
To be announced:

Understanding and model checking
Group Announcement Logic

University of Bergen

Master’s thesis in Information science

Anders Eide
Supervisor: Truls Pedersen

May 31, 2019

Abstract

In this master’s thesis we present a graphical model checking tool for group an-
nouncement logic called GALMC, capable of visualizing the process of checking
formulas in a step-by-step fashion. We also define how to enumerate the set of
ways a given coalition can restrict a model as well as present pseudocode algorithms
describing how we translated these definitions in our model checker.

1

Contents

1 Background 3
1.1 Motivation . 3
1.2 Model checking . 3
1.3 State of the art . 5
1.4 Structure . 6

2 Group Announcement Logic 8
2.1 Models . 8
2.2 Language and semantics . 9
2.3 Bisimulation . 13

3 Model checking Group Announcement Logic 15
3.1 Enumeration of announcements in single agent cases 15
3.2 Generalizing the single agent case 18
3.3 Proof of suitability . 18
3.4 Algorithm for bisimilarity check . 20
3.5 Smallest bisimilar structure . 21
3.6 Enumerating the set of announceable extensions 24

4 GALMC 28
4.1 Visualization of Kripke structures 29
4.2 Checking formulas . 31
4.3 Visualizing the checking process . 32
4.4 Visualizing group announcements 34

5 Implementation details 37
5.1 Language and interpretation . 38
5.2 Kripke structures and UI components 41
5.3 Model checking . 42

6 Summary 44

2

1 Background

1.1 Motivation

In 2010, Ågotnes et al. published a paper on their extension of Public Announce-
ment Logic called Group Announcement Logic (GAL) [1]. While the group an-
nouncement operator introduced in this logic is highly expressive and enables us
to quantify over possible announcements groups of agents can make and their abil-
ity to impact the system around them, this expressiveness can also be somewhat
confusing and complicated to understand at first.

For this reason, having a learning aid of some sort, capable of visualizing how
the various operators of this logic (and group announcements in particular) work
could greatly aid future students and logicians in understanding how GAL and
related logics work, especially seeing how other visual tools such as JFLAP1 have
previously been used to great effect in teaching similar topics.

When we work with these logics, we are commonly trying to assert whether or
not our models exhibit some property. While we will return to GAL and define and
discuss it later in this thesis, it might be a good idea to start with a discussion of
how these logics are typically used. This brings us to the topic of model checking,
which is one of the key concepts this thesis will be covering.

1.2 Model checking

Phrased abstractly, model checking is a way for us to further our understanding
of complex systems or structures by formalizing ways of analyzing them. Gener-
ally it involves the process of verifying whether or not our model exhibits certain
properties. Depending on the type of logic we are working with, our models are
commonly represented as Kripke structures [15] (which we will be using and dis-
cussing later in this thesis), but can also be described in more purely algebraic
forms. While we use these models to model certain aspects of the world around
us, we also require ways of describing its properties, which is where our logics come
in. The logics define not only what constitutes a legal formula (i.e. a syntax), but
also their meaning (i.e. the semantics of all valid ways of building formulas).

Model checking has a rich tradition in the field of computer science and has seen
a lot of practical use in formal software and hardware verification. A few examples
of properties which can be interesting to verify would be liveness (regardless of
system state, we can always reach a ‘reset’ state and guarantee that the system
will acknowledge and answer an incoming request, i.e. not deadlock) and safety
(ensuring that the system can never enter a potentially dangerous state). While
model checking is in most cases not a replacement for traditional forms of software

1Available from: http://www.jflap.org/

3

http://www.jflap.org/

and hardware testing, it can be seen as a complementary technique to be used in
high-risk scenarios where the cost of failure offsets the investment into utilizing
more formal verification methods to ensure correctness.

A more concrete example that also highlights one such high-risk scenario is the
case of the Ariane 5 rocket, mentioned by Clarke et al. in their handbook on model
checking [5], as an example of why we need formal methods for verifying software
and hardware integrity. This example, where the rocket ended up exploding shortly
after takeoff due to a conversion error in the software controlling the guidance
system, shows just one of many situations where we are forced to rely on systems
to carry out tasks of critical importance to us. As these systems grow not just
in complexity, but also in importance and their effects on our daily lives, it also
becomes increasingly important to improve our methods of verifying the behavior
of these systems.

Traditionally, practical applications of model checking has been dominated by
simpler forms of logic such as Computation Tree Logic [4] (CTL) and Linear time
Temporal Logic [13] (LTL), whereas more complex logics such as Public Announce-
ment Logic [12] (PAL), Alternating-time Temporal Logic [2] (ATL) and Group An-
nouncement Logic tend to be regarded as more ‘academical pursuits’. While these
simpler logics have the obvious advantage of being far simpler to efficiently model
check, leading to a wide variety of available tools such as BLAST [8] or SPIN2

[9] (which at the time of writing will soon have its 30th anniversary while still
being actively maintained), they are also less expressive than their more modern
academic counterparts. However as our systems grow ever more distributed (espe-
cially in today’s focus on ‘autonomous’ systems and IoT appliances) it might no
longer be enough to verify the behavior of our systems in isolation. For example,
if we are to guarantee the safety of tomorrow’s fully self-driving cars, it could be
useful to simulate the actions of these systems as autonomous agents, individually
capable of influencing the state of a more complex network of such agents. It is
when it comes to modeling more complex situations and networks such as these,
that we might require more expressive forms of logic such as for example ATL, its
epistemic extension ATEL [14] (Alternating-time Temporal Epistemic Logic), or
as we will be exploring, GAL. As these epistemic logics allow us to not only reason
around the knowledge of each agent in our systems, but also their knowledge of
other agents’ knowledge, it makes sense that these epistemic logics could greatly
benefit the field of formal software verification, given enough time, interest and
support in the form of powerful model checking tools. Unfortunately however,
the complexities of these logics also mean that the problem of automated model
checking for them is not sufficiently well explored. Looking back at our previously
mentioned logics like CTL and LTL, we believe that the field of model checking

2Public repository for SPIN can be found at: https://github.com/nimble-code/Spin

4

dynamic epistemic logics lags far behind, especially in the case of GAL, which does
not yet have a model checker implemented for it at all.

1.3 State of the art

While model checkers do exist for similar kinds of logic such as DEMO S53 for
PAL and SMCDEL4 [7] for DEL (Dynamic Epistemic Logic) most of them tend to
be rather hard to use and often require a good deal of time and expert knowledge
in order to learn how to use. This, combined with the fact that both of our pre-
viously mentioned examples base themselves on using a Haskell REPL (read-eval-
print-loop) for user interaction means they would most likely also lend themselves
poorly to teaching. While there does exist some fairly powerful visualization li-
braries/modules generating visualizations of Kripke structures such as Gattinger’s
KripkeVis module5, they still require a fairly great deal of technical competence
in order to set up correctly, and at least in the case of KripkeVis, only produce
static visualizations, instead of facilitating direct manipulation of the models [6].

A key reason for why these more complex logics have not seen much use in
practical applications of model checking yet, is that their expressiveness not only
leads to increased complexity in terms of the implementation of model checkers,
but also in terms of computational complexity of the model checking process itself.
While there has been some recent developments in terms of speeding up model
checking of epistemic logics by way of symbolic representations such as using binary
decision diagrams [3] (BDDs) instead of verbatim models for DEL [7], this thesis
is more concerned with the creation of an easily approachable tool for learning,
rather than for research or practical applications which might require more efficient
algorithms.

This brings us to where we wish to make a contribution to the field. By de-
veloping an easy to use model checking tool that can be utilized in an educational
context, we hope to spark more interest in these logics and help make them more
accessible to others by providing intuitive visualizations of how the logic works.
As such we not only wanted to make a model checker that supports group an-
nouncement logic, but also make it as intuitive as possible by giving it a graphical
user interface that allows the user to interact with their models in a more direct
manner than more algebraic formats used by other tools to describe theirs.

Our reasoning behind this is that by moving away from the Haskell REPLs
used by DEMO S5 and SMCDEL and crafting an application that has a more

3Haskell source files and user guides available from: https://homepages.cwi.nl/~jve/

software/demo_s5/
4Public repository found at https://github.com/jrclogic/SMCDEL
5Haskell source files and installation guide available from https://w4eg.de/malvin/illc/

kripkevis/

5

https://homepages.cwi.nl/~jve/software/demo_s5/
https://homepages.cwi.nl/~jve/software/demo_s5/
https://w4eg.de/malvin/illc/kripkevis/
https://w4eg.de/malvin/illc/kripkevis/

intuitive graphical user interface, we could significantly lower the barrier of entry
and make our tool far easier to adopt in educational settings, than its counterparts.
Additionally, by making it capable of visualizing each step of the checking process,
we believe that it can greatly benefit students and fledgling logicians trying to
understand how the various operators of GAL and epistemic logic in general work.

There is also an interesting theoretical challenge involved in model checking
GAL, as the semantics behind the logic’s group announcement operator involve
quantifying over an infinite set of formulas that a given coalition of agents can
announce. To this end, we will present an algorithm for grouping this infinite
set of formulas into a finite set of groups by which states in our structures they
are satisfied in through exploring the properties of minimal bisimilar structures
(models stripped of any redundant information).

1.4 Structure

This thesis is divided into the following sections:

• This background section dedicated to introducing the reader to the field of
dynamic epistemic logic, discussing the topic of model checking as well as its
usages and outlining the niche we aim to fill with our own model checking
tool.

• A section about the logic this thesis will be working with, Group Announce-
ment Logic, where we will be presenting most of the definitions that will be
used in the following sections.

• The next section will contain the majority of our theoretical work behind this
thesis, where we discuss the semantics of group announcement logic and will
revisit its definitions in order to rework them into definitions that are more
readily translatable into algorithms which we will use in the implementation
of our model checker.

• We will then translate these definitions into algorithms presented through
pseudocode in another section, discussing any differences between the logical
semantics and our algorithms.

• After this, we will present the results of our work in the form of a fully-
functional graphical model checking tool for GAL, that also doubles as a
teaching aid. Here we will present its various features and our rationales for
implementing them.

• Once we have finished our high-level introduction and presentation of our
tool, we will then transition into a more in-depth discussion of how the

6

features from the previous section were implemented, as well as our choices
of technologies and libraries and which advantages and disadvantages they
brought.

• Finally, we will recap with a discussion of our results and what potential
future work could be done to improve our tool further.

7

2 Group Announcement Logic

In this section we will introduce and discuss the various concepts and features
of epistemic logic, starting by formally defining and explaining the most central
concepts we will be working with. We will then present the language of Group
Announcement Logic and aim to give the reader an understanding of the semantics
behind it, before we transition into our own theoretical work on exploring its group
announcement operator in the next chapter. This will lay the foundations for our
implementation of the model checking tool that will be presented in the second
half of this thesis.

2.1 Models

In our introduction we briefly mentioned the concept of Kripke structures and
epistemic models. These models are structures consisting of states, typically rep-
resenting ‘possible worlds’, and agents which may or may not be able to distinguish
them. Which states our agents are incapable of distinguishing is represented by an
equivalence relation consisting of pairs of states this agent is unable to tell apart
and a function from each agent in our model, to that individual agent’s equiva-
lence relation. These models also contain a set of boolean propositions, typically
describing properties which may or may not hold in each state, as well as a valu-
ation function, which for each proposition in our model, returns the set of states
where the given proposition holds.

Throughout the rest of this thesis, we will refer to these models by the following
definition:

Definition 2.1 (Models). Given a group of agents A, and a set of propositions
P , a model M is a structure M = (S,∼, V), where

• S is a set of states

• ∼ is a function from every agent a ∈ A to a’s equivalence relation, denoted
∼a, such that ∼a⊆ S × S

• V (p) ⊆ S is a valuation function that for every proposition p ∈ P returns
the set of states where p is true

We will also frequently use ∼ as s ∼a t, for some a ∈ A to denote that agent a
is unable to distinguish between states s and t. When we wish to highlight specific
states in a model we will denote this by writing (M, s) to specify that we are
referring to state s in the model M, commonly known as a pointed model. This
is the form that we will use when we are discussing the properties of a model plus
a designated ‘actual’ state.

8

A simple example of an epistemic model could be to imagine someone that
doesn’t know whether or not it is raining outside. If we focus solely on whether or
not it is in fact raining outside, we can denote this proposition as p, where p =“It
is raining outside”. Since this agent, a does not know whether it is raining, this
means that in their mind there must exist at least two possible worlds, or states;
one where p is true, and one where p is false which they are unable to distinguish.
If we label these states as s0 and s1, we end up with the model shown in Figure
2.1, where we use ¬p to signify that p is not true in (M, s1).

s0
p

s1¬p
a

Figure 2.1: A basic model with two states

Note that since we are working with S5 models, all nodes (states) also have
reflexive edges to themselves, even if they are not explicitly drawn in these figures.

2.2 Language and semantics

Continuing with the model shown in Figure 2.1, we might want to express certain
properties such as p being true in (M, s0), for this we would write (M, s0) |= p,
or that M satisfies p at s0. More formally, (M, s0) |= p holds iff s0 ∈ V (p)
where if we go back to Definition 2.1, we can see that V is a valuation function
for propositions, meaning that it returns the set of states in M, where p holds.

In general however, we want to build more complex formulas to check against
our models than simple propositions, and for this we need connectives; and logics
that define their semantics.

Definition 2.2 (The language LGAL).

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | (ϕ ∨ ψ) | ϕ→ ψ | Kaϕ | [ϕ]ψ | [G]ϕ

where p is a proposition i.e. p ∈ P , a is an agent (i.e. a ∈ A) and G is a set of
agents i.e. G ⊆ A.

Definition 2.2 defines the language of LGAL. It inductively specifies in BNF-
notation how each operator in the language can be used to create new formulas.
This notation however merely specifies the syntax of the language; which ways
we are allowed to arrange the symbols. In order to specify what each operator
does, we also need semantics, which we will add through the satisfaction relation,
|=. When some pointed model (M, s) is not in the satisfaction relation with some
formula ϕ (i.e, ϕ does not hold in (M, s)), we write (M, s) 6|= ϕ.

9

Definition 2.3 (GAL Semantics).

M, s |= p iff s ∈ V (p)

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= ϕ→ ψ iff M, s 6|= ϕ or M, s |= ψ

M, s |= Kiϕ iff for every t such that s ∼i t, M, t |= ϕ

M, s |= [ϕ]ψ iff M, s |= ϕ implies that M|ϕ, s |= ψ

M, s |= [G]ϕ iff for every set {ψi : i ∈ G} ⊆ Lel, M, s |= [
∧
i∈GKiψi]ϕ

Model updates, (M|ϕ), and the language of epistemic logic, (Lel), will be cov-
ered later.

Starting with the most basic component of our formulas we have propositions,
commonly referred to as atoms or atomic formulas as propositions themselves are
also formulas. If we want to check if our pointed model (M, s) satisfies a property
p (denoted by M, s |= p), then as we can see in Definition 2.3 we do this by
checking whether the state s is an element in the set of states where p is true,
more formally if s ∈ V (p).

For the explanation of our operators we will be using ϕ and ψ to represent
arbitrary formulas. Negation ¬, is relatively trivial, with ¬ϕ simply meaning the
negation of ϕ and that M, s |= ¬ϕ if, and only if M, s 6|= ϕ. Conjunction and
disjunction ∧ and ∨, are also pretty simple, translating to ‘and’ and ‘(inclusive) or’,
as shown in Definition 2.3. Implication,→, can be somewhat loosely translated to
‘if a, then b’. If a does not hold however, then the implication automatically holds
regardless of the valuation of b. More specifically, the only time an implication
is false is when a is true and b is false. We will also use ϕ ↔ ψ, to denote
biimplications, meaning (ϕ→ ψ) ∧ (ψ → ϕ) throughout this thesis.

The previous operators are all relatively basic and only express boolean prop-
erties regarding the structures they are checked against, the remaining operators
in our language are more interesting, as they also express properties regarding the
knowledge of the agents in our systems, bringing us into epistemic logic. The Ki

operator is the first of these, with M, s |= Kap expressing that in our pointed
model, agent a knows that the proposition p is true. Verifying that this is the
case however is where things get interesting, as the previous operators only ex-
press properties of the current state, their scope is also limited to that current

10

state, whereas the Ki operator potentially requires us to check every state that
this agent is incapable of distinguishing from our current state. In order to check
if (M, s) |= Kaϕ, we need to ascertain that all states a is unable to distinguish
from s also satisfy ϕ. More specifically, that for all states t such that t ∼a s, that
M, t |= ϕ. This is because if there exists any such state that does not satisfy ϕ,
then agent a considers it possible that ϕ is not satisfied since they cannot tell if
t or s is the actual state they are in. Hence, the agent is not certain whether ϕ
holds.

While the Ki operator lets us reason about the knowledge of our agents, the
public announcement operator [ϕ]ψ lets us update it, or at least add to it by in-
forming the agents through a truthful announcement that some formula is true in
the current state as defined by the pointed model we are checking the announce-
ment in. In Definition 2.3 we use the notation M|ϕ, s to denote M ‘updated’ by
ϕ, meaning M without all states that do not satisfy ϕ.

Definition 2.4 (Model Updates). M = 〈S,∼, V 〉 updated by ϕ is defined as the
following: M|ϕ = 〈S ′,∼′, V ′〉 where

S ′ = {s|s ∈ S and M, s |= ϕ}
∼′a = ∼a ∩(S ′ × S ′) for all a ∈ A

V ′(p) = V (p) ∩ S ′ for all p ∈ P

Informally, Definition 2.4 can be read as filtering out all states inM which do
not satisfy ϕ and then constraining the equivalence relations for each agent as well
as the valuation function to that filtered set of states.

The final and most interesting operator in LGAL is the group announcement op-
erator, [G]ϕ. In [G]ϕ, G is some coalition of agents such that G ⊆ A. M, s |= [G]ϕ
expresses that there is no way for the group G to announce anything that can make
ϕ false in M, s. Note however that the formulas the agents in [G] can announce
are constrained to basic epistemic formulas, or to Lel as defined in Definition 2.5 in
order to avoid making the definition of group announcements circular. The defini-
tion of satisfaction of the group announcement connective reduces to a quantified
public announcement (note that this is a different connective with only superficial
similarity). It is defined as the statement that the conjuntion of all sets of formulas
{ϕi : i ∈ G} may be announced without making ϕ false in the current state. More
intuitively, that G is unable to avoid ϕ coming about.

The syntax of {ψi : i ∈ G}[
∧
i∈GKiψi]ϕ intuitively means ‘the conjunction of

all formulas Kiψi such that each agent i knows their formula ψi and that after this
conjunction is announced, ϕ is true’. As Definition 2.3 specifies that this has to
hold for every set of {ψi : i ∈ G} however, it might be easier to think of it as there
not existing a set such that M, s 6|= [

∧
i∈GKiψi]ϕ or that G is unable to prevent

ϕ from coming true.

11

Definition 2.5 (Semantics of epistemic logic Lel).

M, s |= p iff s ∈ V (p)

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= ϕ→ ψ iff M, s 6|= ϕ or M, s |= ψ

M, s |= Kiϕ iff for every t such that s ∼i t, M, t |= ϕ

where all operators have their semantics defined as in Definition 2.3.

We will also be using the duality of the two announcement operators, 〈ϕ〉ψ and
〈G〉ϕ which are defined as follows in Definition 2.6.

Definition 2.6 (Dual announcement operators).

M, s |= 〈ϕ〉ψ iff M, s |= ϕ and M|ϕ, s |= ψ

M, s |= 〈G〉ϕ iff there exists a set {ψi : i ∈ G} ⊆ Lel such that:

M, s |= 〈
∧
i∈G

Kiψi〉ϕ

The difference between [ϕ]ψ and 〈ϕ〉ψ is that the box notation ‘implies’ that
ψ is true in the updated model, while the diamond notation requires both that
M, s |= ϕ and M |ϕ |= ψ. For group announcements, the box notation expresses
that something has to hold after any possible set of announcements the coalition
can make, while the dual 〈G〉 expresses that there exists at least one set of an-
nouncements for the agents in G such that after their announcements, ϕ is true.
An interesting observation to make is that like in modal logics we have the same
relation between [ψ]ϕ and 〈ψ〉ϕ as �ϕ and ♦ϕ, namely that [ψ]ϕ↔ ¬〈ψ〉¬ϕ and
[G]ϕ↔ ¬〈G〉¬ϕ.

When we are discussing announcement operators we are usually also interested
in the knowledge of the agents in our system, as such it is useful to be able to refer
to the set of states an agent considers indistinguishable from the given state. For
this we will be using the notion of equivalence classes, defined as the following.

Definition 2.7 (Equivalence classes). Given a state s and some agent a, a’s
equivalence class for s is denoted by JsKa where

JsKa = {t | s ∼a t}

12

Somewhat related to equivalence classes, we will also be using the concept of
formula extensions, referring to the set of states a formula is satisfied in, denoted
by ||ϕ||, but also to refer to a set of formulas with the same extension, i.e. are
satisfied in the same states.

Definition 2.8 (Formula extensions). For any formula ϕ and any model M, the
extension of ϕ in M is denoted ||ϕ||M and defined as

||ϕ||M = {s ∈ S | M, s |= ϕ}

Note that as JsKa contains all states a is unable to distinguish from s, for a to
know any formula ϕ, this means that a’s equivalence class for s has to be a subset
of ϕ’s extension, as otherwise a would consider it possible that ϕ does not hold.
Even stronger, this idea holds both ways, and we get M, s |= Kaϕ⇔ JsKa ⊆ ||ϕ||M.
In contexts where the model is implicit, we will also refer to ||ϕ||M simply as ||ϕ||.

2.3 Bisimulation

Sometimes we may want to express that two models are ‘the same’, i.e. they satisfy
exactly the same set of formulas, despite possibly being structurally different. For
this, we have the concept of bisimilarity, denoted by M -M′.

Briefly explained, two models M and M′ are bisimilar iff for any state s ∈ S,
then for any formula ϕ, M, s |= ϕ iff there also exists some s′ ∈ S ′ such that
M′, s′ |= ϕ, regardless of M and M′’s structures.

As bisimilarity will be central to our exploration of the semantics of the group
announcement operator in the next chapter, we introduce the definition of bisim-
ilarity as follows in Definition 2.9.

Definition 2.9 (Bisimulation). Given two models M = (S,∼, V) and M′ =
(S ′,∼′, V ′), a non-empty relation R ⊆ S × S ′ is a bisimulation between M and
M′ iff for all s ∈ S with (s, s′) ∈ R:

atoms for all p ∈ P : s ∈ V (p) iff s′ ∈ V ′(p);

forth for all a ∈ A and all t ∈ S: if s ∼a t, then there exists a t′ ∈ S ′ such that
s′ ∼′a t′ and (t, t′) ∈ R;

back for all a ∈ A and all t′ ∈ S ′: if s′ ∼′a t′, then there exists a t ∈ S such that
s ∼a t and (t′, t) ∈ R;

Building on the concept of bisimilar states, a bisimulation contraction of a
model M is a smallest bisimilar structure to M, obtained by merging each set of
bisimilar states in M into a single state.

13

s0
p

s1¬p

s2
p

s3¬p
s4¬p

s5
p

a, b

a b

ab

Figure 2.2: Two bisimilar, but structurally different models.

Definition 2.10 (Bisimulation contracted models). A model M is said to be
bisimulation contracted iff there is no model M′ which has fewer states and is
bisimilar to M. A bisimulation contraction of a model M, is any minimal model
M′, bisimilar to M.

The reason why this concept is interesting is that since these bisimulation
contracted models do not contain any bisimilar states, per the definition of bisim-
ilarity, there has to exist some set of formulas that uniquely identify each state in
our model by being satisfied only in that specific state of our model. We will refer
to a choice of these as labeling formulas.

Definition 2.11 (Labeling formulas). Given a bisimulation contracted model M,
there exists at least one formula ϕs for every s ∈ S such that M, t |= ϕs iff s = t.
More precisely in terms of formula extensions: ∀s ∈ S, ∃ϕs such that ||ϕs|| = {s}.

An important property of these labeling formulas is that the result of publicly
announcing a labeling formula will remove all states from our model, except the
state this formula uniquely labels. As such, we can reduce our model to any
submodel possible, by combining these labeling formulas with disjunctions and
announcing the resulting formula. We will additionally be referring to the set
of such labeling formulas for a given bisimulation contracted model M as FM,
defined in Definition 2.12.

Definition 2.12 (Set of labeling formulas). Given a bisimulation contracted model
M, the set of formulas uniquely identifying each state in the model is defined as
FM = {ϕs|s ∈ S}.

14

3 Model checking Group Announcement Logic

In this section we will describe the process of translating the definitions from the
previous chapter into algorithms that will be used in our model checker.

Going back to our revised semantics behind the group announcement operators
in Definition 3.6 we can see that once we can determine how to enumerate the set
of announceable extensions AG, implementing the semantics behind the group
announcement operator is fairly straightforward. However, as our definition of AG
uses the concept of bisimulation contracted models, we will first need to cover how
we can check whether states are bisimilar and then apply that check to models as
a whole in order to reduce them to their smallest bisimilar structures.

3.1 Enumeration of announcements in single agent cases

Recall the definition of the semantics behind M, s |= 〈G〉ϕ in Definition 2.6, an
informal way of explaining it would be that there exists at least one set of formulas
the coalition can announce such that ϕ is true after their announcements.

Using our definitions of labeling formulas and formula extensions in Definition
2.8 and 2.11 to look at what kinds of formulas any given agent can announce,
we note that the goal is to convey information to the other agents in the system.
Therefore we do not need to look at the formulas themselves, but only at what
consequence announcing them would have and whether or not the agent is able to
announce them. For this reason we will be using the concept of formula extensions
from Definition 2.8 instead of concrete formulas as announcing any given formula
will eliminate all states not in that formula’s extension from the updated model
as defined by the semantics of model updates.

s1
p, q

s2
p,¬q

s3¬p, q
s4¬p,¬q

a

a

b b

Figure 3.1: A basic bisimulation contracted model.

If we attempt to determine which sets of formulas some agent i can announce
in the model in Figure 3.1 we can see that the set of announceable formula ex-
tensions will always be a subset of the power set of states in the model. Or more
precisely, the set of announceable formula extensions for some agent i in a given

15

pointed model M, s is a subset of the power set of states in M, where each set is
announceable by i if and only if that set follows the following rules in Definition
3.1.

Definition 3.1 (Rules for eliminating formulas by their extension). For any for-
mula ϕ and bisimulation contracted pointed model (M, s), the formula’s extension
in M, ||ϕ||M, must satisfy the following rules in order for the formula to be an-
nounceable by some agent i in coalition G:

• ||ϕ||M must contain the actual state in our pointed model

• JsKa ⊆ ||ϕ||M

The reasoning behind these two rules is based on the semantics of the group
announcement operators in Definition 2.3, we can see that we are essentially search-
ing for a combination of formulas which when announced, make ϕ false. Because
of this, having an agent announce that they know something which is false, or
something they do not actually know, will simply make the public announcement
trivially true. This means there is no point in checking any announcement con-
taining such a formula, therefore the formula:

(1) has to be satisfied in the ‘actual’ state of our pointed model, and

(2) has to be satisfied in every state the agent is incapable of distinguishing from
that ‘actual’ state, meaning the agent’s equivalence class for that state must
be a subset of the formula’s extension in our model.

Proposition 3.2. For every extension ||ϕ||M that satisfies the rules in Definition
3.1 for some agent, any formula with the same extension can be announced by that
agent.

Proof. Assuming we have two formulas ϕ and ψ, which share the same formula
extension, i.e ||ϕ|| = ||ψ||, in some pointed model (M, s), then ϕ is announceable
by some agent a, iff ψ is, since the formulas hold in exactly the same states, as per
the definition of formula extensions.

From our definition of formula extensions in Definition 2.8, the extension of a
formula is simply the set of states in which this formula is satisfied. Therefore if ϕ
and ψ share the same extension in some model M, then M |= ϕ↔ ψ. From this
we can further infer that M |= Kaϕ↔ Kaψ for every ψ with the same extension
as ϕ.

16

Definition 3.3 (The set of announceable extensions).
The set of announceable formula extensions A for some agent i, given a bisimu-

lation contracted pointed model (M, s) is defined as the following:

Ai,(M,s) = {S ′ ⊆ S | JsKi ⊆ S ′}

Note that this definition encapsulates both of our rules in Definition 3.1.

For a more practical explanation we will apply these rules to the model in
Figure 3.1 for agent a. Using s1, denoted 1 in the next example, as the actual
state of our pointed model, we start by generating the power set of states in our
model and get the following:

℘(S) = {∅, {1}, {2}, {3}, {4}, {1, 2}, ..., {1, 2, 3}, ...{1, 2, 3, 4}}

After applying rule (1) from Definition 3.1 to filter out all formula extensions not
containing the actual state of our pointed model we get:

{{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}}

Examining what a knows in this model, we can see that J1Ka = {1, 2}. As such,
applying rule (2) to remove all extensions relating to formulas that a does not
know leaves us with:

{{1, 2}, {1, 2, 3, 4}}

In other words, given the model in Figure 3.1 agent a is able to announce
any given formula ϕ iff ||ϕ||M,1 ∈ {{1, 2}, {1, 2, 3, 4}}. Therefore, Aa,(M,1) =
{{1, 2}, {1, 2, 3, 4}}.

An interesting thing to note here is that we can combine our labeling formulas
with disjunctions to create a formula which is satisfied in any subset of the original
set of states we want. So for example, in order to create a formula with the
extension of {s1, s2} all we have to do is put disjunctions between the labeling
formulas for s1 and s2 such that ϕ{s1,s2} = ϕs1 ∨ ϕs2 .

If we then want to apply this to checking whetherM, s1 |= 〈{a}〉Kbp whereM
is still the model in Figure 3.1, then we can see that since {s1, s2} ∈ Aa,(M,s1) there
exists a formula extension that a can announce which would eliminate s3 from the
model. Verifying this, we can see that as M, s |= Kaϕ, announcing this would
cause Kbp to be satisfied in the updated model and therefore M, s |= 〈{a}〉Kbp.

17

3.2 Generalizing the single agent case

Expanding what we have presented so far to encompass coalitions comprised of
multiple agents is actually very easy. When we are assessing the ability of an
agent to announce something which may change the valuation of a formula, we
are simply checking whether or not that agent is capable of eliminating certain
states in the updated model. In other words, if we wish to assess the ability of a
whole coalition, all we need to do is look at which sets of states each agent in the
coalition is able to eliminate in unison.

An interesting observation to make is that an agent i is always capable of
eliminating any state they can distinguish from the actual state of some pointed
model. This means that in order to find out which states a coalition can eliminate,
we can simply take the power set of states and limit it to the combinations of states
which fit the rules of Definition 3.1, where we slightly tweak rule 2 to the following:

Definition 3.4 (The set of extensions announceable by coalitions). The set of
announceable extensions AG,(M,s) for some coalition G, given a bisimulation con-
tracted pointed model (M, s) is defined as the following:
AG,(M,s) = {S ′ ⊆ S | ∀s′ ∈ S ′,¬∃t∀i ∈ G t ∼i s′, t 6∈ S ′ and s ∈ S ′}

A candidate set S ′ ⊆ S not satisfying the condition is clearly not announceable
because it contains a state s which no agent in the coalition can distinguish from
the excluded state t.

3.3 Proof of suitability

In this section we will compare our definitions and work so far with the definitions
presented by Ågotnes et al. in their paper on GAL. In their paper they describe
how to check formulas of the kind 〈G〉ϕ in the following manner:

Definition 3.5 (Definition of 〈G〉ϕ by Ågotnes et al.[1]). M, s |= 〈G〉 iff there is
a definable restriction M′′ = (S ′′,∼′′, V ′) of M such that S ′′ =

⋂
i∈GCi where Ci

are unions of classes of equivalence for ∼i and s ∈ S ′′ and M′, s |= ϕ

Decomposing their definition we end up with S ′′ being the intersection of the
unions of some subset of each agent’s equivalence relation. More specifically, for
each agent i, we choose which equivalence classes should be part of that agent’s
union of equivalence classes Ci and then check if there exists some combination of
values for each Ci such that restricting the set of states to the intersection of these
Cis gives us a model which both contains the original state s and satisfies ϕ.

Comparing this definition to our definition of the announceable set of exten-
sions for a coalition, we argue that our definition of AG,(M,s) defines exactly these
intersections of possible combinations of Cis from the definition of Ågotnes et

18

al. If we further decompose their definition, we end up with the two following
restrictions:

S ′′ =
⋂
i∈G

Ci where Ci ⊆ S,∀s ∈ Ci, JsKi ⊆ Ci (1)

s ∈ S ′′ (2)

From this, we argue that our definition of AG,(M,s) incorporates the same two
restrictions, in turn quantifying the set of all possible restricted sets S ′′. Decom-
posing our definition the same way we did Definition 3.5, we end up with AG,(M,s)

defined as the set of all subsets of S, S ′ which satisfy the following two restrictions:

∀s′ ∈ S ′¬∃t∀i ∈ G, t ∼i s′, t 6∈ S ′ (3)

s ∈ S ′ (4)

Expanding on our restriction in (3), we could write it out as ‘if there exists
a state t indistinguishable by all agents from s, then either t ∈ S ′ or s 6∈ S ′’.
A simpler way of phrasing this would be to say that for every state in S ′, the
intersection of its equivalence classes for all agents in the coalition has to be a
subset of S ′. Changing (3) to fit this simpler phrasing gives us

∀s′ ∈ S ′
⋂
i∈G

Js′Ki ⊆ S ′ (5)

which should further clarify that combining restriction (4) and (5) provides the
same set of possible values as (1) and (2). Based on this, we revise the semantics
for the group announcement operators into the following:

Definition 3.6 (Group announcement operators, revised).

M, s |= [G]ϕ iff for all Ext ∈ AG,(M,s) then M, s |= [ψExt]ϕ

M, s |= 〈G〉ϕ iff there exists Ext ∈ AG,(M,s) such that M, s |= 〈ψExt〉ϕ

where ψExt is a formula of the form
∨
s∈Ext ψs

Our reason for revising these definitions is that the original definitions in 2.3
define satisfaction of [G]ϕ by using a quantifier over an infinite set of formulas mak-
ing it unfit for our goals of implementing a model checking tool. We will therefore
be implementing the revised definition in 3.6 instead as the set of announceable
extensions is far easier to enumerate than the set of announceable formulas. This
is still equivalent to the original definition as we are simply grouping the infinite
set of announceable formulas into a finite set of announceable extensions.

19

3.4 Algorithm for bisimilarity check

Using the definition of bisimilarity in Definition 2.9 we present our recursive func-
tion for checking bisimilarity between states in the same model. Given a set of
states States, a set of agents Agents, a set of labeled edges representing the equiv-
alence relations of these agents and two states s and s′ such that s, s′ ∈ States,
the function (recursive bisimulation check) rbc(s, s′, States, Agents, Edges) deter-
mining whether s and s′ are bisimilar is defined in Algorithm 1.

Before diving into the details of our algorithm, note that our valuation function
is flipped, going from a state to a set of propositions, rather than a proposition to a
set of states. Additionally the equivalence relations of our models are expressed as
a set of labeled edges between pairs of states, with each edge’s label denoting the
set of agents which consider the two states indistinguishable, such that Edges ⊆
States × States × 2Agents. Our reasons for these changes will be discussed in the
implementation section of this thesis.

Algorithm 1 Recursive Bisimulation Check

function rbc(s, s′, States, Agents, Edges)
if s = s′ then

return true
else if props(s) 6= props(s′) then

return false
else if States = Ø then

return true
else

States′ ← States \ {s, s′}
forth← knowledgeCheck(s, s′, States′, Agents, Edges)
back ← knowledgeCheck(s′, s, States′, Agents, Edges)
return (forth and back)

end if
end function

Aside from the structure of our models, our algorithm is fairly similar to the log-
ical definition in Definition 2.9, with the props check being equivalent to the atoms
clause and the knowledgeCheck function replacing the forth and back clauses. We
chose to split the pseudocode for checking the back and forth clauses of the orig-
inal definition into its own function, which we then reuse by calling it twice with
the state parameters flipped. Also note that rbc and knowledgeCheck are mu-
tually recursive. The pseudocode for this knowledgeCheck function is shown in
Algorithm 2.

Comparing our algorithm to the original definition of bisimilarity, the main

20

Algorithm 2 Knowledge Check

function knowledgeCheck(s, s′, States, Agents, Edges)
for all (t, Ags) in neighbours(s, Agents, States, Edges) do

for all a in Ags do
hasMatching ← false
for all (t′, Ags′) in neighbours(s′, Agents, States, Edges) do

if a ∈ Ags′ and rbc(t, t′, States′, Agents, Edges) then
hasMatching ← true
break

end if
end for
if !hasMatching then

return false
end if

end for
end for
return true

end function

point of interest is how it is finite; for each recursive call to rbc we prevent the two
current states from being checked again, meaning that at some point the algorithm
is guaranteed to halt. Examining the exit conditions of rbc we can see that in the
case of comparing two bisimilar states, we end up with one of two outcomes; if
the encompassing model has an even number of states, we sooner or later end up
clearing all of our states such that States = Ø, otherwise we end up comparing
the last remaining state to itself where s = s′.

We also made an auxiliary function for generating the sets of reachable states
from a specific state, given a set of states, a set of agents and edges. This function,
neighbours, builds a set of tuples for each state considered indistinguishable from
the given state and the set of agents that consider them indistinguishable. We
use this auxiliary function to iterate over the sets of states reachable from each
starting state s and s′, making sure that for each state t ∼a s, that there also
exists a bisimilar state t′ ∼a s′ as per the back and forth clauses in Definition 2.9.

3.5 Smallest bisimilar structure

Building on the previous algorithm, the next step is using it to create an algorithm
for constraining a model to one of its smallest bisimilar structures by filtering out
all bisimilar states. As bisimilarity is an equivalence relation, it also creates an
equivalence class of bisimilar states for each state in our model. For each such

21

equivalence class, JsK, we choose a designated element and build a map of bisimilar
states, linking each bisimilar state in this equivalence class to the state we chose
as our designated element, such that ∀s′ ∈ JsK : s 6= s′ ⇒ (s′, s) ∈ bisimMap

Once we establish which states are bisimilar to other states in our model, we
build our contracted set of states by subtracting the domain of our map of bisimilar
states from our original set of states. Thus, assuming that s and s′ are bisimilar,
we end up with (s′, s) ∈ bisimMap, leading to s′ 6∈ CS. Note that we are mapping
each bisimilar state to the state which they are bisimilar to.

Constraining the edges which make up our equivalence relations is done by lim-
iting our original set of edges to edges where neither of its linked states have been
filtered out. We do however also need to make sure that our edges are labeled with
the full set of agents it is supposed to be, as in some cases we end up ‘combining’
multiple edges into one when contracting our models, such as the ones in Figure
2.2. This is done by our contractEdges function shown in Algorithm 4. This func-
tion iterates through the domain of our map of bisimilar states, ‘remapping’ any
edges going to each bisimilar state so that they instead link to the state which that
bisimilar state was bisimilar to. If an edge already exists between these states, we
update it so that it is valid for the union of the sets of agents these edges were
valid for through calling the mergeAgents function.

Skipping the states in the domain of our map of bisimilar states and set of ‘vis-
ited’ states is mostly just an optimization as there is no point in checking states
we have already visited and the domain of bisimMap is already marked for re-
moval and no longer matters as bisimilarity is transitive, so if {(s2, s1), (s3, s1)} ⊆
bisimMap, then we have no reason to check which states s2 and s3 are bisimilar
to. Note however that we never check any state against itself, as this would lead
to it being removed from the contracted model.

22

Algorithm 3 Bisimulation contraction

function bisimContract(States, Agents, Edges)
bisimMap← Ø
visited← Ø
for all (state) in States do

visited← visited ∪ state
for all (otherState) in States \ (visited ∪ domain of bisimMap) do

if rbc(state, otherState, States, Agents) then
bisimMap← bisimMap ∪ (otherState, state)

end if
end for

end for
CS ← States \ (domain of bisimMap)
CE ← contractEdges(bisimMap,CS,Edges)
contractedModel← (CS,Agents, CE)
return contractedModel

end function

Algorithm 4 Bisimulation contraction of edges

function contractEdges(bisimMap,CS,Edges)
contractedEdges← {e ∈ Edges | e ∈ CS × CS}
for all bisimState in domain of bisimMap do

for all edge connected to bisimState do
(connectedState, bisimState, ags)← edge
originalState← bisimMap(bisimState)
existingEdge← findEdgeBetween(Edges, bisimState, originalState)
if existingEdge = null then

existingEdge←mkEdgeBtwn(originalState, connectedState, ags)
end if
mergeAgents(edge, existingEdge)
contractedEdges← contractedEdges ∪ existingEdge

end for
end for
return contractedEdges

end function

23

3.6 Enumerating the set of announceable extensions

As we have now laid the groundwork of formulating how we can compute bisimu-
lation contractions of models, we can move on to presenting how we can generate
the set of announceable extensions. For this we will be using the definition of
announceable extensions presented in Definition 3.4. While Ågotnes et al.’s defini-
tion in 3.5 is more compact, our definition more closely resembles its pseudocode
translation.

Algorithm 5 Generating a coalition’s set of announceable extensions

function genAnnExts(states, edges, actState, coalition)
extensions← ℘(states)
for all extension in extensions do

if actState 6∈ extension then
remove extension from extensions

else
for all state in extension do

eqClass←genEqClass(state, states, edges, coalition)
for all eqState in eqClass do

if eqState 6∈ extension then
remove extension from extensions
break

end if
end for

end for
end if

end for
return extensions

end function

As can be seen, the algorithm for generating the set of announceable extensions
boils down to generating the power set of states in the model, i.e. the set of
all possible extensions, and then filtering it according to the rules in Definition
3.1. While the if-condition expressing the first rule in Definition 3.1 is fairly
self-explanatory, the auxiliary function used to generate our equivalence classes
is somewhat more interesting. The genEqClass function here works similarly to
our previously described neighbours function, except it returns the list of states
that all agents in the coalition are unable to distinguish from the given state.

Now that we not only have our bisimulation contracted model, but also a
way to generate all of the announceable formula extensions for any coalition, we
can describe the algorithm for checking group announcement formulas. As these

24

extensions can be considered canonical representations of announcements made by
our agents as per the original definition in Definition 2.3, we can also regard them
as constraints on our model. Going by our revised definition of the semantics
behind the group announcement operator from definition 3.6, all our algorithm
needs to do is check whether all of the constrained models we get from applying
these constraints to our bisimulation contracted model satisfy the post condition
of the group announcement. As such, we translated the semantics of the group
announcement operator into the following checking function, shown in Algorithm
6. Note that our model checking function is split into eight simpler functions,
one for each connective, for reasons which will be discussed in our implementation
section.

Algorithm 6 Check function for group announcement operator

function check[G]ϕ(state, innerForm,model, coalition)
contractedModel← bisimContract(model)
extensions←genAnnExts(contractedModel, state, coalition)
for all extension in extensions do

constMdl ← constrainMdlBy(contractedModel, extension)
extSatisfiesForm← check(state, innerForm, constMdl, coalition)
if !extSatisfiesForm then

return false
end if

end for
return true

end function

Like we previously mentioned we here make sure the set of states passed to
bisimContract starts with the actual state we’re checking our formula in, in order
to simplify the visualization of our checking process. The check function that gets
called is implemented as an abstract function overridden by each operator in our
system and Algorithm 6 only shows the implementation for the group announce-
ment operator. The constrainMdlBy function used here is merely a special case
of updating a model through announcing the set of states directly instead of an-
nouncing a formula and constraining our model to the set of states that satisfy the
given formula.

Now that we have presented our algorithm for checking group announcements,
we will additionally present our checking algorithms for a few of the simpler op-
erators as well. Starting out, we present Algorithm 7 for checking conjunctions.
As all of the non-epistemic operators can be checked in similar fashion with only
minor tweaks to the algorithm, we will be skipping the rest of them and instead
move on to the knowledge operator.

25

Algorithm 7 Check function for the conjunction operator

function checkϕ∧ψ(state, leftForm, rightForm,model)
leftSatisfied← check(state, leftForm,model)
if leftSatisfied then

return check(state, rightForm,model)
else

return false
end if

end function

Algorithm 8 describes how we check knowledge in our model checker. The
getIndishStates function we use here returns the set of states an agent considers
indistinguishable from the given state, which is then looped over as we check
whether the ‘inner’ formula is satisfied in all these indistinguishable states.

Algorithm 8 Check function for knowledge operator

function checkK(state, innerForm, agent,model)
indistinguishableStates← getIndishStates(state, agent)
for all indishState in indishtinguishableStates do

if not check(indishState, innerForm,model) then
return false

end if
end for
return true

end function

Finally, we also present Algorithm 9 for checking public announcements. Note
that we also check if the announcement is truthful and immediately return true if
this is not the case as false announcements would lead to contradictions per the
semantics of public announcements.

26

Algorithm 9 Check function for public announcements

function check[ϕ]ψ(state, announcement, innerForm,model)
if not check(state, announcement,model) then

return true
end if
updStates← Ø
for all currState in states(model) do

if check(currState, announcement,model) then
updStates← updStates ∪ state

end if
end for
updEdges← Ø
for all edge in edges(model) do

if connectedStates(edge) ⊆ updStates then
updEdges← updEdges ∪ edge

end if
end for
updModel ← updateModel(updStates, updEdges, agents)
return check(state, innerForm, updModel)

end function

27

4 GALMC

In this chapter we will present our own implementation of a model checker for
Group Announcement Logic called GALMC and describe its inner workings. GALMC
is intended to be an educational tool which aids students in learning epistemic logic
in a more visual manner. Therefore, while most other model checking utilities such
as DEMO [10] stick to answering the user’s queries with simple yes and no answers,
GALMC goes beyond that by showing them not just whether their formulas hold,
but also visualizes why and provides the user with an easier, visual way of drawing
models almost as they would on paper or blackboard. The reasoning behind this
was that by allowing the user to manipulate the model through a simple click-and-
drag interface and seeing how it can affect the valuation of various formulas, they
might gain a deeper understanding of the semantics involved.

One of the big questions that needed to be answered when building GALMC
was how to not just present and visualize these highly abstract models, but also
allow the user to manipulate them in a way that would be intuitive and easy to
grasp. As I had previously used a tool called JFLAP6 with great success when
teaching students as a TA about Turing machines and finite state automata (FSAs)
I ended up drawing most of my inspiration from it when drawing up my initial
sketches for how I imagined my own tool might look. While my own experience
with JFLAP is mostly limited to visualizing, editing and playing with Turing
machines and finite state automatas, it is a fairly sophisticated package of graphical
tools covering also covering many other concepts of formal languages and automata
theory. JFLAPs editor is relatively simplistic, but it still helped my own and my
students’ understanding of FSAs tremendously by allowing us to interact and play
with what is otherwise a really abstract concept and as such, I wanted to see if I
could create a similarly potent learning aid for epistemic logic.

6www.jflap.org

28

Figure 4.1: A basic two-state turing machine

While I could have created a simpler non-graphical model checking tool for GAL
similar to DEMO, I wanted to create something more powerful that could help
visualize epistemic logic the same way that JFLAP visualizes Turing machines.
My justification is that although a similar non-graphical tool would probably have
helped me teach my students how FSAs and Turing machines work as well, I highly
doubt it would have been anywhere near as effective without being able to visualize
the ‘how’s and ‘why’s and instead only gave ‘yes’ or ‘no’ answers to our queries in
the same manner that most model checking utilities do.

4.1 Visualization of Kripke structures

Although finite state automatons and epistemic logic might initially seem relatively
far detached, the Kripke structures we use share a fair few similarities to FSAs
that made me realize I could visualize our models in almost the same manner as

29

JFLAP does its automata. For instance, they both consist of a set of states, and
while FSAs and Turing machines have transition rules, and Kripke models have
an indistinguishability relation, they can both be visualized as edges in a graph
where the nodes are our states. Whereas JFLAP labels its edges with the each
transition rule, we label ours with the set of agents that considers our pair of states
indistinguishable and additionally label each state with the set of propositions that
hold in it. We present our tool visualizing a basic model in Figure 4.2.

Figure 4.2: A basic model, visualized in GALMC

Figure 4.2 shows how GALMC visualizes the basic model we introduced in
Figure 2.1 and as can be seen, the UI of GALMC is fairly close to that of JFLAP,
in order to capture its simplicity. The reason for this being to enable the user
to draw models in a fashion as close to how they would with pen and paper as
possible so that the interface feels ‘natural’ and intuitive to someone with little
previous experience with Kripke structures. As such, the editor was made to be
as clean as possible, consisting of only three main tools; one for selecting and
moving elements, one for drawing new states and one for creating edges between
them. Additionally, the editor provides two side panels for managing the lists
of properties and agents in our models; the proposition panel for selecting which
propositions should hold in newly drawn states or to update existing ones, and the
agent panel which allows the user to similarly determine which agents’ equivalence
relations should be updated when manipulating edges.

30

4.2 Checking formulas

After the user creates their model, the next step is to start checking formulas
against it. One trade-off that had to be made here was whether or not to stick
to the original symbols for the various operators in our language or to come up
with replacements which are easier to type in. As most of the logical symbols
used to represent the various operators in GAL cannot be found on normal key-
boards, GALMC replaces them with more easily accessible replacements. By the
assumption that most of GALMC’s userbase would be at least somewhat familiar
with programming, these replacements were lifted from symbols used to represent
boolean operators in programming, such as replacing ∨ and ∧ with | and & for
disjunctions and conjunctions respectively, as they can basically be seen as ‘(in-
clusive) or’ and ‘and’. A full list of operators and their replacement symbols are
displayed in Table 17. Note that while announcements are identical to how they
are in GAL, the curly braces around the set of agents in group announcements
were dropped to save the user the effort of typing them in. The knowledge op-
erator is fairly similar, except that GALMC forces agent names to start with an
upper-case letter and that the parentheses around the known formula are required.
The reason behind these changes was partly to be able to make it easier for the
user to tell names of agents apart from propositions in more complex formulas
(GALMC forces agent names to be capitalized, whereas propositions have to be
lower case). That said, the editor translates any formula the user types in back
into proper legal formulas when displaying them, making it easier for the user to
connect GALMC’s representations with other material.

Operator Logical symbol Replacement

Negation ¬ !
Conjunction ∧ &
Disjunction ∨ |
Implication → ->
Knowledge Kannϕ KAnn(ϕ)
Announcement [ϕ]ψ [ϕ]ψ
Group Announcement [{ann, bob}]ϕ [Ann,Bob]ϕ

Table 1: Table of operators and their symbols in GALMC

When the user finishes typing in their formula, the tool checks their formula
against each state in their model and colors each state based on whether or not

7This list of replacements and a more complete user guide is also available from
https://github.com/AndersKaareEide/MCGAL/wiki

31

the user’s formula is satisfied in that state. However, in addition to translating
the user’s input into a legal formula and showing which states of the model satisfy
the formula, GALMC also lets the user hover over parts of their original formula
in order to check the valuation of its subformulas, which can be seen in Figure
4.3 (Note the mouse cursor over the ‘clouds’ proposition). This enables the user
to quickly break formulas apart and see how their various subformulas change the
valuation of their containing formula. It also helps visualize the semantics behind
each operator in our language in a manner that makes the logic more enjoyable to
learn.

Figure 4.3: Illustration of mousing over interactive formula display

4.3 Visualizing the checking process

One of JFLAP’s most powerful features however, is its ability to step through
your automatons. As you present your Turing machines in JFLAP with a set of
input, the tool also allows you to step through the program of your machine one
instruction at a time, while also visualizing how it manipulates the contents of its
tape and which state the machine is currently in. Obviously this feature is highly
useful in showing how the user’s machines operate, letting students debug their
instruction sets in almost the same manner they would debug a program in a high
level programming language. As such, it not only makes Turing machines and
FSAs much easier to grasp, but it also makes getting them to work correctly a far
less frustrating process.

32

Naturally, GALMC having a similar feature, a way to visualize the process
behind checking each operator in the user’s formula the same way that JFLAP
shows each instruction being executed and the effects of doing so would greatly
improve its usefulness. This is why the tool keeps a log of each check the tool makes
when evaluating a formula, logging not just the operator being checked, but also
its current valuation, if known at the present point of the checking process, and
which state it is being checked in. Continuing with the model from our previous
figure, Figure 4.4 shows us using our tool to generate a log of how the program
checks the given formula against a specific state. From this, the user can get a
fully reproducible guide they can follow when checking other formulas on their
own, which would be quite helpful in learning how the operators work. The user
can also step forwards or backwards through this process at any time by either
clicking the step they want to skip to, or browsing with the arrow keys.

Note that in addition to this log, the program also visualizes which (sub)formulas
are being checked against the various states as colorized labels that change color
as the user steps through their formula based on the valuation of the operators
the labels represent.

Figure 4.4: Illustration of using stepping functionality in GALMC

Returning to our previous comparison between the stepper in JFLAP and our
adaptation for GAL, there is still an interesting challenge. While the instruction
sets and states of a Turing machine are static, the epistemic models we use in
dynamic epistemic logic are naturally quite dynamic, and can be updated based
on public announcements in PAL or more complexly, group announcements in

33

GAL. GALMC represents these model updates by graying out the states and
edges that were removed by the update and to update which states should be
‘hidden’ based on which branch in the tree-like structure of the original formula
the user is currently stepping through. Naturally, the tool also supports formulas
with multiple announcements nesting them in any fashion the language allows,
always visualizing the relevant sub-model that formulas are being checked against,
an example of which can be seen in Figure 4.5. Note that GALMC also generates
formula labels for which subformulas under knowledge or announcement operators
have been checked in the various states, so that the user can immediately see why
for example, an agent does not know something, or why a state has been filtered
out in a model update.

Figure 4.5: Visualization of the effects of chained public announcements in
GALMC

4.4 Visualizing group announcements

Having presented most of GALMC’s features and how it solves the various chal-
lenges of visualizing the process of checking formulas containing the other operators
in our language, it is time to discuss group announcements. As the motivation be-
hind creating GALMC was to create a learning tool that could help new logicians
understand how the semantics of GAL work, being able to generate examples
which highlight interesting properties of our models is highly important. As such,
GALMC was designed from the ground up to be able to trace its steps through

34

Figure 4.6: Checking a basic group announcement formula in MCGAL

the model checking process so that it can also display each step of this process in
an intuitive manner, which can be seen in our previous figures. Elaborating on
the logging process mentioned before behind this tracing, the tool also keeps track
of subformulas and formula depth as it goes through the operators. The reason
behind keeping track of this in the logs was to create a more easily navigable tree-
like structure, as the number of steps required to check a formula containing group
announcements can quickly explode. Because of this, GALMC must give the user
the ability to skip through chunks of the process they might not be particularly
interested in. This tree-structure allows them to for example view each state the
tool checks against a particular knowledge operator, or even skip through each
of the possible updated models a coalition can reduce a model to through their
announceable extensions, without having to step through the checking of the inner
formula every time.

As the tool provides a visualization of the model and keeps track of what the
model it is currently checking against looks like, it can also visualize the effects
of announcing multiple different formulas. This means the tool can also visualize
the result of constraining the model to the various formula extensions a coalition
can announce, which is what is being displayed in Figure 4.6. In this example,
we are checking whether the formula ¬[{Bob}]¬KAnnp holds in state s3 of our

35

model. The formula roughly translates to: ‘It is not the case that Bob is unable
to make Ann know p’ or more simply in its dual form: ‘Bob is able to make Ann
know p’. From the visualization of our model in Figure 4.6 we can see from the
log that since Bob is able to reduce the model to only states where p holds, Ann
also knows that p holds in this updated model, satisfying our original formula. In
this simple illustrative example, the tool ended up only having to try announcing
a single formula extension before it found an extension that made our original
formula true. If we were to check a more complex formula however, it might end
up checking many different announcements, each generating a different updated
model after its announcement which the tool will helpfully visualize, giving the
user insight into a coalition’s capabilities.

Last, but certainly not least, GALMC also facilitates saving and loading of
models. As our tool is intended to be used in educational settings, making lecturers
able to create exercises for their students is highly valuable. One example of
such usage would be creating and handing out an incomplete model, where the
students would have to ‘complete’ the model by either adding states or changing
the indistinguishability relations for their agents in order to give this model some
specific property. The lecturer could then load the models that their students have
handed in to verify them.

36

5 Implementation details

In this chapter we will discuss the various tools and technologies that were used
to create our tool, including, but not limited to; choice of programming language,
frameworks and libraries and discuss why these were selected.

Starting off with the programming language we went with, our choice was
Kotlin. Kotlin is a relatively new language which runs on the Java virtual machine8

(JVM) that has gotten a lot of attention in the recent years after Google announced
they were making it an official language for Android development during their
I/O conference in 2017 [11]. While the language has since ‘branched out’ with
JavaScript transpilers and a native compiler, letting developers target different
platforms, one of the main strengths of the language is that despite being relatively
young, it is able to tap into the vast number of libraries and tools written for
the JVM by compiling to Java-bytecode, allowing for full interoperability with
Java. Among the other benefits of the language’s relatively young age, is that it
has been able to draw inspiration from other modern languages giving it features
such as type inference, string interpolation and default values. This means that
lends itself very well towards writing functional code despite being object oriented,
through shorthands for lambda expressions, support for proper function types and
distinctions between mutable and immutable structures and variables. As an added
bonus, the language is also backed heavily by JetBrains, well known for their suite
of IDEs and plugins such as IntelliJ, PyCharm and ReSharper, so the language
also has first-class tooling support, making it easy to pick up.

For these reasons, GALMC is implemented in Kotlin, as prior to this project,
most of my programming experience came from Java and its many libraries and
as such, moving to a language with a far more concise syntax but still being able
to lean on my previous experience made Kotlin an excellent tool for this complex
system. The choice of library to construct our user interface in fell on the de facto
standard Java GUI library, JavaFX, or more precisely; a Kotlin wrapper for it
called TornadoFX 9. The reason for choosing TornadoFX is that while JavaFX is
a widely used and mature library with powerful features, its usage also tends to re-
sult in clunky and verbose code. JavaFX does admittedly provide a solution to this;
dumping most of the layout, styling and positioning of components into specialized
XML-files. While this helps clean up classes representing UI-components however,
it also makes dynamic component generation clumsier and tends to abstract away
the component hierarchy in ways that makes it harder to reason around its struc-
ture. TornadoFX on the other hand, being a Kotlin library is able to present a
much cleaner API by utilizing Kotlin features such as lambda expressions attached

8https://www.java.com/en/download/
9Library homepage at: https://tornadofx.io

37

https://tornadofx.io

Figure 5.1: Code handling how the UI components representing states are built.
Note the conciseness due to implicit contexts.

to receivers in order to create composable builder functions which generate your
JavaFX component hierarchy in an imperative fashion. Additionally, the wrapper
also has excellent and concise shorthands for creating dynamic bindings between
UI components and observable sets of data, which we ended up using all through-
out the application. However, the primary justification for choosing TornadoFX is
how its composable builder functions allow you to circumvent the normally inverse
order of declaration and creation of UI components compared to their order in the
component hierarchy, which can be seen in Figure 5.1.

5.1 Language and interpretation

Besides creating an understandable user interface another large challenge we needed
to solve was how to convert the plain text the user types in into data structures
representing formulas to check. For this, we used a tool called ANTLR (ANother
Tool for Language Recognition)10. ANTLR is a powerful parser generator which,
based on a set of grammatical rules, can be used to generate parsers which imple-
ment these rules. These grammatical rules can be broadly split into parser and
lexer rules. Lexer rules are the low-level rules which define how the tool should
convert individual characters or short strings of characters into lexical tokens which

10http://www.antlr.org/

38

http://www.antlr.org/

are then used by the more high-level parser rules to define how ANTLR should
assemble these tokens together again. For a more concrete example, we have the
entirety of GALMC’s grammatical rules pictured in Figure 5.2. Here we can see
how this simple set of lexical rules handle converting symbols into tokens repre-
senting the various operators in our language, but also how our set of parser rules
define all legal ways of combining these symbols into formulas.

Figure 5.2: Grammatical rules for parsing formulas in GALMC with ANTLR.

For comparison, the language described by this ANTLR grammar can also be
expressed as the following BNF (terminal symbols are underlined):

φ ::= π
∣∣ !φ

∣∣ φ&φ
∣∣ φ |φ ∣∣ φ ->φ

∣∣ K α (φ)
∣∣ (φ)

∣∣ [φ]φ
∣∣ [C]φ

C ::= α
∣∣ α ,C

where π (propositions) and α (agents) are sets of terminal symbols character-
ized as follows: π contains all strings of at least one lower case letter and possibly
followed by a string of digits, matching the following regular expression:

[a-zæø̊a]+[0− 9]∗

39

α is a single upper case letter followed by a (possibly empty) string of lower case
letters, and subsequently a (possibly empty) string of digits, as described by the
following regular expression:

[A-ZÆØÅ][a-zæø̊a]∗[0− 9]∗

One thing to note in Figure 5.2 are the symbols used to represent negation,
conjunction and disjunction. As previously mentioned, since the commonly used
symbols for these operators do not exist on normal keyboards, the UI would either
need extra buttons to facilitate inserting these symbols or use more easily accessible
surrogate symbols. Another small concession I had to make in order to differentiate
between agents and propositions, was to require that agent names be capitalized, as
I would otherwise have to resort to using different symbols to differentiate between
regular public announcements and group announcements.

Figure 5.3: Snippet showing how various operators are implemented

The parser that ANTLR generates from this simple grammar is then used
to convert the user’s plain text input into instances of our Kotlin classes which
represent the various operators in our language. An interesting thing to note here
however is that not only does it create instances of our operators, but it also
instantiates them in order of traversal as it builds the formula tree, conserving
the structure of this tree as it is rebuilt using our Kotlin-implementations of the
operators. One of the more elegant aspects of our design is how these operators

40

were implemented; with each operator extending an abstract formula class and
simply overriding it’s ‘check’-function with their own semantics, as can be seen
in Figure 5.3. Going back to our pseudocode algorithms for the various check
functions, we can also see the implementation of Algorithm 7 on line 100, note
that the ‘&&’ operator is short-circuiting. Also note how the constructors of each
operator also takes other formulas as their parameters, allowing us to directly
implement the BNF definition of GAL presented earlier through constructor typing
alone.

5.2 Kripke structures and UI components

As the focus when making the application was mainly on making it as easy to
use as possible while presenting information in a visual manner that is easy to
grasp, we ended up making several deviations from the more commonly seen logical
definitions of epistemic models. In Definition 2.1 we present ∼ as a function from
each agent to their respective equivalence relation for every state in the model. In
GALMC however, we instead chose to represent these equivalence relations as a set
of edges represented as objects consisting of a pair of states and the set of agents
that consider this pair of states indistinguishable. The reasons for this ties back
into how we wanted to present an interactive view of the models in our application,
as TornadoFX, our GUI library makes it far easier to represent each component of
our models as concrete objects, which we can then bind UI-components to. Since
each edge also has a reference to the set of agents it applies to, this makes it trivial
for us to visualize this information as well.

Building on these changes, we additionally made each state aware of which
edges it is connected to, simplifying the process of finding indistinguishable states
for a given agent, by enabling us to filter the set of edges our state is connected to
based on our given agent and return the list of states these edges lead to. While
these are deviations from how Kripke structures are more commonly defined, we
argue that they make for a much cleaner programmatic representation as they
allowed us to simplify both visualization as well as our implementation of the
semantics.

We also chose to flip the valuation function by letting states hold a reference
to a set of propositions which are satisfied in them, rather than each proposition
being linked to the set of states they are satisfied in. Our reasoning here is much
the same as for changing how we handle indistinguishability; it allowed us to
simplify how we present which propositions are true in each state. We do so by
applying a mapping function to these sets of propositions to generate labels in
our UI which can then be automatically updated whenever this underlying set of
propositions updates. This is far simpler than having to go through the entire
set of propositions each time the user updates which propositions a given state

41

satisfies. The code responsible for binding this set of propositions to labels can
be seen at the bottom of Figure 5.1. It is these two-way bindings that that are
used throughout our implementation which enables the user to directly manipulate
their models, as any changes done through the UI are immediately reflected in the
internal data structures and vice versa when the tool is checking formulas.

5.3 Model checking

Going back to our presentation of GALMC in the previous chapter, we described
that the tool provides two main modes of checking formulas, which we will now
discuss the implementation of. The first and simplest of these modes is simply
checking which of the states in the user’s model satisfy the input formula. With
our implementation of formulas, we can simply do this by invoking the formula’s
check-function on each state in our model, styling the state-component based on
the outcome of this checking, as can be seen in Figure 5.4. We also previously
described how GALMC allows its user to hover over the various subformulas in
order to check how they affect the valuation of their containing formula. We
implemented this by tying each symbol in the displayed formula to the subformula
it represents and then calling the same check-formula with this subformula.

Figure 5.4: Function responsible for highlighting which states in our model satisfy
the input formula

How step-by-step visualization works is somewhat more involved. A high-level
description of how it is implemented is that the ‘debugger’ hooks into the check
function of the formula, and logs each step of the checking process. In Figure 5.3,
this can be seen through our calls to createDebugEntry, which is responsible for
logging the valuation of each operator in the user’s formula before and after every
call to this check function.

Each log then carries information about what the valuations of each operator
was at that point in the process, so that this checking process can be played back
and visualized in the form of showing the various operators change color as their
valuations become known.

42

Figure 5.5: Code behind reading and writing models to file

Briefly touching upon saving and loading of models as mentioned at the end
of the last chapter, as our models are plain Kotlin (and by extension Java, as
Kotlin is fully interoperable with Java) objects, reading and writing them to files
is simply a matter of using the built-in tools in the Java library to serialize them
and write them to file, as seen in Figure 5.5. While using the JVM library for
writing and reading models from files saved us a lot of time, it does however also
mean that the models are written in a plain binary format. While it would have
been nice to store our models in a more widely-used format so that more complex
models could be visualized and edited in more powerful graph editing tools such
as Gephi11, this was left as future work due to time restrictions.

11https://gephi.org/

43

6 Summary

Now that we have covered all of our topics and presented GALMC, a novel educa-
tional tool for teaching Group Announcement Logic, it is time to summarize our
contributions.

In this thesis we have presented a concrete set of algorithms for not just model
checking group announcements, but also for computing bisimulation and bisimu-
lation contracted models. Additionally we presented our own revised definitions
for the group announcement operator, with clearer semantics, making them eas-
ier to formulate model checking algorithms for, as well as a set of algorithms for
expressing these semantics through pseudocode.

Finally, we presented the implementation of these algorithms in our fully real-
ized model checker, GALMC. This model checker is not only capable of checking
GAL formulas, but also features a powerful, yet easy to learn graphical user inter-
face, allowing the user to directly manipulate their models in an intuitive manner.
Additionally, it also incorporates a variety of useful features for visualizing how
these formulas are checked, such as breaking the process down into its individ-
ual steps, which can be navigated freely, highlighting the semantics behind each
operator in the language.

Although GALMC is fully functional educational aid in its current state, there
are also a few features we simply did not have time to implement. One of the
simpler additions to our model checker is implementing the dual, also known as
‘diamond’ version of the announcement operators. As these operators do not
add any additional expressiveness or capabilities to the model checker they were
never prioritized as they can always be expressed through the negation of the
box operators. It would still be nice to have support for these operators directly
however, to cut down on formula length and complexity when visualizing larger
formulas. As both the ANTLR grammar and related formula components are
easily extendable, implementing these operators would be fairly trivial as their
underlying semantics are basically already implemented.

Other additions include separately displaying the set of formula extensions
a coalition can announce, and providing the user with more informative error
messages when attempting to parse syntactically incorrect formulas. Visualizing
these formula extensions should also not prove all too challenging as the extensions
are already generated when checking formulas. Similarly, the ANTLR parsers
provide most of the context necessary to inform the user of which part of their
string caused an error, although more complex reasoning around how to parse
ambiguous structures in regards to missing parentheses and the like might be
more challenging.

There were also plans for generalizing GALMC’s model serializer in order to
be able to export the models as formats beyond its current basic binary format

44

such as GEXF12 in order to be able to view these models in other tools such as
Gephi13. As the intended users of the tool are mainly students attempting to gain
a better understanding of the semantics of the operators and structures in group
announcement logic however, the feature was eventually scrapped as the models
created would likely not be all that interesting to visualize in external tools anyway
and the work involved would be fairly substantial for a feature that would probably
go unused by most users. Continuing on model serialization, we would also have
liked to be able to store additional information or metadata about each model,
such as being able to write notes about interesting properties a model might have
or formulas that highlight said properties when checked against these models.

While both user testing and educational impact studies go beyond the scope
of this thesis, we believe we have developed a highly useful educational tool that
will make it much easier to learn these logics in the future. GALMC is a graphi-
cal, user friendly model checker that allows the user to work directly with models
and formulas in both single- and multi-agent S5 epistemic logics, PAL and GAL.
It allows students to explore increasingly sophisticated multi-agent logics includ-
ing GAL, which semantics are defined through quantifying over an (infinite) set
of possible collaborative announcements. We hope that the development of this
model checker for GAL and the concretization of the semantics behind its group
announcement operator can also help spark continued interest in the logic itself.

12https://gephi.org/gexf/format/
13https://gephi.org/

45

https://gephi.org/gexf/format/
https://gephi.org/

References

[1] Thomas Ågotnes, Philippe Balbiani, Hans van Ditmarsch, and Pablo Seban.
Group announcement logic. Journal of Applied Logic, 8(1):62–81, mar 2010.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. In Proceedings 38th Annual Symposium on Foundations of Computer
Science, pages 100–109, Oct 1997.

[3] Randal E Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys (CSUR), 24(3):293–318, 1992.

[4] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Workshop on Logic
of Programs, pages 52–71. Springer, 1981.

[5] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, Cambridge, MA, USA, 1999.

[6] Malvin Gattinger. Dynamic epistemic logic for guessing games and crypto-
graphic protocols. Master’s thesis, University of Amsterdam, 2014.

[7] Malvin Gattinger. New directions in model checking dynamic epistemic logic.
9789402810257, 2018.

[8] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Software verification with blast. In International SPIN Workshop on Model
Checking of Software, pages 235–239. Springer, 2003.

[9] Gerard J. Holzmann. The model checker spin. IEEE Transactions on software
engineering, 23(5):279–295, 1997.

[10] Jan van Eijck. DEMO-S5.

[11] Paul Miller. https://www.theverge.com/2017/5/17/15654988/google-jet-
brains-kotlin-programming-language-android-development-io-2017. The
Verge, May 2017.

[12] Jan Plaza. Logics of public communications. Synthese, 158(2):165–179, Sep
2007.

[13] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 46–57, Oct 1977.

46

[14] Wiebe Van der Hoek and Michael Wooldridge. Cooperation, knowledge, and
time: Alternating-time temporal epistemic logic and its applications. Studia
logica, 75(1):125–157, 2003.

[15] Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. Dynamic
epistemic logic, volume 337. Springer Science & Business Media, 2007.

47

	Background
	Motivation
	Model checking
	State of the art
	Structure

	Group Announcement Logic
	Models
	Language and semantics
	Bisimulation

	Model checking Group Announcement Logic
	Enumeration of announcements in single agent cases
	Generalizing the single agent case
	Proof of suitability
	Algorithm for bisimilarity check
	Smallest bisimilar structure
	Enumerating the set of announceable extensions

	GALMC
	Visualization of Kripke structures
	Checking formulas
	Visualizing the checking process
	Visualizing group announcements

	Implementation details
	Language and interpretation
	Kripke structures and UI components
	Model checking

	Summary

