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Abstract

This thesis focuses on different beyond Standard Model theories, and the use of statistical methods to investigate them.
Supersymmetry is considered in different contexts. First, the supersymmetry breaking scheme of gaugino mediation

is investigated. These models were previously thought to be ruled out after observation of the lightest Higgs with mass
125GeV, but we show that non-vanishing trilinear terms can provide a sufficiently large Higgs mass via mixing in the
stop sector.

Introducing the concept of machine learning, two models are investigated using different machine learning tech-
niques. A two-Higgs doublet model with mass degenerate neutral Higgses is studied, and deep learning is used to
separate the two CP-states whose decay products have very similar kinematics. The challenge of prior dependence
associated with problems relying on simulated training data and the probabilistic interpretation of classifier output is
discussed. Second, another supersymmetric scenario, this time with a sneutrino as the lightest observable supersymmet-
ric particle, is considered from a collider perspective. A boosted decision tree is used to detect signal events in datasets
with small signal mixture parameters.

Later, a supersymmetric scenario with a gravitino as lightest and neutralino as next-to-lightest supersymmetric
particle is considered in a cosmological context. The presence of late-decaying neutralinos can potentially come in
conflict with constraints from Big Bang Nucleosynthesis, and we investigate a specific region in parameter space where
resonant annihilation via a heavy Higgs lowers the neutralino relic abundance. In addition to this constraint, collider
searches and the observed dark matter abundance are combined to form a likelihood which guides a scan through the
parameter space.

Dark matter is further investigated from a model-independent viewpoint. The potentially sharp gamma-ray features
in a signal from dark matter annihilation into Standard Model excited meson states are simulated, and we show how
such a signature would stand out from the astrophysical background. The relevant energy range for this would be what
has come to be called the “MeV-gap”, since this range is astrophysically relatively unexplored.
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Chapter 1

The short introduction

The Standard Model of particle physics comprises what we know about force and matter, and within its domain of
validity, has been well tested and verified. Unfortunately, said domain of validity is not defined. Since it is not possible
to probe arbitrarily short length scales — or extremely high energies — there is no telling what may be hiding there.
Venturing to higher energy scales might reveal new particles, unifying forces, restoring symmetries, a physical model
containing our Standard Model only as a subset, or something entirely different. The Standard Model of physics is
a result of theoretical models invented, tested, discarded, adjusted and improved, of experiments conducted at ever
increasing precision, magnitudes and energies, of measurements from laboratories beneath the ground and under ice,
and of observations from telescopes pointed at the universe, detecting processes beyond our grasp in distance, time and
energy scale. And it is consistent, but it is not complete.

The average photon in the universe is part of the Cosmic Microwave Background (CMB) radiation, and consequently
has an energy of around 6.626534 ⋅10−4 eV, corresponding to a temperature of 2.72Kelvin [7]. The average place in
the universe is thus, on human length scales, completely cold, dark and quiet. Dark because the CMB photons have so
little energy that they fall well below the range of visible light. Cold because there is nothing but the CMB there to heat
it up. Quiet because sound waves cannot propagate in empty space.

However, looking at the CMB with different eyes, e.g. through a large telescope, reveals 13.77 billion years old
quantum fluctuations, indicating that the average place in the universe has not always been dark, cold and quiet. Quite
the contrary, it shows that the universe has once been affected, if not dominated, by quantum fluctuations.

Looking closer at the empty space, were it possible, would reveal a busy environment of vibrating and interacting
quantum fields. Looking even closer, perhaps past a quantum foam, could reveal the fabric of spacetime, if there is such

Figure 1.1: Planck data showing the CMB, which was created during the era of recombination, when the universe was
around 400 000 years young. The irregularities are called primordial fluctuations, and they are density variations from
the early universe. These are probably the origin of all the structures in the universe, and according to the model of
inflation stem from quantum fluctuations. Image from sci.esa.int/planck.
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a thing. Listening more closely, would sound the rumbling and chirping of gravitational waves.
It is not a given that it is practically possible to look close enough, i.e. to apply enough energy, for the basic building

blocks of the universe to reveal themselves. Neither is it a given that there exists an ultimate theory which is not merely
the low-energy reduction of yet another model, but rather the apex of theories describing the universe. Fortunately,
there is even less reason to believe that we are approaching the limit of how close we can look. We can smash particles,
look and listen at the universe, and we can do our best to come up with theories and ways to test them.

1.1 Our universe. . . so far

Many a young physicist has at some point gone to ICTP in Trieste, CERN in Geneva, or one of the many other large
and inspiring physics institutions, and come back with a mug displaying some variation of

L =√
g {R− 1

4
Fμν Fμν

+iψ̄ /Dψ + Ψ̄iYi jφψ j +h.c.

+∣Dμ φ ∣2 −V(φ)}≅ Our universe . . . so far .

Although this popular formulation is somewhat simplified, it does encapsulate what is known about the universe, so
far. The first term of the expression is perhaps the one that looks the least threatening, but it denotes the curvature of
spacetime and represents the theory of gravity, which has not been unified within one quantum field theory together with
the three other fundamental forces, so far. The second term contains these fundamental forces; electromagnetism, the
weak and the strong nuclear forces. In the Standard Model, these forces are carried by mediating particles all belonging
to the family of bosons. Moving on to the second line, there are the fermions, represented by spinors. These have
half-integer spins, and constitute all matter particles observed, so far. The next terms contain the only scalar particle in
the Standard Model, the Higgs boson. The spontaneously broken symmetry of the Higgs potential, see fig. 1.2, results
in a non-zero vacuum expectation value of the Higgs field, which in turn provides all particles which interact with the
Higgs, a mass. All in all, these are the particle interactions in the universe which particle physics is able to explain, so
far. The Standard Model particle content and interactions are artistically represented in fig. 1.3.
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Figure 1.2: A sketch of the Higgs potential V(φ) = μ2(φ †φ)+λ(φ †φ)2
, where the characteristic “Mexican hat” shape,

here projected onto two dimensions, arises when μ2 < 0 and λ > 0. The dark red circle symbolises a continuum of
vacuum states.

1.2 . . . and beyond

There are of course many ways to approach our favourite question What is beyond the Standard Model?, and the
recurring strategy throughout the present work is

1. Choose a model

2. Make predictions

3. Identify allowed parameters

4. If possible, aid in detection

5. Hope for observation. Have a go at another model in the meantime

Item 1 in this list can for instance be approached by trying to explain observations and phenomena or answer questions
currently beyond the Standard Model. At the time of writing, among the most prominent of these concern, in no
particular order, dark matter, dark energy, neutrino masses, whether gravity can be quantized and unified with the other
fundamental forces, the matter-antimatter asymmetry in the universe, inflation and the hierarchy problem. All these
open questions suggest that the Standard Model must be extended, and a candidate model should address at least some
of these, while performing as well as the Standard Model within known regimes.

Item 2 involves performing calculations or doing simulations. A model’s prediction can for instance be the physical
mass spectrum, which can be calculated numerically using programs such as SPheno [8], used in Trilinear-augmented
gaugino mediation [1], Softsusy [9], used in An open window for high reheating temperatures in gravitino dark
matter scenarios [4] and Enabling sneutrino detection in weak signal scenarios using machine learning methods [6],
and SuSpect [10]. For simulating collider events and decays, some of the available tools are Pythia [11, 12], used in
Signal mixture estimation for degenerate heavy Higgses using a deep neural network [2], Smoking gun dark matter
signatures in the MeV range in [3], and MadGraph [13], used in [1] and [4].
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Figure 1.3: The matter particles, Higgs boson and force carriers of the Standard Model. The lines connect interacting
particles, and the invisible y-axis as well as the circle diameters indicate roughly the mass hierarchy.

Item 3 can be done by scanning over the free parameters of a model and see how well its predictions fit with
observations. This can be done in several ways, the simplest being via a grid scan which divides the parameter space
into excluded and allowed regions, as is done in [1] and [2], and more sophisticated methods involving calculating
likelihoods and selectively exploring the parameter space, as is done in [4].

Item 4 can amount to many things; in [1], allowed and excluded regions of the model’s parameter space are
presented; in [2], a machine learning method for better separating mass degenerate CP states is presented; in [3],
astrophysical gamma-ray signals from dark matter annihilation are simulated; in [6], machine learning and statistical
methods for detecting signals from supersymmetric processes are proposed.

The following contains an introduction to all the topics covered in the publications, and discussions of the currently
unpublished results. The objective of this text is to enable anybody with a degree in physics or mathematics to
understand all the results in this work and how to obtain them.

4



Chapter 2

The long introduction

The importance of symmetry in
modern physics cannot be overstated

A. Zee [14]

2.1 Quantum fields

Quantum field theory is the union of quantum mechanics and special relativity into one mathematically powerful, and
equally heavy, framework, where the basic building blocks of nature and their mutual interactions are described as fields
with different charges.

The dynamics of a D-dimensional physical system are contained in the action S, a functional of the fields, represented
as a spacetime integral over the Lagrangian density along the path of the system,

S ≡ ∫ dDx L (Φi(x),∂μ Φi(x)) , (2.1)

meaning that all the properties of the i fields in in the system as well as their interactions must be contained within
the Lagrangian density. The above equation evidently imposes a restriction on the mass dimension of the Lagrangian
density, reciprocal to the dimension of the theory. Furthermore, the Lagrangian density can contain only terms invariant
under Lorentz1 transformations in the D-dimensional spacetime as well as any internal symmetries.

2.1.1 Scalar fields

The Lagrangian is a function of the fields and their derivatives, and the simplest kind of field is a scalar field. A
scalar field describes a particle carrying zero intrinsic angular momentum, or spin, and is invariant under Lorentz
transformations. The only scalar particle in the Standard Model is the Higgs boson.

Possible terms in the Lagrangian describing a simple theory containing a single scalar field φ(x) are

L = ∂μ φ∂ μ φ + tφ +m2φ 2 +g3
triφ

3 +g4
quartφ

4 . (2.2)

Feynman graphs for the processes in this Lagrangian are depicted in fig. 2.1. The first term in eq. (2.2) is a kinetic term,
and helps ordain the dimensionality of the scalar field itself, by way of the dimensionality condition of the Lagrangian
density, see eq. (2.36). Once the dimension of the field is set, so can the dimensions of the different couplings. In a
renormalisable theory, the couplings must be either dimensionless or have positive mass dimension, which is why it

1The Lorentz group is the group of all transformations which leave the quantity ημν xμ xν invariant, see section 2.2.
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Figure 2.1: The tadpole, mass insertion and three- and four-point interactions of a scalar field.

is not always possible to keep adding higher power terms in the Lagrangian. The second term in eq. (2.2) is called a
tadpole term, and is allowed in this form since the scalar field is Lorentz invariant on its own, and provided that it is not
charged under any other symmetries.

The third term represents a mass, as indicated by the notation, made obvious by the fact that the parameter m must
have mass dimension one. The subsequent terms represent interactions of coupling strengths g, and in this simple
example containing only one scalar field, there are of course only self-interactions.

Considering only the free part of the scalar Lagrangian, i.e. the mass and kinetic terms, and calculating the equations
of motion by solving the Euler-Lagrange equation

∂L

∂φi
−∂μ ( ∂L

∂(∂μ φi)) = 0 , (2.3)

yields the Klein-Gordon equation
∂μ ∂ μ φ +m2φ = 0 . (2.4)

This equations also holds for pseudoscalar fields, meaning scalar fields which change sign under parity inversion.

Bose-Einstein statistics

Since the scalar field has spin zero, it belongs to the family of bosons. The perhaps most striking property of bosons
is that an unlimited number of them can occupy the same place and quantum state — an ability often mistakenly
attributed to master students. Collections of bosons are described by Bose-Einstein statistics, which assumes identical
and non-interacting particles, and gives the expected number of particles ni in energy state i as

ni(Ei) = gi

e
Ei−μ

kT −1
, Ei > μ , (2.5)

where Ei is the energy of the i’th state, μ the chemical potential, gi the degeneracy of energy level i, k the Boltzmann
constant and T the temperature.

2.1.2 Vector fields

Leaving behind the scalar field, all bosons in the Standard Model apart from the Higgs boson, are found one step up
the spin ladder. They have spin value one, i.e. they are represented by vectors, are therefore called vector bosons,
and carry a Lorentz index. For a quick illustration, consider a free photon, a massless vector boson which interacts
electromagnetically, described by the simple Lagrangian

L = −1
4

Fμν Fμν . (2.6)

The electromagnetic field strength tensor is defined as Fμν = ∂ μ Aν −∂ ν Aμ , and the resulting equations of motion are

∂μ Fμν = 0 , (2.7)

which yield the Maxwell equations when defining Aμ = (φ ,A).
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From here, it is of course possible to keep climbing the spin ladder, and the next step would lead to the graviton, the
hypothesised quantum of gravity, which would need to have a spin eigenvalue of two, since gravitational waves are
tensor waves in four dimensions — but that topic is (unfortunately!) far beyond the scope of the present work. Also,
massless particles of spin higher than one, and massive particles of spin higher than and including one, render their
theory non-renormalisable. The presence of the massive spin one W± and Z0 in the Standard Model particle zoo thus
advertises a longer mathematical story. But first: How vector bosons connect via symmetries to the remaining particles.

2.2 Symmetries

Simply put, a symmetry is an invariance under a set of transformations. Exactly what is invariant is certainly a crucial
point, and in particle physics it is usually the Lagrangian.

The Standard Model itself is a collection of three symmetry groups, and the following section contains a brief
introduction to the relevant group theoretical concepts and an overview of the Standard Model groups.

2.2.1 Symmetry groups

A Lie group is a group whose elements are specified by one or more continuous parameters which vary smoothly.
All groups encountered in the present work are matrix Lie groups. These are subgroups of the general linear group
GL(n;C), containing all invertible n×n matrices with complex entries. Every Lie group has an associated Lie algebra,
whose dimension is equal to the dimension of the group itself.

Denoting a basis of the Lie algebra by the n×n matrices T a, referred to as the generators of the group, the algebra
is classified by the relation [T a,T b] = f ab

c T c , (2.8)

where the f ab
c are called the structure constants of the Lie algebra. Such a relation is sometimes called a Lie bracket.

For non-Abelian groups, meaning groups whose elements do not commute, the generators are normalised such that

TrT aT b = 1
2

δ ab . (2.9)

Elements of the Lie group are obtained from elements of the Lie algebra through

Lie algebra
exp→ Lie group

exp(iωaT a) ∈ SU(N) .
In physics, a symmetry is an operation or transformation which does not change the laws of the system, and a symmetry
group the group of such transformations.

External symmetries

Symmetries involving transformations of spacetime itself are referred to as external symmetries. The aforementioned
Lorentz transformations belong to the Lorentz group: The matrix Lie group of linear transformations of the (1+3)-
dimensional real vector space which leave ημν xμ xν invariant, also known as the orthogonal group O(1,3). Together,
spacetime translations and the Lorentz transformations, i.e. boosts and rotations,

xμ → x′μ = Λμ
ν xν +aμ , (2.10)

generate the Poincaré group, the symmetry group of special relativity.
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If Pμ are the generators of translation, and Mμν the generators of Lorentz transformations, then these together are
the generators for the Poincaré group, and the algebra of the group is given by the commutation relations

[Pμ ,Pν] = 0[Mμν ,Pσ ] = i(ημσ Pν −ηνσ Pμ)[Mμν ,Mρσ ] = i(ημρ Mνσ −ημσ Mνρ −ηνρ Mμσ +ηνσ Mμρ) . (2.11)

Internal symmetries

Perhaps more relevant for particle physics are internal symmetries, which act on the fields themselves. The symmetry
groups which give rise to the three fundamental forces in the Standard Model are

SU(3)C ×SU(2)L ×U(1)Y . (2.12)

Here, SU(N) denotes the special unitary group, containing n×n unitary matrices with unit determinant. SU(N) has
N2 −1 independent generators and is a subgroup of U(N), which contains all n×n unitary matrices. These are again
subgroups of GL(n;C), so

SU(N) ⊂U(N) ⊂ GL(n;C) . (2.13)

The three symmetry groups of the fundamental particle interactions in the Standard Model are briefly presented in the
following.

2.2.2 Interactions

A gauge transformation is a local symmetry transformation which leaves the Lagrangian of a field theory invariant, and
the set of such transformations together form a Lie group, in short referred to as the gauge group of the theory. A theory
can be represented in different gauges, connected via gauge transformations.

The generators of a gauge group describing a field theory are themselves fields, referred to as gauge fields. These
transform under the vector representation of the Lorentz group, meaning that they are vector fields. Hence, upon
quantisation the quanta of these fields are bosons with spin quantum number one, and this is where the vector bosons,
or gauge bosons, come from.

Quantum electrodynamics

The gauge boson of the electromagnetic force is the photon, which interacts with all particles carrying electric charge Q.
The gauge group is that that of local U(1) transformations, meaning phase shifts.

As quantum electrodynamics is unified with the weak force, the weak hypercharge Y is defined, which relates the
electric charge and the third component of weak isospin via T3 = Q− Y

2 ,2. In contrast to the symmetry groups for the
other fundamental interactions, U(1)Y is Abelian.

Weak interactions

These interactions are sometimes called quantum flavourdynamics, but for historical reasons the name never really
stuck. The charge is flavour, and the weak interaction discriminates between chiralities, see eq. (2.38), in such a way
that only left-chiral fields are charged under it, while right-chiral fields are weak singlets.

The gauge bosons are the W± and Z0. Since the Z0 is electrically neutral, it couples fermion-antifermion pairs. The
exchange of a W± boson changes the flavour of e.g. an electron to an electron neutrino, or a down- to an up-quark.
Accordingly, left-chiral fermions form doublets in which the components are treated as different states of the same

2Sometimes, the expression is given as T3 =Q−Y , implying that the hypercharge eigenvalues are expressed as ± 1
2 and not ±1.
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particle. These states thus have opposite isospin values, and since the number of flavour states available is two, the
gauge group of this interaction is SU(2)L. The generators of the group are the 22 −1 = 3 Pauli matrices,

σ1 = (0 1
1 0) , σ2 = ( 0 −i−i 0 ) , σ3 = (1 0

0 −1) . (2.14)

The reason behind the nomer “weak” is that the interaction strength is several orders of magnitude lower than that of
the other fundamental forces. This is because the gauge bosons are massive, and decay after a short while. Gauge boson
masses violate gauge symmetry, and SU(2)L is indeed broken at low energies. The symmetry breaking is discussed
in section 2.3.

Quantum chromodynamics

Quarks carry a charge commonly referred to as colour charge — hence the “chromo”. It can be in one of three states,
and by an analogy extended past the familiar positive and negative charges of electromagnetism, the three possible
colour states are red, green and blue. The three different states call for a three-dimensional group, and so SU(3) is used
to describe these interactions. Particles which carry colour are said to be charged under SU(3)C.

The gauge fields of SU(3)C are the gluons, here denoted Aa
μ , and there are 32 −1 = 8 of them. The Lie algebra of

the group is spanned by the Gell-Mann matrices λ a, a = 1, . . . ,8, of which only the first three are listed here

λ1 = ⎛⎜⎝
0 1 0
1 0 0
0 0 0

⎞⎟⎠ λ2 = ⎛⎜⎝
0 −i 0
i 0 0
0 0 0

⎞⎟⎠ λ3 = ⎛⎜⎝
1 0 0
0 −1 0
0 0 0

⎞⎟⎠ . (2.15)

The gluons are also charged under SU(3)C, which causes loops of virtual gluons in the vacuum to polarise it in
such a way that the colour field is augmented. This effect diminishes with proximity to a colour-charged particle, or
correspondingly at high energy, which gives rise to the phenomenon of asymptotic freedom. Due to this, QCD is
commonly referred to as the strong force; its strength increases over distance, and the result is that unbound coloured
states cannot exist. Consequently, the coupling constant gs of the strong force decreases with energy.

The covariant derivative

The ordinary partial derivative ∂μ is not gauge invariant, so in the context of a gauge theory, it must be coupled to the
gauge fields and made into a vector operator, so that the equations containing it keep their physical properties under
gauge transformations.

The gauge covariant derivative Dμ , which transforms covariantly under the gauge transformations of the Standard
Model, is

Dμ = ∂μ + igs
λ a

2
Aa

μ(x)+ ig
σi

2
W i

μ(x)+ ig′
Y
2

Bμ(x) . (2.16)

Here, gs,g and g′ are the strong, weak and electromagnetic couplings respectively, Aa
μ are the gluon fields, W i

μ
the weak fields, Bμ the electromagnetic field and a = 1, . . . ,8 and i = 1,2,3 run over the generators of SU(3)C and
SU(2)L respectively.

As a side note, the gauge covariant derivative is an analogue to the covariant derivative in general relativity, which
does by contrast require a metric. Gauge symmetries do not necessarily come with the concept of a metric tensor,
so the gauge covariant derivative should rather be interpreted as an affine connection3. Physical events take place at
points in spacetime, which is mathematically speaking a smooth manifold, meaning that it locally looks like a smooth
deformation of Euclidean space — just like e.g. a differentiable curve locally looks like a deformed line. Vector fields
can easily be differentiated in Euclidean space, since the tangent space of vectors at different points are connected via
translation. This is not necessarily true for any manifold in general, since nearby tangent spaces are not necessarily
easily connected. The affine connection connects these nearby tangent spaces.

3It is useful to think of the curvature of the affine connection as the field strength of the gauge potential.
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2.3 Spontaneously broken symmetry

Gauge bosons are massless as long as their gauge symmetry is unbroken. This is best demonstrated by directly
considering a mass term in the Lagrangian for some gauge field Aμ , which would be on the form

L A
mass = m2

AAμ Aμ , (2.17)

and a general gauge transformation
Aμ → Aμ +∂μ φ , (2.18)

for some scalar field φ . Under this transformation, the mass term becomes

m2
AAμ Aμ → m2

AAμ Aμ +2m2
AAμ ∂ μ φ +∂μ φ∂ μ φ , (2.19)

i.e. not the same as eq. (2.17), which is consequently not gauge invariant. The conclusion must be that gauge boson
mass terms cannot be allowed in the Lagrangian. However, the masses of the electroweak gauge bosons Z0 and W± is
an experimental fact, and must have come about somehow. The answer is the well-known Higgs mechanism, which is
briefly reviewed in the following.

2.3.1 The Higgs and what it does

The Higgs boson is the only scalar particle in the Standard Model, and hence the only particle which can acquire a
vacuum expectation value, short VEV, meaning a non-zero value of the field in the vacuum. A VEV, being a constant
value, is not Lorentz invariant, so only Lorentz scalars — a scalar field or a scalar combination of fields — which are
singlets under unbroken gauge groups can have a non-zero VEV.

To see what happens for the Higgs, denote by φ the Higgs SU(2)L doublet,4 which can be most generally expressed
as

φ = 1√
2
(η1(x)+ iη2(x)

η3(x)+ iη4(x)) , (2.20)

where the ηi are all real fields and each have one degree of freedom. Being an SU(2)L doublet, the top component has
T3 = 1

2 , while the lower component has T3 = − 1
2 . As the Standard Model Higgs is observed electrically neutral, one of

the components must furthermore have Q = 0. Since the whole doublet has hypercharge Y = 1
2 ,5 and using T3 = Q−Y ,6

the only possibility is that the top component have Q = 1, i.e. carries a positive electric charge.
Performing an SU(2)L and a U(1)Y gauge transformation, this doublet can be transformed into the form

φ = 1√
2
( 0

v+σ(x)) , (2.21)

where v is a constant and σ(x) is again a real field, in the so-called unitary gauge.
The part of the Lagrangian containing the Higgs is

LHiggs = (Dμ φ)† (Dμ φ)−V(φ) , (2.22)

where the Higgs potential V(φ) is required by renormalisability and invariance under SU(2)L and U(1)Y to be on the
form V(φ) = −μ2φ †φ +λ(φ †φ)2

, (2.23)

with λ > 0 for vacuum stability. There are two possibilities for the value of μ2, determining the overall shape of the
potential. If μ2 > 0, the minimum of the potential does not correspond to the minimum value of the field φ , which is to

4The Higgs field φ of course has nothing to do with the expository gauge transformation in the beginning of the section.
5This is by construction, for the Higgs to couple in a gauge invariant way to the Standard Model fermions.
6Another convention also used in some textbooks is T3 =Q− Y

2 , but in that case the half is not included in the hypercharge value itself, i.e. the
Higgs doublet has Y = 1 in that convention.
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say that the Higgs field has a non-zero expectation value in the vacuum; a VEV. Calculating the minimum of V(φ)
yields an expression for the vacuum expectation value, here expressed in the unitary gauge,

⟨φ⟩ = 1
2
(0

v)eiθ ; v = (−μ2

2λ
)1/2

. (2.24)

The phase factor eiθ reflects that the potential has a continuous circle of minima, so as the Higgs field enters the
vacuum state, or any state of sufficiently low energy, a direction θ is inadvertently chosen. The value of θ is not
measurable, but the vacuum state is no longer symmetric. This is referred to as spontaneous symmetry breaking, and is
what happens when the Lagrangian retains its symmetry, while the vacuum state breaks it. Note that only the lower
component, which is the electrically neutral one, gets a VEV, while the upper component is zero in the vacuum. This
ensures that the vacuum does not break electromagnetism. In group theory language, the breaking scheme is

SU(2)L ⊗U(1)Y →U(1)Q . (2.25)

The generation of the gauge boson masses is now a straightforward algebraic exercise: Insert the Higgs doublet
on the form of eq. (2.21) into the kinetic part of the Higgs Lagrangian — which is always the way to see how a field
couples to the gauge fields, since these are contained in the covariant derivative. Using the expression in eq. (2.16)
yields

(Dμ φ)† (Dμ φ) = 1
2
∣(∂μ + ig

σi

2
W i

μ(x)+ ig′
1
2

Bμ(x))(0
v)∣

2

= v2

8
[g2((W 1

μ )2 +(W 2
μ )2)+(gW 3

μ −g′Bμ)2] ,
(2.26)

having omitted the coloured part and substituted Y = 1
2 . The mass eigenstates and the corresponding masses of the

electroweak gauge bosons are thus

W±μ ≡ 1√
2
(W 1

μ ∓W 2
μ ) , mW = gv

2

Zμ ≡ 1√
g2 +g′2

(gW 3
μ −g′Bμ) , mZ = v

2

√
g2 +g′2

Aμ ≡ 1√
g2 +g′2

(g′W 3
μ +gBμ) , mA = 0 .

(2.27)

In the beginning of the present section, the doublet in eq. (2.20) had four degrees of freedom, while the four
electroweak gauge bosons B and W i were massless and thus had two degrees of freedom each. After the spontaneous
symmetry breaking, the real scalar Higgs field has one degree of freedom, the three massive gauge bosons Z0 and W±

have three degrees of freedom each, and the photon, which remains massless, still has its two degrees of freedom. In
total, there are twelve degrees of freedom before as well as after the symmetry breaking.

Lastly, a quick demonstration of how the fermion masses come about. The fermions interact with the Higgs in
so-called Yukawa terms, which are generally speaking terms which couple Dirac and scalar fields. Compactly expressed,
the Yukawa part of the Standard Model Lagrangian is

LYukawa = Ψ̄ f
iLY f

i jφψ f
jR +h.c. , (2.28)

where L and R denote left- and right-handed fields, see section 2.4 for details, f denotes fermion type, and i, j run over
the three generations. The capital Ψ f

iL represent SU(2)L doublets, which are in the Standard Model

ΨL
iL = (νeL

eL
) ,(νμL

μL
) ,(ντL

τL
) Left-handed leptons

ΨQ
iL = (uL

dL
) ,(cL

sL
) ,(bL

bL
) Left-handed quarks ,

(2.29)
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Figure 2.2: A Feynman diagram depiction of the result of spontaneous symmetry breaking: Before, the Higgs couples
to the fermions through the term in eq. (2.28). After, the Higgs field has a VEV, which may be interpreted as a mass
insertion.

while the ψ f
iR represent SU(2)L singlets, which are

ψe
iR = eR,μR,τR Right-handed leptons

ψu
iR = uR,cR,tR Right-handed up-quarks

ψd
iR = dR,sR,bR Right-handed down-quarks .

(2.30)

Note that this does, at the time of writing, not include neutrinos, as right-handed neutrinos are not yet a part of the
Standard Model, although neutrino oscillations have been observed, indicating that they do have a mass, and thus
a right-handed component. Though, for the time being they are not included, do not have a right-handed spinor
representing them in the Standard Model, and thus no term like eq. (2.28).

The charges of the Standard Model fields are listed in table 2.1. The Higgs doublet, a left-handed spinor and the
corresponding right-handed singlet can be combined to terms with zero charge for the down-type fermions. For the
up-type fermions, the Higgs must couple in an SU(2)L invariant way, which can be achieved by defining

φ̃ ≡ −i(φ †σ2)T
; ⟨φ̃⟩ = 1

2
(v

0) . (2.31)

The term in eq. (2.28) now gives rise to interaction terms between the Higgs and fermions, and fermion mass terms
containing v. These are all on the form

m f
i = Y f

i
v√
2
. (2.32)

At high energy scales, above the electroweak scale at 264GeV, electroweak symmetry is restored and v → 0,
implying from the above equation and eq. (2.27) that the fermions as well as the electroweak gauge bosons are
massless.

The Yukawa matrices have dimension 3×3, can in general be complex and are not necessarily hermitian. Were it
not for the gauge interactions, these matrices could be diagonalized and the masses would be the only free parameters.
In that basis, referred to as the mass basis, the kinetic terms are however non-diagonal, while they are diagonal in
the interaction basis. The interaction and mass eigenstates thus do not have the same eigenbasis, which causes the
fermions to mix. The mixing is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which has three angles
and one phase which cannot be eliminated by rotations, and are thus physically measurable. The angles, and thus also
the off-diagonal terms, are quite small, and the mass and interaction eigenstates very close.

2.4 Fermions matter

It is now more or less clear how the fermions acquire their masses, but that still leaves more than half their tale untold.
The following section first describes fermions from the perspective of their history in physics, before taking a more
fundamental perspective, relating spinors to the group theory aspect.
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Field SU(3)C SU(2)L U(1)Y

eiL 0 - 1
2 - 1

2

νiL 0 1
2 - 1

2

ēiR 0 0 -1

uiL
1
2 (1,-1,0) 1

2
1
6

diL
1
2 (1,-1,0) - 1

2
1
6

ūiR
1
2 (1,-1,0) 0 2

3

d̄iR
1
2 (1,-1,0) 0 − 1

3

Hu 0 1
2

1
2

Hd 0 - 1
2

1
2

Table 2.1: The charges of the Standard Model fermion and Higgs fields under the gauge groups. The fermion generation
index i = 1,2,3 runs over (up, strange, top) and (down, charm, bottom) quarks, and (electron, muon, tau) leptons. The
colour charges correspond to 1

2 the eigenvalues of λ3 in eq. (2.15), but it would mess up the table to write the coloured
quarks separately. The spin quantum number corresponds to 1

2 the eigenvalues of σ3 in eq. (2.14). The hypercharge is
defined as Y = Q−L.

2.4.1 Dirac, Weyl and Majorana

In his 1928 paper “The Quantum Theory of the Electron” [15], Dirac first described massive electrons and their
antiparticles, and thus laid the foundation for describing fermions in a physical theory. The Lagrangian of a free,
massive Dirac field is

L = Ψ̄(i /∂ −m)Ψ , (2.33)

and the equation of motion is (i /∂ −m)Ψ = 0 , (2.34)

know as the Dirac equation. The “Feynman slash” notation is shorthand for /∂ ≡ γμ ∂μ , and the γ’s are 4×4 matrices
which satisfy

[γμ ,γν] = 2gμν

γ0γμ γ0 = γ†
μ ,

(2.35)

where the first one is necessary for the Dirac equation to comply with the energy-momentum relation, and the second
one for the Hamiltonian implied by the Dirac Lagrangian to be real. There are of course a number of matrices which
together obey the above relations, and they are related to each other by change of basis. The objects represented by Ψ
are referred to as spinors, obey Ψ̄ ≡ Ψ†γ0, so they have vector structure with four entries, and when multiplied by a
plane wave are solutions to the Dirac equation. Using again the dimensionality argument, the first term in the Dirac
Lagrangian is required canonically normalised, i.e. it must obey

[∂μ φ∂ μ φ] = [ψ̄ /∂ψ] = [L ] = D , (2.36)

which explains why the mass parameter in eq. (2.33) is not squared, as opposed to in the scalar case.
Two years after Dirac’s publication, Weyl published “Gravitation and the electron” [16], where he stated that Dirac’s

equation
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“ . . . contains the mass m of the electron as a factor. But mass is a gravitational effect: it is the flux of the
gravitational field through a surface enclosing the particle in the same sense that charge is the flux of the
electric field. In a satisfactory theory it must therefore be as impossible to introduce a non-vanishing mass
without the gravitational field as it is to introduce charge without electromagnetic field. ”

Motivated by this, he showed that a simpler equation containing two-component fields suffices to describe massless
fermions. A Dirac spinor ΨD can be written in terms of two Weyl spinors ξ and χ as

ΨD = (ξ
χ) , (2.37)

and using the left- and right-handed projection operators

PL = 1−γ5

2
PR = 1+γ5

2
, (2.38)

the upper and lower, or left- and right-handed, components of the Dirac spinor can be projected out, as

PLΨD ≡ ΨL = (ξ
0) PRΨD ≡ ΨR = (0

χ) . (2.39)

Acting on the Dirac equation with either projection operator yields

(i /∂ −m)ΨL = mΨR(i /∂ −m)ΨR = mΨL
(2.40)

indicating that the mass term mixes left- and right-handed states, while the equations decouple in the massless case.
The concept of “handedness” is more formally known as helicity, and defined as the sign of the projection of the

spin vector onto the momentum vector, and by convention, left is negative while right is positive. Since the direction of
propagation depends on the frame of reference, and may be changed by a Lorentz boost, helicity is not an intrinsic
property of a massive particle. This is contrary to the case of massless particles, which propagate at the speed of
light and for which helicity and chirality are the same. Chirality is a more abstract concept with a group-theoretical
description, and the easiest way to make immediate sense of it is perhaps by realising that it is merely the eigenvalue of
a spinor when acted upon with γ5, and as such also invariant under Lorentz transformations, since [γ5,σμν].

As an explanation for the continuous energy spectrum of electrons coming out of beta decay, Pauli proposed the
neutrinos at a conference in 1930 with a letter, now named after its opening “Liebe Radioaktive Damen und Herren” [17].
The neutrinos were at that time believed to be massless, and hence described by Weyl spinors, in addition to their zero
electric charge which could imply that they are indeed their own antiparticles. The description of such fermions was
first presented by Majorana in the 1937 paper “Teoria simmetrica dell’elettrone e del positrone” [18], but left with
little attention until the early 1960s, when the discussion of whether neutrinos were in fact Majorana or Dirac fermions
opened up.

Majorana fermions are their own anti-particles, and must thus fulfil

ΨM = Ψ∗M . (2.41)

These spinors are solutions to the Dirac equation, which becomes real in a basis where all the γ matrices are purely
imaginary, known as the Majorana basis.

Fermi-Dirac statistics

Fermi-Dirac statistics describe the energy distribution of identical fermions with negligible mutual interaction, in a state
of thermodynamic equilibrium. The Pauli exclusion principle states that no two fermions can occupy the same state,
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which of course has a significant effect on the properties of systems consisting of fermions. The average number of
particles ni in a single-particle state i is then

n̄i = gi

e
Ei−μ
kBT +1

(2.42)

where again Ei is the energy of the i’th state, μ the chemical potential, gi the degeneracy of energy level i, k the
Boltzmann constant and T the temperature. Compared to Bose-Einstein statistics, see eq. (2.5), the two distributions
look very similar. However, the plus sign in the denominator of the Fermi-Dirac distribution keeps the denominator from
ever becoming smaller than unity, and hence the whole expression bound below gi. This reflects the aforementioned
restriction, that two fermions cannot occupy the same state, unless they differ in another quantum number.

2.4.2 Those spinors

The Lorentz group is the set of rotations and boosts which preserve the Minkowski metric; ΛT gΛ, where Λ are the
generators of the group, so spacetime transforms as

Xμ → Λμν Xν . (2.43)

The Lorentz group consists of three-dimensional rotations, generated by Ji, and spatial boosts, generated by Ki, so any
group element can be uniquely expressed as

Λ = exp(iθiJi + iβiKi) . (2.44)

The algebra of the rotation generators is [Ji,Jj] = iεi jkJk , (2.45)

and since the rotation group SO(3) is a subgroup of the Lorentz group, every representation of the Lorentz group is also
a representation of SO(3). Why all this talk about the Lorentz group? Because there is depth to be found.

Imagining the spin of a fermion as an internal rotation suggests that there is some connection between the spin
group and SO(3). The imagined rotation can be projected onto a vector of length 1

2 , and the maximum and minimum
values of the projection can be ± 1

2 , i.e. the spin states along a particular direction can point up or down;

ψ ∼ ∣+⟩∣−⟩ . (2.46)

There are two representations with J = 1
2 rotation generators: ( 1

2 ,0) and (0, 1
2), and a set of matrices which satisfy

the algebra in eq. (2.45) are the familiar Pauli matrices, given in eq. (2.14), which form an irreducible basis for SU(2)
The elements in the vector space on which these spin 1

2 representations act are called spinors, and in particle physics,( 1
2 ,0) are called left-handed and (0, 1

2) right-handed Weyl spinors. In terms of the expression in eq. (2.44), right- (left-)
handed spinors get a plus (minus) sign in front of the β .

The Standard Model, describing both left- and right-handed fermions, hence contains SU(2)⊕SU(2), and this
Lie algebra combined generates SL(2,C); the group of complex 2×2 matrices with unit determinant. Spinors thus
transform as representations of SL(2,C), which is isomorphic7 to the Lorentz group SO(1,3).

To end this section with a slightly more intuitive picture: Two fermions together form combined states, and the
possible combinations of the spins are, expressing now only whether the spin vector points “up” or “down” along a
given direction,

∣+⟩ ∣+⟩ , ∣−⟩ ∣−⟩ , 1√
2
(∣+⟩∣−⟩+ ∣−⟩∣+⟩) , Symmetric

1√
2
(∣+⟩∣−⟩− ∣−⟩∣+⟩) , Antisymmetric

(2.47)

7Isomorphism stems from the Greeks words iso, meaning “equal”, and morphosis, meaning “to shape”. For groups, this is a one-to-one
correspondence between the elements of the group which preserves the group operation. Put very bluntly, isomorphic groups contain the same
elements, which just look differently.
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i.e. three different symmetric spin-1 states and one antisymmetric spin-0 state, or, in group theory language,

(2,1)⊕(2,1) = (1,1)⊗(3,1). (2.48)

2.5 A very brief history of the early universe

The prevailing cosmological model for the universe is Big Bang cosmology, which describes the evolution of the
universe from approximately tP = 10−43 seconds after the Big Bang, where tP is the Planck time. It is not known what
happened before this time, or even certain that the concept of time made sense. If gravity can indeed be unified with the
other fundamental forces, it is likely that it was during this period. Immediately after, the Planck era may have been
followed by a Grand Unified Theory, short GUT, era, in which the three fundamental forces were unified into a single
force.

These potential eras of unification will have ended as the universe expanded and cooled, and crossed temperatures
at which phase transitions took place. As the universe had cooled to around 1028 Kelvin, the electroweak and strong
forces probably, if they were ever united, separated.

Before approximately 10−32 s ≈ 1010tP after the Big Bang, the universe presumably entered the inflationary epoch,
during which every spatial dimension rapidly expanded by a factor of around 1026. What triggered this violent expansion
known as inflation is not known. One potential explanation is that a scalar field, often nicknamed the inflaton, may
have settled into its ground state and thereby generated an enormous repulsive force.

Neither is it known why the inflationary epoch came to an end, but whichever mechanism triggered it may have
released additional energy — e.g. the decay of the inflaton — triggering an era of reheating. The universe, which due to
inflation had been significantly cooled, was during this period again heated up to very high temperatures.

After reheating, the universe continued to expand and cool down until it passed the threshold for its assumed last
symmetry breaking; the electroweak symmetry breaking described in section 2.3. The elementary particles became
massive, and as the electroweak gauge bosons acquired large masses, the weak force became short-ranged.

After this, the physics of the early universe is better understood. At this point, the universe was filled with a hot
quark-gluon plasma, and it continued to cool down and expand, forming after a while the chilly, galaxy-inhabited
universe we find ourselves living in.

The events in the early universe have been summarised in a timeline in fig. 2.3, where the earliest events are written
in italic to indicate that these are speculative.
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Epoch Event Time[s]

Big Bang ⋯⋯● Fiat lux. 0

Planck Era — T ≳ 1019 GeV ⋯⋯● Quantum effects of gravity < 10−43

GUT Era — T ≳ 1016 GeV ⋯⋯● The strong force separates 10−43 −10−36

Inflation starts — T ∼ 1015 −109 GeV ⋯⋯● Rapid expansion followed by 10−36 −10−32

TR ⋯⋯● reheating 10−32 −10−12

T ∼ 100GeV ⋯⋯● Electroweak symmetry breaking 10−12

Quark Epoch — T ∼ 100 MeV ⋯⋯● Quark-gluon plasma (LHC reachable) 10−12 −10−6

Hadron Epoch — T ∼ 10 MeV ⋯⋯● Quarks form hadrons 10−12 −10−6

T ∼ 1 MeV ⋯⋯● Neutrinos decouple 1

BBN — T ∼ 0.1MeV ⋯⋯● Light elements are formed 2−20 minutes

Recombination — T ∼ 1 eV ⋯⋯● Universe becomes transparent 3.8 ⋅105 years

Today — T ∼ 10−4 eV ⋯⋯● Accelerated expansion 13.8 ⋅109 years

Figure 2.3: Timeline of the universe — in temperature.
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2.6 All the things we do not know

2.6.1 Theoretical incommodities

The Standard Model does not predict any of the three charges or gauge couplings, three lepton or six quark masses,
three weak mixing angles, the Higgs VEV or the CP-violation phase. All these 19 parameters — and nine more, if
neutrino oscillations are to be accommodated — thus have to be determined experimentally. Furthermore, neither the
different flavours nor their origins are predicted or explained, and the Standard Model contains no prescription for
unifying gravity with the other fundamental forces.

2.6.2 Hierarchy problems

One hierarchy problem in particle physics concerns the surprisingly small mass of the Higgs. Theory predicts,
and measurements confirm, that the strength of the interaction between the Higgs field and other other particles is
proportional to the mass of the particle in question. After electroweak symmetry breaking, the Higgs field acquires a
VEV, and its interaction terms with other particles yield mass terms in the Lagrangian. The puzzle is that since the
strength of the interaction with the Higgs field scales with the particle mass, the heavier a particle is, the stronger the
interaction becomes. Given that all particle masses, including that of the Higgs, are subject to quantum corrections from
loops, heavy virtual particles could yield corrections to the Higgs mass larger than the Higgs mass itself. This is clearly
not the case, and the simple yet daunting question is Why not?.

In general, a hierarchy problem in physics arises when the fundamental value of a physical observable in the
Lagrangian differs strongly from the measured value. When this happens, it appears as if there has been a precise
cancellation between quantum corrections to the fundamental quantity, often referred to as fine tuning. The problem
with fine tuning touches upon the notion of naturalness in physics, where, as formulated by ’t Hooft [19], “a small
parameter is natural only if a symmetry is gained as it is set to zero”. In quantum field theories, if a bare parameter is
set to zero, radiative corrections lead to a renormalized non-zero value. Small renormalized values without a symmetry
protecting them can thus require fine-tuning to a potentially much larger scale than the values themselves.

This insight demonstrates the severity of the hierarchy problem: If the Higgs mass has not been fine tuned, then
what protects it?

The above is only one incarnation of particle physics hierarchy concerns. In general, the large difference in strength
between the fundamental forces, or between the masses of the fundamental particles, all seem to owe an explanation.
To illustrate: Scaling the electron to a mass of 1 kilogram corresponds to scaling the top quark to a mass of 340.308
kilograms. Why do the building blocks of the universe have so immensely different scales?

2.6.3 Dark topics

Observations of the rotation curves and velocities of galaxies both within and outside clusters have led to the conclusion
that they must necessarily consist of more matter than the currently visible, since they would otherwise be torn apart.
Without going into modified theories of gravity, one immediate solution could be to imagine more than the visible
matter. Such invisible matter has later been calculated to constitute approximately 85% of the matter in the universe,
and been dubbed dark matter, as it does not radiate. The Standard Model does not have a dark matter particle candidate.

Moving on to the next dark topic, the energy content of the universe has been mapped [20], and it is today distributed
as shown in the chart in fig. 2.4. Even taking dark matter into account, a substantial part of the universe’s energy content
is not made up of matter, but another form of energy, about whose nature little is know. Its detection is limited to
large-scale observations of a gravitational repulsion effect and the relation between redshift and distance to cosmological
objects. It appears this unknown form of energy, called dark energy, is associated with empty space itself, and evenly
distributed throughout the dimensions. Effectively, it contributes as a cosmological constant would, representing an
inherent vacuum energy in spacetime. The Standard Model has no candidate for describing dark energy either.
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Figure 2.4: Present distribution of the energy contents of the universe.

2.6.4 The matter-antimatter asymmetry

This problem refers to the observed imbalance between baryons and anti-baryons in the universe. Under the assumption
that matter and antimatter were produced in equal amounts during the Big Bang, some mechanism must have caused
these two amounts to diverge at a later time. The cosmological matter-antimatter asymmetry expressed in terms of the
ratio of the number density of baryons to photons, is8

ηB = nB −nB̄

nγ
≃ nB

nγ
= 6.19±0.15×10−10, (2.49)

again, an extremely small and seemingly fine-tuned number for which the Standard Model has no explanation.

2.6.5 Neutrino masses

According to the Standard Model, the three known neutrinos are all massless. However, oscillations between different
neutrino flavours have been observed [22], which means that their interaction and mass eigenstates differ, which can in
turn only be the case if neutrinos do indeed have a rest mass, implying also that right-handed neutrinos exist, and escape
detection by virtue of being complete gauge singlets. Neutrino masses could be accommodated within the Standard
Model, so this issue appears perhaps a bit less overwhelming than the shortcomings listed previously. However, the
question regarding a possible Majorana nature [23], for which neutrinos are the only candidates in the Standard Model,
and would be confirmed if neutrinoless double beta decay was observed, remains open. So does the question regarding
a possible seesaw [24, 25, 26, 27, 28] mechanism which would explain the incredibly small neutrino masses, but in turn
also introduce hitherto unobserved, extremely heavy additional neutrinos.

Whatever ends up resolving this issue could thus potentially bring about much more than merely a minor adaption
of the theory. In short, the Standard Model does not yet know.

8This number has been most precisely determined via measurements of the angular distribution temperature fluctuations in the CMB [21].
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Figure 2.5: Image from https://www.jpl.nasa.gov, used in NASA’s article “Machines Teach Astronomers About
Stars” [29].

2.7 . . . and very good reasons to be overwhelmed

There are around 250 ⋅109 stars in the Milky Way and another ∼ 1012 in our neighboring Andromeday galaxy. Together
with another fifty galaxies, we form the local group, which is again part of the local supercluster, called the Virgo
Supercluster. This is one of about 10 ⋅106 superclusters in the observable universe.

During Run 2 of the LHC, there were around 600 ⋅106 events per second, and the dataflow from all four experiments
— Alice, ATLAS, CMS, LHCb — around 25GB every second.

The sheer amount of data collected at particle accelerators, by space observatories and telescopes is overwhelming at
the least, and an increasing challenge for physicists is to deal with the large amounts of data, and extract the information
therein. It is not even unthinkable that data containing undiscovered physics have already been collected. The field
of data science has become a natural and important part of many areas of physics, particle physics being among the
forerunners. In many ways, data science could be considered a “fourth paradigm” of science, alongside empirical,
theoretical and computational.

In the following work, different beyond Standard Model physics theories are considered. Parameter scans are
used to identify valid regions in the parameter space of superymmetric theories, possible signals from dark matter
annihilation are simulated and its possible detection discussed, and statistical methods including machine learning
are used to analyse collider signatures and extract discriminatory information. All the projects in this work rely on
programming and statistical methods, which are explained throughout. The code produced is available as indicated in
the list of publications.
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Chapter 3

Statistics and scans

In particle physics, observations and experimental outcomes are determined by a theory which only Nature knows. This
constitutes a probability distribution — which may or may not be possible to analytically describe — and a collection
of data is a random sample drawn from this underlying distribution.

Particle physics consists of mathematical models which describe physical processes, and the task of a particle
physicists is to build and then adapt or discard these models after evaluating them in light of observed data. An important
aspect of such an evaluation is to make quantitative statements about the parameters of a model. However, in order to
make such statements, the connection between the observations and the model parameters must either be understood or
assumed. The term model can in this context mean a theory described by a Lagrangian, or a specific point in parameter
space. Finding out whether the predictions of a model are consistent with data is called hypothesis testing. On the
other hand, determining the free parameters of a theory assumed to be correct is called parameter estimation.

Nature Measurement Theory
Observation Prediction

Figure 3.1: Nature follows some hidden rules which give rise to outcomes that can be observed. The aim is to find a
theory which predicts the same outcomes.

Given a theory and its parameters, event generators and spectrum calculators can be used to simulate experimental
outcomes or calculate mass spectra, i.e. predict which measurements it would give rise to. This is called deductive
reasoning, and amounts to making predictions from a model. A model with fixed parameters constitutes a premise P,
which yields a set of possible observations. Given a model, the possible outcomes O are specified.

Given a set of observations, on the other hand, it is not given which model produced those data. Several models,
or even the same model with different parameters, can produce similar observations. Trying to ‘go backwards’ from
outcome to premise is called inductive reasoning. An outcome O does not necessarily say much about which P it stems
from, since there could have been P1 → O, P2 → O, P3 → O, and so forth. Were it possible to know all possible models,
and only a certain P could produce the observed O, then P would for certain be true. In any other case, P can not be
verified. The only thing which is possible, is to falsify a given P.

The following chapter contains definitions, rules, a selection of theorems and some hopefully helpful explanations.
The parameter scans used in chapter 7 and Trilinear-augmented gaugino mediation [1] are explained, and the statistical
concepts and techniques needed for chapter 5 and Signal mixture estimation for degenerate heavy Higgses using a deep
neural network [2] are reviewed.
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3.1 Probability and interpretation

Before beginning the statistics discussion, interpretations of probability from two different schools are reviewed. It
will later become apparent, e.g. in likelihood guided parameter scans or when interpreting classifier output, that these
different interpretations can potentially lead to different conclusions.

3.1.1 The frequentist

The frequentist, and perhaps the most intuitive, way of interpreting probability is by defining the probability of an event
as the limit of its relative frequency in a large number N of trials, i.e.

P(event) = lim
N→∞

nevent

N
. (3.1)

In short, frequentists draw samples from a distribution, and try to make conclusions about its shape. Applying this
interpretation to experimental outcomes amounts to assuming that each experiment produces statistically independent
results, and relies on the possibility of repeating said experiment a large number of times.

Confidence

As a concrete example, assume a model with a single free parameter θ . The probability density function, or pdf for
short, of the continuous observable x is usually denoted

p(x;θ) , (3.2)

and its integral over an interval expresses the probability of x being contained in that interval. In the case of a discrete
observable, the proper nomer for the above function is probability mass function, but the abbreviation pdf is often used
in both cases.

Assuming that the model under consideration is correct, observations of x can help determine the true value of
the unknown parameter θ . Repeated experimental outcomes are used to create confidence intervals (θmin,θmax) as
estimates for the true value of θ . Since the observations of x are random samples from an underlying distribution, the
confidence interval is also random, and the true value of θ may be contained in the interval, but it might also not.

Constructing many confidence intervals, the proportion containing the true value of θ is known as the confidence
level. Constructing an interval (θmin,θmax) at e.g. 95% confidence level does not mean that the probability for finding
the true value of θ in said interval is 95%. Rather, it means that had the experiment been repeated a large number of
times, and the confidence interval been constructed in the same way each time, the true value of θ would be contained in
95% of the intervals (θmin,θmax). Under a hypothesis test, the level of significance is the complement of the confidence
level; a 95% confidence interval corresponds to a significance level of 0.05. Note that the desired level of confidence is
set by the researcher, not determined by data.

3.1.2 The Bayesian

Abandoning the requirement of basing the concept of probability on repeatable experiments, opens up the possibility of
interpreting probability as a degree of belief, rather than just the limit of a number.

Bayes’ theorem

Given two sets of outcomes A and B which are partially overlapping, see fig. 3.2a, define

• P(A∩B), the joint probability for both A and B

• P(A∣B), the conditional probability of A, given B.
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Figure 3.2: Completely and partially overlapping probabilities.

The probability of drawing from the joint set (A∩B) is

P(A∩B) = P(A∣B)P(B) = P(B∣A)P(A) . (3.3)

Using only algebra, this is readily rearranged into

P(A∣B) = P(B∣A)P(A)
P(B) , (3.4)

which is Bayes’ theorem, and in this form beyond mathematical dispute. Applied to point probabilities, the theorem is a
result of the total law of probabilities, and is of course valid regardless of the interpretation of probability. However,
a slight change in notation and interpretation of the above probabilities, yields a statement which is only valid in the
Bayesian interpretation of probability:

p(Θ ∣D,M)= p(D ∣Θ,M)p(Θ ∣M)
P(D ∣M) ≡ L(Θ)π(Θ)Z . (3.5)

Here, Θ represents a set of free parameters, D a collected data sample, and M a model assumed to be correct, i.e. a sort
of background information. In the Bayesian interpretation,

• π(Θ) ≡ p(Θ ∣M) is known as the prior probability of Θ and expresses the degree of belief in Θ before taking
data into account.

• L(Θ) ≡ p(D ∣Θ,M) represents the probability of obtaining the given data, assuming that Θ is true. Interpreted
as a function of Θ, it is the likelihood L(Θ), see section 3.2.1.

• Z ≡ p(D ∣M) normalizes the posterior over the domain of the model parameters,

Z = ∫ L(Θ)π(Θ)dΘ . (3.6)

It becomes large only if the likelihood is relatively large in a region of parameter space where the prior probability
is also large. Specifically, given sets of parameters with comparable agreement with data, i.e. similar values for
the likelihood, those whose priors extend over a large proportion of parameter space, implying smaller values for
π(Θ)dΘ, have weaker evidence than those with narrow priors — a formalisation of Occam’s razor.

• p(Θ ∣D,M) is the posterior probability of Θ, and represents the updated degree of belief in Θ after comparison
to data.

Bayes’ theorem thus provides an updated belief in light of data, based partially on the prior belief in a model. This
perspective implies a subjective view of probability: Probability represents belief, which contrasts with the frequentist
perspective. From the Bayesian perspective, any quantity for which the true value is uncertain, including model
parameters, can be represented via probability distributions. This does not make sense from a frequentist perspective,
where parameters are fixed quantities and only the data random.
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(a) (b)

Figure 3.3: Two sides of the Poisson distribution: (a) The distribution of n, resulting from drawing ten thousand i.i.d.
samples from the Poisson distribution with μ = 5, and (b) the function of μ obtained from the Poisson distribution with
n = 5.

3.2 Likelihood

Consider for illustration a distribution highly relevant for event counting experiments, the Poisson distribution

Poisson(n;μ) = μn

n!
e−μ . (3.7)

This describes the probability of measuring n outcomes when the mean expected number of outcomes is μ ; the number
n is discrete while μ is continuous. This is thus a two-dimensional function from which several probability density
functions can be obtained. For instance, assuming μ = 5 outcomes yields a pdf1 for the outcome of n, shown in fig. 3.3a.
On the other hand, assuming an outcome of for example n = 5, the distribution of the expected number μ looks as
shown in fig. 3.3b. These two are independent and furthermore completely different functions; the last one is not even a
probability density function — as can be easily verified since the area under the curve does not integrate to unity. It is
however a very useful function, and often referred to as the likelihood L(μ ∣n). It reaches its maximum at the value for
μ which would have given the largest probability of the observed, or in this case fixed, n.

To generalise, drawing a dataset D of N samples from a Poisson distribution amounts to drawing the first N terms
of an independent and identically distributed — i.i.d — sequence {x1, . . . ,xi, . . . ,xN} of Poisson variables. Independent
measurements have the property that their combined probability is the product of each probability, so the total likelihood
is

L(μ ∣D) = N∏
i=1

Poisson(μ ∣xi)
= N∏

i=1

μxi

xi!
e−μ .

(3.8)

Technical side note: Logarithms for computations

Equation (3.8) is a product of probabilities. A probability is a number between zero and one, so multiplying several of
them inevitably results in a number close to zero. This is a challenge for computers, which use floating point arithmetics

1This is, as mentioned earlier, strictly speaking a probability mass function, since n is discrete.
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to represent real numbers, and are thus sensitive to numbers very close to zero. The consequence of this is for the
present case a potentially fragile computation, depending on how many probabilities are included in the product.

Furthermore, and as will become clear in the following, the aim is to maximise (minimise) the (negative) likelihood.
This is an optimisation task, which involves calculating the value of a function along with its derivative. Optimising
a product requires all the data to be loaded into memory at once, followed by calculation of the product and partial
derivatives, before the next optimisation step can be performed. Conversely, the derivatives of a sum is the sum of the
derivatives. Optimising a sum therefore requires only one datum to be loaded into memory and its partial derivative can
be computed independently. The gradients can then be accumulated and the optimisation step applied, with significantly
smaller memory consumption.

To circumvent these two challenges, it is common to work with the logarithm of the likelihood. This is safe since
the logarithm is a monotonic transformation and preserves the locations of the extrema2. The convenience of this can
be illustrated by trying to numerically find the extrema of two functions, where one is the logarithm of the other:

p(x) = e−x2

q(x) = log p(x) = −x2 .
(3.9)

These both have global optima at the origin, and their gradients are

p′(x) = −2xe−x2

q′(x) = −2x .
(3.10)

Consider first q′(x): Multiplying this by 1
2 yields the step size needed to reach the global optimum at x = 0, regardless

of the value for x. Moving on to p′(x), this contains the multiplication of e−x2
, which decays faster than exponentially

with x. At for example x = 5, the gradient is p′(5) = 1.38879 ⋅10−10. This would have to be multiplied by 1010 to reach
a reasonable step size towards the optimum, making this option worse than useless; it would be better to just take a unit
step in the positive direction.

This example might seem contrived at first, but it holds for most of the commonly encountered distributions. For
instance, given a Gaussian distribution, see eq. (3.15), maximizing the likelihood reduces to a problem of least-squares.

3.2.1 The Log-Likelihood

The logarithm of the likelihood for the Poisson distribution is

logL(μ) = logμ
N∑

i=1
xi −Nμ − N∑

i=1
log(xi!) . (3.11)

Since the logarithm is a monotonic transformation which preserves the locations of the extrema, the value of μ which
maximises the likelihood given a set of data, denoted μ̂ , is also the one which maximises the loglikelihood. This value
is therefore referred to as the estimator for the true value, and defined as

μ̂ = argmaxμ logL(μ ∣x1, . . . ,xN) . (3.12)

For the Poisson distribution, this is

μ̂ = ∑N
i=1 xi

N
, (3.13)

i.e. the sample mean of the N observations in the sequence. This makes intuitive sense because the sample mean is an
unbiased estimator of the expected value of μ; the expectation value of a Poisson random variable.

The loglikelihood for a hundred draws from a Poisson distribution with parameter μtrue is shown in fig. 3.4a, where
the maximum of the curve is located at μ̂ ≈ μtrue. The location of the maximum in the x-direction does not change if the

2In particular, estimated best-fit parameters corresponding to the maximum of the likelihood are the same for the likelihood and the logarithm.
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Figure 3.4: (a) The loglikelihood curve resulting from drawing one hundred i.i.d. samples from a Poisson distribution.
(b) Loglikelihood ratio curves for 500, 1000 and 2000 i.i.d. draws from a Gaussian distribution. The curves become
narrower, i.e. the estimator μ̂ more certain, with increasing data.

loglikelihood of the maximum estimator μ̂ is subtracted, but the whole curve is shifted in the y-direction, such that the
maximum is located at 0.

The loglikelihood with its maximum subtracted corresponds of course to the ratio log L(μ)L(μ̂) , often referred to as the
loglikelihood ratio. In the following, the notation

λ(μ) ≡ L(μ)L(μ̂) 0 ≤ λ(μ) ≤ 1 (3.14)

is used. Larger (smaller) λ(μ) means better (worse) agreement between data and the hypothesised μ , and this quantity
is easier to work with because its optimum is always located at 0. It is, again for computational reasons, more common
to minimise the negative loglikelihood, in which case the minimum is still located at 0.

Before leaving the likelihood discussion, consider another distribution, this time the Gaussian, or normal, distribution

G(x;μ,σ) = 1√
2πσ2

e−
(x−μ)2

2σ2 , (3.15)

where μ is the expectation value and σ the standard deviation. After drawing N i.i.d. samples {x1, . . . ,xN} from such a
distribution, the loglikelihood is

logL(μ) = log
N∑

i=1

1√
2πσi

− N∑
i=1

(xi −μ)2

2σ2
i

, (3.16)

and all terms not dependent on μ will again cancel in the loglikelihood ratio. The above function is a parabola with
extremum at some value μ = μ̂ .

The second derivative of a parabola is a constant, define here

h ≡ − ∂ 2

∂ μ2 logL = N∑
i=1

1
σ2

i
, (3.17)

to rewrite the entire expression as

logL(μ) = logL(μ̂)− h
2
(μ − μ̂)2 . (3.18)
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Figure 3.5: Different trial values of the mixture parameter α along with the resulting likelihood for 20 independent
draws from the distribution in eq. (3.23) with mixture parameter αtrue = 0.3.

This corresponds to L(μ) = L(μ̂)e−
h
2 (μ−μ̂)2 , (3.19)

which represents a Gaussian distribution with mean μ̂ and standard deviation h−1/2. Since h increases with the total
number of data points, a larger data sample causes the width of the loglikelihood to decrease, see fig. 3.4b.

Expressing the loglikelihood in this way reveals one of its very handy properties: The uncertainty σμ̂ in the estimated
μ̂ can be readily read off a loglikelihood plot: Evaluating eq. (3.18) at μ = μ̂ ±σμ̂ yields

logL(μ̂ ±σμ̂) = logL(μ̂)− 1
2
, (3.20)

i.e., the 1σμ̂ interval corresponds to the point where the loglikelihood drops by 1
2 from its extremum value,

−2logλ(μ̂ ±σμ̂) = 1 . (3.21)

This equation can be generalised for s ⋅σμ̂ confidence intervals as [30]

−2logλ(μ̂ ± sσμ̂) = s2 . (3.22)

3.3 Likelihood and data

3.3.1 Maximum likelihood fits

Provided a collection of data, these can as announced earlier be used to fit the parameters of a model. Consider for
illustration a mixture model consisting of two Gaussians, with known means of zero and five respectively, standard
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(a) (b) (c)

Figure 3.6: The mixture model in eq. (3.23) shown as (a) the true distribution, and (b) and (c) histograms resulting from
20 independent draws from the distribution, but with different bin locations.

deviation of one, but with unknown mixture parameter. The total pdf for this model is

p(x∣α) = α G(x,0,1)+(1−α)G(x,5,1) , (3.23)

where α can take on a value in the interval (0,1).3

As a concrete case, let the true but unknown value for the mixture parameter be αtrue = 0.3. While this value is
unknown, random draws generated by the true model can be used to estimate the mixture parameter α̂ . To demonstrate
the procedure of maximum likelihood estimation, twenty random draws are used to calculate the likelihoods assuming
four different trial values for α . These four trial mixture models, the draws from the true model and the resulting
likelihood values are shown in fig. 3.5. Since the trial model with α = 0.3 achieves the highest likelihood for generating
the twenty random draws, the best-fit estimate is α̂ = 0.3.

In practice, the underlying pdfs of the mixture model may not be so easily separable, the data more scattered,
and one would use minimization algorithms to find the best estimate α̂ . The results in Signal mixture estimation for
degenerate heavy Higgses using a deep neural network [2] are obtained performing maximum likelihood fits. See
also section 5.2.1 for further details.

3.3.2 Density estimation

Using draws to represent and construct an estimate of a distribution is called density estimation, and a common choice
for graphically representing a distribution of data is via histograms. The term ‘histogram’ was first used by Karl Pearson
during his lectures on statistics, some time before 1894 [31], as

“a term for a common form of graphical representation, i.e. by columns marking as areas the frequency
corresponding to the range of their base.”,

and everyone who has spent a little time playing around with bin widths and locations, knows that a histogram is not
merely a histogram; it can be anything from an excellent representation of data to something completely confusing and
misleading.

Consider again the mixture model from eq. (3.23): This pdf with α = 0.3 is shown in fig. 3.6a, along with the two
histograms in figs. 3.6b and 3.6c created from the same 20 independently drawn samples from the pdf. The difference
between the two is merely the bin edges; the number and sizes of the bins are the same. An unlucky scientist who
happened to choose the bin locations corresponding to fig. 3.6c would probably end up believing that the true model is
asymmetric with only one peak and a large tail in one direction. Apparently, the arbitrary choice of binning can lead to
fundamentally different interpretations of the data. This example serves to show how histograms are not smooth and

3α can of course also take on the values 0 and 1, but then the model seizes to be a mixture model.
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(a) (b)

Figure 3.7: Two kernel density estimators: (a) with a tophat kernel and (b) with a gaussian kernel, both with h = 0.95.

depend strongly on the chosen bin widths and edges. Intuitively, histograms consist of blocks which each represent a
data point, stacked in a grid, and it is this gridding which causes the problem.

Attempting a different form of density estimation, define the estimate f̂ of the unknown underlying function f from
which the data are drawn, at one single point x as

f̂ (x) =∑
i

K(x−xi

h
) . (3.24)

Here, K represents the kernel function, and h the bandwidth. The bandwidth determines the width around a point
where the kernels overlap. A low bandwidth implies only points very close to a position are given weight, while a high
bandwidth implies contribution from distant points.

This method is called Kernel Density Estimation, and the difference from histograms is that each block is now
centered at the point it represents and the shape of the block is determined by the kernel function. Two examples are
shown in fig. 3.7, one where the kernel is still just a block, often called a ‘tophat’ kernel, and one with a Gaussian
kernel.

The Gaussian kernel function is commonly used in physics, and since the kernel function is continuous, so is the
entire density estimate. This is also the kernel used in section 5.3 and [2].

Just as data representation via histograms depend on the choice of bins, kernel density estimation depends on the
bandwidth: A too small value of h can lead to a very spikey estimate, while a too large h can cause the estimate to be
over-smoothened — part of the histogram problem translated. Ideally, one wants to choose the smallest h allowed by
the data.

Several methods for estimating the best bandwidth are of course available, but as expressed by Silverman [32]:

The optimal width is the width that would minimise the mean integrated squared error if the data were
Gaussian and a Gaussian kernel were used, so it is not optimal in any global sense. In fact, for multimodal
and highly skewed densities, this width is usually too wide and over-smooths the density.

Since the standard mean squared error approach is problematic for distributions with several modes, and in the present
work, bimodal distributions are the interesting ones, a more fruitful approach is cross-validation, which will also be
important in the discussion on training machine learning models. This amounts to dividing the dataset at hand in two,
performing the density estimation on one half, and via a maximum likelihood fit determining how well this density
estimate fits the second half of the dataset. Maximising the likelihood for different bandwidths then yields the best-fit
value for h.
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(a) (b)

Figure 3.8: Kernel density estimation of signal and background templates, using a Gaussian kernel. The templates
consist of points restricted to the interval [0,1]. The KDEs in (a) are shown on the interval [−0.25,1.25] to illustrate
how the Gaussian curves representing the points close to the edges at 0 and 1 extend beyond the interval spanned by the
templates they represent. The KDEs in (b), have been cut off at the border and renormalised within the range [0,1].

3.3.3 Kernel density estimation on the edge

One potentially challenging scenario for kernel density estimation with a Gaussian kernel, is when the data is constrained
to an interval, especially if the density of the data points is high around the edges.

When perfoming a kernel density estimate with a Gaussian kernel function, one Gaussian is created for each data
point, before all the Gaussians are combined into the total estimate. The direct consequence of this is that the density
estimation function is defined on the entire interval (−∞,∞), as all Gaussian distributions are. The bulk of the area of
each Gaussian is of course centered closely around its data point, but some of it is comprised by the tail, which only
asymptotically vanishes.

This is a problem in cases such as the one described in section 5.3, where one of the tasks is to create a density
estimate for the output from a classifier. The classifier outputs numbers in the range (0,1), so classifying many instances
results of course in many numbers between 0 and 1. Also, the better the performance of the classifier, the more of its
output is located close to 0 and 1. Points close to the edge on either side are represented by Gaussians whose area
covers a non-negligible interval outside the defined range. This again causes the total area over the range to be smaller
than unity, and the density estimation around the edges to be too small to accurately represent the density of the data
there: The most important points are under-represented in the estimate!

There are of course ways around this. For instance, the workaround implemented in the particle physics package
ROOT [33], where this problem is referred to as “spill out boundary effect”, is to mirror the data at the edges, and project
it back into the allowed interval. This strategy is, however, only useful for Gaussians with peak, i.e. zero derivative,
exactly on the edge.

Another solution is to simply cut off the Gaussian at the edge of the chosen range, and renormalise4 it so that its
integral remains the same, but now bounded to the defined range, as illustrated in fig. 3.8. The curve is strictly speaking
not a Gaussian anymore, but only because it has been spliced — it can still be described using an analytical function.
This method has been implemented for the project on Enabling sneutrino detection in weak signal scenarios using
machine learning methods [6], described in section 5.3, and the code is available on [34].

4This time in the literal sense of the word.
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3.4 Hypothesis testing

The following section is strictly speaking mostly a series of nice occasions to discuss useful theorems and lemmas, and
to explain terminology. This is done by introducing the necessary ingredients for hypothesis testing, a procedure which
can be divided into the following steps

1. The null hypothesis H0 and alternative hypothesis H1 are formulated

2. A test statistic which can can be used to assess the truth of H0 is defined. The test statistic is a function that maps
observed data into a single real rumber.

3. The p-value is computed. A smaller p-value means stronger evidence against H0.

4. The p-value is compared to a predetermined significance value α to decide whether the observation is statistically
significant. If p ≤ α , H0 is falsified.

The details in these steps are explained in the following.

3.4.1 Wilks’ theorem

Assume a set of probability density functions p(x;θ), depending on a d-dimensional parameter θ = (θ1, . . . ,θd)
contained in a parameter space H1. Define also an r-dimensional subset H0 of H1, so that r < d. Again, a datasetD containing N i.i.d. samples {x1, . . . ,xN} is drawn from a distribution with θ ∈ H1, so the likelihood function is

L(θ) = N∏
i=1

p(θ ∣D) . (3.25)

The maximum of the likelihood for θ in H1 is Lmax
d ≡ L(θ̂d). In order to test the hypothesis θ ∈ H0, calculate the

maximum of the likelihood for θ in H0, Lmax
r ≡ L(θ̂r). Since H0 ⊂ H1, the relation Lmax

r ≤ Lmax
d holds, and the

likelihood ratio

λ = Lmax
rLmax
d

(3.26)

is within the range 0 < λ ≤ 1. Interpreting the H as hypotheses, the null hypothesis H0 should be rejected if λ is small,
and accepted if λ is sufficiently close to 1.

A test proposed by S.S.Wilks in 1938 [35] defines a test statistic

tθ = −2logλ 0 ≤ tθ <∞ , (3.27)

such that if the hypothesis H0 is true, the distribution of tθ converges to a χ2 distribution with d− r degrees of freedom
as N →∞, irrespective of the true θ . The null hypothesis can thus be rejected if tθ is too large in the χ2 distribution.
Conversely, if the alternative hypothesis holds true, tθ asympotically follows a non-central χ2 distribution.

This can be illustrated using for instance a Gaussian distribution. Take as H0: μ = 0 and H1 ∶ μ = 4, and construct
the test statistic

tμ = −2logλ(μ) = N∑
i=1

(xi −μ)2

σ2
i

. (3.28)

First, this quantity is calculated for ten thousand draws from a Gaussian distribution with μ = 0, shown in fig. 3.9a,
where the overlaid χ2 probability density function with n degrees of freedom is defined as

χ2(x;n) = ⎧⎪⎪⎨⎪⎪⎩
1

2
n
2 Γ( n

2 )
x

n
2−1e−

x
2 , x > 0;

0, otherwise .
(3.29)
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(a) (b)

Figure 3.9: The distribution of −2logλ(μ), under H0: μ = 0 and H1 ∶ μ = 4, after drawing ten thousand samples from
Gaussian distributions with (a) μ = 0 and (b) μ = 4. Both have a χ2 distribution with one degree of freedom overlaid,
and (b) shows also a non-central χ2 distribution with sample mean at μ = 4.

Next, it is calculated for another ten thousand draws, this time from a Gaussian distribution with μ = 4, shown in fig. 3.9b.
This plot has also the overlaid non-central χ2 function, defined as

χ2
n−c(x;n,μ) = ∞∑

i=0

e−
μ
2 ( μ

2 )i

i!
χ2(x;n+2i) . (3.30)

3.4.2 The Neyman-Pearson lemma

Consider again a set of hypotheses and define a simple hypothesis test as one where the parameter of the hypothesis
uniquely specifies the distribution of the population from which samples are drawn. For instance, given a Gaussian
distribution with known variance and unknown mean, H0: μ = 1 and H1: μ = 2 is simple since μ is the only free
parameter and uniquely defines the distribution5. By contrast, a hypothesis on the form H0: σ < 5 is not simple, since it
does not uniquely define a distribution. Any hypothesis which is not simple is called a composite hypothesis.

Given a data sample D from a distribution with parameter θ , and a simple hypothesis test where H0: θ = θ0 is
tested against the alternative hypothesis H1: θ = θ1, the Neyman-Pearson lemma [36] states that the most powerful test
statistic is the likelihood ratio

tθ = λ(θ0,θ1 ∣D) =∏
D

L(θ1)L(θ0) . (3.31)

This test statistic has an acceptance region of size α , such that

tθ
< kα inside acceptance region≥ kα inside critical region (3.32)

where kα is a constant. The contour λ(θ0,θ1∣D) = kα is thus the boundary of the region inside which the null hypothesis
is not rejected. If a measurement x falls within the critical region, H0 is rejected, and if it falls within the acceptance
region, H0 is not rejected6. The quantity α is called the size of the test or the expected significance level, is related to
kα (hence the subscript) and independent of observations.

5A binomial test is another, simpler example.
6Note that “not rejecting” is not the same as accepting.
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Figure 3.10: Two Gaussian distribution curves with mean values μ0 and μ1 respectively, serving to illustrate the
acceptance and critical regions as delineated by the critical value kα .

Denoting the pdf for the test statistic p(tθ ), α equals the probability for rejecting the null hypothesis when it is in
fact true,

∫ ∞

kα
p(tθ ∣H0)dx = α , (3.33)

while the probability for accepting the null hypothesis when it is not true, is

∫ kα

−∞
p(tθ ∣H1)dx = β , (3.34)

and the quantity 1−β is called the power of the test.
The Neyman-Pearson lemma will not be proven here, but a simple example might provide some intuitive under-

standing: Assume drawing a single sample from a Gaussian distribution. Applying the Neyman-Pearson lemma to test
the simple null hypothesis H0: μ = μ0 against the simple alternative hypothesis H1: μ = μ1, the test statistic

λ(μ0,μ1∣x) = L(μ1∣x)L(μ0∣x) = G(x;μ1,σ1)
G(x;μ0,σ0) (3.35)

takes on different values depending on the value of x,7. The two curves and a critical value kα are indicated in fig. 3.10,
where it is obvious that drawing a sample x inside the acceptance region yields a small value for λ(μ0,μ1∣x), while the
value is larger inside the critical region. The plot in fig. 3.10 also serves to illustrate that a biased test

α ≥ 1−β , (3.36)

corresponds to a larger probability for not rejecting H0 when H1 is true than when H0 is true.

3.4.3 Significance and p-values

Consider an example from particle physics, looking for a New Physics scenario in an experiment where n events
have been collected. Each event can belong to one out of two classes: signal (s) and background (b). The objective

7Please, ignore σ for now. The example could have been designed using two distributions of equal and known variance, but this would have
rendered the figure less instructive.
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is to determine whether one can claim discovery of a new signal, i.e. if the collected data are incompatible with the
background-only hypothesis.

The mean expected number of events can be expressed as μ = μss+b, where μs represents the strength of the signal
process, and the aim is to test the null hypothesis H0: μs = 0 against the alternative hypothesis H1: μs ≠ 0:

Statistics term Physics term Probability function

H0 Null hypothesis Background only Poisson(n;b)H1 Alternate hypothesis Signal plus background Poisson(n;μss+b) (3.37)

The relevant likelihoods in this scenario are thus Ls+b and Lb, and following the Neyman-Pearson lemma, the best test
statistic is the loglikelihood ratio,

t = log
Ls+bLb

= n log(1+ s
b
)− s , (3.38)

where the last equality holds for the case of the Poisson distributions stated in eq. (3.37).
In order to quantify the level of agreement between the data collected in the experiment and a hypothesis, a

significance test can be performed. The pdf of the test statistic p(t) is used to calculate the p-value of the observed data.
This is defined as the probability, assuming a hypothesis H0, of finding data equally or more incompatible than the
value xobs observed in the experiment,

p0 = ∫ ∞

xobs
p(t ∣H0)dx

p1 = ∫ ∞

xobs
p(t ∣H1)dx .

(3.39)

A small p-value thus implies incompatibility with the assumed hypothesis, and upon comparison to eq. (3.33), the
hypothesis in question should be rejected if p is smaller than α , and the p-value is sometimes called the observed
significance level.

The p-value is closely related to the observed significance, referred to as the Z-value, which is perhaps more intuitive,
since a measurement has a high significance if it favors rejecting the null hypothesis. A large Z-value corresponds to a
small p-value, and the two are related via [30]

Z = Φ−1(1− p) , (3.40)

where Φ is the cumulative distribution function, short cdf, of the unit Gaussian,

Φ(z) = 1√
2π ∫ z

−∞
e−

x
2 dx . (3.41)

In other words, the p-value corresponds to the tail-probability of the Gaussian cdf with μ = 0 and σ = 1, at a distance Z
standard deviations from the mean of the distribution — see fig. 3.11 for an illustration. The Gaussian cdf is closely
related to the error function8, which is more commonly used in statistics, via

Φ(z) = 1+erf( z√
2
)

2
. (3.42)

This can be used to express the p-value in terms of the error function as

p = 1−erf( z√
2
)

2
. (3.43)

In particle physics, a significance of Z = 5 is often required to claim discovery of a new signal. This corresponds to a
p-value of 2.9 ⋅10−7.

8See appendix B for a summary of the relevant special functions and their relations.
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Figure 3.11: Illustration of the relation between the significance Z and the p-value.

3.5 Parameter scans

An important task within particle physics phenomenology is to identify interesting regions in the space of a theory’s
parameters, and since a physical theory may depend on many parameters, the parameter space can be high-dimensional.
This is potentially very challenging, and the present chapter is concluded with a discussion of how to navigate through a
high-dimensional parameter space, using the statistical concepts introduced.

3.5.1 Grid scans

A straightforward way of exploring parameter space, is by varying some or all of the parameters which specify a model,
over a range with a predetermined step size. This is referred to as a grid scan, and was the strategy applied in [1], where
a set of supersymmetric parameters at a high energy scale were varied, and physical quantities such as the identity and
mass of the lightest supersymmetric particle, the supersymmetric spectrum and the Higgs mass, were calculated for
each parameter point.

Grid scans are a nice and immediately intuitive way of mapping regions and identifying borders in parameter space,
for instance where the lightest supersymmetric particle changes identity. Pseudo code for a three-dimensional grid scan
over the parameters A, B and C is presented below.

for A in (start, stop, step size){
for B in (start, stop, step size){

for C in (start, stop, step size){
do_calculation(A, B, C)
store_information()
}

}
}

The static nature of the predetermined step sizes implies that interesting and uninteresting regions in parameter space
are granted the same amount of attention. This is a deterministic way of gathering information, but not an efficient way
of exploring a parameter space. Indeed, if the parameter space is very large, it may even be infeasible to entirely cover
it this way.
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3.5.2 Random scans, or: the curse of dimensionality

If the dimensionality of the parameter space is d, the number of steps along each direction is n and the number of
calculations per step, or parameter point, is m, then the total number of calculations in a scan over this space is

N = mnd , (3.44)

an exponentially increasing number.
In the hope of covering the whole parameter space, one could try sampling points at random. In two-dimensional

space, random sampling over an area yields a selection of points which covers the whole area — the intuitive picture.
However, as the dimensionality increases, the intuitive picture becomes increasingly useless. This can be illustrated by
considering the difference in volumes between a d-dimensional cube and sphere, to illustrate that the majority of the
volume is located around the outer edges, and consequently almost none of it around the center.

The volume of a d-dimensional cube with sides a is

VD = ad , (3.45)

and volume of a d-dimensional sphere with radius r

VD = π
d
2

Γ( d
2 +1) rd . (3.46)

Scaling the two d-dimensional objects so that the sphere fits exactly inside the cube, a = 2r, as illustrated for the
two-dimensional case in fig. 3.12a, the difference between the volumes of the two is

ΔVD = ⎛⎝2d − π
d
2

Γ( d
2 +1)

⎞⎠rd . (3.47)

This expression is not immediately enlightening, but plotting the prefactor — the equivalent of considering a unit cube
and sphere — for different values of d, as is done in fig. 3.12b, shows that already for quite small numbers of d, the
vast majority of the volume is contained outside the sphere. A consequence of this is that a random scan would never
sample the region where most of the input parameters are small.

3.5.3 Guided scans

Turning at last to guided scans, the idea is that a scan should be given a range to consider, and then be able to efficiently
identify and focus on interesting regions. This can be done by evaluating the likelihood in each point, and choose
new points based on this. In this way, unlikely regions in parameter space receive little attention, while the interesting
regions are explored with a greater resolution, increasing the chance of identifying the best regions in parameter space,
or in statistical terms, identifying the optima of the likelihood function. This means that the likelihood function must be
evaluated for each point in the scan.

The likelihood function usually consist of several components, e.g. representing agreement with experimental data
or cosmological observations. Some components of the likelihood can also serve to maximise a particular value, such
as the finding the highest allowed reheating temperature in [4], see also section 7.3.

Being a function of the scanned parameters, the total likelihood increases in complexity with the dimensionality of
the parameter space. Hence, there is a numerical trade-off; the more expensive the computation of the likelihood, the
less resources available for sampling the parameter space. Concurrently, if the likelihood is a complicated function with
many minima or degenerate directions, a dense sampling may be required in order to adequately describe its topology.

There are several tools available for doing this in practice, and the tool used in [4] is the Bayesian inference
algorithm MultiNEST, which will be presented in the following.
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(a) (b)

Figure 3.12: (a) A two-dimensional depiction of a sphere within a cube, with the difference in volume ΔVD shaded in
dark red. (b) The difference in volume between a d-dimensional cube and sphere, as a function of d.

3.5.4 Nested sampling

The Bayesian evidence, introduced in eq. (3.6) and repeated here for convenience,

Z = ∫ L(Θ)π(Θ)dΘ , (3.48)

is an integral over the entire space spanned by Θ and thus potentially computationally expensive or even infeasible to
evaluate. As a means of numerically approximating the integral, Skilling [37] developed an algorithm called Nested
sampling, and as the MultiNEST tutorial states [38]:

Nested sampling estimates the Bayesian evidence by transforming the multi-dimensional evidence integral
over the prior density into a one-dimensional integral over an inverse survival function (with respect to
prior mass) for the likelihood itself.

The reader for which everything was left crystal clear by this may proceed to the next section.
Before unnesting the inner workings of MultiNEST, the concept of a survival function, here conveniently denoted

S, must be introduced. Let Λ be a random variable with probability density function fΛ. Its cumulative distribution
function

FΛ(λ) = P(Λ ≤ λ) = ∫ λ

−∞
fΛ(x)dx (3.49)

where λ is a particular measurement, is the complement of the survival function,

SΛ(λ) = P(Λ > λ) = 1−FΛ(λ) = ∫ ∞

λ
fΛ(x)dx . (3.50)

The latter represents the probability that the random variable Λ takes on a value larger than λ .9

9For a more intuitive picture, replace (λ ,Λ) by (t,T) and interpret the probability as that for and event not having occurred by the time t.
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Figure 3.13: The integral over the prior π(Θ) in the region where the likelihood L(Θ) is larger than some value λ .
This corresponds to eq. (3.52), but since the illustration is one-dimensional, the shaded region comprises the prior mass,
not the prior volume.

As will shortly become useful, the survival function is related to the expectation value of Λ via

E[Λ] = ∫ ∞

0
x fΛ(x)dx

= ∫ x=∞

x=0
(∫ λ=x

λ=0
dλ) fΛ(x)dx

= ∫ λ=∞

λ=0
∫ x=∞

x=λ
fΛ(x)dxdλ

= ∫ ∞

0
FΛ(∞)−FΛ(λ)dλ

= ∫ ∞

0
1−FΛ(t)dλ

= ∫ ∞

0
SΛ(λ)dλ .

(3.51)

Returning to MultiNEST business, the aforementioned prior mass is the one-dimensional version of the prior
volume

X(λ) = ∫{Θ∶L(Θ)>λ}
π(Θ)dΘ = ∫ L(Θ)=∞

L(Θ)=λ
π(Θ)dΘ , (3.52)

which simply means the amount of prior probability contained in the region(s) where the likelihood L(Θ) is larger than
some value λ , see fig. 3.13 for a one-dimensional illustration.

The probability P(L(Θ) > λ) is, treating the likelihood L(Θ) like a random variable Λ, the survival function SΛ(λ).
Using eq. (3.51), the evidence is thus

Z = Eπ[L(Θ)] = ∫ ∞

0
SL(Θ)(λ)dλ = ∫ ∞

0
X(λ)dλ . (3.53)

That is, the survival function is equal to the above defined X(λ), which holds without any restrictions on L(Θ) or
π(Θ) [39].
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(a) (b)

Figure 3.14: (a) The posterior of a two-dimensional problem with the iso-likelihood contours Li indicated, and (b) the
transformed Li = L(Xi) with the prior volumes X on the x-axis.

Looking again at fig. 3.13, the shaded region is obviously zero at λ = maxΘL(Θ). This means that the prior volume
X(Lmax) = 0, while it covers the whole range if evaluated from the origin, X(0) = 1. Hence, X(λ) is a monotonically
decreasing function of λ , and while λ can take values in the range [0,∞], X(λ) is constrained to [0,1].

Taking a brief step back to the cumulative distribution function,

FΛ(λ) = P(Λ ≤ λ) = αλ , (3.54)

represents the probability that Λ takes a value smaller than λ . Its inverse G, referred to as the percent point function,
then represents the value of λ for which P(Λ ≤ λ) = α , i.e. G(α) = λ .

Analogously, the inverse L of the survival function is also a percent point function, L(X(λ)) = λ , and for the
present case strictly decreasing, based on the earlier discussion about the behaviour of X(λ). This can be used to
rewrite the integral in eq. (3.53) one more time as

Z = ∫ 1

0
L(X)dX . (3.55)

This is now a one-dimensional integral which furthermore has a positive and decreasing integrand, and is thus well-
behaved. Note that this function L(X) takes a scalar argument and must not be confused with L(Θ). Comparing the
new expression for Z with the one in eq. (3.48), the transformation from Θ to X involved dividing the prior volume into
infinitesimal pieces and sorting them based on the likelihood L(X).

This ends the attempt at making the contents in that one sentence from the MultiNEST tutorial clearer, and the last
step is to understand what actually happens during a scan.

A MultiNEST scan

If the recently introduced L(X) were known, it could be evaluated from Li = L(Xi) for a sequence of points X in
increasing order as

0 < Xn <⋯ < X2 < X1 < 1 . (3.56)

Then the numerical integral could be approximated as the weighted sum

Z ≈ n∑
i=1

wiLi , (3.57)
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with weights wi equal to the widths ΔXi, see the illustration in fig. 3.14b.
In practice, this is done by an iterative random mechanism, which is the reason behind the name “nested sampling”.

1. Draw Nlive independent live points Θi from the prior distribution π(Θ)
2. Evaluate the likelihoods Li = L(Θi)
3. Discard the point Θl with the lowest likelihood Ll

4. Replace the discarded point by a new draw Θnew from π(Θ), conditional upon Lnew ≥ Ll

5. Repeat from step 3 until some stopping criterion is reached

Following this procedure results in samples from regions of increasing likelihood, i.e. the algorithm provides more
likely points in parameter space. Concurrently, as the discarded points correspond to samples of increasing likelihood

0 < L1 < L2 < . . . , (3.58)

the prior volume X contained within the contours of these likelihoods is steadily decreasing,

1 > X1 > X2 > . . . , (3.59)

exactly what is needed to evaluate eq. (3.57) numerically, if the value of Xi can be found.
The relation dX =π(Θ)dΘ implies that samples drawn from π(Θ) corresponds to a uniform sampling in X . Together

with the relation in eq. (3.59), this means that at iteration i, the point to be discarded — the one with the lowest L and
highest X — is

Xi = tiXi−1 . (3.60)

Here, ti is the largest of Nlive samples drawn uniformly from [0,1], i.e. the pdf for t is

f (t) = Nlive tNlive , (3.61)

with mean and variance
μlog t = − 1

N
σ2

log t = 1
N2 . (3.62)

Since the first sample in the scan is drawn from the entire prior volume, X0 = 1, eq. (3.60) implies

Xi = ti ti−1 . . .t1 , (3.63)

and correspondingly,
logXi = logti + logti−1 +⋅ ⋅ ⋅+ logt1 . (3.64)

This can, using eq. (3.62) be approximated as

logXi ≈ − i
N

± √
i

N
⇒ Xi ≈ e−

i
N , (3.65)

and the evidence integral can finally be approximated as

Z ≈∑
i
LiΔXi = 1

2
∑

i
Li(Xi−1 −Xi+1) (3.66)

where ΔXi is exactly the prior mass (or volume) contained within the disk between two iso-likelihood contours, depicted
in fig. 3.14a.

Once the evidence has been calculated, each of the sampled points can be assigned a posterior weight, in accordance
with Bayes’ law,

pi = LiΔXiZ . (3.67)
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Before ending this discussion, a couple of remarks: From a frequentist perspective, comparison of the likelihoods
of different points is enough. Nested sampling is an efficient way of obtaining a likelihood-guided sampling of the
parameter space, and does not require the Bayesian interpretation. It is in calculating the evidence and when making
inferences based on the posterior that the Bayesian interpretation is inevitably chosen. On a more technical note, a
requirement for this algorithm to work efficiently, is that it be able to efficiently sample the prior distribution under the
constraint Lnew > Ldiscard. If new samples are drawn from the entire prior distribution, this inevitably becomes more
inefficient as the maximum of the likelihood is approached. This problem is evaded in MultiNEST due to improvements
in [40], from which followed the implementation that new samples drawn from the prior distribution are done so from
an ellipsoid containing the current set of live points. This of course comes with the side effect that any possible sharp
features in the “true” posterior distribution are evened out to an ellipsoidal shape. Multimodal distributions, i.e. more
than one maximum of the likelihood, are tackled by using clustering [41], which assigns one ellipsoid to each cluster of
live points.
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Chapter 4

Supersymmetry

The reason why supersymmetry, short SUSY, became so popular and has kept its place as one of the strongest candidates
for a theory beyond the Standard Model, despite discouraging lack of experimental evidence, is certainly its wide range
of appealing features. On the one hand, it could solve many of the challenges the Standard Model currently faces, e.g.
by providing candidates for dark matter, and perhaps even relate the cosmological constant to theory [42] — in this case,
that of SUSY breaking — and solving the Higgs hierarchy problem by cancelling the loop correction terms to each
order exactly. On the other hand, it also has a purely theoretical appeal, independent of unanswered phenomenological
questions, and can be motivated by more fundamental theories, such as string theories or supersymmetric grand unified
theories. For instance, gauge coupling unification at a high energy scale does not occur in the Standard Model, while it
does in supersymmetry, see fig. 4.1.

By providing a relation between bosons and fermions, i.e. force and matter, in the form of a symmetry, supersym-
metry unifies all the constituents of particle physics. If supersymmetry is discovered, all mathematically consistent
spacetime symmetries will have been realized in nature.

Supersymmetry is formulated using superfields, which correspond to the field operators known from quantum field
theory, but formulated in superspace. The superspace considered in the present work is 4-dimensional, N = 1 super
Minkowski space, meaning ordinary R

4 spacetime, represented usually by the bosonic coordinates xμ (μ = 0,1,2,3),
extended by the fermionic coordinates θ α , θ̄ α (α = 1,2), which transform as Weyl spinors.

The following contains a brief introduction to supersymmetry formalism, the minimal supersymmetric extension
of the Standard Model, supersymmetry breaking and the mass spectrum, followed by an introduction to the topics
discussed in Trilinear-augmented gaugino mediation [1].

4.1 Supersymmetry algebra

The supersymmetry algebra is a Lie superalgebra, of which the bosonic part is the Poincaré algebra. The supersym-
metric extension of the Poincaré algebra consists of a fermionic part, constructed using Grassmann numbers. The
supersymmetry operators, which act on superfields, are [44]

Q̂α = i
∂

∂θ α −(σ μ θ †)α ∂μ Q̂α = −i
∂

∂θα
+(θ †σ μ)α ∂μ (4.1)

Q̂†α̇ = i
∂

∂θ †
α̇
−(σ μ θ)α̇ ∂μ Q̂†

α̇ = −i
∂

∂θ †α̇ +(θσ μ)α̇ ∂μ ,
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where the indices and σ μ matrices are explained in section 4.2. The Q̂’s are sometimes referred to as the SUSY charges,
and they satisfy the algebra

{Qα ,Q
†
β̇
} = (σ μ)αβ̇ Pμ

{Qα ,Qβ} = {Q†
α̇ ,Q

†
β̇
} = 0 ,

(4.2)

where Pμ = i∂μ . It is convenient to introduce the SUSY covariant derivatives,

Dα = ∂
∂θ α − i(σ μ θ †)α ∂μ Dα = − ∂

∂θα
+ i(θ †σ μ)α ∂μ (4.3)

Dα̇ = ∂
∂θ †

α̇
− i(σ μ θ)α̇ ∂μ Dα̇ = − ∂

∂θ †α̇ + i(θσ μ)α̇ ∂μ , (4.4)

and comparing these to the SUSY charges, it is obvious that the covariant derivative of a superfield is another superfield.
In fact, {Q̂α ,Dβ} = {Q̂†

α̇ ,Dβ} = {Q̂α ,Dβ̇} = {Q̂†
α̇ ,Dβ̇} = 0 . (4.5)

The Poincaré algebra, see eq. (2.11), is thus extended to a super-Poincaré algebra.

4.2 Formalism and notation

4.2.1 Spinors and indices

In this section, two-component notation for fermions is introduced, and will be used in the following. Building upon the
short introduction to spinors in section 2.1.2, the Dirac spinors are re-introduced, now with explicit spinor indices,

ΨD = ( ξα
χ†α̇) α, α̇ = 1,2 (4.6)

and again, using the projection operators defined in eq. (2.38), the different components are projected out as

PLΨD = (ξα
0 ) , PRΨD = ( 0

χ†α̇) , (4.7)

so in this notation, left-handed, undaggered fields carry undotted indices, while right-handed, daggered fields carry
dotted indices. In two-component formalism, the Clifford algebra is generated by the three Pauli matrices, eq. (2.14).
Defining

σ μ ≡ (I2, σ⃗) , σ̄ μ = (I2,−σ⃗) , (4.8)

the index convention corresponds to the one for the spinors; (σ μ)αα̇ and (σ̄ μ)α̇α . Dotted and undotted indices can be
manipulated using the relations

ξ α = εαβ ξβ , ξα = εαβ ξ β

χ†α̇ = εα̇β̇ χ†
β̇
, χ†

α̇ = εα̇β̇ χ†β̇

(σ̄)α̇α = εαβ εα̇β̇ (σ μ)ββ̇ ,

(4.9)

and are usually suppressed, e.g. [44]

ξ †
α̇(σ̄ μ)α̇α χα = ξ †σ̄ μ χ = −χσ μ ξ † = −χα(σ μ)αα̇ ξ †α̇ . (4.10)
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4.2.2 Supermultiplets

A supermultiplet is a representation of a supersymmetry algebra, and consists of particles which are superpartners
of each other, meaning that they transform into each other under the operators introduced in eq. (4.1). Two kinds of
supermultiplets are relevant for the present discussion.

Chiral supermultiplets

These contain the Standard Model matter particles. Here denoted Φ, chiral supermultiples contain a scalar φ , a
Weyl-fermion ψ and an auxiliary field F . The latter is not a physical field, i.e. does not have kinetic nor mass terms in
the Lagrangian, and is merely included to ensure the supersymmetry algebra close off-shell1. To find the exact form of
a chiral supermultiplet, the only constraint needed is

Dα̇ Φ = 0 , or Dα Φ† = 0 , (4.11)

where a field satisfying the first one is a left-chiral, or just chiral for short, supermultiplet, while a field satisfying the sec-
ond one is a right-chiral, or anti-chiral supermultiplet. Changing coordinates to yμ ≡ xμ + iθσ μ θ and rewriting eq. (4.3)
and eq. (4.4) yields

Dα = ∂
∂θ α −2i(σ μ θ †)α

∂
∂yμ Dα = − ∂

∂θα
+2i(θ †σ μ)α ∂

∂yμ (4.12)

Dα̇ = ∂
∂θ †

α̇
Dα̇ = − ∂

∂θ †α̇ . (4.13)

Combining the first condition in eq. (4.11) with eq. (4.13) reveals that a chiral supermultiplet is of the form

Φ(y,θ) = φ(y)+√
2θψ(y)+θθF(y) , (4.14)

where the factor
√

2 is conventional. It is obvious from eq. (4.14) that the gauge quantum numbers and mass dimension
of the supermultiplet Φ are those of its scalar component φ . Integrating Φ over superspace, see eq. (A.1), yields

[Φ(y,θ)]F ≡ ∫ d2θ Φ(y,θ) = ∫ d2θ (φ(y,θ)+√
2θψ(y)+θθF(y)) = F , (4.15)

which is why this is referred to as ‘taking the F-term’.

Vector supermultiplets

These contain the Standard Model gauge bosons. Denoted V , they contain a gauge boson field Aμ , a Weyl fermion
λ , referred to as gaugino, and an auxiliary field D. This auxiliary field plays exactly the same role as F in the chiral
supermultiplet2. A general form of V can be obtained by imposing the reality condition

V∗ =V . (4.16)

In general, V can have several auxiliary fields, but all except one can be transformed away via a gauge transformation in
superspace. The simplest supermultiplet satisfying eq. (4.16) is in Wess-Zumino gauge, see e.g. [44] for details,

VWZ(x,θ ,θ †) = θ †σ μ θAμ +θ †θ †θλ +θθθ †λ † + 1
2

θθθ †θ †D , (4.17)

where the arguments of the fields have been, and will henceforth be, omitted. Integrating this over superspace,
see eq. (A.1), yields

[V ]D ≡ ∫ d2θd2θ †V = ∫ d2θd2θ †(θ †σ μ θAμ +θ †θ †θλ +θθθ †λ † + 1
2

θθθ †θ †D) = D , (4.18)

which is why this is referred to as ‘taking the D-term’.
1Meaning that δLF = 0 on-shell, while it exactly cancels the excess (fermionic) degrees of freedom off-shell.
2The auxiliary field D cancels both fermionic and bosonic degrees of freedom off-shell.
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4.2.3 Superspace Lagrangians

The following contains a brief discussion of what a Lagrangian representing a supersymmetric theory should comprise
and obey. More details can be found in the literature which forms the basis for the present discussion [44, 45].

As demonstrated in eq. (4.18), the integral of a function over superspace is independent of θ and θ †, owing to the
Grassmannian nature of the superspace coordinates. This means that for any superfield S(x,θ ,θ †), the variation of the
following quantity under supersymmetric transformations vanishes

A = ∫ d4x∫ d2θd2θ † S(x,θ ,θ †) , (4.19)

since the SUSY generators in eq. (4.1) are made up of derivatives of x, θ , θ †. As indicated by the notation, A represents
an action. This means that the above can be used to build a superspace Lagrangian. Based on eq. (4.15), the F-term
of any holomorphic function W(Φ) of chiral superfields is also a constant, and can be included in the action. In
that case, the hermitian conjugate must also be added, since the action must be real. Finally, the way to include
vector supermultiplets in the F-term part is by realising that a chiral supermultiplet can be constructed from a vector
supermultiplet as Wα =DDDαV , W†

α̇ =DDDα̇V . (4.20)

Note that this chiral supermultiplet carries an index, which means that it is a spinor chiral superfield and transforms
like a Weyl spinor, as opposed to the ones introduced earlier, which are scalars. To summarise, a general superspace
Lagrangian is of the form

L (x,θ ,θ †) = [K(Φ,Φ†,V)]D +([ fab(Φ)WaαWb
α +W(Φ)]F +h.c.) , (4.21)

where K is a real function of superfields, and can in principle also be a function of spacetime derivatives of superfields.3

Additional requirements to the above Lagrangian are, as already mentioned, that it be real and invariant under gauge
transformations, that each term have the correct mass dimension and, in the present case, that it reproduce the Standard
Model.

4.3 The MSSM

The Minimal Supersymmetric Standard Model (MSSM) is minimal in the sense that it is the smallest extension, in terms
of particle content and interactions, of the Standard Model necessary to accomodate supersymmetry and be consistent
with observations. An overview of the MSSM supermultiplets’ field content and gauge quantum numbers is presented
in table 4.1, which is the supersymmetric extension of table 2.1. In the following, the three functions in eq. (4.21) for
the MSSM are introduced and briefly explained.

4.3.1 The MSSM Lagrangian

The superpotential

All interactions not involving gauge fields or couplings, i.e. between chiral superfields alone, go into the superpotential
W . This is where e.g. the Yukawa couplings are found and thus Standard Model fermion masses are generated.
Demanding that the Lagrangian have mass dimension [L ] = 4, the mass dimension of the superpotential must be[W ] = 3, meaning that only terms containing at most three chiral superfields are allowed, see also table 4.2. In the
MSSM, the superpotential takes the form

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd +μHuHd , (4.22)

where the SU(2), generation and colour indices have been, and will henceforth be, suppressed, but behave as explained
in section 4.2.1, i.e. ūyuQHu = ūia(yu) j

i Q jaα(Hu)β εαβ and μHuHd = μ(Hu)α(Hd)β εαβ . The terms in the superpotential

3Note that fab = δab in the MSSM.
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Chiral supermultiplet Scalar Fermion SU(3)c,SU(2)L,U(1)Y

Qi — Left-handed squark isospin doublet (ũiL d̃iL) (uiL diL) (3,2, 1
6)

ūi — Right-handed up-squark ũ∗iR u†
iR (3̄,1,− 2

3)
d̄i — Right-handed down-squark d̃∗iR d†

iR (3̄,1, 1
3)

Li — Left-handed slepton isospin doublet (ν̃iL ẽiL) (νiL eiL) (1,2,− 1
2)

ēi — Right-handed charged slepton ẽ∗iR e†
iR (1,1,1)

Hu — Up-type Higgsino (H+u H0
u ) (H̃+u H̃0

u ) (1,2, 1
2)

Hd — Down-type Higgsino (H0
d H−d ) (H̃0

d H̃−d ) (1,2,− 1
2)

Vector supermultiplet Vector boson Fermion SU(3)c,SU(2)L,U(1)Y

g — Gluon gluino g g̃ (8,1,0)
W — Weak isospin bosons winos W+ W− W 0 W̃+ W̃− W̃ 0 (1,3,0)
B — Weak hypercharge boson bino B0 B̃0 (1,1,0)

Table 4.1: The chiral and vector supermultiplets of the MSSM. The generation index i = 1,2,3 runs over (up, strange,
top) and (down, charm, bottom) quarks, and (electron, muon, tau) leptons. The numbers in parentheses represent the
transformation properties under the Standard Model gauge groups. Superpartner names are indicated in italic.

make it obvious why the MSSM requires two separate Higgs doublets4 with different quantum numbers; given that W
must be a holomorphic function of the supermultiplets, there is no way to couple only one Higgs supermultiplet to all
quark and lepton supermultiplets in a gauge invariant way. In addition to the interaction terms which also end up giving
masses to the quark and leptons after electroweak symmetry breaking, the superpotential contains a term coupling the
two Higgses, commonly referred to as ‘the μ-term’.

The field strength superfield

Moving on to the next F-term in the Lagrangian, there are the field strength superfields Wα , which are chiral superfields,
accompanied by the gauge kinetic function fab(Φ), which is itself a chiral superfield. The field strength superfields are
constructed from vector superfields, in line with eq. (4.20). Evaluating this in Wess-Zumino gauge yields

Wα = λα +θα D+ i
2
(σ μ σ̄ν θ)α Fμν + iθθ(σ μ ∂μ θ †)α . (4.23)

The Kähler potential

Now for the D-term in the Lagrangian. The Kähler potential is not a holomorphic function of superfields, and it
can contain both chiral, anti-chiral and vector superfields. Having the (anti-)chiral supermultiplets invariant under
super-gauge transformations as

Φ → e2igΩaT a
Φ

Φ† → Φ†e−2igΩaT a
,

(4.24)

where the super-gauge transformation parameters Ωa are also chiral superfields, a general Kähler potential can be
written as

K(Φ,Φ†,V) = Φ†e2gT aV a
Φ , (4.25)

with g the gauge coupling of a single the gauge group, and the vector supermultiplets V a containing the corresponding
gauge bosons and gauginos. The generalisation to several groups is trivial. In the MSSM, using the chiral and vector

4Specifically, the MSSM contains a two-Higgs doublet model of Type II.
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supermultiplets from eqs. (4.14) and (4.17), the explicit form is

[K(Φ,Φ†,V)]D = F†F +∇μ φ †∇μ φ + iψ†σ̄ μ∇μ ψ −√
2ga(φ †T aψ)λ a −√

2λ †(ψ†T aφ)+ga(φ †T aφ)Da . (4.26)

Here, ∇μ is the gauge-covariant spacetime derivative:

∇μ φi = ∂μ φi − igqiAμ φi, ∇μ φ∗i = ∂μ φ∗i + igqiAμ φ∗i,∇μ ψi = ∂μ ψi − igqiAμ ψi ,
(4.27)

see [44] section 4.8 for details.

4.4 Broken supersymmetry

Supersymmetry must be broken at the energy scales covered by the Standard Model at present, since the Standard Model
particles would otherwise be mass degenerate with their superpartners, which would already have been discovered. But
just like the electroweak gauge bosons are massive due to the spontaneous breaking of the electroweak symmetry, it is
possible that supersymmetry is spontaneously broken at low energies. Supersymmetry could thus still be a symmetry of
the Lagrangian, while the vacuum state of the universe is not invariant under SUSY, i.e.

Q̂α ∣0⟩ ≠ 0 and Q̂†
α̇ ∣0⟩ ≠ 0 . (4.28)

From the SUSY algebra, eq. (4.1), the above amounts to positive vacuum energy, Ĥ ∣0⟩ > 0. For this to be true
regardless of kinetic contributions to Ĥ, the SUSY scalar potential V(φ ,φ †) must satisfy ⟨0∣V(φ ,φ †)∣0⟩ > 0. The terms
contributing to V(φ ,φ †) are contained in the Kähler potential part of the Lagrangian, eq. (4.26), and can be rewritten in
terms of the auxiliary fields of the chiral and vector supermultiplets as

V(φ ,φ †) = F†F +ga(φ †T aφ)Da = F†F + 1
2
∑
a

DaDa . (4.29)

The form of this equation reveals that spontaneous symmetry breaking can be classified as either F-term or D-term
breaking, depending on which part of the potential acquires a non-zero VEV.

For reasons that will not be elaborated further in the present work, it is clear that within the MSSM, there is no
suitable candidate supermultiplet whose F- or D-term could develop a VEV and thus give rise to the spontaneous
breaking of SUSY. Because of this, SUSY is likely to be broken in a hidden sector scenario, while the field contents of
the MSSM resides in a visible sector. One or several hidden sector fields would have an auxiliary field responsible for
the breaking of SUSY, and the effects of this somehow mediated to the visible sector.

There are many different hidden sector models, but the phenomenological feature shared by all these models is that
it is not the mechanism of the spontaneous SUSY breaking itself that prescribes how broken SUSY is manifested in the
visible sector, but rather its mediation.

Planck scale mediated SUSY breaking (PMSB), or gravity mediated SUSY breaking, assumes that the SUSY
breaking mediating interactions are gravitational, and as such connected to New Physics, perhaps including quantized
gravity, which enters near the Planck scale. Gauge mediated SUSY Breaking (GMSB) on the other hand, postulates
messenger fields which are chiral supermultiplets, charged under at least one MSSM gauge group. These also couple to
the hidden sector auxiliary field which aquires a VEV, and thus contribute to mass terms for the visible sector fields
through loop interactions.

These models for SUSY breaking are not discussed further in the present work, but a nice and comprehensive
overview is given in [46]. The SUSY breaking mechanism considered in the following is gaugino mediated SUSY
breaking.

4.4.1 Soft supersymmetry breaking

Though SUSY breaking happens at some scale not accessible to us and through some mechanism not assessable by
us, it is possible to set aside this ignorance and simply consider all possible terms in the Lagrangian that would break
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Figure 4.1: The gauge couplings evolve differently with energy and align at a high scale. Plot produced using
SPheno [8].

SUSY. In order not to spoil the appeal of the theory by introducing quadratically divergent radiative corrections, only
terms of positive mass dimension are included. These are termed soft, and the possible soft SUSY breaking terms are

Lsoft = −(1
2

Maλ aλ a + 1
6

ai jkφiφ jφk + 1
2

bi jφiφ j + tiφi)+h.c.−(m2)i
jφ

j∗φi , (4.30)

where a runs over the gauge groups and thus enumerates the different gauginos, and (m2)i
j are scalar squared-mass

terms. Whenever a common gaugino mass is chosen, this is denoted m1/2, while a common scalar mass is denoted m0.
The SUSY breaking interactions are ai jk, combining three scalars and in short referred to as trilinears — a common
trilinear coupling is denoted A0 —, and bi j coupling two scalars, which in the MSSM could only be the so-called Bμ
term for the Higgses, i.e. a SUSY breaking term with the same structure as the μ term. The tadpole coupling ti is only
allowed for a gauge singlet, which does not exist in the MSSM.

4.4.2 Energy scales

Any candidate theory for describing the mechanism of SUSY breaking must make predictions regarding the parameters
in the SUSY breaking part of the Lagrangian. However, these are imposed at some high scale, much higher than the
electroweak scale, and must be connected with the phenomenology at the electroweak scale in order to evaluate the
theory at hand. In order to do this, the renormalisation group equations, short RGE, are solved, using as boundary
conditions the measured values of the gauge couplings, the Standard Model fermion and electroweak boson masses at
the weak scale. The one-loop RG equations for the gauge couplings are

d
dt

ga = 1
16π2 bag3

a, a = 1,2,3 , (4.31)

where t ≡ ln(Q/Q0), Q is the renormalisation scale and Q0 the input scale. The corresponding equations for the MSSM
gaugino mass parameters are [44]

d
dt

Ma = 1
8π2 bag2

aMa, a = 1,2,3 , (4.32)
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from which three scale-independent ratios are extracted,

M1

g2
1
= M2

g2
2
= M3

g2
3
. (4.33)

The coefficients ba are smaller in the Standard Model than the MSSM, since the MSSM has more particles and hence
loops. The numerical values are

(b1,b2,b3) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
( 41

10 ,− 19
6 ,−7) Standard Model

( 33
5 ,1,−3) MSSM.

(4.34)

The superpotential parameters of the third family evolve with the energy scale as [44]

d
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(4.35)

and the first and second family squark and slepton squared-mass parameters as

16π2 d
dt

m2
φi

= − ∑
a=1,2,3

8Ca(i)g2
a∣Ma∣2 + 6

5
Yig2

1S , (4.36)

where
S ≡ Tr[Yjm2

φ j
] = m2

Hu −m2
Hd

+Tr[m2
Q −m2

L −2m2
u +m2

d
+m2

e]. (4.37)

The Ca(i) are known as the quadratic Casimir group theory invariants for the superfield Φi. These are defined in terms
of the Lie algebra generators T a, akin to the discussion around eq. (2.9), as

(T aT a)i
j =Ca(i)δ j

i . (4.38)

For the MSSM supermultiplets, these are explicitly

C1(i) = 3Y 2
i /5 allΦi with weak hyperchargeYi

C2(i) = { 3/4 Φi = Q,L,Hu,Hd ,
0 Φi = ū, d̄, ē,

C3(i) = { 4/3 Φi = Q, ū, d̄,
0 Φi = L, ē,Hu,Hd .

(4.39)

The squared-mass parameters of the Higgs scalars and third family squarks and sleptons receive the same contributions
as eq. (4.36), but there are additional contributions from large Yukawa couplings and the soft trilinears. These expressions
are large and their derivation tedious, and they will not be stated explicitly here. Perhaps just as enlightening, the energy
evolution of all the particle masses for a single parameter point is shown in fig. 4.2.

Similarly tedious is the job of evolving these RG equations between energy scales. Among the most popular
programs for doing this numerically are at the time of writing SPheno [8], Softsusy [9] and SuSpect [10]. These
programs are called spectrum generators, since their output includes the mass spectrum of the parameter point.
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Figure 4.2: The evolution of the SUSY soft masses, as function of energy scale. The calculations are made by SPheno,
and the input parameters are m0 = 100GeV, M1 = M2 = M3 = 500GeV, tanβ = 10, A0 = 0GeV.

4.4.3 A note on electroweak symmetry breaking and naturalness

Electroweak symmetry breaking in SUSY is slightly complicated by the fact that the Higgs sector of the MSSM is
larger than that of the Standard Model; it contains a two-Higgs doublet model, and the Higgs scalar potential is

V =(∣μ ∣2 +m2
Hu)(∣H0

u ∣2 +∣H+u ∣2)+(∣μ ∣2 +m2
Hd

)(∣H0
d ∣2 +∣H−d ∣2)

+ (b(H+u H−d −H0
u H0

d )+h.c.)
+ 1

8
(g2 +g′2)(∣H0

u ∣2 +∣H+u ∣2 −∣H0
d ∣2 −∣H−d ∣2)2 + 1

2
g2∣H+u H0∗

d +H0
u H−∗d ∣2 .

(4.40)

The requirement for electroweak symmetry breaking is thus extended to ∂V /∂H0
u = 0 and ∂V /∂H0

d = 0,5 and imposing
additional requirements such as that the potential be bounded from below, yields a relation between the Higgs VEVs

⟨H0
d ⟩ ≡ vd ⟨H0

u ⟩ ≡ vu

v2
u +v2

d = v2 (4.41)

and the other MSSM parameters, after electroweak symmetry breaking.
The common scale for the sparticle masses after SUSY breaking is MSUSY, necessarily larger than the electroweak

scale. Although SUSY solves the hierarchy problem, it comes with a smaller hierarchy problem of its own, which is
exactly this large gap between scales. At tree-level, the mass of the Z boson is

m2
Z = 1

2
(g2 +g′2)(v2

u +v2
d) . (4.42)

5And the minimum of the Higgs potential satisfying ∂V/∂H+u = 0 must also have ∂V/∂H−d = 0, to avoid breaking the electromagnetic symmetry.
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Expanding this in large tanβ = vu
vd

yields

m2
Z = −2(m2

Hu +∣μ ∣2)+ 2
tan2 β

(m2
Hd

−m2
Hu)+O(1/ tan4 β)

= −2(m2
Hu +∣μ ∣2)+O(1/ tan2 β) . (4.43)

The value of mZ is determined by experiment, so the right-hand side of the above equation must combine to yield the
measured value. The first term contains mHu , which is one of the soft SUSY-breaking parameters, eq. (4.30), and thus
of the order MSUSY. The second term, on the other hand, contains μ which is a supersymmetric parameter. There is no
part of the theory that relates μ to MSUSY, and it might have a completely different origin. This has become known as
the “μ-problem”, or the “little hierarchy problem” in SUSY. However, even provided some relation between the two,
there would remain a fine-tuning problem, since two large numbers have to cancel to yield a very exact, small number.
In short, the larger mHu and μ , the larger the fine-tuning required.

Various measures have been suggested to quantify the amount of fine-tuning required within a setup. For instance,
the spectrum generator Softsusy uses the measure of absence of fine-tuning, or ‘naturalness’, ca of a parameter a, as
defined in [47], eq. (4)

ca = ∣∂ lnm2
Z

∂ lna2 ∣ . (4.44)

4.5 Gaugino mediated supersymmetry breaking

4.5.1 The brane, the bulk and the breaking

One possibility for mediating supersymmetry breaking is via additional spatial dimensions. In the framework considered
in [1], spacetime is in general D dimensional, referred to as the bulk. Out of the D spacetime dimensions, D−4 are
compact with volume VD−4, which determines the energy scale needed to resolve these dimensions, referred to as the

compactification scale Mc ≡ (1/VD−4) 1
D−4 . The bulk contains a number of 4-dimensional branes, and all quantum fields

are either D− or 4-dimensional, i.e. they are either bulk or brane fields. The D-dimensional Lagrangian is [48]

LD =Lbulk (Φ̂(x,y))+∑
j

δ (D−4)(y−y j)L j (Φ̂(x,y j),φ j(x)) , (4.45)

where j runs over the branes, x are coordinates on the branes, y are coordinates in the bulk, Φ̂ is a bulk field and φ j is a
field localised on the jth brane. The 4-dimensional field theory on the brane containing the MSSM is an effective field
theory valid on energy scales that do not resolve the additional dimensions. This will be discussed more thoroughly in
the following, but for now, note the hats on the bulk fields, which indicate that they are canonically normalised in D
dimensions, see section 4.5.2 below.

The work in [1] considers two branes; the MSSM brane with all its matter fields, and a source brane at a spatial
distance R away from the MSSM brane. The source brane contains at least one chiral superfield S, which is a singlet
under the Standard Model gauge groups, and breaks supersymmetry via some mechanism that results in a non-zero
expectation value ⟨FS⟩ of its auxiliary field. The SUSY breaking mechanism itself remains unknown, since S is
constrained to its brane and no direct interactions with it can be observed from the MSSM brane. However, the breaking
of supersymmetry is necessarily communicated to the MSSM brane, and to this end, the mediators are introduced.
These are D-dimensional fields that propagate in the bulk and also interact with the fields on each brane, provided that
they carry the same charge. An immediate consequence is that these fields obtain soft masses proportional to ⟨FS⟩.

In the original work on gaugino mediated supersymmetry breaking [49], only the gauge superfields were allowed to
propagate in the bulk. Supersymmetry breaking in this model is a consequence of gauginos receiving a SUSY breaking
mass upon interacting with S, and communicating this to the MSSM brane. This gave rise to the name of gaugino
mediation which has stuck ever since, although Higgs superfields were promoted to bulk fields soon after [50]. The
present work considers both gauge and Higgs superfields as bulk fields.
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y = 0 y = R

MSSM brane Source brane

Figure 4.3: A gaugino propagating in the bulk, interacting twice with a scalar on the MSSM brane (blue points) and
twice with some chiral field on the source brane (red points).

The process of a gaugino or higgsino propagating from the MSSM brane to the source brane and back is depicted
in fig. 4.3. The propagator in this figure is drawn as a gaugino line, but in principle, any bulk superfield which is charged
under an MSSM gauge group and interacts with a source brane field could undertake this journey. Also, the propagator
on the MSSM brane itself is a scalar, so this particular process shows the correction to squark and slepton masses.

4.5.2 The fields and their dimensions

As mentioned in the introductory section 2.1.2, specifically eq. (2.36) and repeated here for convenience, canonically
normalised kinetic terms in D dimensions have mass dimension of

[∂μ φ∂ μ φ] = [ψ̄ /∂ψ] = [L ] = D , (4.46)

and as mentioned, the hats on the bulk fields in eq. (4.45) indicate that these fields are have canonically normalised
kinetic terms in D dimensions. See table 4.2 for an overview of mass dimensions of the relevant fields, operators and
couplings. Following the notation of eq. (4.45), j = 1 for the MSSM brane and j = 2 for the source brane. Writing down
the Lagrangians at hand, the MSSM, containing both bulk and brane fields, has

LMSSM =Lbulk +δ (D−4)(y−y1)L1 = [W(Φ̂,φ1)+ 1
4
ŴαŴα]

F
+h.c.+[K (Φ̂,Φ̂†,φ1,φ †

1 ,e
V )]

D , (4.47)

where W is the MSSM superpotential, Ŵ the field strength superfield and K the Kähler potential. For the source brane,
the part of the Lagrangian that is interesting to us contains interactions between the gauge and Higgs superfields, and
the chiral field S,

L2 = 1
MD−3 [λSHuHd + h

4
SŴαŴα]

F
+h.c.

+ 1
MD−3 [S(aĤ†

u Ĥ†
d +buĤ†

u Ĥu +bdĤ†
d Ĥd)+h.c.]D

+ 1
MD−2 [S†S(cuĤ†

u Ĥu +cdĤ†
d Ĥd +(dĤuĤd +h.c.))]D + . . . ,

(4.48)

where h, a, bu,d , cu,d and d are dimensionless couplings. The dots refer to terms containing three or more source fields
interacting with MSSM bulk fields, terms containing only source fields and any interactions unobservable on the MSSM
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Operator 4 dim 5 dim d dim

[δ D(y)] 4 5 d Delta function

[θ] − 1
2 − 1

2 − 1
2 Superspace coordinate

[dθ] = [ d
dθ ] 1

2
1
2

1
2 Superspace coordinate differential

[ /∂ ] 1 1 1 Partial derivative

[φ] 1 3
2

d−2
2 Chiral superfield, scalar field

[V ] 0 1
2

d−4
2 Vector superfield

[ψ] = [λ ] 3
2 2 d−1

2 Spin 1
2 Fermion field

[F] = [D] 2 5
2

d
2 Auxiliary fields

[W] 3
2 2 d−1

2 Superfield strength

[g2
D] 0 −1 4−d D-dimensional gauge coupling

Table 4.2: Mass dimensions of fields, couplings and operators in 4, 5 and d dimensions.

brane. The superpotential for this framework has at least one more term compared to that in eq. (4.22), and is now

W =
WMSSMKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNR

ūyuQHu − d̄ydQHd − ēyeLHd +μHuHd +
WSKNNNNNNNNNNNNNQNNNNNNNNNNNNR

λSHuHd , (4.49)

to account for the possible holomorphic interaction between the Higgs and source fields. Again, the spatial separation
between the MSSM and source branes prevents direct interactions between MSSM matter fields and S, so direct trilinear
couplings from terms like SūĤuQ and sfermion soft masses from terms like SQ†Q are forbidden.

Since interactions between the bulk fields and S are non-renormalisable in 4 dimensions, LD describes an effective
theory valid up to some fundamental scale M. To obtain the 4-dimensional effective field theory valid below the
compactification scale, the higher dimensions are integrated over and only the zero modes of the bulk fields, which are
constant in the extra dimensions, are kept. Terms in the Lagrangian coupling bulk fields to brane fields come with a delta
function, see eq. (4.45), so after integrating over the extra dimensions, the volume factors in front of these terms cancel.
On the other hand, terms involving only bulk fields do not come with this delta function, thus the integration yields a
volume factor VD−4 in the kinetic terms of the bulk fields. For the effective theory to contain only fields with canonical
kinetic terms in 4 dimensions, bulk fields are scaled as Φ ≡√

VD−4Φ̂. Hence, the part of the effective 4-dimensional
Lagrangian describing direct interactions between MSSM fields and S is

LD=4 ⊃ 1
VD−4

{ 1
MD−3 [WS + h

4
SWαWα]

F
+h.c.

+ 1
MD−3 [S(aH†

u H†
d +buH†

u Hu +bdH†
d Hd)+h.c.]D

+ 1
MD−2 [S†S(cuH†

u Hu +cdH†
d Hd +(dHuHd +h.c.))]D} .

(4.50)

4.5.3 Calculating the soft terms

Deriving the soft terms and thus seeing the direct SUSY breaking effect of the F-term of the source field S, is quite
straightforward. Calculations are outlined in the following, and details can be found in appendix A. The first term
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in eq. (4.50) does not contribute to the present discussion, but the interested reader can see what it does in appendix
A. Moving on to the second term, that gives rise to the gaugino mass m1/2 when FS acquires a VEV. This follows
from eq. (4.23), keeping only the terms with the gaugino fields λα . Taking the F-term yields

1
VD−4

1
MD−3

h
4
[SWαWα]F +h.c. ⊃ MD−4

c

MD−3
h
4 ∫ d2θ (⟨FS⟩λ α λα +h.c.)θθ

= MD−4
c

MD−3
h
4
⟨FS⟩λ α λα +h.c.

= (Mc

M
)D−4 h⟨FS⟩

2M
λ α λα ,

(4.51)

so the gaugino mass is

m1/2 = (Mc

M
)D−4 h⟨FS⟩

2M
. (4.52)

The next term in eq. (4.50) gives rise to

1
VD−4MD−3 [aS†HuHd +h.c.]D = MD−4

c

MD−3 a∫ d2θd2θ̄S†HuHd +h.c.

⊃ (Mc

M
)D−4 a⟨FS⟩†

M ∫ d2θHuHd +h.c.

= (Mc

M
)D−4 a⟨FS⟩†

M
[HuHd]F +h.c. ,

(4.53)

which, upon comparison with eq. (4.22), is clearly a contribution to the μ term. The equation of motion for the Higgs
auxiliary field is solved in eq. (A.9), and repeated here for convenience

FHu,d = −bu,d (Mc

M
)D−4 ⟨FS⟩

M
φHu,d . (4.54)

Inserted into the third and fourth terms and combined with the fifth and sixth terms of eq. (4.50), this yields the Higgs
soft masses

(m2
Hu ,m

2
Hd

) = ⟨FS⟩†⟨FS⟩{ (b2
u,b

2
d)(VD−4MD−3)2 + (cu,cd)

VD−4MD−2 }
= ⟨FS⟩†⟨FS⟩

M2

⎧⎪⎪⎨⎪⎪⎩(
MD−4

c

MD−4 )
2 (b2

u,b
2
d)+(MD−4

c

MD−4 )(cu,cd)⎫⎪⎪⎬⎪⎪⎭ .

(4.55)

The last term yields

1
VD−4MD−2 [S†S(dHuHd +h.c.)]D = ⟨FS⟩†⟨FS⟩

M2
MD−4

c

MD−4 d(φHuφHd +φ †
Hu

φH†
d
) , (4.56)

and compared with eq. (4.30), this contributes to the Bμ term.
Directly substituting FHu and FHd from eq. (4.54) in the Lagrangian gives rise to trilinear scalar couplings proportional

to the VEV of the SUSY-breaking field and the Yukawa matrices,

Ltrilinear = (Mc

M
)D−4 ⟨FS⟩

M
(−buφūyuφHuφQ +bdφd̄ydφHd φQ +bdφēyeφHd φL +h.c.) . (4.57)

Defining
au = Au0 yu , ad = Ad0 yd , ae = Ad0 ye (4.58)

with

Au0 = (Mc

M
)D−4 ⟨FS⟩

M
bu , Ad0 = (Mc

M
)D−4 ⟨FS⟩

M
bd . (4.59)

This is a very interesting result, and forms the basis for the main result in Trilinear-augmented gaugino mediation [1],
as these trilinear terms were previously assumed to vanish in the gaugino mediation model.
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Chapter 5

Machine learning for classification

In the field of computer science, there is a method of data analysis which allows computers to learn without being
explicitly programmed: Algorithms which use data to adjust their parameters1 are collectively referred to as machine
learning algorithms and constitute a branch of artificial intelligence. These can be very powerful tools for data analysis,
especially in cases where there is much data available, but its underlying structure is too complex or elusive to model or
describe analytically — as is often the case in particle physics.

There are many types of machine learning algorithms, each with their drawbacks and advantages. There is no single
algorithm which outperforms the others in all areas, so the choice of algorithm depends on the problem at hand, number
of inputs, accuracy desired and resources available. One fundamental machine learning concept, and an algorithm most
scientists are familiar with, is decision trees, which also have a long history at CERN. In their most basic format, these
work by dividing datasets into regions with mostly the same properties — or, simply put, asking yes/no questions —,
and hence make parallel, discrete decision boundaries, resulting in classification plateaus.

On the other end of the machine learning scale, is an algorithm with pretty much opposite properties from decision
trees: A more advanced algorithm which requires much data to train, much tuning, is computationally expensive to
train and whose decisions are not reducible to simple yes/no statements. These are the artificial neural networks —
henceforth: neural networks — which have become increasingly popular over the past years, and, as shown in the
following, can be useful for problems too elusive for the more basic machine learning algorithms, as is the case for the
problem in Signal mixture estimation for degenerate heavy Higgses using a deep neural network [2].

5.1 Neural networks

Before delving into the topic of neural networks, let the following be said: A neural network does not present an
easily understandable or transparent model in the way for instance a decision tree can be converted into a series of
if-then-else-statements. A neural network is, to repeat the perhaps most common critique directed towards them from
the particle physics community, a “black box”, whose output depends on its internal state. How to interpet neural
network output is discussed by use of examples later in the present chapter, after a brief introduction.

5.1.1 What they are

Neural network algorithms consist of nodes arranged in layers and connected in a systematic way, forming a network.
Each node receives input and produces output, and the behaviour of a neural network is an emergent property, ultimately
the result of the decisions made by its nodes. The nodes are connected via links, which serve to propagate the output of
node i in layer l−1 to node j in layer l. Each link connected to layer l also has a weight W l

i j, which is just a number
determining the sign and strength of the connection, so the weights are the parameters of a neural network.

1So yes, linear regression is machine learning.
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Figure 5.1: A simple sketch depicting the functioning of a node, i.e. a single neural network unit. The output a j is based
on the sum of all input the node receives, passed through the node’s activation function φ . This node has a sigmoid
shaped activation function as example.

Each node in a network calculates the sum of its input, and the output of node j in layer l, referred to as the
activation and denoted al

j, is calculated using an activation function φ ,

al
j = φ ( n∑

i=0
W l

i ja
l−1
i ) ≡ φ(inl

j) . (5.1)

A conceptual sketch of a node and its functionalities is presented in fig. 5.1.

Activation functions

Any nonlinearity of a neural network model comes from the activation function. This function must return ∼ 1 for good
and ∼ 0 for bad inputs, where the notion of “good” and “bad” of course depends on the problem at hand. The simplest
behaviour of a node would be binary, i.e. returning either 0 or 1. This can be achieved using a Heaviside step function as
activation, see fig. 5.2a. The derivative of the Heaviside function is zero in the entire domain, except in one single point,
where it diverges, i.e. the Dirac delta function. While intuitive, the Heaviside is not a good choice of activation function,
since neural network training is an optimisation problem using gradient descent to update the weights W l

i j — a method
which can obviously not be used on a function which is either non-differentiable or has zero derivative everywhere.

One function which can fit the role is the sigmoid function, defined and differentiated as follows

σ(x) = 1
1+e−x ,

dσ(x)
dx

= σ(x)(1−σ(x)) . (5.2)

The sigmoid function stays approximately zero until the correct input is received, after which it increases smoothly and
approaches an asymptote, see fig. 5.2b. However, while the sigmoid function is differentiable and serves its purpose, it
comes with some challenges for the learning process: Its gradient is first zero, then it gradually increases until it reaches
its maximum of 1

4 at x = 0. After that it again decreases and slowly approaches zero. This small derivative in regions
of good input causes what is commonly referred to as a “vanishing gradient problem”2, and results in artificially low
learning rates for the network.

Similar to the sigmoid function is the softmax, which takes a vector of elements xi and normalises it such that each
element is mapped to the interval [0,1], and ∑i xi = 1.The difference from the sigmoid function is that the softmax
considers not only one input value, but also the remaining N elements inside the vector, as

σ(xi) = exi

∑N
j=1 ex j

, (5.3)

which ensures the normalisation of the total output.3

2More precisely, when training a network with n stacked layers, each node contributes a factor σ ′, and thus the maximum gradient decreases
exponentially with n.

3Note that the softmax is a generalisation of the sigmoid function, and the two have the same behaviour for N = 2, meaning binary classification.

58



0

1

x

φ(x)

(a) The Heaviside function.

0

1

x

φ(x)

(b) The sigmoid function.

0

1

x

φ(x)

(c) The Rectified Linear function.

This is useful in the context of neural networks, because the non-normalized values of the nodes in a layer are via
this activation function mapped to a probability distribution. If this is done in the output layer of the network, see below,
the output values from the softmax activation function can represent probabilistic predictions for class proportion of a
data sample. Due to this, the softmax is a commonly used activation function in the output layer of classifier neural
networks. However, the probabilistic interpretation comes with underlying assumptions, see section 5.2.2.

Introducing one last activation function, consider the rectified linear function, defined

R(x) = max(0,x) . (5.4)

Nodes using this activation function are also called Rectified Linear Units, abbreviated ReLU. The gradient of this
function is either zero or one, avoiding the vanishing gradient problem. This is important especially since the trend
for neural networks these days is to be increasingly deeper. Another benefit worth mentioning is sparsity: When x < 0,
the sigmoid function returns a very small but non-zero value, meaning that the node remains active, though with little
influence. The ReLU on the other hand, causes such nodes to “switch off”, resulting in a sparse network — a network
with fewer active nodes —, while the sigmoid activation function would create a denser network. Other variations of
this activation function include the Leaky ReLU and softplus [51], which do not abruptly become zero, but die off
slowly.

Network output

The two main types of neural networks are feed-forward networks and recurrent networks. In the former, signals
travel in one direction only; from input to output. There are no loops, so the output of one layer cannot affect that
same layer, the network represents a function of its input, and its entire internal state is represented by the weights
W . The latter kind, on the other hand, allows signals to travel in both directions, so these networks can become quite
complicated. They are dynamical and their internal state changes continuously, it may reach an equilibrium point, or it
may oscillate or exhibit chaotic behaviour. Recurrent networks can display a short-term memory, which is not the case
for feed-forward networks. The present work considers only feed-forward networks, but the interested reader can find a
comprehensible explanation of recurrent networks in [52].

To demonstrate how the output of a feed-forward network is calculated, consider as an example a small network
which is given an input vector x = (x1,x2). The number of nodes in the network’s input layer corresponds to the size of
the input vector. Subsequently, the network can in principle have any number hidden layers, of any size. In the present
example, there is one hidden layer consisting of two nodes. The final layer is the output layer, which here has one node.
This layout is depicted in fig. 5.3. Each node h in the hidden layer receives input from both nodes j in the input layer,
and calculates its output as

ah = φ (Wh jx j) = φ(Wh1x1 +Wh2x2) , h = 1,2 . (5.5)

The same holds for the output node, so the final output of this network is

a5 = φ (W35 (φ(W13x1 +W23x2)+W45φ(W14x1 +W24x2))) , (5.6)

which justifies the claim that the weights are the parameters of the network.
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Figure 5.3: A small neural network with two input nodes, one hidden layer with two nodes, and one output node.

5.1.2 How they learn

The process of training a neural network involves adjusting the aforementioned weights Wi j to minimise some loss
function4. Learning is thus an optimisation problem in weight space, spanned by all Wi j. Neural network training can
be divided into two categories, namely supervised and unsupervised training. During supervised training, the target
values of the data are known, which is not the case for unsupervised training. Only supervised training are considered
in the present work.

During supervised training, data samples from a training set are passed through the network, and the network’s
output y is compared to the target value, denoted t. A loss function is used to numerically represent how well the
network performed, and the weights of the network are updated accordingly.

A simple loss function is the mean squared error,

LMSE = 1
2
(t −y)2

, (5.7)

where the factor half is present only to cancel the factor two which appears upon differentiation. The term inside the
parenthesis is often referred to as the residual vector. A popular, and slightly more advanced, loss function, which takes
the uncertainty of the prediction into account, is cross entropy. It is defined for C classes as

LCE = − C∑
i

ti logyi

= −(t1 logy1 +(1− t1) log(1−y1)) , C = 2 ,

(5.8)

the second expression being valid for binary classification, where t2 = 1− t1 and y2 = 1− y1, in which case the loss
function is also called log loss.

As the aim is to reduce the loss, the training process of a neural network should result in the weights being updated
by moving in the direction of steepest descent along the loss surface — which has given the method its name, gradient
descent5.

This process can be demonstrated by calculating first the partial derivative of the loss with respect to the weights for

4Different authors use different terminology, but in all essence, loss, cost and error functions for neural networks express the same thing; a
measure of deviance between the actual and desired output of the network.

5Stochastic gradient descent refers to gradient descent for one sample from the training set at a time, where the stochasticity arises from randomly
shuffling the data samples between each epoch, in contrast to batch gradient descent, where the whole training dataset must be loaded into the
memory.
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each node,

∂L
∂Wi j

= ∂L
∂a j

∂a j

∂ in j

∂ in j

∂Wi j
. (5.9)

Expressing the input and output of each node as in eq. (5.1), the last term in the above equation is simply

∂ in j

∂Wi j
= ∂

∂Wji
Wk jak = ai , (5.10)

which is just xi if the node under consideration is an input node. The second term is

∂a j

∂ in j
= ∂

∂ in j
φ(in j) = φ ′(in j) , (5.11)

which illustrates explicitly why the activation function φ must be differentiable.
The first term is simple if the node under consideration is the output node, a j = y, e.g. for mean squared error loss

∂
∂y LMSE = t −y. If, on the other hand, a j is a node somewhere inside the network,

∂L
∂a j

= ∂L
∂ ini

∂ ini

∂a j

= ∂L
∂ai

∂ai

∂ ini
Wji ,

(5.12)

a recursive expression which ends when an output node is reached. Finally, the impact a change in the weights Wi j has
on the loss function is

∂L
∂Wi j

= ∂L
∂a j

φ ′(in j)ai . (5.13)

Since the aim is to reduce the error on target prediction, the weights should be updated as

Wi j →Wi j −α
∂L

∂Wi j
. (5.14)

The parameter α is the learning rate, and represents the step size toward the minimum of the loss function. It is one
of the many network hyperparameters. Each cycle through the entire training set is called an epoch, and the learning
rate is maintained constant during each epoch when using stochastic gradient descent. How many epochs of training a
network needs depends of course on the size of the network and the complexity of the problem, but a common stopping
criterion for training is that the weights change very little. Still, there are several things to keep in mind when training
neural networks:

Regularisation

Neural networks have a large number of free parameters, and with increasing network depth comes an increasing ability
to make complex models. Complexity is nice, but as John von Neumann stated, [53]

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

Increasing complexity in machine learning models can amount to simply internalising the training data into the model
parameters, known as overtraining. An overtrained model performs well on training data, but fails to generalise on
unseen data. There are several methods by which this can be avoided, and collectively, modifications to a learning
algorithm which reduces the error on validation or test data but not that on the training data, are referred to as
regularisation. Effectively, regularisation helps the algorithm to generalise beyond the training data.
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(a) (b) (c)

Figure 5.4: A small neural network with (a) all nodes active and (b) and (c) some nodes dropped out, representing
different network architectures.

One type of regularisation technique is based on weight norm penalties, and works by adding a penalty term to the
loss function as

L → L+λ fp(W) , (5.15)

where λ is the regularisation strength, and fp(W) grows larger with the norm of the weights W . If λ = 0 there is no
regularisation, and if λ is very large, an increase in any of the weights is significantly penalised, resulting in the network
trying to keep the weights as small as possible instead of finding weights which perform well. Finding a good value
for λ is thus crucial, and may involve some trial and error. The intuitive interpretation of this is that large weights are
penalised, while small weights are favoured; sharp peaks are disfavoured, while smooth behaviour is encouraged. The
desire is that the network use all the input values, instead of assigning a high degree of importance to only some of
them. The parameter λ is another example of a hyperparameter.

There are two common regularisation methods, and the difference between the two lies in the penalty term. One
is referred to as L1 regularisation or Lasso regression, and adds the absolute sum of the weights to the loss function,
i.e. fp(W) = ∑i ∣Wi∣. The other type is L2 regularisation, or Ridge regression, which adds the absolute square of the
weights to the loss function, i.e. fp(W) = 1

2 ∑iW
2
i . Note that the L2 regularisation scheme

L → L+ λ
2
∑

i
W 2

i , (5.16)

is equivalent to updating the weights as

Wk →Wk −α
∂L

∂Wk
−αλWk , (5.17)

for gradient descent.
These two regularisation schemes have different advantages and drawbacks, and the correct one must be chosen for

each problem. For instance, in the case of outliers, L2, which penalises large weights more sharply, adjusts the model to
minimise the few outlier cases at the expense of the common data points. By contrast, L1 rather disregards outliers and
is in this case more robust.

Another and more random regularisation technique assigns a probability p for activation to each node in the network,
so that any node can at any point during training become inactive, see fig. 5.4 for an illustration. As such, the network is
forced to ensure no information depends on one specific node, but rather spread it out over several nodes. Effectively,
overfitting is prevented by combining many different network architectures. The dropout probability p is another
hyperparameter.
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Figure 5.5: A simple model of a linear, two-dimensional classifier with input features x1 and x2. The coloured points
represent instances from two different classes, and the decision surface is in this case a straight line.

Finally, a regularisation method which provides guidance for how many training epochs are sufficient for the
learning algorithm to learn, but not overtrain: The dataset available for training is divided into into three subsets, and
only the first subset used for the actual training, i.e. for adjusting the weights of the network. The second subset can
then be used for validation during training, by calculating the loss on the validation set throughout. This is known as
cross-validation, akin to the method described in section 3.3.2. Initially, the validation loss decreases along with the
loss on the training set, but while the training loss keeps decreasing even when the network learns the training data, i.e.
overtrains, the validation loss starts to increase as the network loses its ability to generalise. When the validation loss
increases for some given number of iterations, the training stops. The weights corresponding to the minimum validation
loss are treated as the best fit for the network for the current training set. The third subset can then be used as a blinded
test to evaluate the performance.

5.1.3 What they learn

To summarise and generalise, neural network classifiers receive a dataset D containing input features x, which can be
mapped to an output variable y via some function f , i.e. f (xi) = yi. The algorithm tries to learn, meaning numerically
approximate, f so that y can be predicted for new x.6

The space spanned by all the input features is called feature space, and the task of the algorithm is sometimes
referred to as feature extraction. This is most easily pictured for the case of classifying data from two classes: The
network finds a decision boundary, which is a hypersurface in feature space that separates the underlying vector space
into one set for each class, see fig. 5.5 for a simple illustration. Mathematically speaking, each layer in a neural network
creates a hyperplane serving as decision surface in the vector space spanned by the previous layer.

The classifier assigns all instances, represented by points in feature space, on one side of the decision boundary to
one class, and all those on the other side to the other class. However, the decision boundary is not an inherent property
of the classification problem itself, but of the learned classifier; the function f is numerically approximated, not found
analytically. Given the nature of the learning process, the classifier is based entirely on data it has seen during training;
a dataset henceforth denoted Dtrain.

5.1.4 How well they learn

To start by introducing some useful terminology, the veracity of any classifier output can be divided into the four
categories true or false and positive or negative, which reflect in the first term whether the classifier output matches

6In all essence, neural networks multiply matrices together and perform high dimensional curve-fitting, but don’t tell anyone.
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Table 5.1: The confusion matrix for a binary classifier, showing the four categories to which the network output can
belong.

the target, and in the second term to which class the target belongs. This is summarised in table 5.1, which shows the
so-called confusion matrix for a binary classifier. This can be used to define some terms to describe the quality of the
classifier, meaning which mistakes it makes and the interpretation of these, see table 5.2.

A Bayesian interlude for intuition

In the Bayesian interpretation of probability, sensitivity and specificity are conditional probabilities. Denoting by
tP/N a true positive or negative, and by yP/N a predicted positive or negative, and using the notation and rules given
in section 3.1.2,

Sensitivity = p(yP,tP)
p(tP) = p(tP∣yP)p(yP)

p(tP) = p(yP∣tP)
Specificity = p(yN ,tN)

p(tN) = p(tN ∣yN)p(yN)
p(tN) = p(yN ∣tN) . (5.18)

Expressing also the precision as a probability in the Bayesian sense yields

Precision = p(yP,tP)
p(yP) = p(yP∣tP)p(tP)

p(yP) , (5.19)

which reveals something quite interesting: In the Bayesian interpretation, where the sensitivity p(yP∣tP) is a conditional
probability, the class proportion p(tP), often called the prevalence, is the prior, and the resulting precision the posterior
probability. The denominator is the overall probability for predicting the positive class, and as mentioned earlier, the
classifier can only base its predictions on one set of information — its training data — rendering p(yP) an unsettling
component of the statement.

The above expression can be expanded as

p(yP∣tP)p(tP)
p(yP) = p(yP∣tP)p(tP)

p(yP∣tP)p(tP)+ p(yP∣tN)p(tN)
= p(yP∣tP)p(tP)

p(yP∣tP)p(tP)+ p(yP∣tN)(1− p(tP)) ,
(5.20)

which only in the case of balanced classes, i.e. p(tP) = p(tN) = 0.5, reduces to

PPV∣tP=tN = p(yP∣tP)
p(yP∣tP)+ p(yP∣tN) , (5.21)

which is sometimes given as the positive predictive value, short PPV. However, balanced test sets are, as will become
clear in the following, neither in general nor in particle physics a safe assumption.
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Table 5.2: Terms describing different measures for the quality of a classifier. Here, total positive and negative
refer to the total number of positive and negative samples inside the test set.

Term Expression Also known as Explanation

True positive rate ≡ ∑True positive
∑Total positive Sensitivity, Recall Rate of positive samples

correctly identified

False negative rate ≡ ∑False negative
∑Total positive Miss rate, β in eq. (3.34)

False positive rate ≡ ∑False positive
∑Total negative Rate of false alarm

p(falsely reject null hy-
pothesis)

True negative rate ≡ ∑True negative
∑Total negative Specificity Rate of negative samples

correctly identified

Positive predictive value1 ≡ ∑True positive
∑Predicted positive Precision Rate of positive class

assignment correct

False discovery rate ≡ ∑False positive
∑Predicted positive Rate of type I errors

False omission rate ≡ ∑False negative
∑Predicted negative Rate of type II errors

Negative predictive value1 ≡ ∑True negative
∑Predicted negative Rate of negative class

assignment correct
1 This is the commonly used definition, although it is a bit ambiguous, see the discussion leading up

to eq. (5.21).
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Figure 5.6: The receiver operating characteristic curve for a — very strong — classifier (blue), along with the
theoretically best possible performance (red) and the result of random guessing (dashed black).

. . . and one on optimising

Evidently, precision and recall will often have an inverse relationship, since the process of maximising the number of
true positives requires the number of predicted positives to increase. To illustrate the impact of maximising one at
the expense of the other, consider a dataset containing many background events B and only a few signal events S. A
classifier trained to identify signal events can in the two ends of the precision-recall spectrum behave in two ways: If it
has high precision but low recall, it avoids misclassifying background as signal by returning only those signal events
which have been classified with a very low uncertainty. The consequence is of course that many signal events are “lost”,
in the sense that they are over-carefully assigned to the background class. In the opposite case, with high recall but low
precision, many events are classified as signal, but most of these will actually belong to the background class.

The ideal scenario is of course to maximise both recall and precision, but in the common case where one must be
prioritised, the best course of action depends on the problem at hand. For instance, in searches for new physics, some
false positives and ambulance-chasing papers on the arXiv is better than missing out on new physics.

The ROC curve and the area under it

There is a myriad of model evaluation tools available for different classifiers, but in the case of binary classification, the
receiver operating characteristic, short ROC, curve is simple both conceptually and in use. Consider the false positive
rate, FPR, versus the true positive rate, TPR. Since the classifier outputs a number between zero and one, a threshold is
chosen such that samples above it are indicative of one class, and those below of the other. The FPR and TPR vary
with this threshold: In the extrema, where the threshold is exactly zero or one, all samples are assigned to the negative
or positive class, respectively. The ROC curve is created by evaluating the class predictions across a continuum of
thresholds between zero and one. The curve must as argued start at (0,0) and end up at (1,1), but it can take almost
any path between the two corners. When its gradient is large, the sensitivity increases at a larger rate than the specificity
decreases. Such insight can be used to adjust the classification threshold in the interest defined by the problem at hand.

A perfect classifier which completely separates the two classes would have TPR= 1 and FPR= 0, i.e. both sensitivity
and specificity equal to one. Graphically, this would correspond to a single step from (0,0) to (0,1) and then a constant
value from (0,1) to (1,1). Conversely, a classifier which guesses the class of each sample at random would produce a
diagonal ROC curve, see fig. 5.6 for an illustration.
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Figure 5.7: Some of the kinematic features from the decays of H/A → τ+τ−→(π+π0ντ)(π−π0ντ). The top row shows
low-level features, i.e. direct observables, while the bottom row shows high-level features, i.e. derived quantities from
low-level features. The plots are produced using the same data as in [2].

5.2 Neural network predictions

To put the previous discussion into use, consider a concrete case, and let it be difficult. The scenario studied in [2]
is high-dimensional and the feature distributions severely overlapping, making it perfect for illustrating some of the
challenges related to interpreting the output of a machine learning algorithm, which is of course a crucial part of using
it.

5.2.1 Mixture parameter estimation in a scenario with overlapping features

The results in this section are taken from [2], where the scenario is any generic two-Higgs doublet model with production
of mass degenerate heavy Higgses H and A, which can consequently only be distinguished by means of their CP charges.
A state’s CP charge affects the angular distributions of its decay products, but CP cannot be sharply determined in
single events.

Some of the low-level features, meaning direct observables such as visible decay products, for this problem are
shown in the top row of fig. 5.7. The high degree of overlap between the H and A distributions is representative for all
low-level features in this problem, indicating that the task of separating the classes is not an easy one. In fact, separation
of the classes depends on high-level correlations between the features. Such correlations can in principle be found by a
neural network, and sometimes also by physicists. These are called high-level features, and a prominent example in the
current discussion is the CP-sensitive parameter ϕ∗, which represents an angle between decay planes, defined in eq. (6)
in [2].

Comparison between a one-dimensional likelihood fit to this ϕ∗ variable and the result obtained by a neural network,
is the main result in [2]. The reason why the neural network method outperforms the one-dimensional method, is of
course that the network has access to all observables and derived quantities, and can use these to find correlations within
the data, not contained in the ϕ∗ variable, and that there are additional correlations to be found.
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In theory, all the available information could be used by constructing an n-dimensional likelihood for all the available
features, and then performing a multi-dimensional maximum likelihood fit to data. Unfortunately, this is not feasible
in practice: Generating sufficient data for mapping the likelihood function in many dimensions is impossible with
the limits set by the computing power available today— in addition to the fact that there is no known criterium by
which to identify the global maximum of a non-convex function, which the likelihood could be. This is exactly the
aforementioned curse of dimensionality, which would be circumvented if the information from all the features could be
projected onto a fewer, or even a single variable.

Enter machine learning! A classifier can be trained on data containing low- and high-level features, and its output,
or prediction, have dimensionality as low as one.

5.2.2 Prior and prejudice

A neural network with (500,1000,100) nodes in its three hidden layers using a ReLU activation function, and whose
output layer has a softmax activation function, mapping the output to the range (0,1), is trained on a dataset Dtrain. This
dataset contains H and A events with mixture parameter, defined as

α ≡ nA

nA +nH
, (5.22)

of αtrain = 0.5. The network is then used to predict on three different datasets Dtest with mixture parameters αtest =
0.5,0.7,0.9.

Since the network output yi for each test sample is a number between zero and one, the interpretation of yi as the
probability of event i belonging to a class seems to suggest itself. If this is the case, the mixture parameter of the test set
is simply

α̂test = ∑i yi

ntest
. (5.23)

Using this interpretation, the distributions shown in fig. 5.8a are generated. For comparison, predictions from a
one-dimensional maximum likelihood fit to ϕ∗ are shown in fig. 5.8b. The expected result was of course that the neural
network prediction would be as accurate yet more precise than the one-dimensional maximum likelihood fit. What
instead happened, is that the neural network result is very biased towards the mixture parameter of the training set,
which is a direct result of the interpretation of yi as a probability. This interpretation implies the assumption that the test
data is drawn from the same distribution as the training data, as will be shown in the following. Note that classification
problems where labeled training data can only be obtained through Monte Carlo generation, as is often the case in
particle physics, are particularly sensitive to this effect, here with the added complication that the class proportion in the
test data is exactly the quantity of interest.

In machine learning communities, faulty results caused by test data drawn from a different distribution than the
training data is sometimes referred to as data mismatch. It is merely the Bayesian effect of prior probability shift,
which arises as the probabilistic interpretation amounts to assigning a probability to both the data and the model:

yi ∼ p(Ai∣xi,Dtrain) (5.24)

is the probability that event i in the test set belongs to class A, given its features xi and everything the network knows
about the world, namely the training data Dtrain. To see explicitly what this entails, use Bayes’ law to expand the above
probability,

p(Ai∣xi,Dtrain) = p(xi∣Ai,Dtrain)
p(xi∣Dtrain) p(Ai∣Dtrain) . (5.25)

This can be marginalised over the in principle unknown mixture parameters used to generate the training set (αtrain) and
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(a) (b)

Figure 5.8: Estimating the mixture parameter of ten thousand test sets containing a hundred samples each, for
αtest = 0.5,0.7,0.9, using (a) directly the output of a neural network trained on a dataset with αtrain = 0.5, and (b) the
one-dimensional maximum likelihood fit to ϕ∗. The plots were produced for [2].

test set (αtest):

p(Ai∣xi,Dtrain) = p(xi∣Ai,Dtrain)
p(xi∣Dtrain) ∬ p(Ai,αtest,αtrain∣Dtrain)dαtest dαtrain

= p(xi∣Ai,Dtrain)
p(xi∣Dtrain) ∬ p(Ai∣αtest) p(αtest∣αtrain) p(αtrain∣Dtrain)dαtest dαtrain

= p(xi∣Ai,Dtrain)
p(xi∣Dtrain) ∬ αtest p(αtest∣αtrain) p(αtrain∣Dtrain)dαtest dαtrain.

(5.26)

Here,

• p(Ai ∣αtest,αtrain,Dtrain) = p(Ai ∣αtest) = αtest because the probability of drawing an Ai event from the test set only
depends on the distribution αtest in the test set; not the distribution nor the kinematics in the train set.

• p(αtest ∣αtrain,Dtrain) = p(αtest ∣αtrain) because the (network) assumption for the test set distribution can be based
on the train set distribution (or something completely different), but not on the kinematics in the train set. Once
αtrain is known, Dtrain contains no other additional information than the kinematics of the particular events
contained therein. Under the assumption that the test and train sets have equal distributions, this collapses to
p(αtest ∣αtrain) = δ(αtest −αtrain).

These arguments, after the delta function collapses the double integral, yield

yi ≈ p(Ai∣xi,Dtrain) = p(xi∣Ai,Dtrain)
p(xi∣Dtrain) ∫ αtrain p(αtrain∣Dtrain)dαtrain

= p(xi∣Ai,Dtrain)
p(xi∣Dtrain)

nA,train

ntrain
,

(5.27)

where the integral is simply the expectation value for αtrain given the training dataset. The first factor represents the
kinematic distributions for H and A, which according to the earlier feature analysis is close to unity for most xi.

This is a demonstration of how the prior in Bayesian analysis can strongly affect the posterior if the data is not
sufficiently strong. Whenever the influence of the prior dominates that of the data, the results must be interpreted with
care, regardless of the choice of interpretation. It is obvious from the above derivation that a different choice of prior
could potentially completely change the conclusion.
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5.2.3 The likelihood fits again

Recall that the most powerful test statistic for a simple hypothesis test is, according to the Neyman-Pearson lemma,
see section 3.4.2, the likelihood ratio. In the current notation,

λ(D;α,α ′) = ∏
x∈D

p(x∣α)
p(x∣α ′) , (5.28)

where D denotes the dataset, p(x∣α) the model and α any model parameter — not necessarily a mixture parameter. In
terms of the input observables x, the Higgs mixture model is

p(x∣α) = α pA(x)+(1−α)pH(x) . (5.29)

It can be shown [54, 55], that eq. (5.28) is equivalent to the likelihood ratio

λs(D;α,α ′) = ∏
x∈D

p(s(x;α,α ′)∣α)
p(s(x;α,α ′)∣α ′) , (5.30)

based on the univariate density p(s(x;α,α ′)∣α), provided that the transformation s(x;α,α ′) is a strictly monotonic
function of the density ratio p(x∣α)/p(x∣α ′).

This is not a very strict requirement; in many cases one need merely look at the pdfs to realise that their ratio is
monotonic, but it has been formalized [56] which loss functions result in neural networks that satisfy the requirement.
Cross-entropy, the one used in [2], is among these. Replacing thus the general univariate density s by the network
output y, the maximum likelihood estimator for the total pdf is now

α̂ = argmax
α

∏
x∈D

p(x∣α)
= argmax

α
∏
x∈D

p(x∣α)
p(x∣α ′)

= argmax
α

∏
x∈D

p(y(x)∣α)
p(y(x)∣α ′)

= argmax
α

∏
x∈D

p(y(x)∣α)
= argmax

α
∏
x∈D

[α pA(y(x))+(1−α)pH(y(x))],

(5.31)

having used in the fourth step that the network output is (unfortunately!) independent of the true, unknown mixture
parameter α ′.

This very handy result implies that the value of α which maximises a fit of the total n-dimensional likelihood to
data, is the same as that which maximises the neural network output — provided of course that the network does a good
job of approximating the univariate density, which depends on its architecture and the training process. An unbinned
kernel density estimation is done to generate the pdfs pA and pH from the network output, which are then fitted to test
data. This produces the main result in [2].

As a concluding remark, note that the two methods described above, of which one was severely prior dependent and
hence produced useless results, while the other was prior independent and furthermore outperformed the conventional
method, were both based on the same neural network. No further feature engineering or network output calibration was
done, and the classifier itself performed just as well or as poorly in the two cases: The difference consisted in how the
network output was interpreted and used.

5.3 Boosted learning

Each layer in a neural network introduces a new vector-space into which the previous layers’ representation of the
features is projected numerically. As discussed, this makes deep neural networks strong candidates for extracting
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Figure 5.9: Examples of the processes referred to referred to in the text as (a) slepton and (b) electroweakino production.

high-level correlations from data, but it does not mean that “stack more layers” is the best solution to any data driven
problem. When computational power and CPU time are not strictly limited, it can of course be tempting to use deep
learning even on problems which do not strictly speaking call for it. Beware though, that the more free parameters a
model has, the more data is required to tune it. Because of this, training neural networks inherently depends on large
datasets, and the process of tuning and training them is on the more time-consuming side of the machine learning scale.
Consider for illustration one last scenario, which forms the basis for the project on Enabling sneutrino detection in
weak signal scenarios using machine learning methods [6]:

5.3.1 Sneutrino detection

Remaining in a collider setting, consider a supersymmetric model featuring the sneutrino as the lightest observable
supersymmetric particle. The aim is to separate the supersymmetric signal from the Standard Model background, i.e.
again a mixture parameter estimation task, this time defining

α ≡ ns

ns +nb
, (5.32)

where s abbreviates signal or supersymmetry, and b background. Since the task is now signal detection, the reader may
already anticipate that this time, the mixture parameter could be very small.

Divide the interesting supersymmetric production processes within the model at hand into three categories, according
to which sparticle pairs are produced in the hard collision:

• Anything involving squarks and/or gluinos

• A slepton pair, i.e. any l̃ and/or ν̃l

• A neutralino and/or chargino pair, χ0,±χ0,±

The first of the three stands out, as it is easier to separate from the Standard Model background than the other two,
thanks to its accompanying jets. Hence, the two latter, which can give rise to very similar collider signatures, are most
interesting in the present context. Examples of the slepton pair production and electroweakino production processes are
shown in fig. 5.9, and the detector signature of interest is that containing two taus and a muon.

A selection of the feature distributions from a simulation with these two processes is shown in fig. 5.10. It is
clear that the features are so overlapping that a cut-and-count analysis will have trouble separating the classes, but in
comparison to fig. 5.7, the features are not extremely overlapping. The question begs itself: Is it necessary to go deep?
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Figure 5.10: Some of the kinematic features from the supersymmetric signal coming from the slepton pair production
and electroweakino production channels (solid blue) and background (dashed red).

5.3.2 Boosted decision trees

Going back to a classification algorithm mentioned earlier, the decision trees: As described, their internal yes/no
structure makes it impossible for them to learn multicollinearity7 in data.

Fortunately, these transparent machine learning algorithms are continually improved, and a machine learning
discussion would not be complete without them. One important concept is boosting. This is a meta-model concept,
which combines many weak prediction models — decision trees — in the form of an ensemble, into one strong. Boosted
decision trees are frequently used in the ATLAS, CMS and LHCb collaborations.

Gradient boosting [57] is an extension of the previously discussed learning process — of moving in the direction of
the steepest descending gradient —, where the parameters of a model were adjusted based on the change in the loss
function. Gradient boosting models also use the gradient for optimization, hence the name, but the optimization occurs
not on the parameters of the underlying models themselves, but on the prediction of the composite model. This means
that gradient boosting models are trained on two levels; on the weaker, underlying models, and on the composite model.
The overall training of the composite model performs gradient descent using the residual vector on the combined model
output, and this gives rise to the strength of boosted algorithms, which is impressive in its simplicity: The individual
trees merely have to do slightly better than random guessing, and still a large combination of them produces strong

7Variables are multicollinear when they combine to yield another, independent variable. Two variables are perfectly collinear if they are a linear
combination of each other. Here, a decision tree will have to pick only one, and will mostly go for the one with the strongest correlation.
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results.
Just like neural networks, boosted decision trees have hyperparameters. These range from the intuitive ones, like the

number of underlying trees and the maximum depths of these, to how many data samples must be considered before
splitting an internal node, or leaf. And just as for neural networks, the correct tuning of the hyperparameters is important
for optimal performance of the model. Still, the list of boosted decision tree hyperparameters does not even come close
to that of neural networks.

The boosted trees are also more efficiently trained, given that they have less free parameters to adjust, and focus,
by construction, on the most important features to the extent that features with little or no discriminatory power are
ignored completely.

While no boosted decision tree algorithms were successful in the extremely overlapping case of [2], this does not
have to be the case for the signal vs. background problem described in the present section. To illustrate the performance
of boosted decision trees, consider the classification problem at hand, with the added complication of using a scarce
dataset. This can be the case e.g. when simulating certain processes takes a long time, or when data cannot be simulated
and must be collected.

Using a balanced training dataset of fifty thousand events and a test dataset of ten thousand events, a simple neural
network achieves a ROC AUC of ∼ 0.9 in around fifteen minutes. By comparison, the XGBoost [58] — short for
eXtreme Gradient Boost — algorithm achieves a ROC AUC of ∼ 0.93 after less than two minutes of training, and
CatBoost [59]8 the same ROC AUC in just under three minutes. Based on the previous discussion, this result is not
surprising.

Note that these numbers can of course not be taken as a definite conclusion of how well either algorithm can perform
on this particular problem, and they are certainly strongly dependent upon the architecture on which they run. However,
they do serve for illustration: Other machine learning algorithms, such as boosted decision trees, can compete with —
and for certain problems also outperform — neural networks, and are in general more transparent and computationally
light-weight. Especially since neural networks are so opaque, a good practice is to always use another classification
algorithm as benchmark.

5.3.3 Mixture parameter estimation for sneutrino detection

An XGBoost algorithm is trained on a dataset containing equal amounts of Standard Model background and signal from
the slepton and electroweakino production processes described earlier.9

The algorithm is then used to create templates for the signal and background class respectively. This is done by
feeding the classifier one dataset for each class, containing ten thousand previously unseen events, and using kernel
density estimation to transform the classifier output for each class into an analytical function. A technical challenge
encountered here, which was not the case in the heavy Higgs classification, is that this classifier has an easier job
separating the signals, causing more of the predictions to fall closer to 0 or 1. The template fit to the network output
must thus be robust on the edges, as described in section 3.3.3.

Next, the classifier is used to predict on test sets with different sizes and mixture parameters, and the classifier output
used as data in a maximum likelihood fit for the aforementioned templates. Fits to mixture parameters of αtrue = 0.1,0.2
with test set sizes of 200 and 100 events respectively are shown in fig. 5.11. The histograms indicate the classifier’s
predictions for the test datasets in each case, and the templates for each class have been scaled according to the best-fit
value for the signal mixture parameter, α̂ .

The above described method is shown more systematically in fig. 5.12, again for different test set sizes and mixture
parameters, where the gray shades indicate physically sensible regions for the mixture parameter. As expected, larger
test sets correspond to narrower parabolas, i.e. stronger estimates of the mixture parameter. This is in agreement with
e.g. fig. 3.4b, and the potential discovery significance can now be accessed using the relation in eq. (3.22), indicated by
the nσ bands in the plots.

8The name presumably coming either from familiar examples of image classification into categories of cats and dogs, or the logo, which resembles
a cat’s paw.

9The internal distribution in the background dataset is in accordance with the Standard Model prediction.
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Figure 5.11: Template fits to the classifier output showing the best-fit mixture parameter α̂ and the true mixture
parameter α of each test set.

Also, the smaller the mixture parameter, the steeper the parabola needs to be in order to cross the lines indicating
the confidence intervals before crossing over to α < 0. This makes sense, as larger test datasets mean a larger number of
events per class.
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(a)

(b)

(c)

Figure 5.12: The negative loglikelihood curves for the template fits to the classifier output, for test set mixture parameters
of (a) 0.05 (b) 0.1 and (c) 0.2. Each of the fits is shown for 100 (purple), 200 (green) and 500 (blue) test set events. The
intersections with the dashed gray lines indicates the nσ confidence intervals.
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Future work

The project Enabling sneutrino detection in weak signal scenarios using machine learning methods [6] is still in a phase
where it requires much work, although the main method is in place. On the technical side, there is room for improving
the classifier by further tuning the hyperparameters. Also, a well-tuned neural network given a large amount of training
data could still compete with the boosted decision tree. Especially in models where only few events are expected, even
a small classifier improvement can make a difference, so it is important to thoroughly investigate this possibility.

On the physics side, the model’s parameter space is enormous, and it is anything but trivial to map out the interesting
regions. Interesting meaning having a signal dominated by production not from strong processes, but still with a large
enough production cross section to expect a fair number of signal events at least at the HL-LHC.

To give a rough idea, three example points’ mass spectra are presented in fig. 5.13. These points have expected
mixture parameters of 0.073, 0.105 and 0.163 respectively, i.e. in the range of the previously presented sample scenarios,
at 150fb−1 integrated luminosity.10 Again, this does not in any way constitute a thorough study of the parameter space
or indicate upper or lower limits on expected mixture parameters, but merely test points for the method described.

10This, or strictly speaking 149fb−1, is the total integrated luminosity from Run 2 of the LHC.

76



0

800

1600

2400

3200

4000

4800

5600

M
as

s
/

G
eV

h0

A0
H0

H±

q̃L

b̃1

t̃1

ν̃L
�̃L

τ̃1

ν̃τ

g̃

χ̃0
1

χ̃0
2 χ̃±

1

χ̃0
3

χ̃0
4 χ̃±

2

q̃R

b̃2

t̃2

�̃R τ̃2

(a)

0

800

1600

2400

3200

4000

4800

M
as

s
/

G
eV

h0

A0
H0

H±

q̃L

g̃

b̃1

t̃1

ν̃L
�̃L

τ̃1

ν̃τ χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4

χ̃±
1

χ̃±
2

q̃R

b̃2

t̃2

�̃R

τ̃2

(b)

0

800

1600

2400

3200

4000

4800

5600

M
as

s
/

G
eV

h0

A0
H0

H±

q̃L

b̃1

t̃1

ν̃L
�̃L

τ̃1

ν̃τ

g̃

χ̃0
1

χ̃0
2 χ̃±

1

χ̃0
3

χ̃0
4 χ̃±

2

q̃R

b̃2

t̃2

�̃R τ̃2

(c)

Figure 5.13: The mass spectra of three sample points in the sneutrino NLSP scenario discussed, with expected signal to
background ratios of (a) 0.078, (b) 0.117 and (c) 0.195.
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Chapter 6

Dark matter indirect detection

6.1 Dark matter

The earliest evidence of gravitationally interacting, non-luminous dark matter was presented in the early paper by Zwicky,
Die Rotverschiebung von extragalaktischen Nebeln [60], in which he “concluded from the results of observations that
the amount of non-luminous matter in the Universe must be greater than that of luminous matter, and thus becoming an
early precursor of the dark matter idea” [61].

Since then, stronger astrophysical evidence for the existence of dark matter has been collected, including studies of
the CMB, structure formation, galactic rotation curves, galaxy clusters and intergalactic nebulae [62, 63, 64, 65, 66, 67,
68, 69]. According to the current understanding, dark matter makes up more than a fourth of the total energy density of
the universe [20].

The few things that are as of today certain about dark matter, are that it interacts gravitationally1, that its self-
interactions are small — observations from colliding galaxy clusters put strong constraints on dark matter self-interaction
cross sections, a prominent example being that of the Bullet Cluster (1E0657−558), which recently, on cosmological
time scales, passed through another cluster [71] — and that it neither emits nor absorbs photons, and is hence not “dark”
in the light-emitting sense of the word, but rather of a, for the time being, obscure nature.

To quantify the energy content which dark matter constitutes in the universe, some quantities must first be
introduced. The evolution of the expanding universe with time can be described by a single parameter, denoted
a(t). This dimensionless parameter is known as the scale factor of the universe. The 00-component of the Einstein
equation [72] with the Friedmann-Robertson-Walker metric [73, 74, 75] yields the Friedmann equation, which defines
the Hubble parameter as

H2 ≡ ( ȧ
a
)2 = 1

3M2
Pl

∑
i

ρi . (6.1)

Here, ȧ is the time derivative of a(t), MPl is the Planck mass and ρi are the contributions to the total energy density of
the universe. The scale factor today a0 thus yields the value H0 of the Hubble parameter today. The latter enters the
expression for the critical density of the universe

ρc = 3M2
PlH

2
0 . (6.2)

Now, the density parameter of the universe Ω is defined as the ratio of the observed energy density ρ of the universe
to the critical density. Neglecting a possible curvature term, the energy density of the universe contains contributions
from radiation ΩR, dark energy ΩΛ and matter Ωm. The latter consists of a baryonic and a dark matter component. The

1Effort has been made to explain the observed gravitational anomalous phenomena commonly ascribed to dark matter, by modifying only the
gravitational theory involved, and thus obviating the need for a dark matter model. A well-known group of such models is that of Modified Newtonian
Dynamics [70].
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Figure 6.1: The matter density Ωm versus the energy density ΩΛ in the universe, the current value indicated by a cross.
The matter content of the universe which stretches along the Ωm-axis from the baryonic density Ωb band to said cross,
must necessarily be made up of non-baryonic matter. Note that this particular plot was made in 2004, and that the
measured values have been updated since then. However, the qualitative features of the illustration still holds. The plot
has been taken from [78].

density parameter determines the geometry of the universe, as

Ω = 1 ∶ a flat universe
Ω > 1 ∶ a spherical, or closed, universe
Ω < 1 ∶ a hyperbolic, or open, universe .

(6.3)

The current measurements of the matter density Ωm and the energy density ΩΛ are summarised in [76], and agree
in the region where Ωm ≃ 0.3 and ΩΛ ≃ 0.7. Using also measurements of the cosmic microwave background and Big
Bang Nucleosynthesis, the baryon density Ωb in the universe has been constrained to less than ∼ 0.05. These results
combined are presented in fig. 6.1, which shows a plot first presented in [77] and later adapted by [78]. Evidently, dark
matter must make up a significant portion of Ωm.

The criteria a dark matter candidate should fulfill are being be non-baryonic, long-lived on cosmological time scales
and electrically neutral. In fact, the Standard Model already has such a particle; the neutrinos. This possibility has
been considered, but the neutrinos’ relativistic nature ruined their claim to this particular fame [79]. It is in general not
possible to have dark matter consist predominantly of relativistic particles, known as hot dark matter, because they
could not in the early universe have formed structures as large as galaxies, given that the initial state was very smooth.
This smoothness was evidenced by the map of the cosmic microwave background — based on measurements by the
COBE (Cosmic Background Explorer) and the later WMAP (Wilkinson Microwave Anisotropy Probe) and Planck
satellites, see, e.g., fig. 1.1.

Turning thus to cold dark matter [80], this is a major ingredient in the widely accepted Lambda-CDM cosmological
model, in which the universe contains a cosmological constant representing dark energy, denoted Λ. If dark matter
is a new kind of particle, charged only very weakly or not at all under the Standard Model gauge groups, it could be
accommodated within an extension of the Standard Model. Examples of such particles are heavy sterile neutrinos [81],
axions [82], light scalars, Kaluza-Klein excitations of Standard Model fields — which would require a framework
with extra dimensions and a bulk — and the list goes on. A supersymmetric model with the gravitino as lightest

80



Angular momentum l JPC Type

0 0−+ Pseudoscalar
0 1−− Vector
1 1+− Pseudo-vector
1 0++ Scalar
1 1++ Axial vector
2 2++ Tensor

Table 6.1: Different meson states by quantum numbers, from ground states with l = 0 to states with orbital excitations.

supersymmetric particle and dark matter candidate is considered in chapter 7.

6.1.1 Indirect detection

Indirect dark matter searches look for visible products of dark matter interactions, focussing often on stable Standard
Model particles produced by the decay or annihilation of dark matter, or secondary decay products of these. As-
trophysical observations of gamma rays are one example of a potentially promising source for indirect dark matter
detection.

As mentioned previously, light sterile neutrinos are candidates for non-baryonic dark matter, and their possible role
in astrophysics [83] would yield observable phenomena in the form of monochromatic photons with low energy, i.e.
astrophysically detectable in the keV range.

On the high energy side, observations of the Milky Way halo by the Fermi-LAT (Large Area Telescope) collaboration,
have searched for gamma ray spectral lines in the energy range 200MeV to 500GeV [84], and possible gravitino dark
matter decay signatures in the energy range 100MeV to 10GeV [85].

Evidently, these searches for photons originating from processes involving dark matter, have left an energy range
with relatively little attention, namely that from around 100 keV up to just below 100MeV. This range has been coined
the MeV-gap, and if dark matter couples somehow to Standard Model particles, it is possible that the signatures reside
within this gap. Furthermore, it is interesting to observe that this is the energy range for photons coming from the
decays of heavy Standard Model mesons at rest.

This is the motivation behind a project on gamma rays from the annihilation of dark matter into heavy mesons,
which will be explained in the following. The project formed a contribution to the e-ASTROGRAM white book [3], see
also section 6.4, under the title Smoking gun dark matter signatures in the MeV range.

6.2 Heavy mesons

Mesons are bound states of a quark and an antiquark, as such have baryon number 0, and all the known ones are
unstable. They are classified using the three quantum numbers J, P and C, and the notation is JPC. Denoting the orbital
angular momentum by l and the spin by s, the total spin J of the meson is constrained via the familiar relation

∣l− s∣ ≤ J ≤ ∣l+ s∣ . (6.4)

The spins of the two quarks in the meson can align in antiparallel, forming a total s = 0 state, or in parallel, forming a
total s = 1 state. The parity and charge conjugation of a meson state are

P = (−1)l+1

C = (−1)l+s
(6.5)

where the latter relation is defined only for mesons consisting of quarks with their own antiquarks. The allowed
combinations are shown in table 6.1.
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The combinations of quarks can be light-light, light-heavy or heavy-heavy. The lightest mesons, and also the lightest
hadrons, are the pions π0,π±, consisting of combinations of the up and down quarks. The non-perturbative computation
of many meson properties in QCD are available only using techniques from lattice QCD. 2 These are computationally
and conceptually much harder for light than for heavy quarks, due to e.g. relativistic and vacuum effects [86].

Bound states of two heavy quarks are sometimes called quarkonia, and examples of these are

• The J/ψ meson: the charmonium cc̄ ground state

• The ϒ meson: bottomonium bb̄

One might at this point ask why there is no toponium, a tt̄ bound state, and the answer is that the very heavy top quark
decays electroweakly before it can form a bound state — a rare example of a weak process happening faster than a
strong process.

6.2.1 Meson decays

Mesons decay via lighter mesons and leptons, in chains which end up in pions, electrons, muons, neutrinos and photons.
The pions and muons themselves also decay into leptons and photons, meaning that these chains all have electrons,
neutrinos and photons with different energies as stable particles at the bottom of the chain.

Measuring the photon energies from such a decay chain would yield a relatively featureless spectrum looking
more like a broad bump than anything else, and as such resemble the astrophysical background. Said background
consists primarily of interstellar gamma rays [87] from inverse Compton scattering, decaying free-flying pions and
Bremsstrahlung from particles flying off from some process they were lucky enough to be involved in, perhaps
something as spectacular as star formation or a neutron star collision.

Since mesons are composite systems, they can have different energy levels. If the two quarks have a higher relative
angular momentum than the lowest l = 0, they form an excited meson state, usually denoted by an asterisk in the name
of the meson. Such excited mesons can decay into their l = 0 state by radiating off a photon or a pion. For instance, the
excited B-meson state decays dominantly as B∗→ Bγ , and the excited D-meson state as D∗→ Dπ0. Since the photon or
pion energy corresponds to the difference in mass between the meson states, a signal consisting of these photon energies
would in the meson rest frame stand out from the astrophysical background as either a sharp line or box feature, as
realised by [88].

The above discussion is interesting in the context of dark matter. Suppose that dark matter has some coupling to
either a Standard Model particle, or to some non-Standard Model particle which in turn does carry SU(3)C charge. This
would open up the possibility of dark matter annihilations resulting in production of Standard Model quarks.

The authors of [88] demonstrated the possible existence of spectral features from dark matter annihilation via
Standard Model quarks through excited mesons using Pythia. Before taking the same approach here, a brief
introduction to event generation, and how Pythia can help simulate astrophysical spectra.

6.3 Event generation

Event generators, meaning here general-purpose Monte Carlo3 generators, simulate high-energy collisions and are a
central tool in high-energy physics. For instance at the LHC, where particles are produced in proton-proton collisions,
analytically calculating detailed distributions on a particle level would rely on an analytical model for strong interactions
at the non-perturbative level.

2Lattice QCD is a non-perturbative, mathematically well-defined framework where gauge theories in spacetime have been discretised onto a
lattice, using the path integral formalism of quantum field theory.

3Monte Carlo algorithms are a wide range of algorithms using random sampling, and are used in particle physics to generate draws from a
probability distribution, as a subsistute for modelling the underlying quantum field theory.
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For the projects in this thesis, the role of event generators is in some sense twofold: In the present chapter, the use is
to simulate data from decay processes and record final state particle energies. In chapter 5 and chapter 7, the use is to,
together with detector simulation, provide collider signals for statistical analysis of beyond Standard Model theories.

An event generation process can be divided into the following steps

1. Hard process: These are in general processes at energy scales above a few GeV, that can be treated perturbatively.
For instance, the initial parton-parton collision is a hard process.

2. Parton showering: This generates the QCD ratiation from the partons coming from the hard event.

3. Early decay: Some of the produced heavy resonances decay rapidly, e.g. the top quark, Higgs, vector bosons
and heavy sparticles.

4. Hadronisation, or soft processes: The partons left after showering combine and form hadrons

5. Unstable hadrons decay: These decays happen in accordance with experimentally measured, or manually
entered, branching ratios.

6.3.1 Heavy meson spectra

As mentioned, the event generator Pythia can be used to simulate possible photon spectra from dark matter annihilation,
and the central functionality resides in item 5 in the above list.

If the dark matter mass and energy is within the same range as the Standard Model mesons, dark matter could
annihilate as

χχ → M1M2M3 . . . ,

where the Mi are mesons produced with little kinetic energy. To simulate the spectrum from the resulting decays of
such a process using Pythia, this is initialised with centre-of-mass energy corresponding to the combined dark matter
mass 2mχ . The event contains one particle representing the state formed by a dark matter annihilation, and the open
decay channels specify which Standard Model mesons are produced in the annihilation. For each event, the energies
of the final photons are collected and stored. Figure 6.2 show example results of such a simulation, for two different
dark matter energies. Here, Pythia decayed the initial particle into the excited states B∗s and B̄∗s , accompanied by a
pion. Evidently, the line feature is sharpest when the dark matter mass is closest to the production threshold of the three
mesons.

6.3.2 Quarkonium resonances

Another kind of process which could take place and yield detectable signatures, is

χχ → (QQ̄)γ , (6.6)

where (QQ̄) is a quarkonium state. This can result in monochromatic photons in the same way as discussed before,
but in addition, the photon produced back-to-back with the quarkonium would have a sharp energy spectrum, given
by the difference in mass between the dark matter particle and the quarkonium. The annihilation of dark matter into
quarkonia and a photon was considered in early work [89, 90, 91], and interesting for the present discussion is heavy
meson production through a quarkonium resonance where the photons from the meson decays land in the MeV gap.

As an example, consider the process where two dark matter particles annihilate into ϒ(10860) and a photon, where
the former decays primarily into B and Bs mesons and their excited states. This can be again be simulated using Pythia,
but the event must be initialised in a different way. This time, it contains two initial particles; the ϒ(10860) and a
photon with opposite momentum. Furthermore, the decay table of the quarkonium given to Pythia corresponds to
experimental values [76]. Figure 6.3 shows the resulting final photon energies from such a simulation.

In agreement with the results in [88], the spectral features from processes such as those described above would be
astrophysically visible in the lower part of the GeV range of the energy spectrum. With the simulations in place, this
chapter ends with a brief discussion about an astrophysical mission with the possibility of detecting these signals.
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Figure 6.2: The photon spectra from a Pythia simulation of a dark matter annihilation process into Standard Model
mesons, in this case B∗s B̄∗s π0, and subsequent decays.

6.4 e-ASTROGRAM

The enhanced ASTROGRAM [3] is an observatory space mission, designed for observations in the 0.3MeV to 3GeV
photon energy range. As mentioned previously, this domain remains astrophysically largely unexplored, after NASA’s
COMPTEL[92] stopped taking data in 2000, and no successors to that mission are planned.

Potential e-ASTROGRAM observations would enable studies of a range of astrophysical processes, reaching from
relativistic jets via low-energy cosmic rays to the recent history of supernova explosions in the Milky Way and detecting
supernovae in nearby galaxies, to mention a few. Still, of relevance for the present discussion is the potential dark
matter annihilation signatures which could be found in the range which e-ASTROGRAM is, at the time of writing, the
only candidate to observe.

As a part of the presentation of the e-ASTROGRAM mission, a white book was written, containing a presentation
of a wide range of physics questions which could be answered given observations by e-ASTROGRAM. Among the
topics belonging to fundamental physics, dark matter is strongly represented. Under the title Smoking gun dark matter
signatures in the MeV range, the annihilation of dark matter into Standard Model mesons and the resulting detectable
features, was discussed. A plot similar to that in fig. 6.3, was contributed4, alongside similar results from Bringmann et
al. [88], see [3], chapter 4, section 4.

After the e-ASTROGRAM mission was unfortunately not selected as three of ESA’s M5 mission concept candidates,
the e-ASTROGRAM collaboration joined with NASA’s AMEGO [93], the All-sky Medium Energy Gamma-ray
Observatory, an astrophysical mission with the same scientific objectives and similar detector design. Efforts to
launch the e-ASTROGRAM mission, probably together with AMEGO, continue, and the potential this would have for
observations of dark matter processes in the MeV range is unprecedented.

The results contributed to the e-ASTROGRAM white book also form the basis of an ongoing project, under the
name Gamma rays from the annihilation of dark matter into heavy mesons [5], which investigates the potential role
played by quarkonium resonances in enhancing the production of excited mesons. In the above simulations for fig. 6.2,
as well as those in [88], underlies the assumption that the dark matter mass is exactly on the production threshold for
the excited mesons. The farther away from the combined mass of the meson states, the broader the photon spectrum
from the decays becomes, and the harder it becomes to distinguish from the astrophysical background. Realising the
scenario described above hence has a delicate dependence on the dark matter mass.

However, as long as the theory for the dark matter interaction has the vector operator Q̄γμ Q, the annihilation can

4The contribution to the e-ASTROGRAM white book differs from fig. 6.3 in that the dark matter mass is instead mχ = 6.4GeV in the simulation.
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Figure 6.3: The photon energies from a Pythia simulation of a dark matter annihilation process into a Standard Model
quarkonium state and a photon, and subsequent decays. The feature in the lower end of the spectrum stems from the
subsequent meson decays, and that in the higher end from the photon produced along with the quarkonium state. This
plot is similar to the one in [3], discussed further in section 6.4.

happen via a quarkonium resonance, such as the one illustrated in fig. 6.3. Since such a resonance can decay into excited
meson states, the sharp feature in the photon spectrum remains, but less of the delicate dependence on being in exactly
the right mass range. Additionally, annihilation through a resonance may lead to enhancement or suppression in ⟨σv⟩,
depending on temperature through the velocity distribution of the dark matter. This can lead to potential enhancements
in the annihilation cross sections for indirect detection today, compared to the cross section that sets the relic density.5

Quarkonium resonances may thus play a particularly important and hitherto unnoticed role in enhancing signals from
dark matter annihilation.

5The thermally averaged cross section and the dark matter relic density are discussed in chapter 7.
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Chapter 7

The early universe and
supersymmetric dark matter

One of the many features of supersymmetry is that it offers several candidates for particle dark matter. The nature of a
supersymmetric dark matter particle has strong implications for the physics of the early universe. The present chapter
starts by giving a short introduction to the model-independent mechanisms in the early universe relevant for particle
physics phenomenology, before moving on to discuss supersymmetric dark matter scenarios.

This forms the basis for a project which was unfortunately not finished within the time limitation of the doctoral
period. The working title of the project is An open window for high reheating temperatures in gravitino dark matter
scenarios, and effort is made for it to be finished in the near future. This chapter builds a summary of what has been
done in the project at the time of writing, and discusses the motivation behind it.

7.1 The particle contents of the early universe

7.1.1 Abundances

Think of the early universe as a hot thermal bath in which particles are constantly colliding and interacting. The
temperature of the thermal bath corresponds to the average energy per particle, and as the universe expands, the
temperature decreases. Consider next a stable particle χ which forms part of the thermal bath. As long as T >> mχ , the
particle is assumed to be in thermal equilibrium. The equilibrium abundance is maintained by the balance between two
processes

• χχ̄ → XX̄ — annihilation of the particle into lighter particles X .

• XX̄ → χχ̄ — production of the particle via thermal scattering of other particles. This is sometimes referred to as
thermal production of the particle.

This process is described by the Boltzmann equation, which contains the temporal development of the χ number density,

dnχ

dt
+3Hnχ = −⟨σχχ̄→XX̄ v⟩(n2

χ −(neq
χ )2) . (7.1)

The term containing the Hubble parameter H accounts for dilution due to cosmic expansion, while the right-hand side
represents interactions between particles, and neq denotes the equilibrium number density. The thermally averaged
cross section ⟨σv⟩ contains the cross section σ for the relevant process and the relative velocity v between the particles
colliding. It is an average over all velocities at a given temperature, so eq. (7.1) is not a function of v, but rather of the
temperature T . Simply put, the interaction rate is determined partly by the cross section, as calculated using a particle
physics model, and partly by the temperature of the particles.
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As the universe expands and the temperature decreases below T χ
f <mχ , the particle χ freezes out of the thermal bath.

Look again at the distribution functions for bosons eq. (2.5) and fermions eq. (2.42): as the temperature drops below the
mass of the particle, this becomes non-relativistic and its distribution function becomes exponentially suppressed as
f → e−m/T . The number density nχ approaches the relic abundance when the annihilation rate is on the order of the
Hubble, or expansion, rate

Γ = nχ⟨σχχ̄→XX̄ v⟩ ∼ H , (7.2)

i.e. when the density of the particle is so small that its annihilation is too inefficient to keep it in thermal equilibrium.
Note that σχχ̄→XX̄ denotes the total annihilation cross section for the particle into any species.

7.1.2 Inflation and reheating

Assuming an epoch of inflation [94], during which the scale factor of the universe grew exponentially and the particle
density in the universe was consequently strongly diluted, can explain the overall homogeneity, spatial flatness and
large size of the current universe.

The first of these issues, often called the horizon problem, emerges from the realisation that the cosmic microwave
background radiation has the same temperature in all directions. In fact, it seems evident that now disconnected
regions in the universe must previously have been connected, allowed to equilibrate to a common state. If these regions
were thermally connected prior to inflation, and only driven apart during inflation, this explains the observation of
homogeneity throughout the universe.

The flatness issue is a fine-tuning problem concerning the density parameter of the universe. Had this had an
only slightly different value in the past, its present-day value would have differed vastly from the observed value. As
mentioned in eq. (6.3) , the density parameter of the universe Ω is defined as the ratio of the observed density ρ to the
critical density. Now, the current density of the universe is observed to be very close to this critical value, and since
the density parameter evolves in cosmic time, the deviation of the Planck-time value of the density parameter cannot
have been more than one part in 1060. This seeming need for fine-tuning is alleviated by inflation, as a small, but not
necessarily critically small, value for the initial curvature of the universe before inflation, would be enough to render the
universe as flat as we observe it today.

Exactly which process drove inflation is not yet known, but if particle physics can supply the cause, this would likely
be by introducing one or several scalar fields which transition from a flat region to a minimum of the scalar potential.
The fields’ associated particles, commonly called inflatons, would then have decayed as the inflationary period ended1,
and the energy thereby released transferred into a hot thermal bath of elementary particles. This process would then
have caused the temperature of the universe to increase again, known as reheating. The maximum temperature reached
during the period of reheating is denoted TR.

7.1.3 Thermal leptogenesis

As mentioned in the introduction section 2.6.5, the baryon asymmetry in the universe is not predicted by the Standard
Model, and it is natural to inquire about the mechanisms which may have produced it. Sakharov formulated three
conditions for the generation of a baryon asymmetry [95]

• Baryon number violation

• CP- and C-violation

• Departure from thermal equilibrium

The three of these can be satisfied by heavy Majorana neutrinos — the seesaw-partners of the light neutrinos of the
Standard Model.

1Actually, the inflaton field would likely have oscillated about the minimum of its potential, before rapidly decaying and needing some time to
reach thermal equilibrium. This process is sometimes referred to as preheating.
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Once the temperature of the universe drops below the mass of any heavy Majorana neutrinos, these do not follow
the changes in equilibrium distribution as quickly as the interacting particles. This deviation from thermal equilibrium
results in a large number density of heavy Majorana neutrinos, compared to the equilibrium density of other particles.
The heavy neutrinos decay through CP- and C-violating processes, generating a lepton asymmetry, which is converted
into a baryon asymmetry through so-called sphaleron processes2.

This mechanism both yields baryogenesis and makes a statement about neutrino properties, as it constrains the
masses of both the light and heavy neutrinos. The lightest neutrino mass is for instance bound to mν ≤ 0.1 eV [97],
to be compared with cosmological probes, until laboratory-based experiments can provide more stringent limits. At
the time of writing, limits are set at mν ≤ 0.120 eV3. The observation of neutrino oscillations, and hence a definitely
non-vanishing neutrino mass, supports thermal leptogenesis. In order for the mechanism to produce the observed
baryon asymmetry, a high reheating temperature of TR ≳ 109 GeV is required [96, 98].

7.2 The supersymmetric early universe

In the spectrum of supersymmetry, there are several massive particles which carry neither colour nor electric charge. If
the lightest supersymmetric particle has these properties and is in addition stable, either by virtue of an R-parity or due
to extremely weak couplings, it is an excellent candidate for particle dark matter.

7.2.1 The gravitino and its problem

A local supersymmetric model implies the existence of the gravitino G̃, the superpartner of the graviton. As supersym-
metry is spontaneously broken, the associated spin- 1

2 goldstino is absorbed by the gravitino, which thus inherits both its
mass and spin- 1

2 modes. Depending on the scheme of SUSY breaking, the gravitino mass m3/2 can range from the eV
to beyond the TeV region [44]. However, a too light gravitino, if identified as the dark matter particle, is not favoured by
structure formation in the early universe, and its mass is bounded from below by present observations to a few keV [99].

The gravitino abundance produced thermally after the Big Bang is strongly diluted during inflation. However,
after the reheating phase, during which a temperature TR is reached, gravitinos are again produced through scattering
processes of particles in the thermal bath. The gravitino abundance is then approximately proportional to TR, see eq. (7.6).
In a local supersymmetric model where the gravitino is not the LSP, its very weak couplings cause it to decay very
slowly into whichever other particle is the LSP, with a lifetime of around [100]

τ3/2 ≈ 1
α3/2

M2
p

m3
3/2

. (7.3)

Here, α3/2 is dimensionless and O(1), meaning that the lifetime of the gravitino is

τ3/2 ≳ 3.2yrs(100GeV
m3/2

)3

, (7.4)

i.e. by far outlasting Big Bang Nucleosynthesis, which is estimated to have taken place seconds to minutes after the Big
Bang. Gravitino decays taking place during or after Big Bang Nucleosynthesis, would release energetic decay products
which could destroy the light nuclei produced [101, 102], see also section 7.3.2.

This problem has two possible solutions: The gravitino could be very heavy and decay sufficiently early, which
would require a correspondingly large scale ⟨F⟩ of supersymmetry breaking, or its abundance could be kept low through
an upper bound on TR. A gravitino mass of m3/2 ≲ 5TeV amounts to an upper bound on the reheating temperature of
TR ≲ 105−6 GeV [103], which would in turn rule out standard thermal leptogenesis. [96, 98]

2Sphaleron processes are beyond the scope of this thesis, but the interested reader can find more information in an excellent introduction by
Buchmüller et al [96].

3at 95% confidence level, summing over the three flavours [21].
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Table 7.1: Gauge couplings gi, gaugino mass parameters Mi and values of associated constants for the gauge groups
U(1)Y , SU(2)L and SU(3)C, enumerated by the index i.

Gauge group i gi Mi ki ci ωi βi

U(1)Y 1 g′ M1 1.266 11 0.018 11
SU(2)L 2 g M2 1.312 27 0.044 1
SU(3)C 3 gs M3 1.271 72 0.117 −3

This quandary is known as the gravitino problem, and suggests that the gravitino should be the LSP, stable on
cosmological scales and possibly the dark matter particle.

7.2.2 Gravitino production and abundance

After inflation has diluted away any initial gravitino population4, the evolution of the gravitino number density n3/2 per
cosmic time t is described by the Boltzmann equation [104]

dn3/2
dt

+3Hn3/2 =C3/2

C3/2 = 3∑
i=1

3ζ(3)T 6

16π3M2
P

⎛⎝1+ M2
i

3m2
3/2

⎞⎠cig2
i ln( ki

gi
) .

(7.5)

Here, i denotes the gauge group, and the Mi the corresponding gaugino soft masses. As before, the term proportional
to H represents dilution due to the cosmic expansion, while the right-hand side is the collision term and accounts for
destruction and production in the thermal bath. The temperature T sets the scale for evaluation of the parameters in
C3/2, for which all parameters are given in table 7.1. From this, the thermal contribution to the gravitino relic density
is [100, 105, 106]

Ωth
3/2h2 = 3∑

i=1
ωig2

i
⎛⎝1+ M2

i

3m2
3/2

⎞⎠ ln( ki

gi
)(100GeV

m3/2
)( TR

1010TeV
) . (7.6)

The final gravitino abundance is constrained by dark matter relic density limits from observations. At the time
of writing, an analysis of the anisotropies of the cosmic microwave background measured by the Planck space
observatory settles the dark matter density at Ωch2 = 0.120±0.001 [21]. This again amounts to an effective constraint
on TR, as indicated by the above equation. However, as mentioned, leptogenesis requires a reheating temperature of
TR ≳ 109 GeV [96, 98], so in order to achieve this while avoiding a too high dark matter relic density, it seems suggestive
to lift m3/2.

The gravitino relic density also receives a non-thermal contribution[107, 108], the one from the decay of the NLSP.
Denoting a general NLSP by χ , this is

Ωnon-th
3/2 h2 = Ωχ h2

mχ
m3/2, (7.7)

i.e. also dependent on the mass of the gravitino, and of course the abundance of the NLSP.

7.2.3 The neutralino and its abundance

Assuming a gravitino LSP, its extremely weak couplings imply a large NLSP lifetime, so large, indeed, that decays into
the gravitino can be neglected when considering the freeze-out of the NLSP in the very early universe.

4Neglecting gravitino production from earlier epochs or inflaton decay. Such other scenarios could of course lead to sizeable contributions, but
they are strongly model dependent and not discussed further here.
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Figure 7.1: The identity of the NLSP in a supersymmetric model with a gravitino LSP, (a) for varying Higgs down soft
mass and trilinear coupling, scaled to the common gaugino mass parameter, with tanβ = 10 and m2

Hu
= 0, and (b) the

variation of the mass (mi) of the NLSP candidates with the stau mixing angle, with tanβ = 20 and m2
Hu

= 5TeV2. The
subscript ‘1’ on the symbol of the neutralino indicates that this is the lightest of the neutralinos, and will be omitted in
the following. The plots were produced for [1], where the identity of the NLSP across the parameter space is further
discussed.

At some point during these early times, the NLSP thermalises and enters thermal equilibrium. As the temperature of
the universe drops below the NLSP mass, the equilibrium number density of the NLSP decreases exponentially. Since
the annihilation rate is proportional to the number density, the annihilation rate becomes inefficient, and thus the NLSP
departs from thermal equilibrium and freezes out.

The point of the freeze-out depends on the annihilation cross section; a small cross section implies an early freeze
out, and a large one a later. In other words: The larger the cross section, the smaller the final number density. This
means that the NLSP relic density Ωχ is determined solely by the thermal freeze-out, and independent of the reheating
temperature, in contrast to the case of the gravitino.

If the lifetime of the NLSP is so large that decays take place during or after Big Bang Nucleosynthesis, the Standard
Model particles produced in relation with these decays, primarily χ → G̃+X and some three-body decays, can affect the
primordial abundance of light elements and contradict astrophysical observations. The larger the relic abundance of the
NLSP, the closer the model comes to conflict observations, specifically bounds from Big Bang Nucleosynthesis. A
higher gravitino mass implies a slower decay of the NLSP, again implying stringent constraints on Ωχ .

In summary, there are strains from several angles when trying to construct a framework featuring gravitino dark
matter — the solution to the gravitino problem present in all local supersymmetric models! — compatible with Big
Bang Nucleosynthesis and thermal leptogenesis. Furthermore, the phenomenology of the scenario depends strongly on
which particle is the NLSP, and the candidates for this role are the stau, the sneutrino and the neutralino, see fig. 7.1a.

Probably the most studied one of these candidates is the stau. In supersymmetric models with minimal gauge
mediated SUSY breaking, which typically predict a heavy gravitino, the stau is naturally the NLSP. The stau also decays
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Figure 7.2: Given the right mass conditions, the neutralino χ0 can (a) annihilate or (b) coannihilate with a near-mass
chargino χ± resonantly via a heavy Higgs into Standard Model particles, here denoted X .

via leptons, meaning that its decay carries with it few energetic hadrons to affect Big Bang Nucleosynthesis. However,
since the stau is charged, typical stau relic abundances lead to an upper bound TR ≲ 108−9 GeV [109, 110].

From a Big Bang Nucleosynthesis point of view, the sneutrino is an excellent candidate, since it evades these bounds
even for a large reheating temperature, under a mass constraint of around 300GeV [111]. However, from a model point
of view, achieving a sneutrino NLSP is difficult, see fig. 7.1b, especially while keeping the mass of the lightest Higgs in
the observed range, and the model explorable from a collider point of view. See also section 5.3 for a discussion on
sneutrino detection.

The neutralino as NLSP candidate in a scenario such as the present was thoroughly considered in [112]. It is
interesting to look closer at this scenario in a particular corner in parameter space, namely where a resonant decay of the
neutralino via a heavy Higgs can help lower the neutralino relic density and thus allow for a high reheating temperature
in these supersymmetric models.

7.2.4 Funneling the neutralino

In order for the neutralino to annihilate resonantly via a heavy Higgs state, see the Feynman graph depiction of the
process in fig. 7.2a, the neutralino mass must be equal or slightly below half that of the heavy Higgs,

1
2

mχ0 ≲ mH . (7.8)

Moreover, if the neutralino has significant wino or higgsino admixture, the lightest chargino is expected to be close in
mass to the neutralino, and so coannihilation processes can become relevant, see a depiction in fig. 7.2b. Which process
is more efficient depends on the cross sections, and the final relic densities of either particle become codependent.

A technical challenge related to targeting this region within a specific model, is that spectrum generators yield
the physical mass spectrum as output — not input — meaning that the region must be targeted indirectly, via the soft
parameters in the supersymmetry Lagrangian.

Keeping in mind the neutralino and chargino mass matrices, the neutralino becomes light if at least one of(M1,M2,μ) is low, while the chargino mass relates similarly to M2 and μ . The parameters which most directly affect
the quantities of interest, are thus on the one hand the pseudoscalar Higgs pole mass mA0 , and on the other the SU(2)L
gaugino, or wino, mass M2. Ridding the discussion of strong complications, the scalar spectrum can be pushed up
beyond concern by adjusting the soft scalar masses, which in the following discussion is set to 15TeV. Keeping all
other input parameters — i.e. M1,M3, tanβ ,mA0 and the aforementioned soft scalar masses — fixed, varying M2 and μ
around half the Higgs pole mass mA0 and calculating the physical mass spectrum, yields the splits between the Higgs
pole mass and the physical mass shown in fig. 7.3a. The variation of 1GeV in this case is probably due to numerical
uncertainties in the spectrum calculation, and in any event far below the theoretical uncertainty.

The values of M2 which enter this calculation are obviously not linearly sampled, but densely sampled around half
mA0 and more sparsely on the edges. This is done using the sampling function

fsampling(x) = kL exp{x log(kU

kL
)} , (7.9)
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(a) (b)

Figure 7.3: (a) The split between the Higgs pole mass mA0 and the physical mass mH as calculated by Softsusy, versus
the input soft mass parameter M2. The different values for mA0 are indicated on the plot, and M2 is varied around half the
Higgs pole mass according to the prior function eq. (7.9). The other input parameter values are M1 = 1000, M3 = 2000,
tanβ = 10, μ = M2, mA0 = 2000, all masses in GeV. (b) The function in eq. (7.9) wth coefficients kL = (10−2,10−3,10−4)
and kU = (0.2,0.3,1.0).

which is shown in fig. 7.3b for different values if kL and kU . The sampling of M2 for the results in fig. 7.3a is done
using kL = 10−3 and kU = 0.3

7.3 One scan to find them

In order to investigate how low the neutralino NLSP relic density can become — and consequently how allowed the
parameter point is considering upper bounds from relic density and big bang nucleosynthesis — this region, coined
the Higgs funnel region, is targeted in a parameter scan. The scan is of the type described in section 3.5.3, i.e. guided
by the likelihoods of the physical observables, see section 3.2.1 for a discussion on likelihoods, and section 3.4.3 for
hypothesis testing. The scan varies the input parameters, being the reheating temperature, the gravitino mass, the
gaugino masses and the Higgs soft parameters, in an attempt to locate allowed regions for the neutralino NLSP scenario.

7.3.1 Reheating temperature and thermal relic density

To illustrate, consider first a very simple scan, which calculates only the thermal contribution to the gravitino relic
density in eq. (7.6), and tries to maximise a Gaussian likelihood, see eq. (3.16), to the measured value of Ωch2 = 0.120.
This scan has an easy job, but since the objective is to maximise the reheating temperature, the scan can be given a
“fake” likelihood function which competes with the physical one, and incentivises the scan to pursue high values for TR.
Again, eq. (7.6) shows that there is a trade-off here, as the relic density increases with TR.

The result from the scan trying to find the sweet-spot between these two contributions is shown in fig. 7.4. In
the following, the −2logλ on the plots is short for −2logLscan, i.e. the combined likelihood for each point, minus−2logLbf, the overall best-fit value for the entire scan. As explained in section 3.4.1, this likelihood ratio follows a
χ2 distribution. The coloured regions represent n standard deviations σ for the χ2 distribution with two degrees of
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(a) (b)

Figure 7.4: A parameter scan guided by two likelihood components; a Gaussian likelihood for the thermal contribution
to the relic density of the gravitino, and an unphysical likelihood increasing with the reheating temperature. (a) Shows
the points in the 1σ , 2σ and 3σ regions in green, blue and purple respectively, while (b) includes also the points beyond
3σ , shown in red, to illustrate the region the scan has investigated.

freedom, where the numerical values are

1σ(χ2
n=2) = 2.30

2σ(χ2
n=2) = 6.18

3σ(χ2
n=2) = 11.83 .

(7.10)

Figure 7.4a shows the one-, two- and three-sigma regions in colours, while fig. 7.4b includes part of the region beyond
three sigma. The latter illustrates how the scan has attempted to keep the reheating temperature high, while struggling
to achieve a sufficiently low thermal contribution to the gravitino relic density in the process. This particular scan had
to settle for a maximum reheating temperature of T max

R = 5.82 ⋅109 GeV in the one sigma region.
This reheating temperature is a very promising start, but several constraints have yet to be considered.

7.3.2 Big Bang Nucleosynthesis

Some of the more stringent bounds on the relic density of the formerly introduced neutralino NLSP, come from Big
Bang Nucleosynthesis, abbreviated BBN. In short, BBN bounds are all about how much energy can be injected during
and after the formation of light elements. Since the primordial abundances of these have been measured with high
accuracy, they leave little room for processes in the early universe which result in more hadronic or electromagnetic
energy. For instance, producing energetic photons in a late supersymmetric decay could cause photodissociation of the
earliest forming nuclei.

The previously introduced parameter scan is extended to take constraints from BBN into account by implementing
the bounds from [103], figures 11 and 12. Although the different channels in these plots yield varying limits, it is clear
that the trend is to forbid large lifetimes unless combined with small abundances. The data used to produce the curves
in these figures were not made available along with the publication [103], but they were digitalised as part of the work
on An open window for high reheating temperatures in gravitino dark matter scenarios [4]. In the collaboration on this
project, the BBN module for the scan is implemented by Jeriek Van den Abeele.

Extending the gravitino relic density likelihood to consider also the non-thermal contribution, i.e. that from decaying
neutralino NLSPs, and adding a likelihood function representing BBN bounds, makes it significantly harder to find

94



Figure 7.5: The mass of the heavy neutral Higgs versus the NLSP mass, with the colour indicating the NLSP yield,
which becomes lower in the Higgs funnel region. The plot is produced using Softsusy and MicrOMEGAS.

allowed regions in parameter space featuring a high reheating temperature.
This is where the Higgs funnel region becomes important: Targeting the region described in eq. (7.8) yields

significantly lower neutralino NLSP relic densities, see fig. 7.5. Here, the yield Y represents the comoving particle
density, related to the relic density via

Ω = ρ0

ρc
= mY s0

ρc
, (7.11)

where ρ0 is the density a particle would have had it not decayed, ρc is again the critical density and s0 the entropy
density of the universe at present. Numerical values are taken from [76].

The funnel region opens up a window for keeping reheating temperatures of TR ≳ 109 GeV, when including also
constraints from BBN, see fig. 7.6.

7.3.3 The final frontier: Collider limits

The only way to be sure that a model, here meaning a point in parameter space, is not excluded from a collider
perspective, is to generate events for it and compare the simulation to experimental results. This is a time-consuming
and computationally expensive process. Due to this, and because the BBN constraints described earlier are so strict,
the computational strategy in the scan searching for models with a high reheating temperature, is to check collider
constraints last, and only after cosmological constraints have been satisfied.

The collider module itself is divided into four parts which must be passed independently, and which each contribute
to the total likelihood. If a likelihood contribution corresponds to a χ2

n=1 value exceeding 1.96σχ2 , corresponding to a
95% confidence level, the point is excluded. If the point is not excluded, the next check is invoked. The first of the
collider checks deems a point worthy of proceeding if

• All physical gaugino masses are larger than 350 GeV
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(a) (b)

Figure 7.6: (a) Reheating temperatures above 109 GeV seem to be within reach even after taking into account constraints
from BBN. The 1σ , 2σ and 3σ regions, indicated in green, blue and purple respectively, for the combined likelihood
from gravitino relic density and BBN constraints, is found where the NLSP yield is low. (b) The NLSP yield is low
when the NLSP mass is slightly below half that of the heavy Higgs. Here, some of the points beyond 3σ are again
included, to illustrate how the likelihood decreases when moving away from the funnel region. The plots are produced
using Softsusy and MicrOMEGAS.

• No gaugino lifetimes exceed 3.3×10−3 ns — corresponding to 1mm propagation distance before decay.

• The combined gluino and chargino masses are located outside a polygon spanned by the exclusion limits
from [113], figure 13b.

Any point which passes these constraints proceeds to the next check, which is based on CMS data from direct chargino
searches. This module interpolates grid data on cross section exclusion limits from [114] to find an upper limit for the
chargino production cross section from weak processes, σlimit , based on the mass and lifetime of the lightest chargino.

The number of expected signal events from a direct search is

nsignal = nlimit
σsignal

σlimit
, (7.12)

where σsignal here represents the total chargino production cross section from weak processes, calculated by MicrOMEGAS for
each parameter point. For the CMS search considered, nbkg = 6.5 background events were expected, so a 95% confi-
dence level puts the upper limit at nlimit = 7.39. These numbers define a Poisson likelihood function, see section 3.4.3
or eq. (B.9), used again to determine whether to exclude the point or to proceed.

While the aforementioned two collider checks are quick and simple, and only compare certain physical observables,
the two remaining ones come closer to confronting the entire model with experimental results.

SModelS

SModelS [115] is “an automatic, public tool for interpreting simplified-model results from the LHC”. It interprets LHC
predictions from beyond Standard Model theories — including of course supersymmetry — in light of experimental
constraints, by decomposing the model’s predicted collider signatures into simplified model spectra, hence the name.

A simplified model is defined by an effective Lagrangian which describes a small number of particles and their
interactions. The theoretical parameter space of supersymmetric models is immense, and simplified models reduce
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the dimensionality to two to four sparticle masses and relevant branching ratios. The simplified model thus provides
a framework for immediately evaluating searches, as these effective Lagrangian parameters are either themselves or
directly related to collider physics observables.

The simplified model approach has been adopted by the collaborations ATLAS [116] and CMS [117], meaning that
many current limits on sparticle masses are based on severe model assumptions, e.g. the LSP and NLSP masses along
with some mass hierarchy, and a branching ratio of one for a specific process.

While a simplified model represents the limit of a more general model, the interpretation of a search result
within a more general MSSM is, although possible, computationally expensive and not straightforward. This is
where SModelS comes in: This python software decomposes a supersymmetric spectrum, as given by a spectrum
generator, into simplified model topologies. These can then be relatively quickly tested against the limits set by ATLAS
and CMS on simplified model spectra.

A simplified model’s topology is described only by its shape and final states, the masses of the particles involved,
and the cross section times branching ratio. Spins and colours of all involved particles, as well as all intermediate
states are ignored. In this way, the complete model’s signal is described in terms of simplified model elements,
whose cross sections times branching ratios can be directly compared to simplified model limits from experiments.
Finally, SModelS records the elements not covered by analyses as “missing topologies” cross sections, σmiss.

The next part of the scan’s collider module runs SModelS and uses its main outputs σmiss and the r-value for each
search in the SModelS database, defined as follows

r ≡ Model prediction
Upper limit

. (7.13)

SModelS has two ways of calculating this ratio: In the one case, it compares the simplified model prediction directly to
the 95% confidence level limits on cross sections times branching ratio as provided by experimental collaborations.
This is referred to by SModelS as upper limit, short UL, type results.

The other way involves so-called efficiency map, short EM, type results, in which the total number of signal events,
i.e. cross section times branching ratio and efficiency including acceptance, is constrained inside a signal region. For
each model and each signal region, SModelS uses a grid of simulated acceptance times efficiency values, which must
have been provided by either an experimental collaboration or theory group, to calculate the actual number of signal
events predicted by the model.

This means that internally, SModelS needs only one dataset per UL-type result, but one for each signal region in
the case of EM-results. 5 When calculating an EM type result, SModelS sums up all the r-values from the whole map
within a signal region, and returns the most restrictive r-value from all signal regions. Furthermore, SModelS provides
a likelihood for the data given a signal strength, which is not possible for UL type results.

Returning now to the scan, an keeping in mind that UL-type results do not come with a likelihood, a decision gate
and effective likelihood is implemented at this point: A rectified parabola loglikelihood function, see a conceptual
sketch in fig. 7.7, represents the likelihood contribution consistently for all points considered by SModelS. This function
is flat and equal to zero up until r = 0.9, and from this point decreases in the form of a parabola defined such that−2logL(r = 1) is the 95% confidence level, equal to 3.84 for one degree of freedom.

The subsequent decision is based on the missing cross section σmiss and the r-value as

if r > 1 ⇒ Excluded (7.14)

elif
σmiss L < 3
r < 1 } ⇒ Allowed (7.15)

else
σmiss L ≥ 3
r < 1 } ⇒ needs further check (7.16)

using as integrated luminosity L = 39fb−1, corresponding to the value presently implemented in CheckMATE, and hence
the limit of the subsequent and final check.

5Another SModelS technicality is that UL-type results can be generalised as EM-type results by defining the efficiency as one for a given element
if the element appears in the UL constraint, and otherwise as zero. Although trivial, this allows the two types of results to be treated similarly [115].
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Figure 7.7: The rectified parabola function, constructed by defining a vertex at which the function changes from a
straight line to a parbola, and one point on the parabola. In the present case, the vertex is at r = 0.9 with (logL)max = 0,
and the point on the parabola at r = 1 such that −2logL(r = 1) = 3.84.

To summarise: If the predicted cross section for a model exceeds the upper limit, the point is definitely excluded. If
the r-value is inconclusive, but the missing cross section times the integrated luminosity results in fewer than three
expected events, the point is allowed in the sense that it is impossible to exclude from current experimental limits.
Lastly, if the r-value is inconclusive, but the number of expected events exceeds 3, the point requires further scrutiny.

This leads the discussion to the final part of the scan’s collider module. In cases where tools using simplified
models are insufficient, the last resort is to recast, meaning following as closely as possible the same procedure as the
experimental collaborations. The first step is then to generate the events predicted by the model, and next performing a
detector simulation on these. The objects returned by a detector simulation typically contain reconstructed photons,
electrons, muons, jets and tracks, and the missing transverse momentum vector. These are then subjected to the same
cuts as used in the experimental analysis for the corresponding search, and the limits on the observed number of events
are applied in the relevant signal regions [118].

CheckMATE

The recasting tool used in the present project as well as in [1], is CheckMATE [118], and a significant update to the
program was released in the time between these two projects. The main improvements from CheckMATE versions
1 to 2 are the implementation of many more experimental results, together with the integrated event generation by
either Pythia [12] or MadGraph [13]. The latter means that the user can directly input a spectrum file to the program,
and does not have to first generate large event files separately, store them and feed them to CheckMATE in a separate
process. This greatly simplifies the workflow and potentially vastly decreases the need for storage space.

The workflow in this last part of the collider module is to provide the spectrum file to CheckMATE, which
uses MadGraph to calculate matrix elements from the relevant Feynman diagrams, Pythia for hadronization, and
lastly Delphes [119] for detector simulation, the latter being a time-consuming computational process. Thereafter, the
detector level objects are passed to an internal method called an AnalysisHandler, whose responsibility is to impose
quality requirements on each detector object and provide the necessary information to each analysis comparison.

Finally, CheckMATE collects the expected number of signal events from the event generation, and compares these to
each experimental search result. The uncertainty on the expected number of signal events consists of the statistical
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uncertainty from the event generation itself, and the systematic uncertainty on the estimated signal cross section. The
former means that a larger number of simulated events yields smaller statistical uncertainty in the result, which in turn
implies larger time consumption.

The main output of CheckMATE is whether a model is excluded or allowed, according to the highest sensitivity
signal region of the analyses considered. Along with this output, CheckMATE also provides an r-value, defined in the
same way as above. For consistency within the scan setup, this r-value is used in the same effective likelihood function
as for SModelS.

The combined likelihood a point receives from the total relic density, BBN constraints and collider limits, represents
how likely it is that it represents a model which may be realised in nature. The preliminary result, and what will
hopefully form the grounds of the conclusion in An open window for high reheating temperatures in gravitino dark
matter scenarios [4], is that the Higgs funnel region can indeed provide low enough neutralino yields to evade BBN
bounds, in supersymmetric models not excluded by collider searches.
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Conclusion

Throughout the past four years, during which I have been so fortunate to receive funding for literally trying answer
questions, I have spent much time on supersymmetry and its phenomenology. Supersymmetry suffers from a complete
lack of experimental support, along with all other candidate models for beyond Standard Model physics. The argument
against supersymmetry and her siblings often goes as “We have been unable to verify supersymmetric models for the
past decades, and tweaking model parameters only renders the model less natural”.

A scientific motivation for naturalness would, from a frequentist point of view, require many universes whose
physical constants we could observe, and the subsequent observation that some parameters are more common. This
would give us a statistical motivation to expect those parameters in our own universe. Unfortunately, we do not have
many universes from which to draw; this one seems to be all we have. Fortunately, frequentism is not all we have.
From a Bayesian point of view, independent model evaluation does not make sense, while model comparison does.
And compared to the Standard Model, there are quite a few supersymmetric models which look at least as, if not
more, promising. My aim is neither to blandish nor disparage supersymmetric models or other beyond Standard Model
theories, but rather to emphasize that in the present situation, the importance lies in developing powerful statistical
methods for evaluating models and making sense of all the data particle physicists are fortunate enough to have access
to.

In the first publication in this thesis, Trilinear-augmented gaugino mediation [1], we consider phenomenological
constraints on the gaugino mediation model of supersymmetry breaking. We verify that the model allows for soft
trilinear scalar interaction terms, which were previously assumed to vanish in this model. It turns out that these trilinear
terms are crucial for achieving a Higgs mass of 125GeV. The parameter space of this model with non-vanishing
trilinear terms and non-universal Higgs masses is explored, and the identity of the NLSP throughout the parameter
space is mapped. It turns out that the part of the parameter space with a neutralino NLSP is still unchallenged in terms
of LHC sensitivity in missing energy searches.

The neutralino NLSP stays along for the ride into a later project: Chapter 7 describes how we investigate a scenario
with gravitino dark matter, a neutralino NLSP and the possibility for achieving a high reheating temperature. This
model is constrained by dark matter relic density observations, BBN bounds and collider searches, from which a
likelihood is formed. This likelihood guides a parameter scan investigating the model’s parameter space, and the
computational challenges are significant. The project is still ongoing, under the working title An open window for high
reheating temperatures in gravitino dark matter scenarios and the preliminary conclusion is that there is a possibility
for achieving a sufficiently low neutralino yield in the region where the neutralino annihilates resonantly via a heavy
Higgs, to accommodate cosmological constraints.

The topic of dark matter is also studied from a more model-independent viewpoint in chapter 6, in the form of
gamma-ray signatures from dark matter annihilation into heavy mesons. Primarily excited meson states states which
decay into their ground state by radiating off a monochromatic photon, can give rise to a signature which stands out
from the astrophysical background. This project provided a contribution to Smoking gun dark matter signatures in the
MeV range in the publication Science with e-ASTROGAM: A space mission for MeV-GeV gamma-ray astrophysics [3],
and forms the basis for an ongoing project with working title Gamma rays from the annihilation of dark matter into
heavy mesons.

During my work in particle physics, I have come across, and done my very best to learn, a method for statistical
analysis which has impressed me in its power and efficiency. Machine learning algorithms can reduce the complexity of
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and find new features in large datasets, which, when used correctly, can contribute significantly to solving problems in
particle physics.

The field of machine learning has received an increased level of interest, to put it mildly, and advanced significantly
over the past years. This is of course due to several factors, but one stands out: The improvement in computer hardware,
which has opened up possibilities for fast calculations that were simply not there when the first machine learning
algorithms were developed.

In the publication Signal mixture estimation for degenerate heavy Higgses using a deep neural network [2], we
demonstrate that deep neural networks can discriminate between severely overlapping signal signatures. The result in
this context is to greatly reduce the uncertainty in signal mixture parameter estimation in a two-Higgs doublet model
with mass-degenerate neutral Higgses.

Machine learning is also a central tool in the ongoing project described in section 5.3, in which the possibility
for using a machine learning algorithm to detect signals from a supersymmetric scenario with a sneutrino NLSP is
investigated, and the main challenge is related to the very small mixture parameters expected. The working title for this
project is Enabling sneutrino detection in weak signal scenarios using machine learning methods, and we look forward
to finishing it in the near future.
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1 Introduction

Gaugino mediation [1, 2] is a mechanism for mediating supersymmetry breaking in a setup

with extra spacetime dimensions, which avoids flavor problems by suppressing the soft

sfermion masses at a high-energy scale. The original version of the model also yields sup-

pressed trilinear scalar couplings, which is unfortunate since the measured Higgs mass [3]

then requires a unified gaugino mass of m1/2 � 3TeV and thus very heavy sparticles [4].

However, a simple extension of the scenario does allow for non-vanishing trilinears and

thus a lighter sparticle spectrum [5]. The couplings arise proportional to Yukawa couplings

and thus do not lead to problematic flavor violation. We will investigate this possibility in

detail in section 2, demonstrating explicitly how the trilinear couplings can be obtained.

In section 3, we study the parameter space of the extended setup. We show that the

non-zero trilinears make it possible to reach the observed Higgs mass with sparticle masses

that are accessible at the LHC. In gaugino mediation the gravitino can be the lightest

supersymmetric particle (LSP) [6], making it a viable dark matter candidate [7].1 We

assume this scenario, in which case the next-to-lightest sparticle (NLSP) can be a stau, a

tau sneutrino or a neutralino [8]. We determine the corresponding parts of the parameter

space and constrain them by a careful analysis of LHC searches using data of the complete

Run 1, in particular searches for long-lived heavy charged particles, extending the analysis

in [5].

1Alternatively, another superweakly interacting particle such as the axino could be the LSP.
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2 Gaugino-mediated supersymmetry breaking

2.1 General setup

The present work considers one out of a class of higher-dimensional models. There are in

general D spacetime dimensions, D− 4 of which are compact with volume VD−4. This size

determines the energy scale Mc ≡ (1/VD−4)
1

D−4 needed to resolve the compact dimensions,

referred to as the compactification scale. Fields can either live in the whole D-dimensional

space referred to as the bulk or be localized on 3 + 1-dimensional branes that are located

at different positions in the extra dimensions. The D-dimensional Lagrangian is [9]

LD = Lbulk

(
Φ̂(x, y)

)
+

∑
j

δ(D−4)(y − yj)Lj

(
Φ̂(x, yj), φj(x)

)
, (2.1)

where j runs over the branes, x are coordinates on the branes, y are coordinates in the

bulk, Φ̂ is a bulk field2 and φj is a field localized on the jth brane. Hats denote bulk fields

with canonically normalized kinetic terms in D dimensions.

We consider a model with two branes: the MSSM brane, where the visible matter fields

are localized, and the hidden brane with a chiral superfield S, which is a singlet under the

Standard Model (SM) gauge groups. Supersymmetry (SUSY) is broken by the vacuum

expectation value (VEV) 〈FS〉 of the auxiliary field of S. The gauge and Higgs superfields

propagate in the bulk. Therefore, they can couple directly to the SUSY-breaking field and

obtain soft masses proportional to 〈FS〉. In contrast, sfermion soft masses are strongly

suppressed due to the separation between the MSSM and hidden brane, which avoids

unacceptably large flavor-changing neutral currents [1, 2].

2.2 Trilinear couplings

The supersymmetric part of the MSSM Lagrangian contains both bulk fields and fields

constrained to the visible brane,

LMSSM = Lbulk + δ(D−4)(y − y1)L1

=

[
W (Φ̂, φ1) +

1

4
ŴαŴα

]
F

+ h.c. +
[
K

(
Φ̂, Φ̂†, φ1, φ

†
1, e

V
)]

D
, (2.2)

where W is the visible-sector superpotential, Ŵ the field strength superfield and K the

Kähler potential. Using the notation of equation (2.1), we have j = 1 for the visible brane

and will accordingly use j = 2 for the hidden brane. On this brane, the gauge and Higgs

superfields interact with the hidden-sector field S,

L2 =
1

MD−3

[
h

4
SŴαŴα

]
F

+ h.c.

+
1

MD−3

[
S
(
aĤ†

uĤ
†
d + buĤ

†
uĤu + bdĤ

†
dĤd

)
+ h.c.

]
D

+
1

MD−2

[
S†S

(
cuĤ

†
uĤu + cdĤ

†
dĤd + (dĤuĤd + h.c.)

)]
D
+ . . . ,

(2.3)

2Strictly speaking, we use superfields of 4D N = 1 supersymmetry. The higher-dimensional supersym-

metry requires additional fields, which we do not write explicitly, since they are not relevant here.
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where h, a, bu,d, cu,d and d are dimensionless couplings. The dots refer to terms containing

only hidden-sector fields. Setting bu,d = 0 reduces the present case to the one considered

in [2]. Setting also a = cu,d = d = 0, i.e., not placing the Higgs fields in the bulk, reduces our

case to the one in [1]. Note that the localizations of S and the sfermions forbid terms like

SūĤuQ and SQ†Q, which would directly yield trilinear couplings and sfermion soft masses.

Interactions between the bulk fields and the hidden-sector field are non-renormalizable,

so LD describes an effective theory valid up to some fundamental scale M . To obtain the

4-dimensional effective theory valid below the compactification scale, we integrate over the

extra dimensions and keep only the zero modes of the bulk fields, which are constant in the

extra dimensions. The integration yields a volume factor VD−4 in the kinetic terms of the

bulk fields, so we define fields with canonical kinetic terms in 4D by Φ ≡ √
VD−4Φ̂. Thus,

the part of the effective 4D Lagrangian describing the interactions of S with the visible

sector is

LD=4 ⊃ 1

VD−4

{
1

MD−3

[
h

4
SWαWα

]
F

+ h.c.

+
1

MD−3

[
S
(
aH†

uH
†
d + buH

†
uHu + bdH

†
dHd

)
+ h.c.

]
D

+
1

MD−2

[
S†S

(
cuH

†
uHu + cdH

†
dHd + (dHuHd + h.c.)

)]
D

}
.

(2.4)

The first term generates gaugino masses [1, 2]. We assume a unified gauge theory above

the compactification scale, so that there is a unified gaugino mass m1/2. The remaining

terms produce the Bμ-term, soft Higgs masses m2
Hu

and m2
Hd

, and a contribution to the

μ-term [2].

The terms proportional to bu and bd, which were not included in the original versions

of gaugino mediation [1, 2], contribute to the soft Higgs masses and Bμ as well. Most im-

portantly, however, they yield trilinear scalar couplings [5]. This can be seen by absorbing

them via the field redefinitions H ′
u,d ≡ Hu,d

(
1 + bu,d

S
M

)
, from the general expressions for

soft SUSY-breaking terms in the supergravity formalism, see e.g. [10, 11], or by integrating

out the Higgs auxiliary fields. We find it instructive to show the latter calculation for our

particular case.

First, the part of the Lagrangian (2.2) that contains the Higgs supermultiplets’ auxil-

iary fields FHu,d
is

LMSSM ⊃ F †
Hu

FHu + F †
Hd

FHd
+ (φūyuFHuφQ − φd̄ydFHd

φQ − φēyeFHd
φL

+μFHuφHd
+ μφHuFHd

+ h.c.) ,
(2.5)

where φX denotes the scalar component of the superfield X. Adding the D-terms from

equation (2.4) and employing the equations of motion ∂L/∂F †
Hu,d

= 0 yields

FHu,d
= − 1

VD−4MD−3

(
bu,dFSφHu,d

+ bu,dφSFHu,d
+ b∗u,dφ

∗
SFHu,d

)
+ . . . , (2.6)

where we have omitted terms that do not contribute to SUSY-breaking trilinears.3 The

3Note that the term proportional to a contributes to the supersymmetric (scalar)3 couplings. If the

scalar component of S develops a VEV, the terms proportional to cu,d also contribute to the trilinears, but

this contribution can be absorbed by a redefinition of bu,d.
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solutions are thus

FHu,d
= −

bu,dFSφHu,d

VD−4MD−3

1 + bu,d
φS

VD−4MD−3 + b∗u,d
φ∗
S

VD−4MD−3

+ · · · = −bu,d

(
Mc

M

)D−4 FS

M
φHu,d

+ . . . ,

(2.7)

omitting irrelevant higher-order terms in φS and replacing the extra dimensions’ volume

by the compactification scale in the last step. Substituting FHu and FHd
into the La-

grangian (2.5) and replacing FS by its VEV finally gives rise to the desired trilinear terms,

Ltrilinear =

(
Mc

M

)D−4 〈FS〉
M

(−buφūyuφHuφQ + bdφd̄ydφHd
φQ + bdφēyeφHd

φL + h.c.) .

(2.8)

Consequently, we obtain trilinear scalar couplings proportional to the SUSY-breaking VEV

and the Yukawa matrices,

au = Au0 yu , ad = Ad0 yd , ae = Ad0 ye (2.9)

with

Au0 =

(
Mc

M

)D−4 〈FS〉
M

bu , Ad0 =

(
Mc

M

)D−4 〈FS〉
M

bd . (2.10)

Due to the proportionality of trilinear matrices and Yukawa matrices in the rela-

tions (2.9), these matrices are simultaneously diagonalized when changing to the super-

CKM basis. Although the running to low energies leads to deviations from the exact

proportionality, they are small enough to suppress flavor-changing neutral currents below

the experimental upper limits.

Interestingly, the proportionality factors Au0 for the up-type squarks and Ad0 for the

down-type squarks and charged sleptons are different in general, in contrast to other sim-

ple setups for SUSY breaking like the Constrained MSSM or non-universal Higgs mass

(NUHM) scenarios [12]. In the following we will restrict ourselves to the simplest possibil-

ity Au0 = Ad0 ≡ A0.

2.3 Constraints from näıve dimensional analysis

We will now estimate an upper limit on the trilinears, arguing that the couplings between

the hidden-sector brane field S and the bulk fields can be constrained by näıve dimensional

analysis (NDA) [9]. This discussion generalizes results of [8], where the specific case of a

6-dimensional model was considered, to an arbitrary number of dimensions.

We write the Lagrangian (2.4) in terms of dimensionless fields H̆u,d and S̆ defined by

Hu,d =

(
MD−2VD−4

lD/C

)1/2

H̆u,d , S =

(
M2

l4/C

)1/2

S̆ , (2.11)

where lD = 2DπD/2Γ(D2 ) is the factor suppressing one-loop diagrams in D dimensions, and

C is a group theory factor depending on the unified theory valid above Mc. The volume
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factor VD−4 ensures canonical kinetic terms in 4D for the zero modes of the bulk fields. In

this way, we obtain for the part of the Lagrangian coupling S to the Higgs fields

LD=4 ⊃ M2

l4/C

{√
Cl4
lD

[
S̆
(
aH̆†

uH̆
†
d + buH̆

†
uH̆u + bdH̆

†
dH̆d

)
+ h.c.

]
D

+
C

lD

[
S̆†S̆

(
cuH̆

†
uH̆u + cdH̆

†
dH̆d + (dH̆uH̆d + h.c.)

)]
D

}
.

(2.12)

According to NDA, the theory is weakly coupled below the cutoff scale M , if all cou-

plings inside the curly brackets in equation (2.12) are smaller than one. This implies the

constraints
√
Cl4
lD

{|a|, |bu|, |bd|} < 1 ,

C

lD
{|cu|, |cd|, |d|} < 1 .

(2.13)

Combined with equation (2.10), they translate into the upper bound

|A0| < 〈FS〉
M

(
Mc

M

)D−4 lD√
Cl4

(2.14)

on the trilinears. For comparison, the NDA constraint on the gaugino mass is [6]

m1/2 <
〈FS〉
M

1

2

(
Mc

M

)D−4 lD√
Cl4

. (2.15)

Consequently, the ratio of the upper bounds is simply

|A0|max

mmax
1/2

= 2 . (2.16)

If the limit onm1/2 is saturated, it is thus possible for the trilinear couplings to be somewhat

larger than the gaugino mass, but not by orders of magnitude.

3 Phenomenology of the model

Let us now explore the parameter space of gaugino mediation extended by trilinear cou-

plings. As explained in section 2, the model contains the five free parameters m1/2, m
2
Hu

,

m2
Hd

, A0, and Bμ. The soft squark and slepton masses are negligibly small. This is a real-

ization of the NUHM2 scenario [13] with the restriction m0 = 0. These input parameters

are boundary conditions at the compactification scale, which we identify with the scale of

gauge coupling unification, Mc � 1016GeV. As usual, we trade Bμ for tanβ and use the

measured Z mass to determine the absolute value of μ. We choose μ to be positive and

restrict ourselves to negative values for A0; changing the sign of both parameters would

lead to a similar phenomenology.

One of the most important model restrictions is the Higgs mass required to match

the value measured at the LHC, see section 3.1 for details. The allowed parameter space

accommodates various choices of the lightest sparticle of the MSSM, discussed in section 3.2.
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It comprises the lightest neutralino, the tau sneutrino and the lighter stau. As the latter two

are not phenomenologically viable dark matter candidates we assume here that the LSP is

a non-MSSM sparticle with very weak interactions.4 In the framework of supergravity, this

could be the gravitino. In this case the lightest sparticle of the MSSM is the NLSP. Gaugino

mediation allows for gravitino masses m3/2 � 10GeV [6], in which case the NLSP becomes

stable on collider time-scales and the collider signature of the considered model vitally

depends on the choice of NLSP. While a neutralino or sneutrino NLSP provides a signature

containing missing transverse momentum, detector-stable staus provide a distinct signature

of heavy stable charged particles (HSCPs), for which the LHC sensitivity is very high. LHC

constraints for the respective signatures are discussed in section 3.3. Bounds from color

or charge breaking minima of the scalar potential are briefly discussed in section 3.4. In

section 3.5 we comment on the cosmological constraints on the model.

3.1 Higgs mass

One of the most important constraints on the parameter space is the experimentally ob-

served Higgs mass of 125.09± 0.24GeV [3]. The theoretical uncertainty of the Higgs mass

prediction in the MSSM is on the order of ∼ 2GeV [15, 16]. As the theoretical error is large

compared to the experimental one, we do not consider the latter. Furthermore, we assume

that the lightest CP-even Higgs of the MSSM plays the role of the observed Higgs. Hence,

we consider points with a theoretically predicted mass of the lightest CP-even Higgs in the

rage 123GeV � mh � 127GeV to be consistent with observations.

In order to compute the Higgs mass we proceed as follows. First we use

SPheno 3.3.8 [17, 18] for the calculation of the sparticle masses and low-energy La-

grangian parameters. The output from SPheno is then used as input to Feyn-

Higgs 2.12.2 [15, 16, 19–23], which we use to more accurately calculate the lightest

Higgs pole mass. Both programs incorporate two-loop diagrams in the calculation of

mh. However, FeynHiggs 2.12.2 includes a more complete treatment of the calcula-

tion, including momentum dependent two-loop QCD contributions [16], leading three-loop

contributions [15] and additionally, by combining an effective field theory approach with

the fixed-order calculation, it incorporates up to NNLL contributions resummed to all or-

ders [23]. This treatment can significantly reduce the theoretical uncertainties with respect

to the pure fixed-order calculation, in particular for large Msusy ≡ √
mt̃1

mt̃2
[23, 24].

The result for the Higgs mass5 is shown in figure 1, where the left panel shows the

contour for which mh = 125.09GeV in the A0-m1/2 plane. The darker and lighter shaded

4For the case that a neutralino is the lightest sparticle of the MSSM it could itself be the LSP and hence

identified with the dark matter particle. In this case constraints from direct and indirect detection as well

as from the thermal relic density could be applied in order to narrow down the viable part of the parameter

space. See e.g. [14] for a global fit within the (general) NUHM2 scenario taking into account dark matter

observables for a neutralino LSP.
5We used the most recent results available in [25] for the Standard Model input parameters relevant for

the scans. The values used in both SPheno and FeynHiggs are

GF = 1.166379 · 10−5 GeV

mZ = 91.18760GeV

αs(Mz) = 1.181 · 10−1 (SMMS)

mb(mb) = 4.18GeV (SMMS)

mτ = 1.77686GeV

mt = 1.732 · 102 GeV (pole mass).
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Figure 1. Left panel: contours of the Higgs mass computed by SPheno (red curve) and

FeynHiggs (blue curve) in the A0-m1/2 plane. The solid lines denote the contour where

mh = 125.09GeV whereas the corresponding darker and lighter shaded areas around them de-

note a deviation of ±1 and ±2GeV, respectively. Right panel: dependence of the Higgs mass,

mh, computed by FeynHiggs, on tanβ for m1/2 = 3TeV and three choices of the trilinear

coupling A0 = −1.5TeV (red curves), A0 = −3TeV (green curves), A0 = −6TeV (red curves)

as well as for three choices of the Higgs soft mass parameters m2
Hu

= m2
Hd

= 0 (solid curves),

m2
Hu

= 0, m2
Hd

= (5TeV)2 (long-dashed curves), m2
Hu

= (5TeV)2, m2
Hd

= 0 (short-dashed curves).

regions around it denote the ±1 and ±2GeV bands respectively. As mentioned above, we

use the Higgs mass as computed by FeynHiggs, represented by the blue curve and bands

on the plot. The right panel shows the Higgs mass dependence on tan β, m2
Hu

and m2
Hd

for a fixed value of m1/2 and three choices of A0.

For tan β = 10 and vanishing A0, very large values of m1/2 on the order of 6TeV

are needed to achieve a suitable Higgs mass of 125GeV. With growing negative A0, the

required m1/2 drops to a minimum around m1/2 � 2TeV, beyond which the Higgs mass

rises again. This minimum corresponds to the maximal mixing scenario, where |Xt| =
|At − μ cotβ| ∼ √

6Msusy, see [26] for a detailed discussion. This result shows that only

with a non-zero trilinear coupling A0, a Higgs mass of around 125GeV can be obtained

with m1/2 such as to obtain a sufficiently light spectrum to be observable in upcoming

collider experiments. See further discussion in section 3.3.

The±1 and±2GeV bands span a large range, reflecting the relatively large uncertainty

in the required value of m1/2 between 3 and 8TeV. However, this uncertainty band shrinks

significantly for large negative A0.

The dependence on tan β is shown in the right panel of figure 1. Both very small

and very large values of tan β cause the Higgs mass to drop drastically, making it hard

to achieve the correct Higgs mass even for very large m1/2. Note that for large tan β and

large negative A0, the spectrum acquires tachyonic states. Therefore, not all curves extend

to tanβ = 50.
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The influence of the Higgs soft masses m2
Hu

and m2
Hd

on the Higgs mass is small

throughout the explored parameter space. The most significant effect arises for large tan β,

cf. the solid and dashed curves in the right panel of figure 1.

The Higgs mass contour as computed by SPheno, presented by the red curve and

shaded bands in the left panel of figure 1, is included for comparison.6 The required Higgs

mass is reached with considerably smaller m1/2 for a given A0, as the SPheno result for

mh is typically around 3GeV larger than the one from FeynHiggs. In particular for large

Msusy, NNLL resummation can yield important corrections that significantly contribute to

the difference between the results obtained by the two codes, see e.g. [16, 23, 24] for details.

3.2 Particle spectrum

The phenomenology of the model regarding collider searches, astrophysics and cosmology

strongly depends on the nature of the NLSP. As mentioned above, we compute the sparticle

spectrum with SPheno. In the considered parameter space, we encounter three possible

candidates for the NLSP: the neutralino, the sneutrino, or the lighter stau, which can be

predominantly left- or right handed. Figure 2 shows several projections of the parameter

space in the planem2
Hd

/m2
1/2-A0/m1/2. We have rescaledmHd

and A0 bym1/2 as the nature

of the NLSP is almost independent of the overall mass scale that is governed mostly by m1/2.

In other words, for fixed ratios A0/m1/2, m
2
Hd

/m2
1/2 and m2

Hu
/m2

1/2, the sparticle spectrum

is mainly shifted with m1/2 and the shown projections remain approximately unchanged.

The results summarized in figure 2 demonstrate the relationship between the Higgs

soft masses and the NLSP. As the ratio r ≡ (m2
Hu

−m2
Hd

)/m2
1/2 becomes more negative,

the NLSP can shift from the stau, to the neutralino and finally to the sneutrino, depending

on the value of tan β and A0. If tan β is relatively large and A0 is large and negative, only

a stau NLSP is possible. Interestingly, the stau NLSP is also observed to shift through

regions of right-chirality, large mixing and left-chirality with decreasing r (cf. the gray solid

curve in the plots of figure 3, showing the stau mixing angle). In addition, figure 2 depicts

the NLSP sensitivity to the value of tan β, showing that the stau NLSP region grows with

tanβ. In fact, for tan β � 30, the entire region contains only a stau NLSP. We also find

that some of the regions of interest contain unphysical tachyonic spectra, meaning negative

soft-masses squared. This occurs when A0 has a large negative value compared to m1/2,

and becomes more frequent with increasing tan β.

We would like to explain some of this behavior in a rough analytical manner, beginning

with the chirality switch of the stau. This can be understood from analyzing the one-loop

RGE’s for the third generation leptonic soft masses [11]

16π2 d

dt
m2

L3
= χτ − 6g22|M2|2 − 6

5
g21|M1|2 − 3

5
g21Σ (3.1a)

16π2 d

dt
m2

ē3 = 2χτ − 24

5
g21|M1|2 + 6

5
g21Σ, (3.1b)

6For definiteness we also show ±2GeV bands for the SPheno predicition. However, the actual uncer-

tainty might be larger [24].

– 8 –



J
H
E
P
0
5
(
2
0
1
7
)
0
0
3

0 2 4 6 8 10

�4

�3

�2

�1

0

m2
Hd

/m2
1/2

A
0
/
m

1
/
2 χ0

τ̃(R)

τ̃(L)

ν̃

tan β = 10 , m2
Hu

= 0

Tachyonic spectrum

0 2 4 6 8 10

�4

�3

�2

�1

0

m2
Hd

/m2
1/2

A
0
/
m

1
/
2

χ0

τ̃(R)
ν̃

tan β = 10 , m2
Hu

= (5TeV)2

Tachyonic spectrum

0 2 4 6 8 10

�4

�3

�2

�1

0

m2
Hd

/m2
1/2

A
0
/
m

1
/
2

χ0

τ̃(R) τ̃(L)

ν̃

tan β = 20 , m2
Hu

= 0

Tachyonic spectrum

0 2 4 6 8 10

�4

�3

�2

�1

0

m2
Hd

/m2
1/2

A
0
/
m

1
/
2

χ0

τ̃(R)

τ̃(L)

ν̃

tan β = 20 , m2
Hu

= (5TeV)2

Tachyonic spectrum

Figure 2. Regions characterized by a stau (red), neutralino (blue) and sneutrino (green) NLSP in

the m2
Hd

/m2
1/2-A0/m1/2 plane for four choices of tan β and m2

Hu
. All panels have m1/2 = 2TeV. In

the white region below, we run into a tachyonic region, i.e., negative soft masses squared. The red

dashed curve indicates the transition from a predominantly right- to left-handed stau NLSP, i.e.,

the contour sin2 θτ = 1/2. The black dotted lines in the lower plots denote the slices in parameter

space that are considered in figure 3.

where

χτ ≡ 2|yτ |2(m2
Hd

+m2
L3

+m2
ē3) + 2|aτ |2

Σ ≡ m2
Hu

−m2
Hd

+Tr[m2
Q −m2

L − 2m2
ū +m2

d̄ +m2
ē].

(3.2)

For m2
Hd

	 m1/2, we can neglect the gaugino masses in the above formula, and the running

will depend mostly on the Σ parameter. From equation (3.2), one sees that for very large

m2
Hd

, this value is negative, and will therefore lower the value of the left-chiral soft mass

term but increase the size of the right-chiral term. Therefore, the NSLP will become more

left-chiral with increasing m2
Hd

. For larger values of m2
Hu

, the absolute value of the Σ term

is smaller, and the progression from right- to left-chirality happens at larger values of m2
Hd

.
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Figure 3. Sparticle masses mτ̃1 (red long-dashed curve), mτ̃2 (orange short-dashed curve), mν̃τ

(green dot-dashed curve) and mχ0
1
(blue dotted curve) as a function of m2

Hd
/m2

1/2 for two choices

of tanβ and m2
Hu

. The stau mixing angle is indicated through the gray solid line showing sin2 θτ ,

labelled on the right axis.

Regions where the sneutrino becomes the LSP are also determined by equations (3.1).

Again, these regions occur in the limit m2
Hd

	 m1/2, so we can make the same approxi-

mation and assume that the stau is mostly left-chiral. When the stau is mostly left-chiral,

it is a delicate matter which of the two particles becomes the NLSP. The sneutrino mass

is completely determined by equation (3.1a), as there are no right-chiral neutrinos in the

MSSM, whereas there is mixing in the stau sector. The off-diagonal elements in the stau

mixing matrix, which are A0 and tan β dependent, push the eigenvalue down. However, the

diagonal elements, which are predominantly dependent on the soft masses m2
L3

and m2
ē3 ,

but also depend on the “hyperfine splitting” arising from EWSB, increase the eigenvalues.

In figure 3 we show the masses of the staus, the tau sneutrino and the neutralino for the

two slices denoted by the black dotted lines in the lower panels of figure 2. It reveals the

small mass difference between τ̃1 and ν̃τ for large m2
Hd

/m2
1/2.

The tanβ and A0 dependence can be understood by first noting that the neutralino

mass is pushed up with tan β, and larger values of A0 push the third generation leptonic

soft masses down by increasing χτ . This explains the shrinking neutralino region seen in

the lower panels of figure 2. Large values of A0 also increase mixing in the stau sector,

pushing down the smallest eigenvalue of the stau mass matrix, implying the sneutrino LSP

region should also shrink with larger tan β.

3.3 Tests at colliders

Heavy stable charged particles. The lighter stau is the NLSP for a large part of the

considered parameter space in our model. In order to determine the 95% CL exclusion

limits from collider searches for HSCPs, we first compute the total cross section for the

production of sparticles with Pythia 6 [27]. For points with σtot
8TEV > 1/Lint

8TEV, i.e. for

an expected total signal of more than one event we perform a Monte Carlo simulation

of the signal at the 8TeV LHC with the MadGraph5 aMC@NLO event generator [28].

We generate 10 k events for each point in the model parameter space, taking into account
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all possible sparticle production channels. The decay, showering and hadronization is

performed with Pythia 6 [27]. We do not perform a detector simulation. Instead we

determine the signal efficiencies with the method introduced in ref. [29], which allows for

the direct analysis of the hadron-level events on the basis of the kinematic properties of

isolated HSCP candidates. In order to identify isolated HSCP candidates we first impose

the isolation criteria ⎛⎜⎝
charged particles

ΔR<0.3∑
i

pT
i

⎞⎟⎠ < 50GeV (3.3)

and ⎛⎜⎝
visible particles

ΔR<0.3∑
i

Ei

|p|

⎞⎟⎠ < 0.3 , (3.4)

where the sums include all charged and visible particles, respectively, in a cone of

ΔR =
√
Δη2 +Δφ2 < 0.3 around the direction of the HSCP candidate, pT

i denotes

their transverse momenta and Ei their energy. Muons are not considered as visible par-

ticles as their energy deposition in the calorimeter is small. |p| is the magnitude of the

three-momentum of the HSCP candidate. The HSCP candidate itself is not included in

either sum.

We compute the signal efficiency by averaging the probabilities for events to pass the

on- and off-line selection criteria [29],

ε =
1

N

N∑
i

P
(n)
on, i × P

(n)
off, i , (3.5)

where the sum runs over all N generated events i. For events containing one or two HSCP

candidates the probabilities are given by

P
(1)
on/off, i = Pon/off(k

1
i ) (3.6)

or

P
(2)
on/off, i = Pon/off(k

1
i ) + Pon/off(k

2
i )− Pon/off(k

1
i )Pon/off(k

2
i ) , (3.7)

respectively, where k1,2
i are the kinematical vectors of the HSCP candidates in the ith

event. k = (η, pT, β) contains the candidate’s pseudo-rapidity, η, transverse momentum,

pT, and velocity, β.

The CMS analysis [29] requires a minimum reconstructed mass, mrec, for the candidate.

The probabilities Pon/off(k) are provided for four distinct mass cuts

mrec > 0, 100, 200, 300GeV ,

which we here consider to be four different signal regions. Due to detector resolution effects,

the reconstructed mass is typically mrec � 0.6mHSCP [29]. Hence, we set the efficiencies to

zero if 0.6mHSCP is below the respective mass cut of the signal region.
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Figure 4. Contours of mh = 125.09GeV computed by FeynHiggs (blue solid curve) in the A0-

m1/2 plane, as well as constraints from searches for heavy stable charged particles (HSCP) at the

8TeV LHC (red shaded region below the red dot-dashed curve). Projections for the 13TeV LHC

at 300 fb−1 are indicated by the red dot-dot-dashed curve. The purple dashed line represents the

strongest of the CCB constraints from equations (3.9)–(3.10). The grey dotted curves show the

contours of the lighter stau mass mτ̃1 . For tan β = 50 and −A0 � 2.3TeV the HSCP limit (dot-

dashed curve) extents into the region of a tachyonic spectrum, in this region this limit is only an

extrapolation.

This prescription is also used in ref. [30], where it is validated by reproducing the

efficiencies and cross section upper limits for the gauge mediated supersymmetry breaking

model from the full CMS detector simulation [29] with a relative error below 5%.

The resulting limits are shown in figure 4, projected onto the A0-m1/2 plane for two

slices in parameter space, where m2
Hu

= m2
Hd

= 0, and tan β = 10 (left panel) and tan β =

50 (right panel). Both choices are characterized by a stau NLSP in the entire considered

parameter plane. The considered CMS search for HSCPs at the 8TeV LHC excludes the

region below the red dot-dashed line (red shaded region) at 95% CL. The exclusion reach

depends strongly on the overall sparticle mass spectrum, which is indicated by drawing

several contours for the mass of the stau NLSP. The exclusion limits turn out to cut at

around mτ̃1 � 400GeV with a mild dependence on the other parameters. This translates

into a limit on m1/2 between 1 and 2TeV for tan β = 10 in the considered region of A0,

but can be much larger for large tan β, as shown in the right panel. The existing limit

only touches the −2GeV band regarding the Higgs mass, and leaves most of the parameter

space that provides a Higgs mass in the range 123GeV � mh � 127GeV unchallenged.

The 13TeV LHC runs have pursued searches for heavy stable charged particles, and

(preliminary) results from an integrated luminosity of 2.5 fb−1 [31] (12.9 fb−1 [32]) have

been released. For the 13TeV searches, no on-/off-line probabilities (as in ref. [29]), have

been provided, such that these searches cannot be easily reinterpreted. We do, however, ex-

pect to obtain a meaningful estimate of the 13TeV sensitivity as described in the following.
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The signal efficiencies for the 8TeV LHC increase with increasing mτ̃1 for the tested points,

and are only mildly dependent on the other parameters within the considered model. In

particular, we found that the efficiency is always above 0.5 for mτ̃1 > 350GeV, and above

0.6 for mτ̃1 > 500GeV in our scan. Assuming a similar detector performance, the efficien-

cies at the 13TeV LHC for a certain stau mass will to first approximation be the same

as for the 8TeV efficiency, for a mass that is smaller by a factor of 8/13. Hence, for the

13TeV LHC we assume an efficiency of 0.5, which is expected to provide a mostly con-

servative estimate for stau masses above 600GeV. Furthermore, as for mrec > 200GeV

the signal region is typically background-free [29, 31] we require 3 signal events in the

signal region supporting a 95% CL exclusion limit. In this way we estimated the projected

sensitivity for 300 fb−1 at 13TeV, for which we computed the production cross sections

with Pythia 6 [27], see the red dot-dot-dashed curves in figure 4. The projected exclusion

reach cuts into a larger portion of the parameter space providing the correct Higgs mass.

In particular, the maximal mixing scenario for moderate values for tan β can be tested.

With 300 fb−1, stau masses up to around 1TeV could be tested.

Note that performing the same estimate for the analysis at 2.5 fb−1 (12.9 fb−1) provides

an estimated limit very close to (slightly above) the 8TeV limit, which we do not show in

figure 4 for the sake of better readability.

Missing energy signatures. As discussed in section 3.2, a high enough m2
Hd

relative

to m2
Hu

and m1/2 results in a neutralino or even sneutrino NLSP. If present in collision

events, neutral NLSPs lead to a missing transverse energy (MET) signature at the LHC.

In order to test the compatibility with current LHC results, we perform a Monte

Carlo simulation with the MadGraph5 aMC@NLO event generator [28] for the 8TeV

LHC. We generate 20k events. The decay, showering and hadronization is performed by

Pythia 6 [27]. The results are used as input to CheckMate 1 [33],7 allowing us to

simultaneously test the signal against various LHC searches for missing transverse energy.

We test our model against all ATLAS analyses implemented in CheckMate 1 [38–58].

These analyses search for final states containing a significant amount of missing transverse

energy, in addition to jets or leptons. The signal is compared to experimental limits in the

respective signal regions of the analysis at 95% CL. The most sensitive region from all the

analyses is used to conclude whether the model can be excluded or not. Among the points

that provide a Higgs mass mh > 123GeV, we tested the lighter part of the spectrum, i.e.,

m1/2 ≤ 3 TeV for various slices in parameter space regarding tan β, A0 and Higgs soft

masses. We found that even for the lightest spectra the signal falls below the exclusion

limits by at least an order of magnitude. Since the spectrum becomes heavier for larger

values of m1/2, we expect no sensitivity of searches for MET in the region mh > 123GeV.

The analysis which most frequently has the largest signal region is the search for direct

stop pair production in final states with two leptons [38].

7CheckMate is built upon a number of external tools. The detector simulation is based on

Delphes 3 [34], which incorporates FastJet [35, 36] using the Anti-kt jet algorithm [37].
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3.4 Charge and color breaking

In addition to the collider constraints, we investigate whether and in which regions of pa-

rameter space the current model is limited by charge- and color-breaking minima of the

scalar potential. The MSSM contains 26 scalars, most of which carry electric or color

charge. Hence, there is a danger of introducing charge- and color-breaking (CCB), depend-

ing on their VEVs where the scalar potential has its minimum. Due to the large number of

scalars in the theory, the scalar potential is very complex, limiting an analytical approach

to only considering certain rays in field space. It is common to investigate directions in

field space where the VEVs of the Higgses and τ̃L/R or t̃L/R have the same value, and to

neglect the D-term of the potential, which is a gauge interaction and positive for non-zero

values of the scalar fields, as well as loop corrections. Based on criteria for CCB as found

in [59–61], we use the same condition as [5] for the stop trilinear coupling, namely

A2
t < 3(m2

Hu
+ |μ|2 +m2

Q3
+m2

ū3
) . (3.8)

By analogy, we take the bound on the stau trilinear to be

A2
τ < 3(m2

Hd
+ |μ|2 +m2

L3
+m2

ē3) . (3.9)

For large tan β, one can derive an upper bound on the product μ tanβ requiring the stan-

dard electroweak vacuum to be stable or metastable with a lifetime larger than the age of

the universe [62–65]. We use [65],

|μ tanβeff| < 56.9
√
mL3mē3 + 57.1 (mL3 + 1.03mē3)− 1.28× 104GeV

+
1.67× 106GeV2

mL3 +mē3

− 6.41× 107GeV3

(
1

m2
L3

+
0.983

m2
ē3

)
, (3.10)

where tan βeff ≡ tanβ/(1 + Δτ ) with

Δτ � − 3g2

32π2
μ tanβM2 I(mν̃τ ,M2, μ) +

g′2

16π2
μ tanβM1 I(mτ̃1 ,mτ̃2 ,M1) , (3.11)

and

I(a, b, c) =
1

(a2 − b2)(b2 − c2)(a2 − c2)

(
a2b2 log

a2

b2
+ b2c2 log

b2

c2
+ c2a2 log

c2

a2

)
. (3.12)

These bounds are superimposed in figure 4, where we show the most constraining bound

from equations (3.9)–(3.10). For tan β = 10, the region below the purple dashed line

violates equation (3.9), while for tan β = 50 it violates equation (3.10). For large negative

A0, the CCB bound cuts into the part of the parameter space that provides the correct

Higgs mass.

Note that we impose these bounds as a first estimate, indicating the region where CCB

constraints might exclude points in the parameter space. It has been shown [66, 67] that

these bounds are useful, but not entirely reliable in determining vacuum stability when

more sophisticated analyses are performed. We leave a detailed numerical analysis of the

vacuum stability utilizing Vevacious [68] for future work.
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3.5 Cosmological constraints

Scenarios with long-lived NLSPs are subject to constraints from big bang nucleosynthesis

(BBN) because the presence and late decays of the NLSPs can change the primordial

abundances of light elements [69–71]. In our case, the NLSP decays comparatively early on

BBN timescales due to the relatively heavy sparticle spectrum. For example, for gaugino

mediation with a stau NLSP a lower bound of mτ̃ � 400GeV was found in [72], which

roughly coincides with the lower limit from HSCP searches. Therefore we do not perform

a detailed analysis here.

Another constraint we did not include is the non-thermal production of gravitino dark

matter by NLSP decays, which may not exceed the observed dark matter density. This

is interesting from a theoretical point of view because it leads to an upper bound on the

sparticle masses but less relevant for phenomenology, since the constraint becomes relevant

only for very large values of m1/2 [72], which are far beyond the reach of the LHC.

4 Conclusions

We have considered phenomenological constraints on the gaugino mediation model of su-

persymmetry breaking. First, we verified that the model allows for soft trilinear scalar

interaction terms. These terms were originally assumed to vanish in gaugino mediation

and play a crucial role in achieving a Higgs mass in agreement with the observed value of

125GeV. The trilinear matrices are proportional to the Yukawa coupling matrices, thus

avoiding flavor problems. The proportionality factor can be different for up- and down-

type sfermions.

Second, we explored the phenomenological consequences of non-vanishing trilinears.

The first constraint we discussed is the experimentally observed Higgs mass, calculating

the low-energy parameters and the sparticle spectrum with SPheno and the Higgs mass

with FeynHiggs. We determined the parameter space regions where the Higgs mass lies

within the LHC limits. Large negative trilinears are required to obtain an acceptable

Higgs mass if the SUSY scale is to be kept near the reach of the LHC. We also ob-

serve that FeynHiggs 2.12.2 — incorporating important NNLL contributions — predict

a Higgs mass around 3GeV lower compared to the SPheno calculation in the parameter

regions considered.

We also considered the phenomenological implications of the non-universal soft Higgs

masses. We found that these parameters mainly affect which sparticle becomes the NLSP

(we assume a gravitino LSP and that the lightest MSSM sparticle is the NLSP). Values

of the ratio r ≡ (m2
Hu

−m2
Hd

)/m2
1/2 near zero correspond to a stau NLSP. As r is pushed

to larger negative values, the NLSP can become the neutralino and eventually the tau

sneutrino. This behavior also depends on A0 and tanβ. For sufficiently large |A0| and
tanβ, the composition of the stau NLSP changes from mainly τ̃R to mainly τ̃L as r becomes

large and negative, passing through regions with large mixing.

Proceeding to investigate the LHC sensitivity of the scenario, we found that for a

neutral NLSP, the viable part of parameter space is not challenged by missing energy

searches. However, for a stau NLSP, the corresponding searches for heavy stable charged
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particles become sensitive and cut into the region where 123GeV � mh � 127GeV. The

projection for an integrated luminosity of 300 fb−1 reaches a large portion of this part of

parameter space, especially in the maximal-mixing scenario.

Finally, we indicate in which regions of parameter space the model might be limited by

charge- and color-breaking minima of the scalar potential by using (semi-)analytic estimates

for the CCB conditions. It turns out that only a small part of the allowed Higgs mass region

is in conflict with these CCB bounds.
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Abstract If a new signal is established in future LHC data,
a next question will be to determine the signal composi-
tion, in particular whether the signal is due to multiple near-
degenerate states. We investigate the performance of a deep
learning approach to signal mixture estimation for the chal-
lenging scenario of a ditau signal coming from a pair of
degenerate Higgs bosons of opposite C P charge. This con-
stitutes a parameter estimation problem for a mixture model
with highly overlapping features. We use an unbinned max-
imum likelihood fit to a neural network output, and com-
pare the results to mixture estimation via a fit to a single
kinematic variable. For our benchmark scenarios we find a
∼ 20% improvement in the estimate uncertainty.

1 Introduction

Machine learning techniques have already proven useful in
particle physics, especially for separating signal from back-
ground events in analyses of LHC data. More recently, deep
learning methods, such as multi-layer neural networks, have
been shown to perform very well, due to their ability to
learn complex non-linear correlations in high-dimensional
data [1–3]. In this paper we study the performance of a deep
neural network classifier, but rather than classifying signal
vs. background we focus on estimating the mixture of dif-
ferent signal classes in a dataset. This is motivated by the
not-unlikely scenario where a new (and possibly broad) res-
onance is discovered in future LHC data, but limited statistics
makes the interpretation difficult, in particular the question
of whether the signal is due to multiple degenerate states.

a e-mail: anders.kvellestad@fys.uio.no
b e-mail: steffen.maeland@uib.no
c e-mail: inga.strumke@uib.no

In such a scenario it will clearly be important to squeeze as
much information as possible from the available data.

While the approach studied here is general, we take a Two-
Higgs-Doublet Model (THDM) as our example scenario. In
these models the Higgs sector of the Standard Model (SM)
is extended with an additional SU (2) doublet, predicting the
existence of a pair of charged scalars (H±) and three neu-
tral scalars (h, H , A), one of which should be the observed
125 GeV Higgs. Several more extensive frameworks for
New Physics predict a Higgs sector with the structure of
a THDM, the prime example being the Minimal Supersym-
metric Standard Model (MSSM). A further motivation for
THDMs comes from the fact that the extended scalar sec-
tor can allow for additional sources of C P violation and a
strongly first-order electroweak phase transition, as required
for electroweak baryogenesis [4–7]. For a recent study of
this, see [8].

We associate the light scalar h with the observed 125 GeV
Higgs and take the heavier scalars H , A and H± to be mass
degenerate. The focus of our study is on the ditau LHC signal
from decays of the neutral states H and A, which in this
case are indistinguishable save for their opposite C P charges.
Searches for heavy neutral Higgses in ditau final states are
carried out by both the ATLAS and CMS collaborations, see
[9,10] for recent results.

The remainder of this paper is structured as follows. In
Sect. 2 we motivate why it is reasonable to expect a certain
level of mass-degeneracy among the new scalars in THDMs
and present our example THDM scenario. The technical
setup for our analysis is given in Sect. 3. Here we define our
signal models, describe the procedure for Monte Carlo event
generation and detail the neural network layout and training.
In Sect. 4 we demonstrate H /A signal mixture estimation
using the method of fitting a single kinematic variable. The
result serves as our baseline for judging the performance of
the deep learning approach. Our main results are presented in

0123456789().: V,-vol 123
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Sect. 5. Here we estimate the signal mixture via a maximum
likelihood fit to the output distribution from a network trained
to separate H and A ditau events. The results are compared
to those from Sect. 4. We state our conclusions in Sect. 6.

2 Theory and motivation

The starting point for our study is a THDM scenario where
m H ≈ m A. Our main motivation for this choice is to obtain a
challenging test case for signal mixture estimation. However,
there are also physical reasons to expect the H and A states
to have similar masses. After requiring that the scalar poten-
tial has a minimum in accordance with electroweak symme-
try breaking, we are left with a model with only two mass
scales, v ≈ 246 GeV and a free mass parameter μ, to control
the four masses mh , m H , m A and m H± . From the point of
view of the general THDM parameter space, the least fine-
tuned way to align the light state h with SM predictions, as
favoured by LHC Higgs data, is to move towards simulta-
neous decoupling of the three heavier states by increasing
μ, leaving v to set the scale for mh = 125 GeV [11]. This
points to a scenario where |m H −m A| � 100 GeV, and quite
possibly much smaller, depending on the quartic couplings
of the scalar potential.1

Further motivation for a small H–A mass difference can
be found in less general realisations of THDMs. For the type-
II THDM in the MSSM the quartic couplings are fixed by the
squares of the SM gauge couplings, resulting in the tree-level
prediction that m H − m A � 10 GeV for m A ∼ 400 GeV and
tan β ∼ 1, and decreasing further with increasing tan β or
m A [13]. Another well-motivated scenario predicting closely
degenerate H and A states is the SO(5)-based Maximally
Symmetric THDM [14].

When mass degenerate, the H and A appear identical
except for their C P charge. If the properties of the light h
deviates from SM predictions, this difference in C P charge
can manifest as non-zero Z Z and W W couplings for H ,
while for the C P-odd A the Zh coupling is available. How-
ever, these couplings all vanish in the perfect SM-alignment
limit we assume here. Yet the C P nature of H and A is still
expressed as spin correlations in fermionic decay modes,
impacting the kinematics of subsequent decays. Here we
study the channels H → ττ and A → ττ . Methods for
reconstructing spin correlations in ditau decays of the 125
GeV Higgs have been investigated in detail [15–18], pro-
viding a good baseline for comparison. The use of neural

1 A large H–A mass difference in this decoupling scenario relies on
O(1) quartic couplings. We note that when loop corrections are taken
into account, the viability of such scenarios can be significantly more
restricted than what tree-level results suggest [12].

networks to optimize C P measurements for the 125 GeV
state is studied in [19,20].

2.1 Benchmark scenario

Two-Higgs-Doublet Models are classified in different types
based on the structure of the Yukawa sector. We choose
a benchmark scenario within the C P-conserving lepton-
specific THDM, with m H = m A = m H± = 450 GeV. In
this model, the quarks couple to one of the Higgs doublets
and the leptons to the other. This enables large branching
ratios for H/A → ττ , even for masses above the 350 GeV
threshold for H/A → t t̄ .

By varying the remaining THDM parameters we can
obtain a wide range of ditau signal strengths for the H and A
states at 450 GeV. In Appendix A we illustrate how σ(pp →
A) × B(A → ττ) and σ(pp → H) × B(H → ττ) vary
across the high-mass region of the lepton-specific THDM
parameter space. For m H = m A ≈ 450 GeV, we find that the
ditau signal strengths can reach up to σ(pp → H)×B(H →
ττ) ≈ 34 fb and σ(pp → A) × B(A → ττ) ≈ 54 fb in
13 TeV proton–proton collisions. This includes production
via gluon–gluon fusion and bottom-quark annihilation, with
cross sections evaluated at NLO using SusHi 1.6.1 [21–27]
and branching ratios obtained from 2HDMC 1.7.0 [28].

For comparison, in Appendix A we also show the result of
a similar scan of the type-I THDM. In this model all fermions
couple to only one of the two Higgs doublets. Compared to
the lepton-specific THDM, the ditau signal in type-I THDM
suffers a much stronger suppression from the H/A → t t̄
channel.

As further described in Sects. 3 and 4, the mixture estima-
tion techniques we study require each tau to decay through
the τ± → π±π0ν channel, which has a branching ratio of
25%. However, the neural network method we employ can be
extended to include other tau decay modes as well, by imple-
menting the “impact parameter method” in [18] in addition
to the “ρ decay-plane method” used here.

If we only assume the τ± → π±π0ν decay channel and
an acceptance times efficiency of 5%–10% for the signal
selection, our example scenarios predict no more than ∼ 100
signal events for the anticipated 300 fb−1 dataset at the end
of Run 3. However, as the model scan in Appendix A shows,
considering slightly lower benchmark masses can provide an
order of magnitude increase in the predicted cross-section.
Also, extending the method to include more tau decay chan-
nels can greatly increase the statistics available to the anal-
ysis discussed here. Still, the large backgrounds in the ditau
channel, e.g. from “fake QCD taus”, implies that a signal
mixture estimation study for the THDM benchmark scenario
we present here likely will require the improved statistics of
the full High-Luminosity LHC dataset.
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We do not include a third mixture component represent-
ing ditau backgrounds for our benchmark study. Clearly, the
inclusion of backgrounds will increase the uncertainty in the
estimated H/A → ττ signal mixture. However, as we dis-
cuss in more detail in Sect. 5.1, the mixture estimate obtained
from the neural network approach we study here is likely to
be less affected by backgrounds than traditional mixture esti-
mation from fitting a single kinematic variable.

For our further discussions we define the parameter α as
the ratio of the A → ττ signal strength to the total ditau
signal strength,

α ≡ σ(pp→ A)×B(A→ττ)

σ (pp→ A)×B(A→ττ) + σ(pp→ H)×B(H →ττ)
.

(1)

This is the parameter we seek to determine in our signal
mixture estimation.2 The parameter region of our benchmark
scenario predicts values of α between 0.5 and 0.7. To allow
for some further variation in the assumptions, we will in our
tests use α values of 0.5, 0.7 and 0.9.

3 Analysis setup

3.1 Event generation

We generate 13 TeV pp Monte Carlo events for this study
using Pythia 8.219 [29,30]. Only gluon-gluon fusion and
bottom-quark annihilation are considered, as these are the
dominant H /A production modes at the LHC.3 For our anal-
ysis we select opposite-sign taus decaying to π±π0ν, which
is the decay mode with the highest branching ratio. In order to
roughly match recent LHC searches for H/A → ττ , taus are
required to have visible transverse momentum pT larger than
40 GeV and pseudorapidity less than 2.1. Further, we require

the taus to be separated by ΔR =
√

(Δφ)2 + (Δη)2 > 0.5,
and that there are no more than two taus in the event which
pass the pT selection. Events with muons or electrons with
pT > 20 GeV are rejected.

Detector effects are taken into account by randomly
smearing the directions and energies of the outgoing pions,
following the procedure described in [18]: Each track is
deflected by a random polar angle θ , which is drawn from

2 In linking this theory quantity directly with the H /A event mixture in
the datasets we simulate, we make the approximation that the acceptance
times efficiency is equal for H → ττ and A → ττ events.
3 The magnitudes of the up-type and down-type Yukawa couplings
have the same tan β dependence in both the lepton-specific and the
type-I THDM. Gluon–gluon fusion through a top loop is therefore by
far the most important production channel for the scenarios considered
here.

a Gaussian distribution with width σθ , so that the smeared
track lies within a cone around the true track direction. For
charged pions a value of σθ = 1 mrad is used, while the
energy resolution is ΔE/E = 5%. For neutral pions, we
use σθ = 0.025/

√
12 rad and ΔE/E = 10%. To gauge the

impact of such detector effects on our results, we repeat the
main analyses in Sects. 4 and 5 for simulated data with and
without detector smearing.

3.2 Network input features

For the neural signal mixture estimation in Sect. 5, we train
a network to separate H → ττ events from A → ττ events.
The four-momenta of the visible tau decay products (π± and
π0) constitute the most basic kinematic input features to our
network. The momenta are boosted back to the visible ditau
rest frame (the zero-momentum frame for the four pions) and
rotated so that the visible taus are back-to-back along the z-
axis. The system is then rotated a second time, now around
the z-axis, so that the x-component of the π+ is zero. This
is done in order to align all events to a common orientation,
as the azimuthal angle around the z-axis carries no physics
information.

In addition to the pion momenta, the network is trained
on missing transverse energy (Emiss

T ); the invariant mass of
the four-pion system (mvis); the transverse mass (mtot

T ); the
impact parameter vectors of the charged pions, which help
constrain the neutrino directions; the pion energy ratios Υ ±,
defined as

Υ ± = Eπ± − Eπ0

Eπ± + Eπ0
; (2)

and the angle ϕ∗ between the tau decay planes. For ϕ∗ we
follow the definition in [18],4 which uses the direction p̂(0)±

⊥
of the π0 transverse to the direction p̂± of the corresponding
π±, to form an intermediate observable ϕ ∈ [0, π) and a
C P-odd triple correlation product O∗,

ϕ = arccos
(
p̂(0)+

⊥ · p̂(0)−
⊥

)
and (3)

O∗ = p̂+ · (
p̂(0)+

⊥ × p̂(0)−
⊥

)
. (4)

From these, we can define an angle continuous on the interval
[0, 2π):

ϕ′ =
{

ϕ if O∗ ≥ 0

2π − ϕ if O∗ < 0
. (5)

4 Our definition of ϕ∗ only differs from that in [18] in that we define ϕ∗
in the π+π0π−π0 zero-momentum frame, whereas the π+π− zero-
momentum frame is used in [18].
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Distributions for some kinematic features in H → ττ →
(π+π0ν)(π−π0ν) events (solid purple line) and A → ττ →
(π+π0ν)(π−π0ν) events (dashed blue line), assuming m H = m A =
450 GeV. The quantities in a and b are momentum components of the
π− and π0 from the τ− decay, after each event has been boosted back
to the visible ditau restframe and rotated such that the taus are back-to-

back in the z direction and the x-component of the π+ momentum is
zero. c The transverse mass mtot

T , defined in [31]. The observables Υ (d)
and O∗ (e), defined in Eqs. (2) and (4), respectively, are required for the
computation of ϕ∗, along with the momentum vectors of the tau decay
products. The distribution of ϕ∗ is shown in (f). The green graph below
each plot shows the ratio of the A-event and H -event distributions

The distribution of ϕ′ depends on the sign of the product
Υ +Υ −; in the case of Υ +Υ − ≥ 0, the distribution is phase-
shifted by π relative to the case of Υ +Υ − < 0. To incor-
porate this into a single consistent C P-sensitive observable,
we define ϕ∗ as

ϕ∗ =
{

ϕ′ if Υ +Υ − ≥ 0

(ϕ′ + π) mod 2π if Υ +Υ − < 0
. (6)

Before being input to the network, all feature distribu-
tions are standardised to have zero mean and unit variance.
A selection of the feature distributions in the training data
is shown in Fig. 1. The univariate feature distributions are
severely overlapping for H and A events, indicating that the
classification task is very challenging. The one feature which
stands out here is ϕ∗, which is the basis for the single-variable
mixture estimation described in Sect. 4.

For the results presented in Sect. 5 we use a network
trained on all features discussed above. However, features
such as ϕ∗ and mT are derived from the basic pion momenta

that the network also has access to. These “high-level” fea-
tures can in principle be inferred by the network itself from
the “low-level” pion momenta. To briefly investigate this
we repeat the network training with varying subsets of the
input features, starting with only the pion four-momenta
and sequentially adding ϕ∗, Υ ± and the remaining features.
For all networks we obtain ROC AUC scores of ∼ 0.630.
While a full statistical comparison of the resulting networks
is beyond the scope of our study, this indicates that the net-
work is itself able to extract the relevant information from
high-dimensional correlations between the pion momenta,
making the explicit inclusion of the high-level inputs mostly
redundant. We note that this observation is in agreement with
the results of [1,2].

It is still interesting to investigate how much of the dis-
criminatory power can be captured by the high-level features
alone. For this we train several classifiers on high-level fea-
tures only, adding a new set of features for each classifier. The
first classifier is trained only on ϕ∗ and achieves a ROC AUC
score of ∼ 0.605. When Υ + and Υ − are included as input
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features the performance improves to a score of ∼ 0.618.
This improvement can be understood qualitatively from the
fact that the difference between the Υ ±-conditional ϕ∗ dis-
tributions for H and A events increases with |Υ ±|. Adding
Emiss

T , mT , π± impact parameter vectors and O∗ raises the
ROC AUC score to ∼ 0.620, and finally including mvis fur-
ther increases the score to ∼ 0.623, which seems to be the
limit for our network when trained on high-level features
only. This indicates that ϕ∗ and Υ ± together capture most of
the sensitivity, but that the neural network is able to extract
from the pion four-momenta some additional information
which is not contained in the high-level quantities. Similar
behaviour was seen in [19] in a study focusing on the C P-
nature of the 125 GeV Higgs.

3.3 Network layout

In this study we employ a fully-connected feed-forward net-
work. The input layer has 26 nodes, followed by 500 nodes in
the first hidden layer, 1000 nodes in the second hidden layer,
and 100 nodes in the final hidden layer. These have leaky
ReLU [32] activation functions, and dropout [33] is applied
with a dropping probability of 0.375. No further regularisa-
tion is imposed. All network weights are initialised from a
normal distribution, following the He procedure [34]. The
output layer has a softmax activation function, and we apply
batch normalisation [35] between all layers. The weights are
optimised using Adam [36] with cross-entropy loss and an
initial learning rate of 0.03. 20% of the training data are set
aside to validate the model performance during training. If
there is no improvement of the loss on the validation data
for ten consecutive epochs, the learning rate is reduced by
a factor ten. The network is trained for 100 epochs or until
no improvement is observed during 15 epochs, whichever
occurs first. The neural network implementation is done
using the Keras [37] and TensorFlow [38] frameworks.

4 The ϕ∗ method

Traditional approaches for separating C P-even and -odd
decays are based on the angle ϕ∗ between the tau decay
planes, as defined in Eq. (6). The ϕ∗ distribution for H and
A events can be seen in Fig. 2a. The C P-sensitive parameter
in this distribution is the phase of the sinusoidal curve, which
is shifted by π radians between the H and A hypotheses. We
note that the distributions overlap across the full ϕ∗ range,
hence no absolute event separation is possible based on this
variable.

Using the simplified notation p(ϕ∗|A) ≡ pA(ϕ∗) and
p(ϕ∗|H) ≡ pH (ϕ∗), the ϕ∗ distribution for H /A signal data
can be expressed as a simple mixture model,

(a)

(b)

Fig. 2 a The probability density for ϕ∗ in H events (pH (ϕ∗)) and A
events (pA(ϕ∗)). b A fit of the mixture model p(ϕ∗|α) = αpA(ϕ∗) +
(1 − α)pH (ϕ∗) to a test dataset. Data points are shown in black, while
the fitted model (normalized to 100 events) is shown in green. For this
dataset the best-fit α value is α̂ = 0.74

p(ϕ∗|α) = αpA(ϕ∗) + (1 − α)pH (ϕ∗)
= α

(
a cos ϕ∗ + c

) + (
1 − α

)(
a cos(ϕ∗ + π) + c

)
= α a cos ϕ∗ + (1 − α) a cos(ϕ∗ + π) + c,

(7)

where we fix the amplitude a and offset c to a = 0.041 and
c = 0.159, obtained from a separate fit to H and A training
data. This leaves us with a model for the ϕ∗ distribution
where α is the only free parameter. Given a dataset {ϕ∗

i }
with N events, we can now obtain an estimate α̂ for α by
maximising the likelihood function

α̂ = arg max
α

N∏
i=1

p(ϕ∗
i |α). (8)

We demonstrate this method in Fig. 2 for a dataset with 100
H/A Pythia events, generated using a model with a true α

of 0.7. The pdfs pH (ϕ∗) and pA(ϕ∗) are shown in Fig. 2a,
while the fit result is shown in Fig. 2b. For this example the
best-fit α estimate comes out at α̂ = 0.74.

To demonstrate the statistical performance of this esti-
mator we repeat the fit using 10,000 independent test sets
with 100 Pythia events each, generated with true α values
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of 0.5, 0.7 and 0.9. The resulting distributions of α estimates
are shown in Fig. 4a, where the purple (green) distributions
depict results without (with) detector effects. By fitting a
Gaussian to each distribution we find the spread in the esti-
mates to be σα = 0.27 (σ det

α � 0.45) when detector smearing
is omitted (included). Further, the estimator is mean-unbiased
for all three cases. Note that to demonstrate the unbiasedness
we have allowed the fit to vary α beyond the physically valid
range of [0, 1].

5 The neural network method

When estimating some parameter θ using collider data we
ideally want to make use of the multivariate density p(x|θ)

for the complete set of event features x.5 However, it is typi-
cally infeasible to evaluate this density directly for a given x.
A common approach is then to construct a new variable y(x)

and base the parameter estimation on the simpler, univariate
distribution p(y(x)|θ), as exemplified by the ϕ∗ fit in Sect. 4.

The performance of such a univariate approach depends
on how well the distribution p(y(x)|θ) retains the sensitivity
to θ found in the underlying distribution p(x|θ). In the special
case where the map y(x) is the output from a trained classifier,
it can be shown that using p(y(x)|θ) to estimate θ in the ideal
limit is equivalent to using the full data distribution p(x|θ).
Here we briefly review this argument before applying the
classifier approach to our mixture estimation problem.

After training on θ -labeled data, a classifier that mini-
mizes a suitably chosen error function will approximate a
decision function s(x) that is a strictly monotonic function
of the density ratio p(x|θ)/p(x|θ ′) [39].6 As shown in [40],
the monotonicity of s(x) ensures that density ratios based on
the multivariate distribution p(x|θ) and the univariate distri-
bution p(s(x)|θ) are equivalent,

p(x|θ)

p(x|θ ′)
= p(s(x)|θ)

p(s(x)|θ ′)
. (9)

If we now take θ ′ to be a fixed value such that the support
of p(x|θ ′) covers the support of p(x|θ),7 the maximum like-
lihood estimator for θ based on p(x|θ) can be rewritten as
follows [40]:

5 Here θ represents an arbitrary model parameter, not necessarily a
simple mixture parameter.
6 In general the decision function can depend directly on the parameter
values θ and θ ′: s = s(x; θ, θ ′). However, this is not the case for a mix-
ture estimation problem like the one considered here, where x represents
a single draw from one of the mixture model components (kinematic
data from a single H or A event) and the parameter of interest is the
unknown component mixture (α) of the complete dataset {xi }.
7 This is trivially satisfied for any choice θ ′ ∈ (0, 1) when θ represents
the mixture parameter of a simple two-component mixture model.

θ̂ = arg max
θ

N∏
i=1

p(xi |θ)

= arg max
θ

N∏
i=1

p(xi |θ)

p(xi |θ ′)

= arg max
θ

N∏
i=1

p(s(xi )|θ)

p(s(xi )|θ ′)

= arg max
θ

N∏
i=1

p(s(xi )|θ).

(10)

Hence, if the classifier output y(x) provides a reasonable
approximation of s(x) we can expect the maximum likeli-
hood estimator based on p(y(x)|θ) to exhibit similar per-
formance to an estimator based on p(x|θ). The main draw-
backs of this approach are the complications associated with
training the classifier, and that the physics underlying the
parameter sensitivity may remain hidden from view.

We now apply this classifier approach to our H /A mixture
estimation problem. The maximum likelihood estimator for
the mixture parameter α is then given by

α̂ = arg max
α

N∏
i=1

p(y(xi )|α)

= arg max
α

N∏
i=1

[
αpA(y(xi )) + (1 − α)pH (y(xi ))

]
, (11)

where we have expressed the overall network output distri-
bution p(y|α) as a mixture of the pure-class distributions
p(y|A) ≡ pA(y) and p(y|H) ≡ pH (y). We use a net-
work trained on a balanced set of H and A events. The
network is trained to associate outputs y = 0 and y = 1
with H and A events, respectively. By applying this network
to another labeled dataset of equal size to the training set,
we construct templates for the probability densities pH (y)

and pA(y) in Eq. (11) using a nonparametric kernel den-
sity estimation method (KDE) [41]. The resulting templates
are shown in Fig. 3a. We note that the pdfs do not span
the entire allowed range y ∈ [0, 1]. This is expected, since
the C P nature of a single event cannot be determined with
complete certainty. Proper determination of the pdf shapes
in the extremities – where the sensitivity is highest – requires
a sufficient amount of data, which is why we devote a simi-
larly sized data set to the template creation as to the network
training.

Given a set of unlabeled data we can now estimate α by
carrying out the maximization in Eq. (11) as an unbinned
maximum-likelihood fit. The resulting fit to the same exam-
ple dataset as used for the ϕ∗ fit in Fig. 2b is shown in Fig.
3b. The best-fit α estimate in this case is α̂ = 0.67.
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(a)

(b)

Fig. 3 a KDE estimate for the distribution of the network output y for
H events (pH (y)) and A events (pA(y)), given a balanced network. b
A fit of the mixture model p(y|α) = αpA(y) + (1 − α)pH (y) to the
same example dataset as used in Fig. 2b. Data points are shown in black
and the fitted model in green. The best-fit α value is α̂ = 0.67

5.1 Results

We can now compare the performance of the neural network
method with that of the ϕ∗ method of Sect. 4. To this end,
we apply the network method to the same test sets as used in
Fig. 4a, i.e. 10,000 datasets of 100 Pythia events each, for
each of the three scenarios α = 0.5, 0.7, 0.9. The analysis is
repeated with network training and test sets with and without
detector smearing. The results are given in Fig. 4b, for easy
comparison with the corresponding results of the ϕ∗ method
in Fig. 4a. We fit each distribution of α estimates with a
Gaussian and summarize the fit parameters in Table 1.

As for the ϕ∗ method, we find that detector smearing
significantly impacts the width of the α distribution, which
increases from σα = 0.21 to σ det

α = 0.37 upon inclusion
of detector effects. Yet, the network approach consistently
outperforms the ϕ∗ method, as σα and σ det

α are reduced by
∼ 22% and ∼ 18%, respectively, compared to the ϕ∗ results.
So while the absolute widths of the α distributions in Fig. 4
illustrate that a dataset of 100 events is probably too small
to obtain an accurate α estimate, the comparison with the ϕ∗
results indicates that the relative performance gain offered

by the network approach is relatively robust against detector
smearing.

Similar to the ϕ∗ method, the network method provides
a mean-unbiased estimator. In order to demonstrate this we
allow α to vary outside the physical range [0, 1] in our fits.
However, for α > 1, the combined mixture model p(y|α) =
αpA(y) + (1 − α)pH (y) will become negative for y values
that satisfy pA(y)/pH (y) < (α−1)/α. This we do not allow
in our fits, and in such cases we lower the α estimate until
p(y|α) is non-negative everywhere. This choice explains the
slight deviation from Gaussianity in the region around α̂ =
1.2 in the bottom right plot.8

Figure 5 shows the distributions of α estimates for the
cases of 20 events per test dataset (top row) and 500 events per
test dataset (bottom row), where all sets have been generated
with α = 0.7 and no detector smearing has been included.
Compared to the results with 100 events per set, σα for both
fit methods increase (decrease) by approximately a factor

√
5

for the case with 20 (500) events per set, as expected from
the factor 5 decrease (increase) in statistics. Thus, the relative
accuracy improvement of the neural network approach over
the ϕ∗ method remains approximately the same: 30% for the
20-events case, and 25% for the 500-events case. However,
the absolute spread of estimates in the 20-events case shows
that this is clearly not enough statistics to obtain a useful
estimate of α.

As a cross-check of the behaviour of the network fit
method, we plot in Fig. 6a the distribution of the log-
likelihood ratio −2 ln(L(α = 0.7)/L(α̂)) for all test datasets
of our benchmark point with α = 0.7. According to Wilks’
theorem [42], the distribution of this statistic should tend
towards a χ2 distribution with one degree of freedom. By
overlaying a χ2 distribution in Fig. 6a we see that this is
indeed the case. Thus, confidence intervals constructed from
the log-likelihood ratio for a neural network fit should have
the expected coverage. In Fig. 6b we show the log-likelihood
ratio curves for the example dataset used in Figs. 2b and 3b.
The narrowing of the log-likelihood parabola for the network
method again illustrates the increase in precision over the ϕ∗
method.

For this study we focus only on the separation of two sig-
nal classes, not the separation of signal from background.
Of course, a realistic dataset is likely to contain a signif-
icant fraction of background events. For the signal sce-
nario studied here, the most important backgrounds are
due to “fake taus” from QCD production, single Z pro-
duction (pp → Z → ττ ), double Z and W production
(pp → Z Z/W Z/W W → ττ + X ) and top pair produc-
tion (t t̄ → W bW b → ττ + X ). While such backgrounds

8 The same effect is not seen for the ϕ∗ fits, as the ratio
pA(ϕ∗)/pH (ϕ∗) ≥ 0.59 for all ϕ∗, and none of the test sets prefer
an α value as large as 1/(1 − 0.59) ≈ 2.4.

123



 1010 Page 8 of 11 Eur. Phys. J. C          (2018) 78:1010 

Table 1 Summary of α

estimation on 10,000
independent test sets with 100
events in each set, using the ϕ∗
fit and the neural network (NN)
fit methods

True mixture parameter α α = 0.5 α = 0.7 α = 0.9

α Estimates (ϕ∗ method, no detector smearing) 0.50 ± 0.27 0.71 ± 0.27 0.90 ± 0.27

α Estimates (ϕ∗ method, with detector smearing) 0.50 ± 0.45 0.70 ± 0.46 0.90 ± 0.45

α Estimates (NN method, no detector smearing) 0.50 ± 0.21 0.70 ± 0.21 0.90 ± 0.21

α Estimates (NN method, with detector smearing) 0.48 ± 0.37 0.68 ± 0.37 0.88 ± 0.37

Fig. 4 Comparison of the
distributions of α estimates
using a the ϕ∗ method and b the
neural network method, for test
sets generated with α = 0.5
(top), α = 0.7 (middle) and
α = 0.9 (bottom). The slight
deviation from Gaussianity seen
around α̂ = 1.2 in the bottom
right plot is due to the fact that
we let α vary beyond [0, 1] in
our fits, but still demand that
that the mixture model p(y|α) is
always non-negative. See the
text for further details

(a) (b)

Fig. 5 Comparison of the
distributions of α estimates
using a the ϕ∗ method and b the
neural network method, for test
sets generated with α = 0.7.
The top row shows results for
test sets containing 20 events
each, while the bottom row
corresponds to test sets with 500
events each. The deviation from
the Gaussian distribution seen at
high α in the upper right plot is
due to the same effect as
discussed for Fig. 4

(a) (b)

will degrade the absolute accuracy in the signal mixture esti-
mate, it is likely to impact the ϕ∗ method more severely than
the neural network method. With one or several background
components in the mixture model, the network’s ability to

extract information from the many-dimensional kinematic
space should allow it to differentiate the background compo-
nents from the signal components better than what is possi-
ble with the ϕ∗ variable alone. We therefore expect a similar
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(a)

(b)

Fig. 6 a Distribution of the log-likelihood ratio −2 ln(L(α =
0.7)/L(α̂)) for the 10,000 test sets generated with α = 0.7. Overlaid is
a χ2 distribution for one degree of freedom. b Comparison of the log-
likelihood ratio curves for the test dataset from Figs. 2b and 3b, using
the network method (green) and the ϕ∗ method (black). Intersection
with the horizontal dashed line at −2 ln(L(α)/L(α̂)) = 1 illustrates the
1σ confidence intervals, which for this example are [0.48, 1.0] for the
ϕ∗ method and [0.50, 0.86] for the neural network method

or better relative performance of the network method in the
presence of background, compared to the results we have
presented here. There are two ways to extend the network
method to take into account additional components in the
mixture model: either by implementing a multi-class clas-
sifier, or by training multiple binary classifiers on pairwise
combinations of the model components. Based on [43] we
expect the latter approach would give the best performance.

6 Conclusions

Estimating the component weights in mixture models with
largely overlapping kinematics is a generic problem in high-
energy physics. In this paper we have investigated how a
deep neural network approach can improve signal mixture
estimates in the challenging scenario of a ditau LHC signal
coming from a pair of heavy, degenerate Higgs bosons of
opposite C P charge. This is a theoretically well-motivated

scenario within both general and more constrained Two-
Higgs-Doublet Models.

We have studied a benchmark scenario with degenerate H
and A states at m H = m A = 450 GeV. For this case we find
that the neural network approach provides a ∼ 20% reduc-
tion in the uncertainty of signal mixture estimates, compared
to estimates based on fitting the single most discriminating
kinematic variable (ϕ∗). However, the improved accuracy of
the neural network approach comes with a greater computa-
tional complexity.

The network method we have studied here can be extended
to include additional mixture components, such as one or
several background processes, either by training a multi-
class classifier or by training multiple binary classifiers.
To increase the available statistics, the method can also be
extended to work with a wider range of tau decay modes, for
instance by using the “impact parameter method” described
in [18].

The code used to generate events, train the network and
run the maximum likelihood estimates will be made available
on gitlab.com/BSML after publication.
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Appendix A Supplementary figures

A simple scan of the high-mass parameter regions of the (SM-
aligned) lepton-specific and type-I THDMs is performed
to illustrate the parameter dependence of the ditau signal
strengths σ(pp → H) × B(H → ττ) and σ(pp → A) ×
B(A → ττ), as well as the mixture parameter α. The results
are shown in Fig. 7. The parameters m H = m A = m H± ,
tan β and m2

12 are varied in the scan, while we fix the light
Higgs mass mh = 125 GeV and the neutral scalar mixing
parameter sin(β − α′) = 1 to ensure perfect SM align-
ment for the light state h. The NLO cross sections are cal-
culated with SusHi 1.6.1, while branching ratios are cal-
culated using 2HDMC 1.7.0. We test the parameter points
against constraints from the various collider searches for
Higgs bosons using HiggsBounds 4.3.1 [44–48], while the-
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Top row, lepton-specific THDM: a Signal strength for pp → H → ττ , as a function of m H and tan β. b Similar result for pp → A → ττ .
c The ratio of the signal strength of pp → A → ττ to the total ditau signal strength, as defined in Eq. (1). Bottom row: Corresponding results
within the type-I THDM

oretical constraints are checked with 2HDMC. Constraints
from flavour physics, in particular B(b → sγ ), disfavour
parameter regions at very low tan β in the type-I and lepton-
specific THDMs. These constraints were not included in the
simple scan.
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Science questions – The nature of the astrophysically and cosmologically observed dark matter
(DM) in the universe [1] is one of the big open scientific questions today. While it is clear that DM
must be non-baryonic, the list of possible explanations in terms of a new particle is long [2]. Given
that all evidence for DM so far is of gravitational origin, any non-gravitational DM signal would
be a major breakthrough towards determining the identity of those DM particles.

Among the most favourite DM candidates are weakly interacting massive particles (WIMPs),
with masses and coupling strengths at the electroweak scale. Besides the fact that many of these are
theoretically very well motivated, such as the supersymmetric neutralino [3], an attractive feature
of this class of candidates is that the observed DM abundance today can straight-forwardly be
explained by the thermal production of WIMPs in the early universe. In recent years however –
triggered not the least by the lasting absence of any undisputed WIMP signals, despite immense
experimental efforts – the focus of the community has started to shift beyond WIMPs as the main
DM paradigm.

For example, it was pointed out that thermal production is also an attractive option for smaller
DM masses [4]. Other relevant DM models with (sub-)GeV masses include light gravitino DM [5],
inelastic DM [6], light scalar DM [7] or secluded DM [8]. Models in this mass range have received
significant interest because they could have easily escaped the ever more stringent constraints from
direct DM detection experiments (for a suggestion of how to overcome the lack of sensitivity of
traditional methods in this mass range, see e.g. Ref. [10]). From the indirect detection perspective,
an intriguing feature of such models is furthermore that the center-of-mass energy, and hence the
energy of final state quarks, is at the same mass scale as standard model hadronic states. As we
argue in this contribution, this can lead to a potentially rich phenomenology in MeV gamma rays
that may allow to draw far-reaching conclusions about the nature of the DM particles and the
underlying theory.

Importance of gamma-ray observations – Gamma rays from both decaying and annihilating
DM have sometimes been argued to be the golden channel of indirect DM searches [9] because they
directly point back to their sources and hence provide the potentially most accurate way to probe
the astronomically observed DM distribution in situ. Furthermore, they may carry distinct spectral
features that can both act as ‘smoking gun’ signals for the particle nature of DM and convey further
detailed information about the nature of these particles.

Motivated by the WIMP case, the main focus has traditionally been on spectral features in the
100GeV – TeV range, with relevant limits presented e.g. in Ref. [11]; also exotic line contributions
in the keV range have been scrutinized in detail, where a signal could be expected from decaying
sterile neutrino DM [12]. Here, we point out that also the largely neglected MeV range is very well
motivated in this respect (for earlier work, see Refs. [13, 14]), and hence ideally suited for searches
with e-ASTROGAM.
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Figure 1: Left: Example of the expected gamma-ray spectrum for DM annihilation into charm quarks,
with a DM mass mχ just above the kinematic threshold to produce D-mesons. The sharp spectral features
result from the indicated meson transitions, while the background is mostly due to π0 → γγ. For more
details, see Ref. [14]. Right: Gamma-ray spectrum from DM annihilation through the quarkonium channel
χχ → Υ(10860)γ. The three visible spectral features are due to two different meson transitions and the
photon produced in conjunction with the quarkonium. For more details, see Ref. [18].

In fact, gamma-ray and cosmic microwave background observations already put significant con-
straints on light DM candidates, and e-ASTROGAM would imply an additional boost in sensitivity
[15]. As we show here, hadronic final states from DM decay or annihilation could furthermore lead
to a plethora of potential smoking-gun signatures for a DM signal in MeV gamma rays that only a
dedicated mission like e-ASTROGAM may be able to detect.

Expected results with e-ASTROGAM – Among the various processes that could potentially
lead to spectral features in MeV gamma rays (see also Ref. [14] for an overview, and Ref. [16]
for further examples), we will focus here on standard model meson transitions and quarkonium
resonances. We consider a center-of-mass energy of the annihilating DM pair, or DM mass in the
case of decaying DM, that is close to the threshold for the production of (excited) heavy mesons.
The de-excitation of excited meson states in the final state, via the emission of a photon or neutral
pion, will then generate box-like signatures (which in the case of photon emission can be almost
monochromatic).

For illustration, we show in Fig. 1 an example where DM is assumed to annihilate dominantly
into c̄c pairs. In this example, both types of de-excitation processes lead to spectral features that are
clearly visible above the standard ‘background’ part of the signal, resulting from decaying neutral
pions that are copiously produced in fragmentations and decays of heavier mesons. Implementing
a realistic modelling of the expected astrophysical background, we have shown that the sensitivity
of e-ASTROGAM to this DM annihilation channel improves by a factor of up to about 2 by taking
into account these spectral features, compared to using the standard pion bump as a signal template
[14]. For b̄b final states, the effect can be twice as large. We note that the exact form and location
of these spectral features are very specific for each final state. This allows, in principle, a highly
accurate reconstruction not only of the DM mass but also of the branching ratios for the DM decay
or annihilation channels.

The possibility of MeV gamma-ray features from annihilation into heavy meson pairs also
raises the issue of contributions from quarkonia. Either through the process χχ → (Q̄Q)γ, where
gamma-rays are produced both directly and through subsequent decay into (excited) heavy mesons,
or heavy-meson production enhanced by a quarkonium resonance χχ → (Q̄Q) → MAMB, where
MA and MB are two heavy mesons with radiative decays. An example of the resulting expected
spectrum for a DM mass mχ = 5.5 GeV and the channel χχ → Υ(10860)γ is shown in Fig. 1
(right). Here structures from three processes, B∗ → γB, B∗

s → γBs, and direct production in the
annihilation, can all be identified. Notably, such a signal would also exist in the annihilation of

2



sub-GeV DM into light quarkonium states, e.g. χχ → η(′)γ, with subsequent decay of the η(′) into
photon pairs.

Furthermore, it is well known experimentally that for heavy-meson production at e+e− collid-
ers, quarkonium resonances can be dominant near threshold [17]. We have explored dark matter
annihilation through the related vector currents χΓμχQ̄γμQ. Using collider data as input to our
model we observe significant enhancement of the MeV features [18] due to these resonances. We
also find that the existence and dominance of different processes is highly dependent on the struc-
ture of the DM-quark interaction and the nature of the DM particle, e.g. as seen in the well-known
suppression of the vector current for Majorana or scalar DM [13].

In conclusion, the sensitivity gap in the MeV range explored by e-ASTROGAM is a window of
opportunity to detect new physics – not only by confirming the particle nature of DM, but with
the additional potential of closing in on some of its detailed properties, like the DM particle’s mass,
its branching ratios to quark final states and, to some degree, its underlying interaction structure.

References

[1] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A13 (2016)
[arXiv:1502.01589 [astro-ph.CO]].

[2] J. L. Feng, Ann. Rev. Astron. Astrophys. 48, 495 (2010) [arXiv:1003.0904 [astro-ph.CO]].

[3] G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195 (1996) [hep-ph/9506380].

[4] J. L. Feng and J. Kumar, Phys. Rev. Lett. 101, 231301 (2008) [arXiv:0803.4196 [hep-ph]].

[5] F. Takayama and M. Yamaguchi, Phys. Lett. B 485 (2000) 388 doi:10.1016/S0370-
2693(00)00726-7 [hep-ph/0005214].

[6] D. Tucker-Smith and N. Weiner, Phys. Rev. D 64 (2001) 043502
doi:10.1103/PhysRevD.64.043502 [hep-ph/0101138].

[7] C. Boehm and P. Fayet, Nucl. Phys. B 683 (2004) 219 doi:10.1016/j.nuclphysb.2004.01.015
[hep-ph/0305261].

[8] M. Pospelov, A. Ritz and M. B. Voloshin, Phys. Lett. B 662 (2008) 53
doi:10.1016/j.physletb.2008.02.052 [arXiv:0711.4866 [hep-ph]].

[9] T. Bringmann and C. Weniger, Phys. Dark Univ. 1, 194 (2012) [arXiv:1208.5481 [hep-ph]].

[10] R. Essig, J. Mardon and T. Volansky, Phys. Rev. D 85, 076007 (2012) [arXiv:1108.5383 [hep-
ph]].

[11] M. Ackermann et al. [Fermi-LAT Collaboration], Phys. Rev. D 91, no. 12, 122002 (2015)
[arXiv:1506.00013 [astro-ph.HE]]; A. Abramowski et al. [H.E.S.S. Collaboration], Phys. Rev.
Lett. 110, 041301 (2013) [arXiv:1301.1173 [astro-ph.HE]].

[12] For the much discussed potential discovery of such a line, see E. Bulbul, M. Markevitch,
A. Foster, R. K. Smith, M. Loewenstein and S. W. Randall, Astrophys. J. 789, 13 (2014)
[arXiv:1402.2301 [astro-ph.CO]]; A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse,
Phys. Rev. Lett. 113, 251301 (2014) [arXiv:1402.4119 [astro-ph.CO]].

[13] M. Srednicki, S. Theisen and J. Silk, Phys. Rev. Lett. 56, 263 (1986) Erratum: [Phys. Rev.
Lett. 56, 1883 (1986)]; S. Rudaz, Phys. Rev. Lett. 56, 2128 (1986); L. Bergstrom, Nucl. Phys.
B 325, 647 (1989).

[14] T. Bringmann, A. Galea, A. Hryczuk and C. Weniger, Phys. Rev. D 95, no. 4, 043002 (2017)
[arXiv:1610.04613 [hep-ph]].

[15] See, e.g., I. A. Antonelli et al. and R. Bartels et al. (this contribution).

[16] V. Brdar, J. Kopp, J. Liu, A. Merle and X. Wang (this contribution).

[17] B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 102 (2009) 012001 [arXiv:0809.4120
[hep-ex]].

3
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Appendix A

Gaugino mediated calculations

This appendix contains calculations upon which the results in section 4.5 and [1] are based.

d2θ = −1
4

dθ α dθ β εαβ , d2θ † = −1
4

dθ †
α̇ dθ †

β̇
ε α̇β̇ (A.1)

A.1 Equations of motion for Higgs auxiliary field in the framework with a
source field

The equations of motion for F are in general

∂μ ( ∂L
∂(∂μ F)) = ∂L

∂F
, (A.2)

and since F here denotes the auxiliary field of a chiral supermultiplet, it is not a physical field and thus does not
propagate. This means that there exist no kinetic terms for F or F†, i.e.

∂L

∂F
= ∂L

∂F† = 0 , (A.3)

which will be used later. In the following, as explained in section 4.5, M is the cutoff up to which the effective theory
is valid, and the factor 1

VD−4
appears upon integrating over all dimensions higher than 4. The terms in the Lagrangian

containing Higgs fields come from

• The superpotential
W = ūyuQHu − d̄ydQHd − ēyeLHd +μHuHd +λSHuHd (A.4)

where the term with the S must be accompanied by a factor 1
MD−3 in the Lagrangian,

• The Kähler potential

K = H†
u eV Hu +H†

d eV Hd + 1
MD−3 [S(aH†

u H†
d +buH†

u Hu +bdH†
d Hd)+h.c.]

+ 1
MD−2 [S†S(cuH†

u Hu +cdH†
d Hd +(dHuHd +h.c.))

+SS( f H†
u H†

d +euH†
u Hu +edH†

d Hd)+h.c.]+ . . .
(A.5)

where the dots denote higher orders in S. The first two terms are the only contributions from the MSSM
Kähler potential, see eq. (4.25), where it does not matter which vector supermultiplet V is, since the interesting
contribution from the D-term will pick out only the Higgs auxiliary fields, see below or eq. (4.9.11) in [44].
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Collecting all terms in the Lagrangian containing FH , up to first order in S, and not writing out the volume factor or the
M to avoid clutter,

LFH =
[WMSSM]F+h.c.KNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNR

yuFHuφūφQ −ydFHd φd̄φQ −yeFHd φēφL +μFHd φHu +μFHuφHd +h.c.

+
[λSHuHd]F+h.c.KNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNR

λφs(FHuφHd +φHuFHd)+λ †φ †
s (F†

Hu
φ †

Hd
+φ †

Hu
F†

Hd
)

+
[H†eV H]DKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNR

F†
Hu

FHu +F†
Hd

FHd

+a†

[S†HuHd]DKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNR
F†

s FHd φHu +F†
s φHd FHu +a

[SH†
u H†

d ]DKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNR
FsF

†
Hd

φ †
Hu

+Fsφ †
Hd

F†
Hu

+bu

[SH†
u Hu]DKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNR(φsFHuF†

Hu
+FsφHuF†

Hu
+ψHuψsF

†
Hu

)+b†
u

[S†H†
u Hu]DKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNR(φ †

s FHuF†
Hu

+F†
s φ †

Hu
FHu +ψ†

Hu
ψ†

s FHu)

+bd

[SH†
d Hd]DKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNR(φsFHd F†

Hd
+FsφHd F†

Hd
+ψHd ψsF

†
Hd

)+b†
d

[S†H†
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s FHd F†
Hd

+F†
s φ †

Hd
FHd +ψ†

Hd
ψ†

s FHd) .

(A.6)

The equations of motion for Hu are thus

∂L

∂FHu

=
[WMSSM]FKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNR

μφHd +yuφūφQcNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNdNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNe
≡ωu

+
[λSHuHd]FKNNNNNNNNQNNNNNNNNR
λφsφHd +

[H†
u eV Hu]Df
F†

Hu
+
[S†HuHd]DKNNNNNNNNNNNNNQNNNNNNNNNNNNNR
a†F†

s φHd +
[SH†

u Hu]DKNNNNNNNNNNQNNNNNNNNNNR
buφsF

†
Hu

+b†
u

[S†H†
u Hu]DKNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNQNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNR(φ †

Hu
F†

s +ψ†
Hu

ψ†
s +φ †

s F†
Hu

) = 0 ,

∂L

∂F†
Hu

= ωu
h.c.+λ †φ †

s φ †
Hd

+FHu +aFsφ †
Hd

+b†
uφ †

s FHu +bu (φHuFs +ψHu ψs +φsFHu) = 0 ,

(A.7)

and correspondingly for Hd . The solutions are

F†
Hu,d

= −F†
s (buφ †

Hu,d
+aφHd,u)+buψ†

Hu,d
ψ†

s +ωu,d +λφsφHd,u

1+φs +φ †
s

,

FHu,d = −Fs(buφHu,d +a†φ †
Hd,u

)+buψHu,d ψs +ωu,d
h.c.+λ †φ †

s φ †
Hd,u

1+φs +φ †
s

(A.8)

The term proportional to a contributes to the μ term (and thus, among other things, to the supersymmetric three-scalar
interactions M∗iny jknφ∗iφ jφk present in the MSSM) and does not break SUSY. Together with bu,d it also contributes to
Bμ , see eq. (7) of [120], which breaks SUSY, but this contribution vanishes for bu,d = 0, so the SUSY breaking stems
from the bu,d terms. The φS dependence of the numerator stems solely from the superpotential term [λSHuHd]F . It
gives rise to a φ 4 interaction, which is not relevant for the present discussion. Neither is the part containing source brane
fermions ψS. The solutions, with volume factors and EFT cutoff written out, keeping only the relevant parts for the
present discussion, letting the auxiliary field of S acquire a VEV and setting its other components to zero finally yields

FHu,d = −bu,d⟨FS⟩φHu,d

VD−4MD−3 = −bu,d (Mc

M
)D−4 ⟨FS⟩

M
φHu,d , (A.9)

replacing the extra dimensions’ volume by the compactification scale in the last step.
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A.2 Regarding scalar interaction terms

Substituting FHu and FHd from eq. (A.9) in superpotential part of the Lagrangian yields the trilinear terms, eq. (4.57)
and repeated here for convenience

Ltrilinear = (Mc

M
)D−4 ⟨FS⟩

M
(−buφūyuφHuφQ +bdφd̄ydφHd φQ +bdφēyeφHd φL +h.c.) . (A.10)

These are (scalar)3 interactions that break SUSY. This can be seen by direct comparison with Lsoft or simply by
realising that these terms contain the SUSY breaking source field.

A.2.1 Supersymmetric three-scalar interactions

In the transition from eq. (A.8) to eq. (A.9), the ωu,d term was ommitted. Including it, i.e. inserting FHu,d = ωu,d
h.c. and

F†
Hu,d

= ωu,d in the superpotential in the Lagrangian yields

L ⊃ yu (ωu
h.c.φūφQ +ωuφ †

ū φ †
Q)+ . . .

= yu (μ†φ †
Hd

φūφQ +μφHd φ †
ū φ †

Q)+ . . . (A.11)

which means that these interactions were already present in the MSSM and thus don’t break SUSY, see for instance [44]
fig. 3.2, and the corresponding eq. (3.2.18).

A.2.2 Higher order scalar interactions

Other terms what were discarded in the transition from eq. (A.8) to eq. (A.9), are the ones containing a and λ . Keeping
them would modify eq. (A.9) to

FHu,d = −(Mc

M
)D−4(⟨FS⟩

M
(bu,dφHu,d +a†φ †

Hd,u
)− φ †

s

M
λ †φ †

Hd,u
) , (A.12)

and the above Lagrangian to

L ⊃(Mc

M
)D−4{⟨FS⟩

M
(−buφHuφūyuφQ −aφ †

Hd
φūyuφQ

+bdsφHd φd̄ydφQ +aφ †
Hu

φd̄ydφQ

+bdφHd φēyeφL +aφ †
Hu

φēyeφL

−μ(bu +bd)φHuφHd)
−λ †φ †

S

M
(+φ †

Hd
φūyuφQ +φ †

Hu
φd̄ydφQ +φ †

Hu
φd̄yeφQ

+μ(∣φHd ∣2 +∣φHu ∣2))+a†(∣φHu ∣2 +∣φHd ∣2)}+h.c. ,

(A.13)

i.e. including (scalar)4 interactions, as announced earlier.

A.2.3 Trilinears from field redefinition

Another way to derive the trilinear terms is a holomorphic field redefinition, as remarked by [121] as well as the referee
for [1].
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The referee remarked that this “shows that once the bu,d terms are included, there is no symmetry that protects the
theory from explicit trilinear terms, so omitting them in the first place appears to be ad-hoc.” However, explicit trilinears
were not omitted due to a symmetry but due to the extra-dimensional setup — the model is defined in D dimensions,
where, e.g., SūQHu cannot appear in the superpotential because S and the squarks are localised on different branes.

The field redefinition is expressed as follows (not distinguishing between Hu and Hd)

H = H′(1− b
M

S) , (A.14)

which reformulates the Kähler potential in terms of H′ as

K = H†H + b
M

(SH†H +S†H†H)+ c
M2 S†SH†H + e

M2 (SSH†H +S†S†H†H)+ . . .
= H′†(1− b

M
S†)H′(1− b

M
S)+ b

M
(SH†(1− b

M
S†)H (1− b

M
S)+S†H†(1− b

M
S†)H (1− b

M
S))+ . . .

= H′†H′− b
M

S†H′†H′− b
M

SH′†H′+( b
M

)2
S†SH†H + b

M
{SH′†H′− b

M
SSH′†H′− b

M
S†SH′†H′

+( b
M

)2
SSS†H′†H′+S†H′†H′− b

M
S†S†H′†H′− b

M
S†SH′†H′+( b

M
)2

SS†S†H′†H′}+ . . .
= H′†H′−( b

M
)2

S†SH′†H′+ b
M

{− b
M

(SS+S†S†)+( b
M

)2 (S†SS+S†S†S)}H′†H′+ . . . ,

(A.15)

so the SH†H terms have vanished, and the coefficients (to lowest order) are modified as follows

c
M2 → c

M2 (1−( b
M

)2)
e

M2 → e
M2 (1−( b

M
)2) . (A.16)

Doing the same field redefinition in the superpotential yields

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd +μHuHd

= ūyuQHu(1− bu

M
S)+ . . .

= ūyuQH′u − ū
buyu

M
QH′uS+⋯.

(A.17)

Taking the F-term of this and letting S acquire a VEV, yields the trilinear term ⟨FS⟩
M φuyuφHuφQ.
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Appendix B

Special functions

Error function
erf(z) = 2√

π ∫ z

0
e−x2

dx (B.1)

Incomplete gamma function

γ(a,x) = 1
Γ(a) ∫

x

0
ta−1e−tdt (B.2)

Relation between the two
erf(x) = γ (1

2
,x2) (B.3)

Gaussian cumulative distribution function relation

Φ(z) = 1+erf( z√
2
)

2
(B.4)

The significance

Z = −2ln
LS+BLB

≡ −2lnL , (B.5)

asymptotically follows a χ2 distribution if the null hypothesis is correct (or a non-central one if the alternate hypothesis
is), and given the χ2 cumulative distribution function

cd f (x;n) = γ (n
2
,

x
2
) (B.6)

for n degrees of freedom (here: 1), an expression for the the p-value is

p = 1−cd f (Z)
= 1−γ (1

2
,
Z
2
) . (B.7)

From this follows
1− p = γ (1

2
,
Z
2
) , (B.8)

and

Z
2
= γ−1(1

2
,1− p)

⇒ logL = −γ−1(1
2
,1− p) . (B.9)
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