6, even though G6 is not factor-critical. To explain
the procedure in the proof, we will use G6 as an example without removing the vertex
whose removal reduces the matching number.

Figure 3.15: G6 Figure 3.16: Interval representation of
G6.

For this graph ∆(G6) = 5 and ν(G6) = 5, so we have that i = 6 and j = 6. Figure
3.16 is an interval representation of G6. By removing the i first vertices in this interval
representation of G6, a clique on five vertices remain. In this graph there is only one
vertex adjacent to vertices in both Vi and V \ Vi, we see that the number of adjacent
vertices of this vertex in V \ Vi is exactly the number of vertices not adjacent to
this vertex in Vi. We see that by running this procedure one time, the new graph
has no connected component with more than i vertices, while the matching number,
maximum degree and the number of edges remain the same.

Figure 3.17: G′6 Figure 3.18: Interval representation of
G′6.

3.3. INTERVAL GRAPHS 27

We will now prove the upper bound for interval graphs.

Theorem 3.6. For an edge-extremal graph G ∈Mν,INT (i, j) we have that

1. if i is odd, then |E(G)| = (i− 1)(j − 1) +
⌊
i−1
2

⌋ ⌊
j−1
d i−1

2 e

⌋
,

2. if i is even, then |E(G)| = (i− 1)(j − 1).

Proof. The case when i is odd follows from that the edge-extremal graphs in
Mν,GEN (i, j) we described in Chapter 2 are interval graphs.

Now consider the case when i is even. For all i and j there is a graph that consist of
disjoint stars in Mν,INT (i, j) that has (i− 1)(j− 1) edges. It remains to show that no
graph in Mν,INT (i, j) has more than (i−1)(j−1) edges. Assume for contradiction that
there is a graph G ∈ Mν,INT (i, j) such that |E(G)| > (i − 1)(j − 1). Since |E(G)| >
(i− 1)(j − 1), G has a connected component C such that |E(C)| > (iC − 1)(jC − 1),
where iC = ∆(C) + 1, and jC = ν(C) + 1. By Lemma 3.5 we can assume that
|V (C)| ≤ i.

It follows from Observation 3.1 and Gallai’s lemma that we can assume that C is
factor-critical and thereby |V (C)| = 2ν(C) + 1. We have that C has a near-perfect
matching, |C| ≤ iC and G is edge-extremal. Hence C has to be a complete graph.
From Observation 3.3 we have that |E(C)| ≤ (i − 1)(j − 1) which is a contradiction
and the proof is complete.

As we have seen in this chapter, the edge-extremal interval graphs are not unique. A
graph G that is a disjoint union of cliques on i and i− 1 vertices, and (i− 1)-stars is
edge-extremal if ν(G) = j − 1. G4 from the previous section is also an edge-extremal
graph in Mν,INT (6, 3). Some examples of edge-extremal graphs in Mν,INT (6, 3) are
given below.

Figure 3.19: K5 Figure 3.20: Two 5-stars Figure 3.21: G4

28 CHAPTER 3. BOUNDED MATCHING NUMBER AND MAXIMUM DEGREE

29

Chapter 4

Graphs Whose Induced Matching
Number and Maximum Degree are
Bounded

In this chapter, we will study a slightly different problem compared to the previous
chapter. We will initiate the study on the problem of finding the maximum number of
edges in graphs whose maximum induced matching number and maximum degree are
bounded. We will solve this problem for split graphs, interval graphs and cographs.

Let us first have a look at general graphs. The size of a maximum induced matching
in a complete graph is one. The same is true for a complete bipartite graph. Since
we can have more vertices in a complete bipartite graph than in a complete graph,
with the same degree bound, complete bipartite graphs seem like natural candidates
for edge-extremal general graphs.

To get an idea of how edge-extremal graphs in Mµ,GEN (i, j) might look like, we gen-
erated and tested every connected graph on up to 11 vertices. We found that there
are graphs with a higher number of edges than a disjoint union of complete bipartite
graphs. An example of this is the graph that results when a single edge is removed
from a complete bipartite graph and both endpoints of this edge are connected to a

Figure 4.1: K3,3 Figure 4.2: K ′3,3

30
CHAPTER 4. BOUNDED INDUCED MATCHING NUMBER AND MAXIMUM

DEGREE

new vertex. Let K ′i−1,i−1 be the graph we obtain when we start from Ki−1,i−1. The
induced matching number of both of these graphs is 1. The number of edges in j − 1
disjoint copies of K ′i−1,i−1 is ((i − 1)2 + 1)(j − 1). This is thus a lower bound on the
number of edges in edge-extremal graphs in Mµ,GEN (i, j).

4.1 Chordal Graphs

In this section, we will look at the problem for chordal graphs. In Chapter 3 we
conjectured that, for even i, edge-extremal graphs in Mν,CHO(i, j) have fewer edges
than edge-extremal graphs in Mν,GEN (i, j). In this section, we will be able to prove
that edge-extremal graphs in Mµ,CHO(i, j) have fewer edges than edge-extremal graphs
in Mµ,GEN (i, j), for all i > 2 and all j.

We start by making an observation on the structure of some edge-extremal chordal
graphs and its clique trees. Note, first of all, that i(i−1)

2
(j − 1) is a trivial lower bound

on the number of edges in edge-extremal chordal graphs. This corresponds to (j − 1)
cliques of size i.

Observation 4.1. There is an edge-extremal chordal graph G, and a clique tree T of
G, such that for a leaf clique L with parent clique P , we have that |L \ P | = 1.

Proof. Suppose we have a chordal graph G, and a clique tree T of G with a leaf clique
L that has parent clique P such that |L \P | ≥ 2. An induced matching that contains
no vertices from P ∪ L is not maximal since a pair of vertices from L \ P could be
added to the induced matching. It follows that µ(G) > µ(G[V \ (L ∪ P)]). Since the
vertices in P form a clique, we have that

|E(G)| − |E(G[V \ (L ∪ P)])| ≤ i− 1 + i− 2 + · · ·+ i− |L ∪ P |

≤
|L∪P |∑
k=1

i− k ≤
i∑

k=1

i− k = |E(Ki)|

This means that the disjoint union of Ki and G[V \ (L ∪ P)] has at least as many
edges as G. Since µ(Ki) = 1 the induced matching number has not changed and the
proof is complete.

With this observation, we can give an upper bound on the number of edges in graphs
in Mµ,CHO(i, j). This upper bound proves that no graph is edge-extremal in both
Mµ,CHO(i, j) and Mµ,GEN (i, j) for i > 2.

Observation 4.2. For an edge-extremal graph G ∈Mµ,CHO(i, j), i > 2, we have that
|E(G)| < (i− 1)2(j − 1).

4.1. CHORDAL GRAPHS 31

Proof. Let G be an edge-extremal chordal graph in Mµ,CHO(i, j) and T be a clique
tree of G. By Observation 4.1 we can assume that for a leaf clique L and its parent
P we have that |L \ P | = 1. Let v be this vertex. We want to show that there is a
set of vertices whose removal from the graph reduces the number of edges by at most
(i− 1)2 while reducing the induced matching number by at least one. We will remove
N(u) for an arbitrary vertex u ∈ N(v) from the graph.

First consider every maximum induced matching that contains v. For a vertex u ∈
N(v), we have that µ(G \N(u)) < µ(G) since N(v) ⊆ N(u).

Let us now consider every maximum induced matching M that does not contain v. In
this case we have that for all vertices u ∈ N(v), there is a vertex w ∈ N(u) that is in
the induced matching. Since otherwise vu could be added to M , which would imply
that the induced matching is not maximum. This implies that µ(G[V \N(u)]) < µ(G).

The procedure of removing N(u) from the graph can be repeated until T contains one
maximal clique. Since |E(G)| − |E(G[V \ N(u)]| ≤ (i − 1)2, we have that |E(G)| ≤
(i− 1)2(j − 2) + i(i−1)

2
< (i− 1)2(j − 1).

In Chapter 3, we conjectured that there are edge-extremal graphs in Mν,CHO(i, j) that
consist of disjoint cliques and stars. Note that the induced matching number of a star
and a complete graph are both one. Thus, there is no advantage of using stars when
trying to construct edge-extremal chordal graphs. Could it be that edge-extremal
chordal graphs are disjoint unions of cliques?

By running tests, we found that there is no chordal graph on up to 13 vertices with
more than i(i−1)

2
(j − 1) edges. The results for graphs on up to 13 vertices are given in

Table 4.1.

i
2 3 4 5 6 7 8

2 1 3 6 10 15 21 28
3 - 6 12 20 30 36 38

j 4 - 9 17 23 29 34 38
5 - 12 15 22 26 30 32
6 - - 13 15 19 22 24

Table 4.1: Maximum number of edges in connected chordal graphs on up to 13
vertices for various i and j.

Of course, this does not prove that disjoint union of Ki cliques is edge-extremal. Even
if the disjoint copies of Ki were edge-extremal, we found that the edge-extremal graphs
are not unique. G2 from the previous chapter is an example, G2 has the same induced
matching number, maximum degree and number of edges as two disjoint copies of K4.

32
CHAPTER 4. BOUNDED INDUCED MATCHING NUMBER AND MAXIMUM

DEGREE

These graphs, depicted in Figure 4.2 and Figure 4.3, have maximum induced matching
of size 2, maximum degree of 3 and 12 edges.

Figure 4.3: G2 Figure 4.4: G′2

4.2 Interval Graphs

Although we did not succeed to solve the problem on chordal graphs, we will see in
this section, we are able to solve it for interval graphs. Since a graph that consist of
a disjoint union of cliques is interval, we get an interval graph with i(i−1)

2
(j − 1) edges

by taking disjoint union of j − 1 cliques on i vertices.

. . .

j − 1 × Ki

Figure 4.5: Interval graph in Mµ,INT (i, j) with i(i−1)
2

(j − 1) edges.

To prove that this bound is also an upper bound, we first need to prove that there is an
edge-extremal interval graph with no connected component with more than i vertices.
We do this in a similar manner as we did in the proof of Lemma 3.5 which states that
there are edge-extremal graphs in Mν,INT (i, j) with no connected component with
more than i vertices.

Lemma 4.3. For all i and j, there is an edge-extremal graph in Mµ,INT (i, j) with no
connected component with more than i vertices.

Proof. Assume that there is a graph G ∈Mµ,INT (i, j) that has a connected component
with more than i vertices. We will present a procedure to construct a new graph G′

with no connected component of more than i vertices while ∆(G′) < i, ν(G′) < j
and |E(G′)| ≥ |E(G)|. Let C be a connected component in G with more than i
vertices. Consider an interval representation of C, and let v1, v2, . . . , vi, . . . , v|V (C)| be

4.3. SPLIT GRAPHS 33

the vertices of C ordered by the start point of the interval representing the vertices.
Let Vi = {v1, v2, . . . , vi}.
We construct a new graph G′ by taking the disjoint union of Ki and G[V \ Vi]. We
claim that if G is an edge-extremal graph, then so is G′. By the same argument as in
the proof of Lemma 3.5, we have that ∆(G) < i and |E(G′)| ≥ |E(G)|.
It remains to show that µ(G′) < j. Assume for contradiction that µ(G′) ≥ j. We
have that µ(G′) = µ(Ki) + µ(G[V \ Vi]). Since µ(G[V \ Vi]) ≤ µ(G) we have that, by
assumption, µ(G[V \ Vi]) = µ(G). It follows that there has to be a maximum induced
matching M such that M ∩Vi = ∅. Since the vertices are ordered by the start point of
the intervals representing the vertices and C is connected, we have that v1 and v2 are
adjacent. Since ∆(C) < i we have that neither v1 nor v2 are adjacent to any vertex in
V \ Vi. We arrive at a contradiction since if M ∩ Vi = ∅, then the induced matching
would not be maximum since v1v2 could then be added to the induced matching.

Theorem 4.4. For an edge-extremal graph G ∈Mµ,INT (i, j), we have that |E(G)| =
i(i−1)

2
(j − 1).

Proof. By Lemma 4.3 we may assume that there is an edge-extremal graph G ∈
Mµ,INT (i, j) that has no connected component with more than i vertices. Since no
graph on up to i vertices has more edges than Ki and µ(Ki) = 1, we have that G
consist of j − 1 disjoint cliques on i vertices. The number of edges in this graph is
i(i−1)

2
(j − 1).

Now that we have this upper bound, we see that both the graph in Figure 4.3 and in
Figure 4.4 is edge-extremal in Mµ,INT (4, 3). So we have that there are edge-extremal
interval graphs that has connected components with more than i vertices, and the edge-
extremal interval graphs are not unique. Note that this result also gives a tight bound
on the number of edges in edge-extremal graphs in Mµ,UNIT (i, j), since a disjoint union
of cliques is unit interval.

4.3 Split Graphs

In this section, we will solve the problem for split graphs. Note that a disjoint union
of cliques is not a split graph. Therefore above result does not apply to split graphs.
First, we observe that for every split graph G we have that µ(G) = 1.

Lemma 4.5. For every split graph G and an induced matching M in G, |M | = 1.

Proof. Let (C, I) be a split partition of G. Since I is an independent set, every edge
in M has at least one endpoint in C. Since C is a clique, the induced subgraph
G[V (M)] 6= M if M contains more than one edge incident to a vertex in C.

34
CHAPTER 4. BOUNDED INDUCED MATCHING NUMBER AND MAXIMUM

DEGREE

Since split graphs cannot be disconnected, apart from isolated vertices, we have the
following corollary:

Corollary 4.5.1. For positive integers i1, i2 and j, and for two edge-extremal split
graphs G ∈Mµ,SPLIT (i1, j) and G′ ∈Mµ,SPLIT (i2, j), we have that |E(G)| = |E(G′)|.

Therefore the problem of finding edge-extremal graphs in Mµ,SPLIT (i, j) is the same
as finding edge-extremal split graphs bounded just by their maximum degree. The
solution to this problem is given in the following theorem.

Theorem 4.6. For an edge-extremal split graph G bounded by ∆(G) < i we have

that |E(G)| = i(i−1)
2

.

Proof. Assume we have an edge-extremal split graph G and let (C, I) be a split par-
tition of G. If I = ∅, then C contains i vertices. A complete graph on i vertices has
i(i−1)

2
edges. Suppose G has a non-empty independent set. We may assume that for

every vertex v ∈ C we have d(v) = i− 1, since otherwise adding a vertex to I which is
adjacent to only v increases the number of edges without exceeding the boundary on
the maximum degree. Since every edge of G has at least one endpoint in C we may
replace I with a set I ′ consisting of i−|C| vertices where every vertex in I ′ is connected
to every vertex in C. For every vertex v ∈ C we have d(v) = i − 1 and v is adjacent
to every vertex in the graph. Every vertex in I ′ could also be adjacent to every other
vertex in I ′. We have that as long as |I ′| > 1 the graph is not edge-extremal, if |I ′| = 1
then G is a complete graph.

The solution for the more general problem of finding the maximum number of edges
in graphs in Mµ,SPLIT (i, j) follows immediately.

Corollary 4.6.1. For an edge-extremal graph G ∈ Mµ,SPLIT (i, j) we have that

|E(G)| = i(i−1)
2

.

Comparing the maximum number of edges in graphs in Mµ,SPLIT (i, j) to the maximum
number of edges in graphs in Mν,SPLIT (i, j), presented in Chapter 2, we see that there
are graphs that are edge-extremal in both Mµ,SPLIT (i, j) and Mν,SPLIT (i, j). This is
the only graph class we are studying for which this is the case.

Figure 4.6: A graph that is edge-extremal in both Mν,SPLIT (5, 3) and Mµ,SPLIT (5, 3).

4.4. COGRAPHS 35

4.4 Cographs

I this section we will solve the problem for cographs. Let CO denote the class of
cographs. The edge-extremal graphs in Mν,GEN (i, j) we presented in Chapter 2 are
cographs, but we see that the graph K ′i−1,i−1 we presented in the introduction to this
chapter is not. We will see that, in contrast to the situation for edge-extremal graphs
in Mν,CO(i, j) and Mν,GEN (i, j), an edge-extremal graph in Mµ,CO(i, j) has strictly fewer
edges than an edge-extremal graph in Mµ,GEN (i, j).

Figure 4.7: An induced P4 in K ′3,3.

Since the class of cographs is exactly the class of P4-free graphs, for every path on three
vertices two nonconsecutive vertices have to be adjacent. This gives us the impression
that bounding the maximum degree of a cograph, also bounds the number of vertices.
The following lemma tells us that no matter what the induced matching number of
the graph is, no cograph has more than 2∆(G) vertices.

Lemma 4.7. For a connected cograph G = (V,E), we have that |V | ≤ 2∆(G), and if
|V | = 2∆(G) then G is a complete bipartite graph.

Proof. Let G be a connected cograph, with cotree T . Since G is connected the root
of T is labelled 1. Let k ≥ 2 be the number of children of the root node of T . For an
arbitrary order of the children of the root node of T , let Ti be the subtree of T rooted
at child i and ni the number of leaf nodes in Ti. Since k ≥ 2 we have that ni ≤ ∆(G)
for all i. For a vertex v corresponding to some leaf node in T1 we have that

∆(G) ≥ d(v) ≥
k∑
i=2

ni

For a vertex u corresponding to some leaf node in T2 we have that

∆(G) ≥ d(u) ≥ n1 +
k∑
i=3

ni

Since ni ≥ 1, this implies that n1 ≤ ∆(G)−(k−2). We get the following upper bound
on the number of vertices in G:

|V | =
k∑
i=1

ni = n1 +
k∑
i=2

ni ≤ ∆(G)− (k − 2) + ∆(G)

36
CHAPTER 4. BOUNDED INDUCED MATCHING NUMBER AND MAXIMUM

DEGREE

For k > 2 we have that |V | < 2∆(G). Consider the maximum number of vertices
when k = 2, since ni ≤ ∆(G) we have |V | = 2∆(G) when n1 = n2 = ∆(G). Since
every vertex in T1 is adjacent to every vertex in T2 and n2 = ∆(G) no pair of vertices
in T1 are adjacent, likewise no pair of vertices in T2 are adjacent. G is, therefore, a
complete bipartite graph.

Since the maximum induced matching number of a complete bipartite graph is one,
this immediately solves the problem for cographs.

Theorem 4.8. For an edge-extremal graph G ∈ Mµ,CO(i, j), G is the disjoint union
of j − 1 complete bipartite graphs Ki−1,i−1 and |E(G)| = (i− 1)2(j − 1)

Proof. Let G be an edge-extremal in Mµ,CO(i, j). Lemma 4.7 tells us that no connected
graph in Mµ,CO(i, j) has as many vertices as Ki−1,i−1. Since µ(Ki−1,i−1) = 1 and every
vertex in Ki−1,i−1 has degree i−1, we have that no cograph in Mµ,CO(i, j) has as many
edges as a disjoint union of Ki−1,i−1. We have that G is the disjoint union of j − 1
complete bipartite graphs Ki−1,i−1. The number of edges in Ki−1,i−1 is (i − 1)2, the
total number of edges in G is (i− 1)2(j − 1).

It follows that to bound the number of edges in connected cographs, it is sufficient
to bound the maximum degree. The same is true for split graphs, for interval graphs
however, bounding the maximum degree does not bound the number of edges since a
long path is an interval graph. Another interesting observation is that, for these graph
classes, there are edge-extremal graphs, for all i and j, that consist of disjoint union
of connected components whose maximum induced matching number is one. For split
graphs and cographs the edge-extremal graphs are unique, for interval graphs however,
Figure 4.3 is an example of a connected graph that is edge-extremal and has induced
matching number two.

37

Chapter 5

Conclusion

In this thesis, we have studied two extremal graph theory problems for various graph
classes. One of the ways we have tried to get an insight into the solution to these
problems is by running tests on graphs. In the first section of this chapter, we will
discuss our approach to testing. In the proceeding section, we will look at another
extremal graph theory problem. For this problem, we can use the practical framework
we have developed for testing to see if we find graphs that are of interest. Finally, we
will conclude the chapter by giving a summary of this thesis and stating some open
problems.

5.1 The Practical Framework for Testing Hypothe-

ses

In this section, we will describe our approach to generating and testing graphs. In
Chapter 3 we made the hypothesis that the edge-extremal chordal graphs for even i
consisted of disjoint cliques and stars and had (i−1)(j−1) edges. If we were to find a
counter-example of this hypothesis, we would immediately be able to discard it. We,
therefore, wanted to generate chordal graphs and test those to see if we could find
such a counter-example. Our aim in this thesis has been to gain an insight into the
problem of finding the maximum number of edges in graphs satisfying the constraints.
Therefore, our focus has not been on developing or implementing procedures that are
as fast as possible, but rather creating a framework that works for our purposes.

38 CHAPTER 5. CONCLUSION

5.1.1 Generating Graphs

To generate graphs efficiently, it is important only to generate the graphs we need. If
we consider two graphs G and H with labelled vertices. We say that G and H are
isomorphic if there is a mapping M : V (G)→ V (H) such that for every pair of vertices
v1, v2 ∈ V (G), we have that v1v2 ∈ E(G) if and only if M(v1)M(v2) ∈ E(H). If G
and H are isomorphic, they are structurally identical, meaning that for our purposes
we do not want to generate both G and H. Below is an example of three isomorphic
graphs, generating one of these graphs is sufficient.

v3

v4

v5

v1 v2

v3

v4

v5

v1 v2

v3

v4

v5

v1 v2

v6 v6 v6

Figure 5.1: Isomorphic graphs.

We get a simple procedure that generates every graph on n vertices by branching
on every pair of vertices, either add an edge between the pair or not. The problem
with this procedure is that it does not take advantage of isomorphism. The procedure

would generate 2
n(n−1)

2 graphs, while the number of non-isomorphic graphs is much
lower. For n = 8, the procedure would generate 268435456 graphs. However, there
are only 12346 non-isomorphic graphs on 8 vertices [16].

For generating general graphs, we used a program called geng from Nauty [16], which
considers isomorphism and generates small graphs efficiently. Using this program, we
were able to generate every connected graph on up two 13 vertices. On a computer
running 12 threads at 3.5 GHz, this can be done in about a month. On the same
computer, generating every connected graph on 14 vertices would take more than a
decade.

For generating chordal graphs, we chose to use geng, proceeded by a self-implemented
procedure that recognises which of the generated graphs are chordal. A more natural
approach would be to generate chordal graphs directly. However, in [19] and [21]
the authors found that geng is very efficient and that they were able to generate
larger graphs using geng than a self-implemented method. Based on these previous
experiences, the limited time for a master thesis and the fact that implementation is
not our main focus, we decided to use geng for generating chordal graphs.

The proportion of chordal graphs relative to the number of general graphs decreases as
the graphs get bigger, which means that this approach gets less efficient as the number
of vertices increases. For graphs on up to 12 vertices, there are about 9000 times as

5.1. THE PRACTICAL FRAMEWORK FOR TESTING HYPOTHESES 39

many non-chordal as there are chordal graphs. For graphs on up to 13 vertices, there
are more than 160000 times as many non-chordal as there are chordal graphs.

n Chordal graphs General graphs

3 2 2
4 5 6
5 15 21
6 58 112
7 272 853
8 1614 11117
9 11911 261080
10 109539 11716571
11 1247691 1006700565
12 17566431 164059830476
13 305310547 50335907869219

Table 5.1: The number of connected non-isomorphic graphs.

From Chapter 1 we have that a graph is chordal if and only if it has a perfect elimina-
tion ordering, and any simplicial vertex can start this ordering. There are algorithms,
for example Maximum Cardinality Search [18], that finds a perfect elimination order-
ing in time O(n+m) if the graph is chordal. However, for our purposes, we found that
a straight forward procedure that finds a perfect elimination ordering if the graph is
chordal, in time O(n4) was faster in practice.

The straight forward procedure works by repeatedly iterating through the vertices,
deleting every simplicial vertex. If the procedure does not find any simplicial vertices
while the graph is not empty, then it returns that the graph is not chordal. Since
every graph on 3 vertices is chordal, we stop the procedure when it has deleted n− 3
vertices. Since every chordal graph has at least two simplicial vertices, the algorithm
can return that the graph is not chordal if the procedure does not find more than one
simplicial vertex while iterating through the vertices. The outer loop of the algorithm
then runs at most n

2
times.

Since we wanted a procedure that was fast for small graphs, in practice the constant
factor associated with the running time of an algorithm may be more important than
the asymptotic running time, since the size of the input is bounded. One reason that
the constant factor is smaller for our straight forward procedure is that there are no
data structures which need to be initialised. Also, geng outputs a string which gives us
the upper triangular adjacency matrix which means that we could run our procedure
directly on the output from geng. We found that it was more efficient to use the
adjacency matrix, using entry (i, i) to indicate whether vertex i has been deleted,
than creating the adjacency list representation of the graph.

Another reason the constant factor is smaller may be that Maximum Cardinality

40 CHAPTER 5. CONCLUSION

Search always finds an ordering of the vertices regardless of whether the graph is
chordal or not. We then need to verify whether the ordering is a perfect elimination
ordering to determine if the graph is chordal. In contrast, the straight forward proce-
dure returns that the graph is not chordal as soon as it does not find any simplicial
vertices. 70% of all connected graphs on 12 vertices have no simplicial vertex, meaning
that for graphs on 12 vertices the procedure is effectively cubic for 70% of the graphs.
The time spent recognising which graphs were chordal took approximately 1

4
of the

time it took to generate the graphs.

5.1.2 Testing the Graphs

The objective with the tests we have done has been to find which sets the graphs
belong to. In particular we wanted to find, for a chordal graph G, for which i and j
does G belong to Mν,CHO(i, j) and Mµ,CHO(i, j), and for a general graph G for which
i and j does G belong to Mµ,GEN (i, j). This way, we could compare the number of
edges in G to the number of edges in the graph with the highest number of edges that
had previously been determined to belong to the same set.

For all of these tasks we need to determine the maximum degree of the graph. This is
done by simply counting the number of edges incident to each vertex. Since we used
geng to generate graphs with a given number of edges, we did not need to count the
total number of edges ourselves. We also need to determine the matching number and
the induced matching number.

The problem of finding the matching number of a graph can be solved by Edmonds’
Blossom algorithm in time O(mn2) [10]. We used a Java implementation [2] of this
algorithm as a foundation for creating an algorithm that works for testing graphs of
the format used by geng.

The problem of finding a maximum induced matching in general graphs is intractable,
but for chordal graphs the problem is efficiently solvable [5]. However, since the graphs
we tested were small, and since the number of chordal graphs is small relative to the
number of general graphs, we found that an exponential time algorithm was sufficiently
fast. In fact, since the graphs we are dealing with have at most 13 vertices, we can
consider our algorithm to be of constant time. The bottleneck for our approach is
on generating the chordal graphs, not finding the maximum induced matching. We
tested every chordal graph on up to 13 vertices and every general graph on up to 11
vertices.

We get an exhaustive search algorithm for finding the size of a maximum induced
matching by checking every subset of vertices and then returning the size of the largest
set that is an induced matching in the graph. However, we found that it was more
efficient to check if there is a set of 4 vertices that induces a matching in the graph, and

5.2. A RELATED PROBLEM: MINIMAL FEEDBACK VERTEX SETS IN
CHORDAL GRAPHS 41

if there such a set of vertices we search for a set on 6 vertices that induces a matching
and so forth. Most graphs of the size we tested do not have an induced matching of
size more than two, meaning that the procedure would stop after iterating through
every subset of 6 vertices and output that the size of a maximum induced matching
in the graph is 2.

In the next section, we will take a look at another extremal graph theory problem.
We will also see that the framework for testing hypotheses that we described in this
section, can without much work be used on this problem as well.

5.2 A Related Problem: Minimal Feedback Vertex

Sets in Chordal Graphs

The problem of edge-maximality under some constraints that we studied in this thesis
is just one example of extremal problems on graphs. Another extremal graph problem
asks for the maximum number of minimal feedback vertex sets in graphs on n vertices.
A feedback vertex set in a graph G = (V,E) is a set of vertices F such that G[V \ F]
is acyclic. A minimal feedback vertex set is a set of vertices F such that no proper
subset F ′ ⊂ F is a feedback vertex set.

An induced forest is a set of vertices F such that G[F] is acyclic. F is a maximal
induced forest if no set F ′ is an induced forest and F ⊂ F ′. The problem of finding
the maximum number of maximal induced forests in graphs on n vertices is the same
problem as finding the maximum number of minimum feedback vertex sets. To see
this, we observe that for every minimal feedback vertex set F , V \ F is a maximal
induced forest. It follows that the number of minimal feedback vertex sets in a graph
is equal to the number of maximal induced forests.

5.2.1 Maximum Number of Minimal Feedback Vertex Sets in
Chordal Graphs

For general graphs, Fomin, Gaspers, Pyatkin and Razgon showed that 1.8638n is an
upper bound on the maximum number of minimal feedback vertex sets [11]. The
authors also gave an infinite family of graphs with 105

n
10 ≈ 1.5926n minimal feedback

vertex sets. This family consists of disjoint unions of the graph given in Figure 5.3.

Since the graph in Figure 5.3 is not chordal, Couturier, Heggernes, van’t Hof and
Villanger studied the same question on chordal graphs [7]. For chordal graphs they
proposed 10

n
5 = 1.585n as a tight bound on the number of minimal feedback vertex

sets. In a complete graph on k vertices, any set of k− 2 vertices intersects every cycle
in the graph. A complete graph on k vertices has therefore

(
k
k−2

)
minimal feedback

42 CHAPTER 5. CONCLUSION

Figure 5.2: Chordal graph with 10
minimal feedback vertex sets.

Figure 5.3: Non-chordal graph with
105 minimal feedback vertex sets.

vertex sets. For k = 5,
(
k
k−2

)
is maximized, and

(
5
3

)
= 10. A graph on n vertices that

is a disjoint union of n
5

cliques of size 5 has 10
n
5 minimal feedback vertex sets.

We see that infinite families of graphs with extremal properties are usually generated
by taking disjoint union of copies of a single graph. The known examples of graphs
with maximum number of minimal feedback vertex sets are all disconnected. The
following observation tells us that there are also connected graphs with the maximum
number of minimal feedback vertex sets.

Observation 5.1. For all n, there is a connected graph on n vertices that has the
maximum number of minimal feedback vertex sets.

Proof. The proof is by contradiction. Let Fn be the set of graphs that have the
maximum number of minimal feedback vertex sets on n vertices. Fn is also the set of
graphs that have the maximum number of maximal induced forests on n vertices. Let
G be the graph that has the least number of connected components in Fn. Let K be
the set of the connected components of G. If |K| = 1 then G is a connected graph.
For two connected components K1, K2 ∈ K, construct G′ by adding the edge v1v2 for
an arbitrary vertex v1 in K1 and an arbitrary vertex v2 in K2. We now claim that G′

and G have the same number of minimal feedback vertex sets, which contradicts the
assumption that G was the graph with the minimum number of connected components
in Fn. Recall that for every minimal feedback vertex set F , we have that V \ F is a
maximal induced forest.

If the number of minimal feedback vertex sets is lower in G′ than in G, there is a set
of vertices F ⊂ V (G) that is a maximal induced forest in G, but not G′. We have that
either (1) G[F] has a cycle, or (2) F induces a forest, but the set is not maximal.

(1) IfG[F] has a cycle, the same cycle would be inG′[F] since E(G) = E(G′)\{v1v2}.

(2) Observe that since v1v2 is not part of any cycle, we have that if F is maximal in
G, it is also maximal in G′.

5.2. A RELATED PROBLEM: MINIMAL FEEDBACK VERTEX SETS IN
CHORDAL GRAPHS 43

This contradicts the assumption that the number of minimal feedback vertex sets is
lower in G′ than G.

If the number of minimal feedback vertex sets is higher in G′ than in G, there is a set
of vertices F ⊂ V (G) that is a maximal induced forest in G′, but not G. We have
that (1) G′[F] has a cycle or (2) G′[F] is acyclic but F is not maximal.

(1) If there is a cycle in G′[F] but not G[F], v1v2 has to be part of this cycle since
E(G) = E(G) \ {v1v2}. But v1v2 cannot be part of the cycle since its removal
increases the number of connected components.

(2) If F is not maximal, there exists a vertex which when included creates a cycle
in G′ but not G. v1v2 has to be part of that cycle, but v1v2 is not part of any
cycle.

This contradicts the assumption that the number of minimal feedback vertex sets is
higher in G′ than G.

The number of minimal feedback vertex sets is neither higher or lower in G′ than G.
We have arrived at a contradiction since G′ ∈ Fn and has fewer connected components
than G.

As a consequence of this observation, we see that disjoint union of cliques on 5 vertices
are not the only graphs with the maximum number of minimal feedback vertex sets.
For a graph that consists of more than one connected component, we may add an edge
between any pair of vertices in different connected components.

In the proof of the upper bound presented by the authors in [7], there was a problem
verifying one of the cases of the proof. Using the framework we have described in the
previous section, we can easily test chordal graphs of up to 13 vertices, to see if we
find a graph that contradicts the hypothesis that 1.585n is a upper bound. It follows
from Observation 5.1 that we get the maximum number of minimal feedback sets for
all n by testing connected graphs as we have done for the other problems. As it was
the case for induced matchings, a trivial algorithm that iterates through every subset
of vertices is sufficiently fast to test every connected graph on up to 13 vertices. In
Table 5.2 G+H is the disjoint union of G and H.

We see that for chordal graphs on up to 13 vertices, there is no graph that has more
than 10

n
5 minimal feedback vertex sets. For up to 7 vertices there is no other graph

with as many minimal feedback vertex sets as the graph listed in the table. For
8 ≤ n ≤ 12 there is one other graph that has the same number of minimal feedback
vertex sets, we get this graph by adding an edge with one endpoint in each of the
cliques. For n = 13 there are 6 ways of connecting 2 or all 3 cliques. In total there
are 7 graphs with 360 minimal feedback vertex sets.

44 CHAPTER 5. CONCLUSION

n Graph #minFVS 10n/5

1 K1 1 1.58
2 K1 1 2.51
3 K3 3 3.98
4 K4 6 6.31
5 K5 10 10.00
6 K6 15 15.84
7 K7 21 25.12
8 K4 +K4 36 39.81
9 K4 +K5 60 63.10
10 K5 +K5 100 100.00
11 K5 +K6 150 158.49
12 K6 +K6 225 251.19
13 K4 +K4 +K5 360 398.11

Table 5.2: Graphs with maximum number of minimal feedback vertex sets.

Figure 5.4: There are 6 non-isomorphic graphs that can be constructed by adding
edges connecting the cliques without changing the number of minimal feedback

vertex sets. We get one of these by adding an edge along the dashed line.

Testing did not give us a counter-example for the claim that 10
n
5 is the maximum

number of minimal feedback vertex sets for a graph on n vertices. The problem in [7]
arose when the difference between a leaf clique and its parent is exactly one vertex. In
a sun-graph (to be defined in the next section), this is the case for every leaf clique in
a clique-tree representation of the graph. This makes sun-graphs an interesting graph
class to study.

5.2.2 Number of Minimal Feedback Vertex Sets in Sun-Graphs

In a sun-graph G = (V,E) there is a set of vertices K ⊂ V of size n
2

that is a clique
in G. Every vertex v ∈ V \K is adjacent to 2 vertices in K such that the degree of
every vertex in K is n

2
+ 1. No pair of vertices in V \K are adjacent.

Observation 5.2. Let G be a sun-graph on n vertices. G has n2−2n
8

minimal feedback
vertex sets.

5.3. SUMMARY 45

Figure 5.5: A sun graph on 10 vertices.

Proof. We prove this observation by proving that a graph G on n vertices has n2−2n
8

maximal induced forests. Let K denote the clique consisting of half the vertices in
G and I denote the other vertices. First, we observe that no induced forest contains
more than two vertices from K, since this would result in a cycle. Every maximal
induced forest has to contain exactly two vertices from K. To see this, let S denote
a maximal induced forest. If S contains only vertices from I, S will not be maximal,
since there are always two vertices in K which do not have a common neighbour in
S. This holds even when S contains every vertex in I. G also has a maximal induced
forest for every pair of vertices in K. To see this, let u and v denote two vertices from
K. Any vertex x from I will be part of a maximal induced forest as longs as not both
ux and vx are edges in the graph. It follows that the set of vertices from I included in
the maximal induced forest is uniquely determined by which two vertices are chosen
from K. We then conclude that the number of maximal induced forests of G is equal
to the number of pairs of vertices from K. This number is (n/2)(n/2−1)

2
= n2−2n

8
.

Since n2−2n
8

is less than 10
n
5 for all positive n, no sun-graph has more minimal feedback

vertex sets than the disjoint union of K5. This observation concludes this section. We
have not found any graph that contradicts the hypothesis that 10

n
5 is the maximum

number of minimal feedback vertex sets in chordal graphs on n vertices.

5.3 Summary

In this thesis, we have studied two similar problems which both ask how many edges
a graph under certain constraints can have. In one of the problems the constraints are
on the matching number and maximum degree of the graph, in the other problem the
constraints are on the induced matching number and maximum degree.

In Chapter 3 we investigated the first problem. Our aim was to find the maximum
number of edges in graphs that belong to Mν,CHO(i, j). We conjectured that a graph
that consists of j − 1 disjoint (i − 1)-stars has the maximum number of edges. We
already believed that this conjecture was true, but by testing every chordal graph of
up to 13 vertices, we reinforced our belief that (i− 1)(j − 1) is the maximum number

46 CHAPTER 5. CONCLUSION

of edges under these constraints. Since we were not able to prove this conjecture, we
turned our attention to interval graphs, a subclass of chordal graphs for which the
solution to the problem was not known. Surprisingly, we found that proving that
(i− 1)(j − 1) is the maximum number of edges in interval graphs was an easier task,
and we were able to do this.

In Chapter 4 we initiated the study on the maximum number of edges in graphs whose
induced matching number and maximum degree is bounded. Since this problem did
not seem to have been studied before, we first wanted to look at the problem for
general graphs. We were not able to solve this problem, but by generating and testing
graphs we were able to give a lower bound on the number of edges in edge-extremal
graphs in Mµ,GEN (i, j). We then turned our attention to other graph classes.

First, we looked at the problem for chordal graphs were we found that the edge-
extremal general graphs are not chordal. We then looked at two subclasses of chordal
graphs.

The first subclass of chordal graphs we looked at was split graphs. The solution for
split graphs turned out to be easy to prove. Split graphs is the only graph class we
have studied were all graphs are connected, this results in that there are split graphs
that are edge-extremal for both problems for some i and j.

For interval graphs, we found that cliques could be used to construct edge-extremal
graphs. Since the induced matching number of a clique is one, the edge-extremal
graphs in Mµ,INT (i, j) is just graphs with a higher number of disjoint cliques than the
edge-extremal graphs in Mµ,SPLIT (i, j) and Mν,INT (i, j).

We also solved the problem for cographs. In a cograph, we may have an induced cycle
on more than three vertices, it was interesting to find that this resulted in that graphs
of disjoint cliques were no longer edge-extremal. Instead, the edge-extremal cographs
consist of disjoint copies of complete bipartite graphs.

The results are summarised in Table 5.3. Note that the edge-extremal graphs in
Mν,GEN (i, j) we gave in Chapter 2 are cographs. Since the class of trivially perfect
graphs is a subclass of interval graphs, and a graph that consists of j − 1 disjoint
cliques on i vertices is trivially perfect and edge-extremal in Mν,INT (i, j), we have

that the edge-extremal graphs in Mµ,T P(i, j) have i(i−1)
2

(j − 1) edges.

We see that split graphs is the only graph class for which edge-extremal graphs for both
problems have the same number of edges. We also see that for graphs in Mν,C(i, j),
every graph class we have studied, apart from split graphs, has edge-extremal graphs
with as many edges as the maximum for general graphs for odd i. While we see that
for the other problem, we have that for i > 2, the edge-extremal general graphs have
a higher number of edges than every other graph class.

5.4. OPEN PROBLEMS 47

Graph class C Mν,C(i, j) Mµ,C(i, j)

General |E(G)| = c, from [1] |E(G)| ≥ ((i− 1)2 + 1)(j − 1)

Chordal
If i is even, |E(G)| ≥ (i− 1)(j − 1)

If i is odd, |E(G)| = c, from [1]
|E(G)| ≥ i(i−1)

2 (j − 1)

Interval
If i is even, |E(G)| = (i− 1)(j − 1)

If i is odd, |E(G)| = c, from [1]
|E(G)| = i(i−1)

2 (j − 1)

Trivially perfect
If i is even, |E(G)| = (i− 1)(j − 1)

If i is odd, |E(G)| = c, from [1]
|E(G)| = i(i−1)

2 (j − 1)

Split |E(G)| ≤ i(i−1)
2 , from [17] |E(G)| = i(i−1)

2

Cographs |E(G)| = c, from [1] |E(G)| = (i− 1)2(j − i)

Table 5.3: The number of edges in edge-extremal graphs in Mν,C(i, j) and Mµ,C(i, j).

c = (i− 1)(j − 1) +
⌊
i−1
2

⌋ ⌊ j−1
d i−1

2 e

⌋

5.4 Open Problems

There are two main problems that remain open. From Chapter 3 we have an open
problem:

1. How many edges do the edge-extremal graphs in Mν,CHO(i, j) have?

If our hypothesis that (i− 1)(j − 1) is the maximum number of edges fails, a perhaps
simpler problem is to prove that there are edge-extremal graphs inMν,INT (i, j) that are
not edge-extremal in Mν,CHO(i, j). This would be a conterexample of our hypothesis,
although it would not necessarily give us the correct bound.

The second open problem is from Chapter 4:

2. How many edges do the edge-extremal graphs in Mµ,GEN (i, j) have?

Depending on the solution for Mµ,GEN (i, j), some graph classes might be interesting
to study. By Observation 4.2 we have that every graph in Mµ,CHO(i, j) has less than
(i− 1)2(j − 1) edges, thus the edge-extremal graphs in Mµ,CHO(i, j) have fewer edges
than the edge-extremal graphs in Mµ,GEN (i, j). Which means that solving the problem
for general graphs, does not solve the problem for chordal graphs. One question may

48 CHAPTER 5. CONCLUSION

be if the edge-extremal graphs in Mµ,INT (i, j) are edge-extremal in Mµ,CHO(i, j) also.
More generally, the problem is:

• How many edges do the edge-extremal graphs in Mµ,CHO(i, j) have?

49

Bibliography

[1] Niranjan Balachandran and Niraj Khare. Graphs with restricted valency and
matching number. Discrete Mathematics, 309(12):4176 – 4180, 2009.

[2] Manish Bhojasia. Java program to implement the edmond’s algorithm for
maximum cardinality matching. https://www.sanfoundry.com/java-program-
implement-edmonds-algorithm-maximum-cardinality-matching/, 2014.

[3] Jean R. S. Blair and Barry Peyton. An introduction to chordal graphs and
clique trees. In Alan George, John R. Gilbert, and Joseph W. H. Liu, editors,
Graph Theory and Sparse Matrix Computation, pages 1–29, New York, NY, 1993.
Springer New York.

[4] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: A
survey. Society for Industrial and Applied Mathematics, 1999.

[5] Kathie Cameron. Induced matchings. Discrete Applied Mathematics, 24(1):97 –
102, 1989.

[6] D.G. Corneil, H. Lerchs, and L.Stewart Burlingham. Complement reducible
graphs. Discrete Applied Mathematics, 3(3):163 – 174, 1981.

[7] Jean-François Couturier, Pinar Heggernes, Pim van ’t Hof, and Yngve Vil-
langer. Maximum number of minimal feedback vertex sets in chordal graphs
and cographs. 08 2012.

[8] Cemil Dibek, Tınaz Ekim, and Pinar Heggernes. Maximum number of edges
in claw-free graphs whose maximum degree and matching number are bounded.
Discrete Mathematics, 340(5):927 – 934, 2017.

[9] G. A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, 25(1):71–76, Apr 1961.

[10] Jack Edmonds. Paths, Trees, and Flowers, pages 361–379. Birkhäuser Boston,
Boston, MA, 1987.

50 BIBLIOGRAPHY

[11] Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon. On the
minimum feedback vertex set problem: Exact and enumeration algorithms. Al-
gorithmica, 52(2):293–307, Oct 2008.

[12] Frédéric Gardi. The roberts characterization of proper and unit interval graphs.
Discrete Mathematics, 307(22):2906 – 2908, 2007.

[13] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs, vol-
ume 57 of Annals of Discrete Mathematics. Elsevier, 2004.

[14] Pinar Heggernes. Minimal triangulations of graphs: A survey. Discrete Math.,
306(3):297–317, February 2006.

[15] W Mantel. Problem 28 (solution by h. gouwentak, w. mantel, j. teixeira de mattes,
f. schuh and w. a. wythoff). Wiskundige Oppgaven, 10:61–62, 1907.

[16] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}.
Journal of Symbolic Computation, 60(0):94 – 112, 2014.

[17] Erik Måland. Maximum number of edges in graph classes under degree and
matching constraints. Master’s thesis, University of Bergen, Norway, 2005.

[18] Donald J Rose, R Endre Tarjan, and George S Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM Journal on computing, 5(2):266–283, 1976.

[19] Ida Ryland. New lower bounds on the maximum number of minimal connected
vertex covers. Master’s thesis, University of Bergen, Norway, 2017.

[20] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

[21] Ida B. Skjørten. Faster enumeration of minimal connected dominating sets in
split graphs. Master’s thesis, University of Bergen, Norway, 2017.

[22] Paul Turán. On an extremal problem in graph theory. Matematikai és Fizikai
Lapok, 48:436–452, 1941.

[23] E. S. Wolk. The comparability graph of a tree. Proceedings of the American
Mathematical Society, 13:789–795, 1962.

	Introduction
	Notation and Definitions
	Graph Classes
	Chordal Graphs
	Interval Graphs
	Split Graphs
	Trivially Perfect Graphs
	Cographs
	Graph Class Hierarchy

	Overview of the Thesis

	Bounding the Number of Edges in a Graph
	Maximum Degree and Matching Number
	Maximum Degree and Induced Matching Number

	Bounded Matching Number and Maximum Degree
	Chordal Graphs
	Cliques and Stars
	Test Results

	Trivially Perfect Graphs
	Interval Graphs

	Bounded Induced Matching Number and Maximum Degree
	Chordal Graphs
	Interval Graphs
	Split Graphs
	Cographs

	Conclusion
	The Practical Framework for Testing Hypotheses
	Generating Graphs
	Testing the Graphs

	A Related Problem: Minimal Feedback Vertex Sets in Chordal Graphs
	Maximum Number of Minimal Feedback Vertex Sets in Chordal Graphs
	Number of Minimal Feedback Vertex Sets in Sun-Graphs

	Summary
	Open Problems

	Bibliography

