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Abstract

In this paper, we propose a likelihood ratio‐based method to evaluate density

forecasts, which can jointly evaluate the unconditional forecasted distribution

and dependence of the outcomes. Unlike the well‐known Berkowitz test, the

proposed method does not require a parametric specification of time dynamics.

We compare our method with the method proposed by several other tests and

show that our methodology has very high power against both dependence and

incorrect forecasting distributions. Moreover, the loss of power, caused by the

nonparametric nature of the specification of the dynamics, is shown to be small

compared to the Berkowitz test, even when the parametric form of dynamics is

correctly specified in the latter method.
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1 | INTRODUCTION

An evaluation of the quality of forecasts can have differ-
ent purposes. It could be to determine whether point fore-
casts are, on average, hitting the actual outcome not yet
observed. It could be, for example, in a risk management
context, to investigate whether interval forecasts have the
coverage probability the model used would imply. The
evaluation of point forecasts is typically done by compar-
ing different forecasting models and investigating
whether one has a significantly larger expected loss func-
tion. This loss function could be mean squared error
(MSE), mean absolute error (MAE) or, in cases where
available, economic loss incurred by using a forecast com-
pared to having the actual values. Examples on papers
dealing with the evaluation of point forecasts are Wallis
(1995), Diebold and Lopez (1996), and Gneiting (2011).
Interval forecasts are evaluated by the relative frequency
- - - - - - - - - - - - - - - - - - - - - - - - - -
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of an interval to cover the actual outcome (Chatfield,
1993; Granger, White, & Kamstra, 1989). An often cited
paper on the evaluation of interval forecasting is
Christoffersen (1998), which proposed a theory to evalu-
ate the interval forecast. This evaluation procedure is
based on the likelihood ratio test and, owing to the addi-
tivity of the likelihood ratio test, the method can jointly
test the unconditional coverage and independence by
testing the correct conditional coverage. This test and its
extensions (Berkowitz, Christoffersen, & Pelletier, 2011;
Clements & Taylor, 2003; Dumitrescu, Hurlin, &
Madkour, 2013; Engle & Manganelli, 2004) are most
widely used to evaluate an interval forecast, especially
in the value‐at‐risk (VaR) analysis, which can be viewed
as a one‐sided interval forecast.

Finally, an even more detailed forecast is the density
forecast, which estimates the probability density of a
future value of the process, conditional on the
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2 LI AND ANDERSSON
observations used in the forecast. Point and interval fore-
casts can then be seen as a by‐product of this as they are,
for example, the mean and quantiles in this conditional
density. Tay and Wallis (2000) carried out a survey of
density forecasting. They pointed out the necessity of an
accurate forecast of the probability density in applications
such as macroeconomics—for example, of inflation and
output growth—and in finance—for example, of portfolio
returns, risk management, and volatility. The literature
on evaluating the uncertainty of the density forecast is
limited and mainly based on the idea of the probability
integral transform (PIT) or its extension (Berkowitz,
2001; Diebold, Gunther, & Tay, 1998; Diebold, Hahn, &
Tay, 1999; Tay & Wallis, 2000). Among these few papers,
the forecasting evaluation framework proposed by
Berkowitz (2001) is the most widely applied, because of
its comparatively good small‐sample power performance.
Wallis (2003) proposed using Pearson chi‐squared based
statistics, which can evaluate the goodness of fit and inde-
pendence at the same time. This paper will extend the
likelihood ratio‐based method of Christoffersen (1998)
in order to evaluate density forecasting. Owing to the
additivity of the likelihood ratio test, our method can
jointly test the unconditional distribution and indepen-
dence. Moreover, our test is a nonparametric test and
no parametric model is needed for the independence test.
We will compare our new method with the evaluation
framework proposed by Berkowitz and the
Kolmogorov–Smirnov (KS) test.

The paper is divided into the following sections: Sec-
tion 2 introduces the likelihood interval forecast, Section
3 describes our evaluation method for density forecasting,
and Section 4 compares the new method with previous
ones by means of a Monte Carlo experiment. A conclu-
sion closes the paper.
2 | LIKELIHOOD RATIO AND
MARKOV CHAIN ‐BASED INTERVAL
FORECAST

For the ex post realization Y = (y1, y2, … , yT), the ex ante
interval forecast made at time t− 1 is Ct ∣ t − 1(p) = [Lt ∣ t − 1

(p),Ut ∣ t − 1(p)], where p is the probability of coverage.

Define the indicator variable Itf gTt¼1 as

It ¼
1; yt ∈ Ct∣t−1 pð Þ
0; yt ∉ Ct∣t−1 pð Þ:

�

That is, It = 1 when the ex post realization lies inside
Ct ∣ t − 1(p) and It = 0 otherwise. Christoffersen (1998)
constructed a test framework to evaluate whether
Ct ∣ t − 1(p) = [Lt ∣ t − 1(p),Ut ∣ t − 1(p)] is an “efficient”
interval forecast with respect to the past information
Ψt − 1 = {It, It − 1,…} by testing whether E(It|Ψt − 1) = p.
The evaluation framework includes three tests:

1. The unconditional coverage test statistic LRud to test
whether the expected value of the indicator sequence
Itf gTt¼1 is equal to the coverage rate. This test ignores
the dependence of It and the null hypothesis is
E(It) = p, while the alternative hypothesis is
E(It) = π ≠ p. Define n0 as n0 = sum[It = 0] and
n1 = sum[It = 1]. The likelihoods under the null
and alternative hypotheses are Lp ¼ 1−pð Þn0pn1 and

Lbπ ¼ 1−bπð Þn0bπn1 respectively, where the relative hit

frequency bπ ¼ n1= n0 þ n1ð Þ is the maximum
likelihood estimate (MLE) of π. Then the
likelihood ratio‐based test statistic LRud ¼
− 2 log Lp=Lbπ� �

∼ χ2 1ð Þ under the null hypothesis.

Christoffersen (1998) reported that the pure uncondi-
tional coverage test will have very low power and is

inefficient when Itf gTt¼1 is clustered in a time‐
dependent fashion. He therefore introduced an inde-
pendence test and a joint test for independence and
unconditional coverage.

2. The independence test statistic LRind to test whether It
is independent over the whole period. Independence
means that there are no clusters of violation in cer-
tain time periods and lack of violations in others.
The likelihood ratio‐based test statistic LRind is con-
structed by using a first‐order Markov chain with
two states. We will provide a detailed illustration of
LRind in Section 3, where we construct our density
forecasting evaluation method, which is based on a
k‐states Markov chain.

3. Conditional coverage test statistic LRcd to test whether
the forecasting interval has correct conditional
coverage in the form E(It|Ψt − 1) = p. As the test of
unconditional coverage and independence will not
affect each other, this conditional coverage test is
the combination of the unconditional coverage test
and the independence test. Owing to the additivity
of the likelihood ratio test statistics (Bera &
McKenzie, 1985), we have LRcd = LRud+LRind, which
can jointly test the randomness and correct coverage,
while the test of individual subcomponents can still
be retained.
The likelihood ratio test by Christoffersen (1998) has
been followed by several developments in the literature
(Berkowitz et al., 2011; Clements & Taylor, 2003;
Dumitrescu et al., 2013; Engle & Manganelli, 2004) in
terms of both theoretical extensions and applications.
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3 | LIKELIHOOD RATIO AND
MARKOV CHAIN ‐BASED DENSITY
FORECAST EVALUATIONS

Methods to evaluate the density forecast (Berkowitz,
2001; Diebold et al., 1998, 1999; Tay & Wallis, 2000) are,
to a large extent, built on the seminal paper of Diebold
et al. (1998) using the probability integral transform
(PIT). The main idea is that when the ex ante forecasted

distribution st ytð Þf gTt¼1 is correct, then for the ex post real-
ization Y = (y1, y2, … , yT), we have that

xt ¼ ∫
yt
−∞sy uð Þdu ∼ i:i:d:U 0; 1ð Þ. Deviation from i.i.d.

means that the ex ante forecast fails to capture the under-
lying time dynamics of the data‐generating process
(DGP). Deviation from U(0,1) implies that the used model
yields an incorrect forecast distribution. Berkowitz (2001)
used the PIT to formulate a formal test of density fore-
casts. It is constructed by transforming the PIT through
the inverse distribution function of the standard normal
distribution and thus under the null hypothesis of a cor-
rectly specified forecasting model, obtaining normally
distributed variables. A parametric model for the depen-
dence is then formulated for these normally distributed
variables. The parameters of this model are then tested
for independence of time by means of a likelihood ratio
test. A simultaneous test of independence and distribu-
tional shape is also constructed. The idea of combining
the goodness of fit and independence tests was given by
Wallis (2003), where the interval evaluation method of
Christoffersen (1998) is formulated in the framework of
a contingency table‐based Pearson chi‐squared test.
While density forecasts are mentioned in Wallis (2003),
they concentrate on interval forecasting evaluation based
on contingency tables for small samples. To summarize,
there are two main strands of this literature. The first,
mainly due to Christoffersen, is nonparametric as it does
not require any specification of the time dependence of
the forecast distribution. It deals with interval forecasts.
The other, mainly due to Berkowitz, requires the specifi-
cation of time dependence but can be used to test the
density forecasts and not only intervals. As far as we
know, there exist no nonparametric methods for the eval-
uation of density forecasts. Our proposed method will fill
this gap and extend the likelihood ratio evaluation
method by Christoffersen for interval forecast to density
forecast. The method is still constructed in three steps: a
test for goodness of fit, a test for independence, and a
joint test for goodness of fit and independence.
1. Unconditional density test statistic LRud: Consider the
ex post outcome Y = (y1, y2, … , yT), which is gener-
ated by the distribution f (yt) and the ex ante
forecasted density s(yt). The range of yt is [I0, In] with
I0 < yt < In. We divide [I0, In] into k mutually exclu-

sive states as I0; I1|fflffl{zfflffl}
1

;…; Ik−1; In|fflfflfflffl{zfflfflfflffl}
k

24 35 and let the number

of yt which lie in state i be ni. Note that the interval
forecasting is a special case where k = 2 and the test
statistic LRud is actually based on the likelihood from
a binomial distribution. To evaluate whether s(yt)
yields the correct description of the unconditional
probabilities of future values is equivalent to testing
f (yt) = s(yt). Under the null hypothesis f (yt) = s(yt),
N = (n1,n2, … ,nk) follows a multinomial distribution
multinom(T,p1...pk) with event probability

pi ¼ ∫
Ii
Ii−1

sy uð Þdu. Thus the likelihood function under

the null hypothesis is

L pð Þ ¼ T!
n1!…nk!

pn11 …pnkk ;

where pi ¼ ∫
Ii
Ii−1

sy uð Þdu.

The likelihood function under the alternative hypothe-
sis is L bpð Þ ¼ T!= n1!:::nk!ð Þ½ �bpn11 :::bpnkk , where bpi ¼ ni=T is
the MLE of the event probability over the whole parame-
ter space. The likelihood ratio test (LRT) statistic is
LRud ¼ −2 log L pð Þ=L bpð Þ½ � and LRud ∼ χ2(k − 1) under
the null hypothesis. Just as the unconditional coverage
test statistic LRuc in interval forecast, LRud can only dis-
cover the biasedness of the forecasted distribution with
the null hypothesis being s(yt) = f (yt), and it can be
viewed as a pure goodness‐of‐fit test.

2. Independence test statistic LRind: Wallis (2003)
reported that the test for independence in the interval
forecast could be extended to the density forecast,
without analyzing this. The following will provide a
detailed illustration of how to do this. The indepen-
dence is tested against a k‐state first‐order Markov
chain. Let πij = Pr (yt ∈ state j| yt − 1 ∈ state i). Then,
the Markov chain is specified with the transition
probability matrix

Π ¼
π11 ::: π1k

πi; j

πk1 ::: πkk

264
375:

Let nij denote that the number of events where a state i
is followed by a state j as nij = Nr(yt; yt ∈ j & yt − 1 ∈ i).
Then, the likelihood function under the alternative
hypothesis for the whole process is
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L Πð Þ ¼ πn11
11 …:π

n1k
1k

� �
… πni1

i1 …:π
nik
ik

� �
… πnk1

k1 …:π
nkk
kk

� � ¼ ∏
k

i¼1
∏
k

j¼1
πnij
ij ;

with bπij ¼ nij=∑
k
j¼1nij being the MLE of πij. Under the

null hypothesis of independence, the present outcome
will not be influenced by past information. Thus, when
the outcome yt is in state j, the previous outcome yt − 1

has the same probability of lying in any state and this
can be denoted by π1j = π2j … = πkj = π⋅j. Thus we have

πn11
11 …:π

n1k
1k

� �
… πni1

i1 …:π
nik
ik

� �
… πnk1

k1 …:π
nkk
kk

� � ¼ ∏
k

j¼1
πn⋅ j
⋅ j ;

where n⋅ j ¼ ∑k
i¼1nij. As π⋅j is actually the probability that

an outcome lies in state j and n⋅j is the number of out-
comes that lies in state j, the MLE of π⋅j is bπ⋅ j ¼ nj=T with
nj = n⋅j. Therefore, the likelihood function under the null

hypothesis is L bΠ0

� �
¼ ∏

k

j¼1
nj=T
� �nj and the unrestricted

likelihood function is L bΠ1

� �
¼ ∏

k

i¼1
∏
k

j¼1
nij=∑

k
j¼1nij

� �nij
.

The LRT for independence is then

LRind ¼ −2 log
L bΠ0

� �
L bΠ1

� � ∼ χ2 k−1ð Þ2� 	
:

We note that L bΠ0

� �
∝ L bpð Þ and this relationship will

simplify the joint test statistics in the following paragraph.

3. Conditional density test statistic LRcd: To test whether
the conditional forecasted density distribution based
on the past information s(yt) ∣ Ωt − 1 provides correct
conditional probabilities for events associated with
future actual outcomes. As the conditional coverage
test statistic LRcd in the situation of interval forecast-
ing, this test can be viewed as a combination of a
goodness‐of‐fit test and a test for independence; we
test whether s(yt) = f (yt) and whether ytf gTt¼1 is inde-
pendent. The test statistic can be constructed based
on the additivity of the LRT: The test statistic to test
a joint hypothesis is the sum of the test statistics
which test the components of the null hypothesis sep-
arately. Then the test statistic LRcd, which can jointly
test the independence and goodness of fit, is
LRcd = LRud+LRind, where

LRud ¼ −2 log
Lp
Lbπ ¼ −2 log

T!
n1!…nk!

pn11 …pnkk

T!
n1!…nk!

bp
n1

1

…bpnkk
0BB@

1CCA
¼ −2 log pn11 …pnkk

� �
− log bpn11 …bpnkk� �� 	
and

LRind ¼ −2 log
L bΠ0

� �
L bΠ1

� � ¼ −2 log

∏
k

j¼1

nj
T

� �nj
∏
k

i¼1
∏
k

j¼1

nij

∑
k

j¼1
nij

0B@
1CA

nij

2666666664

3777777775

¼ − 2 log ∏
k

j¼1

nj
T

� �nj
" #

− log ∏
k

i¼1
∏
k

j¼1

nij

∑
k

j¼1
nij

0BBB@
1CCCA

nij26664
37775

8>>><>>>:
9>>>=>>>;;

with bpj ¼ nj=T. Then LRcd = LRud+LRind can be simpli-

fied as

LRcd ¼ − 2 log pn11 …pnkk
� �

− log ∏
k

i¼1
∏
k

j¼1

nij

∑
k

j¼1
nij

0BBB@
1CCCA

nij26664
37775

8>>><>>>:
9>>>=>>>;

∼ χ2 k k − 1ð Þ½ �;

where pi ¼ ∫
Ii
Ii−1

sy uð Þdu. Compared with LRud, which only

has power against biased unconditional forecasted densi-

ties and ignores the internal dependence of ytf gTt¼1, LRcd

has power against both misspecified density forecasting
and internal dependence of the data series. Therefore,
instead of only testing the unbiasedness of the forecasted
distribution, LRcd can discover time dependence such as
autocorrelation or conditional heteroscedasticity in the
forecast errors.

The LRcd test can then be applied to evaluate the effi-
ciency of density forecasts. Under the null hypothesis

s(yt) ∣ Ωt − 1 = f (yt), or s(yt) = f (yt) and ytf gTt¼1 is indepen-
dent, we have

LRcd ¼ LRud þ LRind ∼ χ2 k k − 1ð Þ½ �:

To investigate the performance of the test statistics
LRud, LRind and LRcd, a Monte Carlo study is carried
out in the next section. The benchmark we use is the
evaluation framework proposed by Berkowitz (2001) but
we also compare against the Kolmogorov–Smirnov (KS)
test. Diebold et al. (1998) reported that when the ex ante

forecasted distribution, st ytð Þf gTt¼1, is produced by a cor-
rectly specified model, then

xt ¼ ∫
yt
−∞sy uð Þdu ∼ i:i:d:U 0; 1ð Þ:

However, Berkowitz (2001) showed that the test based

on xtf gTt¼1 displayed low power in sample sizes smaller
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than 1,000. Instead, Berkowitz proposed a test based on
transformation of xt, zt = Φ−1(xt) where Φ is the standard
normal cumulative distribution function. Under the null
hypothesis s(yt) ∣ Ωt − 1 = f (yt), zt = i. i. d. N(0,1).
Berkowitz further developed the test within the likeli-
hood ratio framework, which can test both independence
and density distribution. However, in this test we need to

specify a parametric model for ztf gTt¼1 under the alterna-
tive hypothesis. For example, to test the null against a
first‐order autoregressive model, an AR(1) model
zt − μ = ρ(zt − 1 − μ)+εt can be used. The null hypothesis
s(yt) ∣ Ωt − 1 = f (yt) is then μ = 0, ρ = 0 and σ2 = 1. Let
L(μ,σ2, ρ) denote the likelihood ratio function of (1) andbμ, bσ2, bρare the estimated values for μ,σ2,ρ. The likelihood
ratio test of independence across the observations is then

Berind ¼ −2 L bμ; bσ2; 0� �
− L bμ; bσ2;bρ� �h i

:

Under the null that the observations are independent,
Berind ∼ λ2(1). A joint likelihood ratio test to test both
independent and correct density forecasting is then

Ber ¼ −2 L 0; 1; 0ð Þ − L bμ; bσ2
;bρ� �h i

:

Under the null hypothesis s(yt) ∣ Ωt − 1 = f (yt),
Ber ∼ λ2(3). As an alternative parametric model is needed
in Berkowitz (2001), the test can be viewed as a
semiparametric test. Instead, all the tests proposed in
our paper, LRud,LRind, and LRcd, are nonparametric.
4 | MONTE CARLO STUDY

The null hypotheses in the Monte Carlo study are that the

forecasted density distributions s(yt) for ytf gTt¼1 are,
respectively, the independent normal distribution, the
independent t(6) distribution, and the independent trun-
cated Cauchy distribution. When s(⋅) is the independent
normal distribution, the mean and standard errors are
estimated from simulated data. When s(⋅) is the indepen-
dent truncated Cauchy distribution, the upper and lower
bounds are set as maximum and minimum of the gener-
ated data. We have chosen these three distributions
because, based on the density function graph, they look
similar to each other and we therefore need formal tests.

The DGP for ytf gTt¼1 will be designed to check how the
tests will perform from both size and power perspectives,
and it can be divided into three cases:

Case 1. yt~i. i. d. N(0,1), yt~i. i. d. t(6), yt~i. i. d.
tCauch(−10,10)

Case 2. yt ¼ nt
ffiffiffiffi
ht

p
; ht ¼ 0:15þ 0:15y2t−1 þ 0:70ht−1;

ntei:i:d:N 0; 1ð Þ; ntei:i:d:t 6ð Þ
Case 3. yt ¼ nt
ffiffiffiffi
ht

p
; ht ¼ 0:15þ 0:70y2t−1 þ 0:15ht−1;

ntei:i:d:N 0; 1ð Þ; ntei:i:d:t 6ð Þ

The DGP in Case 1, with no time dependence, is used
to investigate size for the three test statistics in Section 3
and also power for LRud and LRcd. The DGP's in Cases 2
and 3 are used to investigate the power of the three tests
as there exists GARCH(1,1)‐type dependence in these
processes. Because of its relevance in risk management,
the GARCH(1,1) model is a common model used in pre-
vious research to evaluate interval forecasting
(Christoffersen, 1998; Clements & Taylor, 2003) and den-
sity forecasting (Bao, Lee, & Saltoglu, 2007; Diebold et al.,
1998). We set the sample size N to 100, 250, 500 and
1,000. Following Sturges' rule (Sturges, 1926), which is
used to decide the ideal bin width in constructing
histogram, the number of states k is initially chosen as
the integer value of 1+log2(T) for finite sample size T,
and the interval length for each state is as identical. In
the case that the sample size and number of states k con-
verge to infinity then the test would converge to a true
density forecast test. If there exist empty bins based on
the initial division, we combine the nearby bins until
each bin contains observations. However, based on
Sturges rule, when T = 250, 500 and 1,000, the integer
values of 1+log2(T) are 9, 10, and 11, respectively, and
we seldom come across the situation that a bin contains
0 observations.

The number of Monte Carlo replications is 10,000. We
first investigate the size properties for all the tests: LRud,
LRind, and LRcd, the Berkowitz (2001) tests, Ber and
Berind, and the Kolmogorov–Smirnov (KS) test. The
results are presented in Table 1.

In Table 1, the forecasted distribution s(⋅) is the same
as the true distribution f (⋅) of the DGP. For the Monte
Carlo simulation we use 10,000 replications, implying
that the approximate 95% confidence interval for the esti-
mated size at a nominal 5% significant level is

0:05 ± 1:96*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05 1 − 0:05ð Þ

10; 000

s
¼ 0:0457; 0:0543ð Þ:

Table 1 shows that when the DGP is i. i. d. t(6) or i. i. d.
tCauch(−10,10), the sizes are mostly unbiased or nearly
unbiased. When the DGP is i. i. d. N(0,1), LRud and LRind

have somewhat too large rejection rates for small sam-
ples. This size distortion decreases when sample size
increases. On the other hand, when the DGP is i. i. d.
N(0,1), the size of KS and Ber tests is smaller than nomi-
nal size, and this size distortion will not be improved
when sample size increases.

We next investigate the properties of the tests of good-
ness of fit when the data are generated from a DGP with



TABLE 1 Size of the tests when s(⋅) = f(⋅)

DGP i.i.d. N(0,1) i.i.d. t(6) i.i.d. tCauch(−10,10)

N 100 250 500 1,000 100 250 500 1,000 100 250 500 1,000

KS 0.000 0.000 0.000 0.033 0.041 0.050 0.053 0.033 0.037 0.043 0.052 0.058

LRud 0.015 0.012 0.020 0.048 0.055 0.044 0.049 0.048 0.021 0.058 0.041 0.045

LRcd 0.072 0.070 0.068 0.052 0.058 0.054 0.033 0.045 0.020 0.040 0.052 0.048

Ber 0.005 0.007 0.007 0.006 0.054 0.053 0.055 0.055 0.058 0.061 0.048 0.053

LRind 0.090 0.087 0.080 0.061 0.060 0.057 0.042 0.045 0.021 0.042 0.050 0.060

Berind 0.040 0.047 0.033 0.050 0.042 0.050 0.045 0.052 0.041 0.043 0.053 0.049

TABLE 3 Power of the goodness‐of‐fit test and size of indepen-

dence test (The underlined entries) when s is i. i. d. Normal

DGP i. i. d. t(6) i. i. d. tCauch(−10,10)

N 100 250 500 1,000 100 250 500 1,000

KS 0.011 0.037 0.115 0.423 0.613 0.996 1.000 1.000

LRud 0.094 0.306 0.674 0.946 0.913 1.000 1.000 1.000

LRcd 0.085 0.120 0.265 0.643 0.470 0.979 1.000 1.000

Ber 0.006 0.014 0.029 0.054 0.001 0.001 0.004 0.005

BerG 0.018 0.027 0.051 0.093 0.04 0.060 0.072 0.085

LRind 0.070 0.049 0.033 0.031 0.015 0.030 0.056 0.074

Berind 0.050 0.060 0.037 0.041 0.046 0.034 0.045 0.051

BerGind 0.067 0.063 0.083 0.092 0.116 0.154 0.181 0.205
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no time dependence. The series ytf gTt¼1 are still generated
from Case 1, but the forecasted distributions s(⋅) and the
true distribution f (⋅) are varied. Moreover, for the Ber
test, we will specify two alternative models when con-
structing the test statistic: one where zt follows an AR(1)
model in the equation zt − μ = ρ(zt − 1 − μ)+εt, and the
other when it follows a GARCH model,

zt ¼ nt
ffiffiffiffi
ht

p
; ht ¼ cþ az2t−1 þ bht−1. When the alternative

model is an AR(1) model, we denote the Berkowitz
(2001) independent test by Berind and the joint test by
Ber. When the alternative model is a GARCH model,
we denote the Berkowitz (2001) independent test by
BerGind and the joint test by BerG. Tables 2, 3, and 4 pres-
ent the power properties for the test statistics KS, LRud,
Ber, and BerG, and the size properties for the test statis-
tics LRind, Berind, and BerGind.

For the power in Table 2, the Ber test generally has the
highest power in the goodness‐of‐fit test, while the fol-
lowing are then BerG, LRud, LRcd, and KS. Almost all
the power will approach one when sample size increases
to larger than 500. However, as can be seen in Table 3,
when s(⋅) is an independent normal distribution, Ber
and BerG have almost no power even when the sample
size increases. This is explained in Dowd (2004), who
TABLE 2 Power of the goodness‐of‐fit test and size of independence

DGP

s is i.i.d. t(6)

i. i. d. N(0,1) i. i. d. tCauch(−10,10)

N 100 250 500 1,000 100 250 500 1,00

KS 0.047 0.059 0.089 0.210 0.305 0.829 1.000 1.00

LRud 0.098 0.304 0.741 0.994 0.983 1.000 1.000 0.08

LRcd 0.150 0.199 0.411 0.814 0.867 0.998 1.000 1.00

Ber 0.273 0.670 0.973 1.000 0.999 1.000 1.000 1.00

BerG 0.142 0.579 0.951 1.000 0.997 1.000 1.000 1.00

LRind 0.011 0.100 0.094 0.084 0.020 0.024 0.045 0.06

Berind 0.052 0.054 0.049 0.060 0.051 0.053 0.047 0.06

BerGind 0.006 0.014 0.034 0.014 0.022 0.033 0.034 0.04
shows that a deviation from normality of the transformed
data, which is what happens in our case, makes it diffi-
cult for the test to detect deviations from the null hypoth-
esis. The power of LRud, LRcd, and KS approaches one as
sample size increases, while LRud and LRcd have higher
power than KS for all the sample sizes. The sizes of the
independence tests LRind and Berind are quite close to
the nominal size of 5%, but BerGind is seriously oversized
test (The underlined entries) when s is i.i.d. t(6) and i. i. d. tCauchy

s is i. i. d. tCauchy

i. i. d. N(0,1) i. i. d. t(6)

0 100 250 500 1,000 100 250 500 1,000

0 0.053 0.096 0.509 0.982 0.053 0.204 0.791 0.998

4 0.097 0.577 0.981 1.000 0.122 0.741 0.999 1.000

0 0.134 0.348 0.837 0.999 0.094 0.362 0.916 1.000

0 0.070 0.680 1.000 1.000 0.071 0.814 1.000 1.000

0 0.025 0.604 0.986 1.000 0.026 0.751 0.999 1.000

3 0.133 0.112 0.089 0.090 0.081 0.050 0.039 0.035

1 0.056 0.069 0.045 0.048 0.051 0.051 0.049 0.054

8 0.020 0.021 0.015 0.013 0.029 0.027 0.023 0.014



TABLE 4 Power of the tests when s is i.i.d. t(6) and DGP is from case 2 and case 3

DGP

Case 2 Case 3

i.i.d. t(6) i.i.d. N(0,1) i.i.d. t(6) i.i.d. N(0,1)

N 100 250 500 1,000 100 250 500 1,000 100 250 500 1,000 100 250 500 1,000

KS 0.165 0.277 0.427 0.704 0.100 0.180 0.300 0.535 0.318 0.550 0.756 0.972 0.703 0.978 1.000 1.000

LRcd 0.333 0.579 0.840 0.974 0.270 0.448 0.732 0.977 0.803 0.980 0.998 1.000 0.903 0.995 0.987 1.000

Ber 0.427 0.648 0.828 0.979 0.504 0.721 0.900 0.993 0.633 0.623 0.664 0.711 0.861 0.938 0.992 0.999

BerG 0.617 0.937 0.998 1.000 0.639 0.966 1.000 1.000 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LRind 0.183 0.337 0.607 0.881 0.169 0.221 0.373 0.616 0.609 0.880 0.978 0.992 0.509 0.892 0.999 0.997

Berind 0.097 0.103 0.117 0.118 0.073 0.084 0.089 0.083 0.225 0.261 0.285 0.302 0.190 0.225 0.277 0.275

BerGind 0.558 0.941 0.998 0.999 0.297 0.738 0.962 1.000 0.977 1.000 1.000 1.000 0.934 1.000 1.000 1.000
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when the DGP is i. i. d. tCauch(−10,10). A possible cause
of the failure of BerGind is that the thick tails of the data
are captured by the GARCH(1,1) model fitted under the
alternative hypothesis—a model with thicker tails than
the standard normal assumed under the null hypothesis.

Next, we investigate the power against both lack of fit
and dependence. In order to do this the DGPs of Cases 2
and 3 are used. The power properties for test statistics KS,
LRcd, Ber, BerG, LRind, Berind, and BerGind are shown in
Tables 4 and 5.

When s(⋅) is i. i. d. t(6), Table 4 show that BerG has
higher power than both Ber and LRcd. This result is not
surprising since, for BerG, the alternative model is cor-
rectly specified as a GARCH model, while LRcd is agnos-
tic about the form of dependence. When s(⋅) is an
independent normal distribution, Table 5 show that BerG
has substantial power against GARCH‐type dependence
despite the incorrectly specified error distribution. The
two extra estimated parameters are apparently not caus-
ing too much uncertainty.

We would also like to highlight the main advantage of
our proposed test by showing the failure of Ber and Berind
TABLE 5 Power of the tests when s is i. i. d. normal and DGP is from

DGP

Case 2

i.i.d. t(6) i.i.d. N(0,1)

N 100 250 500 1000 100 250 500 1000

KS 0.069 0.308 0.689 0.967 0.001 0.002 0.002 0.005

LRcd 0.212 0.619 0.910 0.997 0.118 0.193 0.374 0.590

Ber 0.023 0.139 0.318 0.590 0.016 0.021 0.017 0.018

BerG 0.551 0.922 1.000 1.000 0.239 0.645 0.939 1.000

LRind 0.156 0.319 0.606 0.890 0.155 0.220 0.392 0.589

Berind 0.122 0.155 0.175 0.182 0.085 0.093 0.096 0.118

BerGind 0.718 0.966 1.000 1.000 0.441 0.831 0.989 1.000
to detect dependence when it is not correctly parame-
trized. This is not a shortcoming of these tests but simply
a consequence of the tradeoff between uncertainty and
precision. Table 5 shows that Ber and Berind have very
low power when the DGP is i. i. d. N(0,1) for all the sam-
ple sizes and the alternative hypothesis is an AR(1)
model. This shows that correctly specifying an alternative
hypothesis in Berkowitz (2001) is crucial to guarantee a
high power of the test. The BerGind test has the highest
power and Berind the lowest for all the cases when it
comes to detecting GARCH‐type forecast distributions.
The nonparametric nature of the LRind and LRcd tests is
therefore naturally placed between the two Berkowitz‐
type tests and it is an empirical question whereabouts
they are placed. For the cases in our Monte Carlo study,
we find it fair to claim that they are working very well.

Based on Tables 1–5, we conclude that the tests pro-
posed in our paper—LRud,LRind, and LRcd—have good
size and power properties. In applications, analogously
with the test by Christoffersen (1998), the tests can be car-
ried out in a natural sequence. The first step is to apply
LRcd to jointly test the independence and goodness of
case 2 and case 3

Case 3

i.i.d. t(6) i.i.d. N(0,1)

100 250 500 1000 100 250 500 1000

0.485 0.924 0.999 1.000 0.111 0.420 0.728 0.975

0.808 0.930 0.999 1.000 0.523 0.950 0.999 1.000

0.327 0.688 0.948 1.000 0.112 0.309 0.544 0.821

0.959 1.000 1.000 1.000 0.894 1.000 1.000 1.000

0.627 0.926 0.969 0.992 0.478 0.891 0.985 0.999

0.325 0.349 0.425 0.452 0.212 0.242 0.297 0.290

0.984 1.000 1.000 1.000 0.941 1.000 1.000 1.000



TABLE 6 Size of the LR tests when s(⋅) = f(⋅), sample size = 250 and size =500 (in bold)

DGP i. i. d. N(0,1) i. i. d. t(6) i. i. d. tCauch(−10,10)

Bin no. 7 9 15 20 7 9 15 20 7 9 15 20

LRud 0.013 0.016 0.016 0.011 0.040 0.044 0.039 0.062 0.049 0.052 0.049 0.038
0.013 0.017 0.015 0.023 0.043 0.043 0.034 0.034 0.058 0.048 0.0415 0.05

LRind 0.098 0.101 0.058 0.006 0.080 0.060 0.016 0.001 0.060 0.040 0.001 0.000
0.103 0.090 0.068 0.023 0.058 0.046 0.024 0.001 0.099 0.050 0.001 0.000

LRcd 0.058 0.073 0.042 0.001 0.080 0.051 0.018 0.002 0.061 0.043 0.004 0.000
0.072 0.070 0.047 0.020 0.064 0.040 0.015 0.001 0.088 0.047 0.002 0.000

TABLE 7 Power of the LR tests when s is i.i.d. t(6) and DGP is from case 2 and Case3, sample size = 250 and size =500 (in bold)

DGP

Case 2 Case 3

i.i.d. t(6) i.i.d. N(0,1) i.i.d. t(6) i.i.d. N(0,1)

Bin no. 7 9 15 20 7 9 15 20 7 9 15 20 7 9 15 20

LRcd 0.575 0.563 0.564 0.554 0.448 0.459 0.476 0.442 0.820 0.923 0.935 0.939 0.956 0.982 0.992 0.982
0.754 0.788 0.792 0.777 0.672 0.749 0.739 0.756 0.804 0.980 0.998 0.998 0.950 0.998 1.000 1.000

LRind 0.357 0.363 0.120 0.020 0.221 0.229 0.096 0.011 0.720 0.908 0.871 0.580 0.780 0.887 0.705 0.285
0.554 0.601 0.340 0.116 0.330 0.361 0.193 0.045 0.640 0.970 0.997 0.943 0.892 0.999 0.989 0.832

LRcd 0.607 0.602 0.375 0.171 0.444 0.458 0.242 0.036 0.880 0.984 0.982 0.835 0.973 0.996 1.000 0.870
0.791 0.845 0.674 0.447 0.719 0.740 0.540 0.197 0.811 0.995 1.000 1.000 0.992 0.999 1.000 1.000

8 LI AND ANDERSSON
fit. If the null hypothesis is not rejected, we can conclude
that s(yt) is the proper distribution and that the time
dependence in the data has been captured by the forecast-
ing model. However, if we reject the null hypothesis, we
test whether the rejection is due to the dependence or
to an incorrectly specified distribution by applying LRud

and LRind separately.
As mentioned, the number of states k in Tables 1–5 is

initially chosen by Sturges' rule (Sturges, 1926) with k is
integer value 1+log2(T). To investigate whether this
choice is reasonable, we performed the simulation study
for the sample sizes T = 250 and T = 500 with k set to
7, the integer value of 1+log2(T), 15, and 20. As men-
tioned previously, for T = 250, the integer value of
1+log2(T)is 9, whereas for T = 500 it is 10. First, the size
performance was studied and the result is shown in
Table 6 for T = 250 and T = 500.

Overall, our conclusion is that Sturges' rule works
well. We also check how the power changes with k.
Table 7 presents power against both lack of fit and depen-
dence with DGP of Cases 2 and 3.

Based on the above size and power tables, we conclude
that choosing k based on Sturges' rule yields the best per-
formance in terms of unbiased size (except when
s(⋅) = f (⋅) = i. i. d. N(0,1) where k = 15 end up in more
stable size of the test) and highest power. For the cases
we study here, the most striking observation is that for
the larger k values the tests are, in general, undersized.
5 | CONCLUSION

This paper proposes a test framework for the evaluation
of density forecasts. It is an extension of the interval fore-
casting tests of Christoffersen (1998). We show that the
proposed tests have high power against two types of time
dependence, even though no parametric specification of
this dependence is needed in the test. The power is com-
pared to the parametric tests proposed by Berkowitz
(2001) and shown to be competitive with them, even in
situations when the parametric form in Berkowitz tests
is correctly specified. When the dependence is incorrectly
specified in Berkowitz tests, the proposed tests outper-
form them.
ACKNOWLEDGMENT

Yushu Li gratefully acknowledges funding from the
Finance Market Fund, Norwegian Research Council
(Project number 274569).
DATA AVAILABILITY STATEMENT

The data that support the findings of this study, including
the R code, are available from the corresponding author
upon reasonable request.



LI AND ANDERSSON 9
ORCID

Yushu Li https://orcid.org/0000-0003-4105-9925
Jonas Andersson https://orcid.org/0000-0002-2899-6562
REFERENCES

Bao, Y., Lee, T. H., & Saltoglu, B. (2007). Comparing density fore-
cast models. Journal of Forecasting, 26(3), 203–225.

Bera, A. K., & McKenzie, C. R. (1985). Alternative forms and
properties of the score test. Journal of Applied Statistics, 13,
13–25.

Berkowitz, J. (2001). Testing density forecasts with applications to
risk management. Journal of Business and Economic Statistics,
19, 465–474.

Berkowitz, J., Christoffersen, P., & Pelletier, D. (2011). Evaluating
value‐at‐risk models with desk‐level data. Management Science,
57(12), 2213–2227.

Chatfield, C. (1993). Calculating interval forecasts. Journal of Busi-
ness and Economic Statistics, 11, 121–135.

Christoffersen, P. F. (1998). Evaluating interval forecasts. Interna-
tional Economic Review, 39, 840–841.

Clements, M., & Taylor, N. (2003). Evaluating interval forecasts of
high frequency financial data. Journal of Applied Econometrics,
18, 445–456.

Diebold, F. X., Gunther, T. A., & Tay, A. S. (1998). Evaluating den-
sity forecasts with applications to financial risk management.
International Economic Review, 39, 863–883.

Diebold, F. X., Hahn, J., & Tay, A. S. (1999). Multivariate density
forecast evaluation and calibration in financial risk manage-
ment: High‐frequency returns on foreign exchange. Review of
Economics and Statistics, 81, 661–673.

Diebold, F. X., & Lopez, J. A. (1996). Forecast evaluation and com-
bination. In G. S. Maddala & C. R. Rao (Eds.), Handbook of
statistics 14: Statistical methods in finance (pp. 241–268). Amster-
dam, Netherlands: North‐Holland.

Dowd, K. (2004). A modified Berkowitz back‐test. Risk Magazine,
17(4), 86–87.

Dumitrescu, E. L., Hurlin, C., & Madkour, J. (2013). Testing interval
forecasts: A GMM‐based approach. Journal of Forecasting, 32(2),
97–110.

Engle, R. F., & Manganelli, S. (2004). CAViaR: Conditional
autoregressive value‐at‐risk by regression quantiles. Journal of
Business and Economics Statistics, 22, 367–381.
Gneiting, T. (2011). Making and evaluating point forecasts. Journal
of the American Statistical Association, 106(494), 746–762.

Granger, C. W. J., White, H., & Kamstra, M. (1989). Interval fore-
casting: An analysis based upon ARCH quantile estimators.
Journal of Econometrics, 40, 87–96.

Sturges, H. A. (1926). The choice of a class interval. Journal of the
American Statistical Association, 21, 65–66.

Tay, A. S., & Wallis, K. F. (2000). Density forecasting: A survey.
Journal of Forecasting, 19, 235–254.

Wallis, K. F. (1995). Large‐scale macroeconometric modeling. In M.
H. Pesaran, & M. R. Wickens (Eds.), Handbook of applied econo-
metrics (pp. 312–355). Oxford, UK: Blackwell.

Wallis, K. F. (2003). Chi‐square tests of interval and density fore-
casts, and the Bank of England's fan charts. International
Journal of Forecasting, 19, 165–175.

AUTHOR BIOGRAPHIES
Yushu Li is Associate Professor of Statistics in the
Department of Mathematics at the University of Ber-
gen (UiB). Before working at UiB, Li worked for two
years as an Assistant Professor at the Norwegian
School of Economics (NHH) and before that worked
as a full‐time researcher in the economics department
at Lund University. Her research interests are time
series analysis, econometric modelling and wavelet
methods and, more recently, statistical sparse learning
methods.

Jonas Andersson is a professor at Norwegian School
of Economics. He received his PhD in statistics at
Uppsala University in 1999. His research interests cen-
ters around statistical modeling and its applications to
business and economics.
How to cite this article: Li Y, Andersson J. A
likelihood ratio and Markov chain‐based method to
evaluate density forecasting. Journal of Forecasting.
2019;1–9. https://doi.org/10.1002/for.2604

https://orcid.org/0000-0003-4105-9925
https://orcid.org/0000-0002-2899-6562
https://doi.org/10.1002/for.2604

