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Abstract

One-compartment models are widely used to quantify hemodynamic parameters such as

perfusion, blood volume and mean transit time. These parameters are routinely used for

clinical diagnosis and monitoring of disease development and are thus of high relevance.

However, it is known that common estimation techniques are discretization dependent and

values can be erroneous. In this paper we present a new model that enables systematic

quantification of discretization errors. Specifically, we introduce a continuous flow model for

tracer propagation within the capillary tissue, used to evaluate state-of-the-art one-compart-

ment models. We demonstrate that one-compartment models are capable of recovering

perfusion accurately when applied to only one compartment, i.e. the whole region of interest.

However, substantial overestimation of perfusion occurs when applied to fractions of a com-

partment. We further provide values of the estimated overestimation for various discretiza-

tion levels, and also show that overestimation can be observed in real-life applications.

Common practice of using compartment models for fractions of tissue violates model

assumptions and careful interpretation is needed when using the computed values for diag-

nosis and treatment planning.

1 Introduction

Quantitative measurements of hemodynamic medical parameters based on tracer kinetic

modeling are widespread both in research and in clinical practice [1–3]. Perfusion maps, as

well as other parameter maps arising from tracer kinetic modeling can be combined with ana-

tomical information and have proven to be of particular value in e.g. stroke studies or localiza-

tion of trauma. Among the physiological parameters obtainable from tracer kinetic modeling,

perfusion has been found particularly difficult to describe reliably on a voxel-basis [4]. These

limitations are caused by issues in the numerical implementation [4], but might also depend
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on over-simplified dynamic models, which were originally designed to describe larger volumes

of interest [5]. Perfusion is a term describing flow in highly complex microcirculatory net-

works, and a reliable representation of perfusion is problematic due to imprecise mathematical

definitions of the concept.

Uncertainties in signal-to-concentration convertion are modality dependent but are con-

sidered to be outside the scope of the current work. For the remaining, we will assume that a

tracer concentration field is obtainable from the imaging data and that modality-dependent

characteristics like signal decay are possible to handle within the model framework.

In the current work we focus on the fundamental problem of perfusion as a discretization

dependent parameter as measured within traditional 1-compartment models and how it scales

with voxel size. This problem was previously identified by several authors [6–8] but has not

been sufficiently well addressed in clinical studies on perfusion, nor has it been described in

depth mathematically. A drawback in previous studies evaluating the performance of 1-com-

partment models has been that synthetic ground truth data and perfusion estimations are per-

formed with similar models, thus not challenging the validity of the model itself, but only

studying issues related to numerical stability and noise resistance. In the current work we cir-

cumvent this problem by generating synthetic flow data using a continuous flow field model

substantially different from the 1-compartment models essentially disconnected in space.

Despite the scale dependency of perfusion estimates, it is widely accepted that perfusion esti-

mates can provide valuable information about pathological conditions. However, it is not

known to what extent the discretization dependent error is homogeneously distributed, how it

scales with voxel size, or whether it depends on local geometry, capillary density, anisotropy or

other conditions affecting delivery of arterial blood to the capillary system. In the current work

we rigorously attack several of these challenges.

Traditional one-compartment (1C) models like deconvolution or the maximum slope

model are able to recover perfusion accurately if applied to the entire domain fed by the

incoming flow. However, when applying the traditional models to isolated parts of the full sys-

tem we are able to confirm that local perfusion in coupled systems is indeed discretization

dependent and not physically correct to be used as a measure of arterial blood delivery. In

order to highlight this issue, two ground truth values of voxelwise perfusion are presented: A

definition Pv describing the local inflow into a voxel, but otherwise not fulfilling the traditional

ideas of perfusion, and then a tailored definition of perfusion Ps for continuous models.

Using these definitions on perfusion, the main aim of our work is to quantify the discrep-

ancy between a numerical ground truth and perfusion as measured using traditional 1C mod-

els. A thorough quantification of the error is valuable information for a critical interpretation

of obtained perfusion values in clinical studies. In particular, the results of our work are useful

within multi-centre studies on perfusion. These studies are particularly susceptible to various

discretizations arising from the usage of different hardware, acquisition protocols and post-

processing tools, and where the interpretation and comparison of absolute perfusion values

therefore should be undertaken with particular care.

2 Materials and methods

2.1 Traditional one-compartment models

Two widely used 1C pharmacokinetic models for measurements of CBF and CBV are the

deconvolution- and the maximum slope model [2–4]. For the remaining, they are referred to

as traditional models. Let Oi be an arbitrary control volume with one inlet and one outlet, and

let C(t) denote the average contrast agent (CA) concentration within Oi at timepoint t. The tra-

ditional models assume that the change of concentration at timepoint t can be described by the
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ordinary differential equation

C0ðtÞ ¼ PacaðtÞ � PvcvðtÞ; Cð0Þ ¼ 0: ð1Þ

Here, ca, cv are the plasma CA concentrations at the inlet and outlet of Oi and Pa, Pv is the nor-

malized flow [mm3 s−1 mm−3] at these locations. In the following, it is assumed that the plasma

tracer concentration ca at the inlet is known. In clinical practice this can be accounted for by

measuring ca in a feeding artery [9]. Since cv is usually unknown, additional assumptions need

to be made if one wants to reconstruct the perfusion Pa from a given tissue curve C. The convo-

lution model and the maximum slope (MS) model diverge in further assumptions.

2.1.1 The convolution model. For derivation of the deconvolution model, one approach

is to assume there is an unknown probability distribution of transit times h through Oi, cf. [1].

This leads to

PvcvðtÞ ¼ Paðh � caÞðtÞ :¼ Pa

Z t

0

caðsÞhðt � sÞds: ð2Þ

Combining this with (1) yields C0(t) = Paca(t) − Pa(h � ca)(t). Integrating and using basic prop-

erties of the convolution one obtains the general solution

CðtÞ ¼ ðI � caÞðtÞ ð3Þ

where the impulse response function I is defined as IðtÞ :¼ Pað1 �
R t

0
hðsÞdsÞ. The task of identi-

fying I(t) given a tissue curve C(t) and an arterial input function ca(t) is a deconvolution prob-

lem. If I(t) is recovered, Pa can subsequently be estimated as Pa = maxt I(t). There are several

methods to perform the deconvolution. A standard approach using Fourier-based algorithms

is sensitive to the presence of noise [9]. Another class of deconvolution algorithms gaining

increasing attention are based on Bayesian modeling [10]. However the numerical handling is

still difficult since complex and error-prone numerical integration has to be performed [10]. A

popular class among deconvolution algorithms is based on singular value decomposition

(SVD) [9]. These algorithms have shown to be robust for a reasonable noise level. Also, they

can be easily adapted to be robust against delays in tracer arrival using block-circular struc-

tures (bSVD cf. [11]). In order to identify the impulse response function I(t) from applied

data, we hence decided to use the bSVD model as proposed in [11].

2.1.2 The maximum slope model. In the MS model it is assumed that when ca has its

maximum, only a negligible amount of CA is leaving the system [12]. For this time interval,

(1) reduces to

C0ðtÞ ¼ PacaðtÞ; Cð0Þ ¼ 0: ð4Þ

One can see that if ca has a maximum, also C0 must have a maximum since stationarity in Pa is

assumed. Hence, it holds that

Pa ¼
maxt C0ðtÞ
maxt caðtÞ

: ð5Þ

2.2 A synthetic model for capillary flow

The validity of traditional 1C models relies on a control volume with only one inlet and one

outlet, and that the control volumes are not feeding each other. These assumptions may be vio-

lated when we locally describe CA propagation through a larger volume. For this type of
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model system we instead expect a set of coupled equations where each voxel can be regarded

as an inlet for surrounding voxels.

Hence, in order to make a realistic synthetic model for capillary flow, we decided to

describe the CA propagation as a spatially coupled transport process, i.e. using partial differen-

tial equations (PDE) for transport. This PDE model is used for validation of the traditional

models.

A major difference between our coupled flow model and traditional tracer kinetic modeling

is the normalization of the flow field. To avoid a discretization dependent flow field for the PDE

model, we instead of perfusion use vector valued surface fluid flux q = q(x) [mm3 s−1 mm−2]

as the fluid carrying quantity, in agreement with geoscience and porous media simulation the-

ory. The fluid flux is a vector field describing the volume of fluid per unit time flowing across a

sliced unit area of the sample. A detailed outline of how the flow field was obtained can be

found in Section 2.7.

2.3 A model for indicator dilution

This section describes a model for CA propagation in the tissue. We assume that homo-

geneously dissolved CA is entering the domain along with the fluid flowing into the ROI via

the source, and similarly extracted at a sink. In order to define meaningful and continuous

contrast agent concentrations, we first describe CA concentration in an (arbitrarily) small tis-

sue volume Oε. Let Vε be the volume of Oε centered around x and let vε be the blood volume

within the same control region. Letting the control region go towards zero volume, the poros-

ity ϕ(x)≔ limε!0 vε/Vε [mm3 mm−3] reflects the local, relative volume of the vascular system.

The simplification of porosity as a continuous function is frequently performed in flow simula-

tions. The flux q(x) as well as the porosity ϕ(x) are assumed to be stationary and hence inde-

pendent of time. We further introduce C = C(x, t) and c = c(x, t) as the average CA

concentration within Vε and vε, respectively. By definition, we obtain the relation C(x, t) = ϕ
(x)c(x, t). The rate of change of tracer molecules within a control volume Oi can hence be

phrased as

d
dt

Z

Oi

Cdx ¼
Z

Oi

d
dt
ð�cÞdx ¼

Z

Oi

�
dc
dt
dx; ð6Þ

where the assumption of stationary ϕ(x) was used. Assuming mainly transport and marginal

diffusion, the change in tracer mass within Oi occurs from advective flow and the source and

sink field Q(x). Let us write the source- and the sink term as Q(x) = Qsi(x) + Qso(x) where

Qsi(x) < 0 is the sink and Qso(x) > 0 is the source, and zero elsewhere. Note that
R

O Qdx = 0.

Using (6) and following the principle of conservation of tracer molecules, the rate of change of

contrast agent in a control volume Oi is modelled as

Z

Oi

�
dc
dt
dx þ

Z

@Oi

cðq � nÞdA ¼
Z

Oi

ðcaQsodx þ cQsiÞdx: ð7Þ

where n(x) is the outward unit normal on @Oi. Eq (7) is consistent with the continuity equa-

tion on local form

�
@c
@t
þr � ðcqÞ ¼ caQso þ cQsi x 2 O; t > 0;

cðx; tÞ ¼ 0 x 2 O; t ¼ 0:

�
�
�
�
�
�
�

�
�
�
�
�
�
�

ð8Þ
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for the initial condition c(x, 0) = 0 in accordance with no initial tracer at t = 0. Eq (8) is a linear

transport equation in c(x, t). Following [13], (8) admits a unique local solution.

2.4 Relating the transport equation model with the traditional

deconvolution model for perfusion

In this section we describe how the continuous model is related to the traditional deconvolu-

tion model. We will show that in the continuous model the flow into each voxel can be

described as a traditional model with arterial input determined by adjacent upstream voxels.

Let us start by modeling the CA concentration in a given voxel Oi using traditional models.

For sake of simplicity we assume that Qso = Qsi = 0 within that voxel. It is possible to extend

the following approach also to voxels where this is not the case. Define the outward normal

vector n and voxel face areas of inflow and outflow over the boundary as Sin ≔ {x 2 @Oi: q � n

< 0} and Sout ≔ {x 2 @Oi: q � n> 0} respectively. For the domain Oi we define the arterial

input cin as the weighted average of the tracer flux across Sin

cinðtÞ :¼

R

Sin
cðq � nÞdA
R

Sin
q � ndA

: ð9Þ

We define local perfusion Pv within Oi as the total feeding fluid inflow divided by the volume,

Pv :¼ �
1

jOij

Z

Sin

q � ndA: ð10Þ

Given incompressible flow, the rate of fluid entering the region is the same as the rate of fluid

leaving it. Further, let ci(t) denote the average fluid CA concentration within Oi. Then it holds

that Pv = Pout and we can describe ci by the traditional model (1)

ð�ciÞ
0
ðtÞ ¼ PvðcinðtÞ � ciðtÞÞ ð11Þ

with solution

CiðtÞ ¼ �iðJi � cinÞðtÞ where JiðtÞ ¼ ðPv=�iÞe� ðPv=�iÞt: ð12Þ

The arterial input cin is determined by (9), which recursively depends on all upstream voxels

until the global arterial input is reached. To verify this relationship numerically, we simulated

a tissue curve Ci(t) using both the continuous PDE model as well as analytical recursive convo-

lution by (12). We refer to the latter approach as local convolution. The two curves have an

almost perfect match, as seen in Fig 1 (left).

It follows by recursion that the concentration at voxel i can be written as a convolution of

the (global) arterial input function with a weighted average of all upstream impulse response

functions. Deconvolving a tissue concentration Ci with the global AIF will yield an impulse

response function which depends not only on the local flow and porosity, but on flow and

porosity of all upstream voxels. This relationship was also confirmed experimentally: Fig 1

(right) shows the impulse response function determined by analytical recursive convolution

and the numerically achieved impulse response function obtained from deconvolving a tissue

curve of the continuous model with the global arterial input function. The simulation was per-

formed at location (1, 20) of the digital phantom. The two curves coincide almost perfectly,

highlighting the validity of the established theory.

These results show that the PDE model and the convolution model are equal in terms of

local, voxelwise flow estimates if the convolution model is applied with the local arterial input.

Also, the impulse response function obtained by convolution of the global arterial input

Accuracy of perfusion measurements in coupled systems
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function is identical to an analytical recursive convolution along all upstream voxels. This

demonstrates that the perfusion recovered by traditional models depends on all upstream

flow. However, for meaningful interpretation of the perfusion the entire streamline length

within the capillary system needs to be taken into consideration. These results demonstrate

that perfusion is depending on the geometry of the streamlines, hence the geometry of the cap-

illary system.

2.5 Relating flux with perfusion

The flow model described in (21) uniquely determines the flux field q(x). However, in pharma-

cokinetic modeling the parameter of interest is usually CBF, which we will denote by P(x) as

the voxelwise field of perfusion. Surface flux and perfusion are physically distinct, and there

are at least two differences between q(x) and P(x). First, flux is a vector field and perfusion is a

scalar field. Second, the flux is normalized to a surface area and the perfusion is normalized to

a volume. Hence the flux describes flow over a surface separating spatial regions, while the per-

fusion describes blood leaving/entering a compartment within a given volume. According to

the common understanding of perfusion, P(x) is the amount of blood feeding a tissue volume

per unit time, with units [mm3 s−1 mm−3]. In this work we address the fine scale setting, where

the perfusion is taking place on a voxel level. At this level, a clearer understanding of how per-

fusion relates to the flux is desirable.

One straightforward approach for converting flux into perfusion could be to estimate the

perfusion as the total inflow (or outflow) of fluid (e.g. arterial blood) into a control region per

unit time, and then normalizing with the control region volume. This is a valid approach only

if the control regions are not feeding each other, and is therefore well-founded for the entire

organ, in line with the theoretical foundation of traditional compartment models for perfusion

where a control region has its own source of feeding arterial blood, independent of neighbour

regions.

On the other hand, if the control region is a single voxel or a sub-division of a capillary sys-

tem with sequentially feeding arterial blood, the traditional model assumptions are violated

since every control region will feed its neighbours, thus becoming a coupled system of flow.

Simply summing the total inflow into a voxel and dividing by the voxel volume will overesti-

mate the perfusion as the normalization refers to the wrong volume. This phenomenon is

Fig 1. Upstream dependency within traditional models. Left: Red curve shows the tissue concentrations (C) of the continuous PDE model at

location [32, 35]. Blue curve shows recursive convolution by (12) with experimental value of Pv = 5328 ml/min/100ml at the given location and cin

taken locally from upstream voxels around the simulated voxel. The two curves have an almost perfect overlap. Note that the numbers used for the

perfusion is unrealisticely high since normalization is performed with respect to the volume of only one voxel. Right: Red curve shows the computed

impulse response functions (IR) at location [1, 20] using the global arterial input function. Blue curve shows the analytic impulse response function

given by a convolution over all upstream flow. The two curves have an almost perfect overlap. These numerical experiments support that the

computed impulse response function by traditional methods is not the directly feeding impulse response function, but rather a recursive impulse

response function depending on all upstream voxels.

https://doi.org/10.1371/journal.pone.0200521.g001
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demonstrated in Fig 2 where the volume on the left has the true perfusion of P1 = F0/(2V) for

an incoming flow F0 [mm3 s−1] and distribution volume 2V [mm3]. However, for another dis-

cretization shown in the middle, the perfusion within each of these sub-volumes becomes P2 =

F0/V = 2P1. Taking the average across the two sub-volumes, it is clear that the perfusion is

overestimated with a factor of two. A discretization dependent perfusion estimate is not rec-

ommendable, and the perfusion estimate of P2 is clearly wrong.

In the following we introduce a meaningful notion of perfusion for the fine scale continu-

ous model. To do this, we will consider distribution volumes which are following the stream-

lines, as shown in Fig 2 (right). For each point of a streamline we will select a small

perpendicular disk with radius chosen in such a way that the total flow over each disk is con-

stant along the streamline.

More precisely, let us consider an arbitrary streamline S � O � R3 of length l> 0 and

parametrization s: [0, l]! S. We start by calculating the total flow over a small 2D disc perpen-

dicular to the streamline. Let y 2 S be an arbitrary location along the streamline. The total flow

F over a 2D disc B(y, R(y)) perpendicular to the flow field q(y), centered at y and with radius

R : S! Rþ, is given by

Fðy;RðyÞÞ ¼
Z

Bðy;RðyÞÞ
qðxÞ � ndx where n ≔ qðyÞ=jqðyÞj: ð13Þ

In order to calculate the perfusion, we need to establish the volume of a small tube around the

streamline. We will not consider a tube with constant radius, but one with spatially varying

Fig 2. Perfusion as a discretization dependent measure. Perfusion within a small volume. Left: A compartment with

volume 2V is exposed to a flow F0 [mm3 s−1] of fluid. By definition, the perfusion within this compartment becomes P1

= F0/(2V). Middle: The same volume is divided into two compartments (e.g. voxels), and the perfusion for each of the

compartments becomes P2 = F0/V = 2P1. Discrepancy between the two discretizations occurs because the flow is

counted twice as it is fed from one voxel to the other. Right: As a solution to the described problem we rather pick out a

true distribution volume ΔV (area in this 2D sketch), which is a small area around a given streamline along the centre

line of the grey area. This is the true distribution volume (area in this 2D sketch) which is fed with arterial blood from

the incoming fractional flow ΔF0. The correct perfusion within ΔV is therefore ΔF0/ΔV. The entire compartment can

further be divided into similar infinitesimal distribution volumes, thus providing locally correct perfusion estimates.

https://doi.org/10.1371/journal.pone.0200521.g002
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radii r : ½0; l� ! Rþ. The total volume of such a tube is given by

VðrÞ ¼
Z l

0

rðuÞ2pdu: ð14Þ

Note that R(y) ≔ r(u) for some u 2 [0, l]. We define the perfusion at the arbitrary point y on

the streamline as

PsðyÞ :¼ lim
ε!0

Fðy; εRðyÞÞ
VðεrÞ

for RðyÞ :¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
jqðyÞj

p
: ð15Þ

In this expression the radii R(y) are chosen in such a way that in the limit when ε! 0, the per-

fusion is constant along the streamline. To see this, let us assume that q is differentiable with

Jacobian J. Using a Taylor expansion of q(x) around y, the Lagrange remainder theorem, as

well as a change of coordinates z = (x − y)/(εR) yields

Fðy; εRðyÞÞ ¼ ε2 pþ ε
Z

Bð0;1Þ
n>JðzÞzRðyÞ3dz

� �

ð16Þ

where zi 2 (0, zi) for every vector element i, and simplifications are due to RðyÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
jqðyÞ

p
j

and n ≔ q(y)/|q(y)|. Combining this result with (15) yields what we refer to as global perfu-

sion

PsðyÞ ¼
Z l

0

rðuÞ2du
� �� 1

: ð17Þ

Note that (17) is independent of the spatial location y along the streamline, and is an explicit

formula for converting flux into perfusion, showing that the perfusion scales with the stream-

line length l, as well as with the geometry of the domain, represented by the radii r(u).

2.6 A method to estimate local porosity

Porosity and CBV have the same definition, and we can therefore state that ϕ� CBV. It is

known from literature on traditional models [1] for perfusion that CBV for the entire com-

partment can be expressed as

� ¼

R1
0
CðsÞds

R1
0
caðsÞds

: ð18Þ

It is not obvious that (18) is valid also for a 1C field model where the voxels are feeding each

other. We will now show that this is indeed the case.

Let us switch to a discrete setting. Consistent with the considerations in Section 2.4, the CA

concentration in any voxel can be described by Ci(t) = ϕi(Ji � cin,i)(t), where the local arterial

input is given by cin,i(t) = 1/P(P0ca(t) + ∑j2J Pjcj(t)) and Ji(t) = (P/ϕ)e−(P/ϕ)t. In cin,i(t), J is the

index set of all adjacent, upstream voxels and P = P0 + ∑j2J Pj. Here Pj is the normalized volume

flow across voxel-face j [mm3 s−1 mm−3] and P0 > 0 if voxel i has arterial contribution. Fur-

thermore, let us assume that q is a uni-directional flow field across each voxel face.

We will now use induction to show that
R1

0
ciðsÞds ¼

R1
0
caðsÞds, and then (18) follows. Let

Ik denote the set of voxels which have k layers of upstream voxels. E.g. I0 is the set of all voxels,

which have no upstream voxels, I1 is the set of voxels which are fed by I0 and so on. As an

assumption, the same voxel can not be member of several Ik, thus there is no flow interaction

between voxels within the same Ik. Induction will be carried out over k.
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Induction basis: Let k = 0 and let i 2 I0 be arbitrary. Since the area under the convolution

of two functions equals the product of the area of its factors,
R1

0
ciðsÞds ¼

R1
0
caðsÞds and the

claim follows.

Induction step: Consistent with our assumptions, for any voxel at location i 2 Ik+1 which

has the voxels J� Ik as their upstream neighbors, we find the following expression:

Z 1

0

ciðsÞds ¼
1

P

Z 1

0

Ji � ðP0caðsÞ þ
X

j2J

PjcjðsÞÞ

 !

ðsÞds ð19Þ

Splitting the convolution integrals into separate factors, applying
R1

0
JiðsÞds ¼ 1, as well as the

definition of P yields the claim.

2.7 Simulation of capillary flow

In this section we describe how we simulate a flux field q(x) driving the transport of fluid and

tracer. The modeling is in agreement with previous work on capillary perfusion simulations

[14–16].

For the time being we will not consider contrast agent concentrations, but only the fluid flow

in general. In-line with standard theory for a steady-state flow of an incompressible fluid and

with Darcy’s law [17], we assume that the fluid-flow q(x) obeys the following set of local PDEs

r � q ¼ Q; where q ¼ �
k
m
rp: ð20Þ

Here Q [mm3 s−1 mm−3] is the user-defined source- and sink term, which we assume to be only

non-zero within the source or the sink, k = k(x) is the intrinsic permeability tensor, p(x) is the

pressure, and μ(x) is the viscosity of the fluid. For simplicity, we will assume that k is a symmet-

ric and positive definite tensor with only nonzero diagonal elements kii = k, in accordance with

a homogeneous porous medium. Using (20) yields the following elliptic partial differential

equation in the pressure field p within the closed domain O,

r � �
k
m
rp

� �

¼ Q; x 2 O;

q � n ¼ 0; x 2 @O;

�
�
�
�
�
�
�

�
�
�
�
�
�
�

ð21Þ

for the outward unit normal n(x). After solving (21) for the pressure p, the flux field was esti-

mated according to (20).

2.8 Numerical implementation

First solving (21), and then (8), we set up a forward simulation of blood flow and indicator

dilution through the capillary system. A standard arterial input function was chosen [9], the

gamma-variate function ca(t)≔D0(t − t0)α e−(t − t0)/β for default parameters α = 3, D0 = 1 mmol

l−1 s−1, β = 1.5 s and t0 = 0 s. Average, ground truth perfusion was chosen as 50 ml/min/100ml,

a typical value for human brain perfusion [18, 19]. The field of view was chosen as

2mm × 2mm × 2mm, in the order of the capillary bed or individual capillaries, ranging from

0.1 mm to 3 mm [14], or 0.25 mm to 0.850 mm [20]. The source term was assigned to the

upper left voxel and the sink term was assigned to the lower right voxel. The source can be

understood as the arterial compartment, the sink as the venous compartment, and the remain-

ing field of view as the capillary system. The arterial input function (AIF) was measured in the

source. Permeability was chosen to be isotropic and constant throughout the domain k = kI
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for the identity I and k = 5 × 10−6 mm2. Dynamic blood viscosity was chosen as μ =

5 × 10−6 kPa s according to [21]. Porosity (e.g. CBV) was assumed to be ϕ = 0.05, in line with

measured CBV of the brain [19].

Eq (21) was solved numerically using two-point flux-approximation (TPFA), well known

within porous media simulations [22]. The transport of CA described in (7) was implemented

using first order upwinding [23], yielding a discrete 2D+time CA concentration map C(xi, tj).
From the porous media model using (21) and (8), streamlines to compute global perfusion Ps
were found from tracking of the flux vector field q by FACT [24], known from tractography.

Prior to reconstruction of perfusion using traditional models, the CA concentration map C
(xi, tj) was downsampled to a time-resolution of 0.1 s. In order to simulate different spatial res-

olutions of the scanning process, the data was averaged into blocks of {1, 2, 4, 8, 16, 32, 64} vox-

els with corresponding voxel sizes. Success of restoration was measured in terms of absolute,

relative reconstruction error, RE(a, b)≔ 100% � |a − b|/b, where a is reconstructed values and

b is ground truth values. Local perfusion Pv was computed according to (10). Global perfusion

Ps was computed according to the streamline definition (17).

2.9 Reconstruction of perfusion within real data

In order to illustrate the effect of overestimation also in real data we applied the deconvolution

model to a clinically acquired human perfusion CT dataset of a 56 years old male admitted

with suspicion of stroke to the Radboud University Medical Center in Nijmegen, the Nether-

lands. The perfusion scan was obtained using a Toshiba Aquilon ONE scanner, voxel-size

0.43 mm × 0.43 mm, slice thickness 0.5 mm, contrast agent 50 ml Xentix 300, total scan-time

114 s, time resolution ranging from 2.1 s in the early- to 30 s in the late phase of CA uptake.

Motion correction was performed with respect to the first timepoint using Euler transforma-

tions [25]. The arterial input function was manually selected within the middle cerebral artery

(MCA) by a medical expert. Since we expected to see local overestimation effects mainly for

small voxel sizes, the data was processed at full resolution (512 × 512 × 320 voxels). To cope

with noise, we applied gaussian smoothing with standard deviation of 1 voxel and window size

[5, 5, 5]. Relative concentrations were estimated from the CT signal assuming a spatially inde-

pendent proportionality constant. The brain tissue was segmented automatically and used as

ROI for the perfusion analysis.

3 Results

3.1 Reconstruction of perfusion within synthetic data

Tracer dilution in the flux-field was simulated and from the resulting intensity time curves we

tested the convolution based traditional model (bSVD) (3) as well as the maximum-slope (MS)

model (5) for their capability to recover perfusion. Recovered perfusion maps PbSVD and PMS

were compared against the two ground truth perfusion maps Ps and Pv depicted in Fig 3. As an

internal control of Ps, the average Ps at maximal resolution was found to be 49.59 ml/min/

100ml, for all practical means identical to the global input perfusion of 50 ml/min/100ml

mediated through the source. Results from reconstruction of the porosity ϕ (i.e. CBV) accord-

ing to (18) resulted in reconstruction errors of<1% for all voxel sizes.

We performed two different normalizations of the restored flow, a normalization (i) with

respect to volume, and (ii) with respect to surface. The volume normalization (i) implies nor-

malizing the flow to [ml/min/100ml], most in line with common units for perfusion. A com-

parison of ground truth perfusion to reconstructed perfusion using volume normalization is

shown in Fig 4. For a voxel size corresponding to the entire ROI (voxel size = 3 mm) the recon-

structed perfusion of PbSVD and PMS is close to the ground truth perfusion Ps and Pv. For any
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voxel size smaller than the entire domain the relative error increases inversely with voxel size,

in particular for reconstruction by bSVD. Global perfusion Ps is not depending on voxel size.

For surface normalization (ii) we first computed the absolute flow F [ml s−1] of ground

truth perfusion as well as reconstructed perfusion, and then normalized the flow to the surface

area of the distribution volume, F/S, here referred to as surface normalized flow. This interpre-

tation of perfusion has no standard clinical unit, thus we choose to scale the surface area S to

[mm2]. Reconstruction results of surface normalized flow is shown in Fig 5. For a voxel size

corresponding to the entire ROI (voxel size = 3 mm isotropic) the surface normalized flow of

PbSVD and PMS is close to the ground truth. For any voxel size smaller than the entire domain

the relative error increases inversely with voxel size, in particular for reconstruction by bSVD.

Both global perfusion Ps and local perfusion Pv are dependent on voxel size in the framework

of surface normalized flow.

Fig 3. Ground truth and reconstructed perfusion maps. Ground truth (a-b) and reconstructed (c-d) perfusion maps [ml/min/100ml] at the lowest discretization

scale. The reconstructed perfusion maps have substantially varying characteristics compared to any of the two grond truth perfusion maps. (a) Global perfusion

Ps(x) along the streamlines according to (17). (c) Local perfusion Pv(x) according to (10). (c) Reconstructed perfusion PbSVD according to (3). (d) Reconstructed

perfusion PMS according to (5).

https://doi.org/10.1371/journal.pone.0200521.g003

Fig 4. Restored perfusion as a function of voxel size. Comparison of restored perfusion with ground truth perfusion as a function of varying voxel size.

Dotted, blue lines show average perfusion (left axis). Solid, red lines are average, relative errors (RE) of restored perfusion as compared to ground truth

perfusion (right axis). (a) Global perfusion Ps is independent of discretization. Subdivision of the domain into smaller cells leads to a substantial

overestimation of perfusion for both reconstruction methods. (b) Local perfusion Pv is dependent on discretization level. A subdivision of the domain leads

to substantial underestimation of perfusion when compared to Pv for both reconstruction methods.

https://doi.org/10.1371/journal.pone.0200521.g004
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The difference in nature of surface vs. volume normalized flow makes a direct comparison

of flow values in Figs 4 and 5 cumbersome. In addition, the absolute values deviate in several

orders of magnitude due to different scale of the normalization factors, [100ml] vs. [mm2],

respectively.

3.2 Reconstruction of perfusion within real data

Perfusion for the entire brain by averaging the concentration time curves first and then per-

forming the bSVD yielded a perfusion of PbSVD = 24.79 ml/min/100ml. As a second step, vox-

elwise perfusion was estimated, depicted in Fig 6. These values yielded an average perfusion of

�PbSVD ¼ 64.36 ml/min/100ml, corresponding to an overestimation of perfusion with

RE = 159.60% compared to the value obtained for the entire brain.

4 Discussion

It has previously been shown that perfusion reconstructed from traditional 1C models in a

coupled system is discretization dependent (cfr. Fig 2) [6–8]. As a consequence, the obtained

results will strongly depend on acquisitions parameters and post-processing tools. It is

unknown to which extent the pharmacokinetic modelling overestimates perfusion and

whether the error is homogeneously distributed or not. Considering this, the shortcoming of

existing perfusion formulations has not been sufficiently well accounted for within clinical

studies [26, 27]. To clarify the potential impact of limitations seen within existing perfusion

models, our main contribution in the current work is to quantify the observed error. To the

best of our knowledge, such quantification has not been carried out previously.

Our results strongly support the usage of traditional 1C models for entire regions exclu-

sively fed by the measured arterial input. Moreover, our results also show that when traditional

models are applied only to parts of the system, the measured perfusion is overestimated (cfr.

Fig 5. Surface normalized flow. Comparison of surface normalized reconstructed flow [ml/min/mm2] to the ground truth as a function of varying voxel

size. Dotted, blue lines show average surface normalized flow (left axis). Solid, red lines are average, relative errors as compared to flow estimated from

ground truth perfusion (right axis). (a) Black, dotted line with filled squares shows that surface normalized flow estimated from ground truth perfusion Ps is

dependent on discretization level. Subdivision of the domain into smaller voxels leads to substantial overestimation of surface normalized flow for both

reconstruction methods bSVD and MS. (b) Black, dotted line with filled squares shows that surface normalized flow estimated from local perfusion Pv is

also dependent on discretization level. A further subdivision of the domain leads to substantial underestimation of the flow for both reconstruction methods

bSVD and MS.

https://doi.org/10.1371/journal.pone.0200521.g005

Accuracy of perfusion measurements in coupled systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0200521 July 20, 2018 12 / 16

https://doi.org/10.1371/journal.pone.0200521.g005
https://doi.org/10.1371/journal.pone.0200521


Fig 4, black and blue curves). Observed error in perfusion for a voxel size of *2 mm was

found to be * 40% for reconstruction by bSVD and * 20% for reconstruction by MS (cfr.

Fig 4). This is a relevant spatial scale for today’s MR acquisitions. The error is expected to

increase in future acquisitions along with hardware and software improvements leading to

higher spatial sampling.

There are at least two reasons for overestimation of perfusion in traditional 1C models. The

first reason is that blood passing through a voxel without being locally delivered to the capillary

tissue will contribute to artificially high perfusion values. This issue has not been accounted for

in our digital model but my be handled by more complex multi compartment spatial model-

ling described in i.e. [8]. The second reason is thoroughly described here, and relates to estima-

tion of an incorrect distribution volume used for computing the perfusion. Overestimation of

perfusion obtained within the digital phantom was also confirmed by real data experiments,

where we showed local overestimation of perfusion for voxelwise estimates as compared to an

averaging of concentrations for the entire volume of interest (cfr. Section 3.2).

In order to demonstrate our results we introduced two definitions of voxelwise perfusion,

global perfusion Ps and local perfusion Pv. Local perfusion Pv is in line with [7] where the

authors demonstrated a discretization dependent flow without connecting it mathematically

to perfusion. Theory and examples in our work show that this definition of perfusion does not

comply with the physical understanding of perfusion as a feeding arterial blood flow. The cor-

rect distribution volume is not accounted for and the obtained perfusion will be strongly over-

estimated compared to the actual perfusion. However, our analyses show that traditional

models would restore the local flow value if the local arterial input function was selected,

implying that traditional models are accurate as long as the model assumptions are not vio-

lated. The coupling between the continuous porous media model and the convolution model

in Section 2.4 demonstrates that there is no contradiction between these two models. The

problematic issue of traditional models is related to physical interpretation and normalization

with respect to incorrect distribution volume.

Global perfusion Ps models perfusion along the streamlines and most accurately reflects

the physical notion of volume flow within the correct distribution volume according to

mathematical definitions. We showed that Ps is independent of discretization (cfr. Fig 4), Ps is

a constant quantity along the streamline, and scales with streamline length and geometry

according to (17).

Fig 6. Reconstructed perfusion in real data. Real-data reconstruction of perfusion (see Section 2.9 for details). (a) AIF

manually selected from the MCA. (b) One slice of restored voxelwise CBF [ml/min/100ml] from a 3D volume of interest. (c)

Mean concentration time curve for the complete 3D volume of interest and the curve approximation by bSVD (rel. = relative).

https://doi.org/10.1371/journal.pone.0200521.g006

Accuracy of perfusion measurements in coupled systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0200521 July 20, 2018 13 / 16

https://doi.org/10.1371/journal.pone.0200521.g006
https://doi.org/10.1371/journal.pone.0200521


For our purpose, the concept of Ps was useful as a realistic ground truth in order to clarify

the definition of perfusion as a flow that must be normalized along the entire capillary length,

where the blood undergoes a transition from arterial to venous blood. Traditional perfusion

measurements are thereby dependent on both the discretization and the geometry of the

domain. While the geometry in our experiments is limited to a simplified square with diagonal

flow gives fairly simple analysis, estimation of Ps in real applications is practically difficult due

to a highly complex and unknown microvasculature. Nevertheless, the derivation of the theo-

retical relation between Ps and streamline length is valid for an arbitrary geometry.

Development of new field models for perfusion is highly demanded due to the scale depen-

dency, and a few initiatives have been proposed based on multi compartment flow models

[8, 16]. Alternative approaches with estimation of voxel-speciffic AIFs have also been sug-

gested [28, 29]. These approaches may suffer from instabilities or errors which have not yet

been handled [29]. A possible hybrid approach that may have clinical relevance is to estimate a

modest number of local AIFs feeding anatomically sensible regions on a scale way above the

capillary systems. This will however require some prior knowledge of local anatomy and

vasculature.

It was previously suggested to normalize the flow by surface instead of volume [7]. Our

experiments suggest that a surface normalization is nevertheless discretization dependent, and

traditional 1C models are not able to restore this type of perfusion, neither for global, nor for

local perfusion (cfr. Fig 5, blue and black lines).

We have also shown there is a global error directly scaling with smaller voxel sizes (cfr.

Fig 4). A comparison between individual scans with otherwise equal acquisition parameters

and post-processing chains should ideally adjust for the global error in the interpretation of

absolute perfusion values. As such, voxelwise maps of perfusion could still be of high clinical

value as the main goal is a comparison of perfusion between patients or between repeated

scans of individuals. However, particular care should be undertaken in the case of comparing

perfusion data of various resolution. Multicenter or retrospective studies are particularly sus-

ceptible to this issue where data collected from various sources are different with respect to

hardware, resolution and post-processing tools that can affect the discretization level. Future

study design should account for this limitation and special care should be undertaken to

ensure equal level of discretization in perfusion estimates.

In addition to the observed global error we also observed inhomogeneous reconstruction

errors within the capillary system. This becomes clear in Fig 3 where the reconstructed perfu-

sion maps PbSVD and PMS are strongly unlike the ground truth perfusion maps of Ps and Pv.

This inhomogeneity leads to locally inaccurate estimates of perfusion within a patch, even if

the global average value within the patch were correct. If analyses of voxelwise perfusion is

undertaken with high resolution the local error can become large within each capillary patch.

Regarding the CBV estimates, estimation of blood volume is stable, and varying voxel size

had little impact on the results. These results are in agreement with the analyses in Section 2.6

supporting the usage of (18) for computing voxelwise CBV with high accuracy for any voxel

size.

5 Conclusion

Our experiments confirm that traditional 1C models for perfusion perform well if they are

applied to the entire domain. However, when they are applied to fractions within a coupled

domain, perfusion becomes scale dependent. We quantified substantial and increasing recon-

struction errors of perfusion as a function of smaller voxel size, and we also found similar

effects in real data. The observed reconstruction error for a simplified geometry in clinically
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relevant resolution was between *20% to *40%. The error is expected to vary with geometri-

cal complexity of the capillary system and increase with higher spatial resolution. The reason

for the observed errors is not numerical instabilities in the deconvolution but rather that tradi-

tional 1C models will not account for correct distribution volume within smaller fractions of

the region of interest. As a consequence, interpretation of absolute perfusion for the purpose

of diagnosis and disease monitoring must be undertaken with care, and comparison of perfu-

sion values from individual dynamic data sets with different resolution is not recommended.
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