
In Situ Expression of CD40, CD40L (CD154), IL-12,
TNF-a, IFN-g and TGF-b1 in Murine Lungs during
Slowly Progressive Primary Tuberculosis

S. J. Mogga,*yz T. Mustafa,*y L. Sviland,*§ & R. Nilsen*z

Abstract

The distribution and expression of CD40, its ligand CD40L (154) and related
cytokines interleukin-12 (IL-12), tumour necrosis factor-a (TNF-a), interferon-g
(IFN-g) and transforming growth factor-b1 (TGF-b1) were studied in the lungs
of B6D2F1 hybrid mice during slowly progressive primary tuberculosis (TB) by
immunohistochemistry. CD40 and CD40L are implicated in cell-mediated
immunity (CMI) causing activation or apoptosis of infected cells. The phenom-
enon of apoptosis is associated with Mycobacterium tuberculosis survival. In this
study, using frozen lung sections (n¼ 33), our results showed increased CD40,
IL-12 and TGF-b1 expression in macrophages with progression of disease. High
percentages of mycobacterial antigens (M.Ags), CD40L and IFN-g expression
were maintained throughout infection, and TNF-a-expressing cells were
decreased. In lymphocytes, the percentage of IFN-g-positive cells was increased,
but CD40L and IL-12 were maintained with the progression of disease. M.Ags,
CD40 and CD40L were expressed in the same areas of the lesions. We conclude
that changes in the expression of CD40–CD40L and cytokines associated with
M. tuberculosis infection favour the hypothesis that M. tuberculosis causes resistance
of host cells to apoptosis causing perpetuation of infection.

Introduction

A mouse model of slowly progressive Mycobacterium
tuberculosis was developed in our laboratory [1]. In the
model, different phases of infection were described on the
basis of bacillary numbers, clinical signs and extent of
inflammation in the lungs. During early phase 1 (weeks
8–12), bacillary numbers increased and the mice started to
show signs of illness. Later, in phase 2 (weeks 16–37), the
mice were moderately sick but mortality was low and the
granulomas occupied one-third of the lung parenchyma.
During phase 3 (weeks 40–70), the mice became sick and
mortality was high despite no increase in bacillary numbers.
The inflammatory cells infiltrated two-thirds of the lung
parenchyma, and the bronchi became dilated with loss of
epithelial cells and architectural pattern compared to phase 1.
With progression of time, the distribution of inflamma-
tory cells became more defined in the lesions. Cells staining
with macrophage (Mf) marker CD11 increased in size and
attained a vacuolated appearance and formed separate
aggregates referred to as Mf-predominant aggregates
(MPDAs). Small cells with scanty cytoplasm formed

separate aggregates referred to as lymphocyte-predominant
aggregates (LPDAs). During initial infection at week 8, cell
aggregates were mixed and became more organized into
separate MPDA and LPDA from week 16. In the LPDAs,
only about 20–35% of the lymphocytes expressed CD3.
Some of the lymphocytes did not express CD3, CD4 and
CD8 [2]. These might be B lymphocytes or natural killer
cells. The MPDAs were formed around the LPDAs. About
5–7% of the vacuolated Mfs containing large amounts of
mycobacterial antigens (M.Ags) also expressed FasL, while
the expression of Fas was weak on these cells [3]. We also
showed that the M.Ags containing Mfs had increased the
expression of Bcl-2, while Bax was reduced in the same cells
[4]. These findings supported a hypothesis that M. tuberculosis
can modulate the regulators of apoptosis in order to survive in
Mfs causing perpetuation of infection.

Following M. tuberculosis infection, Mfs, lymphocytes
and other antigen-presenting cells (APCs) are activated
resulting in the release of cytokines enhancing inflamma-
tory cell activation and granuloma formation [5–8].
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Tumour necrosis factor-a (TNF-a) and interferon-g
(IFN-g) increase microbicidal efficiency of Mfs with
synergistic effects in Mfs activation during M. tuberculosis
infection [7]. TNF-a has a crucial role in granuloma
formation during the acute phase of M. tuberculosis
infection [9]. However, transforming growth factor-b1
(TGF-b1) released later has anti-inflammatory functions
[10, 11]. TGF-b1 has an important role in the alteration
of production of TNF-a, decreasing the expression of
interleukin-12 (IL-12) receptor, IFN-g-induced class II
expression and Mfs activation resulting in diminished
oxidative responses [11–13]. IL-12 produced is associated
with augmenting CD40L (CD154) expression on T cells
[14].

CD40L has paracrine activation of the CD40 signalling
along with IL-12 inducing the expression of CD40 and
costimulatory signals [14–16]. CD40 is a receptor belonging
to the TNF family [17, 18]. It is constitutively expressed on
Mfs, B cells and other APCs, while its ligand, CD40L, is
expressed on lymphocytes and other APCs [19]. Ligation of
CD40 was shown to provide costimulatory signals for the
development of T-cell-dependent immunity, regulating both
humoral and cell-mediated immune (CMI) response [20]. The
role of CD40 and CD40L signalling is controversial in apop-
tosis. Some data suggest that CD40 signalling induces FasL
expression, nuclear factor-kappa B and AP-1 signalling,
resulting in susceptibility to Fas-dependent apoptosis in
human primary cultures of intrahepatic biliary epithelial cells,
whereas in cancer cell lines CD40 ligation has been associated
with resistance to apoptosis [21, 22]. Similarly, during
infection with M. tuberculosis, the roles of CD40 and CD40L
in mediating immune responses are unclear [23, 24].

The main aim of this study was to investigate whether
both CD40 and CD40L were expressed in lungs during
slowly progressive primary murine tuberculosis and relate
this to the immune response to M.Ags and cytokines
(IL-12, TNF-a, IFN-g and TGF-b1) using immuno-
histochemistry. This might help in the understanding of
cellular mechanisms in M. tuberculosis infection. Our
hypothesis was that M. tuberculosis infection modulates
CD40–CD40L signalling, in concert with cytokines, in a
manner that Mfs containing bacilli become refractory to
activation by altering the expression of these molecules,
thereby safeguarding them and the bacilli from CMI killing.

Materials and methods

Mice. B6D2F1 hybrid mice were purchased from Bom-
holt Gård Breeding and Research Centre Ltd (Bomholtgård,
Denmark). They were infected intraperitoneally with
1.5� 106 CFU of H37Rv M. tuberculosis and killed at
specific time points, as previously described [1]. Three
mice were killed for each time point at weeks 8, 12, 16,
20, 24, 29, 33, 37, 41, 52, 57 and 70. The lungs were fixed
with Tissuetek� (OCT Compound, Leica Microscopi AS,

Oslo, Norway) and frozen 4 years ago in a deep freezer at
�76 �C and used for the current study. Sections were
placed onto 0.1% poly L-lysine solution-coated slides
(Sigma Diagnostics Inc., St. Louis, MO, USA). The sec-
tions were also stored at �76 �C until time of staining.
Serial sections were stained with haematoxylin and eosin,
anti-bacille Calmette–Guérin (BCG) (Dako A/S, Copenha-
gen, Denmark), anti-CD40, -CD40L, -IL-12, -TNF-a, -
IFN-g and anti-TGF-b1. Anti-BCG was used for detecting
M.Ags. Mycobacterium bovis BCG and M. tuberculosis are
highly similar [25], and antigens detected by anti-BCG
were, therefore, referred to as M.Ags in our results.

Procedures for staining. Staining was carried out
according to modified standard procedures in use by our
laboratory and has been described previously [1]. Briefly,
frozen sections were left at room temperature for 30 min
and then in 50% acetone for 30 s and absolute acetone for
5 min. Sections were treated with 0.3% H2O2 for 20 min
to block endogenous peroxidase activity. Nonspecific
binding was blocked for 15 min with drops of avidin and
biotin solutions (Vector Laboratories Inc., Burlingame,
CA, USA), washing in between for 5 min with
phosphate-buffered saline (PBS). Further blocking of non-
specific receptors was achieved by either 10% normal
swine serum (NSS) in 4% bovine serum albumin (BSA)
in Tris-buffered saline (TBS) pH 7.20 for staining with
anti-BCG or 10% normal rabbit serum (NRS) in 4% BSA
in PBS pH 7.20 for 60 min at room temperature for other
antibodies used. Primary antibodies consisted of
anti-BCG, -CD40, -CD40L, -IL-12p35a, -TNF-a,
-TGF-b1 and anti-IFN-g at dilutions specified in
Table 1, all in 1.5% NSS or NRS/4% BSA in TBS or PBS
pH 7.20, respectively. The test and control sections were
incubated in a humidified chamber at room temperature
for 60 min. Negative controls were test sections treated
with PBS instead of primary antibody. After washing as
described above, sections were incubated for 30 min with
either swine anti-rabbit IgG only for anti-BCG or rabbit
anti-goat IgG at dilution of 1 : 100. The slides were
washed and incubated with avidin–biotin complex (ABC-
Dako A/S, Glostrup, Denmark) for 30 min and washed
again. Then, sections were immersed once in 0.1%
Triton�X-100 in TBS pH 7.6 solution (Sigma-Aldrich
Fine Chemicals, St. Louis, MO, USA) and rinsed with
PBS. Visualization was achieved with application of
distilled 3-amino-9-ethyl carbazol (Vector Laboratories
Inc.) prepared just before use. Slides were counter stained
with Harris haematoxylin and mounted with cover slides
and DPX Vector Immunomount.

Cell counting. The slides were evaluated for immune
staining with respective antibodies. Cells were counted
using Leitz microscope (Wetzlar, West Germany) at
magnification �40 objective and ocular piece fitted with
10� 10 mm graticule. Counting was done by random
selection of four to five fields with aggregates of moderate
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or strong staining in different morphological areas in the
lungs. Cells at the periphery of the sections were excluded.
Based on these criteria, all stained cells and the total
number of nucleated cells were counted in each field.
Percentage of stained cells was calculated from averages
of overall total of cells counted and recorded as percentage
of all cells. Data was analysed by SPSS 9.0 statistical program
2000. The Mann–Whitney U-test was used to compare two
independent groups.

Results

Expression of M.Ags, CD40, CD40L, IL-12, IFN-g, TNF-a and

TGF-b1 in lesions of infection

There were few Mfs expressing M.Ags, CD40, CD40L,
IL-12, IFN-g, TNF-a and TGF-b1 during week 8. From
week 12, however, variable numbers of positive cells were
observed. Figures 1 and 2 show the percentages of M.Ags,
CD40, CD40L, IL-12, IFN-g, TNF-a and TGF-b1
during the two phases of infection.

M.Ags staining was strong and cytoplasmic and detected
in MPDAs only (Fig. 1A). The percentage of M.Ag-positive
Mfs was low during early infection at week 8, increasing
dramatically at week 12 and then maintained during both
phases 1 and 2 with no significant differences between the
two phases (P¼ 0.396). In normal looking infected lungs,
M.Ags were occasionally detected in bronchial epithelial
cells during phase 1 only.

CD40 staining was strong and expressed on membranes
and cytoplasm. Staining was detected only in MPDAs
(Fig. 1B). The staining varied from moderate during initial
infection to very strong in late phase of infection. During
phase 1, the percentage of CD40-positive cells was low.
During phase 2, a statistically significant increase in the
percentage of positive cells was observed (P¼ 0.04). In
normal looking infected lungs, CD40-positive staining
was detected in endothelial cells and alveolar macrophages
(AMfs) as well as in smooth muscle of the bronchial tree.

CD40L staining was variable in expression (Fig. 1C). The
strength of staining varied from moderate to strong corres-
ponding with duration of infection. The staining was mod-
erate during early infection at week 8 and very strong at week
70. In MPDAs, during phase 1, there was a small percentage
of CD40L-positive cells at week 8, gradually increasing to a
peak at week 24. A gradual decrease was then observed but
there was no statistical difference between the phases. In
LPDAs (Fig. 1D), the percentage of CD40L-positive
lymphocytes was less compared with that of positively
stained Mfs. During phase 1, CD40L-positive lymphocytes
were detected at week 12. There was variable expression
during phase 1 and 2 but with no statistical difference. In
normal looking infected lungs, CD40L expression was
strong during early infection and detected in AMfs,
bronchial smooth muscle and some epithelial cells.

IL-12 expression was mainly cytoplasmic and varied
from moderate to very strong in the positive cells
(Fig. 2A,B). In some Mfs, however, anti-IL-12 p35a
staining was membranous and granular. In MPDAs
(Fig. 2A), during phase 1, the percentage of IL-12-positive
cells was low compared with M.Ag- and CD40-positive
cells at the same time points. The pattern shows few
IL-12-positive cells during phase 1, but during phase 2, a
significant increase was observed and maintained through
the entire period (P¼ 0.007).

There was a low percentage of IL-12-positive cells in
LPDAs (Fig. 2B) compared with those in the MPDAs.
During phase 1, the percentage of positive cells increased
from week 20 and was maintained during phase 2. In
infected normal looking lungs, IL-12p35a was strongly
positive in AMfs with cytoplasmic and membranous
granularity. Some bronchial epithelial cells were also
positively stained.

IFN-g was expressed diffusely (Fig. 2C,D). The intensity
varied from weak to moderate and strong with duration of
infection. There was a lower percentage of IFN-g-positive
cells compared with M.Ag- and CD40-positive cells in the
same areas during both phases. In MPDA (Fig. 2C), the
percentage of IFN-g-positive cells increased during phase 1

Table 1 Antibodies used in the immunohistochemical staining

Dilution and specificity Source

Antibodies
Rabbit polyclonal IgG 1 : 5000 Mtb antigens (anti-BCG) Dako A/S, Glostrup, Denmark

Goat polyclonal IgG (T-20), Sc-1731 1 : 50 anti-CD40 Santa-Cruz Biotechnology, Santa Cruz, CA, USA

Goat polyclonal IgG (K-19), Sc-1594 1 : 00 anti-CD40L Santa-Cruz Biotechnology, Santa Cruz, CA, USA

Goat polyclonal IgG (M-16), Sc-9350 1 : 50 anti-IL-12Ap35 Santa-Cruz Biotechnology, Santa Cruz, CA, USA

Goat polyclonal IgG AF-410NA 1 : 50 anti-TNF-a R&D Systems, Minneapolis, MN, USA

Goat polyclonal IgG (D-17), Sc-9344 1 : 50 anti-IFN-g Santa-Cruz Biotechnology, Santa Cruz, CA, USA

Goat polyclonal IgG Sc-146-G 1 : 50 anti-TGF-b1 Santa-Cruz Biotechnology, Santa Cruz, CA, USA

Secondary antibodies
Biotinylated rabbit anti-goat IgG (HþL) BA-5000 1 : 200 Vector Laboratories, Burlingame, CA, USA

IFN-g, interferon-g; IgG, immunoglobulin G; IL-12, interleukin-12; TGF-b1, transforming growth factor-b1; TNF-a, tumour necrosis factor-a.
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and declined at week 37. There was, however, no difference
between phases 1 and 2 (P> 0.2). In LPDA (Fig. 2D), the
distribution of IFN-g-positive cells was low and stable as
compared with those in MPDAs. During phase 2, the per-
centage of positive cells was increased compared with phase 1
(P¼ 0.027). In normal looking infected lungs, IFN-g expres-
sion was weak and diffuse in AMfs and smooth muscle.

TNF-a expression was cytoplasmic and varied from very
strong during initial infection to moderate and/or strong
during late phases of infection (Fig. 2E). Low numbers of
TNF-a-positive cells were observed compared with M.Ags
and CD40. During phase 2, a significant decrease in the
percentage of TNF-a-positive cells was observed as
compared with phase 1 (P¼ 0.011). No TNF-a-positive
cells were observed in LPDAs. In infected normal looking
lungs, TNF-a-positive cells were occasionally detected in
AMfs and endothelial cells as well as in smooth muscle cells.

TGF-b1 expression was only observed in MPDAs
(Fig. 2F). Anti-TGF-b1 staining was granular, cytoplasmic
and membranous varying from moderate to very strong in
positive cells. Stronger signals were observed during the

middle half of phase 2. The percentage of positive cells was
initially low and then increased gradually during phase 1,
whereas during phase 2, a significant increase was observed
as compared with phase 1 (P¼ 0.011). In infected normal
looking lungs, TGF-b1 was strongly positive in AMfs.
Some bronchial epithelial cells were also positively stained.

Correlation between CD40, CD40L, IL-12 and mycobacterial

antigens

Figure 3A-D shows the distribution of M.Ags, CD40,
CD40L and IL-12 during infection with M. tuberculosis
in slowly progressive disease. In MPDAs, M.Ag-positive
cells were distributed in areas that correspond with the
same areas staining with CD40-positive cells. M.Ag-
positive cells were distributed in the pale staining areas,
which varied in size and seem to increase with duration of
infection. Strong CD40-positive cells were similarly seen
in the same areas; however, there were more M.Ag-positive
cells compared with CD40-positive cells in the lesions.
Nonetheless, the patterns of staining with anti-CD40
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Figure 1 Distribution of infected cells positively stained for mycobacterial antigens (M.Ags) and anti-CD40, -CD40 ligand in lung lesions of B6D2F1

hybrid mice with slowly progressive primary tuberculosis analysed with immunohistochemistry. Total of 33 mice were killed, three mice per week. Weeks

8–37 and 40–70 represent phases 1 and 2 of infection, respectively. The bars represent percentages of positively stained cells out of the total, and error bars

represent standard errors of the means (SEM). Percentages of positive cells in macrophage-predominant aggregates (MPDAs) are shown in A–D. With

progress of infection, CD40-positive cells increased in MPDAs during phase 2. The distribution of infected cells stained with anti-CD40, CD40L (154)

in MPDAs and lymphocyte-predominant areas (LPDAs) is shown in C and D. There was no difference in the percentages of CD40L-positive cells

in both MPDAs and LPDAs with progress of infection.
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and M.Ags positively correlated through the phases
(Fig 1A,B). The areas of cells positive for anti-CD40L
colocalize with areas of cells positive for M.Ags, IL-12
and CD40 (Figs 3A,D and B,C). In 26 of 33 serial sections
that were 5–15 mm thick, CD40L-positive cells were
distributed in the same areas containing CD40 and
M.Ag-positive cells. The pattern of expression of CD40,
CD40L, M.Ags and IL-12 was similar during early phase 1
(Figs 1A-C and Fig. 2A), but higher values of CD40 were

observed during phase 2. In lymphocyte aggregates, the
percentages were low for both CD40L and IL-12 and
patterns were different (Fig. 1D and 2B).

Discussion

We report for the first time, in situ distribution and
expression of CD40/CD40L in murine lungs with slowly
progressive primary tuberculosis infection. Our findings,
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showing that CD40 and CD40L were expressed during
H37Rv M. tuberculosis infection of a slowly progressive
primary disease, contradict previous results from human
and other in vitro studies stating that CD40L was of no
importance in M. tuberculosis infection for the develop-
ment of CMI [23, 24]. Although CD40 is shown to be a
B-cell marker, we observed increased expression of CD40
in Mfs in MPDAs. CD40 is widely distributed in various
cell types including Mfs, B cells, lymphocytes, dendritic
and other cells [19, 26, 27]. During early infection, very
few CD40-positive cells were observed in the LPDAs.
Previous results from the same model showed that some
of the cells in LPDAs were not positive with the T-cell
marker CD3, CD4 or CD8 [2]. We suggest that the
CD40-positive cells in the LPDAs could be B cells.

Our results show that CD40 and CD40L were
coexpressed in some Mfs. However, there was a low
percentage of CD40L-positive cells in lymphocyte
aggregates, although constitutive expression is reported in
normal lymphocytes [28]. The suppression of CD40L
expression in LPDAs might be due to the influence of
M. tuberculosis infection. This may constitute a possible
way by which M. tuberculosis evades CMI killing inside
infected Mfs. However, it is not known whether CD40L
expressed in Mfs aggregates may be another source of
ligand for CD40 other than that on lymphocytes. A soluble
source of CD40 (sCD40L) has indeed been reported [21, 28].

Although cognate interaction between CD40 and its
ligand CD40 (154) has multiple functions in humoral
and cell-mediated immunity [20], the role in the latter is
not yet clear. We evaluated cytokines involved in CD40
signalling [29–31] and compared their expression with
M.Ags. We have shown that IL-12, IFN-g and CD40

expression was increased during late infection (phase 2),
whereas CD40L-expressing cells were maintained at about
10% (Fig. 1B). However, large and vacuolated Mfs
became predominant during late infection, suggesting an
increase in secretory capacity and shift in the immune
response. M.Ags thus seem to partake in the shift provid-
ing continuous stimulus and eliciting cytokine release and
regulation. The changes observed correlates with clinical
observations described earlier during phases 1 and 2 [1, 3].
Thus, the sustained release of CD40L and increase in
CD40 with progression of infection in concert with
increased IL-12 suggests the importance of CD40L signal-
ling in antigen-driven T-cell-mediated activation of Mfs
during M. tuberculosis infection in mice. We, therefore,
concur with previous studies, which showed that CD40–
CD40L interaction plays a critical role in the immunity
against intracellular pathogens through upregulation of
IL-12 [31–36].

Our data show an inverse relationship in the expression
of TNF-a and TGF-b1 during early and late infection.
The expression of TNF-a during early infection was
proportional to that of M.Ags, whereas reduction was
observed during late infection. Conversely, TGF-b1 was
increased with the progress of infection. We have shown
that high M.Ag-positive Mfs were maintained during late
infection. TNF-a acts as a proinflammatory cytokine
playing an important role in granuloma formation and
immune protection during early phase of infection, while
TGF-b1 in low concentrations has also been shown to be
proinflammatory [37]. Results from our model show that
there was an increase in the expression of TGF-b1-positive
cells and decreased expression of TNF-a in the infected
cells with progression of infection, whereas high percentage
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of M.Ag-positive cells was maintained in the lesions. This
finding suggests that the persistence of high amounts
of M.Ags despite microbicidal activities of these cytokines
may be responsible for sustained recruitment of inflamma-
tory cells and perpetuation of infection. In high concen-
trations, TGF-b1 has been shown to be inhibitory to the
proinflammatory effects of TNF-a and also cause the
deactivation of Mfs [10, 37–41], thus perpetuating the
infection.

M. tuberculosis has been shown to successfully
modulate the components of the apoptotic pathways
[3, 4, 42, 43]. The downstream events leading to
apoptosis or resistance of M.Ags-containing Mfs to
apoptosis are complex and as yet, unclear. Some studies
suggest that CD40 ligation induces the expression and/
or activation of both ionomycin and anti-immunoglobulin
M (IgM) resulting in the activation of cystein protease-
32 (CPP32) [44] and directly implicates CD40 in
apoptosis. Other studies suggest that CD40 signalling
may be in synergy with increased expression of Bcl-xL
resulting in increased resistance of the same cells to
apoptosis [45]. Despite numerous claims of CD40
involvement in apoptosis, elucidating its direct role
remains a problem. Cross-linking CD40 on B cells
has been suggested to prevent apoptosis in B cells
[46], and this might apply on Mfs as well. CD40
might also be linked via some mechanism to tyrosine
kinase (PTK) cascade and be directly involved in
apoptosis [47]. Our current results show that both
CD40 and CD40L were expressed and distributed in
lesions of M. tuberculosis infection. This suggests that
M.Ags can induce and modulate their expression. In
the same model, we have previously shown that
M. tuberculosis infection was associated with increased
expression of Bcl-2 in M.Ag-containing cells and Bax
was reduced in the same cells [4]. Further results from
our laboratory have shown that M. tuberculosis induces
the upregulation of FasL and reduces the expression of
Fas on the infected Mfs, thus sparing these
M.Ag-containing cells from CMI-induced apoptosis
[3]. Together, these studies indicate that CD40–
CD40L signalling has an anti-apoptotic role and this
phenomenon is increasingly becoming associated with
M. tuberculosis survival [45, 48].

We conclude that changes in cognate interaction and
expression of CD40–CD40L and cytokines during
progress of disease were associated with M. tuberculosis
infection. Although host mechanisms operate to resolve
infection, M. tuberculosis modulates cytokine (IL-12p35a,
TNF-a, IFN-g and TGF-b1) release and CD40 –CD40L
expression in infected cells. This may be important in the
understanding of how Mfs containing M. tuberculosis
become refractory to CMI killing. We suggest further
in vitro studies to confirm the role of CD40 signalling in
M. tuberculosis-induced apoptosis.
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