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Abstract

In this thesis, we aim at constructing a framework for kernel searching in both Gaussian
process and Support Vector Machines. Choosing the right kernels for these two methods
often requires expert knowledge and many people who use these methods do not have
enough knowledge of making a good choice at first hand. A system which is automating
the choice of kernels could be useful for non-experts and this project carries out an
experimental study of how the automatic chosen system can be formulated according to
the data structure. Based on our system, we have carried out four empirical analyses:
two in regression and two in classification. To evaluate the constructed kernels and
final models in the empirical cases, we have followed an experimental and innovative
approach instead of a traditional approach. The implementation of the kernel search
and model evaluation is explained in detail. More concretely, the data sets we have
used in regression are time series data and we have focused on finding models which
have reasonable extrapolations. In the classification analyses, we have chosen medical
data where we want to find out whether a patient has a disease or not. We have trained
the classification models to have good accuracy but also to minimize the type II error
of not identifying a patient with the disease.
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Chapter 1

Introduction

In the field of data science, we have all kinds of data source in today’s information age
and different types of data become easier to collect and store. For the statisticians, the
availability of huge amount of data along with new scientific problems has reshaped
statistical thinking and data analysis. However, in order to make predictions, or create
interpretable knowledge of the data, experts with cross-sectional skills in statistics,
data science, and machine learning are needed. Thus this thesis aim at combining
the knowledge of statistical model constructing, data analysis techniques and machine
learning methods to train our skills. We will carry out exploratory study of two
important kernel based machine learning methods: SVM and Gaussian Processes. We
will present a comprehensive study for the theoretic background of both methods. As
both methods are kernel based, this thesis will also study an automatic statistical model
building process, which will focus on choosing a suitable set of kernels based on the data
structure. This topic of the thesis is inspired by the project: The Automatic Statistician
[23], where they aim to explore an open-ended space of possible statistical models and
return a statistical model with state-of-the-art extrapolation performance evaluated
over real data sets from various domains. In this thesis we will try to design our own
automatic statistical learning process through a broad kernel searching procedure. The
kernel chosen by the searching method should be most suitable to the data structure.
We will carry out four empirical analyses: two in regression and two in classification. In
the Automatic Statistician project, the framework of the automatic machine learning is
done in combination with Python and MATLAB. For our framework, we write our own
R codes when designing the kernel searching process as well as looking at a different
procedure of how analyzing the data can be done. The code we have written can be found
in the GitHub repository at https://github.com/HjorthBe/Master-thesis-2019 .

It seems little work has been done on automatic statistical learning. Moreover, it

https://github.com/HjorthBe/Master-thesis-2019
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could be interesting to look at other ways of evaluating the kernel families, as the
approximation of the marginal likelihood of a GP with the Bayesian information
criterion done by other works, does not guarantee to find the global optimum for the
hyperparameters.

In this thesis, we first study the support vector machines (SVM), as it is one of
the most successful classification/regression methods for many applications in big data
data analysis. Vladimir Vapnik invented the first version of the pattern recognition
algorithm termed Generalized Portrait [25] in the early 1960s. This algorithm was
a predecessor of the Support Vector Machines, which he co-invented 30 years later.
After his invention, Vapnik started to collaborate with Aleksey Chervonenkis to further
develop on the framework of the algorithm. Many of the ideas which are now being
developed in the framework of Support Vector Machines was first proposed by Vapnik
and Chervonenkis in the 1960s [20].

In the early 1990s, the neural-network community at AT&T Bell laboratories was
among the leaders of machine learning research driven by prediction problems [7].
Vapnik joined the team and he and his co-workers developed the Support Vector
Machine. This started with the influential paper by Boser et al. [1], which introduced
the optimal margin classifier. The paper transformed the field of machine learning with
the pioneering use of functional analysis and convex optimization. The success of SVMs
on a variety of real-world pattern recognition benchmark problems, has attracted many
researchers and engineers from various diciplines to the field of statistical learning
theory.

There are many advantages with SVM. Firstly, we can avoid overfitting when we
adjust the tuning parameter in the model. Secondly, only training observations that
end up as support vectors are necessary for predictions to be made, so computations
are done on a substantially smaller part of the data set. Lastly, one trick which is
applied in SVM lies at the concept of “kernel mapping”. This kind of mapping can be
used when real-world data is not separable by a linear hyperplane, but may still have
a underlying nonlinear separable boundary.

The SVM has been successfully applied to pattern classification and regression
tasks that ranges from bioinformatics: microarray cancer diagnosis, gene selection,
to computer vision: face recognition and hand-written character recognition. One
aim of this project is to apply SVM in data analysis where we have high dimensional
input variables or big datasets. Except for SVM, this thesis will also investigate how
the automatic kernel searching process can be used in another kernel based machine
learning method: Gaussian process.
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Gaussian process models are an alternative to classical machine learning and
statistical approaches to learning. Instead of assuming a parametric form for functions,
Gaussian process assumes a probabilistic prior over functions. With this assumption,
the Gaussian Process has the advantage that it can represent the uncertainty associated
with their function representation. Other advantages with the GP model is that we can
sample from the prior to get intuitions about the assumptions of the model. Moreover,
the GP provides rich modeling capacity. For instance, if we use the Matérn class
of covariance functions, then a special case of this class is the Ornstein-Uhlenbeck
process with applications in financial mathematics and physics. There has been much
interest of Gaussian process in research, it was for instance used to automatically
tune the Monte Carlo three search hyperparameters for AlphaGO Zero [21]. Gaussian
processes have also been successful in biogeophysical parameter retrieval [2]. Unlike
SVM, prediction with Gaussian process is not a recent topic and Rasmussen mentions
that for time series analysis, the basic theory can be seen in the works of Wiener and
Kolmogorov in the 1940s [19].

If we compare the Support Vector Machine and Gaussian process classifier, we
will see that there is a connection between the two kernel machines. In chapter 6 of
Rasmussens book [19], it is shown that the MAP solution of the GP classifier and
the SVM solution have a close correspondence. The difference of GP and SVM, is
that for GP the uncertainty in the unknown function is handled by averaging and not
by minimization as in SVM. One benefit of the GP classifier over the SVM is that it
provides an output with a probabilistic interpretation.

We will develop our thesis through the following chapters: chapter 2 is the compre-
hensive study of support vector machine with the underlying mathematical derivation,
chapter 3 is the introduction of Gaussian Processes in the framework of Bayesian anal-
ysis, chapter 4 is the process of how we design the automatic kernel search including
important parts of our self-written R code with explanations, and in the final chapter
we have conclusion and discussion.





Chapter 2

Support Vector Machines

In this chapter, we will have a study of the mathematical framework of support vector
machine. The support vector machine is a supervised learning approach for predicting
qualitative responses known as classification and can also be used as regression. For
classification, it is a generalization of the maximal margin classifier and an extension of
the support vector classifier, and here we begin with the definition for maximal margin
classifier.

2.1 The maximal margin classifier

Maximal margin classifier is defined in the form of a hyperplane, and a hyperplane is a
flat affine subspace of dimension p − 1 in a p-dimensional space. It is parameterized
by a vector β = (β1, β2, ..., βp), and a constant β0, expressed in the equation f(x) =
xT β + β0 = 0. If we are in R2 the hyperplane f(x) = xT β + β0 = 0 is a line. If a
point xT in p-dimensional space satisfies xT β + β0 = 0, then xT lies on the hyperplane.
Suppose we have a training data which consists of N pairs (x1, y1), (x2, y2), ..., (xN , yN ),
where each pair has inputs xi ∈ Rp and a class label with one of two values yi ∈ {−1, 1},
for i = 1, ..., N . Where the values of yi is chosen −1 and 1, for convenience of further
computation. Given that the data is linear separable, and a hyperplane that separates
the data, the separating hyperplane has the property that

xT
i β + β0 > 0 if yi = 1,

and
xT

i β + β0 < 0 if yi = −1.
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Equivalently, a separating hyperplane which correctly classify the training example
also satisfy the property

yi(xT
i β + β0) > 0

for all i = 1, ..., N . This is the reason for why we chose yi ∈ {−1, 1}. The larger
yi(xT

i β + β0) > 0 is, the more confident we are in the prediction of xi. If our data can
be perfectly separated by a hyperplane, then there will exist an infinite number of such
hyperplanes. In this case we will have infinite ways that we can shift the hyperplane a
small amount up or down, and rotate it clockwise or counterclockwise without making
it touch any of the observations.

Fig. 2.1 The four plots show observations from two classes and four separating hyperplanes with
different decision boundaries. Plot D at the right bottom shows the maximal margin hyperplane.

A good way to decide which of the infinite number of separating hyperplanes to use, is
to choose the maximal margin hyperplane. The maximal margin hyperplane separates
the two classes and maximizes the distance to the closest point from either class. This
provides a unique solution to the separating hyperplane problem. The distance from
one point xi to the hyperplane can be measured by the geometric margin, which is the
perpendicular distance from the xi’th training observation to the separating hyperplane,

1
∥β∥yif(xi) for all i = 1, ..., N , where ∥β∥2 = ∑p

j=1 β2
j . We can scale the hyperplane by

multiplying any constant C to the parameters (β, β0), without changing the position
of the hyperplane. f(x) = 0 for any constant C. By adding the scaling condition
∥β∥2 = ∑p

j=1 β2
j = 1, the geometrical margin then becomes yif(xi) instead. So we have

that mi = yif(xi) is the perpendicular distance of the xi’th training observation to the
separating hyperplane. The margin is then M = min mi

i=1,...,N
, the shortest distance of the

training observation to the hyperplane. Using this notation, the search of the maximal
margin hyperplane can be transformed into the optimization problem:

max
β,β0,∥β∥=1

M

subject to yi(xT
i β + β0) ≥ M, i = 1, ..., N.

(2.1)
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These constraints ensures us that each of the observations is on the correct side of the
hyperplane and at least a distance M from the decision boundary. The optimization
problem chooses β and β0 to maximize M. We get rid of the ∥β∥ = 1 constraint by
replacing the conditions with

1
∥β∥

yi(xT
i β + β0) ≥ M (2.2)

or equivalently
yi(xT

i β + β0) ≥ M∥β∥. (2.3)

We can arbitrarily set ∥β∥ = 1/M because any β and β0 satisfying these inequalities
will also have the inequalities satisfied for any positively scaled multiple of them. So
now M = 1/∥β∥, and we see that max M is the same as min∥β∥, which again is the
same as min ∥β∥2. Thus eq.(2.1) is equivalent to

min
β, β0

1
2∥β∥2

subject to yi(xT
i β + β0) ≥ 1, i = 1, ..., N.

(2.4)

This is a quadratic optimization problem under linear restriction and for this problem
we can construct a Lagrangian [8].

2.2 Lagrange duality

The method of Lagrange multipliers is used to solve an optimization problem subject
to equality constraints. Let:

min
β

f(β)

subject to hi(β) = 0, for i = 1, ..., l,
(2.5)

define the constrained optimization problem of this form. Then the minimum of the
constrained function is given by finding the parameter β where ∇f(β) = −αi∇hi(β).
We then have ∇f(w) and ∇hi(w) pointing in the same direction and the Lagrange
multiplier αi, which scales the gradient vector to have equal length as the other. Solving
this optimization problem we first define the Langrangian to be

L(β, α) = f(β) +
l∑

i=1
αihi(β). (2.6)
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We then find and set the L partial derivatives to zero:

∂L
∂βi

= 0; ∂L
∂αi

= 0, (2.7)

and solve for β and α. The method of Lagrange multipliers only allows equality
constraints, but if we add the Karush-Kuhn-Tucker (KKT) conditions it can be
generalized to allow both inequality and equality constraints:

min
β

f(β)

subject to gi(β) ≤ 0, i = 1, ..., k,

hi(β) = 0, i = 1, ..., l.

(2.8)

To solve this optimization problem we use the generalized Lagrangian defined as:

L(β, α, λ) = f(β) +
k∑

i=1
αigi(β) +

l∑
i=1

λihi(β)

Here, both αi’s and λi’s are the Lagrange multipliers [16, p. 8]. If we look at the
quantity

max
α:αi≥0

L(β, α, λ)

for a given β, we see that max
α:αi≥0

L(β, α, λ) = ∞, if β violates any of the primal
constraints. This is because the violation now allows gi(β) > 0 or hi(β) ̸= 0. But if,
instead the primal constraints are satisfied we see that

max
α:αi≥0

L(β, α, λ) = max
α:αi≥0

f(β) +
k∑

i=1
αigi(β) +

l∑
i=1

λihi(β) = f(β)

because then hi(β) = 0 and max
α:αi≥0

L(β, α, λ) is given when gi(β) = 0, which is the
largest possible value allowed. Hence,

max
α:αi≥0

L(β, α, λ) =

f(β) , if β satisfies the primal constraints
∞ otherwise.

We can now write LP (β) = max
α:αi≥0

L(β, α, λ) and see that minimizing this with respect
to β, min

β
LP (β), is actually the same primal optimization problem we started with.

So the procedure for solving the primal problem is: first we fix β and then we find α to
maximize L(β, α, λ), defined Lp(β) = max

α:αi≥0
L(β, α, λ). Then we find β so that Lp(β)
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is minimized. Moreover, the primal optimization problem can also be viewed from
the dual perspective. For the dual problem we instead first fix α and then find β to
minimize L(α, β), defined as LD(α) = min

β
L(α, β). The dual optimization problem is

then to find α so that LD(α) is maximized, max
α:αi≥0

LD(α). Let d∗ = max
α:αi≥0

LD(α) denote
the optimal value of the dual problem and p∗ = min

β
Lp(β), the optimal value of the

primal problem. Because "max min" of a function is always less than or equal to the
"min max" of a function, the solution of the dual problem provides a lower bound to
the solution of the primal problem. So we have that

d∗ = max
α:αi≥0

LD(α) = max
α:αi≥0

min
β

L(w, α, β) ≤ min
β

max
α:αi≥0

L(β, α, λ) = min
β

LP (β) = p∗.

If the KKT conditions are satisfied, d∗ = p∗. The KKT conditions are satisfied with
the following conditions:

∂

∂βi

L(β∗, α∗, λ∗) = 0, i = 1, ..., n (2.9)

∂

∂λi

L(β∗, α∗, λ∗) = 0, i = 1, ..., l (2.10)

α∗
i gi(β∗) = 0 i = 1, ..., k (2.11)

gi(β∗) ≤ 0, i = 1, ..., k (2.12)

α∗ ≥ 0, i = 1, ..., k. (2.13)

[16].

2.3 Maximal margin classifiers
We can now look at the Lagrange primal for the optimization problem of the maximal
margin hyperplane. For the optimization problem:

min
β, β0

1
2 ∥β∥2

subject to yi(xT
i β + β0) ≥ 1, i = 1, ..., N.
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we can write the constraint as gi(β) = −yi(xT
i β + β0) + 1 ≤ 0. We then have one such

constraint for each of the training examples.
We now construct a Lagrangian for this optimization problem and get the Lagrange

primal function, to be minimized w.r.t. β and β0:

LP (β, β0, α) = 1
2∥β∥2 −

N∑
i=1

αi[yi(xT
i β + β0) − 1] (2.14)

Here we only have “αi” Lagrange multipliers because the problem only has inequality
constraints. Instead of solving (14), the original Lagrange primal of the problem, we
find the dual form and solve it.

To find the dual form of the problem we first need to minimize L(β, β0, α) with
respect to β and β0, to get LD we then set the derivatives with respect to β and β0 to
zero. We have:

∇βL(β, β0, α) = β −
N∑

i=1
αiyixi

From this we get

β =
N∑

i=1
αiyixi (2.15)

For the derivative with respect to β0, we obtain

∂

∂β0
L(β, β0, α) =

N∑
i=1

αiyi = 0. (2.16)

When substituting the definition of equation (2.15) back into the Lagrangian (2.14),
we get

L(β, β0, α) =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
k=1

αiαkyiykxT
i xk − β0

N∑
i=1

αiyi

But from equation (2.16), the last term must be zero, so we obtain

L(β, β0, α) =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
k=1

αiαkyiykxT
i xk.

We now have the Wolfe dual:

LD =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
k=1

αiαkyiykxT
i xk

subject to αi ≥ 0 and
N∑

i=1
αiyi = 0.

(2.17)
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We finally get the solution for the maximal margin classifier (MMC) by maximimiz-
ing LD, which is a simpler convex optimization problem than the primal. Moreover,
if we have found the α’s, we see from eq.(17) that all we need in order to make a
prediction, is to calculate the inner product between x and the points in the training
set. This will be very useful later, when we are able to solve a non-linear classification
problem by using kernel functions. The kernel is useful to calculate the inner product
in the enlarged feature space.

From the KKT condition (2.11), the solution must satisfy

αi[yi(xT
i β + β0) − 1] = 0 ∀ i. (2.18)

So we will only have αi > 0 for the training examples that are on the boundary of the
slab, which is yi(xT

i β + β0) = 1. We also see that if yi(xT
i β + β0) > 1, then xi is not

on the boundary of the slab and the αi must be αi = 0. From (2.15) we see that the
solution vector β, is a linear combinations of the points xi that are defined to be on
the boundary of the slab, with αi > 0. These points are called support vectors. The
coefficient β = ∑N

i=1 αiyixi, is then equal to a much smaller sum β = ∑L
l=1 αlylxl where

xl is the support vectors and L is the number of support vectors. β0 is obtained by
solving (2.18) for any of the support vectors. Finally the optimal separating hyperplane
is the function f̂(x) = xT β̂ + β̂0 = ∑L

l=1 αlylx
T
l x + β0 for classying new observations:

Ĝ(x) = sign f̂(x) [8].

Fig. 2.2 A maximum margin separating hyperplane with three support vectors. Only three αi’s will
be used in the optimal solution of the optimization problem. This is much less than the size of the
data set [16].
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2.4 Support vector classifier

In many cases the data is noisy and not pure linearly separable, so the separating
hyperplane does not exist. And even if a separating hyperplane does exist, it may
have a margin which is susceptible to outliers. If an observation is added, it will result
in a dramatic shift in the maximal margin hyperplane. In this case we can use the
support vector classifier, which misclassifies a few training observations in order to do a
better job in classifying the remaining observations. We can define the slack variables
ξ = (ξ1, ξ2, ..., ξN ) and modify the constraint in eq.(2.1) to yi(xT

i β + β0) ≥ M(1 − ξi).

Fig. 2.3 Two classes of observations that are not separable by a separating hyperplane and so the
maximal margin classifier can not be used [9].

Fig. 2.4 To graphs of almost the same observed inputs except the right graph which has one more
extra observation. This new observation changes the maximal margin hyperplane in a very noticeable
way [16].

When the slack variables are added, we allow misclassification of difficult examples
in a training set which is noisy. The slack variables allow some randomness, so that
individual observations can be on the wrong side of the margin and we then avoid
overfitting. As a result the model becomes more robust. The slack variables corresponds
to the random error in a probability model. The value ξi in the constraint, is the
proportional amount of the prediction f(xi) = xT

i β + β0 when it is on the wrong side
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of the margin. By bounding the sum ∑
ξi, we bound the total proportional amount by

which predictions fall on the wrong side of its margin. If ξi > 1, the ith observations is
on the wrong side of the hyperplane. If ξi = 0, then the ith observation is on the correct
side of the margin. If ξi > 0, then the ith observation is on the wrong side of the margin.
Bounding ∑ ξi at a value K, bounds the total number of training misclassifications
at K. When including these slack variables in the optimization problem, we get the
support vector classifier with the optimization problem:

max
β,β0,∥β∥=1

M

subject to yi(xT
i β + β0) ≥ M(1 − ξi) ∀ i,

ξi ≥ 0,
∑

ξi ≤ constant.

(2.19)

As in the maximal margin optimization problem, we can again get rid of the norm
constraint and scale M = 1/∥β∥ so that the optimization problem is equivalent to

min ∥β∥
subject to yi(xT

i β + β0) ≥ 1 − ξi ∀ i,

ξi ≥ 0,
∑

ξi ≤ constant.
(2.20)

It is computationally convient to again re-express the optimization problem as:

min
β,β0

1
2∥β∥2 + C

N∑
i=1

ξi

subject to ξi ≥ 0, yi(xT
i β + β0) ≥ 1 − ξi ∀ i,

(2.21)

where C denotes the constant. As before, the lagrange primal function is then similarly:

LP = 1
2∥β∥2 + C

N∑
i=1

ξi −
N∑

i=1
αi[yi(xT

i β + β0) − (1 − ξi)] −
N∑

i=1
µiξi (2.22)

which we minimize w.r.t β, β0 and ξi and obtain the Lagrangian dual objective function

LD =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′xT
i xi′ . (2.23)

We maximize LD subject to 0 ≤ αi ≤ C and ∑N
i=1 αiyi = 0. The solution for β has the

form
β̂ =

N∑
i=1

α̂iyixi, (2.24)
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with nonzero coefficients α̂i only for those observations i for which the constraints in
(9-13) are exactly met. These observations are called the support vectors, since β̂ is
represented in terms of them alone [8]. We can now see that when the dual problem is
solved, the following conditions are satisfied:

C ≥ αi ≥ 0, (2.25)
yi(xT

i β + β0) − (1 − ξi) ≥ 0, (2.26)
αi[yi(xT

i β + β0) − (1 − ξi)] = 0, (2.27)
µiξi = 0, (2.28)

ξi ≥ 0, µi ≥ 0. (2.29)

The support vectors are the observations xi that either lies on the margin or violates
the margin. Only then do we have αi > 0. This follows from the fact that if αi > 0,
then from eq.(2.27) we have that yi(xT

i β + β0) = 1 − ξi. If ξi = 0, the i’th observation
lie on the margin. If ξi > 0, the i’th observation lie on the wrong side of the margin.
Finally if ξi > 1, the i’th observation lie on the wrong side of the hyperplane.

Fig. 2.5 A nonseperable data set and the support vector classifiers. The labeled ξ∗
i points are on the

wrong side of their margin. We see that ξ∗
3 > 1 and ξ∗

5 > 1, is on the wrong side of the hyperplane.
The points which are not labeled are on the correct side with ξ∗

i = 0 [8].

2.5 Support Vector Machines

The support vector classifier described so far, finds linear boundaries in the input
feature space. This works for linearly separable data sets with some noise, but we get
a problem if the data set is very large. At figure 2.3 we see a data set which clearly is
not linearly separable, and no linear boundary is possible for any value of C. The cost
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parameter C is a tuning parameter, and the value we choose for C decides both the
severity and number of violations to the margin, and even to the hyperplane. The basic
idea of support vector machine is that the training data of the original input space, with
dimension p, can always be mapped to some higher-dimensional feature space where
the training set is more linear separable. The data set will be more easily separated in
an enlarged feature space that we allow to be larger; however, if the dimension is too
large, we will end up with overfitting the data set. If the dimension of the enlarged
feature space is m > N, where N is the sample size, we have a totally separated data set
with no use of the slack variables. The SVM will find a balance of bias and overfitting
when m ≈ N or m > N. The original feature space where the support vector classifier

Fig. 2.6 Data in two dimension which is not linearly separable. Applying a transformation to the
data, the data becomes linearly separable in three dimensions [10].

finds the optimal hyperplane is spanned by X = (X1, X2, ..., Xp). We now instead map
the input of the training data into a higher dimension m > p by the transformation
X → h(X), where h(X) = (h(X)1, h(X)2, ..., h(X)m) denotes the feature mapping.
The optimal separating hyperplane is then found in the enlarged feature space spanned
by h(X) = (h(X)1, h(X)2, ..., h(X)m). We then have a linear decision boundary in the
enlarged space, but a non-linear decision boundary in the original space.

Example: suppose we have a training data which consist of nine pairs
(x1, y1), (x2, y2), ..., (x9, y9), where xi has inputs in the one-dimensional space and yi

belongs to one of two classes, for i = 1, ..., 9. Looking at the data to the left in figure 2.7,
it is clear that in this situation, even if we allow noise it is not possible to separate
the data with SVC. If we let h1(x) = x and h2(x) = x2 we can map the input of
the training data into a higher dimension m = 2 > p = 1 with the transformation
x → h(x) = (x, x2). As a result of this mapping, we can in fig. 2.7 see that the data set
becomes linear separable in the enlarged future space. The transformation we apply to
the observed values are:
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x =



−6
−5
−4
1
2
3
5
6
7



→ h(x) =



−6 36
−5 25
−4 16
1 1
2 4
3 9
5 25
6 36
7 49



.

0 X

X2

Fig. 2.7 One-dimensional data which becomes linear separable with a nonlinear transformation to
two-dimensions.

2.6 Kernel Trick

We have shown that the solution to the support vector classifier problem in eq.(2.21)
can be represented by the lagrange dual function, which only involves the inner
products of the observations. The inner product of two observations xi, xi′ is given by
⟨xi, xi′⟩ = ∑p

j=1 xijxi′j. After the transformation, the lagrange dual function has the
form

LD =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′⟨h(xi), h(xi′)⟩.

From eq.(2.15) we see that the solution function f(x) can be written

f(x) = h(x)T β + β0

=
N∑

i=1
αiyi⟨h(x), h(xi)⟩ + β0.

(2.30)

To compute the coefficients and make a prediction, we only need the inner products
⟨h(xi), h(xi′)⟩. The problem is that the enlarged feature space can be in a very large
dimension and in a large dimension the computation of ⟨h(xi), h(xi′)⟩ becomes hard.
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In many cases the enlarged feature space is so large that the computations becomes
intractable. Fortunately, there is an elegant solution to this problem where we can
get the inner product in the enlarge feature space without doing the computations,
visiting the enlarged feature space and without knowing the enlarged feature space.
The solution is to choose a kernel function K(x, x′) = ⟨h(x), h(x′)⟩. The kernel function
is some function that corresponds to an inner product in the enlarged feature space
and needs to be a symmetric semi-positive definite function. Some popular choices of
kernels to use in SVM are [8]:

dth-Degree polynomial: K(x, x′) = (1 + ⟨x, x′⟩)d,

Radial basis: K(x, x′) = exp(−γ∥x − x′∥2),
Neural network: K(x, x′) = tanh(κ1⟨x, x′⟩ + κ2).

(2.31)

As an example, if we look at the Radial basis kernel, we can show that the kernel
corresponds to a inner product in the enlarged feature space and that this space is
infinite-dimensional.

Example: we define γ = 1/2 and look at the Radial basis kernel applied in a
one-dimensional space. We then have

K(x, x′) = exp
(

− (x − x′)2

2

)
= exp

(
− x2

2

)
exp

(
− x′2

2

) ∞∑
k=0

(x)k(x′)k

k! ,

where ∑∞
k=0

(x)k(x′)k

k! is a Taylor expansion of exp(xx′). We can now define the infinite-
dimensional feature mapping

h(x) = exp
(

− x2

2

)(
1, x,

x2
√

2!
,

x3
√

3!
,

x4
√

4!
, ...

)T

.

With this mapping we see that

K(x, x′) = exp
(

− (x − x′)2

2

)
= ⟨h(x), h(x′)⟩.

Using the kernel function in SVM, the solution in eq.(2.30) can now be written

f̂(x) =
N∑

i=1
α̂iyiK(x, xi) + β̂0. (2.32)
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This is known as the kernel trick, where the dot product is simply replaced by the
kernel function K(x, xi).

In SVM, it is much easier in higher dimensions to to find a linearly separable
hyperplane. However if the enlarged feature space is too large, we get overfitting which
results in high variance for SVM. In this case we can choose a hyperparameter for
the given kernel to control the trade-off between variance and bias. For example, the
hyperparameter in SVC is C. A good value for C can be choosen with cross validation.

We will now look at how the SVM can be applied to the case of regression and still
maintain the properties of the SVM classifier.

2.7 Support Vector Machine for Regression

The Support Vector Machine is not only for classification, it can also be adapted for
regression with a quantitative response [26]. Corresponding to the MMC, in ε-SVM
regression (SVR) we want to find a linear function in the original space that has at
most ε deviation from the observed response values yi in the training set, and we also
want this function to be as flat as possible. Similar to the margin in the classification
setting with SVM, we have a ε-tube in SVR, but instead of penalizing observations
that are inside the margin, we now penalize errors that are outside the tube. In fig. 2.8,
we see the SVR model and observations inside the margin(ε) which are tolerated. With
the linear regression model f(x) = xT β + β0, flatness is achieved by minimizing ∥β∥2.
This problem can be written as the convex optimization problem [22]:

minimize 1
2 ∥β∥

subject to

 yi − xT
i β − β0 ≤ ε

xT
i β + β0 − yi ≤ ε.

(2.33)

Similar to the reason for why the slack variables was included in the Support Vector
classifier, this optimization problem often does not have a solution or we may want to
allow for some errors larger than ε. In the case of no solution, there does not exist any
function to satisfy the constraints of residuals having values less than or equal to ε, and
so we have to include the slack variables to obtain a solution. The slack variables ξi, ξ∗

i

allow errors to be larger than ε up to the value of ξ and ξ∗, so the constraints become
feasible. In fig. 2.9, we see the SVR model and two observations outside the margin
which are allowed by the ξi and ξ∗

i variables. The formulation of the optimization
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Fig. 2.8 A linear function with all of the observations inside the ε - tube [4].

problem with these slack variables is:

minimize 1
2∥β∥ + C

l∑
i=1

(ξi + ξ∗
i )

subject to


yi − xT

i β − β0 ≤ ε + ξi

xT
i β + β0 − yi ≤ ε + ξ∗

i

ξi, ξ∗
i ≥ 0.

(2.34)

Choosing a value for the constant C > 0, is a trade off between the flatness of f(x)
and the amount of deviations larger than ε which can be tolerated. This means that
we have a ε-insensitive loss function Lε defined as:

Lε =

 0 if |y − f(x)| ≤ ε

|y − f(x)| otherwise.
(2.35)

The ε-loss function sets points within the tube to zero and points outside the tube will
be penalized in a linear way.

The optimization problem in ε-SVR can also be formulated as a Lagrange dual and
becomes computationally easier to solve. The dual formulation is [22]

maximize − 1
2

N∑
i,i′=1

(αi − α∗
i )(αi′ − α∗

i′)⟨xi, xi′⟩ − ε
N∑

i=1
(αi + α∗

i ) +
N∑

i=1
yi(αi − α∗

i )

subject to


∑N

i=1(αi − α∗
i ) = 0

αi, α∗
i ∈ [0, C].

(2.36)

The solution of the Lagrange dual is f(x) = ∑N
i=1(αi − α∗

i )⟨xi, x⟩ + β0. If there exists
obvious nonlinear relationship in the original space, the dot product can be replaced
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with a kernel function so that the SV machine is extended for non-linear functions. In
fig. 2.10, we see the SVR model which finds a linear relationship of the data in the
enlarged feature space, the result is a non-linear function in the original space. Finally,
the linear function in the feature space which can be used for a quantitative response,
is f(x) = ∑N

i=1(αi − α∗
i )K(xi, x) + β0, where K(xi, x) = ⟨h(xi), h(x′)⟩ is the kernel

function.
We will now look at Gaussian processes which is another popular machine learning

method. Compared to the SVMs, the Gaussian processes have a more general machine
learning methodology in supervised learning.

Fig. 2.9 Slack variables are included to allow for some errors with deviation larger than ε, with the
result of soft margins [4].

Fig. 2.10 With kernel mapping we can get nonlinear regression. Slack variables are still used in
order avoid overfitting [4].



Chapter 3

Gaussian Processes

Together with support vector machines, Gaussian Process models is also a kernel
machine which can be used to get models that are both flexible and easy to work with.
Compared with the deterministic prediction given by SVM, Gaussian processes can
give simple probabilistic representation of random precesses and can be used for many
different types of nonparametric estimation. Same as SVM, Gaussian processes can be
used in both regression and classification. We will first look at Gaussian process for
regression problems where we want to predict continuous quantities.

3.1 Introduction to Gaussian Process

3.1.1 Gaussian Process from linear regression view

In the setting of classic linear regression, we model the output variable y by a function
of an input variable x as y = f(x) + ε, where ε is a random error term. We assume
that there is a linear relationship, so the function is defined as a linear combination of
the inputs f(x) = β0 + β1x. We then use data to estimate the coefficients β0 and β1,
which is the intercept and slope of the line respectively. The simple linear regression is
a parametric model with the advantage that it is easy to implement and interpret. On
the other hand, the disadvantage of a parametric model is that we may choose a wrong
shape. If the chosen shape of the model is not close to the true form of the unknown
f , we will get poor estimates. The simple linear regression model has low flexibility
and is not a good model if the relationship between the input and output is not linear.

We also have the Bayesian framework for regression. In this framework we assume
that the parameters have a prior distribution. The Gaussian Process models can be
used to formulate the Bayesian framework for regression, but first we can look at the
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Bayesian analysis of the standard linear regression model with Gaussian noise

f(x) = x⊤w, y = f(x) + ε, (3.1)

where x is the input vector, w is a vector of weights, f is the function value and
y is the observed target value. The observed values are assumed to differ from the
function values by additive noise, which again is assumed to be independent identically
distributed as a Gaussian with zero mean and variance σ2

n

ε ∼ N (0, σ2
n). (3.2)

From these assumptions and the linear model we get the likelihood, which is the
probability density of the observed values given the parameters

p(y|X, w) =
n∏

i=1
p(yi|xi, w) =

n∏
i=1

1√
2πσn

exp (−(yi − x⊤
i w)2

2σ2
n

)

= 1
(2πσ2

n)n/2 exp (− 1
2σ2

n

|y − X⊤w|2) = N (X⊤w, σ2
nI).

In the Bayesian viewpoint for regression, we express a belief over the parameters before
seeing the observations. This is done by defining the prior distribution. We set the
weights to have a prior distribution which is Gaussian with zero mean and covariance
matrix Σp

w ∼ N (0, Σp). (3.3)

From Bayes’ rule we compute the posterior distribution over the weights as

posterior = likelihood × prior
marginal likelihood , p(w|y, X) = p(y|X, w)p(w)

p(y|X) . (3.4)

We now have the posterior distribution, from this we can do the inference that Bayesian
linear model is based on. The marginal likelihood in the denominator is independent
of the weights and defined as

p(y|X) =
∫

p(y|X, w)p(w) dw. (3.5)

Looking at the nominator in eq. (3.4), we see that the posterior contains everything
we know about the parameters, combining the likelihood and the prior. We can see
that the posterior is Gaussian distributed by writing out the terms from the likelihood
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and the prior which depend on the weights:

p(w|X, y) ∝ exp
(

− 1
2σ2

n

(y − X⊤w)⊤(y − X⊤w)
)

exp ( − 1
2w⊤Σ−1

p w)

∝ exp
(

− 1
2(w − w̄)⊤( 1

σ2
n

XX⊤ + Σ−1
p )(w − w̄)

)
,

where w̄ = σ−2
n (σ−2

n XX⊤ + Σ−1
p )−1Xy. The Gaussian distribution is recognized with

mean w̄ and covariance matrix A−1

p(w|X, y) ∼ N (w̄ = 1
σ2

n

A−1Xy, A−1), (3.6)

where A = σ−2
n XX⊤ + Σ−1

p . For making predictions, we now average over all the
possible parameter values and weight each one with their posterior probability. The
predictive distribution is again Gaussian, for f∗ at x∗, the prediction is given by

p(f∗|x∗, X, y) =
∫

p(f∗|x∗, w)p(w|X, y)dw

= N ( 1
σ2

n

x⊤
∗ A⊤Xy, x⊤

∗ A−1x∗).
(3.7)

We have now shown the Bayesian treatment of the linear model. Next, we show the
interpretation of Gaussian process as distribution over functions, and the inference
which can be done, directly in the space of functions.

3.1.2 Definition of Gaussian processes

The multivariate Gaussian distribution which has a mean vector µ and covariance
matrix Σ has the joint probability density

p(x|µ) = (2π)−D/2 |Σ|−1/2 exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
.

The Gaussian process is a generalization of this distribution to infinite dimensionality,
completely specified by its mean function m(x) and covariance function k(x, x′). Unlike
the Gaussian distribution which is a distribution over vectors, the Gaussian process is
a distribution over functions

f(x) ∼ GP(m(x), k(x, x′)).
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The indexes of the GP is x. Where the mean function and covariance function of a
real process f(x) is defined as

m(x) = E[f(x)]
k(x, x′) = E[(f(x) − m(x))(f(x′) − m(x′))].

The formal definition of a Gaussian process is

Definition: A gaussian Process is a collection of random variables, any finite number
of which have (consistent) joint Gaussian distributions.

When we want to compute some quantity that we are interested in, the Gaussian
process is an infinite dimensional object and seems uncontrollable, but we actually
only need to compute with finite dimensional objects. The following thought is
mathematically not correct, but we can think of an infinite long vector as a function.
Following this thought the Gaussian Process is a multivariate Gaussian of infinite
length.

We now show how we can get an understanding of a GP by going from the process
to a distribution, and then draw samples from it. We define a Gaussian process
f ∼ GP(m, k) with mean function and covariance function respectively as m(x) = 0
and k(x, x′) = exp(−1

2(x − x′)2). Choosing the mean function to be zero is a common
choice. We can draw samples from the function f , which is distributed as a GP. The
goal of only working with finite quantities, is simply achieved by requiring the values
of f at a distinct number of n locations. Given the x-values we can evaluate the GP,
which is now reduces to a multivariate Gaussian distribution:

µi = m(xi) = 0, i = 1, ..., n and

Σij = k(xi, xj) = exp(−1
2(xi − xj)2), i, j = 1, ..., n.

(3.8)

From this distribution we can generate a random vector f ∼ N (0, Σ) and plot the
values. Where f is the finite subset of function values f = (f(x1), f(x2), ..., f(xn))⊤.
The reason for why a finite sample of a Gaussian process is a multivariate Gaussian
distribution, follows from the marginalization property. We have that if p(x, y) is a
joint Gaussian distribution, then p(x) =

∫
p(x, y) dy is also a Gaussian distribution.

We have now seen how to draw random samples from a Gaussian Process, but in
real life we want to do something more. We will now look further at how the Gaussian
Process can be used for Bayesian regression.
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Fig. 3.1 At the plot to the left, we see three functions which are random samples from a GP prior on
the finite set of x = −10 to x = 10. Right: Three functions with the same prior but now conditioned
on two observations. These functions are random samples from a posterior distribution.

3.1.3 Prediction with Noise-free observations

Suppose we have a data set of five observed variables. We have the dependent variables
y at five locations of the independent variable x. We now want to estimate a new
dependent variable y∗ given a new value of x∗. In the most simplest case, we can view
the data as noise-free. We then only view the observations as function values f(x), not
including the noise that y = f(x) + ε has. For the noise-free data, the joint distribution
of the training outputs f and test output f∗ is f

f∗

 ∼ N

 0,
K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

 .

This follows from the idea that our data is a sample from a multivariate Gaussian
distribution. We now calculate the covariance function k(x, x′) between all possible
combinations of the training points and test point. This gives us three matrices

K(X, X) =


k(x1, x1) k(x1, x2) · · · k(x1, x5)
k(x2, x1) k(x2, x2) · · · k(x2, x5)

... ... . . . ...
k(x5, x1) k(x5, x2) · · · k(x5, x5)


K(X∗, X) =

[
k(x∗, x1) k(x∗, x2) · · · k(x∗, x5)

]
K(X∗, X∗) = k(x∗, x∗).

In general, for n training points and n∗ testpoints, K(X, X∗) denotes a n × n∗ matrix.
For the estimation of the new variable, we are interested in the conditional probability
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p(f∗| f), given the observed function values f(x), what is the probability of a prediction
f(x∗)? Fortunately, this conditional probability is also Gaussian

f∗|f ∼ N
(
K(X∗, X)K(X, X)−1f,

K(X∗, X∗) − K(X∗, X)K(X, X)−1K(X, X∗)
)
.

This is the posterior process for the test point x∗. Finally, the best estimate for f(x∗)
is the mean from the conditional distribution, K(X∗, X)K(X, X)−1f. Moreover, the
uncertainty of the estimate is the variance K(X∗, X∗)−K(X∗, X)K(X, X)−1K(X, X∗).
Next, we show how noise is added to the GP regression model.

3.1.4 Prediction using Noisy Observations

In most modelling examples we almost never know the real function values and include
noise with the model, y = f(x) + ε, where ε is additive and i.i.d. ε ∼ N (0, σ2

n).
Because the noise is independent, we only need to add a diagonal matrix. With these
assumptions we get the joint distribution of the observed target values and the function
value at the test data point under the prior

y
f∗

 ∼ N

 0,
K(X, X) + σ2

nI K(X, X∗)
K(X∗, X) K(X∗, X∗)

 .

The equation for prediction in GPR is now the conditional distribution with the noise
term

f∗|y ∼ N
(
f̄∗, cov(f∗)

)
, where

f̄∗
∆= E[f∗|y] = K(X∗, X)[K(X, X) + σ2

nI]−1y,

cov(f∗) = K(X∗, X∗) − K(X∗, X)[K(X, X) + σ2
nI]−1K(X, X∗).

(3.9)

The variance in eq. 3.9 does not depend on y and only x, which is a property of the
Gaussian distribution. The variance is expressed as the difference of two terms, where
the first term, K(X∗, X∗), is the prior covariance. The second term, which is positive,
is representing the information that the observations gives us about the function.

To summarize, in this section we have shown how the Gaussian process method is
used for regression problems. Regression and classification problems are problems of
supervised learning. Next, we cover the classification problems of supervised learning
and describe the Gaussian process for classification.
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3.2 Gaussian process in classification

When Gaussian process is used for classification, we want to choose an input pattern
x to one of T classes, C1, ..., CT . Classification problems can be binary where T = 2
or multi-class where T > 2. We will only focus on the binary classification problem.
Moreover, we focus on probabilistic classification where test predictions are class
probabilities instead of a guess at the class label.

Looking at the joint probability p(y, x), where y now is the class label, we can
discuss different approaches to classification. From Bayes’ theorem the joint probability
can be written in two ways. We have p(y)p(x|y), the generative approach which models
the class conditional distribution. Then we also have p(x)p(y|x), the discriminative
approach which instead models p(y|x) directly. Both of these approaches have some
advantages and disadvantages that can be discussed. However, we will develop the
Gaussian process classifier by the discriminative approach, which has the advantage of
modeling directly what we want, p(y|x).

Somehow we need a way to turn the discriminative approach into a method that is
practical and create a model for p(y|x). One way to do this is by using the response
function. The response function is a function which we use to give outputs between
zero and one for all values of its argument which can lie in the domain (−∞, ∞).
As a result we have outputs that gives us a correct probabilistic interpretation. One
common choice for a response function is the linear logistic regression model

p(C1|x) = λ(x⊤w), where λ(z) = 1
1 + exp(−z) . (3.10)

Another common choice is the cumulative density function of a standard normal
distribution Φ(z) =

∫ z
−∞ N (x|0, 1)dx. We can now look at a Bayesian approach to

logistic regression. Following this we can look at the Gaussian process classifier as a
natural next step, similar to what we did for regression.

3.2.1 Linear Models for Classification

We use the same labels as earlier in the SVM chapter, where we labeled y = +1 and
y = −1 for each of the two classes. For the linear model of binary classification the
likelihood is

p(y = +1|x, w) = σ(x⊤w),

where the vector of weight w is given and σ(z) denotes a sigmoid function of any type.
We have p(y = −1|x, w) = 1 − p(y = +1|x, w) as the probability of two classes must
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sum to one. For a data point (xi, yi), we then see that there are two cases of the
likelihood. When yi = +1 the likelihood is σ(x⊤

i w) and for yi = −1 the likelihood is
1 − σ(x⊤

i w). The logistic likelihood function is symmetric and can be written more
concisely. For the symmetric likelihood functions we have σ(−z) = 1 − σ(z) and we
instead write the likelihood as

p(yi|xi, w) = σ(yifi), (3.11)

where fi
∆= f(xi) = x⊤

i w.
Given a data set D = {(xi, yi)|i = 1, ..., n}, the labels are assumed to be generated

independently conditional on f(x). When using the same Gaussian prior w ∼ N (0, Σp)
as we did earlier for regression in eq.(3.3), we get the un-normalized log posterior which
is

log p(w|X, y) = −1
2w⊤Σ−1

p w +
n∑

i=1
log σ(yifi). (3.12)

In the case of linear regression with Gaussian noise, the posterior was Gaussian as
seen in eq.(3.6). This was because the likelihood times the prior was a Gaussian
times a Gaussian which again equals a Gaussian. For classification the likelihood is
unfortunately no longer Gaussian, so now the posterior does not have a simple analytic
form. With this non-Gaussian likelihood the computations of predictions for Gaussian
process classification will not be as straightforward as in the regression case. If we
have a training set D and want to make predictions for a test point x∗, we integrate
the prediction p(y∗ = +1|w, x∗) = σ(x⊤

∗ w) over the distribution of weights

p(y∗ = +1|x∗, D) =
∫

p(y∗ = +1|w, x∗)p(w|D)dw. (3.13)

3.2.2 Gaussian Process Classification

In order to get a Gaussian process classification, the following construction is done:
we place a GP prior directly on the latent function f(x) and then “squash” the
output of the latent function through the logistic function to get a prior on π(x) ∆=
p(y = +1|x) = σ(f(x)). This is the probabilistic classification. We have that π is a
deterministic function of f , and from the fact that f is stochastic, π is also stochastic.
In fig. 3.2 we see how the latent function is squashed in to the class probability. The
GP classification is a generalization of the linear logistic regression model and is similar
to the development of linear regression to GP regression that we showed earlier. When
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we take the linear function f(x) from the linear logistic model in eq. (3.12), and replace
it with a Gaussian process, together with replacing the Gaussian prior on the weights
with a Gaussian process prior, we end up with a Gaussian Process classification.

The latent function f acts as a nuisance function, so the values of f itself are not
relevant, we do not observe them. The purpose of f is to get a convenient formulation
of the model. In order to produce a probabilistic prediction in GP classification, we

Fig. 3.2 Left: The latent function as a GP which is not constrained to lie between zero and one. Right:
The latent function has been squashed using the logistic logit function and gives class probabilities.

first need to compute the distribution of the latent variable corresponding to a test
case

p(f ∗|X, y, x∗) =
∫

p(f ∗|X, x∗, f)p(f |X, y) df , (3.14)

where p(f |X, y) = p(y|f)p(f |X)/p(y|X) is the posterior over the latent variables. We
then use the distribution over the latent f ∗ which we have computed to produce the
probabilistic prediction

π̄∗
∆= p(y∗ = +1|X, y, x∗) =

∫
σ(f∗)p(f∗|X, y, x∗) df∗. (3.15)

In eq.(3.14) there is a non-Gaussian likelihood in the equation which makes the integral
intractable. However, we can use analytical approximations of the integral and get the
GP classification model with probabilistic prediction.

We will now explain the Laplace approximation which approximate the non-Gaussian
joint posterior with a Gaussian one. For the intractable integral, other analytical
approximations also exists. However, in the empirical work which is shown later, the
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R package which is used for Gaussian process classification uses this method, so here
is the explanation for Laplace approximation.

3.2.3 The Laplace Approximation for the Binary GP Classifier

With Laplace’s approximation we get the Gaussian approximate q(f |X, y) to the
posterior p(f |X, y) in the integral eq.(3.14). We obtain the Gaussian approximation
by doing a second order Taylor expansion of log p(f |X, y) around the maximum of the
posterior

q(f |X, y) = N (f |̂f , A−1) ∝ exp
(

− 1
2(f − f̂)⊤A(f − f̂)

)
, (3.16)

where f̂ = argmaxf p(f |X, y) is the maximum of the posterior and A = −∇∇log p(f |X, y)|f=f̂

is the Hessian of the negative log posterior at that point [19].
We will now explain how to find f̂ and A, which is used in Laplace Approx-

imation. The posterior over the latent variables is from Bayes’ rule p(f |X, y) =
p(y|f)p(f |X)/p(y|X). Since p(y|X) is independent of f , we do not need it when maxi-
mizing w.r.t. f and we instead consider the un-normalized posterior p(y|f)p(f |X). The
prior p(f |X) which is Gaussian, f |X ∼ N (0, K), can be written as

log p(f |X) = −1
2f⊤K−1f − 1

2 log |K| − n

2 log 2π. (3.17)

Taking the logarithm of p(y|f)p(f |X) and inserting the expression from eq.(3.17)
for the GP prior p(f |X), we get

Ψ(f) ∆= log p(y|f) + log p(f |X)

= log p(y|f) − 1
2f⊤ K−1f − 1

2 log |K| − n

2 log 2π
(3.18)

Differentiating eq.(3.18) w.r.t. f we get

∇Ψ(f) = ∇log p(y|f) − K−1f (3.19)
∇∇Ψ(f) = ∇∇log p(y|f) − K−1 = −W − K−1, (3.20)

where W
∆= −∇∇log p(y|f). For the logistic likelihood function, the likelihood p(y|f)

is log concave. In this case the diagonal elements in W are non-negative, and the
Hessian in eq.(3.20) is negative definite. This means that Ψ(f) is concave and has a
unique maximum which can be found by Newton’s method.
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At the maximim of Ψ(f), the gradient of Ψ(f) is zero and we can write

∇Ψ = 0 ⇒ f̂ = K(∇log p(y|̂f)). (3.21)

Finding the maximum of Ψ, the iteration for Newton’s method is

fnew = f − (∇∇Ψ)−1∇Ψ = f + (K−1 + W )−1(∇log p(y|f) − K−1f) (3.22)

With the maximum posterior f̂ being found, we finally have the Laplace approximation
to the posterior as a Gaussian with mean f̂ and the covariance matrix as the negative
of the inverse Hessian of Ψ from eq.(3.20)

q(f |X, y) = N (f̂ , (K−1 + W )−1). (3.23)

3.2.4 Predictions

The GP predictive mean from eq.(3.9) can be written, with a more compact notation,
as

f̄∗ = k⊤
∗ (K + σ2

nI)−1y. (3.24)

If we combine this equation with eq.(3.21), we can express the posterior mean for f∗

under the Laplace approximation as

Eq[f∗|X, y, x∗] = k(x∗)⊤K−1f̂ = k(x∗)⊤∇log p(y|̂f). (3.25)

For the variance f∗ under the Gaussian approximation, Rasmussen [19] shows that it is

Vq[f∗|X, y, x∗] = k(x∗, x∗) − k⊤
∗ (K + W −1)−1k∗. (3.26)

With the mean and variance for f∗, predictions can be made by computing

π̄∗ ≃ Eq[π∗|X, y, x∗] =
∫

σ(f∗)q(f∗|X, y, x∗) df∗, (3.27)

where q(f∗|X, y, x∗) is Gaussian with mean given by eq.(3.25) and variance given by
eq.(3.26). This ends our derivation of the Gaussian process classifier. Compared to the
SVM, the GP classifier can give out probabilistic prediction and with this property we
are able to analyse the uncertainty of our model.
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For both GPs and SVMs, the choice of the kernel is an essential element of the
model design. In the next chapter, we present a collection of kernels and discuss
different properties they have. Knowing the properties of a kernel function, we will
be able to choose a kernel which reflect prior information and captures the structure
of the data. We can also view this differently: knowing the properties of a kernel, we
can get a better understanding of the data by interpreting the kernel functions which
performs good in the model evaluation.



Chapter 4

Automatic machine learning by
kernel searching

This chapter will aim at constructing a compositional kernel searching process. The
advantage of having a procedure which is able to build kernels at the same level of
human experts is the potential to make models such as SVMs and GPs more accessible
to non-experts.

4.1 Compositional Kernel Search

In a paper from The Automatic Statistician project by Lloyd et al. [14], a framework
for automatic machine learning is presented. Some of the key ideas in this framework
are:

1. An open-ended language of models expressive enough to capture many
of the model composition techniques applied by human statistician to capture
real-world phenomena.

2. A search procedure to efficiently explore the space of models spanned by the
language.

3. An principled method for evaluating models in terms of their complexity
and their degree of fit to the data.

In our kernel search framework we use the same ideas as above by defining a language
of Gaussian process models using a compositional grammar. The space of these models
is searched greedily, using a trial and error procedure with the grid search for tuning
the hyperparameters while trying to minimize the training and test errors.
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4.1.1 Expressing structures through kernels

For the Gaussian process models, the kernel defines the covariance between any two
function values: Cov(y, y′) = k(x, x′). The choice of which kernel to use decides which
structures that are likely under the GP prior, so choosing a kernel determines the
generalization properties of the model. We therefore implicitly define a language of
regression models by defining a language of kernels. We will now look at some kernels
which are commonly used and go through how these kernels can be composed to express
different priors over functions.

For scalar-valued inputs we define the following kernels:

kSE(x, x′) = σ2 exp
(

− (x − x′)2

2ℓ2

)
(4.1)

kPER(x, x′) = σ2 exp
(

− 2 sin2(π(x − x′)/p)
2ℓ2

)
(4.2)

kLIN(x, x′) = σ2(x − ℓ)(x′ − ℓ) (4.3)

kRQ(x, x′) = σ2
(

1 + (x − x′)2

2αℓ2

)−α

(4.4)

These four kernels are the squared exponential (SE), periodic (PER), linear (LIN) and
rational quadratic (RQ) kernels. Each of these kernels give different set of assumptions
about the unknown function which we want to model. We will now give an overview
of each kernel.

The squared exponential kernel is probably the most widely-used kernel within
the kernel machine field [19]. It assumes that the function we model has infinitely
many derivatives. It has a lengthscale hyperparameter ℓ which determines the length
of the “wiggles” in the function. Moreover, the output variance σ2 determines the
average distance of the function away from its mean. All of the kernels above has
this hyperparameter in front as a scale factor. The next kernel is the periodic which
has two hyperparameters. The lengthscale determines the length of the “wiggles” in
the same way as in the squared exponential kernel. The second hyperparameter p

determines the distance between the repetitions of the function. The periodic kernel
can be used to model functions which repeat themselves exactly.

The linear kernel is a kernel which is non-stationary and is different from the other
three kernels which are stationary. A stationary covariance function is a function
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which only depends on the relative positions of its two inputs, and not on their
absolute locations. For the non-stationary linear kernel, the hyperparameters are
about specifying the origin. The hyperparameter ℓ is an offset which determines the
x-coordinate of the point that all the lines in the posterior go through [3].

The last base kernel is the rational quadratic kernel. This kernel can be seen as a
scale mixture of the squared exponential kernels with different lengthscales. The limit
of the rational quadratic kernel for α → ∞ is the squared exponential kernel [19]. In
the rational quadratic kernel the hyperparameter α determines the relative weighting
of large-scale and small-scale variations [3]. In fig. 4.1 we see the structures expressible
by the four base kernels. We show a plot of each kernel and the function sampled from
the GP prior.

Fig. 4.1 Plot of the base kernel functions with black lines and draws from a the corresponding GP
prior with red and blue lines [6].

4.1.2 Combining kernels

For the kernel search, the language of GP models we define has two elements. The
first element is the set of base kernels capturing different function properties. The
second element is a set of composition rules which combine kernels to provide other
valid kernels and express structures that are more rich. These composition rules are
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addition and multiplication:

(k1 + k2)(x, x′) = k1(x, x′) + k2(x, x′) (4.5)
(k1 × k2)(x, x′) = k1(x, x′) × k2(x, x′). (4.6)

We will now give an overview of composite kernels using these operations.
In fig. 4.2 we see examples of different structures expressible by composite kernels.

One of the composite kernels is the kSE × kPER kernel. If a squared exponential kernel
is multiplied with a periodic kernel we get a periodic function which can slowly vary
over time. This composite kernel is useful because most periodic functions does not
repeat themselves exactly. When a squared exponential kernel is multiplied or added to
a periodic function the result is more flexibility in the model. Moreover, for univariate
data multiplying a kernel by a squared exponential gives a way of converting global
structure to local structure.

If we multiply a kernel by a linear kernel we get functions with growing amplitude.
The third row in fig. 4.2 shows two examples of this. The linear times another linear
composite kernel results in quadratic functions. Moreover, the multiplication of linear
base kernels can produce Bayesian polynomial regression of any degree. We also have
other regression models expressible by sums and products of base kernels. Some of these
are listed in table 4.3. In a paper by Duvenaud et al. [6], the following interpretation
of how we can view the composite kernels is given. A sum of kernels can be understood
as an OR-like operation: two points are considered similar if either kernel has a high
value. Similarly, multiplying kernels is an AND-like operation, since two points are
considered similar only if both kernels have high values.

We can also construct kernels over multi-dimensional inputs by adding and multi-
plying between kernels on individual dimensions. The notation for which dimension a
kernel operates on is denoted in subscript by an integer. At row four in fig. 4.2 we see
examples of composite kernels with multiple dimensions.

The figures and table below gives us instructive ideas of how the kernel should
be chosen in the first step when we see the data structure. Thus our method is
not totally automatic, the first step is manual searching based on the summaries of
the above figures and table. We will now see how we can choose a kernel empiri-
cally based on four different data sets: two in regression and two in classification.
The code for each of these four analyses can be found in the GitHub repository at
https://github.com/HjorthBe/Master-thesis-2019 .

https://github.com/HjorthBe/Master-thesis-2019
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Fig. 4.2 Examples of structures with composite kernels [6]. Similar plot as in fig. 4.1.

Fig. 4.3 Common models that can be expressed by sums and products of one-dimensional base
kernels [6].

4.2 Compositional kernel search on Airline passenger data for
GP regression

Inspired by Duvenaud et al. [6] paper, we will in this section look at a structural kernel
search on the airline passenger data [18] with GP regression. The search is implemented
using the kernlab package in R for kernel-based machine learning methods [11]. The
package has functions for kernel learning algorithms such as SVM and GP, which can
be used for both regression and classification. Moreover, the functions implementing
the kernel learning algorithms can take kernel functions as an argument. For the kernel
functions, the package provides built-in kernels from commonly used kernel families
but also the possibility to write user-defined kernel functions. We will now look at the
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user-defined kernel functions and go through the framework for the kernel search in
detail.

We use the four kernels defined in eq.(4.1) – eq.(4.4) and write a set of user-defined
kernel functions. These functions will be the arguments for the gaussian processes
function in kernlab, gausspr . Each of these four kernel functions has three copies
with different indexes on the hyperparameters in each function. In this way a base
kernel can be used more than once in the kernel expression and still have different
values for the hyperparameters. For instance, given a model with the kernel expression
kSE + kSE + kSE, the base kernels in the expression can be set to have three different
lengthscale values ell_se_0 , ell_se_1 and ell_se_2 , belonging to the kernel
function k_se_0 , k_se_1 and k_se_2 , respectively. One thing to note in the code
below, is that the notation for x′, as in the kernel k(x, x′), is notated y, not to be
confused with the output variable.

Listing 4.1 Base kernel functions
# three squared exponential (SE) base kernel functions :
k_se_0 <- function (x, y){( sigma_var )^2*exp ( -0.5*(1/(ell_se_0)^2)*sum ((x - y )^2))}

...
# three periodic (PER) base kernel functions :
k_per_0 <- function (x, y){( sigma_var )^2*exp (-2*
(sin(pi*sum(x-y)/ period _0)^2)/ell_per_0^2)}

...
# three linear (LIN) base kernel functions :
k_lin_0 <- function (x, y){( sigma_var )^2*(sum ((x-ell_lin_0)*(y-ell_lin_0)))}

...
# three rational quadratic (RQ) base kernel functions :
k_rq_0 <- function (x, y){( sigma_var )^2*
(1+ sum(x-y)^2/(2*alpha_0*ell_rq_0^2))^( - alpha_0)}

...

In order to compute sums and products of the base kernels we create a set of lists
where each list has the operations of summation and multiplication as functions.
In R it is possible to use the backtick ‘ to refer to functions that have illegal
names:

operations _1 <- c(‘+‘, ‘* ‘)
operations _2 <- c(‘+‘, ‘* ‘)

By choosing which elements to use from these lists, we also choose which operations to
use on the base kernels in the search.
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> operations _ 1[[1]](7 ,13) # summation using the first element
[1] 20
> operations _ 1[[2]](7 ,13) # product , now using the second element instead
[1] 91

The base kernel functions are also stored in a list with the same purpose, we decide
which base kernels to use at the different stages of the search by choosing which element
to use from the different lists.

Listing 4.2 Lists containing the base kernels functions
kernels _0 <- c(‘k_se_0‘, ‘k_per_0‘, ‘k_lin_0‘, ‘k_rq_0‘, ‘k_none ‘)
kernels _1 <- c(‘k_se_1‘, ‘k_per_1‘, ‘k_lin_1‘, ‘k_rq_1‘, ‘k_none ‘)
kernels _2 <- c(‘k_se_2‘, ‘k_per_2‘, ‘k_lin_2‘, ‘k_rq_2‘, ‘k_none ‘)

For the air passenger data we will run a search that has two stages. At the first stage we
choose two kernels, one from the kernels_0 list and the second from the kernels_1
list. At the second stage, we choose a third kernel from the kernels_2 list. If the
third kernel is a periodic kernel, the periodic kernel function is called from the second
element in the kernels_2 list:

> kernels _ 2[[2]]
function (x, y){( sigma_var )^2*
exp (-2 * (sin(pi * sum(x - y)/ period _2)^2)/ell_per_2^2)}
attr(,"class")
[1] " kernel "

We now have two types of lists, one which has the operations and the other which
has the base kernels. In the kernel search we need a main kernel function where the
sums and products of different kernels can be chosen. To create this kernel function
we write two new kernel functions which will use the elements in the kernels_
and operations_ lists. These functions are the k_composition_1 function and
the k_composition_2 , where k_composition_1 will be a nested function defined
within the k_composition_2 as the main function. As a result, k_composition_2
can generate any kernel expressions which is defined by the space of the base kernel
grammer and with three base kernels at most.

Listing 4.3 Kernel composition functions
# nested kernel functions ,
# the first base kernel is multiplied or summed with the second base kernel
k_ composition _1 <- function (x, y){

u = operations _1[[o_1]]( kernels _0[[k_0]](x, y), kernels _1[[k_1]](x, y))
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return (u)}
# main kernel function which is the argument for the gausspr function :
k_ composition _2 <- function (x, y){

u = operations _2[[o_2]](k_ composition _1(x, y), kernels _2[[k_2]](x, y))
return (u)}

For the kernel search it is important that we gradually can add a base kernel to the
kernel expression. This is because we do not want a model which is too complex with
too many base kernel and also not a model which is too simple with too few base
kernels. In the kernel lists kernels_0, kernels_1 and kernels_2 , the fifth kernel,
k_none , is used to decide how many base kernels we want in the kernel expression
and is not part of the base kernel grammar.

k_none <- function (x, y){
1

}

The main kernel function k_composition_2 gives a kernel expression with three base
kernels when the numeric value for the variables k_0 , k_1 and k_2 are any integers
from one to four. If we instead set one of these three variables equal to five, the
k_none function is chosen and the kernel expression will have one base kernel less. In
this way we can add or remove a base kernel in the kernel expression.

We will now train a gaussian process for the air passenger data with k_composition_2
as the kernel function and search for a kernel expression using a greedy search. For
our kernel search we will run two sets of for-loops, one for each stage of the search.
At the first stage, the first for-loops will find a kernel expression with two base ker-
nels. At the second stage, the next for-loops will expand the kernel expression with
a third base kernel, potentially improving the model. Before we run these for-loops
we set the following default values for the variables in the k_composition_2 kernel
function:

for(i in 1:2){# only products as operations
assign ( paste0 ("o_", i), 2)}

for(i in 1:3){# base kernels are set to k_none
assign ( paste0 ("k_", i-1), 5)}

This gives the variable outputs:

> o_1; o_2# elements in operations lists
[1] 2
[1] 2
> k_0; k_1; k_2# elements in kernel lists
[1] 5
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[1] 5
[1] 5

We now have the kernel expression k(x, x′) = 1 × 1 × 1. In order to search through
the different combinations of the two kernels at the first stage, we create the table
k_comb which has a set of numbers representing the different combinations of the
kernel pairs we want to evaluate. At each iteration in the for-loop, a new pair of
numbers for k_0 and k_1 is provided at the current row in the table. The k_0 and
k_1 variables are the elements in the kernels_0 and kernels_1 lists respectively,
so the two kernel functions in the k_composition_1 function are chosen by defining
these two variables.

unique _b_k <- combn (1:4 , 2)# all combinations of the base kernels , first stage
same_b_k <- matrix (c(1:4) ,c(1:4) , nrow = 2, ncol = 4)# identical base kernel pairs
k_comb <- cbind( unique _b_k, same_b_k)
k_comb <- as.data.frame(t(k_comb ))
k_comb [4,] <- c(k_comb [4,2], k_comb [4 ,1])
names(k_comb) <- c("k_0", "k_1")

The transpose of the table with all the kernel combinations we search through at stage
one is:

> t(k_comb)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [ ,10]

k_0 1 1 1 3 2 3 1 2 3 4
k_1 2 3 4 2 4 4 1 2 3 4

In the kernel search we will use grid search to perform hyperparameter tuning in
order to find the optimal values in the kernel expression. At eq.(4.1) - eq.(4.4), we see
the kSE and kLIN kernels have one hyperparameter, while the kPER and kRQ kernel have
two. When we combine these kernels at the first stage, the kernel expression can have
two, three or four hyperparameters. Before the tuning of the hyperparameters, we
need to find the number of hyperparameters in the kernel expression at each iteration
in the for-loop, running through the k_comb table. We also need a table with the
possible combinations of the hyperparameter values for the kernel expression. This
table will have different sizes depending on the number of hyperparameters in the
kernel expression.

In order to find the number of hyperparameters in the kernel, we create a list
with the names of the base kernels and a set of lists with the names of the different
hyperparameters for each base kernel.
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kernel _names <- c("k_se", "k_per", "k_lin", "k_rq")# names of the base kernels
k_se <- c("ell_se"); k_per <- c("ell_per", " period ")# names of the hyperparameters
k_lin <- c("ell_lin"); k_rq <- c("ell_rq", "alpha")

With these variable definitions we can now find the number of hyperparameters in
the kernel. As an example, say we have the pair of kernels kSE and kPER in the
kernel expression. The index values for these kernel functions in the kernels_0 and
the kernels_1 lists are found at the first row in the h_param_grid table. The
following code shows how the number of hyperparameters are found by using the
get() function. The get() function allows us to call an R object using a character
string.

> k_0 <- k_comb [1 ,1]; k_1 <- k_comb [1 ,2]# first row in the k_comb table
> h_param_k_0 <- get( kernel _names[k_0])
> h_param_k_0# hyperparameters in the k_0 kernel
[1] "ell_se"
> h_param_k_1 <- get( kernel _names[k_1])
> h_param_k_1# hyperparameters in the k_1 kernel
[1] "ell_per" " period "
> tot_nr_h_p <- length (c(h_param_k_0, h_param_k_1))
> tot_nr_h_p# total numbers of hyperparameters in the kernel expression
[1] 3

For the grid search we train a model on each hyperparameter combination possible.
We will now create the tables to be used in the grid search depending on the number
of hyperparameters in the kernel. These tables are created using the expand.grid()
function. Using this function we create a data frame with all possible combinations for
a set of values.

interval _gpr <- seq (0.55 , 3.25 , 0.45)# defining the possible h.param. values
two_h_param <- expand .grid( interval _gpr , interval _gpr)# table with values
# for a kernel which has two hyperparameters
three_h_param <- expand .grid( interval _gpr , interval _gpr , interval _gpr)
four_h_param <- expand .grid( interval _gpr , interval _gpr , interval _gpr , interval _gpr)
five_h_param <- expand .grid( interval _gpr , interval _gpr ,

interval _gpr , interval _gpr , interval _gpr)
six_h_param <- expand .grid( interval _gpr , interval _gpr , interval _gpr , interval _gpr ,

interval _gpr , interval _gpr)# six hyperparameters

Next, we create the variable search_lengths which has character strings with the
names of the different tables.
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search _ lengths <- c("two_h_param", "three_h_param", "four_h_param",
"five_h_param", "six_h_param")

We can now find the table to be used in the grid search for a given kernel expression.
The following code shows how the correct table is found if we have the kSE and the
kPER kernel with three hyperparameters in total.

> tot_nr_h_p# total number of hyperparameters for the SE and PER kernel
[1] 3
> h_param_grid <- get( search _ lengths [tot_nr_h_p -1])
> h_param_grid# iterate through 343 combinations of values for the hyperparameters

Var1 Var2 Var3
1 0.55 0.55 0.55
2 1.00 0.55 0.55

...
297 1.45 0.55 3.25
298 1.90 0.55 3.25

...
332 1.45 2.80 3.25
333 1.90 2.80 3.25

[ reached ’max ’ / getOption ("max.print") -- omitted 10 rows ]

We have now found the correct table for the grid search with kSE and kPER in the
kernel expression and we continue by explaining how the grid search is implemented in
the kernel search.

The grid search has a for-loop which runs through each row in the table with the
variable i. Inside this for-loop we have a new for-loop which runs trough the base
kernels in the kernel expression using the variable j. For the base kernel pair kSE and
kPER, when i = 297 and j = 1 the variable ell_se_0 is assigned the value 1.45 from
the first column in the h_param_grid table. Then for the next iteration when i = 297
and j = 2, the variable ell_per_1 and period_1 will be assigned to the values
0.55 and 3.25 respectively, from the second and third column in the h_param_grid
table. The inner for-loop on the j variable only runs for the number of base kernels
in the kernel expression. After the j = 2 iteration the inner loop is finished and the
grid search continues in the i variable for-loop. Here the 298th model is trained and
evaluated with k(x, x′) = σ2

(
exp

(
− (x−x′)2

2(1.45)2

)
+exp

(
− 2 sin2(π(x−x′)/3.25)

2(0.55)2

))
as the kernel

expression when o_1 = 1.
In the for-loop on the j variable, we did not explain how the variables in the kernel

expression was assigned to the values from the columns in the h_param_grid table.
We will now explain how this was done. Before the for-loops of the grid search start,
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we have a boolean vector where the elements in the vector are true if the jth base
kernel has two hyperparameters and false otherwise.

> two_h_p <- c(F, F)# variable to identify 2-h.param. kernel
> two_h_p[1] <- ifelse ((k_0 == 2)|(k_0 == 4), T, F)# k_0 = 1, SE kernel
> two_h_p[2] <- ifelse ((k_1 == 2)|(k_1 == 4), T, F)# k_1 = 2, PER kernel
> two_h_p
[1] FALSE TRUE

Next, the variable names of the hyperparameters in the kernel expression are stored in
the variable all_h_p as a character string.

> h_param_k_0 <- get( kernel _names[k_0])# k_0 = 1
> h_param_k_1 <- get( kernel _names[k_1])# k_1 = 2
> all_h_p <- c(h_param_k_0, h_param_k_1)
> all_h_p
[1] "ell_se" "ell_per" " period "

Notice that when j = 2, both ell_per_1 and period_1 was assigned one value
each. This is done using the boolean two_h_p vector and the h_p_count variable.
When the for-loop on the j variable starts, h_p_count always has the value one. The
character vector all_h_p has the names of each hyperparameter variable in the kernel
expression. In addition, each of these named variables again has the names of the
variables with indexes. These variables are used in the kernel functions.

> all_h_p
[1] "ell_se" "ell_per" " period "
> ell_se
[1] "ell_se_0" "ell_se_1" "ell_se_2"
> ell_per
[1] "ell_per_0" "ell_per_1" "ell_per_2"
> period
[1] " period _0" " period _1" " period _2"

The variables above was created in the preparation of the kernel search with the
following code:

ell_se <- c(); ell_per <- c(); period <- c()
ell_lin <- c(); ell_rq <- c(); alpha <- c()
for(i in 1:3){

ell_se[i] <- paste0 ("ell_se_", i -1)
assign ( paste0 ("ell_se_", i-1), 1)}
...



4.2 Compositional kernel search on Airline passenger data for GP regression 45

for(i in 1:3){
alpha[i] <- paste0 ("alpha_", i -1)
assign ( paste0 ("alpha_", i-1), 1)}

When j and h_p_count equals one in the first iteration, we find the variable with
the correct index and assign it the value at the first column. This is done using the
assign() function which allows us to assign a value to a name.

> h_p_count <- 1
> variable <- get(all_h_p[h_p_count ])[j]# "ell_se" is the character string and j=1
> assign (variable , h_param_grid[i, h_p_count ])
> variable # ell_se [1]
[1] "ell_se_0"
> ell_se_0# the variable which is used in the k_se_0 kernel function
[1] 1.45

The next variable needs to be assigned the value from the next column. The h_p_count
variable decides which column in the h_param_grid table to be used, so the next
column is chosen by adding one to the h_p_count variable.

h_p_count <- h_p_count + 1
> h_p_count
[1] 2

This line of code will always run after a value has been assigned to a variable. For
the next iteration when j = 2, h_p_count also equals two and we find the correct
variable with a new index.

> variable <- get(all_h_p[h_p_count ])[j]# "ell_per" is the character string and j=2
> variable # ell_per [2]
[1] "ell_per_1"
assign (variable , h_param_grid[i, h_p_count ])# h_p_count = 2
h_p_count <- h_p_count + 1

When j = 2 we are at the last iteration in the for-loop. However, we still have one
value left at the third column in the table for the period_1 variable. In order to
assign this value we use an if statement with the jth element in the boolean vector
explained earlier, two_h_p[j] . In the previous iteration, the jth element was false
and the statement was skipped. However, with j = 2 the second element is true and
the statement will be executed.
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> two_h_p
[1] FALSE TRUE

The following code shows how the if statement assigns an extra value in the jth iteration
when the jth base kernel is a kernel with two hyperparameters:

if(two_h_p[j]){# TRUE when the jth base kernel has two hyperparameters
variable <- get(all_h_p[h_p_count ])[j]# j = 2, h_p_count = 3
assign (variable , h_param_grid[i, h_p_count ])
h_p_count <- h_p_count + 1

}

The period_1 variable has now been assigned to the value from the third column.
We have now explained how the values from the columns of the h_param_grid table
are assigned to the variables in the grid search.

In the grid search, the number of rows in the table for the kernel expression with
kSE and kPER, was 343. This is because the interval we have chosen has seven values,
so the number of combinations for the hyperparameters is 73 = 343. For each of these
343 combinations we train and evaluate a model. Moreover, after each evaluation we
get two values and store them in one list each, cv_tr and mse_te .

l_h_param_grid <- dim(h_param_grid )[1]
cv_tr <- c()
mse_te <- c()
for(i in 1:l_h_param_grid ){# grid search for -loop

...
eval_res <- model_eval ()
cv_tr[i] <- eval_res [1]
mse_te[i] <- eval_res [2]

}# grid search end

The model_eval is a function which trains and evaluates the model. Inside the function
a gaussian process is trained using the gausspr function, with the k_composition_2
kernel function as an argument. The model is trained using the first 80% of the data as
the training data. In the model_eval function, the gausspr function also performs
a 2-fold CV on the training data. The model_eval function returns two values as
an evaluation of the model’s performance. The CV is the first value and the second
value is the MSE. The MSE is computed on the remaining 20% of the data as the test
data.
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model_eval <- function (){
table <- c()
set.seed (1202)
model <- gausspr (x[1:115] , y[1:115] , kernel = k_ composition _2,

var = var_noise , cross = 2)
res_1 <- cross(model)
pred_model <- predict (model , x [116:144])
MSE <- mean ((y [116:144] - pred_model )^2)
res_2 <- MSE
table <- c(round(res_1, 3), round(res_2, 3))
return (table )}

The models trained in the grid search are evaluated by taking the mean of the CV
value and the MSE value from the model_eval function. To get an optimized model,
we choose the model which gives the lowest mean out of all the models trained in the
grid search.

For the kSE and kPER kernel, after the grid search is performed we choose one
model out of the 343 models in total. This optimized model is stored in a table where
it’s kernel expression and hyperparameter values can be read. The table is named
res_table_I and will be printed out when the kernel search at the first stage is
finished.

...
}# grid search end
nr <- which.min ((cv_tr + mse_te)/2)# choosing the best model
res_table_I[1, count] <- cv_tr[nr]# storing the CV from the best model
res_table_I[2, count] <- mse_te[nr]# storing the MSE from the best model
# grid search results inserted into table:
col_index <- 1
variable <- get(all_h_p[col_index ])[1]
assign (variable , h_param_grid[nr , col_index ])
res_table_I[4, count] <- get( variable )# storing one hyperparameter value
col_index <- col_index + 1

...

When the kernel search at the first stage is finished, we need a criteria for choosing
one kernel structure over the other. For this criteria we again choose the model which
gives the lowest mean, but this time we choose among the optimized models stored in
the res_table_I table.

}# kernel search first stage end
var_1_I <- as. numeric (res_table_I[1 ,])
var_2_I <- as. numeric (res_table_I[2 ,])
# choosing the model with the best kernel structure :
var_3_I <- (var_1_I + var_2_I)/2# the mean of the models in table
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first_I <- match(sort(var_3_I), var_3_I)[1]

At the first stage we evaluate twenty kernel expressions, ten base kernel pairs with
summation as the operation and ten kernel pairs with products as the operation. The
following code is the kernel search at the first stage. The kernel search has two for-loops,
not including the for-loops of the grid search. The outer for-loop runs through the
index in the operation_1 list and the inner for-loop runs through the rows in the
k_comb table.

Listing 4.4 Kernel search at the first stage
count <- 1
for(g in 1:2){# iterates through search operations : sums and products

o_1 <- g
for(h in 1: dim(k_comb )[1]){ # iterates through table with kernel combinations

k_0 <- k_comb[h, 1]
k_1 <- k_comb[h, 2]
two_h_p <- c(F, F)# variable to identify 2-h.param. kernel
two_h_p[1] <- ifelse ((k_0 == 2)|(k_0 == 4), T, F)
two_h_p[2] <- ifelse ((k_1 == 2)|(k_1 == 4), T, F)
h_param_k_0 <- get( kernel _names[k_0])
h_param_k_1 <- get( kernel _names[k_1])
all_h_p <- c(h_param_k_0, h_param_k_1)
tot_nr_h_p <- length (c(h_param_k_0, h_param_k_1))
h_param_grid <- get( search _ lengths [tot_nr_h_p -1])
l_h_param_grid <- dim(h_param_grid )[1]
cv_tr <- c()
mse_te <- c()
for(i in 1:l_h_param_grid ){# grid search for -loop

h_p_count <- 1
for(j in 1:2){# iterates through the nr. of base kernels

variable <- get(all_h_p[h_p_count ])[j]
assign (variable , h_param_grid[i, h_p_count ])
h_p_count <- h_p_count + 1
if(two_h_p[j]){# TRUE when the jth base kernel has two hyperparameters

variable <- get(all_h_p[h_p_count ])[j]
assign (variable , h_param_grid[i, h_p_count ])
h_p_count <- h_p_count + 1

}}
eval_res <- model_eval ()
cv_tr[i] <- eval_res [1]
mse_te[i] <- eval_res [2]

}# grid search end
nr <- which.min ((cv_tr + mse_te)/2)# choosing the best model
res_table_I[1, count] <- cv_tr[nr]# storing the CV from the best model
res_table_I[2, count] <- mse_te[nr]# storing the MSE from the best model
# grid search results inserted into table:
col_index <- 1
variable <- get(all_h_p[col_index ])[1]
assign (variable , h_param_grid[nr , col_index ])
res_table_I[4, count] <- get( variable )# storing one hyperparameter value
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col_index <- col_index + 1
...

count <- count + 1# next column of the table
}}# kernel search first stage end

For the air passenger data, the number of models trained at the first stage is large
and computationally intensive. The interval_gpr interval has seven values, so the
number of models trained in the grid search for kernels that have two, three and
four hyperparameters are 72, 73 and 74 respectively. In addition to this, the number
of models which are trained becomes twice as much because of the 2-fold CV. In
order to find the total number of models which are trained, we look at the number of
hyperparameters in each of the ten kernel pairs from the k_comb table. Among these
ten kernel pairs we have three pairs with two hyperparameters, four pairs with three
hyperparameters and three pairs with four hyperparameters. The number of models
which are trained for one search operation is 3 · 72 · 2 + 4 · 73 · 2 + 3 · 74 · 2 = 17 444.
Including both of the search operators, products and multiplication, the total number
of models trained at the first stage of the kernel search is 17 444 · 2 = 34 888.

The code for the second stage of the kernel search is similar to the code for the
first stage. There are only some minor parts of the code which are different. When
the search at the second stage starts the values for the variables k_1 , k_2 and o_1
are given, so at the second stage we only search over the values for the k_2 and o_2
variables. However, the hyperparamaters of the optimized model in the first stage are
not used in the second stage, so the model tuning includes the hyperparameters for all
of the three base kernels. Because we have three base kernels at the second stage, the
following parts of the code are different: two_h_p now has three elements, all_h_p
has an extra variable and the j variable for-loop in the grid search has three iterations
instead of two. After the search at the second stage, a table with the results is again
printed out. This time with eighth different models.

Listing 4.5 Kernel search at the second stage
count <- 1
for(g in 1:2){# iterates through search operations : sums and products

o_1 <- which(res_table_I[,first_I][6] == operation _sign)
o_2 <- g
for(h in 1:4){# iterates through base kernels to expand on kernel

k_0 <- which(res_table_I[,first_I][3] == kernel _names)
k_1 <- which(res_table_I[,first_I][7] == kernel _names)
k_2 <- h
two_h_p <- c(F, F, F)# variable to identify 2-h.param. kernel
two_h_p[1] <- ifelse ((k_0 == 2)|(k_0 == 4), T, F)
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two_h_p[2] <- ifelse ((k_1 == 2)|(k_1 == 4), T, F)
two_h_p[3] <- ifelse ((k_2 == 2)|(k_2 == 4), T, F)
h_param_k_0 <- get( kernel _names[k_0])
h_param_k_1 <- get( kernel _names[k_1])
h_param_k_2 <- get( kernel _names[k_2])
all_h_p <- c(h_param_k_0, h_param_k_1, h_param_k_2)
tot_nr_h_p <- length (c(h_param_k_0, h_param_k_1,

h_param_k_2))
h_param_grid <- get( search _ lengths [tot_nr_h_p -1])
l_h_param_grid <- dim(h_param_grid )[1]
cv_tr <- c()
mse_te <- c()
for(i in 1:l_h_param_grid ){# grid search for -loop

h_p_count <- 1
for(j in 1:3){# iterates through the nr. of base kernels

...
}}

eval_res <- model_eval ()
cv_tr[i] <- eval_res [1]
mse_te[i] <- eval_res [2]

}# grid search end
nr <- which.min ((cv_tr + mse_te)/2)# choosing the best model
res_table_II[1, count] <- cv_tr[nr]# storing the CV from the best model
res_table_II[2, count] <- mse_te[nr]# storing the MSE from the best model
# grid search results inserted into table:

...
count <- count + 1# next column of the table

}}# kernel search second stage end

We are now done with the explanation of the framework for the structural kernel search
on the air passenger data. Next we will look at the results from the search.

In fig 4.4 we see the output of both tables which are printed out from the first
and second stage of the search. At the first stage, the kernel expression kSE + kPER

gives the best model. As shown in figure 4.2, this kernel expresses structure which
is periodic with noise. At the second stage, the kernel expression is expanded with
the periodic kernel and product as the operation to (kSE + kPER) × kPER as the new
kernel expression. As expected, the expansion of the kernel from stage one improved
the model and captures more of the structure in the data.
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Tables with results from the first and second stage of the kernel search

Fig. 4.4 At column 1, kSE +kPER gives the best score for the given interval_1 interval. At column
6, (kSE + kPER) × kPER gives the best score for the given interval_1 interval.

4.2.1 Hyperparameter tuning

The hyperparameter values tuned by the grid search for the (kSE + kPER) × kPER kernel
does not guarantee to find the best solution. In order to search for values which are
not specified in the interval, we have created a function named adj_hyperparameter .
The adj_hyperparameter function takes a hyperparameter in the kernel and tries
to increase or decreases the value to a new value which improves the model. This
adjustment is done by a fixed amount and for a fixed number of times. A new model
is trained after each adjustment with two outcomes. At the first outcome, if the new
model is improved by lowering the mean of the CV and MSE values, the adjustment
continues. At the second outcome, if the new model is not an improvement, the
adjustments stops and the hyperparameter value is changed back to the previous
value.

Listing 4.6 Adjust hyperparameter function
search _ operator <- c(‘+‘, ‘-‘)
adj_ hyperparameter <- function (s, adj , itr , hyperparameter ){

improved <- 0
eval_res <- model_eval ()
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CV_0 <- (eval_res [1] + eval_res [2])/2
print(paste("The initial score is", CV_0))
for(g in 1: itr ){

assign ( hyperparameter ,
search _ operator [[s]]( get( hyperparameter ), adj),
envir = . GlobalEnv )

if(get( hyperparameter ) <= 0){
assign ( hyperparameter ,

search _ operator [[s%% 2+1]]( get( hyperparameter ),
adj), envir = . GlobalEnv )

print(paste("Error", hyperparameter , "is negative "))
break

}
eval_res <- model_eval ()
CV_1 <- (eval_res [1] + eval_res [2])/2
if(CV_1 >= CV_0){

assign ( hyperparameter ,
search _ operator [[s%% 2+1]]( get( hyperparameter ),

adj), envir = . GlobalEnv )
print(paste("the score", CV_1, "is not an improvement "))
break

}
print(" improved ")
improved <- 1
CV_0 <- CV_1

}
print(paste(" Resulting score is", CV_0, "with hyperparameter ",

hyperparameter , "=", get( hyperparameter )))
table <- list(CV_0, hyperparameter , improved )
return (table )}

The adj_hyperparameter function has four arguments. The first argument, s ,
takes the number one or two. When s is one, the value of the hyperparameter
increases and when s is two it will decrease instead. The second argument, adj ,
is the amount we choose to adjust the variable. At each adjustment a new model is
trained. The third argument, itr , is the number of times we set the variable to be
adjusted. If the variable is sucessfully adjusted each time, the adj_hyperparameter
function will stop after the itr number of adjustments. The fourth and last argument,
hyperparameter , is a character string with the name of the chosen variable in the
kernel. The adj_hyperparameter function will only adjust one hyperparameter in
the kernel, so the function needs to run more than once if we want to adjust all of the
hyperparameters in a composite kernel.

In the adj_hyperparameter function, the search_operator list is used to add
or subtract on the hyperparameter.

search _ operator <- c(‘+‘, ‘-‘)
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If the new value does not improve the model, we use the modulo operation to set the
value back to the previous value. In this way the value of the hyperparameter only
changes when the model is improved. The following code gives an example of the
modulo operation usage.

> s <- 1
> value <- 5
> assign ("value", search _ operator [[s]]( value ,3))
> value
[1] 8
> assign ("value", search _ operator [[s%% 2+1]]( value ,3))# modulo operation
> value
[1] 5

When the function adjusts one hyperparameter, the adjustment may not improve the
model at first. However, the successful adjustment of another hyperparameter in the
kernel may lead to the case that the adjustment of the first hyperparameter is improving
the model at the second attempt. In order to adjust for all hyperparameters in the
kernel one after the other, we have written the following while-loop:

nr_c_h <- length ( current _h_par)
iter <- 1
stop_adj <- rep(F, nr_c_h)
while(iter < 9999){

add_sub <- 2
attempt <- 0
first_ attempt <- 0
for(i in 1:5){

index <- (iter+nr_c_h -1) %%nr_c_h+1
continue <- adj_ hyperparameter (add_sub , 0.1, 5, current _h_par[index ])[3]
if( continue == 1){

first_ attempt <- 1
stop_adj[index] <- F

}
if( continue == 0 && attempt == 1){

if(first_ attempt == 0){
stop_adj[index] <- T

}
break

}
if( continue == 0){

add_sub <- add_sub %%2 + 1
attempt <- attempt + 1

}
}
if(all(stop_adj )){

break
}
iter <- iter + 1
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}

We will now explain how the code above works. The list current_h_par has the
names of the hyperparameters in the composite kernel.

> current _h_par
[1] "ell_se_0" "ell_per_1" " period _1" "ell_per_2" " period _2" "sigma_var"

The while-loop will continue to adjust all of the hyperparameters in this list one after
the other until the exit of the while-loop. The while-loop exits when none of the
hyperparameters can be adjusted to improve the model. When this happens, all of
the elements in the boolean vector stop_adj are true as the exit-condition. The
stop_adj vector has length equal to the length of the current_h_par list. All of
the elements in the vector are set to false before the while-loop starts.

> stop_adj <- rep(F, nr_c_h)
> stop_adj
[1] FALSE FALSE FALSE FALSE FALSE FALSE

In the while-loop, a for-loop is used to perform both type of adjustments, increasing
or decreasing one hyperparameter in the current_h_par list. In this for-loop, the
adj_hyperparameter function runs and we also have three if-statements. These
if-statements are used to distinguish between different events that occur when adjusting
the hyperparameter. At one event, the adjustments of the hyperparameter have
failed in the first attempt for both type of adjustments. When this is the case, we
want to break out of the for-loop and continue in the while-loop to adjust a different
hyperparameter. At a different event, the first type of adjustment is not sucessfull,
but the second type of adjustment is. We also have the event when the first type of
adjustment is sucessfull. In both of these events, the for-loop will continue and the
adj_hyperparameter function will run again. We will now explain what happens in
the first type of event, when the for-loop breaks.

When the adj_hyperparameter function runs in the for-loop, the function will
return the value zero or one. This value is assigned to the continue variable which
is used in the if-statements. If the adj_hyperparameter function returns the value
zero, the adjustment failed to improve the model at the first iteration and stopped. If
the adj_hyperparameter function returns the value one, the adjustment improved
the model at least once and continued.

In the for-loop, the add_sub variable decides the adjustment in the adj_hyperparameter
function, taking the value zero or one. After the adj_hyperparameter function has
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run, if the continue variable is set to zero, an if-statement will change the add_sub
variable to a different value providing a different adjustment. As a result, when the
for-loop continues and the adj_hyperparameter function runs for a second time, the
function changes the hyperparameter with a new type of adjustment. If this second
attempt again fails at the first iteration, so the continue is set to zero twice, then an
element in the stop_adj is set as true by an if-statement. Furthermore, the for-loop
breaks and the while-loop continues, choosing a new hyperparameter to run the for-loop
on. The while-loop breaks when this event from the for-loop occurs successively for all
hyperparameters in the list.

For the air passenger data, we took the (kSE + kPER) × kPER kernel from the kernel
search and ran the while-loop, tuning all of the hyperparameter values from the grid
search. In addition to these values, we also tuned the output variance sigma_var .
In the kernel search, this variable is not tuned and has the default value one. The
while-loop was run four times with a smaller adjustment at each time. These four
values for adj was 1, 0.1, 0.01 and 0.001. The result from running the while-loops was
an improvement of the model, lowering the mean of the CV and the MSE as the model
evaluation. From the grid search, the model had the mean 663.918 and improved to
323.851 using the while-loop. The improved model can be seen at the right plot in
fig. 4.5 and is shown in red.



56 Automatic machine learning by kernel searching

1950 1952 1954 1956 1958 1960 1962

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

1950 1952 1954 1956 1958 1960 1962

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

Fig. 4.5 Models from the kernel search on the air passenger data. Left: The six best models from
the first stage with two base kernels. The best model is shown in red with the kSE + kPER kernel.
Right: The best model from the second stage is shown in blue with the (kSE + kPER) × kPER kernel.
The improved model with hyperparameter values found from the while-loop is shown in red.

4.3 SVR on Mauna Loa Atmospheric CO2 Concentration

We will now look at the CO2 data set [18] and perform a kernel search with support
vector regression. The CO2 data has monthly observations of atmospheric CO2
concentrations from 1959 to 1997. For the kernel search with SVR, we have chosen to
only use the SE and PER kernels and the LIN and RQ kernels are removed. Compared
to the kernel search on the air passenger data, the base kernel grammar is smaller.
However, the search will be less computationally intensive. The framework for the
code on this search is similar to the code of the previous search with GP. We will now
go through some of the main differences in the code.

Since the base kernel grammar is different for the CO2 data, we now have the kernel
lists:

kernels _0 <- c(‘k_se_0‘, ‘k_per_0‘, ‘k_none ‘)
kernels _1 <- c(‘k_se_1‘, ‘k_per_1‘, ‘k_none ‘)
kernels _2 <- c(‘k_se_2‘, ‘k_per_2‘, ‘k_none ‘)

This kernel search will also have two stages and the table with kernel combinations we
search through at stage one is:
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> t(k_comb)
1 3 4

k_0 1 1 2
k_1 1 2 2

In kernlab, the kernel learning algorithm for SVM is ksvm . For the CO2 data, the
ksvm function gives support vector regression by default because y is not a factor.
The following code shows the model_eval function which trains and evaluates the
models in the search. The model_eval function returns the RMSE of the training set
and the RMSE of the test set.

model_eval <- function (){
table <- c()
model <- ksvm(x[1:374] , y[1:374] , epsilon = epsilon _value , C = cost ,

kernel = k_ composition _2)
pred_model <- predict (model , x [1:374])
mse <- mean (( pred_model - y [1:374])^2)
res_1 <- sqrt(mse)
pred_model <- predict (model , x [375:468])
res_2 <- mean (( pred_model - y [375:468])^2)
res_2 <- sqrt(res_2)
table <- c(round(res_1, 3), round(res_2, 3))
return (table )}

The results of the kernel search on the CO2 data is shown in fig. 4.6, with one table
from the first stage and one table from the second stage. The hyperparameter values
are optimized by the grid search and we have used the same evaluation method as
earlier: the hyperparameter values for the kernel expressions in the table, are the values
which give the lowest evaluated mean. The mean is computed from the values of the
RMSE train and the RMSE test, returned by the model_eval function. We also use
the same evaluation method when we choose the kernel expression. From the second
stage of the search, (kSE + kPER) + kSE is the best kernel but does not improve the
model from the first stage very much. The kSE + kPER kernel almost gives the same
model. We will now choose the (kSE + kPER) + kSE kernel and look more detailed at
the models trained in the grid search and our evaluation method.

In the grid search for the (kSE + kPER) + kSE kernel, the interval which is used has
five values. With four hyperparameters in the kernel, the number of combinations
for the hyperparameters is 54 = 625, so 625 models are trained. In fig. 4.7, twelve of
the best models from the grid search are shown. Out of the 625 models, these twelve
models have the lowest evaluated mean. In fig. 4.7, we can see that the extrapolation
from the models over the dotted line varies greatly. The plot gives us a better idea
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Fig. 4.6 Results from the first and second stage of the kernel search. The best kernel expression at
each stage is marked with a red rectangle.

of what results we get by the chosen interval for the hyperparameters and our model
evaluation approach.

In order to compare our model evaluation with a more traditional approach, we will
also look at the models which give the lowest RMSE on the training set. The following
code shows how we extract the row numbers of the h_param_grid table which have
the hyperparameter values for the models with the twelve lowest RMSE train values.
The code is run after the kernel search and the h_param_grid table is set to have
all the hyperparameter combinations for the grid search with the (kSE + kPER) + kSE

kernel.

ordinal _ numbers2 <- c(" first2 ", " second2 ", " third2 ", " fourth2 ", " fifth2 ",
" sixth2 ", " seventh2 ", " eighth2 ", " ninth2 ", " tenth2 ",
" eleventh2 ", " twelfth2 ")

for(i in 1:12){
sort_rmse_tr <- sort(rmse_tr)
assign ( ordinal _ numbers2 [i], match( unique (sort_rmse_tr), rmse_tr)[i])}

ord_n_val2 <- t( sapply ( ordinal _numbers2 , function (x) get(x)))

The vector ord_n_val2 now have the values for the indexes in the rmse_tr vector
with the lowest RMSE train. The indexes of the rmse_tr vector corresponds to the
rows of the h_param_grid table. A similar code extracts the row numbers from the
h_param_grid table with the twelve lowest mean of the RMSE train and RMSE test.

We will now look at the indexes from both of these vectors.
The rows in the h_param_grid table with the twelve lowest RMSE train, ordered

from least to greatest are:
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Fig. 4.7 Twelve SVR models with the (kSE + kPER) + kSE kernel. These models had the lowest
evaluated mean from the grid search.

> ord_n_val2
first2 second2 third2 fourth2 fifth2 sixth2 seventh2 eighth2

[1,] 26 27 279 278 152 153 154 404
ninth2 tenth2 eleventh2 twelfth2

[1,] 155 405 530 177

When we look at the indexes for the twelve lowest mean values, we see that many
of the indexes are the same indexes as in the ord_n_val2 vector, but in a different
order:

> ord_n_val
first second third fourth fifth sixth seventh eighth

[1,] 278 280 279 530 405 404 153 152
ninth tenth eleventh twelfth

[1,] 154 155 274 264

These row numbers of the h_param_grid table gives the hyperparameter values for
the models shown in fig. 4.7. We did a comparison of both types of model evaluations
and in fig. 4.9 we see the models from the row numbers in the ord_n_val and
ord_n_val2 vector. The models with the lowest evaluated mean, all have low RMSE
test values. The best models with the lowest RMSE train have a high RMSE test and
will extrapolate poorly.
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Fig. 4.8 Comparing two types of model evaluation. The white circles is the RMSE on the training
set and the black dots is the RMSE for the test set. Left: the twelve models plotted in figure 4.6.
Right: two of the best models with the lowest RMSE train, have high RMSE test values.

We will now choose the model with the lowest evaluated mean and again tune the
hyperparameters with the while loop and the adj_hyperparameter function. The
result from running the while loops was an improvement of the evaluated mean. From
the grid search, the model had a mean value equal to 1.5415 and improved to 0.5 using
the while-loop with adj equal to 0.008. The improved model can be seen in fig. 4.9
as the red line.
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Fig. 4.9 SVR models with the (kSE + kPER) + kSE kernel. The blue line represents the best
model from the grid search. The red line is the improvement of the model by the use of the
adjust_hyperparameter function and the while-loop.

4.4 Gaussian Processes Classification on Pima Indians Dia-
betes Data

In this section we use the kernel search procedure for classification and the data sets
we have used are multidimensional. Compared to the kernel search for regression, the
kernel search for binary classification is more difficult. The labels of the data we look at
are binary values, so we have less information. Moreover, finding patterns to interpret
and discover structure is hard. The results from classification are not as easy to plot
as in the case of regression on time series data.

When we define the kernel grammar for classification we do not include the periodic
kernel. As discussed in Mrkšić [15], the periodic kernel is suited to one-dimensional time
series data and makes less sense in classification. This is because features in classification
often are discrete values which does not have a periodic structure. Moreover, if the
features are not discrete we only have two class labels, so detecting periodicity is
difficult.

For the kernel search with GP classification, we only perform the kernel search
with the SE kernel. Moreover, we consider the Pima indians diabetes data set [12] and
perform a kernel search with three stages instead of two. The Pima indians diabetes
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data had many missing values, so we used the KNN algorithm with the DMwR [24]
package to fill in values where the data was missing. For the Pima indians diabetes
data, we want to find a model with good performance in identifying the patients
who has diabetes. As a consequence, we have not used the classification accuracy as
the guiding criteria for the kernel search. The guiding criteria we have used instead,
hopefully gives a model with high accuracy but also a model with less false negatives
than false positives misclassifications.

The following code shows the metric_eval function and is used in the model
evaluation for the kernel search:

metric _eval <- function (){
table <- c()
model <- gausspr ( diabetes ~ ., data = train_data , kernel = k_comp_3)
res_1 <- confusionMatrix ( predict (model , train_data [,-9]),

train_data$diabetes , positive = "pos")$ byClass [1]
res_2 <- confusionMatrix ( predict (model , test_data [,-9]),

test_data$diabetes , positive = "pos")$ byClass [1]
res_3 <- confusionMatrix ( predict (model , test_data [,-9]),

test_data$diabetes , positive = "pos")$ overall [1]
table <- c(round(res_1, 3), round(res_2, 3), round(res_3, 3))
return (table )}

The metric_eval function returns three variables: res_1 , res_2 and res_3 . The
res_1 and res_2 variables, have the values for the sensitivity measure on the training
set and the test set respectively. The sensitivity is the true positive rate and measures
the patients who actually have diabetes and are correctly identified with the disease.
The third variable res_3 , is the accuracy measure of the model on the test set. In
the kernel search for classification, the models are evaluated by adding these three
measurements and the model with the maximum sum is the optimal model. In fig. 4.10,
we see the results of each stage in the kernel search with one table from each stage.
In the first stage of the search, the best kernel kSE + kSE provides a model with the
maximum sum equal to 2.5. In the third stage of the search, the improved model with
the (kSE + kSE) + kSE kernel has the evaluation score equal to 2.615. Comparing these
two models, we see that both models have the same sensitivity measure on the test set,
but the model from the third stage gives a better train sensitivity and test accuracy
measure.

We will now compare the composite (kSE + kSE) + kSE kernel which we have found
with the built-in RBF kernel in the kernlab package. The RBF kernel in kernlab [11] is
defined as kRBF(x, x′) = exp(−σ∥x − x′∥2). When the RBF kernel is used, the package
automatically tunes the hyperparameter σ. This tuning is done by the sigest()
function, which estimates the range of values for the σ hyperparameter which would
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Fig. 4.10 Kernel search result on Pima diabetes data set

provide good results when SVM( ksvm ) is used with it. Moreover, this estimation
is based on the 0.1 and 0.9 quantile of ∥x − x′∥2. In fig. 4.11 we see the confusion
matrix of the two models on the training set and test set. For the performance on the
training set, the model with the (kSE + kSE) + kSE kernel performs better. Out of the
219 patients who actually have diabetes, 218 patients are correctly identified with the
disease. The other model fails to identify 83 of the patients with diabetes and out of
the 395 patients who does not have the disease, 47 patients are wrongly identified with
diabetes. For the performance on the test set, the two models almost have an equal
performance, and both models have less false negatives than false positives.

We will now look at another medical data set, and run two kernel searches with
different base kernel grammar in each search for comparisons.

Fig. 4.11 Confusion matrix on the training set and test set. Top: Performance of the model from
the kernel search. Bottom: Performance of the model with the RBF kernel from kernlab.
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4.5 SVM on Heart Disease Data

For the kernel search with SVM classification, we will use the heart disease data from
the UCI machine learning repository [5] and try to predict which patients who has the
disease. For this data set, some assumptions of the data was done in order to create a
binary classification problem. See 1 or our source code to look at the assumptions and
data preparations we used.

The data set has fourteen variables and the goal for this kernel search, was to
perform a search with one dimensional base kernels and find a composite kernel across
different dimensions. With this in mind a different structure of the search operators
was used and we got a different set of kernels. In the previous kernel search, expressions
such as (SE1 + SE2) × SE3 was possible. With the new grammar these expressions are
no longer possible and we only have expressions which are sums of products such as
SE1 × SE3 + SE2 or SE1 + SE2 × SE3. This sums of products grammar allows for more
interpetability of the constructed kernels [15] but has less predictive power than the
other procedure, so there is a trade-off. We will now explain how this sums of product
grammar was implemented.

We first created a set of infix functions for each operation used in the kernel. With
infix functions the function name comes in between its arguments and not before
which is more common. In R the user-defined infix functions starts and ends with
% .

‘%op_I%‘ <- function (a, b){
operations [[o_1]](a, b)}

‘%op_II%‘ <- function (a, b){
operations [[o_2]](a, b)}

‘%op_III%‘ <- function (a, b){
operations [[o_3]](a, b)}

In the above code, operations is a list which stores the summation and operation
function and is used in the same way as we have seen before:

operations <- c(‘+‘, ‘* ‘)

The following main kernel function which is used in the search, uses the infix functions
and the kern_ lists, where the kern_ lists have the base kernel functions, same as
before. By setting different values for the o_ and k_ variables, the main kernel

1R document by Brigitte Mueller at RPubs: https://rpubs.com/mbbrigitte/heartdisease .

https://rpubs.com/mbbrigitte/heartdisease
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function can generate kernel expressions which have one or up to four base kernels at
most.

k_comp <- function (x, y){
res <- kern_1[[k_1]](x, y)%op_I%kern_2[[k_2]](x, y)%op_II%

kern_3[[k_3]](x, y)%op_III%kern_4[[k_4]](x, y)
return (res )}

We now have the k_comp kernel function which provide the sums of product grammar
for the kernel search. In order to achieve composite kernels with base kernels across
different dimensions, we tried to change the base kernels in the following way but it
did not work as planned.

d_var <- 2
k_se_1 <- function (x, y){( sigma_var )^2*
exp ( -0.5*(1/(ell_se_1)^2)*sum ((x[,d_var] - y[,d_var ])^2))}

The idea was that setting d_var , for instance as two, would give a one-dimensional
base kernel on the second dimension. For the kernlab package, operating across different
dimensions on the base kernels does not seem to be possible. However, we still used the
sums of product grammar on the kernel search for the hearth disease data with SVM.

We performed two different kernel search which compared two different base kernel
grammars. We first performed a search with the base kernels SE and LIN and then a new
search which instead only used the SE kernel. For the LIN kernel, we chose to remove
its hyperparameter and the kernel function which we used instead was:

k_lin_0 <- function (x, y){( sigma_var )^2*(sum ((x)*(y)))}

This change made the grid search less computationally intensive and faster to run.
In fig. 4.12 we see the results from each of the three stages in the kernel search with
the SE and LIN kernels. The evaluation method of the models is the same as in the
previous search. We want to find a model with high accuracy and less false negatives
than false positives misclassifications. Comparing the best models from the first and
third stage, the model from the first stage has the sum of the evaluation measures
equal to 2.676. The model from the third stage has a sum equal to 2.68 which is not a
big improvement. However, the test sensitivity measure has an improvement which is
more significant, going from 0.854 to 0.902.

Looking at the results from the kernel search which only used the SE kernel in
fig. 4.13, we see that the search performs better than the SE and LIN search at stage
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Fig. 4.12 Kernel search result on the Heart Disease data set. The SE and LIN kernels are used in
the search.

two and three. Comparing the best models from each search, the model with the
kSE + kSE + kSE × kSE kernel performs best with an evaluation sum equal to 2.719. This
model has a higher sensitivity measure on the training set and a higher accuracy on
the test set. However, the model with the kSE + kLIN × kSE + kSE kernel has a higher
test sensitivity and its evaluation sum of 2.68 is close to 2.719.

Fig. 4.13 Results from the second search on the data set using SE kernels only.

To visualize the performance of the best models from each search, we used a
ROC curve. In fig. 4.14 and fig. 4.15, we see each model compared with the built-in
RBF kernel in kernlab. On the training set, both of the constructed kernels performs
better than the RBF kernel. The AUC for the kSE + kLIN × kSE + kSE kernel and the
kSE + kSE + kSE × kSE kernel, is 0.986 and 1 respectively. The RBF has an lower AUC
equal to 0.962. Next, we look at the test set. On the test set, the RBF kernel performs
better than both of the other two models. The RBF model has an AUC value which
equals 0.956, and the model with the kSE + kSE + kSE × kSE kernel has an lower AUC
value equal to 0.891. In contrast, the model with the kSE + kLIN × kSE + kSE kernel has
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an AUC value equal to 0.892 and performs a little better than the kSE +kSE +kSE ×kSE

kernel.

Fig. 4.14 ROC curves comparing the kSE + kLIN × kSE + kSE kernel and the RBF kernel on the heart
disease data. The kSE + kLIN × kSE + kSE kernel performs better than the RBF kernel on the training
set but not on the test set.

We will now summarize the four analyses we have done. For the regression data,
both the kernel search on the air passenger data and the CO2 data had two stages
and a table with the results from both stages, with two and three base kernels was
presented.

For the GP kernel search on the air passenger data, the best model with two base
kernels seems to give good extrapolation, but does not capture the growing amplitude in
the data structure. Consequently, the model is overfitting in the first years of the time
period and underfitting in the last years. Next, the best model with three base kernels
manage to capture the growing amplitude of the observations over time. Moreover,
the model also captures the local periodic structure in the time series. However, the
extrapolation of the model shows that it does not capture the linearity of the long
term trend. Comparing the two models, the model with two base kernels is the best at
capturing this linearity. We also applied a procedure for tuning the hyperparameters in
the kernel. Tuning the hyperparameters for the model from the second stage, improved
the model and gave better extrapolations.

For the kernel search on the CO2 data, we used a smaller base kernel grammar.
Unlike the previous kernel search, the best model from the second stage of the search,
only improved the model from the first stage a little. After the search, because our
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Fig. 4.15 ROC curves comparing the kSE + kSE + kSE × kSE kernel and the RBF kernel. ROC curves
on the training and test set of the heart disease data.

model evaluation technique is non-traditional, the model evaluation technique was
examined by comparing it to models which had the lowest RMSE. Most of the models
which had the lowest evaluated mean, corresponded to the models which had the lowest
RMSE. Finally, when applying the procedure of hyperparameter tuning, the model
again improved and was able to capture more of the upward trend in the data.

Next, we looked at classification problems with two medical data sets and performed
kernel searches with three stages. For both data sets, the kernel search was guided
by a search criteria to improve the sensitivity measure. In the kernel search on the
Pima diabetes data, we only used the SE kernel as the base kernel grammar. The best
model from the search, performed better than the other models in both sensitivity and
accuracy measure. Hence, the kernel search was successful in the construction of a
model adapted to our need, which was identifying ill patients.

For the kernel search on the heart disease data, we did an attempt to perform a
kernel search across different dimensions on the base kernels. With that in mind, we
implemented the sums of products grammar [15], which provides more interpretation
of the kernel expressions which have base kernels across different dimensions. Defining
the base kernel functions across different dimensions failed. However, we still used the
sums of products grammar on the two kernel searches we applied: one search with the
SE and LIN kernels, and one with SE kernel only. We used ROC curves to visualize
the performance of the best models from each search. Looking at the ROC curves, we
saw that both models from each search gave a performance which was good.



Chapter 5

Topics for further investigation

5.1 Marginal likelihood

The kernel search we have performed in this thesis uses grid search to train the models.
For Gaussian process, an alternative would be to train the models by maximizing the
marginal likelihood. Since the marginal likelihood may have multiple local optima and
does not necessarily provide a better model than grid search, it would be interesting to
compare and run two searches in parallel: one search using grid search and the other
search using the marginal likelihood.

The marginal likelihood is given by the integral of the likelihood times the prior
with a marginalization over the function values f :

p(y|X) =
∫

p(y|f , X)p(f |X) df . (5.1)

We know that the likelihood is Gaussian distributed, y|f ∼ N (f , σ2
nI) and that the

prior is also Gaussian, f |X ∼ N (0, K), so by properties of the multivariate normal
distribution the log marginal likelihood can be written

log p(y|X) = −1
2y⊤(Ky)−1y − 1

2 log|Ky| − n

2 log 2π. (5.2)

where Ky = Kf + σ2
nI. The derivatives of the log marginal likelihood have a nice

form, which can be seen by using the matrix identities ∂
∂θ

K−1 = −K−1 ∂K
∂θ

K−1, and
∂
∂θ

log |K| = tr
(
K−1 ∂K

∂θ

)
, where ∂K

∂θ
is a matrix of elementwise derivatives. The partial

derivatives of the marginal likelihood w.r.t. the hyperparameters is

∂

∂θj

log p(y|X, θ) = 1
2 y⊤K−1 ∂K

∂θj

K−1y − 1
2 tr

(
K−1 ∂K

∂θj

)
. (5.3)
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We can now find the values of the hyperparameters which optimizes the marginal
likelihood based on the partial derivatives in the above equation. Numerical optimiza-
tion routines such as conjugate gradient are often used with eq.(5.3) to find good
hyperparameters.

Learning the hyperparameter values with the marginal likelihood has an automatic
trade off between penalty and data-fit of the GP model. This automatic trade off,
which simplifies training a lot, is explained by two of the three terms in the marginal
likelihood: the first term −1

2y⊤(Ky)−1y, which is a data-fit measure and the second
term is −1

2 log|Ky|, which measures and penalizes the complexity of the model [19].

5.2 Feature selection

In the analyses of the Pima Indians diabetes data and the heart disease data, the data
sets was multidimensional and the model we build used all of the different features.
However, there is no guarantee that all of the features we used gave a significant
contribution to the prediction of the disease. Hence, we will now discuss how feature
selection with support vector machine can be done.

In a paper by Li et al. [13], a new approach for a kernel machine with feature
scaling technique is presented. This new approach is named Feature Vector Machine
(FVM) and reformulates the Lasso regression into a form which is similar to SVM. By
introducing kernels, the FVM can perform feature selection with non-linear models
and generate sparse solutions in the non-linear feature space. We will now present the
Lasso regression model and show how the FVM is derived.

The Lasso regression model is often used for shrinkage and feature selection. The
loss function of Lasso regression is

L =
∑

i

(yi −
∑

i

βpxip)2 + λ
∑

p

∥βp∥1. (5.4)

Looking at the last term, λ
∑

p ∥βp∥1 is a shrinkage penalty term and has the effect of
shrinking the estimates of βp towards zero. When the tuning parameter λ is sufficiently
large, Lasso forces some of the coefficient estimates to be exactly equal to zero. As
a result, Lasso regression often leads to sparse solution in the feature space with the
most irrelevant features removed.

The Lasso regression is limited by its assumption of linearity in the feature space
and does not capture non-linear dependencies which we may have between features
and output variables. Deriving the FVM from Lasso regression, the goal is to: get
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a model which guarantees a sparse solution in the feature space, is able to capture
both linear and non-linear relationships between features and the output variables,
and which does not involve parameter optimization inside of kernel functions. We
will now show how the Lasso regression can be re-formulated and extended into a
form which is similar to SVM. We first present some definitions. Let X = [x1, ..., xN ]
denote a sample matrix, where each column xi = (x1, ..., xK)T represents a sample
vector which have K features. Next, we define the transposed row in the sample matrix
as a feature vector fq = (x1q, ..., xNq)T , where q is the qth row of X. Moreover, we
can write XT = [f1, ..., fK ] = F. Lastly, let y = (y1, ..., yn)T denote a response vector
where the responses in the vector corresponds to all the samples. We now consider an
example space where each basis is represented by an xi in our sample matrix. Under
this example space, both the features fq and the response vector y can be viewed as a
point in the space. For the Lasso regression, the model has an intuitive meaning in this
space: the regression coefficients can be regarded as the weights of features vectors.
Moreover, all the non-zero weighted feature vectors are on two parallel hyperplanes
in the example space. These feature vector, together with the response variables,
determine the directions of the two hyperplanes [13]. With the following change of
form on the Lasso regression, shown by Perkins et al. [17], we get the geometric point
of view explained above:

|
∑

i

(yi −
∑

p

βpxip)xiq| ≤ λ

2 , ∀q

⇒ |fq(y − [f1, ..., fK ]β)| ≤ λ

2 , ∀q.

(5.5)

In the above equation, y−[f1, ..., fK ]β defines the orientation of a separating hyperplane
and the inequality of the equation only holds for non-zero weighted features. In SVM,
the separating hyperplane is defined in the feature space instead of the example space.
However, the separating hyperplane in SVM have similar properties to the regression
hyperplane we described above. A re-formulation of the Lasso regression with similar
character to SVM, is stated as the following optimization problem:


min

β

1
2
∑

i(
∑

p βpxip)2

s.t. |∑i(yi −∑
p βpxip)xiq| ≤ λ

2 , ∀q
(5.6)
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This equation can be rewritten in the following linear algebra format:


min
β

1
2∥[fT

1 , ..., fT
K ]βp∥2

s.t. |fq(y − [f1, ..., fK ]β)| ≤ λ
2 , ∀q.

(5.7)

The results we have shown until now, are results from other work which are previous
to Li et al. [13] paper. Following this, Li et al. [13] shows that the solution to eq.(5.6)
is the exact same of standard Lasso regression. Then, based on the reformulation in
eq.(5.7), kernels are introduced to allow feature selection under a non-linear Lasso
regression. As a result, the optimization problem defined in eq.(5.7), and its kernelized
extensions is refered to as the feature vector machine (FVM).

In Li et al. [13] paper, the following propositions and theorem is stated.
Proposition 1: For a lasso regression problem min

β

∑
i(
∑

p xipβp − yi)2 + λ
∑

p |βp|, if

we have β such that: if βq = 0, then |∑i(
∑

p βpxip − yi)xiq| < λ
2 ; and if βq < 0, then∑

i(
∑

p βpxip − yi)xiq = λ
2 ; and if βq > 0, then ∑

i(
∑

p βpxip − yi)xiq = −λ
2 , then β is

the solution of the Lasso regression defined above. For convenience, we refer to the
aformentioned three conditions on β as the Lasso sandwich.
Proposition 2: For problem in eq.(5.7), its solution β satisfies the Lasso sandwich.
Theorem 3: Problem in eq.(5.7) ≡ Lasso regression.

For the kernelized extension of eq.(5.7), the K(fp, fq) = ϕ(fp)T ϕ(fq) kernel on the
feature vectors are introduced. When f is replaced with ϕ(f) in eq.(5.7), we get the
following optimization problem for FVM:


min

β

1
2
∑

p,q βpβqK(fp, fp)

s.t. ∀q, |∑p βpK(fq, fp) − K(fq, y)| ≤ λ
2 .

(5.8)

We have now presented the FVM, using this method we have a feature selection
algorithm for nonlinear features. As in SVM, slack variables can also be introduced
into FVM to get a more robust model. Applying the FVM to the Pima Indians dibates
data and the hearth disease data, feature selection can be done by solving a standard
SVM problem in feature space and we will get an optimal vector β where some of its
elements are zero.



5.3 Conclusion 73

5.3 Conclusion

In this thesis, we have shown how a kernel search in R for SVMs and GPs can be
implemented. The procedure for the kernel search was inspired by previous work on
structural kernel search for regression [6]. We have looked at four real-world data
sets and successfully performed a kernel search on both regression and classification
tasks. The code we have written to implement the search, have been explained
in detail. In our implementation, the search identifies the hyperparameters in the
current kernel expression at each iteration of the search. It also identifies the number
of hyperparameters in the kernel and performs a grid search accordingly. If we
include more stages in the kernel search, the number of possible combinations for
the hyperparameters in the kernel increases at each stage. The possible number of
hyperparameters also increases, so the implementation of a search with many stages
poses a challenge in programming. In our implementation, we can easily expand the
kernel search to have many stages and consider composite kernels which have many
base kernels. For the real-world data set analyses, we have only used three stages
at most and a search with more depth in exploring base kernel combinations can be
done. With grid search as the optimization method for the hyperparameters, a kernel
stage with many stages will be more computationally intensive. However, it will then
be possible to redefine the number of hyperparameters in some of the base kernels
and choose an interval with less amount of values. Moreover, with our while-loop
and the adj_hyperparameter function, a smaller interval for the grid search does
not necessarily become a problem: when running the while-loop we can find better
hyperparameter values which lie between the values specified in the interval. For the
adj_hyperparameter function and while-loop procedure, further experimentation
can be done by randomly sampling the order of which hyperparameters we adjust,
one by one. Further investigation which can be done, is to use different values for the
regularization parameter, C, in the kernel search with SVM and SVR, and see how
they perform differently.

The strengths of the grid search as the optimization method, is that it easily adapts
to both SVMs and GPs and the kernel is chosen by data structure. This chosen process
can also be combined with the expertise knowledge in practice to achieve the best
result.
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