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Summary

Germinating from the work of Watts and Strogatz twenty years ago [Watts and Strogatz,
1998], the field of network science has come to blossom [Vespignani, 2018]. Theoretical
innovations from mathematicians have over the years led to parallel advancements in
applied sciences, proving fruitful in areas as disparate as military intelligence [Krebs,
2002] and the molecular interactions inside cells [Barabási and Oltvai, 2004]. Network
science has also been embraced by neuroscientists, exemplified by the introduction
of the term ’connectome’ - a road map of every neuronal connection in the brain
[Sporns et al., 2005]. Systems neuroscientists have acknowledged that the brain is a
network and a complete understanding is fundamentally unattainable without studying
it explicitly as such Rowe [2010]. Sophisticated medical imaging technologies have
enabled the investigation of the human connectome and how it is altered in disorders
of the mind, like Alzheimer’s disease, schizophrenia, autism and more [Heuvel and
Sporns, 2019; van den Heuvel and Sporns, 2013]. The combined effort of computer-
and neuroscientists have led to the application of graph theoretical metrics as network-
based biomarkers of neurological conditions, often in conjunction with machine learning
algorithms to achieve impressive discrimination between clinical groups [Bachmann
et al., 2018; Brown and Hamarneh, 2016; Fornito et al., 2015, 2012; Hosseini-Asl et al.,
2016]. In fact, the network approach to disease in general is emerging [Barabási et al.,
2011; Mayer et al., 2015].

The network approach has also taken foothold in the research on irritable bowel
syndrome (IBS), with particular appreciation of the brain-gut axis [Mayer, 2018; Mayer
et al., 2015]. Not until recently have efforts started to integrate the different observations
of diet, the gut micribiome, immune system and nervous system. Much work has
been done to establish the brain involvement in IBS pathology through structural and
functional neuroimaging [Bhatt et al., 2019; Bonaz, 2002; Gupta et al., 2015; Icenhour
et al., 2017; Labus et al., 2015; Seminowicz et al., 2010; Wang et al., 2017] (see [Tillisch
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et al., 2011] and [Mayer et al., 2015] for an overview). Although some work has been
done in terms of network modelling of structural/functional brain connectivity in IBS
[Labus et al., 2008, 2014, 2009, 2019], no study to date has investigated the application
of machine learning classification on graph metrics derived from functional connectivity
in IBS patients.

The contribution of this thesis is twofold. The first part is a methodological investi-
gation of robustness of graph metrics through a test-retest reliability study. Developing
reproducible biomarkers is of utmost importance in the imaging of neurological and
psychiatric disorders with the potential to predict vulnerable individuals, prognosis and
treatment response [Vieira et al., 2017; Waller et al., 2017]. By test-retest simulation
on human connectome project data, evidence is presented for the relative reliability of
twelve commonly used graph metrics, and how they are affected by thresholding (a com-
mon processing step). Expanding windows analysis is used to explore the effect of scan
duration on graph metric estimates, demonstrating that some are highly sensitive to
change even at 8 minutes. The second part is an exploration of resting state functional
connectivity of IBS patients as assessed through functional magnetic resonance imaging.
Anatomical segmentation in FreeSurfer is used to define network nodes to extract time
courses from functional data preprocessed in AFNI. Different approaches to network
modelling (Pearson correlation, partial correlation and sparse inverse covariance) are
attempted from which graph metrics are estimated. These network-based biomarkers
are used to train machine learning classifiers in order to discriminate IBS patients from
healthy controls, with a beyond chance classification accuracy. Self-reported nausea is
more readily detected than the actual diagnostic status, although these groups were not
controlled for motion differences. High dimensionality data and few samples (p ≫ N)
are addressed using recursive feature elimination as a feature selection/dimensionality
reduction. A network difference between the IBS and HC groups is further established
with high confidence using permutation testing (network based statistic). Most of the
work was conducted in Python through Jupyter Notebook, an interactive environment
for the development and testing of scripts.

The introduction aims to give a broad interdisciplinary overview of IBS and magnetic
resonance imaging and brain connectivity, and is followed by a theoretical section
delving into graph theory and statistical concepts. An experimental section describes
what was done, before presenting the results, and finally a discussion of the nuisances
of the study, interpretation and clinical implications.
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Chapter 1

Introduction

1.1 Irritable Bowel Syndrome - a multifaceted dis-
order

Irritable bowel syndrome (IBS) is a heterogenous chronic gastrointestinal disorder
affecting between 8% and 23% of the global population [Elsenbruch, 2011]. The
condition is categorized as a functional gastrointestinal disorder (FGID), implying
the absence of a well-established defining cause of biochemical, cellular, infectious
or otherwise structural origin. The symptoms of IBS are manifested as recurring
pain/discomfort in the gut, visceral hyperalgesia, dysfunctional GI motility, and often
altered bowel habits. Patients of IBS are commonly subdivided into groups based
on their predominant excretion symptom: constipation (IBS-C), diarrhea (IBS-D), a
combination of the two (IBS-M), or none (IBS-U). Those who suffer from IBS also
have an overall higher rate of depression, scoring significantly lower on quality of life
QOL measures than controls [Gralnek et al., 2000].

Due to the ill-defined pathophysiology of IBS, it has long been a subject of contro-
versy among medical professionals, some even dismissing it as a ’real’ disorder altogether
[Drossman, 2006]. Moreover, IBS has historically been a ’last resort’ diagnosis, only
considered after excluding other alternatives with a straight forward cause, like colonic
cancer or gastroenteritis [Canavan et al., 2014]. The desire of medical doctors to
identify a ’structural’ cause of IBS has historically led to numerous instances of clinical
mishandling, like superfluous surgery [Canavan et al., 2014]. Today, diagnostic status
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is assessed independently with respect to the outcome of a standardized questionnaire
based on GI symptoms (ROME criteria, for the most recent version (IV) see, Palsson
et al. [2016]). The acknowledgement of psychosocial risk factors has been crucial in
the modern understanding of IBS.

1.2 Epidemiology and the societal impact of IBS

The global incidence of IBS is alarmingly high. Reports vary, and some countries have
unreliable estimates, but the number reported rarely subceeds 10% [Canavan et al.,
2014]. All demographic groups are affected by IBS, but females are substantially over
represented in the statistics [Elsenbruch, 2011]. The incidence of IBS also drops in those
above 50 years of age. IBS patients frequently report fatigue [Gralnek et al., 2000],
which may lead them to miss working hours. Together with often futile doctor visits,
IBS contributes to a non-trivial loss to the global work force. So despite comparatively
mild symptoms, the shear prevalence of IBS in itself poses a considerable economic
burden on society. Thus, in addition to the primary detriment of reducing the QOL of
patients, there is an economic incentive to increase understanding of IBS, ultimately
to guide the development of effective therapies.

1.3 Factors involved in IBS pathophysiology

A wide array of causes are believed to contribute to IBS symptoms [Mayer et al., 2015]. A
great deal of work has been done investigating the role of diet, infectious agents, the gut
microbiome, immune system and enteric nervous system (ENS), epithelial permeability
in the gut, genetics, sex, psychological trauma and stress, central processing and more
in IBS etiology [Mayer et al., 2015]. This work has elucidated groups at elevated risk
of developing IBS (e.g. people with infections of the GI tract often develop IBS later
in life) and generated a wealth of significant, but relatively weak biomarkers for IBS.

1.3.1 Immune mechanisms in IBS

Evidence points to an involvement of the immune system in facilitating the symptoms
experienced by IBS patients. The primary reason to involve the immune system is
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that individuals who have suffered intestinal infection (gastroenteritis) at some point
frequently proceed to develop IBS later in life (post-infectious IBS, [Barbara et al.,
2011]). Secondly, mast cells (a type of white blood cell) have been observed in elevated
numbers in the intestinal mucosa of a subset of IBS patients [Cremon et al., 2009].
Concurrently, mucosal biopsies reveal elevated histamine levels in patients than in
controls. Being a mast cell mediator, histamine triggers activation of the immune
response [Enck et al., 2016].

1.3.2 The genetics of IBS

With regards to genetic explanations, hereditary studies can be helpful, not to identify
which genes specifically are involved, but rather to what extent genetics are involved
at all. The incidence of IBS among parents and their offspring do indicate a certain
degree of heredity: parents with IBS are at heightened risk of developing it themselves
[Canavan et al., 2014]. Interestingly though, having a homozygous twin with IBS is
actually less predictive of an individual’s disease status than having parents with IBS
[Canavan et al., 2014]. This supports a slightly stronger effect of environmental factors
than for genetic ones [Levy et al., 2001].

One highly cited paper [Saito et al., 2009] reports the discovery of a mutation in a
sodium channel (SCN5A) expressed in the interstitial cells of Cajal, cells lining the
gut involved in coordinating muscle contraction. Genetic sequencing of 49 subjects
diagnosed with IBS revealed a single individual with a nonsense (early terminating)
mutation in SCN5A. The mutation leads to a premature stop-codon, leading to a
dysfunctional sodium channel in, thereby serving as a highly plausible mechanistic
explanation of abnormal bowel habits. An analysis of 1500 healthy subjects did not
show a single occurrence of the same or equivalent mutation, strongly supporting its
role in IBS. Despite stirring great interest among researchers, it doesn not account
for more than an estimated 2% (1/49) of IBS cases [Saito et al., 2009], leaving the
remaining 98% elusive.

1.3.3 The microbiome of IBS

With a cell count competing with our own, (about 1:1 according to a modern estimate,
[Sender et al., 2016]), gut bacteria have received well-deserved attention the last years
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regarding their role in health and disease, particularly regarding GI health [Mayer et al.,
2014]. A study from 2016 found an altered microbiota based on molecular analysis
of fecal samples from 62 IBS patients and 46 controls. The severity of symptoms
have been shown to correlate positively with the lack of biodiversity [Tap et al.,
2017]. The complexity of the microbiome makes it challenging to characterize the
mechanisms through which they affect IBS symptoms, and most studies merely measure
the composition of bacterial species without regarding things like genetics. However,
indirect evidence of microbiota involvement is found in studies of how antibiotics
and probiotics affect IBS symptoms; generally probiotics have a positive effect and
antibiotics a negative, in accordance with observations of germ-free mice [Mohajeri
et al., 2018]. While studies have reported divergent results on the effect of microbiota,
the most likely mechanism is through their metabolic products (e.g. short chain fatty
acids, serotonin) [Mayer et al., 2014]. While correlational links have been established,
the causation is not equally clear [Martin et al., 2018]. A particularly promising
gateway is the synthesis of the neurotransmitter serotonin by certain bacteria [Labus
et al., 2019].

1.3.4 Psychosocial interactions and central processing

Observations that IBS strongly overlaps with anxiety disorders and early adverse
life events [Park et al., 2016; Przekop et al., 2012] support a role of psychological
mechanisms in facilitating the disorder. Inclusion of psychological and behavioural
factors into the disease model of IBS has old roots in observations of the influence of
mood on gastrointestinal symptoms [Drossman, 2016]: one anecdote describes how
medical students who were healthy, but were told they had cancer, experienced an
increase in rectal contractions [Drossman, 2016]. The concurrence of IBS with other
functional disorders (Migraine, [Georgescu et al., 2017]; functional dyspepsia, [Hillilä
et al., 2007]; fibromyalgia, [Przekop et al., 2012]) further underpins the notion that
functional pain disorders are not best explained by a single misfolded protein or other
structural aberration, but rather a dysfunction in the organ that both perceives pain
and regulates bodily function - the brain. Descending pain modulation is an attractive
target for a role in functional pain disorders [Wilder-Smith, 2011]. For instance the
periaqueductal gray - a small nucleus situated in the brain stem - produces pain-
relieving neuropeptide enkephalins [Vanegas and Schaible, 2004]. It should be noted
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that it is hard to separate the psychological symptoms that result from depression
from those that are from IBS per se.

Functional brain imaging studies have shone some light on brain alterations in
patients with IBS [Holtmann et al., 2016]. A meta analysis on distension studies in
IBS patients show a clear pattern of significant activation of the insular and cingular
cortices compared to controls [Tillisch et al., 2011]. Furthermore, distributed structural
alterations in grey matter thickness and white matter integrity, albeit subtle, have
been identified in IBS patients [Holtmann et al., 2016; Seminowicz et al., 2010]. The
involvement of the brain however is a chicken-and-egg type problem - alterations in
the brain and ultimately in mood and psychological states may just as well be a result
of peripheral processes than the other way around [Holtmann et al., 2016].

1.4 IBS: a brain-gut disorder

After decades of research on these apparently separate or unrelated mechanisms, they
have yet to be integrated in a unified framework which considers how they interact
[Mayer et al., 2015]. One theory which has taken hold among many researchers is
the brain-gut theory of IBS [Mayer et al., 2015]. At the core is the brain-gut axis
(BGA) - an all encompassing term for communication pathways that link central
nervous function with enteric function [jones et al., 2006]. Bidirectional communication
occurs through endocrine, immune and neuronal pathways [jones et al., 2006]. The
hypothalamic-pituitary-adrenenal (HPA) axis is a major endocrine pathway, important
in stress regulation [Liang et al., 2018]. Beginning with the secretion of corticotropin-
releasing hormone (CRH) from the hypothalamus, stimulating the pituitary to release
adrenocorticotropic hormone ACTH, the HPA axis terminates in the andrenal gland,
where ACTH triggers cortisol secretion (cortisol being an effector of multiple stress-
related functions, like increased heart rate and alertness). Upregulation of the HPA-axis
has been reported in IBS patients compared to healthy controls [Chang and Glover,
2009; jones et al., 2006]. Furthermore, animal studies have shown that germ-free mice
develop an dysfunctional HPA axis, effectively elevating the stress response. This effect
is partly reversible by the introduction of Bifidiobacterium infantis to the gut [Liang
et al., 2018], demonstrating the gut’s influence over the mind.

The reverse route of communication has also been known for some time [Tannock
and Savage, 1974]. For example, HPA activity has been shown to alter intestinal
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motility and permeability [Mayer et al., 2015]. Even more, stressful events have the
ability to alter the gut microbiota composition, as demonstrated in rats [O’Mahony
et al., 2009]. Another intriguing phenomenon is that of microbial metabolism. The
numerous bacterial species inhabiting the human intestines are capable of synthesizing a
rich soup of neurotransmitters - such as gamma-aminobutyric acid (GABA), serotonin,
dopamine and acetylcholine, serving as a plausible mechanism of action by direct effect
on nerve cells [Cryan and Dinan, 2012].

A number of functional imaging studies have shed much light on brain networks
which appear dysregulated in IBS [Mayer et al., 2015; Tillisch et al., 2011]. The
emotional arousal network comprises a set of frontal regions of cortex, in addition to
the amygdala and locus corelolus (noradrenalin producing center of the brain, located
in the pons). Upregulation of this network has been demonstrated in people upon
receiving painful stimuli. Central autonomic network is important in IBS, in part
because of stress-responsiveness. The sensorimotor network role is implied from studies
of both structural and functional magnetic resonance imaging (MRI), implicating
structural changes in these regions in people with IBS. This is attractive because these
regions (S1, S2 are early relay stations of visceral sensory input). The salience network
(insula, dACC) is especially relevant. The insular cortex is primarily associated with
the detection of and direction of attention towards stimuli [Uddin, 2015]. Particular
attention has been directed towards the somatosensory network, salience network and
default mode network. The salience network being in [Gupta et al., 2015; Icenhour
et al., 2017]. IBS is associated with increased attention (salience) of visceral stimulus,
thereby making the salience network of particular interest [Seeley et al., 2007], for
the sake of its role in awareness on a particular stimulus. Interestingly, it has been
shown that just the anticipation of pain is sufficient to upregulate this system in
IBS, even in the absence of actual stimuli [Mayer et al., 2015]. The central executive
network is highly coactivated with the salience network. Through the effects exerted
by various neurotransmitters in these systems, gastrointestinal function is altered (e.g.
noradrenalin acts through the sympathetic nervous system and inhibits motility and is
associated with arousal and intense fear when released in large amounts in the CNS
[Sara and Bouret, 2012]; seretonin also produced in basal brain areas (raphe nuclei)
is largely implicated in mood and depression. Serotonin is also altered in the enteric
nervous system in IBS, but that is a seperate matter [Beattie and Smith, 2008].



1.5 Magnetic resonance imaging 9

In summary, the brain holds a pivotal role in the regulation of intestinal function
that is relevant for symptom generation in IBS. However, the influence is not unidirec-
tional, but is best understood as a complex interplay between the brain and the gut,
mediated by hormones, direct neural innervation, immune mechanisms and microbiome
metabolism [Mayer et al., 2015]. The next section dives into how brain function can
be studied using magnetic resonance imaging (MRI).

1.5 Magnetic resonance imaging

Owing to its ability to generate high resolution anatomical images essentially non-
invasely, nuclear magnetic resonance imaging (MRI) stands out among medical imaging
modalities. The technology exploits the nuclear spin properties of hydrogen atoms,
which are ubiquitous in all biological tissues (primarily due to water and lipids).
Application of a strong magnetic field B0 (usually between one and seven Tesla
(T)) forces the nuclear spins to align with B0. A radio frequency (RF) pulse is
emitted to excite the hydrogen nuclei, temporarily offsetting the magnetization vector’s
longitudinal component Mz from B0. Following an exponential restoration equation
they regain equilibrium with B0, the kinetics of which are characterized by the time
constant T1. Alongside the relaxation, energy is reemitted and picked up by the
scanner’s receiver coil.1 The intensity of the received signal is determined by the
progression of the relaxation process; increasing as nuclear spins return to steady-state.
Simultaneously, the transverse magnetization component Mxy decays along the plane
orthogonal to B0, described by a similar kinetics and a relaxation constant, T2. The
key to MR images is the differential tissue-dependent T1 and T2 relaxation of protons,
determined specifically by their chemical environment bond. This generates a contrast
in signal intensity between tissue types, and thus an image can be produced. An array
of MRI modalities have been developed from these basic principles by varying scanning
parameters and the pulse sequence (ordered sequence of RF emission and reception),
providing a means to study the anatomical and functional properties of the brain and
other organs.2

1This description is a massive simplification; for an in-depth discussion on the matter, see [Hoult,
2009, 1989]).

2The detailed physics underlying the nuclear magnetic resonance phenomenon and the technological
advancements behind its exploitation in medical imaging is far beyond the scope of this work. Many
good sources on the matter are available for the interested reader: [Ai et al., 2012; Kubo and Tomita,
1954; Lauterbur, 1973; Rabi et al., 1938; Ramsey, 1999; Rigden, 1986; Rinck et al., 2018].
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1.6 BOLD fMRI and resting state connectivity

1.6.1 Discovery

Although the brain makes up only 2% of the body’s mass, it consumes a staggering
one fifth of its energy Clarke and Sokoloff [1999], primarily due to the activity of ion
transporters perpetually maintaining a voltage across the plasma membrane. It was
postulated more than a century ago that the brain coordinates oxygen delivery to
regions based on local oxygen consumption and immediate needs [Roy and Sherrington,
1890]. In other words, the brain actively takes part in delegating oxygenated blood to
where it is needed based on metabolic energy requirements: simple supply and demand.
This knowledge was exploited by neuroscientists in the late 20th century who used
positron emission tomography PET to measure cerebral blood flow (CBF) in response
to neural stimulation.

This phenomenon is known as neurovascular coupling - neural stimulation elicits
a response of increased cerebral blood flow CBF. While the essence of Roy and
Sherrington’s postulate [Roy and Sherrington, 1890] is true (i.e. neurovascular coupling
is a real phenomenon, see Fig. 1.1), one of their core assumptions were challenged in
the late 1900’s, namely the assumed one-to-one relationship of oxygen consumption
and regional CBF [Fox and Raichle, 1986; Raichle, 1998]. The work of Fox and Raichle
[Fox and Raichle, 1986] demonstrated an an unanticipated phenomenon: uncoupling
between O2 consumption and CBF. Although at resting conditions, a near perfect
correlation could be reported between metabolic rate of oxygen consumption (CMRO2)
and CBF, they consistently observed a mismatch during acute neural activation - in
fact the CBF increased disproportionately compared to the CMRO2, which only rose
slightly. These findings were pivotal to the understanding of brain metabolism, laid the
foundation of blood oxygen level dependent (BOLD) functional MRI (fMRI) and led a
forefront of research in coming decades of brain imaging [Raichle and Mintun, 2006].

To the delight of many researchers, a completely non-invasive technique was de-
veloped some years later by [Ogawa et al., 1990]. Ogawa’s work was based on the
findings of Fox and Raichle, and exploited a phenomenon known as T2* ("T2 star")
relaxation [Kwong et al., 1992]. This method, BOLD fMRI, is directly sensitive to
local concentrations of deoxygenated hemoglobin, and could thereby bypass the need
for any exogenous contrast agents, tracers or otherwise invasive technology. BOLD
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Fig. 1.1: Hemodynamic response
function. A stimulus at time=0 elicits
a response in the local cerebral blood
flow, which can be observed in the
BOLD signal. The onset is a few sec-
onds delayed and peaks after about
five seconds.

fMRI remains the predominant method in functional brain imaging to this day. The
sensisitivity is due to the presence of four iron atoms in every molecule of hemoglobin.
Being paramagnetic, iron interacts with and distorts the magnetic field generated by
the scanner. This reduces the T2 and T2* constants (i.e. slows down the relaxation),
resulting in a weaker signal in voxels in the vessel’s proximity. Molecular oxygen (O2)
is diamagnetic, effectively cancelling the effect of iron. Thus, oxygenated and deoxy-
genated hemoglobin have differential magnetic properties, and this effect is measurable.
Accordingly, when a brain region receives more oxygen due to vasodilation, the relative
oxyhemoglobin/deoxyhemoglobin concentration rises, increasing the brightness of the
voxel [Hillman, 2014]. This process is facilitated by an increase in rCBF to the neuronal
populations as they perform work and consume energy.

The detailed mechanism of the generation of the BOLD response is quite intricate,
and not fully understood [Hillman, 2014]. Activation in a region ensues with an increased
consumption of oxygen, stripping oxyhemoglobin of their O2. This effect initially
reduces the concentration of oxyhemoglobin in favor of deoxyhemoglobin. According
to theory, a rise in deoxyhemoglobin will weaken the fMRI signal, but paradoxically,
the opposite effect is observed: stimulation of a region is followed by an increase of the
signal. In other words, CBF does compensate for oxygen consumption, but they don’t
cancel out to zero. The reason is that the initial deficiency of O2 triggers incoming
arteries to expand (vasodilation), increasing the oxyhemoglobin/deoxyhemoglobin ratio.
In fact, there is an overcompensation for the loss of O2 which allows the process to be
measures [Raichle, 1998]. The whole process from physiology to be outlined in two
steps (see Fig. 1.2).
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Fig. 1.2: Neurovascular coupling. Two main steps outline the path from neural activation to fMRI
signal: 1) energy and oxygen consumption by neurons signal neighboring glial cells to facilitate
vasodilation, increasing the rCBF and oxyhemoglobin concentration, and 2) the different magnetic
properties of oxyhemoglobin and deoxyhemoglobin impacts the T2 and T2* relaxation constants,
affecting the fMRI signal. This BOLD response occurs only a few seconds after the neuronal activation
(Hillman, 2014). Researchers are ultimately only interested in the neurophysiology, but only have
access to the BOLD signal. To complicate the picture even more, other nuisance variables are present
and affect the signal in multiple ways (only a few are shown).

1.6.2 Biological interpretation of the BOLD signal

Early efforts to infer brain function from the BOLD signal were met with great skep-
ticism in regards to whether the observed signal actually reflected neuronal activity
at all, or if it was merely indicative of other physiological processes. Today, conclu-
sive evidence has put this question to rest, through the simultaneous recording of
electrophysiology and BOLD fMRI in monkeys [Logothetis et al., 2001; Shmuel and
Leopold, 2008]. Similar findings with electroencephalography (EEG) have since been
confirmed in humans [Laufs et al., 2003]. Exactly how the coupling between the BOLD
signal and neural activity happens is a different matter, and much more challenging
to answer. There is nonetheless no controversy today as to whether BOLD fMRI is
reflective of neural activation [Fox and Raichle, 2007]. As a matter of fact, extensive
investigation has revealed some details of the relationship between the the BOLD signal
and neural activity demonstrating a strong concordance between local field potentials
(LFPs) and low frequency oscillations observed in the BOLD response [Logothetis
et al., 2001]. There are, however, an array of nuances that may affect this coupling,
and the precise mechanisms are generally considered poorly characterized [Hillman,
2014]. With regards to interpreting the BOLD signal beyond "a region of activation",



1.7 Brain Connectivity 13

another question must be answered: does the BOLD signal reflect a region’s synaptic
output, or does it reflect the integration of dendritic input? [Raichle and Mintun, 2006]
argue for the latter, due to the correlation of BOLD signal to LFP.

1.6.3 Summary

It is important to emphasize the indirect nature of the BOLD signal. The observed
signal can only serve as a proxy for neural spiking, and we should be careful to
automatically attribute it as otherwise. BOLD fMRI is a powerful tool to investigate
the living brain of humans and other animals non-invasively. The total signal however
is extremely noisy, and the BOLD response is only a minor contributor - on report
stating as little as 2.9% of the total signal [Bianciardi et al., 2009]. Other nuisance
variables include motion, physiological noise, and scanner instabilities. The fMRI signal
is thus a complex mixture of various sources of noise and neural activity. The level
of noise poses a major challenge on fMRI data analysis, and requires a multitude of
preprocessing to remove or correct for variables that are not of interest.

1.7 Brain Connectivity

The human brain is a dauntingly complex network. At its finest resolution, it comprises
around 80 billion neurons, interconnected through 100 trillion synapses. This view
has been apparent since the iconic drawings by Santiago Ramon y Cajal of cells
stained with silver nitrate. At a larger spatial scale, the brain is organized into
functional communities/neuronal populations, which are integrated by long white
matter connections [Betzel and Bassett, 2017], facilitating the flow of information
between distant cortical regions as well as subcortical nuclei. Irrespective of spatial
scale, this description of the brain is referred to as brain connectivity (Fig. 1.3). The
terms node and link will be used to denote the individual units and their connections (a
more formal introduction on the matter is provided in chapter 2. The term connectome
was added to the heap of -omics by [Sporns et al., 2005], marking a new era of
neuroscience 3

Network structure and topology are crucial to study because they are determinants
of network function [Boccaletti et al., 2006]. The spread of misinformation on social

3The term "connectivity" was in use long before the term "connectome" [Friston et al., 1993].
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(a) Microscale connectivity (b) Macroscale connectivity

Fig. 1.3: Two scales of brain connectivity

(a) Regular grid-like network (b) Small-world network (c) Erdős-Rényi random net-
work

Fig. 1.4: Different network topologies ranging from completely regular to fully random

media is determined the links between online profiles and pages, the ease of air travel is
restricted by the structure international airport networks, and viruses spread through
the physical connections between their hosts. This principle also holds true for the
brain: it is not the individual neurons, but rather the connections between neurons are
what facilitate learning, memory, and ultimately thoughts and behaviour.

1.7.1 Structural connectivity

Many have investigated the topologies of brain networks in model organisms, demon-
strating far from random topologies [Bassett and Bullmore, 2006; Watts and Strogatz,
1998]. For example, a neuron-complete map of the nervous system of C. elegans [Watts
and Strogatz, 1998], displays a property known as ’small-worldness’, with similar find-
ings for more complex animals like the macaque. Small-world networks [Milgram, 1967]
have a remarkable global connectedness - like the famous "six degrees of separation" of
social networks. This topology is characterized by a large number of weakly connected
clustered nodes, and the presence of a few highly connected nodes (Fig. 1.4b), referred
to as hubs. Structural connectivity has classically been inferred by the injection of
fluorescent dyes in dissected brains, which can be traced along white matter tracts to
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build a "wiring diagram" of the brain. Modern methods also allow for non-invasive
imaging to build models of anatomical connectivity [Bihan et al., 2001].

Energy expenditure is an important organizing principle of brain networks [Bullmore
and Sporns, 2012]. The ’wiring cost’ of a connectome is defined in terms of physical
space (all the connections are confined to a room just around 1.5 liters), signal
conduction velocity and material (the cytoplasmic contents of a brain cell). The impact
of economical efficiency is most apparent in the distance between connected neurons:
neurons are primarily connected to spatially proximate neighbors. A similar pattern is
observed at higher spatial scales - the probability of connection between two regions is
inversely proportional to their spatial distance [Bullmore and Sporns, 2012]. Another
property of structural brain networks is related to modularity - the separation of the
brain into functionally coherent divisions [Bullmore and Sporns, 2012]. A module, or
community can be loosely defined as a highly interconnected subset of the network, with
fewer connections to other, more distant modules. Different modules are functionally
specialized. Centrally positioned nodes serve as integration centers, facilitating the
communication between modules. Such an organization has been observed in macaques,
cats and humans [Bullmore and Sporns, 2012]. This supports the idea that brain
topology is, at least in part, optimized in terms of economy.

1.7.2 Functional connectivity and resting state networks

Functional connectivity (FC) is a more abstract concept than the structural description
of the brain. Bound by the restrictions set by the brain’s anatomical connections,
functional connectivity complements its static nature by assessing the correspondence of
activity between different loci [Park and Friston, 2013]. This is most usually calculated
through simple Pearson correlation between node time series, but many alternatives
exist (e.g. partial correlation, coherence, mutual information). This allows for a
continuous representation of links, based on the strength of correlation. Functional
connectivity is purely descriptive - it is not concerned with cause and effect (i.e. effective
connectivity), but simply statistical dependence. It is all based on the assumption
that regions that coactivate also interact. Functional connectivity is not as easily
interpreted as its anatomical counterpart, and different methods of estimation will
produce different results. For example, the presence of a functional connection does
in no means imply a structural connection, much less the causal interaction between
regions. In fact, correlation-based overestimates interactions because of the transitivity
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Fig. 1.5: Shared input connectivity.
Innervation from region A to B and
C will produce a correlation in the
BOLD signal between A and B and
between A and C. Despite the absence
of an anatomical connection between
B and C, they will appear correlated.
Models of effective connectivity (and
to a lesser extent partial correlation)
are aimed at resolving this issue of
Pearson correlation, so that only direct
connections are identified.

of correlation: if A is correlated with B, and B is correlated with C, then A and C are
also correlated [Zalesky et al., 2012], for example a shared input from a common region
[Friston, 1994] (see Fig. 1.5).

Up until a quarter century ago, all fMRI studies subscribed to a task-paradigm.
These traditional task-fMRI studies worked by subjecting the examinee to two or
more different conditions or "tasks" (such as looking at faces versus looking at houses;
[Kanwisher et al., 1997]), in an event-related or block design. Inference was made
from subtracting the regional activity between the two conditions with the purpose
of "isolating" the neural correspondence of a behaviour of interest [Fox and Raichle,
2007]. Yet another milestone in the field of fMRI was reached by Bharat Biswal when
he demonstrated that the brain exhibited interesting patterns of activity even in the
absence of active task engagement [Biswal et al., 1995], a paradigm that came to be
known as resting-state fMRI (rs-fMRI). By selecting a small patch of voxels located
in the left hemisphere motor cortex, Biswal correlated its temporal activity (BOLD
time series) with every other voxel of the brain. From this set of correlations he was
able to synthesize a correlation map detailing the topography of the somatosensory
system. Known as seed-based connectivity, this approach has become the primary
method to study so called resting state networks (RSN) (Fig. 1.6). Biswal’s experiment
initially received backlash [Biswal, 2012], and many claimed the correlation to be purely
artifactual. However, deeper research into the matter showed that at least part of the
signal corresponded to physiologically meaningful events as opposed to non-neuronal
noise [Biswal, 2012]. These signals correspond to slowly fluctuating (0.01-0.1 Hz)
changes in the BOLD signal.

Many other resting state networks have been identified all across the brain since
Biswal’s seminal work, relating to language, visual, auditory and other modalities
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Fig. 1.6: Seed-based connectivity. A correlation map was computed from a seed in the insular region
(green crosshairs). Stronger correlations are in red and weaker correlations in orange. Obtained from
resting state data from a healthy subject. Preprocessed, analysed and visualized using AFNI.

of brain function [Fox and Raichle, 2007]. The resting state networks are highly
reproducible across individuals [Biswal et al., 2010]. Most notably is the default mode
network (DMN), a network which are consistently more active during resting conditions
than task [Barkhof et al., 2014]. The approach of studying these networks under rest is
supported by a generally strong correspondence with networks during task activation
[Smith et al., 2009]. Moreover, the energy consumption of an "active" brain is only
marginally higher (roughly 5%) than the resting state brain [Fox and Raichle, 2007].

Functional connectivity has been successfully applied in combination with graph
theory and machine learning classification algorithms to predict the diagnostic status of
patients of psychiatry, as well as other other clinical, cognitive or behavioural measures
(Alzheimer’s disease, [Bachmann et al., 2018]; epilepsy, [Zhang et al., 2012] mental
maturity, [Dosenbach et al., 2010]; smoking status, [Pariyadath et al., 2014]; task
preparation, Ekman et al. [2012]; major depressive disorder, [Craddock et al., 2009;
Zhong et al., 2017]; schizophrenia, [Liu et al., 2008; Shen et al., 2010]). The next
chapter aims to give an overview of the theoretical concepts behind the study of brain
connectivity.





Chapter 2

Theory

2.1 Graph Theory

The first historical account of graph theory can be dated back to the Swiss mathemati-
cian Leonhard Euler in 1736, when he was able to show that it was impossible to cross
all seven bridges of Königsberg without crossing any one bridge twice or more (see 2.1)
[Euler, 1741]. The two fundamental building blocks of a network are its vertices/nodes
and edges/links. Thus we may regard the landmasses as nodes, and the bridges as
edges connecting the nodes. Early graph theory was focused on characterizing small
graphs with precisely defined topologies, akin to the toy problem of Königsberg. These
graphs are simple and can be understood visually by tracing every link connecting
the nodes. The same luxury cannot be enjoyed for larger and more complex real life
networks, where network edges often are continuous, vary with time or might even be
uncertain. These networks challenged the field to develop novel concepts.

Graph theory had a renaissance in the 1990’s [Barabási and Albert, 1999; Vespignani,
2018; Watts and Strogatz, 1998] which led to the development of many interesting ideas
about networks. Of particular importance was the small-world networks, described
by [Watts and Strogatz, 1998]. A small-world topology is of interest because of its
trade-off between low economic cost and high efficiency at integrating information. The
architecture of small-world networks is characterized by a high number of clustered
nodes with a majority of short-distance connections. However, a handful of highly
connected hub nodes bridge distant regions of the network, dramatically reducing
the distance between any two randomly chosen nodes. Extensive work on small-
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Fig. 2.1: The seven bridges of Königsberg, Prussia (today’s Kaliningrad). The problem formulation
was whether it would be possible to cross all seven bridges, but no bridge more than once. Euler
showed this to be impossible, by realizing that landmasses with an odd number of bridges needed to
be a starting point. Adopted from [Euler, 1741].

world networks the years following [Watts and Strogatz, 1998] helped shine light on
phenomena such as the six degrees of separation and high connectedness of social
networks [Milgram, 1967], its remarkable robustness to random perturbation, theories
of how they arise from natural processes (preferential attachment) [Barabási and Albert,
1999], and their ubiquity in the real world [Bassett and Bullmore, 2006; Boccaletti
et al., 2006; Newman, 2002]. In order to fully appreciate this and other concepts, a
more formal introduction to the fundamentals of graph theory and terminology is
warranted.

A minimal mathematical description of a network or graph (G) is simply its set
of vertices (V) and edges (E): G = (V, E). Further refinements are often made to
the description, such as directionality of the edges (like rumour spreading [Boccaletti
et al., 2006]) or weighted edges (indicating connection strength as opposed to binary
connections). For the sake of mathematical convenience, we may represent any network
of N nodes, in a N × N adjacency matrix A, whose rows and columns represent the
nodes, and the matrix entries ai,j denote the connections between the i’th and the
j’th node (fig 2.2b). A simple undirected graph will be identical to its own transpose
(AT = A), easily recognized by a symmetry axis along the main diagonal (Fig. 2.3).
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(a) Visual representation (b) Adjacency matrix representation

Fig. 2.2: Two equivalent representations of networks. A visual representation (a) can be understood
by drawing arrows between nodes to signify a connection. A matrix representation (b) ("adjacency
matrix") contains the exact same information, but provides more computational convenience. The
connection from the ith to the jth node in the graph (entry aij) is indicated by a 1 (black) where
an edge is present and a 0 (white) where there is none. For example, the lower left corner in (b)
represents the connection from node 3 to node 0 in (a). Note that the index starts at 0.

In the case of directed graphs, each entry ai,j represent the link to node i from node j
(Fig.2.2b)

With such a generic theoretical framework at hand, it is not surprising that the
scope of graph theory has touched a myriad of scientific areas, including but not
limited to social networks [Milgram, 1967], the world wide web and network security,
epidemiology (viral spread and the development of vaccination strategies) [Pastor-
Satorras and Vespignani, 2002; Sattenspiel and Simon, 1988], the engineering of power
grids [Pagani and Aiello, 2011], taxonomic classification of viruses [Jang et al., 2019],
and inference about the brain in health and disease [Bullmore and Sporns, 2009; Fornito
et al., 2015, 2012].

2.1.1 Graph metrics

Graph metrics are summary statistics for networks - single numbers that quantify the
topological properties of a network. This subsection will cover a few central metrics
used in graph theoretical analysis. The majority of the metrics are formulated in terms
of discrete binary networks, because they are more intuitive to grasp. However, most
of these have been generalized to the case of weighted networks.

Terminology

• Path: a sequence of steps required to reach one node j from another node i.
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Fig. 2.3: Four different descriptions of networks can be interchangeably and equivalently represented
both visually (top row) and in matrix form (bottom row). The most basal network description is
the mere presence of edges captured in an undirected binary network (second from the left) and can
be used to describe many real life networks, like the international airports network. Other networks
require directionality, such as disease spread networks - infection is strictly unidirectional, and should
be described as a binary directed network (far left). A weighted directed network (third from the
left) can be used to describe strictly directional, but non-discrete spread of information. This is
the description of effective connectivity. When no information of directionality is available, like in
functional connectivity, one must settle with a weighted undirected description (far right). The visual
representation is intuitively appealing, but does not provide the same mathematical convenience as
the matrix representation (for example, node degree or strength is simply the sum along each axis).
Note how the undirected networks are equal to their own transpose (AT = A).
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• Shortest path: Considering all possible paths connecting two nodes i and j, the
path that takes the least number of steps (or hopcount).

• Adjacency matrix: a matrix representation of a network where the entries aij

denotes the connection (binary or weighted) from node i to j.

• Length matrix: a matrix that represents the length between nodes, commonly
made by setting each entry to 1

aij
. For aij = 0, they are set to ∞.

• Distance/shortest path length: The most efficient path traversed from node
i to j is based on minimizing the hopcount in binary networks. In weighted
networks, it also reflects the strength of each weight.

• Distance matrix: a matrix which where each entry represents the shortest path
between two nodes i and j.

• Hubs: nodes of particular importance - characterized by many connections,
and central position. Measures of ’hub-ness’ include degree centrality, closeness
centrality and betweenness centrality.

• Small-world network: a network which is characterized by high clustering but
a few long-reaching connections connecting distant nodes allowing for efficient
communication / information transfer.

• Module: a sub-network characterized by a higher connectivity within a module
than between different modules. Functionally similar regions tend to be organized
in the same modules.

Although most terms are defined in terms of binary networks, they all can be
generalized to weighted graphs.

Node degree: ki = ∑
j ̸=i∈N aij The node degree is one of multiple ways to measure

node importance - the number of connection it has to other nodes in the network.
Equivalent of just summing the rows and/or columns of the adjacency matrix.

Connection density: ρ =
∑

i

∑
j ̸=i

aij

(N)(N−1) Simply the number of edges present as a
fraction of the total possible number of edges in the network.

Shortest path length or hopcount – The shortest possible route from node A
to node B, i.e. traversing the fewest number of intermediate nodes. The number of
steps corresponds to path length.
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Closeness centrality: L−1
i = n−1∑

j∈N,j ̸=i
dij

, for dij being the distance defined above.
Another measure of centrality is based on its topological distance to all other nodes in
the network. This can be calculated by averaging the shortest path length between
node i and all other nodes, and taking the inverse of this number.

Betweenness centrality: bi = 1
(n−1)(n−2)

∑
h,j∈N,h̸=j,h̸=i,j ̸=i

ρhj(i)
ρhj

, where ρ is defined
as the number of shortest path connecting h and j, (i) referring to the subfraction of
these that pass through i.

Eigenvector centrality: CEi = 1
λ1

∑N
j=1 Aijxj Identified by eigendecomposition

of the adjacency matrix. Nodes with the largest corresponding eigenvalues have higher
eigenvector centrality. This metric also considers the centrality of its neighbors, similar
to PageRank centrality. A neuronal interpretation of centrality measures must be
rooted in a model of information transfer - be it serial or parallell and transferring or
duplicative [Fornito et al., 2016]. On a cellular level, this metric has been found to
reflect the firing rate of neurons [Fletcher and Wennekers, 2018].

Clustering coefficient: cc = 1
N

∑
i∈N

2ti

ki(ki−1) , where ti = 1
2

∑
j,h∈N aijaihajh

The proportion of a node’s immediate neighbors which are also are also neighbors
of each other - the cliquishness of the network. Equivalent to the number of triangles
around the node divided by the number of possible triangles. A weighted analogue is
formulated as follows.

Ci =
∑

j ̸=i

∑
h ̸=j,h ̸=i

aijaihajh

(
∑

j ̸=i
aij)(

∑
j ̸=i

a2
ij) is a weighted analogue, where 0<a<1.

An equivalent interpretation is the probability that two nodes i and j are connected,
provided they are both connected to a third node h. (If bob and jane both are friends
with emily, what is the likelihood bob and jane also are acquainted?).

Characteristic path length: L = 1
N(N−1)

∑
i ̸=j lij, lij is the shortest path as

identified by Dijkstra’s algorithm (Dijkstra 1959). A measure of functional integration
- a low characteristic path length indicates a network with a high degree of functional
integration.

Global efficiency: E = 1
N(N−1)

∑
i ̸=j

1
lij

A strongly correlated measure to charac-
teristic path length, but is regarded as being more accurate than the above. Also deals
naturally with disconnected networks (if lij = inf, that only amount to adding 0 in the
sum).
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Modularity: Q = ∑
u∈M [euu − (∑

v∈M euv)2], How well a network is segregated into
functionally specialized modules. euv is the fraction of between-module connections.

Assortativity:
a

∑
jk (ejk − qjqk)

σ2
q

The assortativity describes the tendency for nodes to connect to nodes of similar
degree/strength. Assortativity is a global metric, and can reflect the resilience of the
network - simulation studies removing hub nodes have found that networks that have
a greater assortative mixing also are less affected by node deletion [Newman, 2002;
Rubinov and Sporns, 2010].

Small-worldness: S = C/Crand

L/Lrand
A network architecture commonly observed in

nature. It is characterized by high clustering but a few long-reaching connections
connecting distant nodes allowing for efficient communication / information transfer.

2.2 Statistical concepts

A straight-forward approach to compare connectomes between subjects or clinical
groups would be to perform statistical tests like Student’s t-test on each individual edge
in the graph, and from this make inference on potential disease-related aberrations.
However, the number of edges in a graph scales with the square of the number of
vertices, which quickly leads to hundreds or thousands of statistical tests.

2.2.1 Multiple testing

The widely used p-value is defined as the probability of obtaining a false positive under
the null hypothesis that no effect exists: p ≜ P (false positive|H0). Medical researchers
usually set an arbitrary threshold for deeming a result as statistically significant or not
(commonly p=0.05 or p=0.01). These numbers are of course completely arbitrary, and
the term ’statistically significant’ has been critizised by statisticans for its inherent
ambiguity [Amrhein et al., 2019; Bennett et al., 2009; Ioannidis, 2005]. A significance
threshold, or critical value (p*) of 0.05 only means that if no true effect exists, we will
still observe false positives in one out of twenty instances (provided that experimental
data is completely unbiased and the statistical assumptions such as normality are
justified).
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If we perform a t-test on each edge in a connectome of 80 nodes, we are faced
with 80 × 79 ÷ 2 = 3160 tests, an expected 5% = 158 of which will produce a false
positive. Thus, comparing the connectomes of two randomly selected groups of people
will lead to on average 158 "significant" hits. The most obvious solution is to lower the
critical value to a more strict threshold. The family-wise error rate (FWER) is the
probability of observing at least one or more false positives. For example, we might
set a new threshold P* = 0.05 ÷ Ntests = 0.05 ÷ 3160 ≈ 0.000016. This method is
known as Bonferroni correction [Bonferroni, 1936], and is a strong control of the FWER.
So as long as we set the FWER to 0.05, we are guaranteed to observe not a even a
single false positive in 95% of cases, given a true null hypothesis. That means that
we can treat the complete set of statistical tests as a single test with p-value of 0.05.
Although Bonferroni correction correctly keeps the FWER below a certain threshold, it
is effectively useless when the number of tests is large enough. A p-value of 1.6 × 10−5

is so strict that small, but real, group differences in edge weights realistically never
will be picked up. This introduces another problem: false negatives. Smaller data sets
are especially vulnerable to this, where a small p-value only can be observed when the
effect size is large. Larger data sets can yield a small p-value despite a moderate effect
size. See BOX 1 for one approach to handle the weak power of the Bonferroni method.

BOX 1. Controlling the False Discovery Rate (FDR)

A common solution to the weak statistical power of Bonferroni correction is the
Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995]. This approach
only weakly controls false discovery rate (FDR). The false discovery rate Q is the
proportion of type I errors in a set of statistical tests (Q=FP/(FP+TP)). The
procedure is as follows: perform m individual statistical tests. Rank the p-values
by size, from smallest to largest, P(1) ... P(m). We define 1<=k<=m to be the
largest integer for which the following criterion is satisfied:

P (k) ≤ i
m

q∗
(2.1)

To control the FDR at level q*, we reject all null hypothesis correponding to
the P-values P(1), P(2),..., P(k). Being a good trade-off between a low FDR and
high statistical power, the Benjamini-Hochberg procedure is widely used.
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2.2.2 Network based statistic

For the case of networks, there exist yet an even more more suitable alternative, further
improving statistical power [Zalesky et al., 2010]. Network based statistic (NBS), takes
advantage of the fact that the connections in a network are far from independent
(an overarching principle in network science), or in the words of the authors: "To
potentially offer a substantial gain in power, the NBS exploits the extent to which the
connections comprising the contrast or effect of interest are interconnected".

2.3 Intraclass correlation and test-retest reliability

Reproducibility is at the core of empirical science. In statistics test-retest reliability
can be informally defined as the degree to which any given estimate yields the same
answer upon multiple measurements. This reflects the extent to with the results are
consistent - serving as an index for reliability. The intra-class correlation coefficient
(ICC) is just that - a coefficient of consistency [Shrout and Fleiss, 1979]. For the
purpose of this work, the ICC is used to assess the appropriateness of graph metrics
through a test-retest study design.

2.3.1 Motivation

As a motivation, consider the following example. We have obtained five scans of five
individuals (25 in total), and estimated a graph metric M from each subject. To no
one’s surprise, the value of M varies slightly between trials, due to random scanner
instabilities or other factors like the psychological state of the subject being scanned.
The spread (measurement error) between each measurement can be visualized in a dot
plot (Fig. 2.4). In panel (a), there is considerable spread within each subject, and
little variation between subjects. A more ideal situation is painted in panel (b), in
which there is little within-subject variability, and much between subjects. To quantify
the difference between situations (a) and (b), we may calculate the variance for each
subject, finding that indeed (b) is more reliable. However, a third situation may arise,
with both a low within-subject variance and a low between-subject variance (panel (c)).
The reliability in this situation is comparable to situation (a), as the graph metrics are
not very informative to discriminate between subjects. Thus, both between and within
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subject variability must be taken into account. ICC quantifies this by expressing the
relationship of variance between subjects to the total variance of interest [Li et al.,
2015; McGraw and Wong, 1996]:

ICC = between subject variance / total variance

(a) high within, low between (b) low within, high between (c) low within, low between

Fig. 2.4: ICC dotplots. Intuitively, a low between-subject variance and high within-subject variance
should yield a low to moderate ICC (a). The opposite situation should yield a high ICC (b). A low
within-subject variance is necessary but not sufficient to yield a high ICC score (c).

Multiple definitions of ICC have been described in the litterature [Shrout and Fleiss,
1979], but all can be understood in the context of analysis of variance (ANOVA).
[Shrout and Fleiss, 1979] introduce the notation ICC(m,k), where m is the ’model’ and
k is the ’form’. m can take on a value 1, 2 or 3, referring to the underlying ANOVA
model: one-way random, two-way random or two-way mixed respectively. The form is
generalized to either k=1 or k>1, alluding to the number of measurements per data
point (i.e. k>1 implies averaging multiple observations per data entry). This text only
covers the k=1 case. A one-way ANOVA model can be summarized as

Yij = u + ai + eij (2.2)

where u is the global mean, ai is the group effect of a particular group i 1, and eij

is the residual term modelled as Gaussian noise: eij ∼ N(0, σ2) This model is thus
only concerned with the difference between groups/subjects, and does not attempt to
model the effect from the rater. The two-way model is similar, but has an additional
explanatory variable:

Yij = u + ai + bj + eij (2.3)
1The term group only refers to any entity from which there are multiple measurements. Thus a

single individual is considered a group in a test-retest study.
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In the ICC framework, bj is the effect from the rater who is doing the measurement.
The rater can for instance be the clinic, scanner, processing pipeline, or experimental
measurement condition. Thus the two-way model accounts both for the group effect
and the rater effect. (interactions can also be modeled, but this will not be covered
here). ICC(2,1) is further distinguished from ICC(3,1) by how they treat the effect
of the rater - as a random effect (case 2) or a fixed effect (case 3). In other words
ICC(2,1) treats bj as a random variable, while ICC(3,1) treats it as fixed. How to
calculate the coefficients is covered next.

Define the following sources of variability (mean sum of squares): MSB = between-
subject variance; MSW = within-subject variance; MST = between-rater variance;
MSE = irreducible error variance. MSB is often referred to as the treatment mean
sum of squares (MSTr) in the ANOVA literature. The different ICCs can be computed
as follows [Li et al., 2015], McGraw and Wong:

ICC(1, 1) = (MSB − MSW )/(MSB + (k − 1)MSW )
ICC(2, 1) = (MSB − MSE)/(MSB + (k − 1)MSE + k(MST − MSE)/n)

ICC(3, 1) = (MSB − MSE)/(MSB + (k − 1)MSE)

The mathematical definitions of MSB, MSW, MST and MSE plus accompanying
Python code are provided in Appendix A.

2.3.2 Interpreting the intraclass correlation coefficient

Out of the many available ICC variants to chose from, it is not always obvious which one
to use, especially since the result may differ considerably [Trevethan, 2017]. Therefore
multiple attempts of varying technicality have been made to guide the selection
process [Koo and Li, 2016; Li et al., 2015; Shrout and Fleiss, 1979; Trevethan, 2017].
Interpretations vary between case 1, 2 and 3. Case 1 is used to model situations in which
each subject is rated by a different (randomly selected) rater - no two groups/subjects
are judged by the same rater. The second case is used when the measurements are
obtained by a fixed set of raters, each measuring a subset of the groups. ICC(2,1) is
designed to be generalizable to a completely new set of raters. The third case, ICC(3,1)
assumes all groups are measured by the same set of raters, and does not consider the
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inter-rater variability (MST) [Li et al., 2015]. Thus the results from ICC(3,1), which
treats the raters as fixed, are not generalizable to a new set of raters [Li et al., 2015;
Trevethan, 2017]. Another interpretation of the distinction between model 2 and 3 may
help clear up some confusion: ICC(2,1) represents the absolute agreement between the
raters, and ICC(3,1) considers only the consistency (e.g. relative agreement) 2. That
means ICC(3,1) allows for systematic bias between the raters [Li et al., 2015], as long
as it is consistent - for instance an instrument that is wrongly calibrated and always
reports too high values. For test-retest studies, ICC(3,1) is often regarded as a suitable
choice [Müller and Büttner, 1994] because there is ideally just a single rater [Braun
et al., 2012; Trevethan, 2017]. The core idea is that metrics with higher ICC values are
both robust to noise and informative, while those with low ICC values are vulnerable
to noise and provide little to no value as biomarkers.

2.4 Connectivity modelling

To study the functional connectivity of the brain, one must extract useful information
from the time series of roughly 100 000 voxels. Assuming that certain brain regions are
functionally coherent, we can reduce the computational complexity by parcellating the
cortex into a set of anatomically labeled regions, and extracting the BOLD time courses
(usually the mean voxel signal). Alternative (functional) methods exist to define nodes,
most notably through independent component analysis (ICA) (The mathematical
details of ICA is beyond of the scope of this text, see [Beckmann, 2012; Hyvärinen and
Oja, 2000] for good introductions to the topic). Once the nodes have been defined, and
representative time courses have been extracted, the functional connectivity between
every pair of nodes can be modelled using a statistical measure of choice (Fig. 2.5).

2.4.1 Pearson correlation

Pearson correlation is the most common way of estimating functional connectivity.
Considering two time series X and Y, the Pearson correlation is calculated as the dot

2Here, the literature is somewhat inconsistent. Some (e.g. McGraw and Wong 1996) define both
consistency and agreement to be compatible with both case 2 and case 3, but as far as I can tell,
the formulas are excessive: case 3 consistency is numerically identical to case 2 agreement, and case
3 agreement is identical to case 2 consistency [Koo and Li, 2016]. In my opinion, this only causes
confusion, so the convention of [Koo and Li, 2016] is used.
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Fig. 2.5: Connectivity mod-
elling. A functional connectome
can be estimated by computing
some measure of similarity be-
tween node time courses, typi-
cally correlation or partial corre-
lation. The result is visualized as
an undirected matrix.

product of the normalized time series. Let a and b denote the normalized X and Y,
respectively. Then

ρXY =
1
n

∑N
i=1(Xi − µX,i)(Yi − µY,i)

SD(Xi)SD(Yi)
= a · b

This represents the linear coactivation of regional BOLD time courses, and is
a natural indicator of regional interaction. However, it tends to overestimate the
connectedness of networks due to the transitive property of correlation (see 1.5).
Despite its drawbacks, it is most frequently used due to its ease of computation and
straight-forward interpretation [Zalesky et al., 2012].

2.4.2 Partial Correlation

A trade-off between complexity and simple calculation is partial correlation. Consider
a brain with 100 defined cortical regions/nodes and their associated BOLD time series.
One caveat is that correlation-based networks display a property known as transitivity:
if node X and Y are both strongly correlated to Z, then X is also correlated to Y,
irrespective of the actual underlying connectivity between X and Y (see Fig. 1.5). This
introduces bias to graph metrics, such as node strength calculation [Power et al., 2012].
This begs for/motivates another calculation of connectivity: partial correlation.

In clinical terms: if we wish to answer any question about the direct functional
connectivity of region X and Y, we need to control for the possible involvement of the
remaining 98 regions Z = [z1, z2, z3 · · · z97, z98], where zi is the time series of the ith

region.
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Mathematically, the partial correlation between two normally independently iden-
tically distributed (i.i.d.) variables X and Y controlled by Z is denoted ρXY ·Z. It is
computed as the Pearson correlation between the residuals eX,i and eY,i after regressing
out the effects of Z:

ρXY ·Z =
1
n

∑N
i=1(eX,i − µeX ,i)(eY,i − µeY ,i)

SD(eX,i)SD(eY,i)
,

where the error term is the residual of the model estimate, eX,i = Xi − X̂i, for the
linear model:

X̂ = Aβ

In practical terms, the residuals can be interpreted as the remaining activity of
regions X and Y after removing any influence from Z. Partial correlation has been
recommended as a good intermediate between high model complexity and performance
for larger graphs. Another common approach which shows promise is sparse inverse
covariance, or precision [Smith et al., 2011; Varoquaux et al., 2010]. Like partial
correlation, precision is only concerned with direct connections, but it returns a
sparsely connected graph, which is often favoured when acquisition times are shorter
[Smith et al., 2011].



Chapter 3

Aims

This thesis has in part been a contribution to the ongoing FRIMEDBIO-funded project,
"Brain-Gut Microbiota Interaction in Irritable Bowel Syndrome: A multidimentional
Approach". (https://braingut.no/). The work took place at the Neuroinformatics
and Image Analysis Laboratory, Neural Networks Research Group, Department of
Biomedicine and the Mohn Medical Imaging and Visualization Centre in collabora-
tion with The Norwegian National Center for Functional Gastrointestinal Disorders,
Department of Medicine, Haukeland University Hospital. The thesis aims to explore
machine learning as a tool in characterizing the functional connectivity of IBS patients
from fMRI data, through the lens of network science. A secondary aim is to assess the
reproducibility of graph metrics as clinical biomarkers in general.

https://braingut.no/
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Chapter 4

Experimental

4.1 Methodological experiments

Neuroimaging based biomarkers of psychiatric and neurological disorders is a promising
area of research [Bachmann et al., 2018; Birn et al., 2013; Fornito et al., 2015]. This
approach warrants a rigorous methodologically justified practice, especially in a field
as controversial as fMRI in terms of reproducibility [Bennett et al., 2009; Kriegeskorte
et al., 2009; Vul et al., 2009]. A simulated test-retest study was performed on HCP
data using twelve common graph metrics to provide a relative ranking from least to
most robust to random noise. Another alleyway was explored with regards to the effect
of scan length: what is the time needed for convergence? This question was explored
through expanding window analysis on clinical data from IBS patients and healthy
controls (HCs). The answer to this question has important implications for clinical
practice.

4.1.1 HCP network matrices

Methodological analysis was performed on adjacency matrices provided by the Human
Connectome Project [Glasser et al., 2013], available from db.humanconnectome.org.
15 minutes of minimally preprocessed rs-fMRI data from healthy adults (HCP1200,
4800 time points) was the basis for connectome estimation. Nodes were defined using
group-ICA (MELODIC), at 15, 25, 50 and 100 components. The final matrices had
been generated using Pearson correlation between each component. The matrices,

db.humanconnectome.org
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which were provided as Z-scores, were transformed back to correlation prior to analysis,
using the equivalence: ρ = tanh(Z).

Two experiments were performed with the purpose of investigating the robustness
and reproducibility of graph metrics applied to rs-fMRI data. First, a test-retest
reliability simulation study was conducted by adding Gaussian noise to the network
edges and recalculating graph metrics at each iteration. The obtained results were used
to compute the ICC of each metric as a measure of reliability between the measurements.
Secondly, graph metric stability over time was evaluated qualitatively by calculating
the metrics using an expanding window framework.

4.1.2 Test-retest reliability of graph metrics

Seven subjects were selected at random from the HCP1200 data set. Four level of
Gaussian noise (µ = 0, σ = 0.05, 0.1, 0.2 and 0.4) was simulated and applied to
the correlation matrix entries. The noise was applied additively (that is, uniformly
across all pairs of nodes). Following the noise addition, the matrices were corrected
for asymmetry and thresholded at five levels (p = 0.1 ,0.2, 0.4, 0.6, 0.8, where (1-p)
is the final density of the graph) to remove the weakest edges. A small set of graph
metrics were calculated from the thresholded networks (for details, see4.2.5). The
retest was performed eight times per subject, simulating eight different ’raters’. This
was used to compute the intraclass correlation coefficient ICC(3,1) for each metric at
20 noise/threshold combinations. The metrics were finally ranked according to their
mean ICC from the 20 simulations. This whole procedure was done at 15, 25, 50 and
100 ICA dimensions. A ’consensus’ rank was then determined as a final assessment of
the relative graph metric reliabilities.

4.1.3 Expanding windows and graph metric convergence

To the extent that functional connectomes can be considered fixed in time, their
estimates converge to the ground truth as scan duration is increased. What is the
minimum time sufficient to obtain good graph metric estimates? This question was
investigated using expanding windows analysis. Preprocessed data from a healthy
subject (see below for details on preprocessing and network modelling) was truncated
at different lengths ranging from 20 TRs to the full scan length of 240 TRs (TR=2s).
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With 20 TR increments, a total of 20 adjacency matrices (Pearson correlation) were
estimated. Global graph metrics were calculated from each adjacency matrix. The
change in each (normalized) metric was recorded between each increment, serving as
an index for convergence (a change of zero means convergence). The analysis was
performed at multiple noise and threshold levels, and repeated using two brain atlases
(see below).

4.2 Clinical experiments

Functional connectivity has been implicated in IBS with emphasis on the BGA and gut
microbiota [Labus et al., 2019; Mayer et al., 2015]. The purpose of the study was to
investigate the difference in functional connectivity between IBS patients and controls,
to test whether IBS can in part be explained by dysregulated brain connectivity, and if
disease status could be predicted from connectivity signatures using machine learning.

4.2.1 Experimental setup and MRI protocol

MRI scans were obtained from IBS patients and healthy controls in order to investigate
functional alterations in the brains of IBS patients. All measurements took place
at Haukeland University Hospiatl using a GE Sigma HDxt 3.0T system (8-channel
standard head coils). The experimental setup was as follows: first a high resolution
anatomical image was acquired, followed by eight minutes of resting state fMRI. As an
intervention to elicit clinical symptoms, the subjects were instructed to drink 3 cups of
Toro meat soup. Another round of anatomical and resting state scans was repeated.
The study design is summarized in Fig. 4.1.

Fifteen individuals diagnosed with IBS (11 female, 4 male) and fifteen healthy
controls (10 female, 5 male) were selected for the study, in accordance with the ROME
II and III criteria. Mean ages of participants were 38.6 ± 12.4 and 35.8 ± 13.2 for
IBS patients and healthy controls, respectively. The genders were also balanced in
terms of the age (37.2 ± 11.4 and 37.2 ± 12.9 for male and female). Each subject
reported zero history of psychiatric illness. The control group was otherwise free of
any other functional gastrointestinal disorder than IBS, like functional dyspepsia, and
had no severe gut related problems. To control for the role of food intake, patients
were instructed to avoid eating for a minimum of 4 hours prior to being scanned.
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Fig. 4.1: IBS imaging: Experimental design

Anatomical imaging

A high-resolution anatomical T1-weighted volume was obtained using a spoiled gradient-
echo sequence (GRE) (TR=7.76 ms, TE=2.95 ms, TI=500 ms, flip angle=14◦, and
FOV=256x256 mm2, 188 1.0mm sagittal slices), yielding approximately isotropic voxels
with resolution 1.00mm x 1.0156mm x 1.0156mm.

Functional imaging

Following the anatomical acquisition, a BOLD fMRI scan was carried out using an
echo-planar imaging (EPI) sequence with the following parameters: flip angle = 90,
TE = 0.03, acquisition matrix PE = 96, voxel dimensions = 1.72x1.72x3.50mm3. Both
the scan before and after soup intervention lasted for a total of four minutes.

4.2.2 File Management

DICOM images were converted to the NIfTI file format with an accompanying JSON
file using the Python library dcm2niix [Li et al., 2016]. A particular bug in the software
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required an extra step for converting slice timing from milliseconds to seconds. The
NIfTI files were organized into the BIDS (Brain Imaging Data Structure) directory
structure for ease of automating processing pipelines [Gorgolewski et al., 2016]. Proper
formatting was ensured using the BIDS-validator available from https://github.com/
bids-standard/bids-validator.

4.2.3 Anatomical segmentation

A much discussed question in brain connectivity is what is the appropriate way to
delineate the cortex into meaningful nodes of a network? This question is easy to
answer at the microscopic scale, but is controversial at the mesoscopic and macroscopic
scale Fornito et al. [2016]. Two principled ways exist to define nodes: anatomically
and functionally. For this analysis, the former was used due to its straight forward
interpretation and the lack of need for manually labeling nodes and removing elements
corresponding to noise, as is required with ICA. Freesurfer [Reuter et al., 2012] offers
individualized partitioning of gray matter into cortical and subcortical regions. Two
default atlases were used in this work: the coarse Desikan-Killiany atlas [Desikan
et al., 2006] and the finer Destrieux atlas [Destrieux et al., 2010], allowing for analysis
at two levels of granularity. Anatomical parcellation was carried out in FreeSurfer
V6.0.0 (freesurfer-Linux-centos6_x86_64-stable-pub-v6.0.0-2beb96c), http:
//surfer.nmr.mgh.harvard.edu. A single T1-weighted NIfTI image (pre-soup) was
used as input in FreeSurfer’s standard recon-all pipeline, as exemplified below.

recon−a l l − i subj1 −s subj101 autorecon −1 −3T

The 3T option was added to correct for intensity inhomogeneities specific to 3 Tesla
scanners. No further refinements or manual intervention (like correcting the skull-strip)
were made, accepting outputs as is. The resulting segmentations were later used as
masks for extracting BOLD time series. FreeSurfer’s pipeline is advantageous in terms
of accuracy compared to other methods of template registration (like FLIRT or FNIRT
in FSL), but requires significantly more computing resources.

https://github.com/bids-standard/bids-validator
https://github.com/bids-standard/bids-validator
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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4.2.4 Functional preprocessing

By correcting for and removing various sources of noise, functional preprocessing serves
to highlight signal fluctuations that correspond to neural activity. All preprocessing
steps were executed out in AFNI (AFNI_19.0.24 ’Tiberius’) [Cox, 1996]. A T1
weighted image (intensity corrected in FreeSurfer) was input as anatomical reference for
coregistration between structural and functional modalities. The final processing script
was generated using the AFNI script afni_proc.py (representative script is provided in
Appendix A.

A minimal processing pipeline was initiated as follows. The two first TRs were
removed to let the scanner reach steady-state. TRs with too much head motion were
disposed of, setting the motion limit to 0.2 (censoring). Timeseries exhibiting marked
spikes (an artifact arising due to motion) were truncated. Slice timing correction was
performed. Volume registration (EPI-EPI alignment) was performed as a means of
motion correction, and coregistration with a T1 weighted volume was done from the
most stable TR. Gaussian smoothing (fwhm=4) was performed to reduce spatial noise.
Motion parameters and their first-order derivatives were regressed out using a linear
model. Bandpass filtering was performed (in the same step) to remove signals outside
the range of 0.01-0.1 Hz.

4.2.5 Network modelling

Defining the nodes

Functional connectivity matrices were estimated for each subject, pre- and post soup
intervention, yielding 2 × 30 = 60 adjacency matrices. FreeSurfer segmentations were
used as define the network nodes. Both the Desikan-Killiany atlas [Desikan et al.,
2006] and Destrieux atlas [Destrieux et al., 2010] were investigated. Representative
time courses from the anatomically defined nodes were estimated using the mean time
course for each voxel within the region of interest.

Functional connectivity was estimated between every N(N-1)/2 pair of time series.
All steps were performed using functions from the nilearn Python library [Abraham
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et al., 2014]. Some regions were excluded from the analysis due to a fully absent or
incomplete overlap between the T1 weighted image and the BOLD data, corresponding
mainly to the temporal lobe and the cerebellum (see 4.2). The exclusion criterion was
that at least one subject/session had zero overlap. The regions (FreeSurfer labels) that
met the criterion are provided in Appendix A. The resulting adjacency matrices were
of sizes 80x80 (Desikan-Killiany) and 154x154 (Destrieux).

(a) Saggital view (b) Coronal view

Fig. 4.2: Extent of overlap between functional and anatomical modalities. The red square marks the
extent of coverage from the EPI data superimposed on the T1 weighted image. Large areas are lost,
including significant regions of temporal cortex and almost the complete cerebellum.

Connectivity measures

Functional connectivity was estimated using three measures: Pearsson correlation,
partial correlation and sparse inverse covariance (precision). The latter was estimated
using the graphical lasso algorithm implemented in scikit-learn [Pedregosa et al.,
2011].

Network thresholding

Graph thresholding is canonical practice when dealing with weighted graphs, reasoned
to remove spurious connections. There is however, no globally optimal numerical rule
governing which connections are to be deemed spurious. Therefore it is common to
use a range of thresholds, even though it imposes computational costs on the analysis
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[De Vico Fallani et al., 2014]. Thresholding can be performed either globally, by setting
all values below a certain threshold to zero, or proportionally, in which only the top
p·100% percent strongest edges are kept (density preserving). The former fixes the
network to a certain strength range, while the latter keeps the network density fixed.
Because overall connectivity strengths often vary greatly between (and within) subjects,
the network density will be artificially increased for high-strength networks. Network
density in itself affects many graph metrics, so global thresholding has been discouraged
in favor of proportional thresholding. Despite its caveats [van den Heuvel et al., 2017],
proportional thresholding was used in the current work. Another unresolved issue
originates from the fact that adjacency measures often allow for negative correlations.
It is hard to interpret the physiological meaning [Poldrack et al., 2011], although
one study reported significant correlation between anti-correlations and shortest path
length [Chen et al., 2011a]. While some [Labus et al., 2019] choose to ignore below
zero entries altogether, they were included for the purpose of this work.

Calculating graph metrics

A selection of graph metrics were computed from the acquired network matrices.
The analysis was carried out in Python using the Python implementation of the
brain connectivity toolbox, bctpy [Rubinov and Sporns, 2010] and pynets (https:
//github.com/dPys/PyNets). A total of twelve graph metrics were selected: modu-
larity quotient Q, node strength (total positive, total negative, and nodewise positive
and negative), assortativity, betweenness centrality, eigenvector centrality, clustering
coefficient, transitivity, global efficiency, characteristic path length, and small-worldness.
Some of these metrics (node strength, betweenness centrality, eigenvector centrality
and clustering coefficient) were computed on a node-by-node basis (e.g. each node in
the network has an associated clustering coefficient). Other metrics like characteristic
path length were calculated for the whole network, referred to as a "global" metric.
Two approaches were implemented: one in which the nodewise metrics were averaged
across all nodes (producing 12 features) and one using the full nodewise calculations,
yielding feature vectors of 328 and 624 elements for the Desikan-Killiany and Destrieux
atlas, respectively.

https://github.com/dPys/PyNets
https://github.com/dPys/PyNets
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4.2.6 Machine learning

Unlike statistical measures like correlation, the success of a predictive model is evaluated
on how well it performs on unseen data. Therefore machine learning can be used in a
completely unbiased way to test the viability of imaging-based biomarkers. To this end,
multiple machine learning approaches were attempted, aiming to find discriminatory
features between IBS patients and controls based on multivariate network-derived
features.

Evaluating the model

Training and testing a machine learning model on the same data set is methodologically
flawed, because one can always find a mathematical function which gets arbitrarily
close to a desired decision boundary. Such overmodelling is known as overfitting and
leads to poor performance on unseen data. The canonical scheme of training a machine
learning classifier is therefore to split the data into two independent sets: the training
set and test set. The model is fit to the training set, and evaluated by its performance
on the test set.

Cross validation Provided enough data, one may choose to perform cross validation
(CV) as a step to optimize model hyperparameters (like regularization strength). CV
consists of further dividing the training set into multiple "folds" of a given size. The
classifier is fit on all folds but one, and validated on the remaining fold. This procedure
is repeated across all k folds, such that every fold is used exactly once as a validation
set. If the folds are single observations, it is referred to as leave-one-out cross validation
(LOOCV). CV is tested across multiple model hyperparameters, the best performing of
which (by a given performance measure) are selected to train the final model, which is
evaluated on the hitherto untouched test set. This complete procedure would usually
require hundreds to thousands of samples to perform well for challenging problems.
Considering the complex problem of classifying diagnostic status and symptomatic
measures from functional imaging data, and the small sample size (N=30 subjects),
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this approach was deemed unfeasible. Therefore, the models were evaluated based on
their average performance by CV, using accuracy:

Accuracy = TP + TN

TP + FP + TN + FN

As such the whole pipeline was incorporated into a leave-one-group-out cross
validation (LOGOCV) scheme. As opposed to regular LOOCV, LOGOCV ensures that
no single subject is used both in the test set and validation set, which would violate the
criterion of independence, considering there are two scans per subject [Pereira et al.,
2009]. A drawback to CV is that no final model is produced: the results only reflect
the degree to which using a machine learning approach is viable to begin with.

Feature scaling

Many machine learning classifiers are sensitive to the absolute value of its inputs. For
instance k-nearest neighbors is based on the Euclidean distance between vectors in high
dimensional feature space. As such, it will underestimate the importance of features
with small absolute values as these contribute disproportionately little to the Euclidian
distance between a pair of points. Feature scaling is thus an essential step for many
classifiers. The graph metrics were therefore scaled to zero mean and unit variance
prior to training any algorithm:

Mnorm = M − µM

σM

Prediction from global graph metrics

Discrimination between IBS patients and HCs was attempted using the global met-
rics as feature vectors. The following classifiers were attempted, available from the
scikit-learn Python library [Pedregosa et al., 2011]: k-nearest neighbors (3 neigh-
bors), random forest, support vector machine (SVM) - linear and with a radial basis
function (RBF) kernel, Gaussian naive Bayes and logistic regression (with slight L1
regularization). The classifiers had been selected based on criteria of simplicity and
the status quo in related problems. Simple classifier with regularization were favored
as these deal well with multiple noisy features [Pereira et al., 2009]. The linear support
vector classifier does implicit regularization, determined by regularization parameter C.
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Logistic regression can also incorporate a regularization. All hyperparameters were
set to default (scikit-learn version: 0.20.1). The approach was tested for graph
metrics computed from Pearson correlation, partial correlation and precision, at three
threshold: 0.3, 0.5 and 0.8.

Patient reports of pain and nausea were also attempted as targets for the same
machine learning classifiers. Patients had been asked to score their experience of visceral
pain and nausea on a scale from 0 to 100, before and after soup intervention. The
groups were discretized into two classes (high versus low pain/nausea), by splitting the
observations at the median. No explicit feature selection or dimensionality reduction
was done for the global graph measures.

Prediction from nodewise graph metrics

Feature selection and dimensionality reduction A recurring obstacle in neu-
roimaging is when the number of features far exceed the number of samples (p ≫ N).
The primary concern with this is related to the curse of dimensionality: an ever-
increasingly small proportion of the feature space is covered by the sample when the
number of features is increased. The most common solution is to perform some sort
of feature selection or another dimensionality reduction technique prior to training a
classifier, effectively reducing the number of features per sample (see BOX 2).

BOX 2. Common methods of feature selection
Feature selection is the act of choosing a subset of the (best) available features to
train the algorithm, while other dimensionality reduction techniques transform
the original data set into a new space (e.g. PCA, ICA). This may not only
removes redundant, correlated and noisy features, but it can also improve classifier
performance and speed. Feature selection approaches are divided into filter
methods, wrapper methods, and embedded methods.

Filter methods are performed prior to and are completely independent of the
classification algorithm. Examples are univariate statistical tests such as the t-test
and ANOVA. Wrapper methods are based on the actual classification performance
of the classifier itself, using different combination of features and accounts for
multivariate relationships in the data [Guyon and Elisseeff, 2003]. Recursive
feature elimination (RFE) is an example of this, and works by training a classifier,
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then removing feature of least importance (e.g. lowest beta weight). The process
is repeated, until we are left with the desired number of ’best’ features. This is
only possible to do for models which have an inherent way of ranking feature
importance [Pereira et al., 2009]. Embedded methods are part of the classifier
itself, which performs a sort of implicit feature selection. Decision trees are an
example of this, which select the features which maximizes information gain (the
change in entropy), while L1 linear regression applies a penalty to having too
many and too high beta weights. For the current work, RFE was attempted
in combination with linear support vector machine, random forest and logistic
regression (with lasso regularization).

Recursive feature elimination and nodewise graph metrics

The p ≫ N problem was issued using recursive feature elimination. This was done
in combination with linear SVM, random forest and logistic regression, to select the
top 5, 10, 15 and 20 features. The final model was trained on the top features. The
whole pipeline was incorporated into a LOGOCV scheme. The process was repeated
for three thresholds (0.3, 0.5 and 0.8) using Pearson correlation, partial correlation
and precision. More complex models like neural networks were omitted, as they are
more prone to overfitting than simple classifiers. Simple classifiers often outperform
complex ones when data sets are small with many featues [Pereira et al., 2009], and
are easier to interpret.

4.3 Controlling for head movement

Head motion during resting state fMRI scans has a profound impact on measures
of connectivity, for example by introducing spuriously edge strengths [Power et al.,
2012]. Although most preprocessing steps are specifically concerned with minimizing
the effect of motion, there exists no way to completely alleviate all its effects. It is
therefore imperative to leave out motion as a possible explanation for any observed
group differences in brain connectivity. For the sake of simplicity the overall head
motion was summarized by averaging all six degrees of freedom divided by the length
of each run. IBS/control group differences were tested for using a two-sample t-test for
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both pre-intervention, post-intervention and between sessions (to test if there is an
increase or decrease of movement).

4.4 Network based statistic

The potential network difference between clinical groups were also assessed with a purely
statistically motivated, graph metric-independent approach. Correlation matrices from
the Desikan-Killiany atlas were used with NBS at different t-value thresholds as
recommended by [Fornito et al., 2016], between 1 and 3. The nodes comprising the
resulting resulting pseudonetwork (largest connected component; LCC) were extracted
to identify regions of interest.





Chapter 5

Methodological Results

Graph metrics are increasingly being explored as biomarkers in neurological and
psychiatric disorders, which too often rely on subjective assessment of behavioural
traits rather than physiological biomarkers. Graph metrics can potentially fill the hole
left by clinicians, as well as increase understanding of the physiological underpinnings
of psychological or behavioural states in disease. Although graph metrics offer a
theoretically interesting and plausible alleyway, its practicality ultimately comes down
to the extent to which graph metrics are consistent between measurements for a given
individual at different times and/or experimental nuisances (various sources of noise).
The same concern applies to IBS in which the brain, besides being the ultimate arbiter
of the subjective experience of pain, partakes in the bidirectional communication with
gastrointestinal processes. To increase understanding of graph metric reliability I
performed a simulated a test-retest experiment on HCP data and assessed robustness
with the intraclass correlation coefficient. The effect on scan duration was also assessed
using clinical data from IBS patients and healthy controls using an expanding window
analysis.

5.1 Test-retest reliability of graph metrics

To investigate the invariance of graph metrics to noise, a simulated test-retest study
was conducted on HCP1200 network matrices at various thresholds and noise levels.
Only global metrics were explored. Eight raters were simulated, and the reliability was
calculated as ICC(3,1) (Python code is provided in Appendix A).
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The experiment was repeated at 20 threshold/noise combinations in order to see
if thresholding affects reproducibility and to sample a large number of scenarios to
get a representative average. The resulting ICC values were plotted in Fig. 5.1 for
15 ICA dimesions. The overall ICC varied substantially not only between different
metrics, but also as a function of threshold and noise. As expected, the ICC dropped
with increased noise. More interestingly was the observation that strict thresholding
was consistently linked to a reduced ICC. The analysis was repeated at 25, 50 and 100
dimensions, and yielded a similar pattern as with 15 nodes (plots not shown).

By averaging the ICC across all threshold/noise combinations, a total ICC was
yielded for each metric. This mean score was used to rank the metrics according to
their relative robustness. The order was highly consistent between 15, 25, 50 and 100
ICA dimensions, with some exceptions. A score was assigned to each metric based
on its rank at each dimensionality. The sum of the scores was used to determine a
"consensus" rank, visualized in Fig. 5.2. Furthermore, the ICC was consistently higher
for higher dimensions of ICA, a pattern applying to all graph metrics tested.

For some threshold-noise combinations the ICC evaluated to negative numbers (Fig.
5.3). This is a well known issue in the ICC literature occurring when the within-group
variance exceeds the between-group variance [Müller and Büttner, 1994], imposing
interpretability difficulties (what is negative reliability?). These values were set to
zero, as suggested by [Bartko, 1976], although others have criticized the practice,
calling for alternative approaches completely, like Bland-Altmann plots (see [Müller
and Büttner, 1994]). These alternatives were not investigated. As a quality assurance,
a random sample of the data yielding negative ICC values were plotted and inspected
(a representative example is shown in Fig. 5.3). All were characterized by a low
between-subject variability and high within-subject variability, suggesting that setting
the ICC to zero was justified.

5.2 Sliding windows correlation

Another aspect of consideration was the graph metric dependency on scan duration.
Understanding the convergence time of graph metrics has great importance for ex-
perimental design for any study investigating graph metrics. Without invoking the
dynamic evolution of graph metrics [Zalesky and Breakspear, 2015], graph metrics are
considered fixed parameters for any individual. Under this assumption, correlation
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matrices were calculated from the time series at varying window lengths using 20 TR
increments. The change between each 20 TR increment was calculated and plotted in
Fig. 5.4.

Considerable variation was observed across subjects, but most graph metrics had
settled in the vast majority of subjects at eight minutes in the scanner. Some metrics,
however, were frequently observed to change more than a full standard deviation
between increments even towards the end of the scan. Small-worldness was particularly
ill-behaved. The change was larger in the beginning where each increment comprised
a larger proportion of the total window. In accordance with what was observed in
terms of ICC analysis, stricter thresholds were associated with a weaker graph metric
reliability (compare panel (a) to (b) and (c) to (d) in Fig. 5.4). There was also a
less pronounced, but clear tendency for the Destrieux atlas to yield more stable graph
metrics, which is in line with the above observation that finer granularity is associated
with higher ICC.
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(a) Assortativity (b) Characteristic path length (c) Modularity

(d) betweenness (e) Small-worldness (f) Transitivity

(g) Eigenvector centrality (h) Strength (i) Clustering coefficient

(j) Global efficiency

Fig. 5.1: Test-retest reliability of global graph metrics. The ICC(3,1) was calculated for a set of
global graph metrics across a range of thresholds and noise levels. The noise is reported as σ from a
Gaussian distribution, and the threshold p represents the proportion of edges kept in the graph after
thresholding. All metrics were obtained from the HCP1200 data set, ICA (n=15), Pearson correlation.
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Fig. 5.2: Relative graph metric robustness from simulated test-retest experiments of 13 graph metrics,
averaged across 4 levels of noise and 5 levels of thresholds. ICC(3,1) was used to quantify the reliability
of each metric. The metrics are ordered according to a consensus rank from largest to smallest ICC:
Modularity metric Q, eigenvector centrality, transitivity, assortativity, global efficiency (duplicated),
strength, characteristic path length, strength (only positive), strength (only negative), clustering
coefficient, small-worldness, betweenness centrality.

Fig. 5.3: Negative intraclass cor-
relation coefficient. Mean char-
acteristic path length was calcu-
lated from simulated test-retest ex-
periment on seven subjects from
HCP1200, by the addition of Gaus-
sian noise, yielding a negative ICC
of -0.066. The dotplot reveals a
low between-subject variability, ex-
ceeded by a markedly high within-
subject variability. Thus, the
characteristic path length calcu-
lated at this threshold and noise
level (threshold=0.1, σ=0.005, 25-
dimensional ICA) is not infor-
mative, and serves as a useless
biomarker.
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Fig. 5.4: Global graph metric
dynamics from expanding window
analysis of a single subject/scan,
with varying parcellation granular-
ity and graph density. Graph met-
rics were calculated from connec-
tomes estimated by varying time
series window length in 20 TR (40
second) increments. The change in
the each graph metric (normalized
to zero mean and unit variance) be-
tween each increment is plotted on
the y-axis. The Destrieux atlas (154
regions) yielded slightly more sta-
ble graph metrics than the Desikan-
Killiany atlas (80 regions). A much
more pronounced effect was seen
for graph density, favouring high
graph density. The same patterns
were observed across all subjects,
but at varying magnitude. Different
subjects were highly variable in the
time to converge, some of which did
not settle altogether even after the
full length of the scan for certain
metrics. The y-axis is in units of
standard deviation. DKT, Desikan-
Killiany; DES, Destrieux.

(a) DKT, threshold=0.2

(b) DKT, threshold=0.8

(c) DES, threshold=0.2

(d) DES, threshold=0.8



Chapter 6

Clinical Results

60 rs-fMRI scans from 30 subjects with or without IBS (two scans per subject, before
and after soup intervention, eight minutes each) were used as the basis for functional
connectome modelling. Twelve common graph metrics were calculated from the
estimated networks, both global and nodewise metrics. The viability of using machine
learning classifiers to predict diagnostic status from these biomarkers were explored.
The same strategy was later applied to predicting self-reported behavioural measures.

6.1 Anatomical segmentation and functional pre-
processing

Individualized partioning of gray matter regions were obtained from T1 weighted
images using FreeSurfer (Fig. 6.1 panel (a)).

Functional preprocessing was conducted in AFNI. The motion limit (for censoring
TRs) was set rather strictly to 0.2, as motion artifacts are more problematic in resting
state than task fMRI (0.3 is conventional in the task paradigm). However, two subjects
moved substantially more than the others, to the extent that the regression model
initially ended up with negative degrees of freedom (more regressors than data points),
a meaningless situation. In order to not having to discard two observations from the
already meager data set, the motion limit was expanded to 0.3 and 0.35 for the two
subjects. While this could in principle introduce bias to the data, the subjects belonged
to different clinical groups. The effect of functional preprocessing is illustrated in Fig.
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Fig. 6.1: Anatomical and
functional preprocessing using
FreeSurfer and AFNI. a) T1
weighted images (top row) were
partitioned into anatomical regions
based on a standard atlas (De-
strieux), yielding personalized maps
to use as network nodes (bottom
row). b) EPI data before and after
functional preprocessing. Four time
points from the original BOLD
timeseries (top row) and their
corresponding timepoints after
preprocessing in AFNI (bottom
row). The two image modalities
is later aligned in order to extract
the BOLD time courses, by using
the anatomical regions as network
nodes.

(a) Structural preprocessing in FreeSurfer

(b) Functional preprocessing in AFNI
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Fig. 6.2: Dropout and warp-
ing artifacts in the inferior
frontal lobe can be seen in the
EPI data from an axial slice.
These artifacts arises due to
interference between the air-
tissue interface near the si-
nuses, and may cause trouble
in terms of coregistration with
an anatomical image. The ef-
fects can be partly overcome
by unwarping the image using
a field map.

6.1 (panel b) on a contiguous series of TRs from an EPI data set, highlighting small
fluctuations in the BOLD time series not visible in the raw data.

6.1.1 Coregistration

The EPI volumes were subject to dropout (signal loss) and distortion in frontal regions
due to the tissue/air interface close to the sinuses (Fig. 6.2, upper center). No field
maps were obtained during the scans, so the EPI data remained slightly warped.
This introduced major difficulties during the anatomical-functional coregistration in
approximately half of the 60 scans (see Fig. 6.3). By substituting AFNI’s default
alignment cost function (’hel’, Hellinger metric), the improperly aligned runs were
screened for a number of alternative cost functions. This was achieved using the AFNI
program align_epi_anat.py, with the ’-multi_cost’ option and ’giant_move’ option,
to expand the search space. The alignment quality was inspected visually, and the
data was realigned using the optimal cost function for each individual run. The cost
function ’lpc+ZZ’ (weighted sum of cost functions, but primarily the local Pearson
correlation) was consistently superior to the other cost functions in the vast majority
of subjects, with a few exceptions where it was outperformed by mutual information
(’mi’). The final alignments were inspected and confirmed to be of acceptable quality.
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(a)

(b)

Fig. 6.3: Coregistration of functional and anatomical data. Example of a successful (a) and failed
(b) attempt of coregistration. Both alignments were produced using AFNI’s default cost function
(’hel’). Visualized using nilearn.

Fig. 6.4: Head motion throughout a single
scan, described by three translations (yaw,
pitch and roll) and three rotations (A-P,
R-L and I-S)). These values and their first-
order derivatives were used as regressors
in the linear model during preprocessing.
A-P, anterior-posterior; R-L, right-left; I-S,
inferior-superior. Estimated and visualized
using AFNI.

6.2 Controlling for motion differences

Head movement is arguably the primary confound in functional connectivity analysis.
Head motion during an fMRI scan can be described with six motion parameters: three
translations and three rotations as shown in Fig. 6.4.

In order to exclude head motion as a possible explanatory variable for any group
differences in connectivity, the average motion was compared across both clinical
groups, in a similar fashion as [Pariyadath et al., 2014]. To simplify analysis, the
average motion across all six motion parameters were used. Particularly considering
many IBS patients experience nausea after food intake, it is reasonable to suspect such
a difference. However, a two-sample t-test excluded this suspicion (see Fig. 6.5).
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Fig. 6.5: Distribution of head
motion in IBS patients and con-
trols. Six motion parameters from
each scan was averaged to repre-
sent total subject motion, both be-
fore (a), after (b) and between
(c) soup intervention (yellow=IBS,
blue=HC). No significant group dif-
ferences were found for either ses-
sion (before, P=0.99; after, P=0.37;
two-sample t-test). However, the
change in subject motion from be-
fore to after intervention (c) demon-
strated a slight increase in the con-
trol group (P=0.016, one-sample t-
test). The patient group did not dif-
fer between the two sessions (P=1.0,
one-sample t-test). Due to the con-
founding effect of motion on func-
tional connectivity measures, equal
distributions of motion is a prerequi-
site for making inference about true
neurological differences with high
confidence. Any observed group
differences are very unlikely to be
motion-induced artifacts based on
these results. However, any infer-
ence based on inter-session change
on the other hand, should be inter-
preted with care.

(a) Pre-intervention

(b) Post-intervention

(c) inter-session change



62 Clinical Results

The overall motion of IBS patients and HCs were essentially the same, both pre- and
post-intervention (P=0.99, P=0.37 respectively, 0.64 pooled, one-tailed t-test), with a
slight tendency for the HC group moving more. Although no significant differences were
observed in total motion, the change in motion from pre- to post-intervention suggested
a mild group difference, in favor of the HC increasing (P=0.016). The IBS group
remained essentially unchanged after the intervention. This implies that although the
overall group motion distributions were more or less equal, any measure obtained by
comparing pre- and post-intervention statistics should be interpreted with caution.
In summary, there could not be established a group level difference in head motion
between IBS patients and controls. Moreover, the data set is balanced both in terms
of age and sex. Thus, any difference observed between the functional connectomes of
IBS patients and HCs are unlikely to be attributed to differences of motion artefacts,
but rather as being due to biologically considerable effects.

6.3 Network modelling

Average voxel time courses were extracted using FreeSurfer regions as masks to represent
a single node time series, visualized for three Destrioeux regions in Fig. 6.6).

The adjacency matrices were thresholded prior to graph analysis. A proportional
thresholding scheme was used, forcing the graphs to a fixed density by discarding the
(1-p)×100% weakest entries in the adjacency matrix. As no globally optimal threshold
exists, multiple values of p were set in the range from 0.1 to 0.9, as is common practice.
Correlation, partial correlation and sparse inverse covariance (precision) were used in
the analysis. Fig. 6.7 illustrates the three different connectivity measures before and
after being thresholded. Because of the transitivity of Pearson correlation, this graph
was impacted much more than the other two by a 20% threshold. The precision based
network was initially so sparse that a 20% threshold had no effect. The final products
were weighted undirected graphs, with both positive and negative weights preserved.

6.4 Graph metrics

Twelve graph metrics (nodewise and global) were computed from the thresholded graphs.
No notable differences were observed for any single global graph metric between the
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Fig. 6.6: BOLD time courses extracted from FreeSurfer regions. By aligning T1 weighted volumes
with preprocessed 4D BOLD data, the individual FreeSurfer segmentations were used as masks from
which the BOLD signal is extracted (represented by the average voxel signal). Adjacency matrices
were built from correlating all pairwise time series to estimate the functional connectomes. The final
product is a set of time series which can be correlated. Functional connectivity was modelled from
the statistical coactivation of these time courses. Visualized using nilearn.

IBS group and controls. The joint pair-wise metrics were largely overlapping between
the groups, not surprising considering the heterogeneity of the subjects. As seen in
Fig. 6.8, most graph metrics were moderately to highly correlated with at least one
other metric (Fig. 6.8). The correlations were in generally higher for lenient thresholds
(results not shown).

6.5 Machine learning and classification

The primary goal of this work was to make a predictive model of IBS based on
individual connectivity profiles. The machine learning classifiers were trained on all
subjects but one, leaving out the remaining for prediction (LOGOCV), presenting the
average prediction accuracy across all permutations as the final performance. Because
of the small data set and large number of features, simple (linear) classifiers with
regularization were emphasized, although a few non-linear also were investigated.
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(a) Pearson correlation (b) Partial correlation (c) Precision

(d) Pearson correlation (e) Partial correlation (f) Precision

Fig. 6.7: Adjacency matrices with and without thresholding. Pearson correlation, partial correlation
and precision matrices from a single subject (before intervention, Desikan-Killiany). A 20% proportional
threshold was applied (bottom row), affecting the matrices to a varying degree. Visualized using
nilearn.

6.5.1 Global features

Twelve global graph metrics were used as input to train six machine learning classifiers
with the purpose of predicting the diagnostic status from graph metric biomarkers.
By training each algorithm on all but one subject, it was evaluated by its success at
predicting the held-out individual (LOGOCV). The average accuracy across all 30
folds served as the index of performance. A representative selection of thresholds (0.3,
0.5 and 0.8) was applied to the matrices prior to calculating the metrics, from which
the average score is reported.

Fig. 6.9 displays the average performance from each classifier, based on graph
metrics from Pearson correlation, precision and partial correlation matrices, averaged
over the thresholds. The overall performance from Pearson correlation-based metrics
fluctuated around what would be expected by random guessing in a binary classificaiton
task (50%). However, precision and partial correlation deviated considerably from
chance. Interestingly however, the prediction accuracy was consistently below chance
(Fig. 6.9). Considering the inherent symmetry of a binary classification task, this
paradoxical situation does indeed support a multivariate separability of IBS patients
from HCs based on global graph metrics (simply reverse the prediction). that diagnostic
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status is separable from IBS and HCs. This phenomenon, known as ’anti-learning’
[Kowalczyk and Chapelle, 2005] is discussed more below.

Similarly, patient reports of experienced nausea and visceral pain were used as
targets for the classifiers. The average LOGOCV accuracies are shown in Fig. 6.10
and Fig. 6.11. Again, the anti-learning phenomenon was encountered, for both pain
and nausea. The magnitude of anti-learning was greatest for nausea.

Slight imbalances in the numbers of representatives in each class were imposed
when stratifying the observations into low and high pain/nausea. 1 However, this was
adjusted for visually by finding the expected accuracy (under the strategy of simply
predicting the majority class) for the classes (labeled C1 and C2):

max
(

NC1

NC1 + NC2
,

NC2

NC1 + NC2

)

The expected accuracy was plotted, as a benchmark performance.

Prediction of pain and nausea was similarly paradoxically below chance. Nausea in
particular deviated greatly, with the most extreme value at 28% (kernel SVC, partial
correlation, the average of three thresholds). The phenomenon was initially suspected
to be an artifact of the way the model evaluation. LOGOCV by design introduces a
slight bias in the training data, by offsetting the number of observations belonging to
each group: at each permutation, the training set will have 28 observations of one class
and 30 of the other. This possibility was investigated by changing the CV strategy
such that the groups always were balanced in the training set (group K-fold CV). This
had effectively no impact on the accuracy, which still exhibited the peculiar below
chance accuracy.

6.5.2 Nodewise metrics

Nodewise graph metrics provide more detailed information than their averaged global
counterparts, but require further processing to account for the p ≫ N situation. RFE

1The binarization of pain and nausea scores was based on the median value, which in theory would
yield two equal classes. However, it led to slight unevenness in the number of observations of each
class due to a large number of patients reporting the same level of pain - it would be nonsensical to
regard some 0’s as ’low pain’ and others as ’high pain’. Furthermore, the removal of NaN-values from
precision-based adjacency matrices led to a different class imbalance than for Pearson and partial
correlation, and is not directly comparable to the other two.
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was used in conjunction with linear SVM, random forest and logistic regression in a
LOGOCV framework. The most discriminative features, determined by the RFE were
used to train the classifier, which was tested on the held-out subject. The problem of
anti-learning ceased with this strategy, but in return most tests fluctuated around 50%
accuracy. Fig. 6.13 displays the mean LOGOCV score from each classifier on Pearson
and partial correlation and precision (average of three thresholds). The global average
across all tests was just above 50% for SVC and logistic regression, the latter being
marginally better. However, random forest yielded a slight below-chance accuracy
of about the same magnitude. Pearson correlation and partial correlation performed
better overall than precision using nodewise graph metrics. The nodewise features were
not attempted for symptom scores. Classifiers based on precision generally performed
worse than Pearson and partial correlation. The single best performing model had an
average LOGOCV score of 80% (partial correlation, see 6.13 panel (b)) and the worst
performing model around 30% (Pearson correlation, RFE-RF).

Recursive feature elimination

The three most informative features, decided by RFE-SVM are plotted in Fig. 6.12. It
should be noted that the randomness in the computation produced slightly different
results upon multiple trials, but computing the top 20 features revealed a large
and consistent overlap between different trials. Different connectivity measures and
thresholds were also largely selecting the same features. Importantly, almost every
single of the top 20 features were betweenness centrality (about 25% would be expected
by chance if all metrics were equally (un)informative).

6.6 Network based statistic

The statistical significance of the machine learning classifiers was not explored. However,
to settle the question, another alleyway was attempted through NBS. This network-
specific permutation test was performed on correlation matrices from the Desikan-
Killiany atlas. A range of t-value thresholds between one and three were tested as
recommended in [Fornito et al., 2016].

With a multiple t-value thresholds between 1 and 3, a NBS permutation was carried
out in bctpy, with K=1000 permutations. The results are summarized in Fig. 6.14.
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Small t-values yielded suitably small p-values (0.001). Selecting a threshold at 3.0
yielded a just-above significant p-value. The threshold was lowered slightly to 2.8 to
find the smallest pseudonetwork that would still give a reasonably small p-value. This
resulted in a p-value of 0.008, with observed 30 nodes from the Desikan-Killiany atlas,
provided in Appendix A.
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Fig. 6.8: Pairwise joint distribution of common global graph metrics, from sparse inverse covariance.
The univariate distribution of any particular metric (diagonal) did not imply a substantial difference
between IBS patients (red) and controls (blue). The bivariate distributions (dot plots) display a great
overlap between the diagnostic grops. Notice the high degree of correlation between a number of
metrics. Similar patterns was observed for partial and full correlation. Graph metrics were calculated
from precision matrices using the Desikan-Killiany atlas.
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Fig. 6.9: Average LOGOCV score on global graph metrics, IBS vs HC. The black dotted line is the
expected accuracy by random guessing, corrected for by any imbalance in the classes ( Nc1

Nc1+Nc2
). The

bar heights were computed as the mean prediction accuracy from LOGOCV (30 folds) of three threholds
(0.3 ,0.5, 0.8) from correlation (blue), precision (green) and partial correlation (red). Uncertainty
is indicated by error bars. All classifiers performed consistently below chance for most connectivity
measures. Top, from left: logistic regression (with slight L1 regularization), random forest classifier,
support vector classifier (radial basis function kernel); bottom, from left: K-nearest neighbors, linear
support vector classifier, Gaussian naive Bayes.

Fig. 6.10: Average LOGOCV score on global graph metrics, low vs high nausea. The black dotted
line is the expected accuracy by random guessing, corrected for by any imbalance in the classes
( Nc1

Nc1+Nc2
). The bar heights were computed as the mean prediction accuracy from LOGOCV (30 folds)

of three threholds (0.3 ,0.5, 0.8) from correlation (blue), precision (green) and partial correlation (red).
Uncertainty is indicated by error bars. The accuracy from nausea deviated more from chance than
pain and clinical status. Top, from left: logistic regression (with slight L1 regularization), random
forest classifier, support vector classifier (radial basis function kernel); bottom, from left: K-nearest
neighbors, linear support vector classifier, Gaussian naive Bayes.
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Fig. 6.11: Average LOGOCV score on global graph metrics, low vs high pain. The black dotted
line is the expected accuracy by random guessing, corrected for by any imbalance in the classes
( Nc1

Nc1+Nc2
). The bar heights were computed as the mean prediction accuracy from LOGOCV (30 folds)

of three threholds (0.3 ,0.5, 0.8) from correlation (blue), precision (green) and partial correlation
(red). Uncertainty is indicated by error bars. The classifier performance was comparable to that
obtained from clinical status. Top, from left: logistic regression (with slight L1 regularization), random
forest classifier, support vector classifier (radial basis function kernel); bottom, from left: K-nearest
neighbors, linear support vector classifier, Gaussian naive Bayes.
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(a) Pearson correlation (b) Partial correlation

(c) Precision

Fig. 6.12: RFE-SVM: the top three most informative features as determined by RFE-SVM from
Pearson correlation (a), partial correlation (b) and precision (c) matrices. HC (yellow) and IBS
(purple). The clinical groups appear moderately separable, but with considerable overlap. Note that
all features correspond to betweenness centrality. Threshold=0.5, nodewise graph metrics, Destrieux
atlas.
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(a) RFE-SVM (b) RFE-LR

(c) RFE-RF

Fig. 6.13: Accuracy from recursive feature elimination ranging from 5 to 20 features, using three
different classifiers. The performance accuracy was assessed with leave-one-group-out cross validation
on the complete pipeline from Pearson correlation (yellow), partial correlation (red) and precision
(turquoise). Performance was largely equal between feature counts. Precision generally performed
worse than the other two measures. SVC, support vector classifier; LR, logistic regression; RIDGE,
linear regression with l1 regularization; RF, random forest. Hyperparameters were set to scikit-learn’s
default values. Three thresholds (0.3, 0.5, 0.8) were used per connectivity measure. The mean
performance is plotted in black, barely surpassing chance guessing in (a) and (b). RFE-RF performed
below chance.
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Fig. 6.14: Network based statistic histograms
from 1000 permutations at three thresholds. The
null distribution (in blue) and the observed statistic
(in red). The x-axis represents the largest connected
component (in terms of number of edges) of the
pseudo-network which represents the edges remain-
ing after being thresholded from a specified t-value.
Taking advantage of the distributed effect of net-
work aberrations, NBS holds an advantage to other
statistical tests like the Benjamini-Hochberg proce-
dure. high t-value thresholds indicate strong local-
ized network alterations, while low values unravel
more distributed effects. Three t-values thresholds
revealed confident network differences between the
IBS group and the HC group.

(a) t=2, p=0.001

(b) t=2.8, p=0.008

(c) t=3, p=0.071





Chapter 7

Discussion

7.1 Graph metric reliability

Establishing robust biomarkers is important in order to reliably predict vulnerable
individuals, prognosis and treatment response [Waller et al., 2017]. This requires
thorough analysis of reliability under different circumstances, which can be used to
guide practitioners. To this end, different graph metrics were ranked according to
reproducibility on a simulated test-retest study, and evaluated in terms of dynamic
stability (time to converge).

7.1.1 On the relative reliability of graph metrics

The reliability rank, as determined by ICC(3,1) on simulated test-retest data, was
largely concordant between different ICA dimensionality levels (15, 25, 50 and 100)
(see Fig. 5.2). Betweenness centrality, small-worldness and clustering coefficient were
ranked as least reliable, while the modularity metric Q, eigenvector centrality and
transitivity scored the highest. An interesting pattern that emerged was how clearly
reliability increased with more granular brain parcellations. This was observed both in
the simulated test-retest experiments on HCP1200 data and from clinical IBS data,
strongly favouring high node parcellation schemes, wether functionally defined (ICA)
or anatomically defined (FreeSurfer).
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Graph thresholding

Two distinct patterns were observed across all metrics: unsurprisingly, a higher noise
level weakened reliability, but less anticipated was the tendency for stricter thresholds
to reduce the ICC (Fig. 5.1). In isolation, this would advocate keeping thresholding at
a minimum, or quitting the practice altogether. The observation that low graph density
led to weaker reliability coincides with an earlier non-simulation study Braun et al.
[2012]. Yet, Braun et al. still advocates using low density graphs (stricter thresholds)
because they "preserve network-specific information", but this will necessarily have a
negative impact on reproducibility, which is ill-advised for developing robust biomark-
ers. Another observation was that lenient thresholds were associated with stronger
correlations between metrics. This may be problematic for machine learning classifiers,
due to multicollinearity, and would support using stricter thresholds, contradicting
the above conclusion. However, this effect needs to be weighted against the negative
effect noisy features. It should be noted that [Telesford et al., 2010], who used another
thresholding scheme did not observe a systematic difference in reliability between
thresholds, suggesting it is inherent to proportional thresholding only.

Agreement with other studies

Small-worldness is arguably the most studied graph theoretical measure, being thor-
oughly investigated in the early days of brain connectomics [Bassett and Bullmore,
2006; Sporns et al., 2002]. Although the results presented here deemed small-worldness
as a poor biomarker, this is only in terms of rs-fMRI. Moreover, it may still not
even be generalizable to anything but the specific circumstances in this work. In
fact, [Braun et al., 2012] concluded small-worldness to be a highly reliable metric.
Braun et al., however used anatomical automatic labeling (AAL), while this study
relied primarily on ICA. Other potential explanations include different preprocessing
practices, or the assumptions behind the simulation-study. Nonetheless, a systematic
review on graph metric reliability also reported small-worldness to be moderately to
highly robust, although there were some discrepancies between studies [Welton et al.,
2015]. This suggests the simulation was too simplistic. However, the other ranks
corresponded moderately well with the present results, with betweenness centrality and
clustering coefficient as the least reliable metrics, placing some trust in the simulation
approach. The low score of betweenness centrality could still be partially influenced
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by the method of adding noise. Betweenness centrality favors nodes which connect
topologically distant regions. This property will be substantially altered when adding
weights with a uniform probability across all edges, without considering anatomy or
physiology. By weighting the probability across edges (i.e. with multiplicative noise)
this could potentially account for that.

On the characteristic path length

A technical problem frequently arose when calculating characteristic path length (the
average distance, lij). The distance between any two nodes in a network can be
considered the path of ’least resistance’. In fragmented networks, when no such route
exists, the path length is undefined (or may be set to infinity). This introduces trouble
for calculating the characteristic path length, with no guidelines as how to treat infinite
entries. Some solve this problem by avoiding thresholds that lead to fragmenting the
network. Another related metric, the global efficiency, can be an alternative option.
This metric deals smoothly with fragmented networks, by taking the average of the
reciprocal of the distance, 1

lij
, which is simply set to zero if lij = ∞.

Both characteristic path length and global efficiency were used in the analysis. In
the case of fragmented networks, I used the LCC for the calculation of characteristic
path length. This was done primarily to avoid NaN-entries in the calculations. In fact,
it is reasonable to speculate that this approach artificially inflated the characteristic
path length, for the following reason. The LCC corresponds to the strongest edges of
the network. By definition, this ’core’ will exhibit a shorter path length, as path length
is negatively related to edge strength. Another aspect to consider is the sudden point
at which a network fragments. When adding noise before thresholding in a test-retest
situation, it is conceivable that some iterations disconnect the network substantially,
while others leave it in tact. This can be argued to induce much variability in the
measures, or in ICC terms: increase the within-subject variability. Accordingly, the
characteristic path length was slightly less robust to noise than the global efficiency,
ranking 6th and 8th in the consensus order, respectively. A similar observation about
the effect of network fragmentation was suggested by [Braun et al., 2012] to explain
why low density graphs on average performed worse than higher density graphs.
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Limitations to the test-retest experiment

It must be noted that the absolute values of the ICC reported here were inherently
meaningless, given that the noise was simulated (and arbitrarily so). Even more,
assuming the noise to be Gaussian was neither theoretically nor experimentally justified
or based on the actual propagation of error through the processing pipeline, from noise
during acquisition to noise in the processed connectome product. Gaussian noise was
chosen only due to simplicity. This could be criticized for its lack biological realism, but
as a proof of concept, it can be shown that Gaussian noise added directly to the BOLD
time series propagates to the correlation matrices. This proposition was simulated in
Python, and confirmed that the resulting edge weight distribution turned out to closely
follow a Gaussian distribution. This does however not take into consideration the
regional variation. On the counter side, the results do indicate the relative robustness
of each graph metric, in addition to revealing interesting patterns related to network
dimensionality and thresholding stringency - with important implications for processing
practice.

Expanding window analysis

The temporal dependence of graph metrics was looked into through the lens of expanding
window analysis. How metrics changed across 20 TR increments was used as an
indicator of convergence. The overall results were quite similar for both atlases, keeping
everything else fixed. However, there was a mild but clear tendency for metrics
estimated from the Destrieux atlas to be more stable across time. This aligns well with
the above finding that higher ICA dimensionalitites improved test-retest reliability.
Although no quantitative criteria was set to rank the temporal stability, it was noted
that some metrics changed more than others (by analyzing which graph metrics tended
to change more than a full standard deviation during the last increments). Small-
worldness was consistently more time sensitive than the other measures. From these
results it would be generally be advised to not keep scan length below eight minutes.

Another observation was again that low graph densities yielded less stable metrics
in time, further supporting the practice of using dense graphs. By agreement with the
simulation experiment, this further supports that simulation lends itself to generalizion
to observational test-retest data. In summary, the main results seem to be consistent
across studies, like the advantage of using fine-grained parcellations [Welton et al.,
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2015]. The finding that density also systematically affected reproducibility was not
considered in the meta analysis by Welton et al., but was replicated by [Braun et al.,
2012].

7.1.2 Machine learning results

Machine learning was applied to graph metrics to discriminate IBS patients from
controls as well as symptom intensity scores. Anti-learning (consistent worse than
chance classification) was encountered when using global graph metrics, with accu-
racy fluctuating around 40% for the prediction of nausea (nausea being the most
distinguished target). Nodewise graph metrics in combination with recursive feature
elimination was also attempted. The performance however was very poor: two out
of three classifiers performed only marginally above chance (overall accuracy around
55%), and the last performed below chance of equal magnitude. Looking aside from
the anti-learning paradox, there was a stronger relationship between graph metrics and
symptom scores (nausea) than with diagnostic status. One limitation however is that
the symptom based classes were not tested for differences in head motion.

Anti-learning

Anti-learning was observed for all six classifiers trained on global graph metrics from
Pearson correlation, partial correlation and precision, suggesting it was inherent to
the data set rather than unstable behaviour of any particular classifier. The results
were consistent across different graph thresholds. The inherent symmetry of a binary
classification task confirms the existence a difference in the connectomes of IBS patients
and controls, as well as between high and low symptom scores. However, for an
unknown reason, the classifiers consistently predicted the wrong label. It should be
stressed that this peculiar behaviour is not a special case of overfitting [Kowalczyk
and Chapelle, 2005]. The problem of anti-learning generally comes up in cases with
very high dimensions and small sample sizes (p ≫ N), even though the current feature
vectors were smaller than the number of observations.

The consistent below chance performance was initially suspected to be an artifact of
the LOGOCV design, which introduces slight imbalances in the classes when removing
a subject for validation. This possibility was debunked however by changing the CV
strategy to account for class imbalance (assuring equal representation of IBS and
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HC in the training and validation data). This did not, however, change the puzzling
results substantially, demonstrating the anti-learning phenomenon was of another origin.
While not necessarily always the cause of anti-learning, the phenomenon can be evoked
when using a linear (or sometimes non-linear) classifier on the exclusive-or (XOR)
problem [Kowalczyk, 2007; Kowalczyk and Chapelle, 2005]. Although not attempted in
the current work, anti-learning can and has been exploited in the past to achieve good
performance in a clinical application [Roadknight et al., 2012]. This is promising for
future work on machine learning classification applied to IBS functional connectivity.

Nodewise metrics

Expecting the whole brain to display a pronounced overall altered connectivity is
optimistic for comparably mild disorders like IBS. This would of course entail that
the alteration is expressed on a global level of the brain, contrary to only within a
particular subnetwork. It was therefore surprising to see a weaker discriminatory ability
for nodewise metrics. This does however by no means indicate that the maximum
possible performance was achieved; rather it indicates that more work should be done
to refine feature selection and algorithmic decisions. In fact, the nodewise graph metrics
contain all the same information as the global metrics.

Recursive feature elimination was used along with SVM, logistic regression and
random forest, both as an exploration of machine learning prediction, as well as an
exploratory effort of identifying a subset of brain regions implicated in IBS. Determining
the 20 strongest nodewise features revealed an interesting pattern: nearly every feature
corresponded to betweenness centrality. Notably, betweenness centrality was found to
be the least reproducible metric among the twelve tested with test-retest simulation
(Fig. 5.2), and has been reproduced in many studies [Welton et al., 2015]. Assuming
that the global metric test-retest reliability (ICC) is reflective of the nodewise reliability,
it follows that nodewise betweenness centrality is highly variable between measurements.
Considering that each node of the network (154 (Destrieux) or 80 (Desikan-Killiany)
nodes) has an associated betweenness centrality, this opens for a large body of noisy
features, some of which are likely to correlate abritrarily with the target classes. This
is in fact quite likely to have been detrimental to the performance of the classifiers.
Therefore an idea for future work could be to remove the betweenness centrality
altogether.



7.1 Graph metric reliability 81

7.1.3 Network based statistic

It was established with fairly high confidence that there exists a group difference
in the functional connectomes of IBS patients and HCs (p=0.001). However, the
interpretation of this result is a little tricky. First of all, NBS works on a network level;
it does by no means localize the aberration in question. Although there might exist
a statistically strong difference on the network level, it doesn’t evaluate to a strong
statistical difference on any particular edge [Fornito et al., 2016]. This severely limits
the application of such results in any machine learning context, although they inspire
further investigation.

The size of the pseudonetwork (i.e. the number of edges in its LCC) is contingent
upon the choice of t-value threshold. It is important to stress that although we are
free in the choice of t-value threshold, this does not affect the statistical validity
of final p-value provided from NBS [Fornito et al., 2016]. For example, selecting a
t-value threshold that would not be considered statistically significant by itself for any
particular edge, may still yield a significant p-value by means of NBS at the network
level. The LCC was identified from a t-value threshold of 2.8, revealing about 29 regions
of the Desikan-Killiany atlas. An interesting, but speculative, follow-up experiment
could be to use the NBS as a form of feature selection: doing inference only on the
nodes/edges corresponding to the observed pseudo network. Unfortunately, this would
easily fall prey to circular reasoning (also known as data leakage): choosing a set of
features based on their correlation with the classes (IBS and HC), and then resume to
use the very same features to predict the class [Kriegeskorte et al., 2009].

Agreement with the literature

Previous studies of IBS have implicated regions involved in salience processing and
emotional arousal, with particular emphasis on the insula and anterior cingulate cortex
(although a number of other regions have been reported) [Mayer et al., 2015]. A
similar study investigating brain morphometry in IBS highlighted the following regions:
bilateral insula, bilateral amygdala, bilateral hippocampus, bilateral middle orbital
frontal gyrus, left cingulate, left gyrus rectus, brainstem, and left putamen [Labus
et al., 2014]. The regions of the pseudonetwork overlapped to a large extent with the
aforementioned: right insula, bilateral amygdala, right hippocampus, left putamen, but
not by much more than what is expected by chance. The gyrus rectus and orbitofrontal
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gyrus were not identified by the NBS, but these two regions are also among the most
strongly affected by warping artifacts (both are localized in the inferior frontal cortex).
This may have potentially interfered with analysis, but it should be stressed that this
is pure speculation. [Chen et al., 2011b] notably reported an increase in white matter
integrity (determined by fractional anisotropy) specifically by the right insula in IBS
patients.

7.1.4 What to expect from an IBS classifier

The machine learning approach to predict disease status from rs-fMRI data is most
frequently applied to moderate to severe disorders like Alzheimer’s disease, Parkinson’s
disease, temporal lobe epilepsy or schizophrenia [Brown and Hamarneh, 2016; Vieira
et al., 2017]. Many studies report prediction accuracies up to 90% from brain imaging
signatures (a comprehensive table of studies with their associated accuracy score is
available from http://connectomelearning.cs.sfu.ca/table.html; pay particular
attention to the "# Scans" tab). It should be noted that these disorders affect every
aspect of the patient’s life, and are as follows expected to show profound alterations in
the brains of patients. Moreover, the vast majority of the studies use cohorts of 100
subjects or more. Needless to say, this benchmark is unrealistically high for an IBS
classifier. Only a minority of studies on the brain signatures of IBS have used predictive
modelling [Gupta et al., 2015]. However, one study from 2015 used brain morphometry
to discriminate between IBS patients and controls, and reported an overall accuracy of
70%, with a comparable sensitivity and specificity [Labus et al., 2015]. However, the
sample size was sevenfold greater than in the current work (N=212). The involvement
of the brain in IBS symptoms is not well characterized, although its presence has been
established. It should therefore in principle be possible to train a machine learning
classifier to predict disease status using functional connectivity and graph metrics with
a comparable or better performance.

7.2 Conclusive remarks

Psychiatric and functionally defined disorders are in a disadvantageous position by
relying on subjective reports and questionnaires rather than physiological measures.
Developing objective biomarkers for disorders like IBS are therefore of high priority for

http://connectomelearning.cs.sfu.ca/table.html
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aiding diagnosis, predict prognosis, subtypes or treatment response [Waller et al., 2017].
Machine learning can further work as a possible window into disease pathophysiology,
particularly in conjunction with simultaneous measurements of gut microbiome or
other aberrations implemented in IBS [Labus et al., 2019].

In conclusion, this thesis has explored network theory as a tool in the functional
neuroimaging of IBS, with particular focus on network-based biomarkers in a machine
learning framework. Furthermore, some methodological aspects of graph metric es-
timation from rs-fMRI have been investigated in detail, agreeing largely with other
studies as well as reporting novel results. Evidence was provided for the possibility of
discriminating patients from controls, despite in the form of anti-learning. Although
the anti-learning paradox was not solved, it confirms that an equal but opposite per-
formance score is in principle attainable [Kowalczyk and Chapelle, 2005; Roadknight
et al., 2012], strongly encouraging further work on the matter.
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