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Preface

The work of this thesis has been carried out during a 4-year position as a PhD-student
in the Department of Mathematics at the University of Bergen, from August 2014 until
December 2018. In total, three of these years have been dedicated to my research and
to my education in the form of courses, seminars and conferences. One year has con-
sisted of various assignments such as teaching, organizing seminars for students and
grading exam papers. For one year I had a 20% leave because I was working part time
as a statistician for a national health registry. The fall of 2017 was spent at the Center
for Clinical Research at Haukeland University Hospital in Bergen.

Outline
This thesis considers numerical methods that are applied as solutions in Bayesian and
frequentist computing. A well-known problem that occurs in Bayesian inference is
finding the posterior distribution. A very common approach to this problem is to use
Markov chain Monte Carlo (MCMC) methods to generate samples that stem from the
posterior distribution. There exist several branches that originate from the MCMC
methods. One of these is Hamiltonian Monte Carlo (HMC). Here, HMC is considered
with the purpose of improving its performance and efficiency by altering the numerical
integration schemes within the algorithm.

Although MCMC methods are popular and effective, they also have weaknesses.
For certain latent variable models, MCMC simulations are often computationally inef-
ficient and time consuming. This is especially a problem for high-dimensional cases.
For these situations, we consider different numerical techniques. First, we look at a par-
ticular property that is important in integrated nested Laplace approximations (INLA).
This property will be used in later computations. INLA is significantly faster than
MCMC for latent variable models, though we have used a different methodology. We
use an automatic differentiation (AD) model builder, TMB. With TMB, we can combine
AD and Laplace approximation in the process of finding the maximum likelihood es-
timates of the parameters. Finally, we use the stochastic partial differential equations
(SPDE) approach to supply a link between Gaussian fields (GFs) and Gaussian Markov
random fields (GMRFs). GFs are very common with latent variable and spatial models
and GMRFs come with big computational advantages. We use the SPDE approach for
spatial and spatio-temporal models. The spatial data come from the Medical Birth reg-
istry of Norway.
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Abstract

In chapter 1, the field of statistics is discussed in general terms. Then, Bayes’ theorem
is presented together with the posterior distribution. Finally, we consider maximum
likelihood estimation and its relation to a two-step inference procedure.

The thesis proceeds to introducing several numerical methods in chapter 2. One of
the main methods is Hamiltonian Monte Carlo (HMC). In order to understand HMC,
which is a type of Markov chain Monte Carlo (MCMC) algorithm, we first study some
theory of Markov chains. Furthermore, MCMC and some examples of its well-known
algorithms are encountered. As HMC is based on Hamiltonian dynamics (that originate
from the field of physics), a short illustration of the dynamics is given. Furthermore,
the system of differential equations used in HMC is discussed, as are several different
numerical integration schemes and methods for developing them. A numerical inte-
gration scheme is a necessary part of the HMC algorithm. Paper 1 covers HMC and
finding more efficient numerical integration schemes to be used in the algorithm.

It is clear that there are situations where the MCMC algorithms perform poorly, es-
pecially with regards to time consumption. For certain latent variable models we should
consider alternative numerical methods to MCMC. For these models, one could use in-
tegrated nested Laplace approximation (INLA). Although INLA has not been used in
the model specification here, we are interested in some of the theory it applies. INLA is
an efficient alternative for latent Gaussian models and uses some important properties
of Gaussian fields (GFs) and Gaussian Markov random fields (GMRFs). From INLA,
we here more specifically consider the relation between the computationally demand-
ing covariance matrix and the sparse precision matrix. These two matrices are directly
connected to GFs and GMRFs respectively, and we examine some the computational
advantages that come with GMRFs compared to GFs. We use the template model
builder (TMB) that uses automatic differentiation and Laplace approximation in the pro-
cess of finding the maximum likelihood estimation of the parameters of the marginal
likelihood. The combination in TMB gives the ability to handle complex latent variable
models, and this is the methodology that is used for the spatial models in paper 2 and
paper 3.

In chapter 3 we look at the field of spatial statistics. This includes its uses and the
different types of spatial data that we have. Spatial data are separated by what kind
of location information that is available and what type of problem we want to model.
Moreover, we discuss the stochastic partial differential equations (SPDE) approach.
This is an approach that is able to link GFs and GMRFs using a triangulated grid.
This grid, a weak solution to the SPDE and its use with spatial models are examined.
To understand the SPDE approach we also consider the Matérn covariance function,
which is the covariance function for certain GFs. The SPDE approach is essential for
the results of paper 2 and paper 3. The spatial and spatio-temporal models are also
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explained and some additional results to paper 3 are presented. Finally, we look at
health registry data, which is the type of data used in paper 2 and paper 3.
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Chapter 1

Introduction

In statistics, mathematical knowledge and data analysis are combined with the aim of
describing a population. Moreover, to be able to draw useful assumptions about it with
a given certainty. The field of statistics has many applications. In actuarial science, a
wide range of statistical methods are used to determine risk in the business of insurance
and finance. Machine learning uses statistical methods to give computers the ability to
generate predictions. Biostatistics consider medical and biological incidents and study
them using statistical analysis.

The kind of subjects that are studied can range from a certain group of people to
the weather. Regardless of subject, access to data about the phenomenon of interest is
often sought when working in the field of statistics. Census data, which is data about
the whole (relevant) population, is ideal but often problematic. It is therefore also
common to use a subgroup of the population as a representation. This group can be
used to describe behaviour and we want this sample to represent the entire population.
Thus, statistical inference is applied in order to acquire more knowledge about the
sample. We can perform hypothesis testing, parameter estimation and regression to
try and describe the population using just this sample. For the data in this thesis, the
focus is mainly on health registry data. This type of data often coincides with a large
population. Therefore, in addition to the societal benefits, health registry data is highly
relevant in research.

Variables that are the subject of statistical analysis can be random (stochastic). This
means that they can take several values, based on the result of a random experiment. For
instance, coin tossing gives the random variable two possible outcomes. In statistics,
a probability distribution is a function that represents all the values that the random
variable can take as well as the corresponding probabilities. In the simple coin tossing
example, the probability distribution will have probability 1

2 for both of the possible
values the random variable can take.

In Bayesian statistics, the posterior distribution is the probability distribution of a
random variable conditional on some information. The posterior distribution, which
we will consider more closely in section 1.1, includes a normalizing factor. This fac-
tor requires finding an integral. Solving this integral analytically has proven to be very
complex, and often impossible. The solution has instead been to use numerical meth-
ods that draw samples from the posterior distribution. Sometimes, we want to evaluate
the probability of the data conditional on the model parameters. This is called the like-
lihood of a model. The values of the parameters that can best explain the data is found
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using maximum likelihood estimation (MLE), a popular method in frequentist statis-
tics. In this thesis and in the three papers included here, we will see several different nu-
merical techniques that are used in Bayesian and frequentist computing. In paper 1, the
use of Markov chain Monte Carlo (MCMC) methods and in particular the Hamiltonian
Monte Carlo (HMC) method is discussed. In general, MCMCmethods are widely used
within Bayesian statistics and MCMC simulation can be used to draw samples from
the posterior distribution. However, MCMC can be very computationally demanding
and time consuming. This is especially true for complex latent variable models. As an
alternative, one could turn to integrated nested Laplace approximations (INLA), which
is an efficient method for latent Gaussian models (LGMs). Here, we only use INLA
to illustrate some computational advantages that are to be used later. Instead, we use
the template model builder (TMB). TMB is based on a method that finds the parameter
estimates using MLE in combination with automatic differentiation (AD) and Laplace
approximation. For paper 2 and paper 3, this method is used together with the stochas-
tic partial differential equations (SPDE) approach. This approach is implemented in
the same R package as INLA. Combining the SPDE approach and methodologies for
approximating the complex latent models gives interesting alternatives to the MCMC
algorithms.

1.1 Bayesian inference

Bayesian inference can be applied in cases where we want to adjust the probability for
an event based on getting more information. Consider first Bayes’ theorem

P(A | B) = P(B | A)P(A)
P(B)

, (1.1)

Bayes’ theorem can be illustrated with the following example. Say we want to find
the probability of a patient having lung cancer given that the patient smokes. In this
situation, A is the event that the patient has lung cancer, and let us say that we know
that this probability is P(A) = 0.1. Let B be that the patient smokes. Moreover, let
the probability of smoking P(B) = 0.03. We have that P(B | A) gives the probability
that the patient smokes, given that it has lung cancer. Here, this probability is 0.07.
Finally, P(A | B) will then be equal to 0.23. This means that if the patient smokes, the
probability of having lung cancer is 23%, which is more than double the probability
of having lung cancer without knowing if the patient smokes. By adding information,
we can thus update the probability of an event. There are numerous examples like
this, where Bayes’ theorem is applied with point probabilities. However, there are
also often distributions that follow the events and this is a very common situation in
Bayesian inference.

In frequentist statistics (sometimes referred to as classical statistics), the parameter
θ is a fixed and unknown quantity. This is opposed to Bayesian statistics, where θ is
a quantity whose value varies. Here, θ is treated as a random variable with variation
characterized by a prior distribution π(θ). The prior distribution is a probability dis-
tribution that is formulated before we have any information from the data y. In other
words, it contains information that is available prior to making use of the data. Let
π() denote a general probability distribution. A random sample y= y1, . . . ,yn is drawn
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from a population indexed by θ . We let these observations have likelihood π(y | θ) and
we denote the probability distribution for θ | y as the posterior distribution. The poste-
rior distribution is proportional to the prior distribution times the likelihood, as seen in
equation (1.2):

π(θ | y) ∝ π(y | θ)π(θ). (1.2)

Equation (1.2) can be seen as a representation of Bayes’ theorem because the posterior
distribution can be fully formulated as

π(θ | y) = π(y | θ)π(θ)
π(y)

, (1.3)

where π(y) is the marginal distribution of y and expands to

π(y) =
∫

π(y | θ)π(θ)dθ . (1.4)

The posterior distribution (1.3) yields the possibility of finding out how likely some-
thing (here: θ ) is, based on the actual data but also accounting for prior knowledge.
This distribution is highly relevant in Bayesian inference. Its uses include estimation
of parameters as well as prediction.

In general, solving the integral in equation (1.4) analytically can be very demanding,
and often infeasible. The solution is to solve the problem numerically. In Bayesian
inference, we therefore have a variety of numerical methods that are used to overcome
this issue.

1.2 A two-step inference procedure

In frequentist statistics, we consider θ to be a number instead of a random variable. We
know that the likelihood function is π(y | θ), and that it is the probability distribution
for the data given the parameters of the model. We assume that the observations y =
y1, . . . ,yn are independent. Typically, we want to find the values of the parameters in the
model that can best explain the observed data. When θ is considered a fixed quantity,
MLE is a popular method for estimating its value. Define the likelihood as L(θ | y).
Because of the independence in the data, we have that

L(θ | y) = π(y | θ) ind
=

n

∏
i=1

π(yi | θ). (1.5)

MLE has three essential steps:

• Define the likelihood based on the probability distribution for the data given the
parameters.

• Find the log-likelihood.

• Maximize the log-likelihood with respect to the parameters.
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The first step in each case is simply to specify the likelihood for the appropriate prob-
ability distribution. In the second step we take the natural logarithm (here: loge) of
L(θ | y), denoted l(θ | y). This will simplify the coming computations greatly, because
of the fact that loge∏n

i=1π() = ∑n
i=1 logeπ(). The natural logarithm is chosen because

it is an increasing function, and therefore secures that maximizing the log-likelihood is
equal to maximizing the likelihood. Finally, we want to find the MLE values for the
parameters. To maximize l(θ | y), we first find its derivative with respect to each pa-
rameter. Second, we set each derivative equal to zero and solve the equation for the
appropriate parameter. This solution gives the MLE values for the parameters.

A relatively common procedure is to combine MLE and MCMC simulation. First,
we find the MLE values for the parameters of a model using the procedure described
above. Then, we want to use an MCMC algorithm to obtain samples from the desired
distribution. By using the MLE parameter values as starting points for the sampling
process, burn-in time can be notably reduced. This procedure is part of the results in
paper 2, where we use MLE together with AD and Laplace approximation to obtain
the estimated parameter values. These values are afterwards used as initial values in
HMC sampling. From the sampling we obtain a distribution of samples for the model
parameters.



Chapter 2

Numerical integration methods

The posterior distribution in equation (1.3) is relatively easy to express using the
Bayesian theory from section 1.1. The issues arise when we want to evaluate it. In
practice, it is very common to encounter a case where direct evaluation is impossible.
To be able to say something about the posterior distribution, we make use of numerical
methods. These numerical methods are used to obtain approximations that can give in-
formation about the posterior distribution. In paper 1 we use HMC and consider how
the numerical integration schemes within the algorithm can be improved. We know that
HMC is a branch of the well-known MCMC algorithms. For HMC and other MCMC
algorithms, a latent variable model that is high-dimensional can cause problems, among
other things related to time consumption. INLA is a numerical method that can be ap-
plied for LGMs. TMB offers efficient implementation of complex latent variable joint
likelihoods, and maximizes an approximation of the marginal likelihood using MLE.
The SPDE approach can be combined with other numerical methods in order to sim-
plify computations. In paper 2 and paper 3, we use the SPDE approach in combination
with TMB.

2.1 Markov chains

A Markov chain is defined as a stochastic process that holds a specific property. This
property is the Markov property and says that the process is without memory. Markov
chains were first introduced by Andrey Markov in the early 1900s.

Consider a stochastic process x = x1,x2, . . . . Define the discrete state space as all
the values that can be taken by xi and define p as the distribution of x. By definition the
sequence x is a Markov chain if for the states j and i1, i2, . . . , in−1, i :

pi, j = p(xn+1 = j | x1 = i1,x2 = i2, . . . ,xn = i) = p(xn+1 = j | xn = i), (2.1)

where pi, j is a transition probability (i.e. the probability of moving to a certain state
given the current state) and n is the nth step. In other words, equation (2.1) says that the
distribution of xn+1 given all previous states is memoryless and should depend only on
the previous state xn. This trait is what we refer to as the Markov property. We define
the transition matrix P as the square matrix that holds all the transition probabilities
pi, j.

The Markov chain definitions above hold for a discrete state space. In MCMC, we
often handle cases with continuous state space (but still discrete time). In this case, we
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define the continuous state space S and let x ∈ S and A ⊂ S. Moreover, we define the
transition kernel P(x, ·) so that P(x,A) gives the probability of reaching the set A from
state x.

Then, define the transition density p(x, ·) as the distribution of · given that Xn = x.
We define p(x,y) so that the following holds:

P(x,A) =
∫
y∈A

p(x,y)dy, (2.2)

P(x,S) =
∫
y∈S

p(x,y)dy= 1, (2.3)

which means that it is non-negative and that it is a probability density function.
A stationary process is one that is not affected by a jump in time. In a Markov chain,

a stationary distribution is a probability distribution that does not change in time. The
probability distribution π() is a stationary distribution for the Markov chain for all
A⊂ S when

π(A) =
∫

P(x,A)π(x)dx. (2.4)

This can also be expressed as πP = π . This means that the probability distribution is
invariant by the transition kernel. Stationarity is an important factor that we will re-
encounter in section 2.3. The same goes for reversibility, which means that there exist
a function π that fulfills

π(x)p(x,y) = π(y)p(y,x) (2.5)

This means that it is the same to move from x to y in the Markov chain as it is to
move from y to x. This trait is sometimes referred to as detailed balance and it implies
stationarity.

2.2 Monte Carlo methods

Monte Carlo methods (or Monte Carlo simulation) can in practice be seen as any
method within statistical inference that uses numerical simulation to solve problems.
Monte Carlo methods can be used to look more closely at traits belonging to a model.
When we sample, we aim to generate a large amount of samples that mirror the actual
behaviour of the model. Thereafter, we study the traits of the samples in order to say
something about the model itself.

Monte Carlo integration is an essential part of Monte Carlo methods. This method
uses the law of large numbers to estimate the solution of integrals. The law of large
numbers says that the average of a sample converges in probability to the expected
value, typically formulated as follows. Let x1,x2, . . . be independent and identically
distributed random variables that have a finite first moment E(xi) = µ . Then,

lim
N→∞

1
N

N

∑
i=1

xi
p→ µ. (2.6)

In Monte Carlo integration, we transform an integration problem into an expectation
problem and then use the law of large numbers. Say that we want to find

∫ b
a g(x)dx
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where {xi} are random variables distributed as f (x). Then, the mathematical expec-
tation of E(g(x)) is E(g(x)) =

∫ ∞
−∞g(x) f (x)dx. By the law of large numbers we now

know that
1
N

N

∑
i=1

g(xi) (2.7)

will converge in probability to the expected value. This is why we want to transform
the integration problem into an expectation problem. As an example, let x ∼U(a,b)
for xi where i= 1, . . .n and find

∫ b
a g(x)dx. With the expansion∫ b

a
g(x)dx= (b−a)

∫ b

a
g(x)

1
(b−a)

dx, (2.8)

we get that

(b−a)
∫ b

a
g(x) f (x)dx= (b−a)E(g(x)). (2.9)

when x is uniformly distributed. We have now transformed the problem and can use the
law of large numbers for E(g(x)). This is one example of a general approach. Typically,
the Monte Carlo methods can therefore use the independent and identically distributed
random variables {xi} and generate (many) samples in order to find properties of a
function.

In general, Monte Carlo methods are applied for estimating unknown parameters by
using random sampling. We can for instance estimate Type I and II error rates (when the
decision about the null hypothesis gives false positive or false negative) and test power
(the probability that a false null hypothesis will be rejected). Monte Carlo methods are
relevant in several areas such as finance, research, gambling and engineering.

2.3 Markov chain Monte Carlo

The work of Metropolis et al. (1953) introduced what we today know as the Metropolis
algorithm in MCMC. Later, Hastings (1970) edited the Metropolis algorithm into what
we now call the Metropolis-Hastings algorithm. A third method, the Gibbs sampler,
is seen as a special case of the Metropolis-Hastings algorithm and was introduced by
Geman and Geman (1987). These algorithms are all part of MCMC.

In fact, MCMC is a framework of methods proposed to be used in situations where
we want to draw samples from a target density, for instance the posterior distribution.
The overall aim is to perform random sampling by usingMarkov chains. In the previous
section, Monte Carlo methods were used when generating samples by making use of a
sequence {xi} of independent and identically distributed random variables. In MCMC,
we make use of Markov chains instead. When we want to sample from the target
density using MCMC, the first step is to create a Markov chain. Here, the distribution
that you want to sample from is the stationary distribution (the one that is discussed in
section 2.1). The states of this chain are then considered to be sample proposals from
the target distribution. By introducing a criterion that accepts or rejects the proposals,
we finally end up with a collection of samples that behave as though they were drawn
from the true distribution.
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The Metropolis-Hastings algorithm follows the MCMC recipe, and generates a
Markov chain {xt} with the stationary distribution mimicking its target distribution
p(x). The algorithm proposes to change states from xt to xt+1. The proposal x∗ is
drawn from a proposal distribution g(x∗ | xt). The Metropolis-Hastings algorithm is set
up like in Algorithm 1. Figure 2.1 shows a proposal distribution and a target distribu-

Algorithm 1 The Metropolis-Hastings algorithm
Given initial value x0:
for t = 1, ...,T do
Draw x∗ ∼ g(x∗ | xt)
Define acceptance ratio r = π(x∗)×g(xt |x∗)

π(xt)×g(x∗|xt)
Define acceptance probability α =min(r,1)
if α > Uniform(0,1) then
xt+1 = x∗

else
xt+1 = xt

end if
end for

tion and illustrates the Metropolis-Hastings sampling procedure. The initial value and
first proposal are both exemplified in the figure 2.1.

Target
Proposal
x0

x*

Figure 2.1: Illustration of target and proposal distribution with initial value and proposal sam-
ple for Metropolis-Hastings.

A second example of an MCMC algorithm is the Gibbs sampler, a common
choice in cases where multivariate target distributions are involved. Let the vector
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x = x1, . . . ,xd ∈ Rd . In Gibbs sampling we split x in two so that x = {xi,x−i}, where
x−i = (x1, . . . ,xi−1,xi+1, . . . ,xd).We have that i= 1, . . . ,d and sample from each condi-
tional density f (xi | x−i). See Algorithm 2 for the structure of the algorithm.

Algorithm 2 The Gibbs sampler
Given initial x= (x1,0, . . . ,xd,0) at t = 0:
for t = 1, ...,T do
Set x1 = x1,(t−1)
for i= 1, . . . ,d do
Generate x∗i,t ∼ f (xi | x−i)
Update xi = x∗i,t

end for
Let xt = (x∗1,t , . . . ,x

∗
d,t))

end for

There are challenges connected toMCMC sampling. One standard issue is the burn-
in-period, which refers to the amount of samples in the beginning of the chain that we
choose to discard. Because of the initial value guess, we may need a certain amount
of time before obtaining “reasonable” proposals. This is solved by selecting a number
of burn-in samples and starting to collect samples only after that period. This clearly
makes the procedure more time-consuming. In addition, MCMC samples are corre-
lated because each proposal is drawn using the current sample. With larger correlation,
the iteration run for reaching the stationary distribution gets longer. A larger correlation
is also connected to a larger variance. The correlated samples therefore increase com-
putation time as well as giving more variation in the samples. This will have a negative
effect on the quality of the samples. The decrease in quality can be found by consid-
ering a measure of how many independent and identically distributed samples that are
needed in order to obtain the same variance as with correlated samples. Moreover, we
would in theory prefer a quite high acceptance probability in the MCMC algorithms.
However, it is common with MCMC that (because of higher correlation) the moves are
small when the acceptance probability is higher (Rizzo, 2007). Issues such as these
that mentioned here inspire the exploration of new and improved numerical methods
for sampling.

2.4 Hamiltonian Monte Carlo

The background of Hamiltonian dynamics originates from the physics genre. Du-
ane et al. (1987) combined Hamiltonian dynamics and MCMC in to hybrid Monte
Carlo. Hybrid Monte Carlo is now more commonly known as Hamiltonian Monte
Carlo (HMC).

HMC is a branch of MCMC. Just like with MCMC, HMC also generates samples
from a distribution where direct sampling is unfeasible. We recall that MCMCmethods
have correlated samples, and that relatively high acceptance rates (for the next state)
are often associated with short moves. This means that many steps are required before
reaching a steady state, which is time consuming. Many of the MCMC algorithms (like
Metropolis-Hastings and Gibbs) use random walk behaviour in the process of reaching
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the target distribution. This can also have a negative effect time wise. HMC diminishes
the correlation between samples and therefore has the possibility to obtain both high
acceptance rates and long moves at the same time (Neal, 2010). Compared to MCMC,
HMC can thus use fewer steps to reach the same state. HMC avoids the random walk
behaviour that is typical for many of the MCMC algorithms because of the way the
HMC algorithm (Algorithm 3) proposes the trajectory of states. All of this can have a
positive effect on the computation time, which decreases when steps are longer without
exploring random walk.

HMC is often visualized as a puck that can slide without friction throughout a sur-
face where the height varies. The state of the system consists of the position and mo-
mentum of the puck, given by two two-dimensional vectors q and p. Furthermore,
there exists potential and kinetic energyU(q) and K(p), that together conserves the to-
tal energy through movement in the system. When Hamiltonian dynamics are applied
outside physics and in the case of HMC, the position vector is the variable that is truly
of interest. The momentum vector can be considered as more of an auxiliary variable.
In the general case, the two vectors q an p are d−dimensional and the system of q and
p is described by the Hamiltonian H(q, p). For change in time, this is described by a
system of differential equations including the partial derivatives of q and p.

The HMC method is distinguished from MCMC methods by the use of potential
and kinetic energy. In addition, the gradient is evaluated in the process of creating
the sample proposal for a new state. In HMC, Hamiltonian dynamics hold important
properties. These are time reversibility and preservation of volume. The importance
and validity of these properties will be explained in section 2.4.2.

The proposal state consists of position q ∈ Rd and momentum p ∈ Rd , where d is
dimension. The change in q and p over time is described by the partial derivatives of
the Hamiltonian and numerical integration in HMC is carried out with the following
system of differential equations:

dqi
dt

=
∂H
∂ pi

, (2.10)

dpi
dt

=−∂H
∂qi

, (2.11)

where i= 1, ...,d. We say that Hamiltonian dynamics are described by the Hamiltonian

H(q, p) =U(q)+K(p), (2.12)

where the potential energy U is defined as minus the log probability density of the
distribution for the position q and the kinetic energy K is defined as

K(p) = pTM−1p/2, (2.13)

whereM is a symmetric, positive-definite matrix (Neal, 2010). In fact, K is the negative
log probability of a multivariate normal distribution (MVN) ∼ MVN(0,M) where M is
the covariance matrix. With this, we can rewrite equations (2.10) and (2.11) so that:

dqi
dt

= [M−1p]i, (2.14)

dpi
dt

=−∂U
∂qi

. (2.15)
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Solving the differential equations is carried out by approximation, making use of a
numerical integration scheme.

2.4.1 Numerical integration schemes

The reason for introducing numerical integration schemes is the need to approximate
the solution of the differential equations in section 2.4. This is done by discretizing
time using the time step ε . A well known approximation method for solving a system
such as equations (2.10)-(2.11) is Euler’s method where the steps are as follows (for
t = 0 and when ∇ represents the gradient):

p(ε) = p(0)− ε∇U(q(0)),
q(ε) = q(0)+ ε p(0).

(2.16)

If repeated, we see that after starting at time zero and states being computed at time ε ,
we can get the states at time 2ε , 3ε and so on. This process can be repeated for L steps.
The Euler’s method easily encounters problems like divergence or long calculation
time. Therefore, an improved version is to prefer, such as a modified version that
uses the updated value p(ε) in stead of p(0) when computing the position variable
q(ε). Because of volume preservation, the problem with divergence decreases for this
updated method (Neal, 2010).

From these simple cases we get to know the structural setup of numerical methods
that are used to solve a system of differential equations. We also see that there are
relatively simple ways to improve a method and increase the accuracy of the proposals,
such as the small modification made to the Euler’s method. This also includes adding
extra partial steps. One such method is the leapfrog method (Neal, 2010). The leapfrog
method is the commonly used numerical integration scheme in HMC sampling and is
set up as follows (details are given in paper 1):

p(ε/2) = p(0)− ε
2

∇U(q(0)),

q(ε) = q(0)+ ε p(ε/2), (2.17)

p(ε) = p(ε/2)− ε
2

∇U(q(ε)).

It is clear that the leapfrog method (2.17) follows the same procedure as we saw for
Euler’s method, but with more updates and partial steps.

The purpose of the numerical integration scheme in HMC is to update the position
(and momentum) variable in time through the use of previous time steps and evalua-
tion of the gradient. With this as a purpose, there is clearly room for alterations and
innovations in the design of the numerical integration methods that are used in HMC.
In paper 1, we compare the performance of the leapfrog method to the performances of
three new numerical schemes that also can be used in the HMC algorithm. These three
new schemes are developed using the splitting method (Blanes et al., 2014).

To explain the splitting method, let (qi, pi)→ (qi+1, pi+1) represent a time step such
that it corresponds to a transformation in the phase space:

(qi+1, pi+1) = ψε(qi, pi), (2.18)
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where the mapping ψ is volume preserving and reversible. Moreover, consider a more
general version of the transformation:

(q∗, p∗) = ψε(qi, pi), (2.19)

where (q∗, p∗) are the proposals and (qi, pi) are the current position and momentum.
With this general transformation, we want to describe a possible transition from a cur-
rent pair of position and momentum to a proposal state. We already know that in
HMC, moving from one state to the next is dependent on using a numerical integration
scheme. We can derive from equation (2.19) that ψ represents such a scheme.

We thereafter want each step of the integration scheme to be defined within ψ . Let
a φ represent each partial time step (for instance the leapfrog method has three partial
time steps). Moreover, let ◦ represent function compositions. This way, the leapfrog
method can be written as

ψε = φB
ε/2 ◦φA

ε ◦φB
ε/2, (2.20)

where each of the three φ refers to one of the three partial time steps of equation (2.17).
Each subscript of φ represents the length of the time step, while superscript A and B
denotes whether the step belongs to an update in the position or the momentum variable
respectively.

Equation (2.20) is specifically defined for the leapfrog method. We can replace
it with a more general expression that represents additional numerical integration
schemes for the HMC algorithm. There are possible variations, as long as the ex-
pression remains palindromic (this means that the expression is the same read forwards
and backwards). Blanes et al. (2014) suggest the following general composition:

ψε = φA
a1ε ◦φB

ε/2 ◦φA
(1−2a1)ε ◦φB

ε/2 ◦φA
a1ε . (2.21)

The reason for focusing on the variation in equation (2.21), is that it is a more general
form of the leapfrog scheme that was represented by (2.20). We see that if a1 = 0,
equation (2.21) reduces to exactly the leapfrog method (2.20). In paper 1 we look at the
development of numerical integration schemes that are determined by different values
of a1 in (2.21). We consider the performance of these different five-step algorithms
and compare them to the leapfrog method. Although the leapfrog method is a three-
step algorithm, it is a special case and originates from the same palindromic expression
(2.21) as the new numerical schemes. In paper 1, we look at three different numerical
schemes that are developed using the splitting method. Evaluation of their performance
in the HMC algorithm reveals that there are more efficient schemes than the standard
leapfrog method.

2.4.2 The Hamiltonian Monte Carlo algorithm

In the HMC algorithm each iteration goes through two steps. First there is a change
in momentum and then a possible change in position and momentum. Let (q∗, p∗) be
the proposed state that is accepted with probability α . The HMC algorithm starts with
randomly drawing a new p value from the Gaussian distribution. The next step is to
obtain the full proposed state, which is done by doing a Metropolis sampling. This is
repeated for L steps, where at last position q is then either accepted or rejected based
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on α . The momentum update is used just for finding α and can be omitted after each
step. Algorithm 3 shows the general HMC procedure.

Algorithm 3 The HMC algorithm
Given current state (qi, pi):
Randomly draw new p from Gaussian distribution
for i= 1, ...,L do
simulate full position variable q using appropriate integrator
simulate full momentum variable p using appropriate integrator

end for
α =min{1,exp[H(qi, pi)−H(q∗, p∗)]}
if α > Uniform(0,1) then
qi+1 = q∗

else
qi+1 = qi

end if

By using the leapfrog method or another appropriate numerical integration scheme, the
HMC algorithm perform a Metropolis update for the current state and we end up with a
trajectory of states that is obtained by the use of Hamiltonian dynamics. Because of the
way that we obtain the trajectory of proposal states we can have long moves and high
acceptance rates at the same time, whereas the random walk behaviour that many of
the MCMC algorithms use to propose states have random direction. This may decrease
computation time for HMC compared to MCMC.

In Algorithm 3, the term appropriate integrator simply refers to an integrator with
step size ε that holds the properties from section 2.4. For obtaining the best results,
the choices of ε and number of steps L are critical. If ε is too large or too small, this
will either lead to small acceptance rates or long computation time, a problem similar
to the problems for MCMC methods that were discussed previously. Also, the trajec-
tory length εL is important, and an uneducated choice of L could lead to exploration
by random walk (Neal, 2010). Originally the values of ε and L are user-specified in the
HMC algorithm. The No-U-Turn sampler (NUTS) (Hoffman and Gelman, 2014) is an
addition to the standard HMC algorithm that adaptively tunes these values. The step
size ε is determined by use of primal-dual averaging. NUTS thereafter eliminates the
need to choose L by introducing a recursive algorithm that explores a wide trajectory
and stops when it is moving backwards, or thus when it is making a u-turn. One reason
why the HMC algorithm has not become more popular can possibly be the user speci-
fied parameters, and the problems they may cause. By including NUTS, the process of
using HMC is simplified and more robust.

In section 2.4 it is mentioned that the Hamiltonian dynamics hold two important
properties. The first is time reversibility. The Metropolis proposal that we have in the
HMC algorithm requires reversibility, because that is how it is ensured that the station-
ary distribution is equal to the target distribution. For HMC, let Tt denote the mapping
from (q, p) at time 0 to (qt , pt) at time t. If we have reversibility in Tt , it means that
T−t must map (qt ,−pt) to (q,−p). By negating the equations (2.10) and (2.11) we
achieve this inverse mapping. The second property is volume preservation. When the
Hamiltonian dynamics are volume preserving, the determinant of the Jacobian (matrix
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of all the first order partial derivatives) of the mapping is equal to one (Beskos et al.,
2013). Without volume preservation, we would need to compute the determinant of
the Jacobian in relation to the change in volume in the acceptance probability in Algo-
rithm 3. Volume preservation is the same as having a vector field with zero divergence
(Neal, 2010). Here, equations (2.10) and (2.11) is the vector field F and we define the
divergence of F as ∇•F . For HMC, this becomes

div F=
d

∑
i=1

[
∂

∂qi
∂

∂ pi
· dqi
dt

dpi
dt

] =
d

∑
i=1

[
∂

∂qi
dqi
dt

+
∂

∂ pi

dpi
dt

] (2.22)

=
d

∑
i=1

[
∂

∂qi
∂H
∂qi

− ∂
∂ pi

∂H
∂qi

] =
d

∑
i=1

[
∂ 2H

∂qi∂ pi
− ∂ 2H

∂ pi∂qi
]

= 0,

and thus we have volume preservation. All the numerical integrations schemes that are
used in the HMC algorithm must hold these properties. The schemes in paper 1 that
are developed from the splitting method fulfill this requirement.

HMC can clearly be an efficient alternative to the standard MCMC methods. How-
ever, there are situations where both HMC and other MCMC methods are time con-
suming and not an optimal choice. This is for example the case for latent variable
models where the joint posterior or likelihood (of latent variables and parameters) is
high-dimensional. Some of these models come with high correlation. For algorithms
such as the Metropolis-Hastings and the Gibbs sampler the model itself may be quite
easy to implement, but the performance is limited (see e.g. Betancourt and Girolami
(2015)). When there is correlation in the model there is a need for many iterations in
order to fully traverse the target distribution. This leads to random walk and very long
computation times. With HMC, the correlation is less of an issue. However, the imple-
mentation of the model is more difficult. As we know fromAlgorithm 3, it requires both
integration of the Hamiltonian and the finding derivatives of the target. Although there
are suggestions for how to overcome these issues (see e.g. the programming language
Stan (Carpenter et al., 2017)), it is also possible to look outside the MCMC framework
and find numerical methods that are appropriate and fast for the latent variable models
in question.

2.5 Integrated nested Laplace approximation

INLA is implemented in the R package INLA (from now on: R-INLA) as a method
for doing Bayesian inference with LGMs (Rue et al., 2009). These models have a
latent field that is Gaussian. Because of properties belonging to certain latent fields that
will be discussed later in this section, INLA is regarded as a computationally effective
alternative in Bayesian inference compared with other numerical methods.

The LGMs are models where MCMC simulation has been a popular choice for
approximation method. However, there are several disadvantages to MCMC in these
situations. The elements of the latent field are dependent on the hyperparameters of
the model. This is a well-known computational issue with MCMC and using MCMC
on complex latent variable models is known to be very time consuming. Several of the
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MCMC algorithms have been tested with LGMs, but issues remain nonetheless (see e.g.
Liu (2008), Robert and Casella (2013) and Gamerman (1997)). INLA, however, offers
numerical calculation of the posterior and is arranged to perform well for LGMs. For
a high-dimensional joint posterior, INLA will be significantly faster than the MCMC
simulations.

First, consider the typical hierarchical form of an LGM:

yi | x,θ ∼ π(yi | ηi,θ), (2.23)

ηi = ∑
j
ci jx j, (2.24)

x | θ ∼ MVN(0,Σ), (2.25)
θ ∼ π(θ), (2.26)

where x is a latent field and θ and y as before are parameter vector and data vector
respectively. The linear predictor η has covariate values ci j. We see from (2.25) that the
latent field has a covariance matrix Σ. This is a dense matrix. The latent field x is also a
Gaussian field (GF) if it is jointly distributed with a multivariate Gaussian distribution
with a zero mean vector and covariance matrix Σ, which is the case here. Even though
GFs are quite common, they are also computationally demanding to work with. This
mainly has to do with the dense covariance matrix. Performing factorizations on Σ
(such as Cholesky decomposition) comes with a high cost.

INLA uses properties of Gaussian Markov random fields (GMRFs). For the GF x
to be a GMRF it must hold two essential properties that both are assumed for INLA
(Rue et al., 2009). First, there must be conditional independence in x. This means that
x must hold the pairwise Markov property. For i ̸= j, this means that the variables xi
and x j are independent conditional on all the other variables. The second property is
that the number of hyperparameters is small. When this holds, the GF x is a GMRF
with precision matrix Q and the conditional independence also ensures that Q is sparse
(Rue and Held, 2005). There is a relationship between the covariance matrix and the
precision matrix such that

Σ = Q−1. (2.27)

Clearly, we prefer numerical computation with sparse matrices rather than dense matri-
ces. INLA avoids the dense covariance matrix completely because of the relationship
(2.27) and this is a fundamental part of its efficiency. In section 3.2, the efficiency of
using GMRFs and the precision matrix is made use of in the SPDE approach for spa-
tial statistics. This approach, which creates a link between GFs and GMRFs and which
is implemented in R-INLA, is relevant for paper 2 and paper 3. For the actual approx-
imation of the marginal, we have not used INLA or R-INLA (see section 2.6). The
approximation methods of INLA are therefore just mentioned briefly below.

Recall from section 1.1 that we have to use numerical approximation when we are
interested in finding the posterior (1.3). With INLA we want to find the marginal pos-
teriors for the latent field, which are:

π(θk | y) =
∫

π(θ | y)dθ−k (2.28)

and
π(x j | y) =

∫
π(x j | θ ,y)π(θ | y)dθ . (2.29)
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We see that the posterior marginals are nested, and that we need to find π(θ | y) and
π(x j | θ ,y). The former of these two is the posterior and is approximated as

π̃(θ | y) ∝
π(y | x,θ)π(x | θ)π(θ)

π̃(x | θ ,y)
|x=x∗(θ),

where x∗(θ) is the mode and π̃(x | θ ,y) is the Laplace approximation (see section 2.6)
for the latent field full conditional. The other marginal posterior, π(x j | θ ,y), is found
using yet another Laplace approximation.

2.6 The Template Model Builder

In paper 2 and paper 3, the use of GMRFs and the precision matrix is essential. Even
though INLA gives a methodology for approximating marginal posteriors, it has not
been applied in these papers. Instead, we have used AD and Laplace approxima-
tion combined in the R package TMB (Kristensen et al., 2016) for optimization of the
marginal likelihood. TMB is used for complex latent variable models. In practice, the
user specifies a joint log-likelihood in C++, while the rest of the implementations are
carried out in R.

TMB operates in the following manner: we use MLE for the Laplace approximation
of the marginal likelihood, while the latent variables are integrated out automatically
using AD. AD is in short a set of computer techniques that can find the derivative of a
function. Any complicated function consists of a combination of simple mathematical
operations such as subtraction, division and logarithm. This also means that the func-
tion can be arranged into an sequence of functions of simple operations. Each of these
will have a simple derivative. By using the chain rule, a computer program can find the
derivative of a complex function automatically. The derivatives we obtain are used in
the Laplace approximation of the marginal likelihood. Calculation of these derivatives
may be very tedious for the user without AD, which is the case for INLA. The opti-
mization of the Laplace approximation is carried out in R. TMB is relevant for several
types of models, but in paper 2 and paper 3 we focus on GMRF models and make use
of the sparse precision matrix.

The Laplace approximation is a special form of Taylor series expansion where we
use the first three terms. Let us first consider a simple case where we approximate
the logarithm (for simplicity) of a function f (x) around its global maximum x0. The
expansion is written as

log f (x)≈ log f (x0)+
∂ log f (x0)

∂x
(x− x0)+

∂ 2 log f (x0)
2∂x2

(x− x0)2. (2.30)

The first order derivative of log f in the maximum x0 is equal to zero. The second order
derivative of log f in x0 is negative. Inserting this, the new expression becomes

log f (x)≈ log f (x0)−
1
2
| ∂ 2

∂x2
log f (x0)|(x− x0)2. (2.31)

Define σ̂2 = 1

| ∂2 log f (x0)
∂x |

. By inserting σ̂2 and taking the integral and exponential on both
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sides, we get the following new expression:∫
f (x)dx≈

∫
exp(log f (x0)−

1
2σ̂2 (x− x0)2)dx

= c
∫

exp(− 1
2σ̂2 (x− x0)2)dx,

(2.32)

where c is a constant. We now see that the final expression in equation (2.32) is similar
to the known integral of a normal distribution N(x0, σ̂2), and by using the appropriate
normalizing factor this can thus be used as an approximation. This is a simple introduc-
tion to the idea behind the Laplace approximation. However, the idea can be extended
to approximating the marginal likelihood of the latent variable models that we use in
TMB. In fact, the sparse precision matrix of the GMRF models enables the Laplace ap-
proximation for models with very many latent variables (Kristensen et al., 2016).

Let us for now redefine x as the latent variables x ∈Rn. If we then let f (x,θ) be the
negative log-likelihood, this is the function that is specified by the user and written out
in C++. We want to use MLE and Laplace approximation for the marginal likelihood
L(θ). Here, we therefore define the MLE for θ as the one that maximizes L(θ) where

L(θ) =
∫
Rn

exp(− f (x,θ))dx. (2.33)

Let thus x̂(θ) define the value that minimizes f (x,θ) with respect to x. If we now
continue by doing the Taylor expansion around x̂(θ), we will find that equation (2.33)
is starting to look similar to a version of (2.32). Moreover, we define the Hessian of
f (x,θ)with respect to x and calculated in the minimizing value x̂(θ) asH(θ). Inserting
the Taylor expansion and the Hessian gives the equation

L(θ)≈C
∫

exp{−1
2
[x− x̂(θ)]TH(θ)[x− x̂(θ)]}dx, (2.34)

where C is a constant. Equation (2.34) now is similar to the MVN distribution. With
the the appropriate normalizing factor, we get that the Laplace approximation for L(θ)
is defined as

L∗(θ) = (2π)n/2|H(θ)|−
1
2 exp(− f (x̂,θ)). (2.35)

The final step is to find the estimate of θ that minimizes the negative logarithm of
L∗(θ). While TMB returns the negative log-likelihood, this is done with an appropriate
optimizer in R.
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Chapter 3

Spatial modeling

3.1 Spatial statistics

The field of spatial statistics includes all areas where there exist a spatial relationship
in the data and where this relationship is used in the statistical calculations. Based
on this, we can define spatial data as data that in some way are based on location
and where the data points can be mapped in geographical relation to each other. The
study of spatial data is common in very many academic areas, such as epidemiology
and econometrics. The interest lies in gaining insight in factors that are affected or
determined by spatial location. A famous example in spatial epidemiology is one that
goes back to 1854 and Dr. John Snow’s theory that cholera was transmitted through
the drinking water. Another example from 1948 is Blum (1948) who saw sunlight as a
factor in skin cancer. In spatial epidemiology, the use of statistical models can among
other things enable research on risks for getting a certain disease (or similar outcome)
or the probability of how and where a disease is spreading. Such knowledge, using
estimation and prediction, gives the opportunity of taking necessary action or preparing
for possible demanding outcomes.

We can typically distinguish between three types of spatial data. These are:

• Area data.

• Geostatistical data.

• Spatial point patters.

Consider area data first. If we let D be a domain ∈ Rd , then area data is found in the
cases when the data is spread in a closed region within D. This region is again divided
in several parts (based on smaller regions or similar systems) that are subject for the
spatial study. Typically, neighboring structures and disease mapping (discrete data) are
common here (Blangiardo and Cameletti, 2015).

Geostatistical data (also known as point-referenced data) are the data where each
observation is connected to one specific location, for instance coordinates belonging to
certain houses or all hospitals within a region.

Finally, spatial point patterns refers to the cases where the locations (within a re-
gion) are random, based on the event taking place or not taking place (Blangiardo and
Cameletti, 2015).
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3.1.1 Spatial stochastic processes

A stochastic process is defined as a collection of random variables

{Z(t) | t ∈ T}, (3.1)

indexed by time t in the set T . Intuitively, Z(t) can be seen as the state of the process
at time t and is a random variable holding a certain probability distribution. The whole
collection of these states is what we call the stochastic process, for both discrete and
continuous cases. The state space of the process is the set of possible values for each
state in the process.

We can turn to spatial modeling when our data includes any type of the geographical
information that is presented in section 3.1. In other words, this means that there is
some sort of location s= s1, . . . ,sn, connected to each observation and that the different
locations are in geographical reference to each other (sn being the final location). We
can then let the spatial data be represented by a stochastic process

U(s) = {u(s), s ∈ D}, (3.2)

where D is still a domain (Blangiardo and Cameletti, 2015).
In the case of the three different types of spatial data that were established in section

3.1, we have for area data that {u(s)} represent aggregate data within the boundaries
of area s ∈ D. For geostatistical data, the process {u(s)} represent outcomes at given
locations. Here, s is normally a coordinate vector. When data come as spatial point
patterns, {u(s)} define if an event has happened or not. In such cases, all the values of
s are random.

3.2 The stochastic partial differential equations approach

As mentioned in Chapter 1, the MCMC simulation of the integral that gives the the
marginal distribution (1.4) in the posterior distribution can be extremely demanding
computationally. The same holds for complex latent variable models. Methods that
are efficient in overcoming these obstacles are therefore always of interest. Section
2.5 and 2.6 explain how we can use different numerical methods to find good and fast
approximations to marginal posteriors and likelihoods.

GFs are very important in spatial statistics. However, they are also linked to com-
putational issues. This comes from the fact that the GF has a dense covariance matrix
Σ. To perform operations on Σ, like finding the inverse, there is a great computational
cost. In section 2.5 we saw that having a latent field that is a GMRF instead of a GF
is a huge advantage because of the sparse precision matrix connected to it. In this sec-
tion, we will discuss the SPDE approach (Lindgren et al., 2011). This approach can
be combined with both INLA and TMB by utilizing a link between GFs and GMRFs.
The SPDE approach proposes to make a GMRF representation of the GF that has a cer-
tain SPDE as its solution. In paper 2 and paper 3, we use the SPDE approach to get
GMRF representations of the latent fields. Then, we evaluate the log-likelihood with
the methodology from TMB that is explained in section 2.6.

In statistics, the variance tells us how a variable varies. The covariance is seen as a
measure of the relationship between two variables and how changes that occur in one
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variable relate to changes that occur in the other one. In other words, the covariance
show how the two vary together. The covariance function describes the spatial covari-
ance of a stochastic process or GF. With the covariance function, we get the covariance
of the process at every two locations. The covariance function can be stationary, which
means that we only consider the position that two locations have relative (not absolute)
to each other. The covariance function can also either be non-isotropic or isotropic, re-
ferring to whether or not the covariance is dependent on spatial direction. This means
that for an isotropic covariance function, we consider only the absolute value of the
distance between the two locations.

The Matérn covariance function is a stationary and isotropic covariance function
that provides the covariance between spatial coordinates. The Matérn covariance func-
tion is given as

Cov(d) =
σ2
u

Γ(λ )2λ−1 (κd)
λKλ (κd), (3.3)

σ2
u =

Γ(λ )
λ (α)(4π)r/2κ2λ τ2

, (3.4)

where d is the absolute distance between two locations, K is the modified Bessel func-
tion of order λ , κ is a scaling parameter and the parameter σ2

u refers to the marginal
variance of the spatial random effects. Parameter τ controls the marginal variance. We
have that the default value of λ = 1 and that α is determined by α = λ + r/2 (Blan-
giardo and Cameletti, 2015). Because r is the dimension of the location space, we are
only interested in r = 2 in paper 2 and paper 3. This means that α = 2 in these cases.

The starting point of the whole process is the following SPDE:

(κ2−∆)α/2(τu(s)) = Ω(s), (3.5)

where s ∈R2, ∆ is the Laplacian, α controls smoothness and Ω(s) is a Gaussian spatial
white noise process. Here, the GF u with Matérn covariance is a solution to the SPDE
(3.5).

Following the SPDE approach, we first construct an irregular grid of triangles. Each
triangle has three vertices (i.e. edges) and every two triangles meet in one or zero
vertices. We want most of the vertices near where the observations are located, and
then have supporting vertices added around them. Thereafter, the aim is to construct
a GMRF representation of the GF on the grid. To do this, we begin with defining the
weak solution of the SPDE (3.5) as∫

ζ j(s)(κ2−∆)α/2τu(s)ds d
=

∫
ζ j(s)Ω(s)ds, (3.6)

where d
= means equal in distribution. This should hold for every finite set of test func-

tions {ζ j(s)} when j = 1, . . . ,m (Lindgren et al., 2011).
With the weak solution above, we want to use the finite element method to represent

it. This is done by letting

u(s) =
N

∑
n=1

an(s)wn, (3.7)
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where {an} are basis functions, {wn} are Gaussian weights with mean zero and N is
the number of vertices on the irregular grid. Moreover, the basis functions are such that
an = 1 at vertex n and 0 otherwise.

By letting m = N, we move forward in the solution by finding the distribution for
{wn} that solves (3.6) for only a finite set of test functions. For our case α = 2, we
let ζn = an. This is the approximation to the solution of the SPDE. A main result of
the SPDE approach is to use Neumann boundary conditions (here: the normal deriva-
tive is zero at the surface) to find the precision matrix Q for the Gaussian weights {wn}
(Lindgren et al., 2011). The reason why this is so valuable, is that we now have u(s)
represented as a GMRF with the inverse of the sparse precision matrix Q−1. Like for
INLA in section 2.5, this means that by using the SPDE approach we avoid compu-
tations with Σ completely. This is very valuable, because the SPDE approach can be
combined with other numerical methods such as TMB. In the SPDE approach,Q consists
of three matrices and is defined as

τ2(Kκ2C−1Kκ2), (3.8)

where (Kκ2)i j = κ2Ci j+Gi j. If we define the inner product < f ,g > as
∫
f (s)g(s)ds,

then the matrix C consists of inner products of the basis functions. The matrix G con-
sists of inner products of the gradients of the basis functions.

The SPDE approach is implemented in the R-INLA package. The triangulated grid
is called a mesh and can be created simply based on a set of locations (coordinates)
provided by the user. As discussed, the coordinates are placed in proper reference
to each other on vertices inside the grid, together with additional supporting vertices.
Together, this forms the mesh. Figure 3.1 shows an example of the structure of a
triangulated mesh. After creating the mesh, its structure is used in the process of finding
the approximate solution to the SPDE (3.5) and thereby the inverse of the precision
matrix. Because the mesh by construction holds a GMRF representation of the field,
we can extract the three matrices in (3.8) from it.

We know that working with a GMRF with a sparse precision matrix rather than a
GF with a dense covariance matrix is very beneficial computationally. By introducing
the SPDE approach, we get an efficient way of representing GFs as GMRFs and the
covariance matrix Σ as Q−1. Merging the SPDE approach with methodologies such as
TMB can therefore be very advantageous.

3.3 The spatial and spatio-temporal models

In paper 2 and paper 3 we find spatial and spatio-temporal models. The first model
considers birth weight and the spatial correlation between hospitals. The second model
covers caesarean section (CS) and CS rates in municipalities over a given time period,
in addition to spatial correlation between the municipalities. The third model is a joint
model between CS and severe maternal hemorrhage (SMH). This model is used to
evaluate the correlation between the two responses. These models, that all contain
spatial random effects, are built up in a hierarchical manner.

In paper 2, we use a normally distributed spatial model for birth weight yi=ηi j+εi j,
where j is hospital and i represent each individual. Then, η is the mean and is equal to

ηi j = XT
i β +u j+ v j. (3.9)
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Figure 3.1: Example of a mesh constructed for a given set of coordinates (blue). The mesh is
created using R-INLA function: inla.mesh.2d() with parameter settings cutoff = 0.05 and
max.edge = c(0.05,0.2).

While X and β are covariate vector and covariate effect vector, the hospital effect v j
has a normal distribution with mean 0 and variance σ2

v . The spatial random effect u has
a MVN distribution with mean vector (0, . . . ,0) and covariance matrix Σ.

In paper 3, there are two spatio-temporal models. We let t denote the time, j rep-
resent the municipalities and i the individual. The model for CS, yi jt , is Bernoulli
distributed with probability pi jt . This probability is connected to a linear predictor ηi jt
via a logit link function

log
( pi jt
1− pi jt

)
= ηi jt = XT

i β +u jt +ωt, (3.10)

where X and β are covariate vector and covariate effects vector respectively. The spa-
tial random effect u has a MVN distribution with mean vector (0, . . . ,0) and covariance
matrix Σ and also, u jt is specific to time and municipality and follows an AR(1) pro-
cess. The parameter ω is a linear time trend. The joint model between CS and SMH
is bivariate Bernoulli with probabilities p(1)i jt and p(2)i jt . The CS probability p(1)i jt is con-

nected to a linear predictor η(1)
i jt via the logit link function

log
( p(1)i jt

1− p(1)i jt

)
= η(1)

i jt = xTi β (1)+u(1)jt +ω(1)t+u(3)jt , (3.11)
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and the SMH probability p(2)i jt is connected to η(2)
i jt via a logit link

log
( p(2)i jt

1− p(2)i jt

)
= η(2)

i jt = xTi β (2)+u(2)jt +ω(2)t+ξu(3)jt . (3.12)

When k= 1,2, β (k) and ω(k) are covariate vectors and linear time effects. Let the three
spatial random effects be denoted u(1),u(2) and u(3), where the shared spatial random
effect is connected by ξ . Then, parameter ξ plays a role in the model correlation
corr(u(1)+u(3),u(2)+ξu(3)).

All of the models above are examples of latent variable models where the latent field
is distributed with a dense covariance matrix Σ. As explained earlier, it would be likely
to experience computational issues with MCMC methods for models like this. With
the SPDE approach we can use GMRFs with a sparse precision matrix for a latent field
u. With TMB we can find approximations for the MLE values of the model parameters.
For these latent variable models, this gives a huge computational advantage, especially
for high-dimensional cases.

3.4 Additional results

This section covers additional results related to the models in paper 3. Central elements
and ideas from paper 3 will be considered known here.

The CS model in paper 3 with linear predictor (3.10) includes two time effects.
The first is the linear time trend ωt, which is positive and independent of municipality.
The second is u jt , a spatial random effect that follows an AR(1) process and that has
separate values for each pair of year and municipality (this means that every individual
in municipality j and year t share u jt). If there is a linear time trend, it will be present
in ω . If there is a time trend that is non-linear, it should be identified in the AR(1)
process. Recall that the process is defined as

u jt = αu j,t−1+ ε jt . (3.13)

Figure 3.2 shows the the development of u jt from year 2001 to year 2014 for four large
municipalities in Norway. From paper 3 we know that the autocorrelation in the AR(1)
function α = 0.92. This value of α indicates that we do not expect to see a very large
variation in u jt , especially for the municipalities that are large such as those in Figure
3.2. Some of the very small municipalities (that is: very small in population size) are
much more prone to experience a year with an unusual high or low CS rate. We see in
Figure 3.2 that there is just small variation in u jt for each of the four municipalities and
no clear trends to explain.

The second addition is to explore the sensitivity of the CS model. This can be done
by altering the value of u j0 to ensure a stationary AR(1) process for the spatial random
effects. The process is defined in (3.13), and we can see from it that the variance for
the GMRF process becomes (1−α2)Q (where Q as we recall is the precision matrix).
For the first year of the process, each u j0 has to be assigned a value. For the CS model
in paper 3, we started the process simply with variance Q for the GMRF. Now, we start
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Figure 3.2: Spatial random effect u jt for a selection of municipalities from year 2001 to year
2014.

the process with variance (1−α2)Q for u j0 as well. This gives a stationary variance
throughout the process. We now call this model the stationary model.

Other than the changing starting point, the stationary model is fitted in the exact
same way as for the CS model in paper 3. The new estimates for the model parame-
ters are found in Table 3.1. Table 3.1 show some differences in results compared to the

Parameter Value SD

σu 0.087096 0.006453
α 0.940640 0.010768
ω 0.022460 0.004798
κ 2.2× e−5 2.0× e−6

Derived parameter
ρ 130.366 141.914

Table 3.1: Estimated parameter values with standard errors for spatial and time parameters for
stationary model. The value of ρ is given in kilometers.

results for the corresponding CS model in paper 3. The estimated values of the linear
time trend ω , the scaling parameter κ and marginal variance σu are somewhat smaller
in the stationary case. The change in κ also brings a small increase in ρ . The esti-
mated value of α (which was already high) has increased slightly. The new map of
the estimated CS rates for year 2001 and year 2014 is found in Figure 3.3 The over-
all impression of the maps in Figure 3.3 is that there is much similarity to the map in
paper 3. However, there are also some clear differences. In year 2001, we see that Fig-
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Figure 3.3: Estimated CS rates in Norway by municipality for year 2001 and year 2014.

ure 3.3 show a somewhat higher estimated CS rate in the east and middle of the map,
while having a somewhat smaller CS rate in the west. For year 2014, it is harder to
spot any differences. This is expected, because we have changed the variance of the
first year spatial random effects. The stationarity could easily be implemented for the
joint CS and SMH model in paper 3 as well. However, it has not been executed in this
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case because the fitting of the joint model is particularly time consuming. In addition,
the small differences in the results for the stationary CS model and original CS model
indicate that it would have little significance.

3.5 Health registry data

For the spatial models that are used in two of the papers that are part of this thesis, reg-
istry data from a Norwegian health registry have been used. In Norway there exist sev-
eral different health registries. Among others, there is a birth registry, a cardiovascular
disease registry and a prescription registry. The main objectives of the national reg-
istries are to analyze data, to enable research and to contribute in improving healthcare.
Based on the interest of each separate registry, various information about individuals is
collected and stored.

Some of the data the registries collect are both sensitive and identifiable. This means
that the data itself makes it possible to identify individuals in a data set, for instance
with personal identification number or a collection of information that is sufficient to
recognize an individual. Moreover, this also applies to the instances where the data
itself is considered to be sensitive information. Examples are race, religion and certain
health related data. This clearly makes the way we handle the registry data very crucial,
and there are several ways to tackle the issue. Certain registries require patient consent,
which means that data will be collected only for those individuals who agree to be
included. Other registries are allowed to collect data based on compulsory notification.
This means that the data is collected for every relevant incident.

TheMedical Birth Registry of Norway (MBRN) is an example of a registry that uses
compulsory notification. All maternity units report information on the same variables,
such as complications during pregnancy and labour and mother’s health, to the registry.
The MBRN also stores personal identification numbers. Individuals like parents, child
and siblings are linked within the registry. The MBRN was founded in 1967 and now
contains information on around 3 million births (Norwegian Institute of Public Health,
2016). Both the data about birth weight, and the data about CS and SMH are collected
from the MBRN, and thus paper 2 and paper 3 both contain results obtained from
accessing these data. The MBRN has given access to two different data sets, but they
contain a lot of similar information. However, the birth weight data set is considered
less sensitive than the CS data set, because while the former only contains the hospital
where the birth takes place, the latter also includes the municipality where the birth
mother lives.

Registry data is accessible to the public and to researchers in various forms. Vari-
ables that makes the data identifiable can be recoded so that only those with the encryp-
tion key will be able to see the true value. This is for instance done with identification
numbers. However, even though identification might not be possible directly, the data
can still be considered sensitive. It is always crucial that the data is stored in ways that
are secure. For researchers who use data from the Norwegian health registries there
are several alternatives, based on how sensitive the data they request are considered to
be. An easy first alternative is to use a data set that only contains variables that has the
appropriate level of anonymity, meaning that it is impossible to identify an individual
based on information that is found in the data set. In these cases, the data is prepared
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by the registry and sent to the researcher. The only involvement of the data owners is
that they will inspect the article before you can publish anything containing analysis of
the data. This is the case for the data in paper 2. However, it is sometimes necessary
to acquire data that contains more details and that cannot be made unidentifiable. In
these cases, the data will not be given to the researcher to use on a personal computer.
Instead, it is necessary to use a secure server with a two factor authentication proce-
dure. The data is stored on this server, and all work that requires using the data must be
carried out on the server. Within the server, there is access to all the programs you nor-
mally use for working with health registry data like R and SPSS. In paper 3 the data is
considered sensitive because, among other things, the information that gives the loca-
tion of each individual is so accurate that it in combination with other variables makes
some of the data identifiable. Therefore, all results in paper 3 have been obtained on a
secure server.

The necessity of handling health registry data with care is explained in the previ-
ous paragraph. However, this caution typically leads to tedious processes for accessing
the sensitive data. Because of the need for numerous applications and approvals, re-
searchers often are hesitant to enter the process. To simplify this practice, a national
collaboration was the startup of the Health Registries for Research (HRR). They want
to meet the needs of the research community by offering easier access to data, statis-
tical support and secure servers (HRR, 2018). For instance, the HRR has developed a
metadata database (containing no sensitive data) that gives an outline of the different
registries and their content, and a possibility to download some data for testing pur-
poses. Solutions like this makes it easier to test the data you are interested in. One
purpose of registry data, is to enable research. If the process of acquiring data is too
demanding it will lead to fewer research projects and fewer relevant results. Therefore,
the HRR and similar initiatives hold an important task in making health registry data
more accessible.
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Summary of papers

4.1 Summary of Paper 1: ”On the application of improved symplectic
integrators in Hamiltonian Monte Carlo”

Janne Mannseth, Tore Selland Kleppe and Hans Julius Skaug. "On the application
of improved symplectic integrators in Hamiltonian Monte Carlo." Communications in
Statistics - Simulation and Computation (2017).

This paper evaluates how the leapfrog method, the commonly used numerical inte-
gration scheme in Hamiltonian Monte Carlo (HMC), performs compared to a selection
of new integrations schemes.

HMC is a Markov chain Monte Carlo (MCMC) method. We go through the impor-
tant steps of how to use Hamiltonian dynamics that originate from physics to obtain
the HMC method. Using HMC, which requires two tuning parameters for the leapfrog
method (step size ε and number of steps L), gives potential of outperforming standard
MCMC methods.

Blanes et al. (2014) proposes a method for developing new numerical integration
schemes to be used in HMC. These schemes could be more efficient than the leapfrog
method. The particular schemes that are considered in paper 1 have the same under-
lying properties as the leapfrog method, but with more partial steps and thus different
intervals between the time steps. Using this approach, paper 1 contains the develop-
ment of three new schemes.

Using a standard Gaussian d−dimensional model, the efficiency of the four numer-
ical schemes is compared. One scheme especially stands out and is able to reach a
high expected acceptance probability using only approximately 1

9 of the steps required
when using the leapfrog method. The two other new methods also clearly exceed the
performance of the leapfrog method for the standard Gaussian model.

As the first results only hold for the specific Gaussian case, paper 1 also consid-
ers a second approach. By introducing the No-U-Turn Sampler (NUTS) (Hoffman and
Gelman, 2014), the need for user specified tuning parameters disappears. This sam-
pler contains methods for tuning L and ε and enables the use of new models with the
numerical integration schemes.

Using NUTS and data from Girolami and Calderhead (2011), the four schemes are
compared using efficient sample size (ESS) per CPU time as a measure, both for a lo-
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gistic regression model and a multivariate student t distribution. For the logistic model,
all the schemes developed using the Blanes et al. (2014) method have advantage over
the leapfrog method. For the student t model, the new schemes mostly obtain higher
ESS and step size than the leapfrog method. Still, the results of ESS per CPU time
are more nuanced, perhaps because of cost related to the increased number of gradient
evaluations for the new methods. However, one of the new methods still outperforms
the leapfrog method as dimension increases.

4.2 Summary of Paper 2: ”Robustness of the SPDE approximation
under short range spatial correlation”

Janne Mannseth, Geir Drage Berentsen and Hans Julius Skaug.

In paper 2, we evaluate short-range spatial correlation. The purpose of this paper is
to show the behaviour of the stochastic partial differential equations (SPDE) approach
when the data have little or no spatial correlation.

This paper uses data from the Medical Birth Registry of Norway, more specifically
births that have been registered at a Norwegian hospital. The response, birth weight,
is approximately normally distributed. Moreover, the model includes random effects.
These effects are the spatial random effect u and the hospital effect, v. The spatial
information available for the data is the coordinates of the hospital at which the birth
took place.

The spatial effect is distributed with a multivariate normal distribution and a spa-
tially structured covariance matrix Σ. The calculation of Σ is computationally difficult.

Two approaches are considered in this paper. The first is the SPDE approach. Spa-
tial data can be represented as spatial processes and these processes are Gaussian fields
(GFs) (Blangiardo and Cameletti, 2015). The issue with the use of GFs, is that it re-
quires inverting the large dense covariance matrix Σ . It is as a proposed solution to
this problem that the SPDE approach is so relevant. It instead uses a sparse precision
matrix of which the inverse is seen as a representation of Σ. The SPDE approach is
implemented in the R package R-INLA.

These specific data about birth weight include information on location down to the
level of hospital. In Norway there is mostly just one hospital in each city, which means
that nearly all inhabitants of this city will give birth in the same hospital. Moreover,
birth weight is not expected to vary geographically within Norway. Because of this,
the spatial correlation in the model is expected to be small. In paper 2, we find that the
SPDE approach yields inaccurate results when the spatial correlation is close to zero.
We compare the SPDE approach with the results that come from including the exact
covariance matrix in the model. This is a possibility for these data because the dimen-
sion of Σ (which is based on the number of hospitals) allowed it to be inverted without
being too computationally demanding. Comparison of the two approaches gives that
the SPDE approach differs quite much from the exact case for certain parameter esti-
mates, especially in the marginal variance of the spatial random effect. It also seems
that the SPDE approach experiences aliasing in the variance of the hospital effect and
random effect. This means that it is random if the variance is put in u, v or a mixture of
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both of them when there is short-range spatial correlation.

4.3 Summary of Paper 3: “Joint modeling of Caesarean section
and severe maternal hemorrhage using spatio-temporal Gaus-
sian random fields”

Janne Mannseth, Geir Drage Berentsen, Hans Julius Skaug and Dag Moster.

In paper 3, we consider spatial correlation for Caesarean section (CS) between mu-
nicipalities. We also consider the relationship between CS and a medically associated
outcome, severe maternal hemorrhage (SMH). The data comes from the Medical Birth
Registry of Norway.

The SPDE approach uses a link between GFs and Gaussian Markov random fields
(GMRFs). GMRFs have great computational advantages. We make use of the SPDE
approach (Lindgren et al., 2011) to enable computation with GMRFs and the sparse
precision matrix Q instead of GFs and the covariance matrix Σ. We use TMB to imple-
ment the likelihood. TMB is based on a method that uses Laplace approximation for the
marginal likelihood, where automatic differentiation is used in the Laplace approxima-
tion. Finally, maximum likelihood estimation is used to find the parameter estimates.

The first model is a Bernoulli distributed model for CS. We know that the CS rates
vary between hospitals in Norway. Using the CS model, we get estimates of the co-
variate effects and the linear time trend. We find that the linear time trend is positive
(which is expected). In addition, the CS model includes a spatial random effect fol-
lowing an AR(1) process. These are used to find the estimated CS rates for each pair
of year and municipality, which means that every individual in the same year and mu-
nicipality share the same CS rate. We also estimate the spatial correlation between the
municipalities. We use a range measure that gives the radius at which the spatial cor-
relation is going below 0.1. For the CS model, this radius is large enough to cover
multiple municipalities. We find that there is spatial correlation, and that the CS rates
are somewhat clustered with geographical location.

The second model is a joint bivariate Bernoulli model for the two responses CS
and SMH. This model has many similarities to the CS model, and each response has
its own spatial random effect that follow an AR(1) process. In addition, a new spatial
random effect that is shared between CS and SMH is added to the model. We estimate
the model correlation, and find that it is very small. The joint model is set up to work
for any Bernoulli response that is medically associated with CS, but the optimization
of the joint model is very time consuming. This makes it more difficult to test many
different variations of the optimization, such as different initial values or even another
second response.
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Chapter 5

Errata

Below follows a list of errata.

• p.6: "a stationary distribution is a probability distribution that does not change as
time changes" is changed to "a stationary distribution is a probability distribution
that does not change in time".

• p.6: "the same goes for reversibility, which means that there exist a function h that
fulfills h(x)p(x,y) = h(y)p(y,x)" is changed to "the same goes for reversibility,
which means that there exist a function π that fulfills π(x)p(x,y) = π(y)p(y,x)".

• p.9: "Hybrid Monte Carlo is now more commonly known as HMC" is changed
to "Hybrid Monte Carlo is now more commonly known as Hamiltonian Monte
Carlo (HMC)".

• p.13: "see e.g. the programming language Stan (Carpenter et al., 2017)" is
changed to "(see e.g. the programming language Stan (Carpenter et al., 2017))".

• p.16: "The former of these two is the posterior and is defined as π(θ | y) ∝
π(y|x,θ)π(x|θ)π(θ)

π̃(x|θ ,y) |x=x∗(θ)" is changed to "The former of these two is the posterior

and is approximated as π̃(θ | y) ∝ π(y|x,θ)π(x|θ)π(θ)
π̃(x|θ ,y) |x=x∗(θ)".

• p.17: "If we then let f (x,θ) be the joint log-likelihood" is changed to "If we then
let f (x,θ) be the negative joint log-likelihood".

• p.21: "This means that for an isotropic covariance function, we consider only the
absolute value of the position that two locations have relative to each other" is
changed to "This means that for an isotropic covariance function, we consider
only the absolute value of the distance between the two locations".

• p.21: "(Kκ2) = κ2Ci j+Gi j" is changed to "(Kκ2)i j = κ2Ci j+Gi j".

• p.30: "The response, birth weight, is normally distributed" is changed to "The
response, birth weight, is approximately normally distributed".
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