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Scientific environment 

This thesis uses agent-based modeling to simulate fish disease dynamics to analyze and predict risks, 

and to support design policies for aquaculture systems. 

This doctoral work has been performed in collaboration between the Faculty of Engineering and 

Natural sciences, the Norwegian University of Science and Technology in Aalesund (NTNU), and 

the Department of Geography, University of Bergen (UiB), under the supervision of Professor. Pål I. 

Davidsen (UiB) as main supervisor and under the co-supervision of Professor Harald Yndestad 

(NTNU).  
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Preface 

This thesis is submitted to the University of Bergen, Bergen, Norway, for partial fulfillment of the 

requirements for the degree of philosophiae doctor. 

The research for this thesis began in 2012 as a part of Virtuelle Møre project (2006 – 2014) at 

Aalesund Unversity College, Aalesund. The purpose was to develop flexible, self-adaptive agent-

based models for simulation of complex systems. 

In 2013, I started to develop agent-based models to identify transmission patterns of fish diseases 

in marine fish farming in Norway as a case study. I found that agent-based modeling is a 

powerful simulation technique to simulate complex systems. I compared agent-based method with 

statistical method that has been used by Dr. Anne Stene in her research about transmission of 

pancreas disease in marina salmon farming in Norway at Aalesund University College.  

I started with simple models to test the ideas, and then I added more complexity to develop a model 

that can be used in analysis, prediction and managements. The results were presented in different 

international conferences and journals.  
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Abstract 

Background: Norwegian fish-farming industry is an important industry, rapidly growing, and facing 

significant challenges such as the spread of pathogens1, trade-off between locations, fish production 

and health. There is a need for research, i.e. the development of theories (models), methods, 

techniques and tools for analysis, prediction and management, i.e. strategy development, policy 

design and decision making, to facilitate a sustainable industry. 

Loss due to the disease outbreaks in the aquaculture systems pose a large risk to a sustainable fish 

industry system, and pose a risk to the coastal and fjord ecosystem systems as a whole. Norwegian 

marine aquaculture systems are located in open areas (i.e. fjords) where they overlap and interact 

with other systems (e.g. transport, wild life, tourist, etc.). For instance, shedding viruses from 

aquaculture sites affect the wild fish in the whole fjord system.  

Fish disease spread and pathogen transmission in such complex systems, is process that it is difficult 

to predict, analyze, and control. There are several time-variant factors such as fish density, 

environmental conditions and other biological factors that affect the spread process. In this thesis, we 

developed methods to examine these factors on fish disease spread in fish populations and on 

pathogen spread in the time-space domain. Then we develop methods to control and manage the 

aquaculture system by finding optimal system settings in order to have a minimum infection risk and 

a high production capacity.   

Aim: The overall objective of the thesis is to develop agent-based models, methods and tools to 

facilitate the management of aquaculture production in Norwegian fjords by predicting the pathogen 

dynamics, distribution, and transmission in marine aquaculture systems. Specifically, the objectives 

are to assess agent-based modeling as an approach to understanding fish disease spread processes, to 

develop agent-based models that help us predict, analyze and understand disease dynamics in the 

context of various scenarios, and to develop a framework to optimize the location and the load of the 

aquaculture systems so as to minimize the infection risk in a growing fish industry.    

Methods: We use agent-based method to build models to simulate disease dynamics in fish 

populations and to simulate pathogen transmission between several aquaculture sites in a Norwegian 

fjord. Also, we use particle swarm optimization algorithm to identify agent-based models’ parameters 

so as to optimize the dynamics of the system model. In this context, we present a framework for 

using a particle swarm optimization algorithm to identify the parameter values of the agent-based 

model of aquaculture system that are expected to yield the optimal fish densities and farm locations 

that avoid the risk of spreading disease. The use of particle swarm optimization algorithm helps in 

identifying optimal agent-based models’ input parameters depending on the feedback from the agent-

based models’ outputs.  

Results: As the thesis is built on three main studies, the results of the thesis work can be divided into 
three components. In the first study, we developed many agent-based models to simulate fish disease 

spread in stand-alone fish populations. We test the models in different scenarios by varying the 

agents (i.e. fish and pathogens) parameters, environment parameters (i.e. seawater temperature and 

currents), and interactions (interaction between agents-agents, and agents-environment) parameters. 

We use sensitivity analysis method to test different key input parameters such as fish density, fish 

swimming behavior, seawater temperature, and sea currents to show their effects on the disease 

spread process. Exploring the sensitivity of fish disease dynamics to these key parameters helps in 

combatting fish disease spread. In the second study, we build infection risk maps in a space-time 

domain, by developing agent-based models to identify the pathogen transmission patterns. The agent-

1 A pathogen is anything that causes a disease. 
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based method helps us advance our understanding of pathogen transmission and builds risk maps to 

help us reduce the spread of infectious fish diseases. By using this method, we may study the spatial 

and dynamic aspects of the spread of infections and address the stochastic nature of the 

infection process. In the third study, we developed a framework for the optimization of the 

aquaculture systems. The framework uses particle swarm optimization algorithm to optimize 

agent-based models’ parameters so as to optimize the objective function. The framework was 

tested by developing a model to find optimal fish densities and farm locations in marine aquaculture 

system in a Norwegian fjord. Results show so that the rapid convergence of the presented 

particle swarm optimization algorithm to the optimal solution, - the algorithm requires a maximum 

of 18 iterations to find the best solution which can increase the fish density to three times while 

keeping the risk of infection at an accepted level. 

Conclusion: There are many contributions of this research work. First, we assessed the agent-based 

modeling as a method to simulate and analyze fish disease spread dynamics as a foundation for 

managing aquaculture systems. Results from this study demonstrate how effective the use of agent-

based method is in the simulation of infectious diseases. By using this method, we are able to study 

spatial aspects of the spread of fish diseases and address the stochastic nature of infections process. 

Agent-based models are flexible, and they can include many external factors that affect fish disease 

dynamics such as interactions with wild fish and ship traffic. Agent-based models successfully 

help us to overcome the problem associated with lack of data in fish disease transmission and 

contribute to our understanding of different cause-effects relationships in the dynamics of fish 

diseases. Secondly, we developed methods to build infection risk maps in a space-time domain 

conditioned upon the identification of the pathogen transmission patterns in such a space-time 

domain, so as to help prevent and, if needed, combat infectious fish diseases by informing the 

management of the fish industry in Norway.  Finally, we developed a method by which we may 

optimize the fish densities and farm locations of aquaculture systems so as to ensure a sustainable 

fish industry with a minimum risk of infection and a high production capacity. This PhD 

study offers new research-based approaches, models and tools for analysis, predictions and 

management that can be used to facilitate a sustainable development of the marine aquaculture 

industry with a maximal economic outcome and a minimal environmental impact.  
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Abbreviations 

2D Two-dimensions 

3D Three-dimensions 

3D maps Three-dimensional maps 

ABM Agent-based modeling 

ABMs Agent-based models 

𝑎𝑏𝑗 Pathogen ability (energy) 

ACO Ant Colony Optimization  

𝐴𝑟 Attack-rate 

C Constant 

CA Cellular automata 

𝐶𝑑 Average sea currents direction 

CFU Colony forming units 

𝐶𝑠 Average sea currents speed 

𝐶𝑠𝑟 Relative current speed 

DEM Discrete event modeling 

EIA Extensive Integrated Aquaculture 

𝐹𝐴𝑖(𝑡) The fish agent 

FF(t) Set of fish farms 

GA Genetic Algorithms 

GIS Geographic Information System 

H1N1 Influenza A virus 

ℎ𝑒𝑑 Heading 

𝐼𝑓 Fish density 

IIA Intensive Integrated Aquaculture 

IMTA Integrated Multi-Trophic Aquaculture 

IPNV Infectious pancreas necrosis virus 

IPSO Integer-particle swarm optimization 

𝐼𝑅 Infection risk 

𝐼𝑣 Pathogen density 

L(t) Landscape 

𝐿(𝑦) Water levels of the sea (surface, y=0) 

𝐿𝑐𝑢(𝑡) The sea currents landscape 

𝐿𝑠𝑎(𝑡) The salinity landscape 

𝐿𝑡𝑚(𝑡) The sea temperature landscape 
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𝐿𝑡𝑟(𝑡) The terrain landscape 

MODS A SINMOD project: Ocean modeling system for mid-Norway 

MOM Monitoring, On growing fish farm - Modeling 

MOO Multi objective optimization  

𝑁𝑟𝑓 Noise value 

P(t) Swarm of pathogens 

𝑃𝐴𝑗(𝑡) The pathogen agent  

PD Pancreas disease 

PFU Plaque forming units 

𝑝𝑖𝑡 Pitch 

PSO Particle swarm optimization 

R Random number in a range of [0,1] 

𝑅0 Stability point 

𝑅𝑛 Normally distributed floating point 

𝑅𝐹𝑖 Fish resistance factor 

S(t) Aquaculture system 

SA Simulated Annealing  

SAV Salmonid alphavirus 

SD System dynamic 

SEIR Susceptible, exposed, infectious, recovered 

SI Swarm Intelligence 

SINMOD SINTEF ocean modeling system 

SINTEF An independent research organization in Trondheim, Norway 

SIR Susceptible, infectious, recovered 

𝑇 Threshold 

𝑇(𝑥, 𝑦, 𝑧, 𝑡) Water temperature at the position (x, y, z) at the time t 

𝑇𝐶𝐼𝐷50 The amount of virus required to kill 50% of infected hosts 

𝑠𝑡𝑑 Standard deviation 

𝑣(𝑡)⃗⃗ ⃗⃗ ⃗⃗⃗⃗  Velocity vector 

𝑤 Inertia weight 
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1. Introduction

This chapter describes the problem outline. In particular, the motivation for underlying the research 

work, the fundamental research objectives, and the research themes are being presented. Finally, 

there is a summary of the included published papers. 

1.1 Problem outline 

1.1.1 Aquaculture in Norway 

Aquaculture in Norway has a long history that dates backs to 1850 when the first brown trout were 

hatched. The Sunnmøre2 district made its first attempt at transferring rainbow trout to seawater 

before World War I.  After World War II, the interest in aquaculture increased, and in the early of 

1960s the first time rainbow trout was successfully transferred to seawater. Commercial salmon 

farming started around 1970 with a technological revolution in this sector, and at that time the first 

fish pen was constructed (Trygve, 1993).  

Fish pens (i.e. cage) at sea provide a natural marine environment where fish grow naturally. Fish 

farming at sea has economic advantages of scale that could be huge compared to inshore farming 

because the available space at fjords and sea (Nesset & Tunsvik, 2017; Worldfishing.net, 2018). 

However, many environmental issues of fish farming in seawater have arises, such as threaten wild 

life, pollution, fish welfare and fish diseases (Holmer, 2010; Olaussen, 2017).   

Norway has a long and a sheltered coastline with thousands of islands and fjords with fresh seawater. 

This environment provides good opportunities for fish farming activities. The Norwegian aquaculture 

industry has become a major important industry since 1970s. Today, Norway is the world’s leading 

producer of Atlantic salmon and the second largest seafood exporter in the world (Fiskeridir.no, 

2018; FAO, 2016). 

Fish farming is not just an important industry to the Norwegian economy at large, but is also an 

industry that provides significant labor opportunities and financial income to areas that are often 

sparsely populated and where other economic opportunities are sometimes limited. Today, farming of 

salmon and rainbow trout is taking place in close to 160 municipalities all along the Norwegian 

coast, approximately 7,850 people are directly employed in aquaculture production, and 21,000 

people are employed in aquaculture related activities. In 2017, Norwegian aquaculture production 

amounted to approximately 1,4 million tons, 99 percent of which was Atlantic salmon and trout. The 

first-hand value of the annual aquaculture production reached 64 billion NOK in 2017, - an all-time 

high. Today, fish is the third most important export product after oil/gas and metal, and accounts for 

10 percent of the total Norwegian export value (Fiskeridir.no, 2018; SSB, 2018).    

Norwegian aquaculture industry is probably the fastest growing food-production sector in the world, 

providing a significant supplement to, and substitute for, wild aquatic organisms. Only since 2005, 

the production has doubled. This progress has brought about challenges in the industry such as 

biomass and economic losses due to diseases, on the one hand, and various kinds of harmful impact 

on the marine ecosystem on the other. Iversen et al (2005) assessed ten years ago the general cost of 

disease to the Norwegian fish farming industry to be US$ 150 million annually (Iverson et al., 2005). 

And, so far, 40 percent of the produced salmon from the western Norwegian coast cannot be exported 

2 Sunnmøre is the southernmost district of the western Norwegian county of Møre og Romsdal. 



 22 

to China due to the Pancreas disease (PD) (Berge, 2018). Preventing and combatting these diseases is 

therefore an important research field (Johansen et al., 2011) and a hot topic in public debates (e.g. 

NTB, 2011; Lie, 2013; Kyst og Fjord, 2018; Nordnorsk Debatt, 2018; Forskning.no, 2018). 

Fish disease Causative agent 

Viral diseases Caused by viral agent such as Infectious Pancreatic 

Necrosis (IPN), Infectious Hematopoietic Necrosis 

(IHN), Viral Haemorrhagic Septicaemia (VHS), 

Channel Catfish Virus (CCV), etc. 

Bacterial diseases Caused by bacterial agent such as Furunculosis, 

Bacterial kidney Disease, Columnaris, etc. 

Mycotic diseases Caused by fungal agent such as Saprolegniosis, 

Branchiomycosis, etc. 

Parasitic diseases Caused by parasitic agent such as: 

• Protozoa: such as Ichthyobodoosis. Hexamitosis,

Coccidiosis, Whirling diseases, etc.

• Trematodes: such as Dactylogyrosis,

Gyrodactylosis, etc.

• Cestodes: such as Khawiosis, Caryophyllosis, and

Ligulosis, etc.

• Nematodes: such as philometrosis.

• Crustacea: Such as Argulosis, Lerneosis, etc.

Nutritional diseases They are the diseases, which caused nutritional 

deficiency, such as protein and amino acids deficiency, 

vitamins and minerals deficiency. 

Diseases caused by toxic substances Caused by different toxic substances such as: 

• Toxic metals: such as zinc, copper, mercury, etc.

• Toxic Organic compounds: such as oil and

phenolic compounds, etc.

• Toxic gases: such as ammonia, H2S, Chlorine, etc.

• Pesticides: such as, chlorinated hydrocarbon,

Organophosphate, etc.

• Therapeutic compounds: such as antibiotics and

sulfonamides, etc.

Environmental diseases Caused by environmental conditions such as 

temperature, Oxygen, pH, CO2, … etc. 

Other diseases Incident diseases whose causes are unknown, but may 

be associated with poor water quality. 

Table 1.1. Fish diseases are classified according to causative agent (Trygve, 1993; Roberts 

& Shepherd, 1997; Poppe et al., 2002) 

Fish are subject to diseases carried by pathogens including viruses that cause the most troublesome 

diseases in salmon aquaculture (Olsen & Helberg, 2011). Atlantic salmon is by far the most 

important species in Norwegian aquaculture. Knowledge of pathogens in wild fish stocks is generally 

poor, and it is therefore difficult to predict which diseases might occur once an aquaculture facility 

has been established in an area (Bergh, 2007; Stene, 2013). A wide range of pathogens exists, from 

viruses and bacteria to crustacean parasites (Olsen & Hellberg, 2011). These might be introduced to 

an aquaculture system through various pathways; movement of infected stocks, equipment or fish 

products from other areas; or by exposure to wild fish pathogens (Murray & Peeler, 2005). Once 

introduced, pathogens can benefit from the aquaculture environment and pose a graver risk to farmed 

fish than wild stocks. This is because of factors such as a non-favorable marine environment, stress 

and pollution that might reduce resistance against diseases among individual fish (Murray & Peeler, 

2005), and also because the artificially high density of fish (i.e. potential hosts for the pathogen) in a 

fish farm may induce outbreaks (Bergh, 2007; Rimstad, 2011). Diseases may be transmitted along 

sea currents at distances that depend on the survival time of the pathogen in seawater, - and also 

through vectors such as wild fish or escaped farmed fish (Murray & Peeler, 2005). We can classify 

the fish diseases according to causative agents (see Table 1.1). An example of a waterborne virus is 

the Salmonid alphavirus causing PD, an increasing problem in Norwegian aquaculture (Kristoffersen 
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et al., 2009; Stene, 2013;Stene et al., 2014; Vetinst.no, 2018). All major viruses affecting Norwegian 

aquaculture are thought to spread between fish through seawater (Johansen et al., 2011), as infected 

fish shed pathogens to the surrounding waters.  

A risk assessment report of Norwegian aquaculture that was issued in February, 2018 shows that 

there was some success in reducing the mortality of fish in salmon and rainbow trout production in 

the sea in 2017, and in reducing escapes and genetic interactions. However, the report shows that 

over 50,000 salmon escapes have already been reported by February 2018. The assessment shows 

that there is still a risk of salmon louse related mortality on post-smolts, especially in western 

Norway. There are still some farms exceed the threshold for acceptable environmental impacts. And, 

viral diseases continue to represent major risks to the Norwegian aquaculture industry (Grefsrud et 

al., 2018). 

1.1.2 Sustainable development 

The most common definition of sustainability is suggested by the UN World Commission for the 

Environment and Development in 1987. There sustainability is defined as a “development which 

meets the needs of current generations without compromising the ability of future generations to 

meet their own needs” (World Commission on Environment and Development 1987: chapter 2, point 

1). The sustainability of any system can be divided into three main aspects: a social aspect, an 

economic aspect and an environmental aspect as illustrated in the Venn diagram in Figure 1.1. In the 

history of the Norwegian aquaculture industry, economic and social sustainability has been 

challenged on several occasions. Nowadays, however, the main challenges that the industry faces is 

to ensure environmental sustainability. 

Figure 1.1. Scheme of sustainable development: at the confluence of three constituent parts. Source: 

Johann Dréo (Wikipedia, 2006) 

The rapid growth of Norwegian aquaculture industry has presented it with a range of challenges. 

Environmental concerns related to infectious diseases, sea louse and escaped farmed fish have 

remained unresolved (Grefsrud er al., 2018). Even though the statistics show a significant decrease in 

the total escaped farmed fish recently, it still poses a high risk since the production of biomass has 

increased massively as well (www.fiskeridir.no). Other challenges related to the scarcity of suitable 

locations and to the effects of fish density, have appeared in recent years. Aquaculture industry has 

an environmental impact resulting from e.g.; discharges of waste, reduction of biodiversity, and 

consumption of non-renewable resources, such as oil for energy production, or renewable resources, 

such as the raw ingredients in feed. Making sure the aquaculture industry is environmentally 

sustainable is vital to secure a long-term development in this industry.  

The Norwegian government is collaborating with all the stakeholders (including stockholders) to 

ensure that the Norwegian aquaculture industry is operated in a sustainable and eco-friendly manner 

(Figure 1.1). The strategy of the Norwegian government identifies five key areas where aquaculture 

industry may potentially have a negative impact on the environment (FKD, 2009); 1) Escaped 
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fish/genetic interaction; 2) Pollution and discharges; 3) Diseases and parasites; 4) Use of coastal 

areas; 5) Feed and feed resources. The strategy set goals and explains what needs to be done to 

achieve them (Table 1.2).  In order to achieve the goals in Table 1.2, several strategies, regulations 

and monitoring processes must be followed. For instance, preventing outbreaks of fish diseases will 

contribute to an environmentally sustainable aquaculture industry and genetic sterilization is a viable 

solution to mitigate damage to the ecosystem if fish escape (Aarvig, 2013). Solutions have to be 

viable for the entire socio-ecological system. There are limits to what the ecosystem can tolerate 

before it collapses. 

There are many questions about financing the Norwegian fish farming industry that is a highly 

profitable industry. But the dynamics of the global industry work to promote strengthening of the 

industry into the hands of few large companies against small, local ones. The aquaculture industry 

brings jobs to small, coastal areas, but it also spreads unevenly and forces changes in local societies 

and work, - even for those who do not work in the industry. An economic competitive is an 

advantage, but the requirement to use a developed technology to solve the environmental problems, 

make the industry viable only for the few (i.e. large companies) who can afford it (Moe, 2017).  

The social-economic trade-off rises a question about what solutions are acceptable to both human and 

natural systems? To answer this question, we need to outline the sources of stress that the fish 

farming industry pose to natural systems (i.e. fjord systems) at various levels. The difficulty in 

calculating how much stress a given system can carry (accept) in turn makes it difficult to calculate 

the risks to natural systems posed by specific industry configurations. The booming salmon business 

benefits Norway as a country, but not necessarily local Norwegian communities. 

Number Element Goal 

1 Genetic influence and escapes Aquaculture does not cause irreversible genetic changes of 

the wild fish populations 

2 Pollution and discharges All aquaculture sites in use keep within an acceptable 

environmental condition and do not have a higher discharge 

of nutrients or organic material than the recipient can handle. 

3 Disease and parasites Diseases in aquaculture do not have a population effect on 

wild fish, and as fish much as possible are produced to 

harvestable size without the use of therapeutics. 

4 Use of area The aquaculture industry has a layout of sites and area use 

that minimize the environmental effects and exposure hazard 

5 Feed resources The need for feed ingredients /resources are covered with out 

over exploiting the wild marine fish stocks 

Table 1.2. The five focus elements for a sustainable development of the aquaculture sector set by 

Norwegian Government (FKD, 2009). 

A sustainable aquaculture industry should be operated with a consideration to the environment, and 
be adapted to the surrounding marine environment and biological diversity. It is important to select 

optimal production locations and densities for aquaculture so as to maintain a clean marine 

environment characterized by a minimum risk of infection and a minimum impact from transport 

emissions and pollution from local sources. Therefore, authorities and industry must cooperate to 

ensure a profitable, sustainable development of the aquaculture with a maximal social and economic 

pay-off, less conflict of interests and a minimal environmental impact.  

1.1.3 Complex problem 

Aquaculture growth invariably involves the expansion of cultivated areas, higher density of 

aquaculture installations and of farmed individuals, and use of feed resources produced outside of the 

immediate area. As indicated above, this may produce negative effects unless the sector is allowed to 

grow only under a strict regulatory regime and under effective management practices. Costal/fjord 
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ecosystems are tightly interwoven by a variety of interdependencies. When fish pens are installed in 

such a complex environment, additional interdependencies are being established between such an 

artifact and the surrounding natural environment. That environment includes fresh water input, rich 

in organic and mineral nutrients derived from erosion, urban, agricultural, aquaculture and industrial 

effluents, and subject to strong anthropogenic pressures resulting from the fish farming. The 

interactions between land and sea reveal high physical, chemical and biological complexities, making 

the management decisions process challenging. Thus it may be very hard to predict the consequences 

of these decisions.  

Fjord systems are embedded and very complex and representing them effectively require 

sophisticated modeling. Models developed thus far, we would argue, have not addressed the full 

complexity in the natural context of fish pans. Currently we rely mainly on laboratory data that only 

partially characterize the system under a very restricted set of circumstances.  

Spread of fish infectious diseases in such complex systems (i.e. fjord system) has not been addressed 

scientifically, - we cannot rely merely on experience and need to assess the future using models 

based on assumptions and associated risks. Computational models3 are important to achieve 

sustainable development,- models can serve a wide variety of roles such as: hypothesis testing, 

deepening understanding, suggesting and interpreting experiments, doing sensitivity analysis, 

integrating knowledge, and revealing causes (Brodland, 2015).  

1.1.4 Model based management of aquaculture systems 

Model based management of aquaculture systems and the associated environmental problems 

is challenging, the difficulty is in exploring and analyzing aquaculture systems in a holistic way 

(Valenti et al., 2008). Simulating aquaculture systems requires including and combining 

different environmental, biological, and physical factors (e.g. sea currents speed, seawater 

temperature, salinity, fish type, ... etc.). However, model based management is an essential part of 

any sustainable development strategy to reduce the risk and increase robustness.   

The authorities, research communities and industry should work together to make sure the 

Norwegian aquaculture is managed sustainably. In order to facilitate a sustainable industry, we need 

research, i.e. the development of theories (models), methods, techniques and tools for analysis, 

prediction and management, i.e. strategy development, policy design and decision making, to 

facilitate a sustainable industry.  

The developed tools we develop for effective aquaculture management are intended to help us 

identify the most important processes and components of the aquaculture systems. The tools must 

include models of disease spreading processes, tools for risk analysis and evaluations, and tools for 

developing strategies, designing policies and assisting decision making to achieve the sustainability.    

The main aim of this study is to develop a tool, based on an agent-based approach, for modeling the 

dynamics of a fish disease within and between the aquaculture sites in the Norwegian fjords, as a 

result of individuals’ (fish and pathogens) interactions and their interactions with their environment 

in a space-time context.  This will help us to understand the processes underlying the disease 

dynamics and will contribute to the prevention of the spread of such a disease (Figure 1.2).  

3 A computational model is a mathematical model in computational science that requires extensive computational resources 

to study the behavior of a complex system by computer simulation. 
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Figure 1.2. Overview of the presented models and tools. The upper-side of the figure shows the main 

components of the system (agents: fish and pathogens, networks (interactions between the agents-

agents and between agents and their environment), and the environment (sea currents, seawater 

temperature and the terrain)). The lower-side of the figure shows samples of how the results can be: 

e.g. epidemic curves (left) or infection risk maps (right).

Figure 1.2 summarizes the presented models and tools in this research work. We build Agent-based 

models (ABMs) to simulate fish disease dynamics in Aquaculture systems. ABMs have two types of 

agents (fish and pathogens) that each have a number of attributes (e.g. positions, health status, 

lifespan, …etc.) and behavioral rules to update these attributes in time and space domains. The agents 

have different relationships (Networks) with each other and with their environment. For example, the 

fish swim in schools and become infected if they encounter pathogens. Pathogens move by sea 

currents and their lifespan is influenced by seawater temperature. The results of ABMs are presented 

in real time and in different ways. For example, epidemic curves are being produced that show the 

disease dynamics in the aquaculture sites in time domain and by risk maps that show the infection 

risk in time-space domains.    

1.2 Related works 

1.2.1 Integrated plans to Norwegian coast managements. 

Aquaculture is a vital industry in Norway. It creates jobs and value. Poor management and 

unregulated aquaculture industry will lead to many negative effects on the whole ecosystem. The 

Norwegian government is working with all the stakeholders to ensure that the Norwegian aquaculture 

industry is operated on an eco-friendly sustainable basis (Figure 1.1). The strategy of the Norwegian 
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government identifies five key areas where aquaculture may potentially have a negative impact on 

the environment (FKD, 2009); 1) Escaped fish/genetic interaction; 2) Pollution and discharges; 3) 

Diseases and parasites; 4) Use of coastal areas; 5) Feed and feed resources. The strategy set goals and 

explains what needs to be done to achieve them (Table 1.2).  

The Norwegian government has established an integrated management plans that cover all 

Norwegian Sea areas; the Barents Sea, the sea areas outside the Lofoten4 Islands, the Norwegian Sea, 

and the Norwegian part of the North Sea and Skagerrak (see Figure 1.3). The management plans 

provide an overall framework for both existing and new activities in these waters, and facilitate co-

existence of different activities, such as the aquaculture, fisheries, maritime transport and the 

petroleum activity. The aim is to establish an ecosystem-based management of the activities in the 

relevant sea area. It is a goal that aquaculture activities do not threaten the natural fluctuations in 

ecosystems. 

Figure 1.3. Integrated management plan areas: the Barent Sea, The Norwegian Sea and the 

Norwegian part of the North Sea and Skagerrak. (www.miljodirektoratet.no). 

The integrated management plan for the Norwegian part of the Barents Sea and the sea areas off 

Lofoten was adopted by the Norwegian Parliament in 2006 and revised in 2010. The plan for the 

Norwegian Sea was adopted in 2009 and plan for the Norwegian part of the North Sea and Skagerrak 

was adopted in 2013.  

4 Lofoten is a district in the county of Nordland, Norway. 
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The management plans are large-scale spatial management tools and cover the areas in Norway’s 

exclusive economic zone outside the coastal baseline. An Interministerial Steering Committee 

coordinates work on the management plan. The scientific basis for the management plans is 

coordinated by the Management Forum of the Norwegian Sea Areas, in collaboration with an 

Advisory Forum on Monitoring (www.miljodirektoratet.no). 

1.2.2 Methods to simulate fish and pathogen dynamics 

Previous studies of infectious disease dynamics in aquaculture systems have mainly employed 

mathematical models that have all been based on the assumption that the fish population is 

homogeneous (e.g. Murray, 2009; Green, 2010). Kermack and McKendrick were pioneers in 

establishing the mathematical modeling of disease epidemics in 1927 (Kermack et al., 1927). They 

created the ordinary differential equation model template SIR (Susceptible, Infectious, Recovered) . 

SIR models treat the fish as the unit of analysis, not the pathogens. So they do not treat the pathogens 

as individuals that may survive without hosts. Moreover, in their simple form, they do not represent 

the environmental conditions explicitly in the model. Many researchers have used such models to 

simulate disease dynamics, and some of them have coupled them with simple hydrodynamic models 

or distance measures of transmission between separate populations (Ogut, 2001; Viljugrein et al., 

2009; Aldrin et al., 2010; Werkman et al., 2011; Salama & Murray, 2011). 

Hydrodynamic models coupled with particle tracking and statistical analyses have been widely 

applied in Norway to identify the salmon louse and PD transmission dynamics in Norwegian fjords 

(MODS, 2012, Stene, 2013). SINTEF has developed SINMOD hydrodynamic model 

(www.sinmod.no) that combines physical and biological processes in the ocean. Hydrodynamic 

models typically do not take into consideration the variety among pathogens, and the statistical 

analyses are based on the assumption that the fish populations are homogeneous. 

In this research, I have applied the agent-based method to simulate fish disease dynamics. ABMs 

may be valuable for analyses that are based on the interactions between individuals (i.e. where the 

overall dynamic behavior results from the interaction between individual fish and pathogens), and 

may also allow for the incorporation of the spatial aspect of the system that have not previously been 

taken into consideration.  

1.2.3 Agent-based approach to simulate infectious diseases 

Infectious diseases in humans such as Ebola and H1N1 or in fish such as PD can significantly impact 

their lives and cause large economic damages. Recent epidemic outbreaks have prompted 

the research on the dynamics of such epidemics. In the past years, Agent-based modeling (ABM) 

has been applied to an increasing degree in the modeling and simulation of disease dynamics, - 

partly made possible by the revolutionary development of computational capacity in modern 

computers. ABMs offer an alternative to classical mathematical models or discrete models in that 

they allow us to use as a point of departure the dynamic interactions between individuals and their 

impact on the system under study. Kelly et al. (2013) has found that ABMs are particularly 

suitable when the purpose of the model is to develop an understanding of the system under 

investigation based upon assumptions about individual processes and interactions that who’s macro 

dynamics may be explored through simulation. By linking ABMs to GIS we may explore the 

complexity of disease transmission in space (Persez & Dragicevic, 2009). The landscape and the 

sharing of resources that exist in the environment have an impact on disease transmission (Nunn et 

al., 2014). In light of these advantages, the application of ABM in the simulate the epidemics has 

been growing, and applications range from studying dengue fever (Lourenço & Recker, 2013), the 

foot-and-mouth disease (Dion et al., 2011), hepatitis (Ajelli & Merler, 2009), influenza (Ciofi et 

al., 2008; Milne et al., 2008; Rao et al., 2009; Khalil et al., 2010), malaria (Linard et al., 2008), 

measles (Perez & Dragicevic, 2009), mumps (Simoes, 2012), smallpox (Epstein et al., 2002), 

swine flu (Epstein, 2009), tuberculosis (Patlolla et al., 2006), cholera (Augustijn-Beckers et al., 

2011)) etc.  



29 

1.2.4 Methods and tools to facilitate integrated eco-systems 
management 

Ecosystem management processes aim at conserving major ecological services and restore natural 

resources while meeting the socio-economic, political, and cultural needs of current and future 

generations. Ecosystem management includes several steps to achieve these goals and to prioritize 

these actions. The steps are scoping of ecosystem boundaries, defining indicators, setting thresholds, 

performing risk analysis, and monitoring to obtain feedback and to evaluate the effectiveness of the 

management strategies. 

The Norwegian government follows a strategy aimed at ensuring an environmentally sustainable 

Norwegian aquaculture industry. Table 1.2 shows the five sustainability elements and summaries the 

goals of each element (FKD, 2009). In order to achieve these goals, there are several regulations and 

tools to be used at different scales; farm scale, fjord scale, and global scale (Alaliyat, 2014). In 

Norway, regulatory authorities require the use of the MOM (Monitoring, On growing fish farm - 

Modeling) method to monitor the effects of fish farming on the bottom and on the benthic fauna 

under and near farming facilities. This method describes how effects on the sea-bed are to be 

monitored and recorded, and which environmental thresholds are to be applied (Ervik et al., 1997) 

when considering mitigating actions.  One research project (Integrate) by SINTEF, focused on 

Integrated Multi-Trophic Aquaculture (IMTA) (Wang et al., 2013). For small-scale farm system 

(distance up to 100 m from cages), an Intensive Integrated Aquaculture (IIA) model has been 

developed, while for large-scale /fjord system (distance in km), an Extensive Integrated Aquaculture 

(EIA) model has been developed to evaluate IMTA feasibility (www.sintef.no).  

In Norway, there are different methods and tools applied to facilitate integrated planning for the 

Norwegian coast management (www.miljodirektoratet.no). Many tools are aimed at data collection 

and monitoring the systems (e.g. MOM). For that purpose, statistical methods are used 

predominantly to build economy-based strategies (e.g. economy-based management for Barents Sea 

and Lofoten areas (www.npolar.no), or building risk-assessments in the aquaculture systems 

(Taranger et al., 2011). 

ABM is a valuable asset when evaluating multiple-use management strategies for coastal marine 

ecosystems (McDonald et al., 2008). Using an integrated ABM system to implement multiple-use 

management strategies evaluation framework, allows for evaluating the response of the system under 

a range of model characteristics, management strategies and set of scenarios affecting system 

dynamics. 

1.3 Research objectives 

The overall objective of the thesis was to develop ABMs, methods and tools to support the 

management of aquaculture production in Norwegian fjords by facilitating the prediction of pathogen 

dynamics, distribution, and transmission in marine aquaculture systems. Fish disease dynamics 

originates from a complex system, and the transmission of pathogen is a process that is hard to keep 

under control. The first objective of the thesis has been to apply the ABM technique to simulate fish 

disease dynamics and pathogen transmission in a single marine aquaculture system. The second 

objective has been to optimize the location and fish density in various aquaculture farms so as to 

maintain the sustainable aquaculture industry by minimizing the outbreak of fish diseases and 

the transmission of infectious diseases between fish farms. To achieve these objectives, the 

following studies have been undertaken: 

1. The development of ABMs to simulate fish disease dynamics in fish populations.
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In this study; the objective was to investigate the effects of different biological, 

environmental and physical factors such as seawater temperature, sea current, fish 

population and fish swimming behavior on the fish disease dynamics in a single aqua fish 

farm. An agent-based approach was used to build various ABMs to simulate fish disease 

dynamics. The spread of a disease in fish populations is a dynamic phenomenon; 

fluctuations in occurrence and impact are dependent on the interactions between fish, 

pathogen, and the environment. Small changes in the key input parameters in the ABMs that 

we use to simulate fish disease dynamics, may lead to a change in the model output that 

ranges from insignificant to essential. In order to achieve the objective of this study, the 

sensitivity of the ABMs output to the key input parameters values was explored. 

Subsequently, the dependence of the model’s output on the various key input parameters 

were determined. At the end, the tipping points5 in the input vector that contains all the input 

key parameters were identified.  

2. The development of ABMs to allow for the simulation of disease transmission between

several aquaculture sites in a Norwegian fjord.

In this study, the objective was to build ABMs to predict patterns of pathogen transmission 

with the purpose of identifying risks and hazards in the space and time domains, so as to 

help prevent and, if needed, combat infectious fish diseases by informing the management 

of the fish industry in Norway. In order to achieve the objective of this study, the ABMs in 

the previous study were extended to include several aquaculture sites, and then the pathogen 

transmission pattern in the time-space domain was investigated and infection risk maps were 

built. 

3. The application of particle swarm optimization (PSO) algorithm to automatically optimize

ABMs input parameters.

In this study, the objective was to optimize marine aquaculture system that contains several 

aquaculture facilities, by determining the optimal fish densities and farm locations, aimed at 

avoiding the risk of a fish disease epidemic. To simulate fish disease dynamics within and 

between fish farms ABMs were developed and then made subject to optimization. Then, a 

framework was developed for using a PSO algorithm to identify the optimal values of the 

ABMs input parameters that provide the maximum value of the objective function. The 

objective function was designed to capture the main goal of the model such as minimizing 

the infection risk. 

1.4 Scope of the thesis 

The following subjects form the scope of the research presented in this thesis: 

1.4.1 Agent-based modeling (ABM) of complex systems 

A comprehensive study about ABM of complex systems is performed to achieve the main objective 

of the thesis. ABM is a powerful modeling and simulation technique that has been applied in a 

variety of domains during the last few years (e.g. biology, environmental management, etc.), and it is 

now a well-recognized approach to the modeling and analysis of complex systems.  

5 Tipping Points: places where a small change in an input can dramatically affect the outcome. 
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ABM is a bottom-up modeling technique, which is different from top-down modeling techniques 

(e.g. system dynamics), developed to simulate complex systems. There are some advantages and 

disadvantages of using ABM. ABM is flexible, captures emergent phenomena and provides a 

convenient description of the system by simulating the actions of and interactions between individual 

agents. The interactions between the agents in complex systems are typically varied, non-linear, and 

discontinuous or discrete. Thus, it may be difficult to describe the individual behavior using 

traditional methods such as differential equations. ABM offers an alternative, algorithmic 

approach, to deal with the complexities of such systems.  

1.4.2 Model-based simulation of infectious fish diseases 

The diffusion of infectious diseases in fish populations is a dynamic phenomenon originating from 

the interactions among fish, pathogen, and environment (Figure 1.4). Fish are stressed in an 

unfavorable environment such as one characterized by crowding and relatively high seawater 

temperatures. Pathogens are transmitted by water. Fish shed pathogens, and pathogens infect fish. 

We implemented a variety of ABMs to simulate disease spreading in fish populations. The objective 

was to investigate how the ABM method may be applied to simulate fish disease dynamics. The 

effects of different parameter values, associated with the fish, pathogens and environment on the 

epidemic were investigated. We conducted a sensitivity analysis of the ABMs outputs to changes in 

parameter values so as to generate hypotheses about the dynamics of fish epidemics. Both cross-

validation and model alignment methods were used to validate the ABMs. The marine fish farming 

industry in the Romsdalsfjord6 inspired the data used in the models. 

Figure 1.4. Interactions between fish, pathogen, and environment causing disease outbreaks 

1.4.3 Simulation based analysis and prediction of pathogen dynamics, 
distribution and transmission. 

With the purpose of identifying the infection risk in space-time domains, different simulation 

based analysis were performed. The simulations of ABMs of aquaculture systems in parts 

of the Romsdalsfjord with different settings were performed for the purpose of identifying the 

pathogens transmission patterns in the fjord. Results of these simulations are used to derive 

infection-risk maps.  

6 Romsdalsfjord is 88 km Long and located in the Romsdal district of Møre og Romsdal county in mid-Norway. 
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1.4.4 Particle swarm optimization algorithm developed to facilitate 
ABMs parameter space optimization 

ABMs have many parameters that relate to the individual agents’ attributes and their behavior rules, 

the environment, and the network between the agents or between the agents and the surrounding 

environment. These parameters determine the global behavior dynamics of the system, and small 

changes in a single parameter sometimes lead to major modifications of the dynamics of the entire 

system. Parameter setting for the ABMs may require significant time and resources unless an 

effective strategy has been developed to explore the parameter space. Swarm Intelligence (SI) 

algorithms are well-suited to traverse such large solution spaces. We developed a framework for 

using a particle swarm optimization (PSO) algorithm, so as to automatically identify optimal values 

for the model parameters.  

1.5 Structure of the thesis 

This thesis is based on three main studies that are performed for the purpose of achieving the 

research objectives. The main objective of the thesis has been to develop ABMs, methods and tools 

to manage aquaculture production in Norwegian fjords and facilitate the prediction of pathogen 

dynamics, distribution, and transmission in marine aquaculture systems. The thesis synopsis contains 

seven chapters. In Chapter 2, materials and methods that are used in the studies are summarized. This 

chapter is divided into three sections: First there is a theory section that presents a comparison of 

System Dynamic (SD), Discrete Event Modeling (DEM), and the ABM simulation paradigms in the 

context of aquaculture system modeling. The second section summarizes the methods used in the, 

simulation and analysis. The third section reviews the used tools and techniques applied.  

In Chapter 3, we offer a summary of a complete discussion on ABM applied to complex, 

dynamic systems. This chapter spans sections on the modeling of complex systems, on the 

purpose, the principles, the advantages and the limitations of ABM applied in this context and on the 

verification and validation of ABMs. 

Chapter 4 contains first a description of how to build ABMs so as to simulate disease dynamics in a 

fish population. In the second section, the transmission of pathogens between fish farms in sea 

aquaculture systems is presented. In the last section, a framework for optimizing the ABMs by using 

PSO is presented.   

In Chapter 5, the results of the different studies and how they relate to the research objectives are  

presented. Potential, future applications are presented at the end of the chapter. 

In the first section of Chapter 6, we present some important advantages of applying ABM to 

environmental management challenges in Norwegian fjords in general, - and, in particular, to the 

simulation of fish disease dynamics and pathogens transmission between fish populations. In the 

second section, some limitations are addressed such as those associated with; model boundary, 

scaling in the time-space domain, lack of data, the application of standard validation methods, the 

interpretation of results, and ethical issues.   

Finally, the general conclusions of the research project and the possible topics, subject to further 

investigation are presented in Chapter 7. 
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1.6 Publications 

The material presented in this thesis are based on several conference and journal papers. The papers 

are categorized into three main studies as listed below.   

1.6.1 Study I: Simulation of fish disease dynamics in a fish population 

Alaliyat, S., Yndestad, H. (2015a) “An Agent-Based Model to Simulate Contagious Disease 

Dynamics in Fish Populations”. International journal of simulation. Systems, Science and 

Technology. vol. 16 (3).  

In this paper, we present an agent-based model that simulates the spread of contagious disease 

dynamics in a single aquaculture facility. Unlike previous models that describe the spread of disease 

based on the assumption that populations are homogeneous and that focus on the population as a 

whole, in this work we build a heterogeneous model. We simulate both fish and pathogens as 

individual agents that interact with each other and their environment. This gives the model the 

capability to overcome the limitations of classical population-based models, permitting us to study 

specific spatial aspects of the spread of infections and to address the stochastic nature of the 

infectious process. The implemented model in this work enables us to study the sensitivity to model’s 

input key factors such as fish density, infection radius, shedding rate, etc., in which the infectious 

disease takes place.  

The model is implemented in NetLogo7, and different simulation experiments are designed to explore 

the impact of factors such as fish density and infection radius (distance around fish containing 

pathogens) on the fish disease dynamics in an aquaculture facility. Simulation results show that the 

fish disease dynamics are more significantly influenced by changing the infection radius parameter 

than by changing the fish density parameter (thus increasing the pathogen amount released).  

Alaliyat, S., Yndestad, H. (2015b), “An Aqua Agent-Based Model to Simulate Fish Disease 

Dynamics with Reference to Norwegian Aquaculture”, Proceedings of 11th International 

Conference on Innovations in Information Technology (IIT'15), Dubai, UAE, 01-03 November 2015, 

pp 350-355. 

In this paper, we extended the previous model in this study to examine the impact of sea currents and 

fish swimming behavior on the disease dynamics in fish populations. Fish populations epidemics is a 

dynamic phenomenon; variations in occurrence and impact are dependent on the interactions between 

fish (host), pathogen, and the environment. In this work, we build an aqua agent-based model that 

simulates the contiguous disease transmission in a single aquaculture site. The model combines the 

most important factors in the fish disease process, environmental factors, fish swimming behavior 

and infection process parameters.  

We design the simulation experiments so as to explore the impact of sea currents and swimming 

behavior on the disease dynamics. We vary the current speed between a set of boundary values to test 

its effect on the disease dynamics. Also, we simulate different fish swimming behavior (i.e. 

swarm, circular and random) in order to investigate the impact of the swimming behavior on 

the disease spread. The simulation results show that the infection rate increases when the sea 

current speed decreases, and when the fish swim in a regular pattern (circular or in school).  

7 NetLogo is an agent-based programming language and integrated modeling environment. 
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1.6.2 Study II: Simulation of pathogen transmission between 
aquaculture sites 

Alaliyat, S., Osen, O. L. and Kvile, K. O. (2013), “An Agent-Based Model To Simulate Pathogen 

Transmission Between Aquaculture Sites In The Romsdalsfjord”, Proceedings of the 27th 

European Conference on Modeling and Simulation, Aalesund, Norway, pp. 46–52. 

In this paper, we build an agent-based model to simulate the emergence of a hypothetical fish 

pathogen in an aquaculture facility in the Romsdalsfjord and to observe how this pathogen could 

possibly spread to multiple facilities within the fjord. This model enables us to observe how key 

parameters such as the water current speed, the current direction, the pathogen life span, the 

contagiousness and the fish density affect the disease dynamics. 

In this work, the fish were stationary in the cages, while the pathogens moved by sea currents in the 

fjord. The model is implemented in NetLogo, and we have included three fish farms at the 

Romsdalsfjord in the simulation experiment. The results show that the number of infected fish in 

each farm is predicted by factors such as current speed and pathogen life span. The results provide a 

good base for exploring the relationship between these variables and others (infection rate, pathogen 

release rate current bias etc.), and platform on which more complexity can be added to the model at a 

later stage.  

Alaliyat, S., Yndestad, H. and Davidsen, P. (in press), “An Agent-Based Approach for Predicting 

Patterns of Pathogen Transmission Between Aquaculture Sites in the Norwegian Fjords”. 

Aquaculture. 

In this paper, we build ABMs to predict patterns of pathogens transmission for the purpose of 

identifying risks/ hazards in space and time domains. This risk assessment will help in combating the 

infectious fish diseases and in managing the fish industry in Norway. Previous models that predict 

the spread of a disease within and between the fish populations are mostly based on the assumption 

that these populations are homogeneous and they focus on the population as a whole. We are 

assuming that the fish populations and pathogens are heterogeneous. Consequently, we apply an 

agent-based approach to modeling the dynamics of fish diseases within and between the aquaculture 

sites in the Norwegian fjords, dynamics resulting from the interaction between individuals (fish and 

pathogens) and with their environment in a space-time context.  

The process of disease transmission is influenced by many factors, including the condition of 

individuals (fish and pathogen), movement behavior and environmental conditions. The model 

presented is implemented in NetLogo, and explores the potential effects of these factors on the spread 

of a simulated fish disease. The simulation results demonstrate how the infection risk increases when 

the pathogen or fish densities increase. The pathogen density decreases exponentially as a function of 

an increase in the seawater temperature, and the pathogen density increases with the speed of 

the current or the fish density at the infected sites. The pathogens are being moved faster by 

higher current speed, so this will slow down the infection process at the local infected sites. 

Nevertheless, the current will carry the pathogens to nearby places faster.  
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1.6.3 Study III: Optimization of ABMs input parameters 

Alaliyat, S., Yndestad, H. and Sanfilippo, F. (2014), “Optimization of Boids Swarm Model based 

on Genetic Algorithms and Particle Swarm Optimization Algorithm (comparative Study)”, 

Proceedings of the 28th European Conference on Modeling and Simulation, Brescia, Italy, pp. 643–

650. 

In this paper, we present two optimization methods for a generic boids8 swarm model that has been 

derived from the original Reynolds’ boids model to simulate the aggregate movement (dynamics) of 

a fish school. The aggregate motion is the result of the interaction of the relatively simple behaviors 

of the individual simulated boids. The aggregate movement vector is a linear combination of 

every simple behavior rule vector. The vector coefficients should be identified and optimized to 

obtain a realistic flocking behavior. We proposed two methods to optimize these coefficients, 

by using genetic algorithm (GA) and particle swarm optimization algorithm (PSO). Both GA 

and PSO are population based heuristic search techniques that may be used to solve 

the optimization problems. The boids swam model is implemented in Unity3D9. The 

simulation results show that optimisation of boids model by using PSO algorithm is faster and 

gives better convergence than using GA.  

Alaliyat, S., Yndestad, H. and Davidsen, P. (submitted), “Optimal Fish Densities and 

Farm Locations in Norwegian Fjords –A Framework to Use a PSO Algorithm to Optimize an 

Agent-Based Model to Simulate Fish Disease Dynamics”. 

In this paper, we present a novel method to find the optimal fish density and location of each farm in 

an aquaculture system in a Norwegian fjord, aiming to obtain the optimal aquaculture system with a 

minimum risk of spreading disease and high fish production. For this purpose, agent-based 

models (ABMs) are used to simulate and analyze fish disease transmission within and between fish 

facilities. While a modified particle swarm optimization (PSO) algorithm is used to identify the 

optimal values of fish densities and farm locations. The objective function is defined as being 

the weighted sum between the fish density and infection risk. The PSO algorithm with the optimal 

objective function is validated by demonstrating its capability to drive the system to produce an 

expected behavior and output in tested known scenarios.  

The simulation results of simple aquaculture system in the Romsdalsfjord show the ability of the 

PSO algorithm to converge rapidly to the optimal solution. In only 18 iterations, it finds an 

optimal solution that is three times larger than the initial fish density (i.e. before applying the 

optimization to the system) and in a location that keeps the infection risk at an accepted level. 

The use of PSO algorithm to identify the parameter values of the model that yield an optimum 

behavior, will reduce significantly the simulation time required and make the model very 

useful in planning for a sustainable aquaculture industry. The presented model is implemented in 

NetLogo.   

8 Boids are bird-like objects that were developed in the 1980s to model flocking behavior. 
9 3D game engine, www.unity3d.com 
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2. Materials and methods

2.1 Theory 

The starting point in this model-based research project is the identification of a system of study based 

on a definition of the real world problem. Then a model (i.e. a representation of the system) may be 

developed, one that represents our understanding of the system and the associated problem. The 

system characteristics and the problem at hand determine our choice of a modeling method. In this 

case, we face a dynamic problem, one that develops over time, appropriately addressed using a 

simulation model that is based on the structural assumptions that reflects our systems and problem 

understanding (Robinson, 2008). 

Infectious fish diseases are caused by pathogens that are transmitted by way of the water currents. In 

fish populations, diseases spread dynamically (over time) where the fluctuations in occurrence and 

impact are dependent on the interactions between fish, pathogens, and the environment. Fish disease 

dynamics in marine fish farming systems may be considered as a high (aggregate) level feature of 

the system, - a system-level feature. The marine aquaculture system can be formalized as 

follows (Yndestad, 2010): 

𝑆(𝑡)  =  {𝐴(𝑡), 𝐿(𝑡), 𝑁(𝑡)}  (2.1) 

where S(t) is the aquaculture system, A(t) is a set agents (i.e. fish and pathogens), L(t) is the 

landscape or the environment in which the agents are located, and N(t) is the networks between the 

agents themselves and between the agents and the landscape. The characteristics of the landscape 

determine how the agents (i.e. fish and pathogens) act and interact. For instance, agents act 

differently in variant seawater temperature. 

The aquaculture system is a complex system and have several features in common with other 

complex systems. In general, these features can be classified into high-level, or aggregate, features 

and low-level, or disaggregate features. The features at a high-level of aggregation describe the 

system behavior (e.g. flocking behavior), while features at the low-level of aggregation describe the 

structure of the system (i.e. components and relations). Study the dynamics (behavior) of the system 

and how this may be recreated in a simulation and explained through analysis of the systems 

structure at disaggregate level is our focus in this thesis.  

The following detailed properties are common descriptors of aquaculture systems at a disaggregate 

level:  

• Numerousness: The aquaculture system consists huge number of elements (agents); e.g. fish

and pathogens.

• Heterogeneity: Agents differ in their characteristics; fish and pathogens populations are

heterogeneous.

• Local interactions: Relationships between the agents (interactions among them) and between

agents and their local environment are prominent in aquaculture systems. For instance, fish

swim in schools where they socialize.

• Activity: Fish is an active entity that act and re-act (thus interact).

• Mobility: System elements (fish and pathogens) can roam is the aquaculture system space,

e.g. within and between fish farms.

The aquaculture systems have generally these aggregate (system-level) features: 
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• Emergence: The dynamics, i.e. the disease outbreaks, of aquaculture systems emerge from 

the behavior of individual agents and their interactions.  

• Self-organization: The interaction between individual agents, including their feedback, is 

what ultimately determines the dynamics of the system. The lack of a centralized control is 

what may possibly cause its self-organization. 

• Co-evolution: The characteristics of aquaculture system components (i.e. agents, landscapes, 

networks) change over time. When the environment (i.e. seawater temperature and currents) 

change over time, then the agents (i.e. fish and pathogens) adapt to that changing 

environment by modifying the rules of interaction with other agents and that environment 

(i.e. there is a dynamic structure).  

 

There is a variety of modeling paradigms that may be applied when addressing complex systems. We 

may distinguish between “top-down” and “bottom-up” paradigms. “Top-down” modeling paradigms, 

such as system dynamics (SD), help us focusing on system observables and modeling the system 

components using state variables at an aggregate level (Heath et. al., 2011). While “bottom-up” 

modeling paradigms, such as discrete event modeling (DEM) and agent-based modeling (ABM), 

model the system by focusing on the individual parts of the system and their interactions. The 

selection of a simulation paradigm constrains our ability to capture system and individual-level 

features in our models.  Table 2.1 summarizes how the SD, DEM and ABM simulation paradigms 

enable us to capture the specific features of an aquaculture systems for the purpose of simulating the 

spread of fish diseases.   

  SD DEM ABM 

 

 

 

low-level of 

aggregation 

Numerousness No distinctive entities Distinctive entities Distinctive entities 

Heterogeneity Homogenous Heterogeneous entities Heterogeneous entities 

Local interactions Average value for 

interactions 

Interactions in technical 

level 

Interaction in social 

and technical levels 

Activity No activity No activity Activity is an agent 

property. 

Mobility No mobility No mobility, passive 

entities 

Agents move in space-

time domain. 

 

 

 

High-level of 

aggregation  

Emergence Debatable Debatable Has the capability to 

capture it. 

Self-organization Not (lack of individual 

decision-making) 

Not (lack of individual 

decision-making) 

Has the capability to 

capture it (modeling 

autonomous agents) 

Co-evolution Not (the system 

structure is fixed) 

Not (Processes are 

fixed) 

Has the capability to 

capture it (Network 

structure is modified by 

agents’ interactions) 

Table 2.1. Comparison of SD, DEM and ABM simulation paradigms in aquaculture system modeling  

Unlike “bottom-up” simulation approaches, SD typically represents aggregates (of individuals) in 

stock level and flow rates and is not, typically representing individual-level features. On the contrary, 

DEM and ABM paradigms work with distinctive entities (individuals). In DEM, the entities are 

passive without any decision-making capability (i.e. behavior). Therefore, the DEM paradigm has the 

ability to capture heterogeneity and partially local interaction, but not activity and mobility features.  

In ABM, the agents are active and social, - they move and interact in the space-time domain. 

Therefore, using the ABM paradigm, we may capture all the individual-level features of relevance.  
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Using the ABM paradigm, we model autonomous decision-maker agents that obey rules and can 

change their way of interactions with other agents and the environment without a centralized control 

(Heath et. al., 2011), unlike the SD and DEM paradigms. Therefore, ABM may represent the self-

organizing feature (e.g. fish swim in schools) that some systems exhibit, while SD and DEM 

typically do not represent the emergence of self-organization. Co-evolution is a feature at a high-

level of aggregation and is not represented in SD and DEM, since the system structure is fixed in SD, 

and the processes are fixed in DEM. In contrast, ABM captures this feature of structural dynamics 

because the system and network structure is being modified by the interaction of the agents. 

2.2 Methods and analysis 

In this thesis, the main method underlying most of the work in the studies is ABM (Agent-Based 

Modeling). In addition, a particle swarm optimization (PSO) algorithm is used in the third study to 

optimize the ABMs of aquaculture systems. In this section, a summary of these methods is offered, 

while Chapter 4 contains a full description of them.  

2.2.1 Agent-based modeling 

In this thesis, the ABM approach has been applied to build models of marine aquaculture systems. 

The purpose has been to simulate disease transmission in such systems. In this case, the ABMs 

contain two types of agents, - fish and pathogen. Fish agents are confined to cages within which they 

move freely, while pathogens are being transported by the water throughout the entire simulation 

space. The agents have characteristics that can be modified according to a variety of (behavior) rules. 

The environment is the seawater, characterized by temperature and velocity (due to currents). The 

agents interact with one another and with their environment. Fish may become infected if there is 

high density of pathogens nearby, and when infected, fish shed pathogens.  

2.2.2 Particle swarm optimization algorithm 

A PSO algorithm was used to optimize the ABMs of aquaculture systems by finding the optimal fish 

density and farm locations. PSO is a computational method that helps us identify the optimal solution 

to such a problem by hill-climbing, - i.e. by iteratively searching for an improvement in the solution 

with respect to a certain set of criteria. The objective function in this case is defined so as to find the 

optimal mix of densities and locations across large number of possible values, i.e. one that poses a 

minimum infection risk. The PSO algorithm was selected because it has advantages over other 

optimization techniques such as Genetic Algorithms (GA) and Ant Colony Optimization (ACO). The 

PSO is a simple algorithm, easy to modify, has a rapid convergence and need less computationally 

resources comparing to GA and ACO. 

2.2.3 Sensitivity analysis 

ABM is a paradigm that we effectively adapt to the modeling and simulation of disease dynamics in 

fish population in general, and in marine aquaculture systems in particular. In this context, the ABMs 

applied are characterized by a variety of parameters. There is often a significant uncertainty 

associated with the values of each of these parameters, - statistically represented by distribution 

functions.  This uncertainty affects the result of the simulations as well as the result of the 

optimizations performed. In particular, the non-linearity characterizing the underlying structure of 

such systems causes the uncertainty originating from different sources to synthesize.  

Sensitivity analysis is the study of how this uncertainty in ABMs behavior can be apportioned to 

different sources of uncertainty in key input parameters. There are many approaches to perform a 
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sensitivity analysis such as one-at-a-time, scatter plots, variance-based methods, ...etc.  However, 

most procedures follow these steps: 

1. Determine the range for each input parameter.

2. Identify the model output to be analyzed.

3. Run the model a number of times using design of experiments.

4. Calculate the sensitivity measures of interest.

In this study, we used one-at-a-time method to perform sensitivity analysis in NetLogo. One-at-a-

time (OAT/OFAT) is the most common approaches and the simplest one, - changing one-factor-at-a-

time, to see what effect this produces on the output.  

In the first study, where ABM is applied to simulate fish disease dynamics in single fish populations, 

we have performed an analysis to assess the sensitivity of the model dynamics to various key input 

parameters. A variety of sensitivity analyses have been undertaken to estimate the attack-rate that 

determines the rate at which a disease spreads, and its sensitivity to various biological, physical and 

environmental factors. Some of these factors are individual-level characteristics such as fish 

swimming behavior and pathogen lifespan. While the other factors are part of the system structure 

such as fish density, seawater temperature, sea currents, and infection radius. 

It is important to perform an extensive sensitivity analysis in order to the identify the effect of 

parameter value variations on the simulation results (model output), - including variations in values 

characterizing the modeling method and techniques applied, such as time scale and sample size.  

2.3 Techniques and tools 

2.3.1 Techniques 

The models presented in this thesis are generic and may be applied to a variety of fish and the 

associated infectious diseases in different geographical areas. The data applied in this case are from 

Romsdalsfjord10 and the associated aquaculture industry. The aquaculture data, including 

the maximum allowed capacity of the fish farms in the area, are available on the webpage 

of the Norwegian Directorate of Fisheries, www.fiskeridir.no. The oceanographic data include sea 

currents data (speed and direction) and seawater temperature. In the simulations, I used the 

monthly average sea currents data from the SINMOD model (MODS, 2012) with a resolution of 800 

m x 800 m, and I added noise by benefiting from the distribution functions in NetLogo to achieve 

natural variety in the data. The data on the monthly average of the seawater temperature is available 

on the webpage of the Institute of Marine Research, www.imr.no/en/. The values for the infection 

and shedding parameters and the pathogen life span depend on the types of pathogens and fish 

involved. I used data that refer to the spread of PD among salmon (Stene, 2014; Alaliyat & 

Yndestad, 2015a). When simulating the swimming behavior of fish in aquaculture facilities, I refer to 

the data from the literature. 

2.3.2 Simulation 

A variety of tools were employed to perform the studies that form the basis for the thesis. These tools 

are divided into three main categories in the following way:  

10  Romsdalsfjord is 88 km Long and located in the Romsdal district of Møre og Romsdal county in mid-Norway. 
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• Tools to prepare the data: The data used in the ABMs are gathered from different sources

and are expressed in a variety of formats, - often not fully compatible with the modeling

requirements. For instance, the fish capacity is provided in “tons” by the Norwegian

Directorate of Fisheries, while I use individual agents (fish) in the models. Mathematical

equations were used to scale the quantitative data, while estimations were used to substitute

the qualitative data (i.e. stress in fish agents). The topographical data for Norwegian fjords

come in different formats (i.e. raster and shape formats). 3D maps of the Romsdalsfjord were

built in GlobalMapper (Bluemarblegeo.com) by combining the terrain (i.e. raster) and

bathymetry (i.e. vector) data. I removed the noise from the data and rescaled the maps to fit

in ABM tool. Global mapper is the geographic information system (GIS) software that I used

to facilitate such a process. It handles vector, raster and elevation data, and provides

conversion and combining features.

• Simulation tools: In order to implement models using agent-based methods, NetLogo 3D

was used. The NetLogo software was chosen among a variety of platforms developed to

build ABMs such as RePast, Swarm and Mason. In table 2.2 we present a list of most of the

NetLogo features that formed the basis for our choice. NetLogo is a multi-agent

programmable modeling environment, and offers a set of built-in libraries. The NetLogo

toolkit allows for simulations within a GIS environment and allows for the inclusion of

physical and environmental data as well. NetLogo also provides a graphical tool for easily

constructing interfaces (GUIs) to operate ABMs effectively and to display the simulation

results originating from such models (Wilensky, 1999).

At the start of this research, I implemented sample ABMs in the Unity3D game engine

(Unity3d.com). Unity3D is a three-dimensional physics game engine that is used for building

2D and 3D games realistically portrayed in graphics and with dynamics consistent with the

laws of physics. I had to give up this line of research because Unity3D is not a multi-agent

programmable language, and I need to write the programs to effectively represent the

conceptual model from scratch.

• Analysis tools: BehaviorSpace was employed to perform the sensitivity analysis.

BehaviorSpace is a software tool integrated with NetLogo and developed to perform model

experiments. BehaviorSpace runs the model many times, while systematically varying the

model’s settings and recording the results of each model run. This facilitates the exploration

of the input parameters and behavior space of the model.  It helps us determine which of the

many combinations of settings that causes the behavior patterns of interest / concern.

BehaviorSpace has the capacity to run models in parallel as well (Wilensky, 1999).

MATLAB was used to analyze the simulation results and to create publication-ready figures

(MATLAB, 2015).  MATLAB is a multi-paradigm numerical computing environment. It

allows for matrix manipulations and plotting of data in 2D, 3D and 4D.
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System • Free, open source

• Cross-platform: runs on Mac, Windows, Linux, et

al International character set support

Programming • Fully programmable

• Approachable syntax

• Language is Logo dialect extended to support

agents

• Mobile agents (turtles) move over a grid of

stationary agents (patches)

• Link agents connect turtles to make networks,

graphs, and aggregates

• Large vocabulary of built-in language primitives

• Double precision floating point math

• First-class function values (aka anonymous

procedures, closures, lambda)

• Runs are reproducible cross-platform 

Environment • Command center for on-the-fly interaction 

• Interface builder w/ buttons, sliders, switches,

choosers, monitors, text boxes, notes, output area

• Info tab for annotating your model with formatted

text and images

• HubNet: participatory simulations using networked

devices

• Agent monitors for inspecting and controlling

agents

• Export and import functions (export data, save and

restore state of model, make a movie)

• BehaviorSpace, an open source tool used to collect

data from multiple parallel runs of a model 

• System Dynamics Modeler

• NetLogo 3D for modeling 3D worlds

• Headless mode allows doing batch runs from the

command line

Display and visualization: • Line, bar, and scatter plots

• Speed slider lets you fast forward your model or

see it in slow motion 

• View your model in either 2D or 3D

• Scalable and rotatable vector shapes

• Turtle and patch labels

APIs • Controlling API allows embedding NetLogo in a

script or application 

• Extensions API allows adding new commands and

reporters to the NetLogo language; open source

example extensions are included

Table 2.2. NetLogo features (https://ccl.northwestern.edu/netlogo/docs/) 
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3. Agent-based modeling of complex systems

Agent-based modeling (ABM) approaches have been used extensively to model complex systems 

and are proving successful in a variety of contexts such as economics, business, technology, social 

sciences, biology and medicine. More recently these models have also been used within 

environmental management research (LePage et al., 2013). 

The aim of this chapter is to discuss the principles, limits, validation and uses of ABM in the context 

of complex systems.  

3.1 Modelling of complex systems 

In the following, I introduce a general definition of a system, and how we characterize a system as 

complex. People in various scientific disciplines have different perspectives on what a “system” is 

(Hall, 1962; Kauffman & Draper, 1980; Martin 1997; Hitchins, 1997; Stevens et al., 1998). In 

general, a system is defined as a set of objects/components/parts/elements, including the relationships 

between them, i.e. between their attributes. Sometimes a system is considered serving a purpose, in 

which case an objective to be accomplished (satisfied) is associated with the system. As in the case of 

“system”, scientists from various disciplines have proposed various definitions of the term 

“complex”, - an attribute of many systems (Cariani, 1992; Simon, 1996; Kirschbaum, 1998; 

Goldenfeld & Kadanoff, 1999; Weng et al., 1999; Whitesides & Iyengar, 1999; Rind, 1999; Arthur, 

1999; Rocha, 1999; Yndestad, 2010; Worldscientific.com, 2018). There is no agreed-upon, formal 

definition of the term “complex system”, as there are no precise boundaries between simple and 

complex systems. The definition of what is a complex system depends on the point of view and on 

the level of abstraction. But, in general, complex systems have common specific characteristics that 

challenge us when we try to understand the structure and the dynamics of such systems and the 

relationship between the two. For that purpose, we represent systems in the form of models that we 

validate through reality checks and utilize for the purpose of conducting simulation experiments. 

Complex systems may have the following general characteristics (Cilliers, 1999): 

• Complex systems consist of a large number of elements that, in themselves, may be simple

(e.g. school of fish, and flock of birds). In such a case, the conventional methods (e.g.

differential equations) become impractical when we are to offer a formal description of the

behavior of the elements.

• Time variant: A large number of elements are not sufficient and interactions between them

need to take place. In order to constitute a complex system, the elements must interact

dynamically.

• Nonlinearity: The interactions are non-linear. This means a certain perturbation may cause

different effects (e.g. large, medium, small), conditioned upon the current state of the system

(e.g. weather systems). In contrast to what is the case in linear systems, where the effects of a
perturbation is always proportional to the perturbation (i.e. the cause).

• Feedback: There are many direct and indirect feedback loops. Both negative and positive

loops are commonly found in the structure of complex systems.

• Complex systems are open systems: Complex systems interact with their surroundings and it

is often difficult to define the border of a complex system (e.g. fjord systems).

• State memory: The history of a complex system is important. Complex systems evolve

through time, and their past is co-responsible for their present behavior.

• Presence of emergent behaviors: The behavior of the system is determined by the nature of

the interactions, not merely by what is contained within its components. Since the

interactions are rich, dynamic, fed back, and nonlinear, the behavior of the system as a whole

cannot be predicted from an inspection of its components.
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• Complex systems are adaptive: They can re-organize their internal structure without the

intervention of an external agent (e.g. school of fish).

Previously, when studying a subject, scientists tended to use a reductionist approach, which 

endeavored to summarize the processes, dynamics, and change that occurred regarding lowest 

common denominators and the simplest, still most widely provable and applicable graceful 

explanations.  

This reductionistic approach has been common as a result our limited analytic capability (our ability 

to solve equations) and what, for a long time, was a limited computational capacity. Nowadays, 

powerful computers that can perform vast computational tasks over short periods of time. That 

allows scientists to study the dynamics resulting from the true complexity characterizing the structure 

of many systems. It is now possible to simulate models bottom-up (in great detail)11, such as ABMs 

where the emergent dynamic behavior of systems outcome is a deterministic or stochastic aggregate 

outcome of the behavior of the individual agents of the system. In one sense, therefore, ABM is a 

reductionist approach. ABM represents the system behavior at the least aggregate level of the agents. 

The emergent outcome of the complex system is a product of the interactions between the system 

components (i.e. the agents), an aggregate outcome that may feed back to the individuals, i.e. the 

agents.  

Challenges in Modeling 

A model is a representation of a system. Up to the second half of 20th century, modeling tools (i.e. 

computer software) did not have the capacity to support computationally intensive modeling methods 

(e.g. ABM) applied in the simulation of complex systems. In the 1950s came the theory of cellular 

automata and artificial intelligence, not applicable in practice due to the high computational demand. 

Later in the 1980s and 1990s, sufficiently powerful computers were made available. Along with this 

development in hardware, there was a parallel software development where object-oriented modeling 

tools, such as ABM also became available.  Reality, however, in all its complexity defies our 

modeling tools as well as our computational capacity. Thus, we face challenges when modeling and 

simulating truly complex natural systems. 

The first challenge in the modeling of complex systems (e.g. fjord ecosystems) with a large number 

of components with many relations between them is to overcome the computational demand of these 

kind of models by finding methods to reduce the computational time (i.e. use parallel processing and 

distributed systems).  

The behavior12 of complex systems cannot be easily described (Chu, 2011). Complex systems may 

exhibit behaviors that are emergent (e.g. traffic jam problem), and are sensitive to initial conditions. 

The system’s behavior is a product of the interactions between the system components (i.e. agents). 

The presence, absence, or type of the relationships between the components may affect the behavior 

of the aggregate system, so a description of this behavior must take into account each of these 

relationships. 

The structural characteristics of complex systems pose many challenges to the modeling of the 

system. First, this constitutes a challenge in the implementation part. How can we represent the 

system components and the relations? Components (e.g. fish in a school of fish) are closely coupled, 

governed by feedback, are self-organized and are adaptive. Relations are dynamic and nonlinear. The 

challenge is in describing the behavior of the components in the model in a way that represents the 

11  An approach of modeling a system by begins with details and works up to the highest conceptual level. 

12 I mean here the system behavior, dynamics of the system exhibited over time. 
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components and their interrelations in the real world. This requires us to have sufficient information 

at our disposal to describe the components and the relations in the model, - including which details to 

be included and excluded when modeling the individual parts of the system (e.g. details to model fish 

in aquaculture systems).  Even if we have experienced a technological improvement in computers, 

we still have limited computing power that calls for a careful trade-off between the model complexity 

on the one hand and the computability of the model on the other. 

Reality is continuous in time while as digital computer models operate discretely in time. A model as 

defined by (Longley & Batty, 2003) is a simplified representation of reality. A model can be 

constructed as a computer programme that uses (usually to some degree) a simplified digital 

representation of one or more aspects of the real world (e.g. fish disease dynamics). The challenge is 

the degree to which we can reduce the amount of information that we have about reality to 

produce a model of that reality that complies with the purpose of the model. This causes 

challenges both with respect to the amount and the type of data that we may need and disregard 

while creating the model. This challenge increases with the complexity of the structure of the 

system being modeled. The difficulties exist not only because of the amount and kind of data, but 

also due to the uncertainty of the interaction between the system’s elements. And the challenges are 

more significant if we need to represent autonomous (intelligent) agents that exhibit some kind of 

ability to learn / adapt.  Modeling this ability will result in an additional complexity in the model 

implementation and analysis.  

3.2 Agent-based models 

Increasingly ABM is being used for managerial purposes in a variety fields. The efficient and 

effective use of ABM for such purposes is obstructed by the fact that there is no clear definition 

of what ABM is or what an agent should be (Hare & Deadman, 2004). At the same time, this allows 

for a significant degree of freedom in the application of the ABM paradigm. Different models 

serve different purposes and thus the interpretation of the agents may vary from one application to 

the next. The aim is to build ABMs that are valid, yet simple enough representations of reality to 

facilitate our understanding of that reality. As George Box, a statistician, said, “Essentially, all 

models are wrong, but some are useful” (Box & Draper, 1987). In the following, I will set aside the 

diversity of ABMs in different fields and focus on common characteristics of agents and ABM. Here 

I will briefly define agents and ABMs.  

As already pointed out, there is no universal agreement on the definition of the term “agent” (Macal 

& North, 2005). Agent characteristics may not easily be elicited by way of literature studies in 

a consistent and brief manner because the concept of an agent is applied diversely across 

disciplines. The concept of an agent is meant to be a tool for analyzing a system, not just 

an absolute categorization where entities are defined as agents or non-agents (Russel & Norvig, 

2003). Some modelers consider any type of independent components in the system (i.e. 

software, model, individual, etc.), to be an agent. Others require that a component’s behavior must 

be adaptive in order for this component to be considered an agent, i.e. where the term agent is 

reserved for components that can, to some degree, learn from their environments and modify 

their behaviors13accordingly. Regardless, and from a pragmatic modeling viewpoint, there are 

several features that are common to most agents (Wooldridge & Jennings, 1995): 

• Autonomy:  Agents are autonomous and self-directed. They are capable of processing

information, to exchange this information with other agents, and to make independent

decisions (e.g. organisms, - fish).

• Heterogeneity: Agents permit the creation of autonomous individuals. Sets of agents may

13 I means here the agent/individual behavior, how the agent reacts to inputs to transform its state. 



 46 

exist, but they may also create, by spawning, combinations of similar autonomous 

individuals. 

• Activity: Agents are active because they exert independent influence in a simulation. The 

subsequent active features can be identified, - agents are;  

1. Goal-directed: Agents are often considered goal-directed, having goals to be achieved by 

way of their behaviors, - individually and collectively.  

2. Perceptive: Agents may have some awareness of their environment (surroundings). 

Agents may also be equipped with prior knowledge that constitute or affects their “mental 

map” of their environment, so as to provide them with an awareness of other entities, 

obstacles, or desired destinations within their environment. 

3. Interactive: Agents communicate effectively with their peers. For example, agents can 

obtain information about the states of other agents and/or the environment within a 

neighborhood, via neighborhoods of (potentially) varying size, searching for specific 

attributes, with the capability to ignore inputs that do not surpass a pre-specified 

threshold.  
4. Mobile: The mobility of agents is a specifically useful feature. Agents may be 

characterized by its coordinates and can roam the space defined by a model (e.g. fish in an 

aquaculture system).  

5. Adaptive and Learning: Agents may also be adaptive so as to make up Complex Adaptive 

Systems (Holland, 1995).  

 

ABMs are comprised of a multiple of interacting agents that exist within a model or simulation 

environment. A relationship between these agents is specified, linking agents to one another or other 

entities (i.e. landscapes) within a system. Relationships may be specified in a variety ways, from 

simply reactive to goal-directed. The behavior of agents can be programmed to take place 

synchronously (every agent performs actions at each discrete time step), or asynchronously (agent 

actions are scheduled by the actions of other agents, or with reference to a clock). Environments 

define the space in which agents operate, serving to support their interaction with the environment 

and other agents.  

In a modeling perspective, ABMs can be used as an experimental media for running and analyzing 

agent-based simulations. In such a laboratory, attributes and the behavior of agents, as well as the 

environment in which they are operating, may be changed and the resulting dynamics may be 

observed and analyzed. Typically, ABMs incorporate a large number of parameters operating within 

wide value ranges. The large parameter space in ABMs creates challenges in finding suitable 

methods by which one may explore that space in a way that realistically relates the model behavior to 

the purpose of the model (we address this problem in our third study). But the capability to simulate 

the individual actions of many diverse agents and analyze the resulting system behavior over time 

implies that ABMs may be useful tools for studying the effects of changing the attributes of agent’s 

and that of their environment on processes that operate at multiple scales and organizational levels 

(Brown, 2006).  

3.2.1 Advantages of Agent-Based Models 

Some authors have portrayed ABM as an advantageous approach in many cases for the following 

reasons: It; 1) captures some emergent phenomena; 2) provides a natural environment for the study 

of certain systems; 3) is flexible.  

Emergence is a characteristic of complex systems, and, by definition, emergent dynamic phenomena 

cannot be attributed to the dynamics of system’s parts, - the whole is more than the sum of the parts. 

Therefore, emergent phenomena can exhibit properties that may not be easily derived from the 

properties of the system’s parts. For example, a traffic jam may result from the behavior of the all 

individual car drivers who are following certain traffic rules, and may be triggered by, say, an 

accident or the fault of a driver driving in the wrong direction. The emergent dynamics (i.e. traffic 
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jam) is an aggregate result of the actions of all the drivers in response to that accident or fault. 

Studying the behavior of collections of agents focuses attention on relationships between entities 

(O'Sullivan, 2004). Since ABMs describe the behavior of and interactions between various parts of a 

system (i.e. bottom-up), ABM is the conventional approach for modeling emergent phenomena. 

In many cases, ABM is a convenient method for describing and simulating a system composed 

of real world entities. In particular, the agent-based approach may be useful when it is more 

appropriate to describe the component units of a system under some of the following conditions 

(Bonabeau, 2002): 1) The behavior of individuals cannot clearly be defined through aggregate 

transition rates, - for example, fish stress when feeling the crowd, or the decision to move; 2) The 

behavior of individuals is complex. Although hypothetically any process can be explained by an 

equation, the required number of differential equations increases exponentially as the complexity of 

behavior increases. Expressing complex individual behavior by a single equation, may, therefore, 

become intractable; 3) Activities are more convenient way of describing a system than processes; 

and, 4) Agent’s behavior is stochastic. In ABM, sources of randomness may be applied very 

specifically to represent the stochasticity in the behavior of an agent, - as opposed to adding noise 

more or less arbitrarily in aggregate equations.  

The agent-based approach to modeling is flexible, and, as such, particularly well-suited for geospatial 

modeling (e.g. virus spreading in a fjord system). Spatial simulations benefit from the mobility that 

ABMs offer. Agent mobility makes ABM very flexible regarding potential variables and parameters 

that may be included. Neighborhoods can also be identified using a variety of mechanisms. The 

implementation of agent interactions can easily be governed by space, networks or a combination of 

structures. It would be extremely demanding to represent such mobility using differential equations, - 

see for example (Axtell, 2000). Most importantly, ABMs can regulate behaviors based on 

interactions at a specific distance and direction. ABMs also supply a robust and flexible framework 

for tuning the complexity of agents (i.e. their behavior, the ability to learn and evolve, the degree of 

rationality, and rules of interaction). Additional such flexibility enables us to adjust levels of 

description and aggregation. It is easy to experiment with aggregate agents, sub-groups of agents, and 

single agents, where the different levels of description coexist within a model.  

 

3.2.2 Limitations of Agent-Based Models 

Some limitations reduce the applicability of the ABM approach in modeling at large. Although this is 

common to all modeling techniques, one issue relates to the purpose of the model. A model is only as 

useful as the purpose for which it was built. A model has to be built at the correct level of granularity 

or aggregation for every phenomenon, wisely selecting the appropriate amount of detail for the 

model to serve its purpose (Couclelis, 2002). The advancements made in ABM offers a means to 

increase the utility of simulation models, by closely tailoring the model and the subsequent analysis 

to the needs of end users (Parker et al., 2003). However, a model’s output must be interpreted 

correctly. Varying degrees of accuracy and completeness in the model inputs determine whether the 

output should be used purely to gain qualitative insight, or to facilitate accurate quantitative 

foretelling (Axtell, 2000).  

By definition, ABMs represent systems at a relatively disaggregated level (a high resolution or 

granularity perspective is applied). This level of detail typically implies the description of very many 

agents, attributes, and behaviors and their interaction with an environment. The way to treat this type 

of challenge in agent computing is through multiple runs whereby initial conditions and/or parameter 

values are being systematically varied to assess the robustness of simulation results (Axtell, 2000). 

There is a practical upper limit to the size of the parameter space that can be explored for robustness, 
and this computational process can be extremely demanding and time-consuming. Although the 
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computing power available is rapidly increasing, the computational requirement of ABM remains a 

limitation when modeling large systems. 

The main challenge for modelers is to find system boundaries and time limits that retain the required 

level of precision in the simulation results originating from a particular model designed for a 

particular purpose. Complex natural systems, such as fjord systems, are radically open and contextual 

systems. Fjord systems are radically open systems because their extent goes beyond what can be 

represented endogenously by a model. ABMs have clear boundaries, and they are closed systems 

where any state changes of the system or parts of it are due to the interactions between the parts 

within the system. The contextual system may include elements that occur in different systems or is 

itself is a shared element between many systems. For example, wild fish can be an element (a class of 

agents) that is included in different systems (i.e. an aquaculture system and fjord ecosystem), and the 

aquaculture system can be an element in the fjord system. The contextuality is a consequence of 

dividing the world into system and ambiance. ABMs have only internal contextuality since they 

don’t have ambiance. Still, ABMs may display some contextuality, but they are not radically open 

and they do operate within well-defined boundaries. Understanding the theories of complexity may 
be helpful in deciding how to draw the system boundaries to capture the essential elements required 

to portray emergent phenomena purposefully (Chu et al., 2003).     

Critics of complexity theory point out that the wide variety of unexpected dynamics exhibited by 

mathematical and computational models are rarely found in the real world, particularly because 

ABMs are very sensitive to initial conditions and small variations in interaction rules (Couclelis, 

2002). Consequently, modelers of complex systems are never likely to enjoy the intellectual comfort 

of laws. Despite this, and the other limitations that have been underlined, ABM is a useful tool for 

exploring systems that exhibit complex behavior.  

 

3.2.3 The purpose of Agent-Based Models 

There is a variety of ways in which a model may be applied, just as there are different types of 

models that have different characteristic features, and where each one has some advantages and some 

disadvantages (Casti, 1997). When considering these applications, one may gain a better 

understanding of what distinguishes an appropriate, valid, and purposeful model from less useful 

ones. The utility of ABM may be of one of three broad categories: explanatory, predictive and 

control. 

When employing explanatory modeling we attempt at exploring theory and generating hypotheses. 

Explanatory models usually focus on a specific aspect of a system and placing emphasize on some 

specific details of a phenomenon. These models are intended to be explanatory by saying how reality 

should or would be, under ideal conditions, but they do not attempt to reproduce actual systems 

(Parker et al., 2003). In our first study, we focused on building explanatory models. We built ABMs 
models to simulate fish disease dynamics in fish populations. In these explanatory models, we 

programmed plausible agent (i.e. fish and pathogen) behaviors and interactions to produce similar 

patterns that are observed from the real world systems. Then, we ran different simulations to explore 

theory and generate hypotheses. For example, we built different models with different fish swimming 

behaviors (i.e. swimming in schools, follow circular paths, or swimming randomly) to study the 

effects of the fish swimming patterns on the fish disease dynamics.    

In our second study, we focused on building predictive models (i.e. predict a pattern of fish disease 

dynamics in a Norwegian fjord). Predictive models are commonly used in order to evaluate 

scenarios, to identify and “extrapolate” dynamic trends, and to predict future state trajectories. 

Specifically, changes in initial conditions parameter values and exogenous inputs may be used to 

evaluate the possible effects on the model outcome. Part of the thesis work was to build infection risk 
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maps in the Norwegian fjords to evaluate the future scenarios. Predictive models are proposed to 

mimic real world systems and are specifically useful for scenario development and policy design.  

Control models are providing guidelines and control mechanisms for the intervention and 

manipulation of systems. In our third study, we developed a framework for using a PSO algorithm to 

identify optimal aquaculture system characteristics (i.e. fish densities and farm locations).  

Whether aiming for an adopting, an explanatory, a predictive, or a control approach to modeling, the 

choice is not entirely exclusive. This choice is mainly dependent on the required level of precision in 

the model. This, in turn, is directly related to the type of information and knowledge that is required, 

i.e. the purpose of the model. For instance, the more the model is aimed for control, the more precise 

it must be. 

3.3 Verification and validation of agent-based models 

In the previous sections, I have provided an overall view of ABM as applied to complex systems. 

Once we have implemented an agent-based model by overcoming the limitations and addressing the 

purpose of the model, the model must be verified by checking that the model performs to our 

expectation, i.e. produces the expected simulation results. In general, we must assess the validity of 

the model, - a process that serves the purpose of strengthening our confidence in the model and the 

results it produces. For that purpose, we need a robust and a valid model that can we depend on.  

 

3.3.1 Verification and Calibration 

When the model has been developed either by using an ABM tool (e.g. NetLogo) or by programming 

from scratch using low-level programming languages, the model must be verified by checking the 

model behaves as expected; often referred to as “inner validity” (Axelrod, 2006a; Brown, 2006). To 

achieve inner validity, I have tested the developed models to simulate fish disease dynamics and 

disease spread among many aqua facilities, under extreme conditions that should result in some 

easily predictable dynamics. It is, however, hard for a modeler to know whether unexpected 

outcomes are a reflection of a mistake in the computer programme (bug error), a logical errors, or a 

surprising consequence of the model itself (Gilbert & Terna, 2000). This difficulty is composited 

because complex systems can often produce emergent, unexpected and counterintuitive results. A 

modeler must still find out whether unexpected results are due to errors in the coding or the model 

logic (i.e. fish get infected process), or just a feature of the system being modeled. I safeguard against 

these problems by adopting different tests (i.e. execute the computer programme after each 

modification of the code to check if there is a bug) while programming the model. The difficulties of 

verification are increased by the fact that most simulations are dependent on random distribution 

functions and random number generators to simulate the properties of unmeasured variables and 

random choices. Therefore, repeated runs can produce very different outcomes (as shown on our 

simulation results of ABMs to simulate fish disease spread). However, one of the main advantages of 

ABMs is that they provide an easy method for simulating a real-world system that helps simplify the 

model logic, which make it easy to program (Batty, 2001). For instance, an individual susceptible 

fish will get sick if it is exposed to a number of pathogens in its surrounding. 

Another way of verifying a model is to re-implement it using a different programming language. For 

example, I implement the swimming behavior model of fish in cages by starting from scratch in C 

sharp (i.e. an object-oriented programming language), then I re-implement the model in NetLogo to 

include it in the fish disease model. This method will not guaranty the inner validity, but I became 

more confident by following this method.  
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After a model has been verified, the subsequent stages include the calibration and validation of the 

model. Calibration comprises setting the model structure and parameter values in ways to reflect a 

real world system. Calibration takes place in stages until the outcomes of the model fit (within a 

reasonable tolerance) the real world data gathered. Therefore, calibration is useful for assessing the 

ability of the model to simulate the real world system (i.e. showing that the model can generate 

results that match the real-world data). Calibration of ABMs to simulate fish disease spread requires 

data on the individual rules (i.e. fish and pathogens behavior rules). Several ways are followed to 

obtain these data (e.g. from literature, reports from aquaculture in Norway, people working in the 

field, statistical analysis of empirical data, …etc.).     

The level of correspondence between the model and the real data is dependent on the purpose of the 

model, and the modeler must develop confidence in the accuracy of the available data originating 

from reality (e.g. the data does not represent extreme situations). But calibrating a model may lead to 

the model being over-fitted, and in this situation, a model is insufficiently general to represent a 

diverse range of system outcomes or to apply it to other systems. A model with sufficient number of 

parameters can be tweaked until the real world data is matched (Carley, 1996). But modelers should 

be aware if the fact that calibration does not guarantee the validity of a model.  

3.3.2 Validation of Agent-Based Models 

A model is valid to the extent that it sufficiently represents the system being modeled (Casti, 1997). 

Of course, any model has a certain degree of validity and it cannot be categorized as valid or invalid 

in a simple form (Law & Kelton, 1991). Validity can be determined by comparing the output of the 

model with comparable data gathered from a real-world system. For example, in order to understand 

the output (i.e. behavior) of ABMs to simulate fish disease spread, it is necessary to evaluate deeply 

the details of the simulation history. The validation procedure is related to the use of the model. 

Gross and Strand (2000) has listed these approaches to validate ABMs of complex systems: 

• Validation through prediction: The modeler is repeating testing events until the accuracy of 

the model has proven satisfactory. Under normal conditions, this procedure is theoretically 

unproblematic, but many systems do not allow repeated testing of events (e.g. disease 

spread) and/or the changes are too slowly (e.g. climate change) to allow for a validation 

procedure through predictions across a relevant time-space scale. This method of validation 

is unrealistic in the validation of models developed to simulate disease spread in general, and 

fish disease spread in particular. It is not allowed to repeat testing events of fish disease 

outbreaks in aquaculture systems, and the false predictions of the model can cause huge 

losses and unexpected consequences.  

• Validation through retrodiction: The model output (i.e. behavior) is tested against historical 

data, so the available information in the historical data causes the future behavior of the 

system. If the model is able to reproduce a historical record correctly, then the model may be 

trusted to simulate the future. But this assumption is not justified when historical data is 

limited and uncertain. In fish disease spread processes, the historical data is limited, 

uncertain and part of the data is qualitative only. Also, there will always be a different model 

yielding a correct retrodiction of the historical record within some error margins. Therefore, 

through retrodiction validity alone we may not be not able to assess whether the mechanisms 

that constitute the model are valid (i.e. structural validity).    

• Structural similarity: The modeler strives for structural similarity between the model and the 

system, as we know it. Complex systems include huge numbers of and a major heterogeneity 

across parts and causal relations. Thus, a structural similarity approach may seem unrealistic. 

However, an assessment of the model including its structure on different levels (i.e. micro 

and macro levels) will truly determine whether the implemented model reflects the way in 
which the fish disease spread. For instance, do fish agents’ behavior match, with satisfactory 

accuracy, our conception of the aquaculture system? 



51 

• Pseudo-validation: If a great number of models all yield the same prediction, then the

prediction is somewhat justified. In our case, the simulation of fish disease spread in

Norwegian fjords, there are not many available models that has produced results with which

we may compare. In this thesis work, we compared the results from simple versions of the

implemented models to SIR model’s output. Also, we compared the results from all the

simulation to the qualitative results from different previous studies (i.e. results from Stene

work (Stene, 2013) and from SINMOD (www.sinmod.no).

In general, it is very difficult to validate fish disease spread models due to the lack of reliable field 

data.  In this work, we have applied a variety of validation techniques as follow:  

1. Validate simple models, and then add more complexity.

2. Extreme condition tests: We use unlikely combinations of key factors (e.g. fish density,

currents speed, seawater temperature, … etc.), usually high or low values of input parameters

to test whether the simulation continues to make sense at the margins.

3. Sensitivity analysis: In order to determine the effect of the input parameters and the agents’

interactions on the behavior of the model, sensitivity analysis is used. The aim of using

sensitivity analysis technique is to;

• Understand the conditions under which the model behaves as expected;

• Find the condition that maximizes the correspondence between the model and the

system behavior, as we know it; and

• Identify the conditions to which the model is sensitive, for example, which inputs

yield disease outbreak.

4. Cross-validation technique: This may be accomplished by comparing the results of the

models with empirical data at a single time period.  We accomplished this by running the

models for simple scenarios where the results were expected.

5. Compare the model output with other available models: We aligned the models with SIR

models for simple scenarios.

It is necessary to evaluate the simulation history in details (in micro and macro levels) to understand 

the behavior of ABMs. The analysis of individual histories is interesting in general, but they can be 

misleading; particularly if the model includes random elements. It is necessary to undertake a 

repeated number of simulations using identical parameters and initial conditions (using different 

random number seeds) to determine whether the conclusion of a simulation run is typical. Running 

many simulations will help discriminate whether particular patterns observed in a single illustrative 

history are unusual or typical. The results from these simulation runs will need to be presented as 

distributions, and statistical analyses will be required to assess any variation in the model output and 

to determine whether inferences from the simulation histories are well founded. Gilbert and Troitzsch 

(2005), and Axelrod (2006b) claim that regression will be required for analyzing quantitative changes 

in the output of a simulation, and analysis of variance will be required to assess the output of a 

simulation if the differences are qualitative.  

Usually, it is desirable to engage in sensitivity analysis when a model, at least for a specific set of 

parameter values and initial conditions, appears to be valid. The purpose of sensitivity analysis is to 

determine to what extent the level of variation in the model’s assumptions yield differences in the 

model output. The principle behind sensitivity analysis is to change the initial conditions and the 

parameter values of the model by a small amount and observe differences in the model outcomes 

(Castle & Crooks, 2006). However, a note of caution should be observed since complex systems can 

exhibit large and sudden dynamic shifts in response to relatively small perturbations in inputs 

(Manson, 2007).  

There are a few cautions that must be considered while validating and analyzing the output of a 

model (Gilbert & Troitzsch, 2005). Firstly, both the model and the system under analysis are likely to 

be stochastic. Therefore, the comparison between the model output and data from the real-world 

system are unlikely to correspond in every case. A second problem relates to the ability of the model 
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to offer valid predictions, since prediction will almost always be conditional (i.e. it is unlikely that all 

guessed outcomes can be produced). Additionally, there is a possibility that the model is correct, but 

that the data from the real-world system is not (i.e. inappropriate assumptions or estimates could have 

been obtained from the data). Finally, many simulations are path dependent: The outcome of a 

simulation is dependent on a specific initial setup. So different runs of the same model can generate 

variation in outputs due to changes in initial conditions, parameters, or the stochastic behavior / 

interaction of agents. Therefore, the history of a simulation is highly significant.  

Validation and calibration are the hardest two issues of ABMs. Even though there may be a 

correspondence between a model’s output and a real world system, this is not sufficient condition to 

conclude that the model is correct (Gilbert, 2004).   Similar outcomes can be generated from different 

processes, and just because a model generates similar outcomes does not prove that the processes 

included within the model account for the real world outcome. However, a model should be 

considered as a basic for reducing uncertainty about the future, from a prior state of unawareness, to 

one of more limited uncertainty (Castle & Crooks, 2006).  



53 

4. Agent-based models to simulate fish diseases

In this chapter, we will describe how to build ABMs to simulate fish disease dynamics in a fish 

population and to simulate transmission of pathogens between fish farms in sea aquaculture systems. 

In the last section, a framework for using a particle swarm optimization (PSO) algorithm to identify 

the optimal model parameter values is used.  

4.1 Aquaculture system model 

The aquaculture system has a set of fish farms, a swarm of pathogens, and a landscape. This system 

S(t) can be formulated as: 

𝑆(𝑡)  =  {𝐹𝐹(𝑡), 𝑃(𝑡), 𝐿(𝑡), 𝑁(𝑡)} (4.1) 

where FF(t) is a set of fish farms, P(t) is a swarm of pathogens, L(t) is the landscape or the 

environment where the previous components are located, and 𝑁(𝑡) is the mutual relation between 

these parts.  

The landscape L(t) 

The landscape L(t) is divided into four sub-landscapes and can be formulated as: 

𝐿(𝑡) = {𝐿𝑡𝑟(𝑡), 𝐿𝑐𝑢(𝑡), 𝐿𝑠𝑎(𝑡), 𝐿𝑡𝑚(𝑡)} (4.2) 

where 𝐿𝑡𝑟(𝑡) represents the terrain, 𝐿𝑐𝑢(𝑡) represents the map of the sea currents, 𝐿𝑠𝑎(𝑡) represents

the map of the seawater salinity, and 𝐿𝑡𝑚(𝑡) represents the map of the seawater temperature.

The terrain 𝐿𝑡𝑟(𝑡) covers fjord area where the fish farms are located. The terrain is divided into many

3D grids. The sea current landscape, 𝐿𝑐𝑢(𝑡), represents the speed and direction of the sea currents.

The seawater salinity, 𝐿𝑠𝑎(𝑡), and seawater temperature, 𝐿𝑡𝑚(𝑡), landscapes are changing in time and

space. The user can set the average seawater temperature and salinity at the surface level, and then 

we add some noise to include the variation that is present in nature. The water temperature also varies 

in the deep levels, as follows: 

𝑇⃗ (𝑥, 𝑦, 𝑧, 𝑡) = 𝑇0
⃗⃗  ⃗(𝑥, 𝑦, 𝑧, 𝑡) − 𝐶 𝐿⃗ (𝑦) (4.3) 

where 𝑇⃗ (𝑥, 𝑦, 𝑧, 𝑡) is the water temperature at the position (x, y, z) at the time t, 𝑇0
⃗⃗  ⃗(𝑥, 𝑦, 𝑧, 𝑡) is the

water temperature at the surface level (y = 0, maximum temperature value at the surface), C is a 

constant that represent the decay rate, and 𝐿⃗ (𝑦) is the water levels of the sea. 

The fish farm 𝐹𝐹𝑘(𝑡)

Each fish farm, 𝐹𝐹𝑘(𝑡), has a swarm of fish agents, FA(t). Each fish farm is represented by number

of 3D grids. The swarm of fish agents has some social rules that manage the individual movements in 

the swarm, consumes pathogens, and produces pathogens. Fish farms can hypothetically be located at 

any position in the simulated space. Closer distance between the farms (i.e. higher cohesion) 

increases the infection risk, while higher separation decreases the infection risk. 
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The pathogens swarm 𝑃(𝑡) 

The pathogens swarm consists of many individual pathogens: 

𝑃(𝑡) = {𝑃𝐴1(𝑡), 𝑃𝐴2(𝑡),…, 𝑃𝐴𝑛(𝑡)}                                                 (4.4)  

 

where 𝑃𝐴𝑗(𝑡) is the pathogen agent j, and n is the total number of pathogens at time t. 

Pathogens move by sea currents. The swarm of pathogens also has social rules (e.g., move together 

and align with others), and the swarm networks to the landscapes to manage the pathogen 

individuals’ movements (Reynolds, 1999). We assume that the simulation space is free of pathogens 

at the beginning. 

The relationships N(t) 

There are mutual relations between all the system elements (i.e. fish, pathogens and landscape). 

N(t) represents the relationships between fish and pathogens (e.g. infection process), and between 

them and the landscape (e.g. pathogen transmitter by currents).  

4.2 Agent-based model  

In this section, I will explain how to apply the ABM approach to simulate fish disease dynamics and 

pathogen transmission in a fjord aquaculture system. Table 4.1 shows the agent-based model’s 

agents. We have two types of agents, fish and pathogen. Each agent has many attributes and 

behavioral rules that update these attribute values in the context of time and space. 

 

Agent type Attributes Behavioral rules 

Fish • Position 

• Health status 

• Energy 

• Vaccinated 

• Update position 

• Update health status 

• Update energy (resistance 

factor) 

• Shed pathogens 

Pathogen • Position 

• Life span 

• Ability 

• Update position 

• Update life span 

• Update ability 

Table 4.1. Agents in the model 

4.2.1 The fish agent  

The fish are located in the farms, and each fish farm 𝐹𝐹𝑘(𝑡) has a swarm of fish that is composed of 

many fish agents, 𝐹𝐴(𝑡): 

                            𝐹𝐹𝑘(𝑡) =  {𝐹𝐴1(𝑡), 𝐹𝐴2(𝑡), … , 𝐹𝐴𝑛(𝑡)}                                             (4.5) 

A fish agent 𝐹𝐴𝑖(𝑡) has several attributes and behavioral rules that update these attributes (see Table 

4.1).  In the following, I will introduce how to set these attributes and update them in space-time 

domain. 

Fish swimming rules: Fish agents swim only within cages. I have developed three different fish 

movements behavior: 
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a) Moving randomly: If a large time step (i.e., 10 minutes or one hour) is used in the simulation, 

the fish’s positions are updated randomly at each time step, as: 

𝐹𝐴𝑖
⃗⃗ ⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) =   𝑅𝑖

⃗⃗  ⃗ ∗ (
𝑚𝑎𝑥𝑥,𝑦,𝑧−𝑚𝑖𝑛𝑥,𝑦,𝑧

2
) + 𝐹𝐹𝑘

⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑧, 𝑡)                 (4.6) 

where 𝐹𝐴𝑖
⃗⃗ ⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡)  is the fish i position vector, 𝑅𝑖

⃗⃗  ⃗ is a unit random vector in 3D, 

(𝑚𝑎𝑥𝑥,𝑦,𝑧 − 𝑚𝑖𝑛𝑥,𝑦,𝑧) is the fish farm dimensions, and 𝐹𝐹𝑘
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑧, 𝑡) is the farm position in 

the simulation space. Fish can swim in different patterns, and they can socialize to form a 

school.  

 

b) Schooling behavior: Fish normally swim in schools to benefit from the flocking behavior 

such as: enhanced foraging success and defense against predators.  

A fish has three simple rules of steering behavior that describe how an individual fish move, 
based on the positions and velocities of its flock mates (Reynolds, 1987). 

 

• Cohesion (Figure 4.1): Each fish tends to move to the middle position of its neighbors. 

Cohesion, 𝐶𝑜ℎ𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, of the fish (𝐹𝐴𝑖) is calculated in two steps. First, the center (𝑐𝑖) of 

the flock (f) that has this fish is calculated: 

𝑐𝑖⃗⃗ = ∑
𝐹𝐴𝑗
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥,𝑦,𝑧,𝑡)

𝑁∀𝐹𝐴𝑗=𝑓                                                  (4.7) 

where, 𝐹𝐴𝑗
⃗⃗ ⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑧, 𝑡) is the position of fish j  and N  is the total number of fish in f . 

Then the tendency of the fish to navigate toward the center of density of the flock is 

calculated as the cohesion displacement vector: 

  𝐶𝑜ℎ𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 = 𝑐𝑖⃗⃗  −  𝐹𝐴𝑖

⃗⃗ ⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑧, 𝑡)                                           (4.8) 

• Alignment (Figure 4.2): each fish match the direction and the speed of its neighbors. 

This rule causes fish to follow each other. The alignment (𝐴𝑙𝑖𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) is calculated in two 

steps. First, the average velocity vector of the flock mates ( vf(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) is calculated by: 

  𝑣𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∑
𝑣𝑗(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑁∀𝐹𝐴𝑗𝜖𝑓                                                          (4.9) 

Then 𝐴𝑙𝑖𝑖⃗⃗ ⃗⃗⃗⃗  ⃗ , is calculated as the displacement vector between the average velocity of the 

flock and the velocity of the fish:    

 

                                       𝐴𝑙𝑖𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  = 𝐹𝑣𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑣𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗                                             (4.10) 

 

A fish has a limited speed that depends on its weight and length. In general, the weight-

length relationship can be described by the following equation (Jones et al., 1999):  

                                           𝑊 =  𝑎 ∗ (𝐿𝑏)                                                                        (4.11)  

where W is observed fish weight, L is observed fish length, and a and b are computed 

by: 

                                        𝑙𝑜𝑔 (𝑊) =  𝑙𝑜𝑔 (𝑎) +  𝑏 ∗ 𝑙𝑜𝑔 (𝐿)                               (4.12) 

 where a is the regression intercept and b is the regression slope. 

The fish speed depends on many factors. In this study, I computed it by:  

 

                                            𝐹𝑖𝑠ℎ 𝑠𝑝𝑒𝑒𝑑 = 𝑘 ∗  𝐿                                                        (4.13)  

where 𝐿 is fish length, and 𝑘 is a constant that depends on the environment condition. 
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• Separation (Figure 4.3): Each fish keep a distance from other fish nearby to avoid

collision and prevent crowding. This rule acts as the complement of the cohesion rule.

There are many ways to implement this rule. I calculate the separation (𝑆𝑒𝑝𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) of fish

by:

𝑆𝑒𝑝𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −∑ (𝐹𝐴𝑖
⃗⃗ ⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑧, 𝑡) − 𝐹𝐴𝑗

⃗⃗ ⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑧, 𝑡))∀𝐹𝐴𝑗𝜖𝑓         (4.14) 

Vectors defined by the position of the fish 𝐹𝐴𝑖(𝑡) and each visible fish 𝐹𝐴𝑗(𝑡) are

summed, then separation steer 𝑆𝑒𝑝𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is calculated as the negative sum of these

vectors.       

Fish has a minimum separated distance to keep between it and other neighboring fish, 

and the fish has a limited vision distance.  

Figure 4.1. Cohesion social rule (http://www.red3d.com/cwr/boids/) 

Figure 4.2. Alignment social rule (http://www.red3d.com/cwr/boids/) 
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  Figure 4.3. Separation social rule (http://www.red3d.com/cwr/boids/) 

c) Circular behavior (Figure 4.4): Fish in sea cages prefer to swim in the middle of the cage

referencing to the cage depth and follow a circular movement (Folkedal et al., 2012).  The

fish agent (𝐹𝐴𝑖(𝑡)), follow a horizontal circle path with small disturbance in its orientation

(i.e. direction) as seen in Figure 4.4. The fish is using a separation rule to avoid crowding and

being hit by other fish. The fish agent is slightly disturbed in its direction in horizontal plane

(horizontal direction) by applying:

𝐹𝐴𝑖(𝑡)ℎ𝑒𝑑 =  𝐹𝐴𝑖(𝑡)ℎ𝑒𝑑 ± 𝑅𝑛 ∗ (𝐹𝐴𝑖(𝑡)ℎ𝑒𝑑 , 𝑠𝑡𝑑) (4.15) 

where 𝐹𝐴𝑖(𝑡)ℎ𝑒𝑑 is the heading of fish agent i that is the rotation of it around the z-axis, 𝑅𝑛

is a normally distributed random floating point with a mean of current heading and a 

standard deviation 𝑠𝑡𝑑.  

Also, the fish has a small disturbance in its vertical direction in z-direction by applying: 

𝐹𝐴𝑖(𝑡)𝑝𝑖𝑡𝑐ℎ =  𝐹𝐴𝑖(𝑡)𝑝𝑖𝑡𝑐ℎ ± 𝑅𝑛 ∗ (𝐹𝐴𝑖(𝑡)𝑝𝑖𝑡𝑐ℎ , 𝑠𝑡𝑑) (4.16) 

where 𝐹𝐴𝑖(𝑡)𝑝𝑖𝑡𝑐ℎ is the angle between the orientation vector of fish agent i and the

horizontal plane, 𝑅𝑛 is a normally distributed random floating point with a mean of current

pitch angle and a standard deviation 𝑠𝑡𝑑.  
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Figure 4.4. Fish swimming in circular path behavior. 

Fish energy attribute: Each fish has an epidemic resistance factor that reflects the ability of its 

immune, which is a value between 0 and 1. We assign reference values of 0.8 with some noise: 

                                         𝑅𝐹 𝑖  =   𝑅𝐹 𝑟𝑒𝑓 ± 𝑅 ∗ 𝑁𝑟𝑓                                                        (4.17) 

where   𝑅𝐹 𝑖  is the resistance factor of fish i,   𝑅𝐹 𝑟𝑒𝑓   is the reference resistance factor value that 

can be set by the user, 𝑅 is a random number in the range of [0,1], and 𝑁𝑟𝑓 is the noise value.                               

Infection rules: Fish agents are categorized into four main health states as in the SEIR (susceptible, 

exposed, infected and removed) model (Bjørnstad, 2005). In the following text, I will explain how 

the fish health state of individuals will be updated over time. A susceptible fish becomes infected if 

there are many pathogens around it, the pathogens have a good ability to infect, and the fish has a 

week 𝑅𝐹, as determined by the Algorithm 4.1 procedure.  

Algorithm 4.1. infection rules  

1: For each susceptible fish agent i…then 

2:       If    (𝑅𝐹 𝑖 ∗  ∑ (𝑝𝑗  ∗  𝑎𝑏𝑗)𝑝𝑗 𝑖𝑛 𝑟   ≥   𝑇),  

                 Where 

   𝑅𝐹 𝑖  is a fish 𝑖 resistance factor, 𝑝𝑗 is any pathogen 𝑗 in 𝑟 distance from 

fish 𝑖, 𝑎𝑏𝑗 is the infection ability of pathogen j, and 𝑇 is a selected threshold. 

3:              get infected 

4:       End if 

5:   End for each 

Once the fish has been infected, it will leave the susceptible category and enter the exposed category. 

All fish agents move between these four health states. Therefore, the population of agents is divided 
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into four groups or compartments consisting of individuals that are susceptible, exposed, infected or 

removed. The fish agents are heterogeneous, and each agent has its own individual discrete SEIR 

model. The contact rate in the SEIR model is equivalent to the individual fish infection rules in 

ABMs. The fish agent health state in ABMs is dynamically updated. The number of fish with the 

same health state provides the number of fish agents in the four groups. 

The process of updating the fish health states at each time step is achieved by applying the health-

state update method, as shown in Algorithm 4.2.   

 

Algorithm 4.2. Fish health-state updating  

1: For each fish agent…then 

2:      Check health status 

3:     If fish is susceptible then 

4:          If there are a number of pathogens around the fish then 

5:       1. Change fish state to exposed 

6:     2. Die by normal death rate 

7:       Else  

8:        Die by normal death rate  

9:       End If 

10:   End If 

11: If fish is exposed then 

12:         If fish passed exposed period then 

13:     1. Change fish state to infected 

14:         2. Die by illness death rate 

15:  Else  

16:       Die by normal death rate  

17:  End If 

18:    End If 

19:  If fish is infected then 

20:     Produce a pathogen by a given probability “shedding rate”  

18:         If fish passed infected period then 

19:     1. Change fish state to recovered 

20:     2. Die by normal death rate 

21:   Else  

22:    Die by illness death rate  

23:   End If 

24:    End If 

25:  If fish is recovered then 

26:          If fish passed immune period then 

27:      1. Change fish state to susceptible 

28:          2. Die by normal death rate 

29:    Else  

30:     Die by normal death rate  

31:    End If 

32:     End If 

33: End for each 

 

Producing pathogens process: The infected fish 𝑖 sheds pathogen 𝑗 at the same place where it is 

located using a given rate (shedding rate) at each time step. Different sources use different units, and 

values range across 106.5 PFU/fish/h (PFU=plaque forming units) (Gregory, 2008), 105-108 

CFU/fish/h (CFU=colony forming units) (Rose et al., 1989) and 6.8*103 TCID50 /ml/ kg fish/ h/ 

(maximum rates) (TCID50=the amount of virus required to kill 50% of infected hosts) (Urquhart et 

al., 2008). The units are not single pathogens, - rather, they are units that are measurable in the lab. 

Since the numbers are very high and computationally difficult to implement in the model, I set a 
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probability between 0-1 (adjustable) that an infected fish sheds a pathogen, but this model pathogen 

represents a large number of real pathogens. 

4.2.2 The pathogen agent  

The pathogens swarm P(t) consists of many individual pathogens: 

                             P(t) = {𝑃𝐴1(𝑡), 𝑃𝐴2(𝑡),…, 𝑃𝐴𝑛(𝑡)}                                             (4.18) 

 

where 𝑃𝐴𝑗(𝑡) is the pathogen agent j, and n is the total number of pathogens at time t. The pathogen 

agent 𝑃𝐴𝑗(𝑡) has three main attributes (see Table 4.1); position in the space, ability to infect fish, and 

life span.  

Rules governing movement: The pathogens are drifted by sea currents. Each pathogen moves based 

on the current speed and direction, which is based on the location of the pathogen at the start of each 

time step. Pathogens inherit the current direction of the place they are presently located, and by 

moving to a new place, they inherit the direction of that new place. When moving, the pathogen 

might hit dry land. In this case, the pathogen is removed from the model (dies). 

The pathogen j updates its position as follows: 

‖𝑣(𝑡)⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ‖  = 𝐶𝑠𝑟  .  𝑅𝑛(𝐶𝑠, 𝑠𝑡𝑑𝑠 )                                                          (4.19)    

                                               𝑃𝐴𝑗
⃗⃗⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡)   =  𝑃𝐴𝑗

⃗⃗⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑧, 𝑡)  + 𝑣(𝑡)⃗⃗ ⃗⃗ ⃗⃗⃗⃗  ∗  ∆𝑡                       (4.20) 

where ‖𝑣(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗‖   is the magnitude of the velocity, 𝐶𝑠𝑟 is the relative current speed that is inherited from 

the grid where the pathogen j is, and 𝑅𝑛 is a normally distributed random floating point with a mean 

of 𝐶𝑠 (average current speed in this area) and a standard deviation 𝑠𝑡𝑑𝑠 . Then, the new pathogen 

agent j position, 𝑃𝐴𝑗
⃗⃗⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡)   is the new pathogen agent j, position 𝑃𝐴𝑗

⃗⃗⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑧, 𝑡) is the 

current pathogen agent j position, 𝑣  is the pathogen velocity, and ∆𝑡 is the time step. 

The velocity direction is related to the pathogen’s orientation. The pathogen’s orientation is defined 

by two variables: heading 𝑃𝐴𝑗(𝑥, 𝑦, 𝑧, 𝑡)ℎ𝑒𝑑 and pitch 𝑃𝐴𝑗(𝑥, 𝑦, 𝑧, 𝑡)𝑝𝑖𝑡. Heading is the angle between 

the forward vector of the pathogen projected onto the horizontal plane and the vector [0 1 0], and 

pitch is the angle between the forward vector of the pathogen and the horizontal plane. We calculated 

these variables as follows: 

                                        𝑃𝐴𝑗(𝑥, 𝑦, 𝑧, 𝑡)ℎ𝑒𝑑  = 𝐶𝑑   +  𝑅𝑛(𝐶𝑏𝑖𝑎𝑠, 𝑠𝑡𝑑𝑑)                                       (4.21) 

                                            𝑃𝐴𝑗(𝑥, 𝑦, 𝑧, 𝑡)𝑝𝑖𝑡 = 𝑝𝑖𝑡𝑖𝑛  –  𝑅 ∗ 𝑝𝑖𝑡𝑣                                                    (4.22)  

 

where 𝐶𝑑  is the current’s direction angle, 𝑅𝑛 is a normally distributed random floating point with a 

mean of 𝐶𝑏𝑖𝑎𝑠  (current heading bias variable) and a standard deviation 𝑠𝑡𝑑𝑑 , 𝑝𝑖𝑡
𝑖𝑛

 is the initial pitch 

value, 𝑅 is a random number in the range of [0,1], and 𝑝𝑖𝑡𝑣 is the pitch value.                             

 

Life cycle: Pathogen life span is a function of seawater condition (temperature and salinity). Salama 

estimated the values for infectious salmon anemia virus (ISAV), infectious pancreatic necrosis virus 

(IPNV) and salmonid alphavirus (SAV) to be between 8.33 and 62.5 hours (Salama & Murray, 

2011). The life span’s relation to the seawater temperature can be modeled as (Stene et al., 2014): 

                                          𝑃𝐴𝑗(𝑥, 𝑦, 𝑧, 𝑡)𝐿𝐶= q * exp (- T / h)                                                       (4.23) 

 

where T is the water temperature, q is the pathogen life span at a water temperature of 0°C, and h is 

the decay rate.  
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Ability to infect: Each pathogen has an ability attribute that has values between 0 and 1. I used initial 

values of 0.8 and added some noise:  

 𝑃𝐴𝑗(𝑡)𝑎𝑏  = 𝑃𝐴𝑗(𝑡)𝑎𝑏0 ±  𝑅 ∗ 𝑁𝑎𝑏 (4.24) 

where 𝑃𝐴𝑗 (𝑡)𝑎𝑏 is the ability of pathogen j to infect, 𝑃𝐴𝑗(𝑡)𝑎𝑏0 is the initial value of that ability that 
can be set by the user, 𝑅 is a random number in the range of [0,1], and 𝑁𝑎𝑏 is the noise value.

Once the pathogens arrive at the neighboring sites (i.e., susceptible farms), they will try to infect the 

susceptible healthy individual fish in that farm. The infection rules described in Algorithms 4.1 & 4.2 

applies. 

4.3 Using PSO algorithm to identify automatically agent-
based models parameter values 

ABMs to simulate fish disease spread are characterized by dozens of parameters that all together 

determine the general behavior of the system. Finding optimal set of values for input parameters is 

needed to get optimal solutions in running scenarios. Typically, in ABMs, a small change in a single 

parameter can lead to a radical change to the system’s behavior. In such systems in which small 

differences in parameter settings produce very different results, the search for a set of desirable 

parameter values may become a long and tedious process due to the huge number of parameters that 

characterizes the model and thus the large search space that exists. Therefore, it is crucial to develop 

an efficient strategy to automatically explore and tune the parameter space of ABMs. 

With the purpose of finding the optimal parameter values that characterizes an aquaculture 

production system with a minimum risk of fish disease spread, we present a methodological 

framework for finding the optimal values for fish density and location of fish farms by using a PSO 

algorithm to explore the value space of these parameters.  

In this section, I will first provide an overview of PSO algorithm. Then I will introduce a framework 

for optimizing the selected parameters to achieve a maximization of the proposed objective function. 

4.3.1 Particle Swarm Optimization 

PSO is a computational method that optimizes the solution to a problem by iteratively trying to 

improve a candidate solution with regard to a given measure of quality. In 1995, Kennedy and 

Eberhart (Kennedy, and Eberhart, 1995) introduced PSO originally developed to solve non-linear 

continuous optimization problems. More recently it has been used to solve many real-life problems. 

For example, PSO has been successfully applied to track dynamic systems (Eberhart, and Shi, 2001) 

and estimate weights and structure of neural networks (Zhang et al., 2000).  

The PSO methodology operates by placing a group of individual particles into a continuous 

search space, wherein each particle is initialized with a random position and a random initial velocity 

in the search space. The position and velocity are updated synchronously in each iteration of the 

algorithm. Each particle adjusts its velocity according to its own experience and the experience 

of the other individuals in the swarm in such a way that it accelerates towards positions that have 

high fitness values in previous iterations. In other words, each particle keeps track of its 

coordinates in the solution space that are associated with the best solution that it has achieved 

so far. This value is called personal best (pbest). Another best value that is tracked by the PSO is the 

best value obtained so far by any particle in the neighborhood of that particle. This value is called 

(gbest). So the basic concept of PSO lies in accelerating each particle toward its pbest and the 

gbest locations, with a random weighted acceleration at each time step. 
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Each particle modifies its position by applying the standard continuous PSO algorithm as follows: 

𝑣 (𝑘 + 1) =  𝑤𝑣 (𝑘) + 𝑐1𝑅1
⃗⃗ ⃗⃗ (𝑝𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ – 𝑠 (𝑘)) + 𝑐2𝑅2

⃗⃗ ⃗⃗ (𝑔𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ – 𝑠 (𝑘))

(4.25) 

𝑠 (𝑘 + 1) =  𝑠 (𝑘) + 𝑣 (𝑘 + 1) (4.26) 

where 

 𝑣 (𝑘) is the velocity of a particle at iteration k. 

𝑠 (𝑘) is the position of a particle at iteration k.  

𝑅1
⃗⃗ ⃗⃗  and 𝑅2

⃗⃗ ⃗⃗  are random numbers in the range of [0,1] with the same size swarm population.

𝑝𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the particle’s personal best solution has achieved so far.

𝑔𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the best solution achieved among all the particles.

𝑐1 and 𝑐2 are learning factors, which will be fixed through the whole process.

𝑤 is the inertia weight: 

𝑤 = 𝑤𝑠𝑡𝑎𝑟𝑡 − 
𝑤𝑠𝑡𝑎𝑟𝑡−𝑤𝑒𝑛𝑑

𝑀
 𝑘 (4.27) 

where M is the maximum iteration number and k is the current iteration, and we change the real 

position values to integer values that represent fish density and the indexes of the cells at each 

iteration.  

The pseudo code of PSO is shown in Algorithm 4.3. 

Algorithm 4.3. PSO algorithm 

1:  For each particle 

2:     Initialize particle 

3:  End 

4: 

5:  Do 

6:     For each particle 

7:         Calculate fitness value 

8:       If the fitness value is better than the best fitness value (pbest) in history 
9:  set current value as the new pbest 

10:       End If 

11:    End 
12: 

13:    Choose the particle with the best fitness value of all the particles as the gbest 
14:     For each particle 

15:       Calculate particle velocity according PSO velocity equation 

16:        Update particle position according PSO position equation 

17:    End 

18:  While maximum iterations or minimum error criteria is not attained 
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4.3.2  PSO to find optimal fish densities and farm locations 

In this section, a framework to apply PSO algorithm to find the optimal combinations of fish 

densities and farm locations, - the ones that provide minimum risks of infection in the aquaculture 

system, is presented.  

Integer particle swarm optimization (IPSO) 

The standard continuous PSO algorithm must be modified to solve this problem. The search space is 

discrete; it is the cell coordination that contains two integer numbers, and the number of fish in each 

farm. Therefore, the search space is a three-dimensional space {fish density (𝐼𝑓), x, y}. 

Objective function 

The main objective is to increase the production in the aquaculture systems while avoiding the fish 

disease spread. Disease outbreaks pose a significant loss in the aquaculture systems and pose a threat 

to the total ecosystem in the fjords. The fish farms have maximum capacities, but to avoid the 

infection risk, optimal capacities must be identified. The objective function in this case is a multi-

objective function that is divided into two functions representing a conflict of interest. The first 

function is to maximize the fish density, while the second one is to minimize the infection risk (i.e. 

minimizing the attack-rate). A combined objective function of the two objective functions is a 

weighted sum between the fish density and the infection risk, - calculated using the following 

equation:  

𝐽 = ∑ [𝑤0 (1 − 𝐴𝑟(𝑘)) +
𝑤1(𝐼𝑓  (𝑥𝑘,𝑦𝑘)−𝐼𝑓  (𝑥𝑘,𝑦𝑘)𝑚𝑖𝑛)

(𝐼𝑓 (𝑥𝑘,𝑦𝑘)𝑚𝑎𝑥−𝐼𝑓  (𝑥𝑘,𝑦𝑘)𝑚𝑖𝑛)
 ] ∀𝐹𝐹𝑘(𝑡) 𝜖 𝑆(𝑡)                                (4.28)            

where 𝐴𝑟(𝑘) is the attack-rate (proxy for the infection risk) in farm 𝐹𝐹𝑘(𝑡),  𝐼𝑓 (𝑥𝑘, 𝑦𝑘) is the fish 

density of farm 𝐹𝐹𝑘(𝑡), and 𝑤0 , 𝑤1 are selected weights. 
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5. Main findings

In this chapter, I summarize the results of the studies carried out in this PhD and present how 

they relate to the research objectives. Further work, in the form of additional applications, are  

presented at the end of the chapter. 

5.1 Fish disease dynamics in fish population sensitivity to 
different factors 

Norwegian marine aquaculture systems are located in open seawater areas such as in the fjords that 

also receive an annual influx of fresh water from land and provide a range of nutritional, social and 

economic benefits to humans. Coastal and fjords water are supplemented with a variety of substances 

resulting from onshore activities, from the offshore oil and gas industry, from fish farming and other 

offshore activities. Norwegian fjords systems are complex systems that are generally difficult to 

understand and that exhibit dynamics that one may not easily control for. The fish disease dynamics 

in such systems depends on many factors such as biological, physical, chemical and environmental 

factors. The disease transmission process is a complex, non-linear and unstable process. In this 

section, highlights from the results of the research on the use of ABMs to simulate and analyze 

contagious disease dynamics in fish populations, will be presented. Specifically, the sensitivity of 

fish disease dynamics to a variety of factors will be summarized. Sensitivity analyses contribute 

significantly to the exploration of the dynamics of such complex system models, because there is a 

high degree of parameter values uncertainty associated with such models. 

5.1.1 Effects of fish density 

Fish agents constitute the main part of the fish disease dynamics process. Infected fish are hosts of 

pathogens and shed pathogens to infect other fish. In crowded fish farms, the opportunities for the 

fish to swim is limited. Moreover, fish are stressed and more susceptible to diseases (Ogut, 2001). 

Algorithm 4.1 reflects all these issues. Increasing the fish density, increases the attack-rate that is the 

measure of the rate at which a disease spreads in a fish population. The individual fish infection 

process as described in Algorithm 4.1, is determined by four factors; the degree of fish resistance to 

the disease, an infection radius (i.e. the distance from the susceptible fish that determine the area 

around it to be checked if there are pathogens in the neighborhood), the number of pathogens within 

the infection radius, and the pathogen’s ability to infect fish. These factors depend on simulated fish 

and pathogen types. An individual fish in the ABMs represents a huge number of fish in real 

Norwegian aquaculture facility (up to 1000 fish). The sum of pathogens is associated with the fish 

density because infected fish release (shed) pathogens so that this sum increases with an increased 

fish density. Subsequently, the attack-rate increases due to the increased probability of combined fish 

and pathogen presence resulting from a higher fish density in the fish farm.  
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(a) (b) 

Figure 5.1. (a) Attack-rate after 20 days (y-axis), vs. fish population (x-axis), with infection radius 2 

and 3. (b) Attack-rate after 20 days (y-axis), vs. fish population (x-axis) and infection radius (y-axis) 

varied. 

Figure 5.1 shows the attack-rate reported in the infected farm due to resulting from a change in both 

fish population (proxy for fish density, since the physical size of the fish farm is constant) and 

infection radius (infection distance). 10% of the fish population is assumed infected initially. 

Increasing the infection radius and fish population, increases the attack-rate. It will reach 100% if the 

infection radius increases by more than 5 units regardless of the fish population value due to the 

increasing probability of pathogen presence (Figure 5.1(b)). The attack-rate shall not exceed its 

maximum value depending on the fish population (fish density) as shown in Figure 5.1(a). For 

example, attack-rate will not exceed 65% if the fish population value is equal or less than 500. 

Therefore, optimal fish densities in fish farms will reduce the disease spread and lead to a sustainable 

Norwegian aquaculture industry. 

Figure 5.2. Attack-rate (y-axis) vs. fish population (x-axis) in the susceptible farm after 8 days. 

Figure 5.2 shows the attack-rate reported in the susceptible farm resulting from a change in the fish 

population.  In this case, the susceptible fish farm is placed near the infected farm (i.e. distance 
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between infected farm and susceptible farm is 9.6 Km), and we run the model with default values as 

in study three (Alaliyat et. al., 2019). The pathogens drift by the sea currents from the infected farm 

to the susceptible farm. The number of pathogens released from the infected site depends on the fish 

density in the infected farm. When the pathogens arrive at the susceptible farm, the infection process 

in Algorithm I is applied. As we see in Figure 5.2, the attack-rate depends on the fish population 

(i.e. fish density), and the infection is only happening if the fish population passes a certain threshold.  

5.1.2 Effects of environmental factors: sea-water temperature and 

currents 

The spread of diseases in fish populations is a dynamic phenomenon; there is the dynamics of 

occurrence (incidence) and prevalence depending on the interactions between fish (host), pathogen, 

and the environment. The virulence of the pathogen and the conditions of the fish (health, age, stress 

etc.) will affect the spread of disease (Rimstad, 2011). Both fish and pathogens are directly 

influenced by the condition of the seawater in which they live. The speed and direction of the water-

currents affect the swimming behavior of the fish (Oppedal et al., 2011). Pathogens drift mainly by 

current (Stene, 2013). Consequently, the current speed and direction are the major factors 

determining the movements of pathogens. Pathogens move quickly out of the fish farm when the 

current speed is high. Therefore, the pathogens’ density in the farm decreases when the various 

current speed values in a single infected fish farm: The attack-rate decreases as the current speed 

increases, see Figure 5.3.  

Figure 5.3. Infected percentages (y-axis) dynamics in different current speed values. 

Figure 5.4 shows the percentage of the infected fish in the infected farm and in the susceptible farm 

(the susceptible farm is placed near the infected farm, 9.6 Km) under a variety of current speeds, sea 

temperatures and fish population parameter values. The infection process inside the farms is faster 

with low current speed as shown in the left two columns. While the infection at the susceptible site 

starts only if current speed is high (25 cm/s), - as shown in the third column. Thus the speed of the 

current plays a major rule in the infection process inside and between the fish populations.  
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Figure 5.4. Percentage of infected fish at site one, an infected farm (blue), and site two, a susceptible 

farm (red), as a result of water temperatures, current speeds and fish population values. 

Seawater temperature affects both the fish and pathogens. High seawater temperature decreases the 

fish resistance to infection, and decreases the pathogen lifespan as well (Stene et al., 2014). The 

shedding pathogen process and the pathogen lifespan are highly dependent on environmental 

conditions such as seawater temperature, and thus alter with seasonal environmental conditions 

(Krkosek, 2010). The seawater temperature is a variable associated with the sea depth as well. In 

short periods during the simulation, the seawater temperature values are assumed constant and one 

that depends on the depth. The average seawater temperature is not changing over short periods of 

time; its warming or cooling processes is slow. Therefore, when simulating over a short period of 

time, such as one day or one week, there will not be a significant difference in the horizontal 

seawater temperature. Specifically, this is true if this period is within a season and does not include 

the seasonal changes, from spring to summer or from summer to autumn. The pathogen lifespan is an 

important factor in the pathogen transmission to near aquaculture facilities, but has less effect on the 

disease dynamics within the infected aquaculture site since the pathogens residence time will 

typically be short and the pathogen will move out of the site by way of seawater currents.  

Figure 5.4 shows that the susceptible fish farm will become infected only if the seawater temperature 

is low (< 5°), column one and three. While, when the water temperature is high (≥ 15°), column two

and four, most of the pathogens die before arriving at the susceptible site, so that the pathogens will 

not infect that site.  

The fish density plays major roles in both the infected and susceptible farms as illustrated in the 

previous section. Figure 5.4 shows that the disease is spreading faster when the population in a 

particular farm is larger, - as shown in the lower two rows.  
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5.1.3 Effects of fish swimming behavior 

Fish swimming behavior is a significant factor in the fish disease dynamics, since the fish agents 

become infected if it swims only in water that contains pathogens above a certain density. Fish prefer 

to swim in schools (Reynolds, 1987; Alaliyat et al., 2014), but in the sea cages their swimming 

ability is impaired and affected by a variety of factors (e.g. access to food and light). Previous studies 

show that fish in sea cages prefer to swim in the middle of the cage depending on the cage-depth and 

that they follow a circular movement in the normal current speed. But they remain nearly in place at 

fixed positions in high current speed (Oppedal et al., 2011; Folkedal et al., 2012; Johansson et al., 

2014). Fish swimming speed depend on the fish length-weight relationships (Jones et al., 1999). In 

the first study, three fish swimming behaviors were tested: random, swarming and circular behavior. 

The tests were conducted under low current speed (i.e. 5 cm/s average). The average fish speed was 

40 cm/s. Figure 5.5 shows the attack-rate in the three fish swimming behavior modes. The lowest 

attack-rate was experienced when the fish swam randomly, while the highest attack-rate occurred 

when the fish swam in a circular path in the middle of the cage. When the fish swim randomly, they 

are uniformly distributed in the simulation space, while if they swim in a circular or in a school 

pattern; their movements are concentrated in a specific area of the available space.   

Figure 5.5. Infected percentages (y-axis) dynamics in different fish swimming behavior. 

5.2 Infection risk maps 

Identifying infection risk in space-time domain is an important process in preventing emerging fish 

diseases in marine aquaculture systems, and will help us understand how to prevent an existing 

disease to spread. The infection process of individual fish depends on a variety of factors as 

described in Algorithm 4.1.  Infection risk in a specific location at a specific time depends on the 

densities of fish and pathogens at that location. The environmental condition (i.e. water temperature 

and current pattern), and the fish densities in infected sites affect the pathogen density in the 

simulation space. In this study, only pathogens that are relocated by sea currents contribute to the 

infection risk. In reality, pathogens move by other ways as well; - associated with escaped infected 

fish, fish boats, sea birds, and wild fish. Figure 5.6 portrays the maximum risk distance that live 

pathogens can travel based on the seawater temperature and current speed over a duration of 8 days. 

By identifying the distance (i.e. Risk Distance) that the pathogen can spread, we may identify the 

infection risk at a particular location. This distance decreases with higher seawater temperatures 
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because the life spans of pathogens are shorter in hot water than in cold water. Moreover, the risk 

distance increases the stronger the currents are that relocate the pathogen.   

Figure 5.6. Risk distance from the infected site when it contains 500 individuals (risk distance vs. 

current speed & seawater temperature).  

In reality, current speed and direction in Norwegian fjords may change significantly in the time and 

space domain, and we can expect values to remain steady for short period only (i.e. a few hours or 

days). The currents in fjords are affected by topographical distinctions and they are driven by many 

forces such as winds, river runoffs, tides and water exchange due to water density differences.  

Figure 5.7 shows how the risk patterns resulting from the pathogen density, follow the sea current 

patters in part of the Romsdalsfjord, - affected by the topography of the fjord. By building infection 

risk maps in space-time domain around the fish sites under different environmental conditions, one 

may assist in the management of the Norwegian fish industry, by preventing the emergence of fish 

diseases that may cause large losses in the Norwegian aquaculture industry.  
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Figure 5.7. Pathogen concentration in two dimensions (2-D) after a period of time. Midsund14 

5.3 Optimization of aquaculture system 

The Norwegian government is promoting an environmentally sustainable aquaculture industry by 

preventing the fish disease outbreaks that harm the marine ecosystem and destabilizes the biological 

diversity. Norwegian marine aquaculture systems are complex, dynamic systems in which the 

emergent outcome of the system is a product of the interactions between the many and diverse parts 

of the system. In modeling such systems using ABM techniques, we may identify tipping points in 

the input vector value space, where a small change in one of the parameter values may dramatically 

affect the model output. Particularly, in fish disease dynamics, such tipping points separate two 

dynamic modes that a model can exhibit; one where the disease dynamic is stable or is dampened 

(i.e. attack-rate is constant or decreasing), and another one where the disease dynamics is unstable 

(i.e. attack-rate is increasing). Such input parameters represent different environmental, physical and 

biological properties that affect the infection process, such as site fish densities and locations, sea 

currents and seawater temperature. Some of these factors may not be controlled, such as sea currents 

and water temperature. Others, such as farm locations and fish densities may be subject to 

management and optimal values may be found under the current environmental circumstances. 

Optimizing the fish density and farm locations can reduce the infection risk. Sensitivity analysis is 

time consuming and are often unrealistic in such cases, as the value space of the parameters is 

typically huge. In the third study, applying a PSO algorithm to optimize ABMs input parameters, we 

document the development of an automatic search to effectively and efficiently explore the parameter 

space so as to find optimal values that give the desired dynamics. By utilizing the PSO algorithm, we 

present a feedback control mechanism that causes a stable model behavior mode. The stability in the 

model behavior is measured by an objective function that comprises two conflicting objective 

functions; minimize the attack-rate in the system and maximize the fish density. Figure 5.8 

demonstrates that even a simple PSO algorithm needs only 18 iterations to find an optimal fish 

density and farm’s location. Thus such an optimization supports the management of aquaculture 

systems aiming towards a sustainable aquaculture industry system. 

14 It covers part of the Romsdalsfjord near Midsund municipality in Møre og Romsdal County, Norway. 
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Figure 5.8. Best solution tracking in PSO: the left side shows the part of the Romsdalsfjord where is 

the simulation took place, and the right side shows the best solution tacking (black line) and the red 

cells are the initial random particles’ positions.  

5.4 Potential applications 

In the previous sections, we presented the main results from a variety of our studies. In this section, 

we will discuss potential applications of the models developed. The application of any model is 

tightly associated with the reason and the need for working with such a model. Skov (2008) has listed 

some of these reasons; 1) to simplify and idealize so as to focus on issues of interest and, thereby, 

gain knowledge; 2) to compensate for lack of data; 3) to test possible future situations; and 4) to use 

the models’ idealized image of real world phenomena as a platform for communication including 

environmental learning situations, participatory planning process, etc. In this PhD research, all of 

these reasons are applicable. 

When applying ABMs to model and simulate fish disease transmission, we focus on a disease 

outbreak phenomenon. Applying sensitivity analysis, we may assess the sensitivity of model output 

(i.e. attack-rate) to the various input parameters so as to explore current theory and generate new 

hypotheses regarding the fish disease dynamics. In the first study, various hypothesis about fish 

disease dynamics were generated, such as; the attack-rate increases when the fish swim in a circular 

path in the middle of the cage, conditioned by the cage depth. Also, using ABMs to simulate possible 

future fish disease transmission scenarios could provide a method to compensate for lack of data 

regarding fish disease transmission by way of a risk analysis.  

In the second study, ABMs are applied to simulate fish disease transmission between several 

aquaculture sites. Moreover, predictive models are being implemented to evaluate the location of 

future farms by building infection risk maps in space-time domain. The infection risk maps are built 

after running the ABMs with specific initial parameter values for a period of time. The results can 

help in the control or prevention of the fish disease outbreaks by applying proper actions (e.g. 

removal and vaccination). Building risk maps after running specific scenario will help in fish 

industry develop management policies that govern their decision-making.   

In the third study, optimizing the aquaculture system by finding the optimal fish densities and farm 

locations, models are implemented to provide guidelines and control mechanisms for 

the management of Norwegian aquaculture systems. The objective to develop a planning process 

that ensures a sustainable fish industry, may be translated to an objective function: The model is 

trying to maximize/ or minimize the objective function value by applying a feedback mechanism 

process to identify optimal values for the inputs parameters (i.e. fish densities and farm locations), 

- those that 
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result in the optimal value in the objective function. The objective function aims at minimizing the 

infection risk in the system and maximizing the fish densities.   

Predictive and control models can be used in the management of the fish industry and assist in the 

policy design, - say, by applying actions (e.g. moving susceptible fish or slaughtering infected fish) 

depending on the simulation of future scenarios in the predictive models, or by using control models 

(such as the developed model, in the third study, to find the optimal fish densities and farm locations) 

to plan sustainable fish industry system and apply policy decisions.   
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6. Merits and limitations of agent-based modeling

In this chapter, we present some important advantages of applying ABM to environmental 

management challenges in Norwegian fjords in general, - and, in particular, to the simulation of fish 

disease dynamics and pathogens transmission between fish populations. Then, we address some 

limitations that associated with; model boundary, scaling in the time-space domain, lack of data, the 

application of standard validation methods, the interpretation of results, and ethical issues.   

6.1 Advantages of applying Agent-based modeling to the 
problem at hand 

In this section, we address some of the advantages of applying ABM and simulation to the 

environmental management of Norwegian fjords and its resources in general, and to re-enforce our 

understanding of fish disease dynamics and pathogens transmission between fish populations in 

fjords in particular. In chapter 3, advantages of applying ABM to complex systems in general, were 

summarized. In this section, we discuss these advantages in the context of the problem addressed in 

this research.  

As indicated initially, we need scientific-based models to assist in planning and management 

processes aimed at achieving sustainability in the Norwegian aquaculture industry by considering the 

its context. As already established, the process of fish disease transmission in aquaculture systems is 

influenced by many factors, including individual (fish and pathogen) conditions, movement behavior 

and environmental conditions. Fish disease dynamics originates from a complex system, and the 

transmission of pathogen is a process that it is very difficult to predict, analyze or control. Norwegian 

marine aquaculture systems are complex systems since they have the following features that are 

characteristics of all complex systems.  

System behavior: 

• Emergent behavior: Emergence is a phenomenon that cannot be reduced to the system’s

parts; the whole is more than the sum of the parts (Holland, 2014). This property can only be

studied at a higher level. Aquaculture systems on many different scales exhibit emergent

behavior as following:

1. Fish disease outbreaks: Disease outbreaks are common in fish populations.

Individual fish are infected by pathogens around, and pathogens drift by sea currents

from one site to another. The fish disease process exhibits a phase change from non-

spread (i.e. the disease disappears) to spread (i.e. the disease spreads indefinitely) by

changing the parameters in the individual infection process.

2. Fish behavior: Fish swim individually and in schools. Fish swim in a complicated

pattern to socialize with others by forming a school or by swimming in a circle, or

to re-act to internal and external needs or threats (e.g. foraging and defending). A

school of fish behavior is a product of the interactions between the fish and the

feedbacks between this emergent behavior and individual decisions. The effects of

the group behaviors result on the decisions of the individuals (Reynolds, 1999).

Emergence is difficult to predict at the macro level (i.e. aggregate level) by knowing the 

micro level (individual behavior), or by the opposite, finding the micro structure that 

generate the known emergent behavior. These difficulties result from the system structure 

that has features such as e.g. path dependency, non-linearity and dynamics. 

• Sensitivity to initial conditions: This means that each state in the system is arbitrarily closely

located to other states from which significantly different future trajectories may originate.

The fish disease process depends on the interactions between fish, pathogen, and the
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environment (i.e. seawater). Consequently, our models, developed for the purpose of 

simulating disease spread processes merely consist of these three elements (fish, pathogen, 

and environment). Small change in the initial condition of the system modeled may cause a 

large effect (i.e. disease outbreak). For instance, a small change in the seawater temperature 

can increase the infection rate massively. Norwegian marine aquaculture systems are located 

in large natural systems (i.e. fjords systems).  The environment characteristics (i.e. sea 

currents and seawater temperature and salinity) are predictable only for short periods of time 

and are distributed in space domain in complex, dynamic patterns. However, we know the 

approximate boundaries and the average values in time series and how they are distributed in 

the space domain also.  

 

System structure:  

• Uncertain boundaries: Norwegian marine aquaculture systems are open systems. Their 

openness goes beyond what can be represented by a model because they are located in open 

areas with a variety of connections to other systems. Pathogens can be introduced to the 
system from other fjords and coastal areas, or by methods other than transport by water (e.g. 

human activities and seabirds). The seawater characteristics (i.e. currents and water 

temperature) are affected by different factors such as: weather conditions and human 

activities.  

• Nesting: The components of aquaculture systems may, themselves, be complex systems that 

exhibit dynamics such as current pattern and fish swimming behavior. Currents in the 

Norwegian fjords are driven by winds, tides, river runoffs and water exchange due to 

offshore density differences. Fish usually swim in schools, and these schools are complex 

systems as well.  

• Nonlinearity: A small perturbation may cause a large effect, a proportional effect, or even no 

effect at all. The nonlinear nature of the system, which determines the system behavior, is 

sensitive to the initial inputs. In a nonlinear structure, fish, pathogens, and environment 

interact with each other. For instance, pathogen’s lifespan is a non-linear function of the local 

environment (Alaliyat & Yndestad, 2015c). The individuals’ outcomes are dependent of one 

another, and this constitutes a form of structural interaction that cannot be ascertained by 

using linear methods.  

• Feedback loops: Both negative and positive feedbacks are found in aquaculture systems. An 

aquaculture system is an example of biological systems where the system consists of 

populations of organisms (i.e. fish and pathogens). A positive feedback loop occurs in the 

aquaculture system when the reactions to the disease outbreaks increase/ amplify the 

infection rate. In the aquaculture system, more pathogens are produced by an increased 

number of infected fish, which, in turn, will cause the infection rate to increase. A negative 

feedback loop occurs when the reactions to the disease outbreaks decrease the infection rate. 

For example, susceptible fish will modify their immune system to avoid infectious. Negative 

feedback loops are responsible for the stabilization of the system.    

• Time variant system: Aquaculture system has a large number of parts that are modeled as 

agents and environment in our models. Agents (fish and pathogens) interact with each other 

and their local environment. Fish, pathogens and the environment have some properties that 

change over time. For example, fish immune system, fish and pathogen activity, seawater 

temperature, currents speed and direction. 

 

ABM is the known approach for modeling emergent phenomena because it describes the behavior 

and interactions of the system’s components bottom-up. By applying ABMs to simulate fish disease 

spread, we were able to study the dynamics of this phenomenon at an aggregate level, - from the 

realization of how individuals act and interact to cause the emergent dynamics at the systems level. 

ABMs are useful in the simulation of disease spread in marine aquaculture systems for the following 

reasons: 



77 

• Complex interactions: The interactions between the agents (fish and pathogens), and

between the agents and the environment, are typically non-linear feedback processes

characterized by delays.

• Heterogeneous populations: In ABMs, agents (fish and pathogens) may be described

individually in a heterogeneous population, - as opposed to what many other modeling

methods (e.g. SIR) allows for. The heterogeneity allows for specification of agents with

varying degrees of purposefulness and rationality. Also, the topology of agent integrations

may be heterogeneous.

• Flexibility: The flexibility of ABM to simulate fish disease spread can be observed along

several dimensions. For example, we can easily add more agents (e.g. fish) to the model.

Also ABMs provide a flexible framework for describing and adjusting the complexity of

agents, -their behavior (e.g. fish swimming behavior). In addition, we can change levels of

description and aggregation by using subgroups of agents (e.g. fish farm).

• Spatial mobility: In ABMs, we can dynamically assign a location in space to each individual

agent (fish and pathogen) so as to allow for roaming is the simulation space. This mobility

makes ABM very flexible in terms of potential variables and parameters that can be

specified.

• Stochasticity: In ABMs we may represent processes as stochastic by way of Monte-Carlo

simulation. Due to the ambiguity and the lack of data, there is uncertainty associated with

individual agent behavior in fish disease spread processes. Consequently, this feature

significantly contributes to realistic model descriptions of the reality of aqua-systems in

Norwegian fjords.

• Visualization: In ABMs, we can obtain a good visualization of the simulation process in

real-time. Moreover, we can visualize the outputs in various methods (e.g. epidemic curves,

plots, text, ..., etc.). Many ABM tools (e.g. NetLogo) provide a 3D visualization option as

well.

• User-friendly: Many of ABM tools (e.g. NetLogo) allow for the creation of a good graphical

user interfaces (GUIs). This adds flexibility to the implementation and simulation processes

by allowing the user to interact effectively (even during the simulation) with the model. The

GUI allows for different users to create and test various scenarios by setting values of key

parameter in the model without need of modeling understanding. ABM tools generally

provide the users by statistics and analysis tools to understand the model’s behavior.

• Evaluation future scenarios: The use of ABMs to simulate possible future fish disease

transmission scenarios could provide a method to compensate for lack of data regarding fish

disease transmission.

• Control mechanism: By using ABMs to simulate future scenarios, and applying feedback

control theory to adjust the input parameters of the model so as to achieve model stability,

we can develop a managerial control mechanism of fish disease spread in Norwegian fjords.

• Appropriate model framework: The behavior of fish agents cannot clearly be defined

through aggregate transition rates (e.g. stress under crowding, or swimming behavior under

variable currents). Fish and pathogen exhibit complex individual behavior that aggregate

into systems behavior. It is typically challenging to describe the aggregate dynamics using

differential equations without reference to the behavior of the individual agents. In ABM

one meets that challenge by modeling how agents behave individually in interaction with

each other.  As a consequence, the resulting aggregate dynamics emerges from the behavior

playing out at the disaggregate level.
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6.2 Limitations 

6.2.1 Model boundary 

Norwegian marine aquaculture systems are radically open and contextual systems because they are 

parts of larger complex natural systems (i.e. fjord systems). ABMs have clear boundaries, and they 

are closed systems where any state changes of the system or parts of it are due to a defined input 

function (Chu et al., 2003). Therefore, the modeler has to draw the system boundaries so as to 

capture all essential feedback relevant to the time interval under investigation to achieve the purpose 

of the model.  

The general scope of this thesis was to use ABM to build models and simulate fish disease spread in 

marine aquaculture systems.  The studies were limited to the horizontal disease transmission that 

takes place by water contact only (e.g. PD). The fish are assumed only to move inside the farm cages, 

while the pathogens move by currents also between the aquaculture sites. The transmission of 

pathogens such as IPN15, VHS16 and SVC17 that may take place by way of infected escaped fish, wild 

fish, seabirds, well boats, multi-site operations including equipment, are excluded from this study 

(Peters & Neukirch, 1986).  

6.2.2 Scaling in time and space 

The model is a discrete representation of a continuous reality. The challenge is how we may 

accomplish a valid data reduction (i.e. reduce the time granularity) and still retain the model validity 

(effectively represent reality). The models we use to simulate fish disease spread include data that are 

related to the agents (i.e. fish and pathogens) and the environment, originating from various sources 

(e.g. Norwegian Mapping Authority, SINMOD, Statistics Norway, ..., etc.). These data are provided 

in different time and space scales. Therefore, the modeler is challenged to combine all these data to 

represent the various component of the model in space, - including the agents’ interactions in time-

steps. 

Due to the computational effort required, we may not take into consideration the entire fish 

population of the aquaculture facility and not the real number of pathogens in such a facility. The 

Norwegian real salmon sea fish farm typically hosts around a million fish (www.fiskeridir.no), and 

the pathogens are practically uncountable. The Norwegian Sea fish farms do, however, have different 

sizes and different shapes. A real sea fish farm could have a size of around 10,000 square meters, and 

depth of 40 meters. The farms in our models are in a cube shape of cages of 40 x 40 x 40 meters. The 

fish farm model contains a maximum population with 1000 fish while in reality you would expect to 

see about 1000 times more fish in an actual fish farm of this size. This simplification was made in 

order to save computer resources while running the model. A tick is the time step in the model and it 

represents a second, a minute, 10 minutes, an hour or one-day, (it can be selected by the user). When 

simulating disease spread in only one fish farm, a high resolution was used: 1 meter is represented by 

26 pixels, and a tick represents one second. When simulating marine aquaculture systems with more 

than one farm, 1 meter is represented by 0.65 pixels in the farms’ sites and by 0.065 pixels outside 

15 Infectious pancreatic necrosis (IPN) virus, causes a severe viral disease of salmonid fish. 

16 Viral hemorrhagic septicemia (VHS) virus, causes a deadly infectious fish disease. 

17 Spring viraemia of carp (SVC) virus has been shown to infect a wide variety of fish species.  
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the farms. The tick size was set to 10 minutes. Each pathogen in the model actually represents a batch 

of pathogens (i.e. uncountable number of pathogens). The infection process depends on the 

infectiousness and shedding dose that are very difficult to quantify. In our models, we used estimated 

probability functions to approximate them.  

Scaling the model in time and space may affect the number of contacts between the agents and the 

infection process. For instance, increasing the time step in the simulations causes a less frequent 

position-updating of agents and consequent loss of detail on system behavior.  

6.2.3 Lack of data 

An important limitation in our studies is the lack of data related to the behavior of the individual 

agents in the time-space domain, and the lack of data characterizing the infection process. In general, 

this is a limitation in most disease transmission models, - so also here. Data related to fish behavior in 

cages are rare, and mostly qualitative. In reality, fish behave differently under different conditions 

depending on light, current, water temperature, food sources, crowds, stress, infection, etc., - a fact 

we have ignored in our models. 

Truly empirical data characterizing the infection process is unavailable. The existing data related to 

the infection dose and shedding rates are taken in the labs under unrealistic conditions. Also these 

data are difficult to interpret quantitatively for our use in models like ours. 

There is uncertainty regarding the relationships between the agents (i.e. infection process and 

shedding pathogen process), and between the agents and their environment (i.e. fish swimming 

behavior and pathogen behavior, - life span and spreading).  

6.2.4 Limitations to apply standard validation methods 

The usefulness of the model depends on the validity of the model that is closely associated with the 

purpose of the model. Standard validation methods such as validation through prediction or behavior 

replicability tests are unrealistic in a case of complex systems such as Norwegian marine aquaculture 

systems. Replicative validation is not a choice when the historical data is uncertain and limited as in 

fish disease transmission process. Predictive validation (i.e. repeating testing event) is impossible to 

apply on a relevant time-space scale.  

Validating the implemented model’s output by comparing them with validated outputs from some 

other models developed using the same or other methods is unrealistic also in the case of simulation 

of the diffusion of fish diseases in marine aquaculture systems. The available outputs from other 

models are mostly qualitative output since these models are explanatory models, or the output is 

derived from uncertain historical data (e.g. SINMOD). 

The last option is striving for structural similarity between agent’s behavior in simple models and the 

real system, as we know it, and validates the models’ outputs through retrodiction method. Then, 

extend the validated simple models by adding complexity to them. Applying structural similarity 

between the model and the system, as we know it, makes the model structural valid. But in the case 

of complex systems that include a massive number of components and dynamic interactions between 

them, it is unrealistic to apply structural similarity on all levels (i.e. individual and aggregate levels). 

The model’s output of the simple cases can also be compared with the output of other models (e.g. 

SIR). This technique has been applied in the first study in the PhD work (Alaliyat & Yndestad, 

2015c). However, adding complexity to the validated simple model is challenging and requires deep 
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verification process. The output of the model is sensitive to the initial conditions and can be an 

emerging behavior, which is difficult to relate to the model’s structure.   

6.2.5 Interpretation of results 

The results of these studies are limited to the objectives of the whole PhD study. The main objectives 

have been to examine the spread of a fish disease using ABM and simulation, and to build a strategy 

for optimizing the location and fish density of aquaculture production systems.  

The aquaculture industry data used in the studies reflects the aquaculture systems in the 

Romsdalsfjord, and the models developed either used the data or were inspired by these data. The 

data are biological, physical and environmental in nature. Even if there are some similarities across 

the Norwegian fjords, other fjords could be very different in terms of geographical structure, 

water temperature, sea currents, etc. Consequently, one should be careful when generalizing the 

results from our study that are directly addressing the case of Romsdalsfjord.  

When using ABMs to simulate complex systems such as marine aquaculture systems, the resulting, 

emergent dynamics (effects) may not easily be attributed to the underlying structure causing such 

dynamic effects due to the complex, non-linear feedback nature of that structure causing e.g. 

sensitivity to initial conditions. This limits the process of interpreting the results, - especially when 

the purpose is to develop effective policy recommendations.  

6.2.6 Ethical issues 

The uses of the model may create some ethical issues. These issues can arise when the results of 

modeling and simulation affects the services and the benefits for some stakeholders. For example, the 

directorate of fisheries may justify their decision of granting or denying a new fish farm license or 

ordering the shut-down of a fish farm, using models as the one we have developed. Therefore, one 

needs to very carefully validate any such model before its output is put to use in a management 

process.  The validity needs to be assessed in terms of its impact to avoid that management processes 

are being misguided by invalid models, say, due to errors or uncertainty in the empirical data. 

This is also true because ABMs constitute closed representations of systems that, in reality, are open 

and contextual. This context may be economic, social, and environmental. If this context is not 

realistically represented or carefully considered in the implementation of the model-based policy 

recommendations, then stockholders, other stakeholders, such as the fish industry employees and 

their dependents, as well as the environment, may suffer.  From time to time the economic, social and 

environmental interests may be in conflict with each other. In those cases, a model may, when 

carefully developed, validated and applied, effectively portray the true nature of such conflicts and 

contribute to their resolution. 
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7. Conclusions and future studies

7.1 General conclusions 

Background: The Norwegian fish farming industry has increased rapidly in terms of volume and 

value production in recent years and is expected to continue this expansion in the near future. 

Emerging diseases continue, however, to pose a serious challenge to the industry and limit its 

expansion. It is necessary to structure and manage a growing, environmentally sustainable 

aquaculture industry in a way that minimizes risks to the marine environment and to biological 

diversity, - including the transmission of fish diseases. Fish disease transmission processes in marine 

aquaculture systems are complex, and dynamic and defies analysis and prediction. This process 

originates from a complex system, i.e. an infected fish farm, and is influenced by many factors, -

individual biological conditions of fish and pathogens, their geographical dynamics (movement and 

relocation) and related environmental conditions (e.g. currents and seawater temperature). Norwegian 

aquaculture systems exist in open areas (i.e. fjords) and they are exposed to several time variant 

external factors that threaten the sustainability of the industrial aquaculture production and threaten 

the marine ecosystem in general. Therefore, it is very important to build properly validated models to 

enhance our understanding of how sustainability may be ensured and how threats may be mitigated. 

That will form the basis for effective strategy development, policy design, and decision-making. 

Objective: The objective of the study behind this thesis is two-fold: 

• To examine the dynamics of fish diseases spreading within and between marine

aquaculture sites by means of ABM-based simulations. More specifically, a bottom-up

method is applied to simulate the fish horizontal disease dynamics that originates from

interactions between agents (fish and pathogen) themselves and their environment.

• To optimize the fish densities and farm locations of marine aquaculture systems based

on minimizing the infection risk, and maximizing the opportunity to obtain a

sustainable system. This objective is two-fold as well. The first one is to build ABMs

to predict the pathogen transmission pattern in a Norwegian fjord and to create

infection risk maps to identify the risk areas associated with a particular fish farm

location. The second objective is to develop a method by which we may optimize the

production volume of aquaculture systems based on minimizing the infection risk.

Methods: The ABM and PSO algorithm were used to implement the models so to accomplish the 

objectives in the studies. The ABM approach is the principle method that was employed in building 

all the models of the fish disease transmission process presented in this thesis. The PSO algorithm 

has been applied in the third study to optimize the aquaculture system production by finding the best 

farms distribution and optimal fish density in each of them, i.e. the combination that minimizes the 

infection risk (i.e. that maximizes the production by maximizing the number of healthy fish). 

Sensitivity analysis was applied to explore the effects of variations and uncertainty in the input 

parameter values of the ABMs on the results of our study.   

Results: The results can be divided into three main categories, corresponding to the three studies 

undertaken: 

In the first study, we conducted an analysis of the sensitivity of the fish disease dynamics to different 

key input parameter values: 
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1. Sensitivity to fish density: The attack-rate (i.e. the measure of the rate at which a

disease spread in a fish population) increases generally when the fish density increases.

Our results show that attack-rate follow a logistic curve as the fish density increases.

2. Sensitivity to the fish swimming behavior: The attack-rate is higher when the fish

swimming in schools (maximal when they swim in a circular pattern), than when the

fish swim randomly.

3. Sensitivity to the environmental factors (i.e. seawater temperature and currents): The

attack-rate in a single site decreases with strong currents, while strong currents move

pathogens quickly to near sites to start new infections. As pathogens live longer in the

cold water, they can infect new sites located further away. The temperature though will

not have a significant impact on the spread of a disease within a single fish farm.

In the second study, the aim was to identify pathogen transmission patterns and build risk maps. 

Results show how the pathogen transmission pattern matches the current patterns, and how the 

infection risk in a space-time domain is influenced by the seawater temperature that determines the 

pathogen lifespan, and by the fish density in farms fish being infected. In this study, the emerging/ 

dynamic infection rate is characterized by an equation that is derived by theory supplemented by the 

result of the simulations. The infection risk at any point around the infected site is dependent on both 

the pathogen and the fish density at that point, and the infection risk increases when the pathogen or 

fish densities increase. The pathogen density decreases exponentially related to the increase in the 

seawater temperature, and the pathogen density increases with the speed of the current or the 

fish density at the infected site. The pathogens are being moved faster by higher current speed, so 

this will slow the infection process at the local infected site. Nevertheless, the current will carry 

the pathogens to nearby places faster. The direction of the current is very important since 

the pathogens are predominantly moved by the currents. 

In the third study, a framework to find optimal fish densities and farm locations in marine 

aquaculture systems was developed. Risk of pathogen transmission in Norwegian fjords is related to 

the fish density and location of farms. A framework to use a PSO algorithm to optimize ABMs to 

simulate fish disease dynamics within and between fish farms in Norwegian fjords was introduced. 

The results show the capability of our modeling framework to control the production system so as to 

maintain the objective function that was to increase the productivity while to minimize the infection 

risk (the objective function is a weighted sum of the fish density and the infection risk). The 

simulation results show how the proposed PSO algorithm converge rapidly to the optimal solution, - 

results show that PSO algorithm in only 18 iterations finds an optimal solution that results in an 

increase in the fish density up to three times its original value while keeping the risk of infection at 

an accepted level (i.e. same level before being exposed for optimization process). The use of the PSO 

algorithm to identify optimal parameter values of ABMs is significantly reducing the simulation 

time and producing a useful model to use in planning for sustainable aquaculture industry. 

Conclusion: The contribution of this research is the application of agent based modeling (ABM) for 

the purpose of developing a strategy to maintain sustainable development in the Norwegian 

fish farming industry. ABM is flexible and well suited for simulating complex systems (i.e. 

virus spreading in a fjord system). Agents (i.e. fish and pathogens) mobility make ABM very 

flexible regarding potential variables and parameters that may be included. ABM allows for 

adjusting the complexity of agents (i.e. their behavior and rules of interaction). In addition, we can 

change levels of description and aggregation by using subgroups of agents. The simulation results 

demonstrate how the models may be useful, in part by overcoming the problem associated with the 

lack of data on fish disease transmission. The ABM allows us to simulate the disease dynamics 

process even with lack of data regarding the process by using random numbers to compensate the 

lack of data. Also, by using ABMs, we simulate possible future scenarios. Using PSO algorithm to 

find optimal parameter values of ABMs will open new applications for the models in 

management of aquaculture industry. The models can be used to generate hypotheses, simulate 

future scenarios, or for the basis for general planning strategies.  
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7.2 Future studies 

The research documented in this thesis was designed so as to identify and test a method by which one 

may develop strategies for optimal location and capacities of fish farms in Norwegian fjords. 

In particular, we documented that agent based modeling (ABM) potentially could serve as 

such a method and it was demonstrated how ABM could successfully be applied in three cases of 

increasing complexity. But, there are still a variety of investigations that ABM opens up for so as to 

add value to these kinds of studies:  

• Include more factors that could affect the contact rate between fish and pathogens:

1. Escaped fish: Although transmission by way of water currents is the most

important route for marine pathogens, a further step could be to incorporate the

movement of escaped farmed fish that could be infected or not. Fish escapees

can, in fact, pose a risk of infection of both to other farms and the wild

population (Naylor et al., 2005), - a risk that increases when farmed fish are in

the vicinity of other farms or wild populations of the same species and when

the farmed population contributes with a large quantity compared to the wild

fish.

2. Wild fish: Another step is to incorporate wild fish agents in the fjords. A study

on the distribution of saithe within a fjord with salmon aquaculture showed

aggregations around aquaculture sites and a high proportion of fish moving

between different farms, indicating that the wild fish might constitute an

important potential path of infection between fish farms (Uglem et al., 2009).

3. Sea-birds: Pathogens can also be carried by sea-birds, from one fish farm to

another. Some types of pathogens may also be shed from infected dead fish.

4. Well-boats and other working operations: When there is a shared ownership

between infected farms, the relocation of fish, well-boats, people and

equipment are factors that may potentially increase the contact rate.

5. Effect of environmental conditions on fish swimming behavior: Fish may

respond to different environmental conditions such as light, temperature,

salinity, water currents and dissolved oxygen (Oppedal et al., 2011). Results

from the study show the significance of the swimming behavior of the fish on

the spread of the disease. Consequently, it would be important to relate

swimming behavior to environmental conditions.

6. Effect of other factors on fish swimming behavior such as stress, sickness and

weight: Fish behave differently under stress and sickness (Ogut, 2001). Also

the fish maximum speed depends on its weight (Jones et al., 1999). So it could

potentially be important to include additional characteristics of the individuals

of the fish population.

7. Dynamic water temperature: Water temperature is an important factor because

its affect the behavior of fish and pathogens. Fish feel stress in high

temperatures, making them less resistance to diseases. Also, pathogens are

more aggressive in high temperatures and more capable of infecting stressed

fish. The fast change in water temperature affect dramatically the degree of

activity in pathogens and fish. Therefore, it will be valuable to include fast

changes in water temperature (e.g. between days and nights, over the year).

8. Higher resolution: Higher resolution in space and time in our model will

probably affect the simulated contact frequency between the agents. The

simulation space is divided into many cells (i.e. patches) that have different

characteristics even if they are neighbors, since we use random numbers in

building the characteristics of water environment (i.e. seawater temperature

and currents). Then, a higher resolution in space provides a new simulation

space. Agents (fish and pathogens) interact and update their properties (e.g.

positions, fish health status) in discrete time. So a higher resolution will affect
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the infection process. 

• Self-adaptation: Develop models of self-adaptive individuals in which the model 
parameters may be adjusted by an adaptive learning process. By introducing feedback 
processes in the agents, such a model can cause a local adaptation to specific 
environmental conditions, - including the fjord geography.

• Validation: The purpose of the model determines how the validation of the model takes 
place. Validation infuses trust in the model, - that the model may be used for a specific 
purpose. Therefore, it is important to find ways to validate the model and its output. In 
addition to intimate knowledge of the mechanisms that govern the dynamics of the 
fish, pathogens and diseases, more accurate data (parameter values and time series) 
associated with the spread of fish diseases must be made available. The model may 
guide us in the search for the most significant (informative) data to be identified and 
collected.

• Optimization: When conducting numerical optimization, results may diverge 
significantly. We would therefore suggest that a variety of optimization algorithms be 
employed, such as Genetic Algorithms (GA), Simulated Annealing (SA), Ant Colony 
Optimization (ACO) and a comparison be made across the result of the different 
algorithms.

• Methods to overcome the computational demands of ABMs: In this study, distributed 
processing was employed using regular desktop/laptop computers. This imposes 
limitations in our study, - in particular limiting the number of agents to be included and 
the time granularity (the tick size) to be employed. Considerably more accurate 
simulations (with higher resolution) may be conducted if the models are transferred to 
more powerful computers (i.e. super computers / massive parallel computers).

• Visualization: Good visualization allows for a better interpretation of the simulation 
results. Consequently, it would be important to develop separate simulation from 
visualization and to develop advanced methods of process visualization.

• Multi-objective optimization (MOO): In optimization of the model, one may use 
several objective functions so as to illustrate the challenge of negotiating between 
potentially conflicting goals. Likewise, a more complex set of constraints may be 
considered. 
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Abstract — Aquaculture industry is about to revolutionize the way we consume fish and other marine food products as agriculture 
has already done on land. However, emerging diseases continue to be a serious challenge to the aquaculture industry and limit its 
expansion. Most models that describe the spread of disease are based on the assumption that populations are homogeneous and 
focus on the population as a whole. In this paper, we present an agent-based model that simulates the spread of contagious disease 
dynamics in an aquaculture facility. We simulate both fish and pathogens as individual agents that interact with each other and 
their environment. This gives the model the capability to overcome the limitations of classical population-based models, permitting 
to study specific spatial aspects of the spread of infections and addressing naturally stochastic nature of the infectious process. The 
model enables us to study the sensitivity to key factors such as fish density, infection radius, shedding rate,  etc., in which the 
infectious disease takes place. The model experiment is designed to explore the impact of fish density and infection radius (distance 
around fish to check the existence of pathogens) factors on the fish disease dynamics in an aquaculture facility. Simulation results 
show that the fish disease dynamics are more influenced by changing the infection radius parameter than the fish density 
parameter, while the released pathogens amount is mainly connected to the fish density parameter. Exploring the sensitivity of fish 
disease dynamics to these factors helps in combatting these diseases. The model and its results are presented in this paper.
  

Keywords — Agent-based modeling, fish diseases, aquaculture, infection simulation, Netlogo. 

 

I.  INTRODUCTION  

Aquaculture, probably is the fastest growing food-
producing sector, now accounts for nearly 50 percent of the 
world’s food fish [1]. In Norway, the development of 
commercial aquaculture began around 1970 and since that 
time it has developed into a major industry. Nowadays, 
Norway is the largest exporter of aquaculture products in 
Europe, and the second largest seafood exporter in the world 
[2]. However, emerging diseases continue to be a serious 
challenge for the aquaculture industry and limit its expansion 
[3]. Diseases both induce large economic costs to the 
industry [4] and might threaten wild populations [3]. A 
major problem in many areas is the uncontrolled use of 
antibiotics leading to resistant bacteria strains [5]. 
Combatting diseases is therefore an important research field 
[6] and a hot topic in public debates [7]. 

The objective of this study is to develop an agent-based 
model (ABM) to simulate the dynamics of contagious fish 
diseases in an aquaculture facility, as a result of individuals’ 
(fish and pathogens) interactions in a time-space context. 
Fish disease dynamics are affected by many factors, and this 
creates the complexity in modelling this non-linear process. 
The main benefits of using agent-based approaches over 
traditional disease transmission modelling techniques (top-
down techniques of non-linear dynamical systems in which 
related state variables are aggregated) for fish disease 
simulation are summarized as: (i) flexibility in modelling, 
and the capability to add more complexity through 

simulations; (ii) provides a realistic representation of the 
system due to the interactions of the individuals, while 
classical computational modelling techniques describe 
systems in equilibrium or as moving between equilibrium; 
(iii) overcoming  the lacking of empirical data regarding fish 
disease dynamics: in classical disease transmission models, it 
is difficult to predict a threshold for density-dependent 
outbreaks of diseases while in ABMs, the parameters 
regarding disease transmission can easily be varied within a 
range. 

The model presented aims to simulate infectious disease 
dynamics in an aquaculture facility and observe how 
different factors affect disease dynamics. This model uses 
many parameters such as fish density, infection radius, 
infection rate, shedding rate, infection period, immune period 
and pathogen life span. Before describing the model in 
detail; a more complete background on the dynamics of fish 
disease transmission and previous studies on this issue will 
be given in the next section.  

This paper is an extension of work originally reported in 
Proceedings of UKSIM-AMSS 17th International Conference 
on Modelling and Simulation [37]. 

A. Dynamics of fish diseases 

The dynamics of the occurrence, severity and spread of 
diseases within and between fish populations are similar to 
those associated with diseases in human and terrestrial 
animal populations [8][9]. However, one additional 
component in fish populations is the water environment 
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which may facilitate the spread of disease-causing agents 
(pathogen). Diseases are generally transmitted from one 
individual to another in one of two ways: vertical 
transmission or horizontal transmission. In vertical 
transmission, pathogens are transmitted from one or both 
parents to offspring. Horizontal transmission involves the 
spread of the pathogens from one individual to another 
through direct contact, air, or water [10]. 

The development and severity of a disease following 
exposure to a pathogen involves a complex web of variables 
such as: the virulence (ability to cause disease) of the 
pathogen; the immune, genetic and physiological condition 
have the host; stress; and population density [11][12]. 
Different strains of the same pathogen may vary 
considerably in their ability to cause disease. That is, some 
strains can infect a host without causing a clinical disease. 
Also, individual animals differ in susceptibility to disease. 
Some individuals may be more resistant to the disease 
because of their genetic composition or as a result of 
previous exposure and development of immunity. 
Conversely, individuals may be more susceptible to a 
disease because of poor nutritional status, stress or any of a 
number of other factors [13]. The actual development of a 
disease and the relevant severity of that disease within a fish 
population are influenced by a complex interaction of these 
variables associated with the pathogen, the host and the 
environment. 

B. Diseases in aquaculture 

Infectious diseases pose one of the most significant 
threats to the aquaculture industry [3]. The maintenance of 
large numbers of fish crowded together in a small area 
provides an environment conducive for the development and 
spread of infectious diseases. In this crowded, relatively 
unnatural environment, fish are stressed and more 
susceptible to disease. Moreover, the water environment 
facilitates the spread of pathogens within fish populations. 

Knowledge of pathogens in wild fish stocks is generally 
poor, and it is therefore difficult to predict which diseases 
might occur once an aquaculture facility is established in an 
area [15]. A wide range of pathogens exists, from viruses 
and bacteria to crustacean parasites [14]. These might be 
introduced to an aquaculture system through various 
pathways: movement of infected stocks, equipment or fish 
products from other areas; or by exposing to wild fish 
pathogens. Once introduced, pathogens can benefit from the 
aquaculture environment and pose a graver risk to farmed 
fish. This is both because of factors such as poor 
environment, stress and pollution that might reduce 
individual fish resistance [3], but moreover because the 
artificial high density of fish, and thus potential hosts for the 
pathogen, in a fish farm can induce outbreaks [15][16]. 
Pathogens that benefit from higher host densities follow so-
called density-dependent transmission [8]. The rate of 
transmission is the product of the densities of susceptible 
and infected individuals. 

  t = βSI                                                      (1)  

Where t is the rate of transmission, β is the contact rate, 
S is the number of susceptible individuals and I is the 
number of infected individuals. 

Several pathogens affecting aquatic organisms fit to a 
density-dependent model, e.g. the bacterium Aeromonas 
salmonicida, causing the furunculosis disease in wild and 
farmed salmonids [17]. Another famous example is the 
salmon lice (Lepeophtheirus salmonis). Although this 
parasite existed in Norwegian waters before the arrival of 
the aquaculture industry, today it has a much larger pool of 
hosts and thus higher potential to spread, both between 
farmed and back to the wild populations.  

C. Previous simulation methods 

Fish disease dynamics are affected by many elements, 
and this creates the complexity in modelling this process. 
Fish disease dynamics within an aqua site or between many 
aqua sites is a complex system. 

Previous modelling studies on the infectious disease 
dynamics in the aquaculture system have focused on the 
disease transmission between aquaculture sites, and they 
have either used classical SIR disease transmission models 
(Susceptible, Infected, Recovered) that focused on the 
population as a whole [8][9], or such population models 
coupled with simple hydrodynamic models or distance 
measures of transmission between separate populations 
[4][21][22][23].  

In SIR models, the population is grouped into categories 
and equations are derived that express the rates at which 
different events (infection, recovered, death, etc.) occur. The 
models describe how the individuals in the population move 
from one category to another. Basically, the SIR model 
involves three groups: susceptible, infected and recovered 
(or removed). A susceptible (S) becomes infected (I), and 
infected that recover are immune (R). The models that result 
from this kind of analysis involve a series of partial 
differential equations [31].   

Cellular automata (CA) theory has been used for 
modelling dynamics of contagious disease spread [24][25], 
but the representation of individual’s movements and 
interactions over the space was no presented. This is an 
important factor to consider in highly contagious diseases 
and therefore this methodology gave way to a new approach 
(agent-based modelling). 

D. Using agent-based method 

To our knowledge no previous studies have applied 
agent or individual-based methods to assess the 
transmission of diseases within and/or between aquaculture 
fish populations. On the other hand, agent-based methods 
have been applied to simulate transmission of human viral 
diseases such as influenza [18][19][20].  

The agent-based method is a bottom-up approach, 
similar to CA models, but has the advanced capability to 
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track the movement of a disease and the contacts between 
each individual in a group located in a geographic area [32].  

Agent-based models (ABMs) can be valuable for the 
analyses focused on individual interactions, and also to 
incorporate the spatial aspect of the system. Classical SIR-
models, on the other hand, like those used in disease 
transmission modelling, represent total populations. In this 
study, an ABM is applied to simulate the infection process 
of an individual fish, and the way that pathogens spread 
spatially by representing these as agents. 

Agent-based methods can address research questions 
common to many disciplines and facilitate interdisciplinary 
collaboration. By applying an ABM, more complexity can 
be added and analysed through simulations. Another reason 
for applying an ABM is the lacking of empirical data 
regarding fish pathogens. Therefore it is difficult to predict a 
threshold for density-dependent outbreaks of diseases in 
classical disease transmission models [17]. In an ABM, the 
parameters regarding disease transmission can easily be 
varied. 

II. THE MODEL 

Disease in fish populations is a dynamic phenomenon; 
fluctuations in prevalence and impact are dependent on the 
interactions among fish (host), pathogen, and environment. 
In our model, we aim to simulate the horizontal 
transmission that involves the spread of the pathogen from 
one individual to another through water. The presented 
model is a generic model, which can be adjusted to various 
pathogens and environmental scenarios.  

We used the general system theory to define our multi-
agent system [33]. The general multi-agent system can be 
formulized as  

    S(t) =  {A(t), L(t), N(t)}                                      (2) 

Where, S(t) is the system, A(t) is the agents, L(t) is the 
environment and N(t) is the network. 

 The system S(t) is composed of agents, A(t) and 
landscapes, L(t) or environment, and the interaction between 
the agents themselves and between them and the landscapes, 
called networks N(t), as shown in figure 1. 

The model has two types of agents, fish and pathogen. 
The environment is the seawater. The fish has three main 
states, as SIR model (Susceptible, Infected, Recovered). If 
the fish is in an infected state, then will shed pathogens at a 
given rate (shedding rate). The pathogens are moving by sea 
currents, and their life span is a function of sea temperature. 
The susceptible fish will get infected if there is a pathogen 
near by (infection radius). In the following, we will explain 
the model agents’ attributes and behavioural rules, scaling 
the model and infection process.  

  
 

 
Figure 1. Generic Multi-agent System 

A. Fish agent 

The fish are created during the setup procedure of the 
model and they are distributed across the farm’s area. Figure 
2 shows the fish agent’s attributes and behavioural rules. 

 

 
Figure 2. Fish agent 

 
As in SIRS model, the fish will update its health status at 

every time step depending on the infection process (Figure 
3). The heath status is altering between a three main statuses 
(susceptible, infected and recovered), the agent will die by 
mortality rate if it’s in the infected state. If the fish agent is 
alive, then the agent’s health status must be one of the three 
statuses. As in SIRS models (figure 4), we can categorize 
the agents into three groups depending on their health status 
(Susceptible, Infected, Recovered). Then the fish’s number 
dynamics in each category can be formulated by the 
following differential equations: 

          ds/dt = -βs(t)i(t)/n(t) + fr(t)  

          di/dt = βs(t)i(t)/n(t) – Ri(t) – ui(t)                       (3) 

                dr/dt = Ri(t) – fr(t)                              

Where s(t) is the number of fish in the Susceptible 
category at time t, i(t) is the number of fish in the Infected 
category at time t, r(t) is the number of fish in the Recovered 
category at time t, β is the contact rate, u is the mortality 
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rate, 1/R is the average infectious period, 1/f is the average 
immune period and n(t) is total population at time t.  

We will give a thorough explanation of how fish’s agent 
updates its health status in the infection process section.  

In the setup procedure, a number of fish set by the fish-
number slider are randomly placed in the farm. A 
percentage of these fish are made infected (set by the slider 
initial-infected), and a percentage of them are made prior 
immunity (set by slider prior-immunity). If the vaccinated 
switch is on, then all the fish are prior immunity. 

The fish agent moves randomly in the space (farm), and 
updates its position at every time step by moving one space 
unit. 

 

Die

Susceptible Infected Recovered 
Infection rate Recovering rate

Mortality rate

 
Figure 3. Fish agent states 

 

 
Figure 4. The diagram of SIRS models 

B. Pathogen agent 

Pathogens are also represented as agents. Figure 4 shows 
the pathogen agent’s attributes and behavioural rules. It is 
important to note that one pathogen agent does not represent 
one pathogen, but a batch of high number of pathogens. 
Each pathogen is moved by the currents (current speed and 
direction) given by the place the pathogen is at the start of 
every time step. 

 

 
Figure 4. Pathogen Agent 

 
The pathogen lifespan depends on the environment, sea 

temperature and salinity. Figure 5 shows the changes in 
Pancreas Disease (PD) virus lifespan according to the 
changes in sea temperature [13]. In the model, we use 

pathogen age function as an exponential decay function in 
equation 4, which is inspired by data from Figure 5. 

   Pathogen life span = a * exp (- x / b)              (4) 

Where x is the sea temperature, a is the pathogen life 
span at 0° sea temperature, and b is the decay rate. 

 
Figure 5. Pathogen lifespan vs sea temperature 

C. Scaling the model in time and space 

The real sea fish farms have a size of around 10,000 
square meters, depth of 15 meters and host around a million 
fish each [26]. We constructed the model in a cube space of 
40 x 40 x 40 patches (Patches represent the grids in the 
landscape in NetLogo [28]); and the patch size is 8 x 8 x 8 
pixels. Our model represents one fish farm cage. This means 
that each meter is represented by 24 pixels or 0.375 patches 
in the model. The fish farm has a maximum population of 
1000 fish, while in reality you would expect to see about 
1000 times more fish in an actual fish farm at this size. This 
simplification was made in order to save computer resources 
while running the model. According to SINMOD [27], the 
average current speed in the Norwegian fjords is typically 
0.2 m/s. This equals 12 m/min (720 m/hour). Tick is the 
time step in the model and it’s representing one-hour or one-
day, (it can be selected by the user, time-step).  

Each fish moves one space unit randomly inside the fish 
facility at the start of each time step. While each pathogen is 
moved by the sea currents, with the current speed and 
direction given by the place the pathogen is at by the start of 
each time step. In order to create a model that incorporates 
some of the variation presents in nature we used normally 
distributed random numbers for both the current speed and 
current direction. By introducing this randomness we avoid 
a very specific case scenario to some extent that would be 
less valuable for generalizations. The user can select these 
variables by the sliders, current_speed, 
current_speed_std_dev, current_direction, and 
current_direction_std_dev. 

The sea temperature is variable among the sea depth (see 
Figure 6). In the simulations only one aquaculture site 
where the depth is around 15 meters only, then the 
temperature is almost the same, except small changes 
around the surface that we ignored. The slider sea-
temperature-deep-1, can set the temperature. The sea 
temperature is variable with time as well. Figure 7 shows 
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the average monthly sea temperature at 1m sea depth at Bud 
station in the Norwegian sea. The sea temperature is not 
changing soon; it needs time to get warm or cold (with 
surface temperature exception). So to simulate a short 
period as one day, one week or even a month; will not be a 
big difference in the sea temperature from 1m depth to 15m 
depth, specifically if this period is inside one season and not 
including the seasonal changes, from spring to summer or 
from summer to autumn as shown in figure 7. To simulate 
long periods we should create functions to represent the sea 
temperature changes among the time as well. 

 

 
Figure 6. Average temperature from 1 m to 250 m depth during August 

2014 from Bud station. (www.imr.no). 
 

 
Figure 7. Average monthly temperature at 1 m of depth from 2008 to 2014 

from Bud station. (www.imr.no). 

D. Infection process 

The fish agent moves randomly in the space and updates 
its status at each time step. The fish has three main health 
statuses, susceptible, infected and recovered.  The fish agent 
updates its status by following the infection rules described 
in the flow chart (Figure 9).   

The fish that is healthy (susceptible) will look around 
within an infection radius, if there any pathogen in the sphere 
where is the fish agent is in the centre of, and the radius is 
infection radius. If there is a pathogen, then the fish will get 
infected with a certain probability. Figure 8 shows the agent 
vision and the space which will be checked around by 
equation 5. 

 V = (4/3) πr³                                             (5) 

Where, V is the sphere volume, and r is the infection 
radius.  

The contact rate (β) is decided by infection radius and 
infection rate. There is no contact rate if the sphere in figure 
8 contains no pathogens, but if there any pathogens within 

the radius r, the contact rate depends on the infection 
probability factor. 

 

Figure 8. Sphere representing the 
space which will be checked by the 

susceptible fish (blue fish in the 
centre), r-infection radius 

 

 
When the fish get infected, it has to pass an infectious 
period before it can get recovered or die. The user can set 
the infectious period by the slider infectious-period. The 
infected fish shed pathogens by a shedding rate which can 
be set by the user with slider shedding-rate. The fish shed 
pathogens at the same location where they are. The infected 
fish can be recovered or die by the rates recovering rate and 
mortality rate that they can set by sliders recovering-rate 
and mortality consequently.  The fish agents after passing an 
immune period, they will enter the susceptible status again. 
We have added some noise to the infectious and immune 
periods in our implemented model.  

III. SIMULATION 

A. Agent-based Simulation Toolkit 

In order to implement the designed agent-based model, 
NetLogo 3D [28], was used. NetLogo is a multi-agent 
programmable modelling environment. It is used by tens of 
thousands of students, teachers and researchers worldwide. 
NetLogo toolkit allows simulations within a geographic 
information system environment and it’s easy to include 
physical and environmental data also. 

B. Implementation 

The entire fish population of the aquaculture facility and 
the real number of pathogens cannot be taken in 
consideration due to computational reasons. Implemented 
model has several parameters such as: simulation 
parameters, disease model parameters and agents’ attributes 
(see Table I). 

The graphical user interface (GUI) (Figure 10) was 
developed to add flexibilty to the implemation and model 
output scenarios visualization capabilty. The GUI allows 
different users to create and test various scenarios by 
changing all or some of the parameters in Table 1. 

The model has a 3D vitalization view, which is updated 
at each time step, so the users can see the interaction 
between the agents during the simulation and how fish 
update their health status. Blue fish are susceptible, red fish 
are infected and grey fish are recovered. The users can see 
some statistics and analysis from the model output and the 
epidemic curves also. 
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Figure 9. Flow chart for the fish individual infection rules 

 
 

TABLE I: MODEL PARAMETERS 
Parameter Min value Max value Default 

value 
Fish number 1 1000 500 

Infection rate (%) 0 100 50 
Recovering rate (%) 0  100 50 
Shedding rate (%/ 0  100 50 
Infection period 

(days) 
0 100 5 

Immune period (days) 0 100 10 
Infection radius 

(patches) 
0 20 5 

Initial infected (%) 0 100 10 
Prior immunity (%) 0 100 0 

Mortality (%) 0 100 10 
Current speed (m/s) 0 1 0.05 
Current speed std.  0 0.1 0.01 

Current heading bias 
(degree) 

-5 5 0 

Current heading std  0 90 30 
Temperature (c) 0 20 10 

Vaccinated    Off* 
Time step   Hour* 

 *Parameters that can assume two values or (on/off) 
 

C. Model Validation 

In general, it is often very difficult to validate 
epidemiological simulation models due to the lack of 

reliable field data, and in aquaculture industry case is 
more difficult. The logical choice of validation techniques 
in such situation is to use cross-validation (i.e. to run a 
validated model for some simplified scenarios where the 
result is known or obvious) or to compare the model 
output with other available models that have been 
validated (so called model alignment [34]).  

We have to validate the proposed model against other 
available models that have been validated such as SIR(S) 
model [35]. Our proposed model should be aligned with 
the SIR(S) model at least for some simplified scenarios. 
In order to align our model to SIRS model, we used 
Matlab [36] to evaluate SIRS models for given parameters 
for simple scenarios in our proposed model. Table II 
shows the parameters that we used for both models. The 
contact rate is measured differently in both models. 

 
TABLE II: PROPOSED AND SIRS PARAMETERS 

Parameter SIRS ABM 
Fish number 500 500 
Infection radius  5 
Contact rate 1/6  
Initially infected 50 (10%) 50 
Infection period 
(days) 

10 10 

Immune period 
(days) 

20 20 
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Figure 10. Graphical user interface (GUI) developed for the model implementation 

 
Figure 11. shows the epidemic curves (the dynamics 

of Susceptible, Infected and Recovered groups in 500 
days).    Two graphs are not a perfect match, but the ABM 
graph match the general behaviour of SIRS model graph. 
Two graphs differ by the magnitude and the smoothness 
of the curves. The difference in the behaviour of the  
curves is limited thanks to the following factors: the 
heterogeneous structure of the population and the use of 
randomness instead of deterministic values in SIRS 
model. While the contact rate is determines simply in 
SIRS model, ABM uses many parameters that changing 
from individual to another and depending on agent 
locations and other parameters (such as environmental 
parameters).   

In this study, we build a model to examine the effect 
of key parameters such as infection radius and fish 
density to the model output and make relative 
comparisons through sensitivity analysis. We use 
hypothetical parameters values even if we refer to some 
real data from different resources to set the parameters 
ranges, but we didn’t set the parameters for specific 
disease.  Validation of the model parameters values that 
are related to the fish disease progress and transmission is 
a very complex process due to the lack of real data. The 
available data is provided by some lab experiments [38].  

 

 
(a)  

 

 
(b) 

Figure 11. (a) Epidemic curve from SIRS model, (b) Epidemic curve 
from the Agent-Based Model 

D. Simulation experiment 

In order to explore how each of the parameters we put 
into the model affects the outcome, we should vary this 
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parameter in the simulation while we keep the others 
constant. 

We built a generic model, which can be used for many 
fish disease types and in different environmental 
conditions. Some of the model parameters are connected 
to the type of disease, and realistic data are not always 
available or trusted.  

In order to explore the importance of fish density and 
infection radius parameters on the fish disease dynamics, 
we ran our experiment for 20 days, by varying the fish 
density and infection radius (see Table III), while we kept 
the other parameters at default values. The simulation 
experiment output was the percentage of infected/ 
susceptible/ recovered/ immune fish at each time step, the 
maximum number of infected fish (peak), day when the 
peak happened and total released pathogens. 

 
TABLE III: EXPERIMENT PARAMETERS 

Parameter Values 
Fish number 100, 200,300,500,750,1000 
Infection radius 1,2,3,5,10,15 

IV. RESULTS AND DISCUSSION 

The model is a generic model, and all the parameters 
can be set easily in the GUI. We need to run the model 
with different scenarios to explore how each of the 
parameters we have put into the model affects the 
outcome.  This is one of the most powerful capabilities of 
a model, the ability to explore dynamically the 
relationships between the variables used to define the 
model. The users can see the interaction between the 
agents during the simulation, and the epidemic curves also 
(see figure 12). 

 

(a) (b) 
Figure 12. (a) Epidemic curve, (b) simulation world  

A. Sensitivity Analysis  

Sensitivity analyses are important to explore the 
behaviour of complex system models, because the model 
is coupled with a high degree of uncertainty in estimating 
the input parameters’ values [29].  

 The simulation experiment was designed to explore 
the sensitivity of the model outcome to the fish density and 
the infection radius. The model outcome includes 
individual fish health status, total pathogens number in the 
facility and some analysis to show the fish disease 
progress and dynamics. Figure 13 shows the attack rate 
reported due to the change in both fish density and 
infection radius. The attack rate is increased by increasing 

the infection radius and fish density. It will reach 100% if 
the infection radius increases by more than 5 units 
regardless of the fish density value. Figure 14 shows the 
sensitivity of attack rate to fish density and infection radius 
change.  

 
Figure 13. Percentage of infected fish after 20 days (z-axis), with all 

parameters set at default values except fish density (x-axis) and infection 
radius (y-axis) varied. 

 
(a)

 
(b) 

Figure 14. (a) Attack rate after 20 days (y-axis), vs fish density (x-
axis), with infection radius 2 and 3. (b) Attack rate after 20 days (y-axis), 

vs infection radius (x-axis), with fish density 100, 500 and 1000. 
 
We also analysed the epidemic peak sensitivity to the 

changes in fish density and infection radius. We have seen 
that epidemic peak is more affected by infection radius 
also, and the peak day is getting smaller by increasing the 
infection radius (see Figure 15).  

 

 
Figure 15. Peak day after 20 days (z-axis), with all parameters set at 

default values except fish density (x-axis) and infection radius (y-axis) 
varied. 

 
The total released pathogens are more connected to 

the fish density as shown in Figure 16. The infection 
radius has a small influence if it’s greater than 5 units. For 
small infection radius values, there is a big influence 
because the attack rate is still small.  

 Figure 16 shows that the total released pathogens 
increases linearly versus fish density.      
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Figure 16. Total released pathogen after 20 days (z-axis), with all 

parameters set at default values except fish density (x-axis) and infection 
radius (y-axis) varied. 

V. CONCLUSION AND FUTURE WORK  

The aquaculture industry is increasingly important for 
both the producers’ economy and marine food availability 
worldwide. A major challenge for aquaculture 
development is the infectious disease, which can be due to 
a large variety of pathogens. It is therefore highly needed 
to study the fish disease dynamics in the aquaculture sites.  

The presented model is a generic model which can be 
used for different types of infectious fish disease. The 
model has many parameters that can be varied. In our 
simulation experiment, we have changed the fish density 
and the infection radius parameters to explore the output 
sensitivity to them. The results show that the attack rate is 
more affected by the infection radius, while the total 
number of released pathogens is affected mostly by fish 
density. The infection radius is representing the pathogen 
density while the released pathogens affect the disease 
spread to other facilities. The results show that all fish get 
infected at some point if the infection radius is more than 
5 units regardless of the fish density. 

To our knowledge, ABMs have never been employed 
in this type of study before. By using an ABM we were 
able to simulate both fish and pathogens as individual 
agents that interact with each other and their surrounding 
environment. This give the model the capability to 
overcome the limitations of classical population-based 
models, permitting to study specific spatial aspects of the 
spread of infectious and addressing naturally stochastic 
nature of the infectious process. 

Some limitations of this model are with respect to 
model validation. The lack of reliable fish disease 
transmission data is making the model partly theoretical. 
Also computational limitations are an issue because not 
all the population (fish and pathogens) can be considered 
given the limited computer memory capacity. This 
consequently affects the number of contacts between the 
individuals.  

The model enables us to simulate a specific case. So 
referring to this case, we can set all the model parameters 
that include agents’ attributes, simulation parameters, 
infection process and environmental parameters.    

We can do more sensitivity analysis by running more 
scenarios, and vary more parameters to see their effects as 
well. To include so many scenarios, there is a need to run 
the experiment on a special machine due to the 
computational need. 

The model can be extended by adding more 
complexity to fish agent movements. There are some 
studies about the fish movements in the cages that can be 
used to control fish movements [30]. Also we can add 
more key parameters related to the fish industry process 
(i.e. stocking and harvesting process), or related to the 
interaction with the outside environment, including other 
factors related to escaped fish, wild fish and workers.  
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Abstract — Disease in fish populations is a dynamic 
phenomenon; oscillations in occurrence and impact are 
dependent on the interactions among fish (host), pathogen, and 
environment. While most of the previous models to simulate 
disease dynamics are based on the assumption that populations 
are homogeneous, we build an aqua agent-based model that 
simulate the contiguous disease transmission as a result of 
interactions between fish, pathogens and their environment in 
time-space context. This heterogeneous model gives a realistic 
representation of the system and tackle naturally stochastic 
nature of the infectious process. The model combines most 
important factors in the fish disease process, environmental 
factors, fish swimming behavior and infection process 
parameters. The simulation experiments are designed to 
explore the impact of sea currents and swimming behavior on 
the disease dynamics. The results show that the attack rate 
increases when the sea current speed decreases, and when the 
fish swim in a regular pattern (circular or in school). The 
model can be applied to different applications due to its ability 
to show the disease progression based on the individuals’ 
interactions. This can help in understanding of disease-spread 
dynamics and yield to take better steps towards the prevention 
and control of a disease outbreak. 
  

Keywords — Agent-based modeling, fish diseases, 
aquaculture, infection simulation, fish movements, fish school, 
Netlogo.  

I.  INTRODUCTION  
Emerging infectious diseases are a serious fish health 

threat, and pose a big challenge for the aquaculture industry 
and set constraints to its expansion [1]. Fish diseases both 
induce large economic costs to the industry [2] and might 
threaten wild populations [1]. Therefore combatting fish 
diseases is an important research field [3].  

Norway has a very long coastline with fresh cold 
seawater and more than a thousand of fjords that having rich 
sea life. This environment provides excellent conditions for 
aquaculture activities and made Norway the second largest 
seafood exporter in the world [4]. Atlantic salmon is by far 
the most important species in Norwegian aquaculture, and 
the most troublesome diseases for the salmon aquaculture 
are caused by viruses [5]. All major viruses affecting 
Norwegian aquaculture are thought to spread between fish 
through seawater [3], as infected fish shed pathogens to the 
surrounding waters.  

In this study, we developed an agent-based model 
(ABM) to simulate fish disease dynamics in a fish 
population as a result of interactions between fish, pathogen, 
and their environment. The process of disease transmission 
is influenced by many factors, including individuals (fish 
and pathogen) conditions, movement behavior and 
environmental conditions. The presented model explores the 
potential effects of these factors on the spread of a simulated 
fish disease.   

The agent-based method provides a realistic 
representation of the system due to the interactions of the 
individuals, gives more flexibility in modeling and more 
complexity can be added and analyzed through simulations. 
Another reason for applying an ABM is the lacking of 
empirical data regarding fish diseases transmission. In an 
ABM, the parameters regarding disease transmission can 
easily be varied. 

Before describing the model in details; a complete 
background on the dynamics of fish disease transmission and 
related works on this issue will be given in the next section. 

A. Dynamics of fish diseases 
The dynamics of the occurrence, severity and spread of 

diseases within and between fish populations are similar to 
those associated with diseases in human and terrestrial 
animal populations [6][7]. Only one additional component 
in fish populations is the water environment which may 
facilitate the spread of disease-causing agents (pathogens). 
Diseases are transmitted generally from one individual to 
another in one of many ways: oral, external, direct exposure, 
vertical or horizontal transmission. In this study, we model 
the horizontal transmission. Horizontal transmission 
involves the spread of the pathogen from one individual to 
another through direct contact, air, or water [8]. 

The development and severity of a disease following 
exposure to a pathogen involves a complex web of variables 
such as: the virulence (ability to cause disease) of the 
pathogen; the immune, genetic and physiological condition 
have the host; stress; population density and environmental 
conditions [9][10]. Different strains of the same pathogen 
may vary considerably in their ability to cause disease. That 
is, some strains can infect a host without causing a clinical 
disease. In addition, individual animals differ in 
susceptibility to disease. Some individuals may be more 
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resistant to the disease because of their genetic composition 
or because of previous exposure and development of 
immunity. Conversely, individuals may be more susceptible 
to a disease because of poor environment status, stress or 
any of a number of other factors [11]. The actual 
development of a disease and the relevant severity of that 
disease within a fish population are influenced by a complex 
interaction of these variables associated with the pathogen, 
the host, and the environment. 

B. Related works 
Previous studies on the infectious disease dynamics in 

the aquaculture system have mainly used mathematical 
models that focused on the population as a whole [6]-[10]. 
Kermack and McKendrick were pioneers in establishing the 
mathematical modeling of disease epidemics in 1927 [11]. 
Kermack and McKendrick created a mathematical model 
named SIR (Susceptible, Infectious, Recovered) based on 
ordinary differential equations. They started with the 
assumption that all members are initially equally susceptible 
to the disease and that a complete immunity is conferred 
after the infection. Many researchers have used 
mathematical models after that to simulate disease 
dynamics.  

Cellular automata (CA) theory has also been used for 
modeling dynamics of infectious disease spread [12][13], but 
the representation of individual’s movements and 
interactions over space was no presented. 

Agent-based methods have been applied to simulate 
transmission of human viral diseases such as influenza [14]- 
16]. We have applied the agent-based method to simulate 
fish disease dynamics in a fish population [17], but we 
didn’t focus either on the fish swimming behavior or on the 
environmental conditions. Agent-based model (ABM) can 
be valuable for the analyses focused on individual 
interactions, and also to incorporate the spatial aspect of the 
system. Whereas classical SIR-models used in disease 
transmission modeling represent total populations, in this 
study, an ABM is applied to simulate infection process of an 
individual fish, fish movement in the cages, and the way 
that pathogens spread spatially by representing these as 
agents. 

II. THE MODEL 
The presented model simulates the spread of diseases in 

a fish population as a result of the interactions between the 
agents themselves and between the agents and their living 
environment. The model has two types of agents, fish, and 
pathogens. The fish are categorized in four groups 
(Susceptible, Infected, Recovered and Dead).  The healthy 
susceptible fish will get infected if there are number of 
pathogens nearby and its resistance factor to diseases is low, 
and then the sick fish will shed pathogens to the surrounding 
water, and will die because the sickness or will get 
recovered. The fish swimming in the cage while the 
pathogens move by sea currents and leave the cage. In the 

following, we will explain the agents’ attributes and 
behavioral rules in details. 

A. Agents’ attributes 
The model is individual-based, and each agent (fish or 

pathogen) has different biological, physical and spatial 
position status. Figure 1 shows the model agents’ attributes 
and behavioral rules. 

 
Figure 1. Model agents (fish and pathogen) 

 
Fish has different biological and physical attributes that 

affect its health status and its resistance to get sickness. The 
fish’s health status is altering between susceptible, infected 
and recovered statuses (figure 2). The fish agent’s attributes 
that we include in the model are health status, position, 
weight, age, energy, and vaccinated (figure 1). If the fish is 
vaccinated, then the fish is prior immunity and will not get 
infected. Weight affects the fish swimming speed. We will 
explain fish health status updating process and fish 
swimming behavior later in this section. 

 

 
 

Figure 2. Fish agent health status 
 

In the model, pathogens are agents also. Of course, one 
pathogen agent represents a batch of a high number of 
pathogens. Figure 1 shows pathogen’s attributes and 
behavioral rules. Pathogen’s lifespan is depending on the 
environment status (sea temperature and salinity), and the 
pathogens are moving by sea currents.    
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B. Fish’s health status updating  
In the setup procedure, a number of fish set by the fish-

number slider are randomly placed in the farm. A 
percentage of these fish are made infected (set by the slider 
initial-infected), and a percentage of them are made prior 
immunity (set by slider prior-immunity). If the vaccinated 
switch is on, then all the fish are prior immunity. Fish agent 
swims in the cage and updates its health status at each time 
step. Figure 3 shows the fish updating health status process.  

 

 
Figure 3. Fish health status updating process 

 

The susceptible fish will look around within an infection 
radius, if there is a number of pathogens in the sphere where 
is the fish agent is in the center of, and the radius is 
infection radius, will get infected. Figure 4 shows the agent 
vision and the space that will be checked around by 
equation 1. 

 V = (4/3) πr³                                                  (1)

Where, V is the sphere volume, and r is the infection 
radius. 

 

Figure 4. Sphere representing the 
space which will be checked by 
the susceptible fish (blue fish in 
the center) for the pathogens 
existence, radius-infection radius 
 

Each susceptible fish has its own resistance factor (RF) 
and each pathogen has its own ability to cause disease, so 
the infection will happen only if there are a number of 
pathogens with good ability in the surrounding area and fish 
has low RF as the following equation: 

RF * Σ (pathogen * ability) ≥ threshold; get infected       (2)

When the fish get infected, it will be in the infected 
category, and it has to pass an infection period before it can 
get recovered. The user can set the infection period by the 
slider infection-period. The infected fish shed pathogens by 
a shedding rate which can be set by the user with slider 
shedding-rate. The fish shed pathogens at the same location 
where they are. The infected fish can be die because the 

sickness by the mortality rate that can be set mortality slider.  
The recovered fish after passing an immune period that can 
be set by slider immune-period, they will enter the 
susceptible status again. The un-infected fish can die 
normally by normal mortality rate (mortality_noraml). We 
have added some noise to the infectious and immune 
periods in our implemented model. The ability and RF 
attached to each fish and pathogen when is created. We used 
normally distributed random numbers for both the RF and 
ability. The standard deviation is 15 percent of the mean 
values that entered by the user in input variables: RF and 
ability. 

The dead fish shed pathogens also until the farmer picks 
them up.  

C. Fish swimming behavior 

Fish swimming behavior inside the cages is a significant 
issue in the disease spreading process, because the fish will 
get infected if its only swims in the water that has 
pathogens. If the fish swims in the water which is free from 
the pathogens, the fish will not get infected. 

Fish normally swim in schools to get benefits from 
schooling motion (defence against predators, enhanced 
foraging success, and higher success in finding a mate). But 
the fish swimming in the sea cages are limited and affected 
by other factors. Fish in sea cages prefer to swim in the 
middle of the cage referencing to the cage-depth and follow 
a circular movement in the normal current speed, but keep 
stations at fixed positions in the high current speed [18][19]. 

In the model, the fish swim randomly by default, but we 
have developed two other swimming behaviors, circular 
movements and schooling in a spiral path. For the schooling 
behavior, we have used the same model in [20], which is 
depend on three main rules [21]: Separation (each fish keep 
a distance from other fish nearby to avoid collision and 
prevent crowding), Alignment (each fish match the direction 
and the speed of its neighbours) and Cohesion (each fish 
tends to move to the average position of its neighbours).     

D. Pathogen age and position updating 
The pathogen lifespan is depending on the environment, 

sea temperature and salinity. In the model, we use pathogen 
age function as an exponential decay function in equation 3, 
which is inspired by data that related to Pancreas Disease 
(PD) virus lifespan. 

   Pathogen life span = a * exp (- x / b)          (3) 

Where x is the sea temperature, a is the pathogen life 
span at 0° sea temperature, and b is the decay rate. 

The pathogens are moving by sea currents. When the 
pathogen is moved out of the cage (simulation space), it will 
be removed from all the simulation. 

E. Model sacling in time and space 
The Norwegian sea fish farms have different sizes and 

different shapes. The real sea fish farm could has a size of 
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around 10,000 square meters, depth of 40 meters and host 
around a million fish [22].  The farms can be formed from 
circular or square cages. Some of the farms have rectangular 
shapes while the others have the cages beside each other 
shaping a line facing the currents. We designed our model in 
a cube space of 80 x 80 x 80 patches (Patches represent the 
grids in the landscape in NetLogo) to represent one fish 
farm cage. The patch size is 8 x 8 x 8 pixels. This means 16 
pixels or 0.5 patches in the model represent each meter. The 
fish farm has a maximum population with 1000 fish while in 
reality you would expect to see about 1000 times more fish 
in an actual fish farm at this size. This simplification was 
made in order to save computer resources while running the 
model. Tick is the time step in the model and it’s 
representing a second, a minute, an hour or one-day, (it can 
be selected by the user, time-step). The environment’s 
condition parameters (current speed and direction, sea 
temperature) are selected by the user. In order to create a 
model that incorporates some of the variation presents in 
nature we used normally distributed random numbers for 
current speed, current direction and sea temperature. By 
introducing this randomness we avoid to some extent to end 
up with a very specific case scenario that would be less 
valuable for generalizations. 

Pathogens in the model represent a batch of pathogens. 
The infection process depends on infectious dose and 
shedding capacity. These parameters are very difficult to 
quantify. According to [23], infectious dose for Infectious 
Hematopoietic Necrosis Virus (IHNV) in Atlantic Salmon is 
ranging from 10 to 10^4 plaque forming units (pfu) per ml, 
and shedding rate is ranging from 8.8 * 10^6 to 4.8*10^7 
pfu per fish per hour. In our model, these parameters are 
selected by the user (shedding rate and infection radius).   

Fish speed is depending on its weight and length [24]. In 
general, the weight-length relationship can be described by  

W = a*L^b                                          (4) 

Where W is observed fish weight, L is observed fish 
length, and a and b are estimated by: 

 log (W) = log (a) + log (L)                  (5)  

Where a is the regression intercept and b is the 
regression slope. 

The fish speed depends on many factors [25], in our 
model we estimate it by 

Fish speed = k * L                              (6) 

Where L is fish length, and k is a constant that depends 
on the environment condition [25]. 

III. SIMULATION 

A. Agent-based Simulation Toolkit 
In order to implement the designed aqua agent-based 

model, NetLogo 3D [26], was used. NetLogo is a multi-
agent programmable modeling environment that is used by 

tens of thousands of students, teachers and researchers 
worldwide. NetLogo toolkit allows simulations within a 
geographic information system environment and it’s easy to 
include physical and environmental data also.  

B. Implementation 

Implemented model has several parameters such as 
simulation parameters, disease model parameters, and  
agents’ attributes (see Table I). All the model parameters 
can be adjusted by the user, and the model has a 3D 
visualisation view and epedimics curves that updated at 
each time step. 

TABLE I: MODEL PARAMETERS 
Parameter Min value Max value Default value 

Fish number 1 1000 100 
Shedding rate (%) 0 100 50 

Infection period (days) 0 100 4 
Immune period (days) 0 100 10 

Infectious radius 
(patches) 

0 20 1 

Initial infected (%) 0 100 5 
Prior immunity (%) 0 100 0 

Mortality (%) 0 100 1 
Mortality_normal (%) 0 100 0.00001 

Pathogen-ability 0 1 0.8 
RF 0 1 0.8 

Weight  (kg) 0 10 4 
Current speed (m/s) 0 1 0.05 
Current speed std.  0 0.1 0.01 

Current heading bias 
(degree) 

-5 5 0 

Current heading std  0 90 30 
Temperature (c) 0 20 10 

Vaccinated    Off* 
Time step   Sec* 

 *Parameters that select between many values or on/off. 

The fish shooling parameters are summerized in Table 
II. 

TABLE II: FISH SCHOOLING PARAMETERS 
Parameter Min value Max value Default value 

Vision 1 40 10 
Max-velocity 0 20 5 

Max-acceleration 0 10 3 
Cruise-distance 0 20 3 

Spacing-constant 0 20 10 
Center-constant 0 20 6 

Velocity-constant 0 20 6 
Wander-constant 0 20 3 

World-center-constant 0 20 0 
Follow-leader-constant 0 100 0 

Avoidance-constant 0 100 50 

C. Scenarios  
We have built a generic model, which can be used for 

many fish disease types and in different environmental 
conditions. In order to explore the importance of current 
speed and direction on the fish disease dynamics, we have 
developed the first scenario where the current speed changes 
(0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 cm/s) while all other 
parameters are constants and the fish swim randomly.  
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In order to explore the effects of fish swimming 
behavior, we have built another scenario to test this. In this 
simulation, the fish swim randomly, in a circular path and in 
a school (figure 5.). In the circular experiment, the fish 
swim in a regular horizontal circular path with small 
changes in the vertical positions (figure 5b.). In the fish 
schooling behavior experiment, the fish swarm follows a 
leader who moves in a spiral path (figure 5c.) or move 
randomly in the cage  (figure 5d.).   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 5. The fish swim (a) randomly. (b) in circular path (c) in school 

follow a leader (d) in school move randomly. 
 

The simulation output is the percentage of 
infected/susceptible/recovered/immune fish at each time 
step (figure 6.), and the total number of pathogens. 

 

 
Figure 6. Epidemic curves 

IV. RESULTS AND DISCUSSION 
The presented model is a generic model, and all the

model parameters can be set easily in the GUI or by 
changing few lines in the code. These parameters represent 
the most important factors that affect the fish disease 
dynamics in the aquaculture sites. The model can explore 
dynamically the relationships between these parameters by 
running different scenarios.  

A. Effects of current speed and direction, and other 
enviromental factors. 
The sea current is a significant factor in the fish disease 

transmission in the aquaculture. The pathogens are moving 
by currents, so with a high current speed, the pathogens will 

leave the cage rapidly. Figure 7. shows the pathogens’ 
density in the cage for different current speed values. The 
pathogens’ density decreases when the current speed 
increases, and of curse increases when the number of 
infected fish increases.    

 
Figure 7. Pathogens’ density (z-axis )vs. current speed (x-axis) and infected 

percentages (y-axis). 
 

Figure 8. shows the attack rate in low and high current 
speed values. The attack rate decreases as current speed 
increases, and in low currents the attack rate is very high. 
Active currents are good also for waste disposal, so to get 
benefits from active sea currents, it is better to put the cages 
beside each other shaping a line facing the currents. 

  

 
Figure 8. Infected percentages (y-axis) dynamics in different current speed 

values. 
 

Other environmental factors (sea temperature and 
salinity) affect both the fish and pathogens. Higher sea 
temperature and salinity decrease the fish RF to get infected, 
but decrease the pathogen lifespan also.  

B. Effects of fish swimming behavior  
Fish movement is another significant factor in the fish 

disease dynamics. If the fish swim in water that has a 
percentage of pathogens’ density, will get infected, 
otherwise, the fish will not get infected. There are many 
studies about fish swimming behavior in the cages and the 
fish speed as well [24][25]. In our model, we have tested 
swimming behavior (random, circular, in school) with 40 
cm/s average speed.  Figure 9. shows the attack rate in 
different fish swimming behavior. The highest attack rate 
when the fish move in a circular path, because the fish 
movements are concentrated in a specific area, while the 
lowest attack rate when the fish swim randomly because 
they occupy all the simulation space. 
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Figure 9. Infected percentages (y-axis) dynamics in different fish 

swimming behavior. 

V. CONCLUSION AND FUTURE WORK  
The presented model is designed to simulate the 

horizontal fish disease transmission that involves the spread 
of the pathogen from one individual to another through 
water, and combines most important factors in this process 
(Table I and II). The model parameters can easily be varied 
to simulate a specific scenario. In our simulation, we have 
focused on the effects of sea currents and fish swimming 
behavior factors on the disease transmission. The results 
show that the attack rate increases when the sea current
speed decreases, and when the sea current’s speed is very 
high, there is less effect on the attack rate. The fish 
swimming behavior is a significant factor as well. The 
attack rate increases when the fish swim in a regular pattern 
(circular or in school).  

Some limitations of this model are with respect to the
model scaling. Because the computer resources, not all the 
population (fish and pathogens) can be considered. This 
consequently affects the number of contacts between the 
individuals 

The model can be extended by adding more key 
parameters related to the fish industry process (i.e. stocking 
and harvesting process), or related to the interaction with the 
outside environment, including other factors related to 
escaped fish, wild fish and workers.  
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ABSTRACT 

Fish farming is an important industry along the 
Norwegian west coast. This industry provides labor 
opportunities and financial income in areas that are 
often thinly populated. Fish are subject to diseases 
carried by pathogens. The value of the fish that are lost 
due to disease is worrisome, and emergent diseases 
continue to pose a severe challenge to the aquaculture 
industry.  We have built an agent-based model to 
simulate the emergence of a hypothetical fish pathogen 
in an aquaculture facility in the Romsdalsfjord1 to 
observe how this pathogen possibly spreads to multiple 
facilities within the fjord. This model enables us to 
observe how key parameters such as current speed, 
current direction, pathogen life span, contagiousness 
and fish density affect the disease dynamics. The model 
is implemented in NetLogo, and we have included three 
aquafarms at the Romsdalsfjord in the experiment. 

INTRODUCTION 

Aquaculture is about to revolutionize the way we 
consume fish and other marine food products as 
agriculture already did on land. During the past few 
decades world capture fisheries have stabilized or 
decreased, whereas aquaculture production has 
increased massively (FAO 2012). In 2010, aquaculture 
stood for 47% of global food fish production, and in 
Norway the export value of farmed seafood now 
exceeds that of wild caught species (FKD 2013). Today, 
fish is the third most important export product after 
oil/gas and metal, and accounts for 5.7 per cent of the 
total Norwegian export value according to Statistics 
Norway (SSB 2013). Norway is the largest exporter of 
aquaculture products in Europe, and number six 
globally, after Asian nations such as China, India and 
Indonesia (FAO 2012). It is thus clearly of high 
importance for Norwegian economy to ensure a 
sustainable aquaculture industry. 

However, emergent diseases continue to be a serious 
challenge to the aquaculture industry and set constraints 
to its expansion (Murray & Peeler 2005). Diseases both 
induce large economic costs to the industry (Werkman 

1 Romsdalsfjorden is 88 km Long and located in the Romsdal 
district of Møre og Romsdal county.  

et al. 2011) and might threaten wild populations 
(Murray & Peeler, 2005). A major problem in many 
areas has been the uncontrolled use of antibiotics 
leading to resistant bacteria strains (Defoirdt et al. 
2011). Although the antibiotics use in Norway today is 
restricted, and some important pathogens have been 
reduced through vaccination programs, new and/or 
resistant pathogens still emerge (Olsen & Hellberg 
2011). Combatting these diseases is therefore an 
important research field (Johansen et al. 2011) and a hot 
topic in public debates (e.g. NTB 2011). 

Atlantic salmon is by far the most important species 
in Norwegian aquaculture. The most troublesome 
diseases for the salmon aquaculture are caused by 
viruses (Olsen & Hellberg 2011). All major viruses 
affecting Norwegian aquaculture are thought to spread 
between fish through sea water (Johansen et al. 2011), 
as infected fish shed pathogens to the surrounding 
waters. To keep fish farms at appropriate distances is 
therefore a potential measure to combat this horizontal 
transmission.  

This model aims to simulate the pathogen 
transmission between aquaculture sites in a Norwegian 
fjord and observe how this pathogen possibly spreads to 
multiple facilities within the fjord. This model uses 
many key parameters such as current speed, direction, 
pathogen life span, contagiousness and fish density to 
find possible pathogen transmission patterns. Before 
describing the model in detail; a more complete 
background on the dynamics of fish disease 
transmission and previous studies on this issue will be 
given in the next section. 

Diseases in aquaculture 

Knowledge of pathogens in wild fish stocks is 
generally poor, and it is therefore difficult to predict 
which diseases might occur once an aquaculture facility 
is established in an area (Bergh 2007). A wide range of 
pathogens exists, from viruses and bacteria to 
crustacean parasites (Olsen & Hellberg 2011). These 
might be introduced to an aquaculture system through 
various pathways: movement of infected stocks, 
equipment or fish products from other areas; or by 
exposition to wild fish pathogens (Murray & Peeler 
2005). Once introduced, pathogens can benefit from the 
aquaculture environment and pose a graver risk to 
farmed fish than wild stocks. This is both because of 
factors such as poor environment, stress and pollution 
that might reduce individual fish resistance (Murray & 
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Peeler 2005), but moreover because the artificial high 
density of fish, and thus potential hosts for the 
pathogen, in a fish farm can induce outbreaks (Bergh 
2007; Rimstad 2011). Pathogens that benefit from 
higher host densities follow so-called density-dependent 
transmission (Murray 2009). The rate of transmission is 
the product of the densities of susceptible and infected 
individuals.  

As previously mentioned, disease transmission can 
happen with currents, depending on the survival time of 
the pathogen in water masses, but also through vectors 
such as wild fish or escaped farmed fish (Murray & 
Peeler 2005). Hydrodynamic spreading will usually be a 
local-scale problem, whereas wild fish can become 
infected nearby a farm and transmit the pathogen over 
larger distances (Werkman et al. 2011). An example of 
a waterborne virus is the Salmonid alphavirus causing 
Pancreas disease (PD), an increasing problem in 
Norwegian aquaculture (Kristoffersen et al. 2009). 
Stochastic models have emphasized the importance of 
the distance between farms for disease transmission of 
both this and other diseases affecting farmed salmon, 
such as heart and skeletal muscle inflammation (HSMI) 
and infectious salmon anaemia (ISA)  (Aldrin et al. 
2010).  

Using an Agent-based model (ABM) to simulate 
disease transmission in aquaculture  

Previous modeling studies on the transmission of 
pathogens within and between farmed fish populations 
have either used classical SIR disease transmission 
models (Susceptible, Infected, Recovered) that focus on 
the population as a whole (e.g. Murray 2009; Green 
2010), or such population models coupled with simple 
hydrodynamic models or distance measures of 
transmission between separate populations (Viljugrein 
et al. 2009; Aldrin et al. 2010; Werkman et al. 2011; 
Salama & Murray 2011). To our knowledge no studies 
have previous applied ABMs to assess the transmission 
of diseases within and/or between aquaculture fish 
populations. On the other hand, ABMs have been 
applied to simulate transmission of human viral diseases 
such as influenza (e.g. Ciofi degli Atti et al. 2008; 
Milne et al. 2008). ABMs can be valuable for analyses 
focusing on individual interactions, and also to 
incorporate the spatial aspect of the system. Whereas 
classical SIR-models used in disease transmission 
modeling represent total populations, we here apply an 
ABM to simulate individual fish becoming infected, and 
how pathogens spreads spatially by also representing 
these as agents. By applying an ABM instead of e.g. 
differential equations more complexity can be added 
and analysed through simulations. Another reason for 
applying an ABM is that empirical data regarding fish 
pathogens are often lacking. It is therefore difficult to 
predict the threshold for density-dependent outbreaks of 
diseases in classical disease transmission models 
(Krkosek 2010). In an ABM, the parameters regarding 
disease transmission can easily be varied.  

Modelling a real system 

Since there are presently research activities 
regarding aqua farms in the Romsdalsfjord, we decided 
to look for both inspiration for research problems and 
potential parameter values that have emerged from these 
studies. From these studies we pursued the effect of the 
fact that pathogens may survive in water for days 
without a host. Furthermore, since there are many aqua 
farms in the Romsdalsfjord (DF 2013), about 35 (see 
figure 1), the close proximity between the farms 
becomes an important factor in disease transmission. It 
is a relevant issue in current research efforts to study 
under which conditions one infected aqua farm may 
spread disease to other farms by pathogens “jumping” 
from one aqua farm to the next, creating a domino 
effect. 

Figure 1: Map, which shows the aqua farms in 
Romsdalsfjorden. 

THE MODEL 

This section describes how our model works. The 
model is implemented in NetLogo (Figure 2).The idea 
behind the model is to simulate three aquafarms which 
reside in the same fjord area, and that we can suspect 
are subject to cross contamination between each other. 
All parameters used in the model are listed in Table 1.  

Figure 2: NetLogo model 

We do not specifically model the background of 
introduction of a disease, and assume that the pathogen 



is a new variant for which no vaccination is yet in place. 
The model presented is a general model, which can be 
adjusted to various pathogens and environmental 
scenarios. Salmon aquaculture is the most common 
form of aquaculture in Norway, and since the most 
important mode of transmission of salmon disease is by 
water currents we chose to model this process.  

Table 1: Parameters used in the model 
Parameter Description Estimate Source 
Current speed Current speed 

in m/s 
0.02 – 0.2 4,6,7 

Current 
direction 

Current 
direction in 
degrees 

6,7 

Transmission 
parameter + 

Probability that 
a fish is 
infected by a 
pathogen in its 
surrounding 
water 

5.416x10-4 – 
8.912x10-4/hour 
(minimum 
values) 

3 

Shedding 
parameter + 

Number of 
pathogens shed 
by infected fish 

High* 1,2,5 

Pathogen 
lifespan + 

Lifespan of 
pathogen in 
seawater in 
days 

8.33 – 62.5 
hours 
Depends on 
pathogen and 
environment 

3 

+Pathogen values for Infectious salmon anaemia virus (ISAV), Infectious pancreatic necrosis 
virus (IPNV) and Salmonid alphavirus (SAV). 
* Different sources use different units and values are ranging from 106.5 PFU/fish/h (PFU= 
plaque forming units) (1), 105—108 CFU/fish/h (CFU=colony forming units) (2) and 6.8 *103

TCID50 /ml/ kg fish/ h/ (maximum rates) (TCID50 =the amount of virus required to kill 50% 
of infected hosts) (5). The units are not single pathogens but units that are measureable in the 
lab. Since the numbers are very high, and computationally difficult to implement in the model 
we set a probability between 0-1 (adjustable) that an infected fish sheds a pathogen, but this 
pathogen represents a large number. The probability value is likely to be high (close to 1) as 
observed shedding rates are on these ranges. 
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Scaling the model in space and time 

As a real-world basis for our model we use the aqua 
farms at Midsund (Figure 3), in the Romsdalsfjord. This 
part of the fjord currently hosts three aqua farms, with a 

distance of about 8 km between each site. The farms 
have a size of around 10,000 square meters and host 
around a million fish each (DF 2013). The total area of 
interest is about 16 km wide. We constructed the model 
in a rectangular space of 16 x 8 km. In our model all 
three aqua farms have the same size, 80 m x 120 m. The 
farm sizes are thus close to some of the real fish farms 
in the Romsdalsfjord (DF 2013). Each fish farm is 
populated with 1000 fish, while in reality you would 
expect to see about 1000 times more fish in an actual 
fish farm at this size. This simplification was made in 
order to save computer resources while running the 
model.  

Figure 3: Midsund 

According to MODS (2012) the average current 
speed in the Romsdalsfjord is typically 0.2 m/s. This 
equals 12 m/min or 120 m/tick. Tick is the time step in 
the model and its representing 10 minutes. The model 
enables the current speed to be varied around the default 
value of 0.2 m/s, and in order to move the pathogens at 
the correct speed in the simulations the conversion 
factor was incorporated. 

The fish agents 

The fish are created during the setup procedure of 
the model. In each of the three farms; 1000 fish are 
distributed across the farm’s area. When the simulation 
starts all fish are healthy, i.e. belonging to the 
susceptible group. The exception is one infected fish in 
Farm 1. Healthy fish may become infected if there is a 
pathogen present at the same place as the fish. Once a 
fish is infected they start to produce pathogens at a rate 
given by a certain parameter (Fish_release_pathogen). 
This parameter represents the probability that one fish 
produces one pathogen in one time step. The probability 
that a healthy fish gets infected while being on same 
place as a pathogen during one time step is given by the 
parameter pathogen_infect_a_fish. The two 
probabilities for pathogen production and infection are 
flexible (between 0 and 1).  

Pathogen agents and current simulations 



Pathogens are also represented as agents. It is 
important to note that one pathogen agent does not 
represent one pathogen, but a batch of a high number of 
pathogens. Each pathogen is moved by the currents, 
with the current speed and direction given by the place 
the pathogen is at by the start of the time step.  

In order to create a model that incorporates some of 
the variation present in nature we used normally 
distributed random numbers for both the current speed 
and current direction. By introducing this randomness 
we avoid to some extent to end up with a very specific 
case scenario that would be less valuable for 
generalizations. In theory, the model can be built with 
very complex current patterns (see Figure 4): pathogens 
inherit the current direction of the place they are 
presently on, and by moving to a new place they change 
the direction to the direction inherited from that place. 
In our Nelogo model, current angle was set directly 
inwards in the fjord. During each time step a random 
deviance is added to this current angle. This randomness 
is given by two parameters: A current standard 
deviation (Current_heading_std_dev) which can be set 
from 0 to 90 degrees and a bias term 
(Current_heading_bias) used to offset the direction 
given by the patch2, which can be set between -5 and 5 
degrees. When moving the pathogen might hit dry land. 
In this case the pathogen is removed from the model 
(dies). 

Figure 4: Currents direction in Romsdalsfjorden, MODS 
(2012).  

The current speed is decided by the parameter 
Current_speed, and can be set from 0 to 2 m/s, with a 
default of 0.2 m/s. The current speed it is also 
accompanied by a random variation term, given by the 
parameter Current_std_dev, which can be set between 0 
- 0.1 m/s. As we expect that current speed is not
constant through time and space, this random term is 
used to make the model more realistic. Likewise the 
current speed can also depend on the individual patch. 
This is useful in order to model how current speed 
varies with the geometry of the fjord (e.g. changes in the 

2 Patchs represent  the  grids in the landscape in NetLogo. 

width of the fjord, the presence of islands and 
peninsulas etc.). This aspect is incorporated by adding a 
constant to each patch, the relative speed. Relative 
speed is a number by which the global current speed is 
multiplied for each patch. Hence, a relative speed below 
one indicates a speed below the average in that 
particular patch. Likewise, a relative speed greater than 
one indicates a speed higher than the average.  

The pathogens are given a fixed life span in the 
range of the values we found in literature. In the model 
this parameter can be set between one and ten days, 
with a resolution of 0.1 day. At each tick all individual 
pathogens’ ages are updated by adding 10 minutes 
(corresponding to 10/24/ 6 = 0.069 days) to their 
cumulative age. When a pathogen’s age exceeds the 
value given by the age limit it dies.  

RESULTS OF THE EXPERIMENT 

A simulation experiment was set up for the model. 
The model was run for 400 time steps, and three of the 
model parameters were varied in the following manner: 

• Current speed: 0.05 to 0.25 m/s, at steps of 0.5
(5 values)

• Infection rate (Pathogen infect a fish): 0.1 – 1,
at steps of 0.1 (10 values)

• Pathogen age: 0.2 – 3, at steps of 0.2 (15
values)

The simulation experiment output was the number of 
infected fish in each of the three fish farms (Farm 1, 
Farm 2 and Farm 3) at each time step. Running the 
experiment by using normal machine took around 15 
hours, but to run it by using super-computer with 6 
processers took around 5 hours. Figure 5 (a,b,c,d and e) 
shows the number of infected fish in Farm 2 after 400 
time steps. The interpretations of the figures follow in 
the next section. 

(a) (b) 

(c) (d)



(e) 
Figure 5: Number of sick fish (z-axis) in Farm 2 after 
400 time steps, with current speed set at five different 
values (0.05, 0.1, 0.15, 0.2 and 0.25 m/s), and infection 
probability (x-axis) and pathogen (y-axis) varied. 

Figure 6: Number of infected fish per time step in the 
three fish farms (blue line=Farm 1, green line=Farm 2, 
red line= Farm 3). For the four graphs on the top 
infection rate and pathogen life span were held constant 
at 0.5 and 2, respectively and current speed was varied 
at four different levels. For the four graphs down 
pathogen age was varied, while infection rate was set at 
0.5 and current speed=0.15 m/s.  

DISCUSSION 

As described above, the aquaculture industry is 
increasingly important for both the Norwegian economy 
and people’s marine food availability worldwide. A 
major challenge for aquaculture development is the 
emergence of diseases, which can be due to a large 
variety of pathogens. It is therefore highly relevant to 
study how pathogen transmission between aquaculture 
sites can vary due to factors such as currents and 
pathogen virulence. Using an ABM we were able to 
simulate both fish and pathogens as individual agents 
and specifically study the movement of pathogens in a 
simplified fjord system. ABMs have to our knowledge 
never been employed in this type of study before. 
Although the model is simplified, we believe that it 
provides some insight into the transmission of 
pathogens between fish farm sites. 

The simulation output 

Current speed was the most important parameter 
controlling the number of infected fish in the 
aquaculture sites. The age limit of the pathogens was 
also important for the number of sick fish in Farm 2 and 
Farm 3. In fact, as long as the pathogen age was above a 
certain threshold, all fish in the fish farms would 
ultimately become infected. When current speed was 
held constant, the infection rate also had a significant 
impact on the number of sick fish in Farm 2 and 3, and 
for Farm 1 for low current speeds (<0.2). 

The minimum pathogen age required to get infection 
in Farm 2 within 400 time steps, and at the lowest 
current speed we tested (0.05 m/s), was from 1.4 to 1.6 
days, depending on infection probability. For Farm 3, 
the minimum current speed needed in order to get 
infection within 400 time steps was 0.1 m/s. At this 
current speed, the minimum pathogen age limit was 0.8 
days. With this combination of current speed and 
pathogen life span the infection process occurs in Farm 
2, which is subsequently sending new pathogens to 
Farm 3. If the current speed maximized to 0.25 m/s, 
only a lifespan of 0.2 days is needed in order to get 
infection in Farm 2, and subsequently in Farm 3. I.e., at 
current speeds above 0.1 m/s the dynamics of Farm 2 
and 3 are similar, as Farm 2 acts as a new source of 
pathogens for Farm 3, and the distances are the same.    

Scaling the model 

If we were going to represent a realistic number of 
agents (fish and pathogens) the model simulation would 
be very computationally demanding. In Norway today, 
aqua farms can host fish in the order of millions (DF 
2013) and for pathogens the numbers would be 
uncountable, in the order of trillions or higher, 
depending if we are studying bacteria or virus. In order 
to be able to run the model we therefore had to scale it 
down significantly. Even so, the relative magnitude 
between the number of fish and pathogens is likely 



 

incorrect, with the number of pathogens underestimated. 
To compensate for this, the probabilities of infection 
and pathogen release should be adjusted accordingly, 
meaning that they should be set higher than what might 
be expected. A challenge in this approach is that these 
parameters are largely unknown. Another issue arising 
from scaling down the model is that the pathogens 
might less easily “hit” the aqua farms, since there are 
likely fewer pathogens in the system than what would 
be realistic. It is harder to compensate for this issue by 
adjusting the probability of infection, since infection 
requires the actual presence of the pathogen. Increasing 
the probability of pathogen release would, on the other 
hand, compensate for this issue by creating more 
pathogens in the system. Another solution could be to 
make the aqua farms bigger (scaling up their size) in 
order to increase the probability of an encounter 
between the pathogens and the sites. 

The matter of scaling thus leads to many challenges 
for creating a model that represents the real world. We 
still lack good solutions to many of these challenges, but 
we are aware of their existence and the results of the 
model simulations should accordingly be interpreted 
with this in mind. In essence, our simplified model of 
the Romsdalsfjord is aimed at studying effects that may 
occur, but it is not appropriate to make any numerical 
predictions. 

 
Simulating pathogen transmission and infection 

The most challenging part of the modeling process 
was to simulate the pathogen transmission process, due 
to lacking empirical data on these issues in the 
literature. There are several uncertain factors regarding 
the process of transferring illness between fishes. To 
create a realistic model for the infection process is 
therefore difficult, and our approach was to model a 
simplified scenario that can later be tuned to reproduce 
results observed in fish farms. Moreover, the few 
studies that have quantified the rates by which 
pathogens are shed by infected fish use different units 
which are not single pathogens, but units that are 
measureable in the lab or practical for disease 
monitoring (Salama & Murray, 2011). It was not 
straightforward to convert these values into 
probabilities, and we therefore had to experiment to find 
appropriate values. The probability of pathogen 
infection was varied during the simulations, while the 
shedding rate (Fish release pathogen probability) was 
kept constant (0.05). This was done in order to facilitate 
the interpretation of the results, and because we lacked 
any references as to what would be realistic values for 
the latter parameter. 

 
CONCLUSIONS AND FUTURE WORK 

In this ABM, we have simulated three fish farms in 
the Romsdalsfjord. The number of infected fish in each 
farm is predicted by factors such as current speed and 
pathogen life span. The results provide a good base for 
exploring the relationship between these variables and 
others (infection rate, pathogen release rate current bias 
etc.), and platform on which more complexity can be 
added to the model at a later stage. Such possible 
complexities are described hereunder.  

  
Pathogen transmission 

In reality, the proliferation of a pathogen can be 
highly dependent on environmental conditions such as 
temperature, and thus vary with seasonal and inter-
annual environmental changes (Krkosek 2010). Also, 
the virulence of the pathogen and the conditions of the 
host (health, age, stress etc.) will affect the likelihood of 
an outbreak (Rimstad 2011). At this stage, we have only 
modeled a short disease proliferation period, and 
therefore assumed temperature to be constant. A next 
step could be to incorporate a dynamic temperature 
variable in our modeled fjord which would affect 
infection probability and pathogen release. 

In this model, we focused on the distance between 
aquaculture sites, but not their individual sizes. But 
water-transmitted pathogens can also benefit from the 
size of the aquaculture site. A next step for our model 
could be to vary both distances and sizes of the fish 
farms. This could be interesting for managers deciding 
upon which areas would be appropriate in order to avoid 
disease transmission between fish farms. 
 
Currents modeling 

In our model, we have assumed the currents speed 
and direction act according to MODS (2012), and 
depend on what is written in the literature. We have 
assumed that current direction is inwards in the fjord 
and changes between 0.05 to 0.25 m/s in our experiment 
(at Midsund, see figure 3). We have selected these 
values by analyzing the geographic of the fjord (at 
Midsund) and results from MODS (2012). But in the 
reality, the current speed and direction are more variable 
and depend on many other factors, as season, snow 
melting rate, and the geographic of the fjord. The model 
would become more realistic if it was connected to a 
current model of the fjord.     

 
Fish movement 

Although the transmission through water is the most 
important route for marine pathogens, a further step 
could be to incorporate the movement of the farmed 
fish, with a certain probability of escaping (and which 
could be infected or not). Fish escapees can in fact pose 
a risk to the wild population through spreading of 
diseases (Naylor et al. 2005), a risk that increases when 
farmed fish are in the vicinity of wild populations of the 
same species and the farmed population contributes a 
large quantity compared to the wild fish. 



 

Another interesting, but challenging, possibility would 
be to include wild fish agents. A study on the 
distribution of saithe within a fjord with salmon 
aquaculture showed aggregations around aquaculture 
facilities and a high proportion of fish moving between 
different farms, indicating that the wild fish might 
constitute an important connection between fish farms 
(Uglem et al. 2009). The fish might aggregate around 
the farms to feed on waste pellets under or around the 
nets. A range of pathogens is thought to be common to 
salmon and saithe, but the likelihood of transmission 
between caged and wild fish is unknown. 

Altogether, the model presented here offers an 
interesting first step towards more complex models of 
disease transmission between aquaculture sites, an 
important research issue for the aquaculture industry. 
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Abstract 

The aquaculture industry is a main industry in Norway, and it must be sustainable, 
i.e. experience long-term growth and development: It is necessary to build an 
environmentally sustainable aquaculture industry that minimizes risks to the marine 
environment and biological diversity, - including the transmission of fish diseases. 
The process of fish disease transmission in aquaculture systems is influenced by many 
factors, including individual (fish and pathogen) conditions, movement behavior and 
environmental conditions. Fish disease dynamics originates from a complex system, 
and the transmission of viruses is an unstable process, making it difficult to predict 
and analyze. 

In preparation for this paper, we built an agent-based model to predict patterns of 
pathogen transmission with the purpose of identifying risks and hazards in the space 
and time domains. This risk assessment will help combat infectious fish diseases and 
help inform the management of the fish industry in Norway. Previous models that 
predicted the spread of diseases within and between fish populations were mostly 
based on the assumption that these populations were homogeneous, and focused on 
the population as a whole. In contrast, we are assuming that the fish populations and 
pathogens are heterogeneous. Consequently, we developed an agent-based approach 
for modeling the dynamics of a fish disease within and between the aquaculture sites 
of the Norwegian fjords; this type of model considers interactions among individuals 
(fish and pathogens) and the interactions between individuals and their environment 
in a space-time context. The model presented explores the potential effects of 
different factors, such as the conditions of individuals, movement behavior and 
environmental conditions, on the simulated spread of a fish disease. 

We applied the model developed to different case studies in the Norwegian fjords. 
The results demonstrated how the infection risk at any point around the infected site is 
dependent on both the pathogen and the fish density at that point, and the infection 
risk increases when the pathogen or fish densities increase. The pathogen density 
decreases exponentially as a function of an increase in the water temperature, and the 
pathogen density increases with the velocity of the current or the fish density at the 
infected site. The pathogens are moved faster by higher current velocity, so this will 
slow the infection process at the local infected site. Nevertheless, the current will 
carry the pathogens to nearby places faster. The direction of the current is very 
important since the pathogens are predominantly moved by the currents. 
   The agent-based method helps us advance our understanding of pathogen 
transmission and builds risk maps to help us reduce the spread of infectious fish 
diseases. By using this method, we may study the spatial and dynamic aspects of the 
spread of infections and address the stochastic nature of the infection process. 

Keywords - Agent-based method, aquaculture, fish disease dynamics, pathogen 
transmission, Netlogo. 
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1 Introduction 
Fish farming in Norway has increased steadily in recent years and is expected to 

continue to increase for years to come (www.ssb.no). The continued growth of 
Norwegian aquaculture production has presented the industry with a range of 
challenges. One of the main challenges is to understand fish disease dynamics within 
and between the aquaculture sites in the Norwegian fjords, characterized by a rich 
marine life and considerable human activities. Fish are subjected to diseases carried 
by different types of pathogens1. Pathogens are transported in space and time by sea 
currents at an irregular velocity (speed and direction). The sea currents in the 
Norwegian fjords exhibit a complex pattern of behavior, as shown in figure 2. 
Pathogen transmission is dependent on many different biological, environmental, and 
physical factors. Due to the complex relationships that exist between these different 
factors and the way they change in time and space, (e.g. fluctuating sea-water 
temperature alter pathogen’s lifespan and its ability to cause a disease), other 
approaches previously applied to study this issue, that are not including active parts 
(agents) to model this complex dynamics relationships, they have not successfully 
reduced the ambiguity in our understanding of how pathogens spread in the 
Norwegian aquaculture system. Therefore, we need a method that allows us to 
address this ambiguity so as to limit the risk of fish disease spreading. In this study, 
we will use an agent-based approach in building models that predict patterns of 
pathogen transmission for the purpose of identifying the risks and hazards in the space 
and time domains. It is expected that this risk assessment will inform the fish industry 
management in Norway in their fight against infectious fish diseases.  

1.1 Aquaculture in Norway 
In recent decades, the aquaculture industry has probably been the fastest growing 

food-production sector in the world, and it provides a significant supplement to, and 
substitute for, the catch of wild aquatic organisms. Norway has a long and jagged 
coastline that is bordered by cold, fresh seawater endowed with a rich marine life. 
This environment provides excellent conditions for aquaculture activities. Today, 
Norway is the second largest seafood exporter in the world and the world’s leading 
producer of Atlantic salmon (Fiskeridir.no, 2018). Since the advent of commercial 
salmon farming in Norway around 1970, the aquaculture industry has grown to 
become an industry of major importance. Not only is aquaculture important to the 
Norwegian economy as a whole, it is also very important to the many local 
communities along the coast where other economic opportunities are sometimes 
limited. Today, farming of salmon and rainbow trout takes place in nearly 160 
municipalities along the Norwegian coast. Approximately 5,900 people are directly 
employed in aquaculture production, and 21,000 people are employed in aquaculture-
related activities (Fiskeridir.no, 2018; SSB, 2018).  

Emerging diseases pose a serious challenge to the aquaculture industry, and the 
value of the fish that are lost due to disease is worrisome. Ten years ago, Iversen et al 
2005 assessed the general cost of such diseases imposed on the Norwegian fish 
farming industry to be US$ 150 million annually (Iversen et al. 2005). Fish are 
subjected to diseases carried by pathogens, including viruses, and these pose 
particular challenges to the salmon aquaculture (Olsen and Hellberg 2011). Our 
knowledge of pathogens and their effect on wild fish stocks is generally poor, and it 

																																																								
1	A pathogen is anything that causes a disease.	
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is, consequently, difficult to predict which diseases might occur once an aquaculture 
facility is established in an area (Bergh 2007). A wide range of pathogens exist, from 
viruses and bacteria to crustacean parasites (Olsen and Hellberg 2011). These 
pathogens might be introduced to an aquaculture system through various pathways, 
e.g.; through the relocation of infected stocks, by the use of equipment or fish 
products from other areas, or by exposure to wild fish pathogens (Murray and Peeler 
2005). Once introduced, pathogens may benefit from the aquaculture environment 
and pose a graver risk to farmed fish than they do to wild stocks. This is partially 
because of factors such as unfavorable environmental conditions, stress and pollution, 
which might reduce the resistance of individual fish (Murray and Peeler 2005). 
Moreover, pathogens may benefit from the artificially high density of fish, and thus, 
the numerous potential hosts of the pathogen that are present in a fish farm and thus 
cause frequent and massive disease outbreaks (Bergh 2007; Rimstad 2011). Pathogens 
that benefit from higher host densities cause a so-called density-dependent trans-
mission (Murray 2009). The rate of transmission is the product of the densities of 
susceptible and infected individuals. Disease transmission may also occur with 
currents as carriers, - depending on the survival time of the pathogen in the water 
masses, and also through vectors such as wild fish or escaped farmed fish (Murray 
and Peeler 2005). Hydrodynamic spreading will usually be a local-scale problem, 
whereas wild fish can become infected near a single farm and transmit the pathogen 
over larger distances to other farms (Werkman et al. 2011). An example of a 
waterborne virus is the salmonid alphavirus that causes salmon pancreas disease (PD), 
that has turned out to be an increasing problem in Norwegian aquaculture 
(Kristoffersen et al. 2009).  

All major viruses affecting Norwegian aquaculture are thought to spread between 
fish through seawater (Johansen et al. 2011), as a result of infected fish shedding 
pathogens into the surrounding waters. To retain a sustainable fish industry in Nor-
way, we need tools for effective risk analyses and consequence assessments. In this 
paper, we aim at developing models to help identify the pathogen transmission 
patterns between fish populations so as to support such analyses and assessment in the  
combat against fish diseases.  

Previous Norwegian studies on fish diseases in aquaculture have used classical SIR 
(susceptible, infected, recovered) disease transmission models that have focused on 
the population as a whole (Reno 1998; Ogut 2001; Murray 2009; Green 2010) or such 
population models coupled with either simple hydrodynamic models or distance 
measures of transmission between separate populations (Stene et al. 2014). These 
models are inherently limited in their ability to predict the dynamics of diseases 
because they are based on structural assumptions and historical data that do not offer 
a valid description of the system at hand. They, consequently, do not offer an 
adequate explanation for the complex dynamics observed. In particular, they do not 
capture the phenomenon of emerging diseases, i.e. the onset of a disease in an 
aquaculture farm.  

Fish disease dynamics are affected by many variables that modeling techniques, 
applied so far, cannot address; however, the agent-based modeling (ABM) technique 
can include all necessary variables to build a valid model even if there is a lack of 
available empirical data. By using ABM, we move to the individual’s level and how 
the individuals’ characteristics and their behavior are connected to the overall system 
behavior. 

 
 



	 4	

1.2 Related Work 
Fish disease dynamics are affected by many different biological, environmental 

and physical characteristics, such as fish density and stress, water temperature and 
salinity, as well as current speed and direction. This constitutes some of the complex-
ity to be addressed when modeling these processes. Fish disease dynamics within an 
aquatic site or between many such sites is itself a part of such a complex environment 
in which it evolves. Earlier modeling studies on the transmission of pathogens within 
and between aquaculture farms have mainly been based on mathematical models that 
focused on the population as a whole (e.g., Murray 2009; Green 2010). Kermack and 
McKendrick were pioneers in establishing the mathematical modeling of disease 
epidemics in 1927 (Kermack et al. 1927). They created the mathematical SIR 
(susceptible, infectious, recovered) model, based on ordinary differential equations. 
That model includes the assumptions that all fish are homogeneous, initially equally 
susceptible to the disease, and completely immune after having been infected. The 
SIR models do not treat the pathogens as separate individuals who may survive 
without a host, and they do not include the environmental conditions that may change 
over time. SIR models are simple and, typically, deterministic and do not validly 
represent some important aspects of disease spread, including the variety in properties 
across in the individuals, the spatial aspect of the spread of disease and the 
characteristics, including causes of delays, of the environment in which this spread 
takes place. Many researchers have, over the years, applied a variety of such 
mathematical models to simulate disease dynamics. Some studies have coupled such 
models to simple hydrodynamic models and to distance measures of transmission 
between separate populations (Viljugrein et al. 2009; Aldrin et al. 2010; Werkman et 
al. 2011; Salama and Murray 2011). 

Hydrodynamic models, combined with particle tracking and statistical analyses, 
have been widely used in Norway to identify the salmon louse and pancreas disease 
(PD) transmission dynamics in Norwegian fjords (MODS 2012; Stene et al. 2014). 
SINMOD is the most famous hydrodynamic model in Norway (www.sinmod.no), and 
it couples physical and biological processes in the ocean. Hydrodynamic models are 
based on the assumption that the pathogen agents drift passively with the sea currents. 
Hydrodynamic models do not incorporate the effects of the surrounding nature (e.g. 
sea-water temperature change) on the pathogens, and the heterogeneity among the 
pathogens is being ignored. Also, the statistical analyses are based on the assumption 
that the fish populations are homogeneous. 

Cellular automata (CA) theory has also been used for modeling the dynamics of 
infectious disease spread (Sirakoulis et al. 2000; Zhen et al. 2006), but the individuals 
movements and interactions across space over time have not been represented in such 
models. 

Agent-based methods have been applied to simulate the transmission of human 
viral diseases such as influenza (Ciofi et al. 2008; Milne et al. 2008; Khalil et al. 
2010). In this project, we have applied the agent-based method to simulate disease 
dynamics in a fish population (Alaliyat and Yndestad 2015b), but we did not extend 
the model to simulate how pathogens spread between aquaculture sites in the fjord. 
Agent-based models (ABMs) can be valuable in analyses focusing on the effects of 
individual interactions, and they may incorporate the spatial aspect of a system. 
Whereas the classical SIR models, used in classical disease transmission modeling, 
represent total populations, in this study, an ABM approach is applied to simulate the 
infection process of the individual fish, the movement of fish in the cages, and the 
way that pathogens spread spatially, in the form of individuals, by representing fish 
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and pathogens as agents. ABMs are computationally costly compared to other models, 
and the costs increase exponentially with the number of individuals included in the 
model. 
1.3 The modeling approach 

The main aim of this study was to develop an agent-based modeling approach for 
studying the dynamics of fish diseases within and across aquaculture sites in the 
Norwegian fjords. This approach considers the interactions between individuals’ (fish 
and pathogens) and with their environment in a space-time context and is expected  to 
advance our understanding of the disease dynamics process and help combat such a 
development. The process of disease transmission is influenced by many factors, 
including the conditions of the individuals (fish and pathogen), movement behavior 
and environmental conditions. The model presented explores the potential effects of 
these factors on the spread of a simulated fish disease.   

ABM provides a realistic representation of the system by including the interactions 
of individuals. In addition, ABM offers more flexibility in the modeling and allows 
for more complexity to be added and analyzed by way of simulation. Another reason 
for applying ABM is to compensate for the lack of empirical data regarding fish 
disease transmission. By using ABM for predicting pathogen transmission, a 
simulation of future disease transmission scenarios could provide a means to 
compensate for this lack of empirical data. In ABMs, the values of the parameters 
governing the disease transmission may easily be varied (Build on previous models. 
Alaliyat et al. 2013; Alaliyat and Yndestad 2015a, Alaliyat and Yndestad 2015b). 

ABM has been suggested in different fields as one of the most appropriate 
approaches to modeling and simulation when addressing complex, dynamic system. 
ABM captures the complex network of interactions and interconnections that 
comprise real systems and makes it possible to derive emerging dynamic patterns, 
unexpected changes in those patterns and events characterizing such patterns. This 
makes such a bottom-up approach advantageous in simulating the spread of pathogens 
in aquaculture systems. ABM provides insights into the structural origin of emerging 
phenomena that are caused by the interactions among individuals (pathogens and 
fish). Using ABM, one may describe how fish and pathogens behave rather than 
develop equations that we believe govern the overall dynamics of the densities and 
infection rates of system entities. Reality is transparet in the model by using ABM. 
ABM is flexible in that it allows for the addition (and elimination) of agents and for 
adjustments in the agent behavior. ABM provides a framework for analysis and 
testing of the emergent dynamics. ABM provides a flexible framework for answering 
questions, such as what is happening, what will occur next, or identifying what the 
best/worst outcome might be. Thus ABM may serve well as modeling technique with 
the purpose to predict pathogen transmission between aquaculture sites. 

In this study, we focus on the Romsdalsfjord2. This fjord has been selected because 
of the extensive empirical research that has been undertaken at this site, Thus, we had 
access to the data we needed for our model building, validation and simulation. The 
Romsdalsfjord is a semi-closed fjord in mid-Norway that has a massive fish industry 
with more than 35 aquaculture sites throughout the fjord (figure 1). The aquaculture 
industry data, including biological, physical and environmental data, reflects the 
aquaculture system in the Romsdalsfjord, and our proposed model either used this 
data or was inspired by this data. 

																																																								
2		Romsdalsfjord is 88 km long and located in the Romsdal district of Møre og Romsdal county in mid-Norway.	
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Figure 1: Map of the aquaculture farms in the Romsdalsfjord. 

The close proximity between aquaculture sites in the Romsdalsfjord is an 
important factor in disease transmission. Consequently, it becomes very important to 
study the environmental, biological and physical conditions of an infected aquaculture 
site because from that site pathogens may spread to other aquaculture sites by sea 
currents, - creating a domino effect. The sea currents in the Romsdalsfjord exhibit a 
very complex pattern (figure 2). The currents in fjords are the strongest and most 
varying in the upper 20 m (closest to the surface), i.e. where the aquaculture farms are 
located. The currents are driven by topographical distinctions, river runoffs, winds, 
tides and water exchanges caused by offshore density differences (Urke et al. 2011; 
Stene et al. 2009). In this work, we built models to predict the patterns of the spread 
of pathogens from infected sites. This has enabled us to build risk maps that depicted 
the hazardous areas around infected sites in which diseases may be transmitted to 
neighboring sites. 

 
Figure 2: Current speeds and directions in the Romsdalsfjord, MODS (2016).   

We have built three different simulation scenarios to explore the potential effects 
of fish, pathogen and environmental factors on the spread of a simulated fish disease 
in the Romsdalsfjord. The first simulation experiment had only one hypothetical 
infected fish farm in an open area, and the sea current moved from the west to the east 
(i.e., left to right). In this scenario, we ignored the topography of the fjord, but we 
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focused our investigation on the risk-values and -maps that resulted from the 
pathogen’s density in space, over time, and on the largest distance that pathogens 
could spread. In the second scenario, we added a second hypothetical fish farm to the 
previous simulation map and tested the effects of various parameters (e.g., sea 
temperature, current speed, current direction, biomass) on the spread of the infectious 
disease from the source to the destination. Moreover, we simulated the on-site disease 
dynamics in this scenario. In the third scenario, we simulated real aquaculture systems 
with three sites, one of them is assumed infected site. We included the topography of 
the Romsdalsfjord and the aquaculture industry data in the simulations. The purpose 
of this scenario was to test the effects of various parameters on the spread of an 
infectious disease from a source to several destinations, to simulate the disease 
dynamics in the destinations and identify how the destination sites will become source 
sites as well (nested). 
2 Materials and methods 
2.1 Materials  

The data used in this study can be categorized into four main types: aquaculture, 
geospatial, oceanographic and disease data. The aquaculture data included the 
aquaculture site name, location, operator, maximum allowed capacity, type of 
production and the farm’s current production state.  

The aquaculture data are available online on the Norwegian Directorate of 
Fisheries’ webpage, http://www.fiskeridir.no/. The geospatial data utilized consists of 
three-dimensional (3D) maps of the Romsdalsfjord. We obtained 3D maps that 
included terrain and bathymetry data from the Norwegian Mapping Authority (NMA 
2016). The terrain had a resolution of 10 m x 10 m, while the bathymetry had a 
resolution of 50 m x 50 m. The oceanographic data included data on the sea currents 
(i.e., speed and direction), sea temperature and salinity. In our simulations, we used 
the monthly average sea current data from the SINMOD model (MODS 2012) with 
800 m resolutions, and we added some noise to emulate the natural variability. The 
seawater temperature and salinity data are available online on the Institute of Marine 
Research webpage, http://www.imr.no/en/. Similar to the data on currents, we used 
the monthly average data and adding some noise. The water temperature was varied 
in the water column as well (Alaliyat and Yndestad 2015b).  

The fish disease data utilized includes fish health, pathogen biology data and 
disease transmission factors. Wide ranges of pathogens exist, from viruses and 
bacteria to crustacean parasites. The infection and shedding parameters and the 
pathogen life span are dependent on the type of pathogen and the type of host. These 
data are characterized by uncertainty and have, for the most, been derived from 
laboratory experiments (Salama and Murray 2011; Stene et al. 2014). In our 
simulations, these values varied between different values.  

To implement the models using agent-based methods, NetLogo 3D was used. 
NetLogo is a multi-agent programmable modeling environment. The NetLogo toolkit 
allows for simulations within a geographic information system environment, and it is 
easy to include physical and environmental data (Wilensky 1999). We used 
MATLAB to analyze the simulation results and create figures that were easy to 
interrupt (MATLAB 2015). We used GlobalMapper (Bluemarblegeo.com) to build 
3D maps of the Romsdalsfjord by combining the terrain and bathymetry data, and we 
removed the noise from the data and rescaled the maps to fit in NetLogo. 
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2.2 Methods 
 

2.2.1 The system model  
In this study, we simulated fish disease dynamics and pathogen transmissions in a 

Norwegian fjord aquaculture system. The aquaculture system has a set of fish farms, a 
swarm of pathogens and the landscape. This system S(t) can be formalized as shown 
in equation 1. 

                               S(t) = {FF(t), P(t), L(t)}                                                           (1) 

where FF(t) is a set of fish farms, P(t) is a swarm of pathogens, and L(t) is the 
landscape or the environment where the previous components are located (Yndestad 
2010). The purpose of this study has been to investigate how a swarm of pathogen 
P(t) that was produced by a hypothetical, infected fish farm (initial producer farm) 
will flow with the current and spread in a given landscape L(t). The fish are producer-
consumer agents; they produce pathogens, and at the same time they consume 
pathogens in the fish disease process (Yndestad 2010). 

The landscape L(t) 
The landscape L(t) is divided into four overlaying sub-landscapes and can be 

formalized as shown in equation 2.  

                           L(t) = {𝐿!"(𝑡), 𝐿!"(𝑡), 𝐿!"(𝑡), 𝐿!"(𝑡)}                                        (2)  

where 𝐿!"(𝑡) represents the terrain, 𝐿!" 𝑡  represents the map of the sea currents, 
𝐿!"(𝑡) represents the map of the sea salinity, and 𝐿!"(𝑡) represents the map of the sea 
temperature. 

In this study, the terrain 𝐿!"(𝑡) covers part of the Romsdalsfjord area. The terrain 
is divided into many 3D grids with pixels of 13 × 13 × 13 points. The sea current 
landscape, 𝐿!" 𝑡 , represents the speed and direction of the sea currents. The 
Romsdalsfjord has very complex current patterns (see figure 2). The sea currents are 
driven by a variety of factors that are changing massively in time and space. 
Therefore, in order to create a model that incorporates some of the variation present in 
nature, we use normally distributed random numbers for both the current speed and 
the current direction. The user can set the average current angle and speed at the 
beginning of the simulation, and then, at each time step, a random deviance is added 
to these values for current angle and speed. For the current angle, this randomness is 
characterized by two parameters: a current direction standard deviation, which can be 
set from 0 to 90 degrees, and a bias term used to offset the direction given by the grid, 
which can be set between -5 and 5 degrees. For the current speed, this randomness is 
also characterized by two parameters; a current speed standard deviation, which can 
be set between 0-0.1 m/s, and a relative speed, which is associated with each grid and 
depends on the geometry of the fjord (e.g., changes in the width of the fjord, the 
presence of islands, and peninsulas). The relative speed is the number by which the 
global current speed is multiplied to obtain the speed for each grid.  

The sea salinity, 𝐿!"(𝑡) , and sea temperature, 𝐿!"(𝑡) , landscapes are changing in 
time and space. The chosen temperature profile from January to December at the 
surface level is 𝐿!"(𝑡) = {5.7, 5, 5.1, 6.1, 8.1, 11.3, 12.7, 15.5, 14.0, 11.2, 9.5, 8.0 
(°C)} (www.imr.no). The user can set the average water temperature and salinity at 
the surface level, and then we add some noise to include the variation that is present 



	 9	

in nature. The water temperature also varies in the deep levels, as shown in equation 
3. 

               temp x, y, z  = temp! x, y, z − C ∗ dy! ∗ temp! x, y, z                   (3) 

where 𝑡𝑒𝑚𝑝(𝑥,𝑦, 𝑧) is the water temperature at x,y,z grid; 𝑡𝑒𝑚𝑝! 𝑥,𝑦, 𝑧  is the water 
temperature at the surface level (y = 0); C is a constant; and 𝑑𝑦! is the water depth 
level. 	

The fish farm 𝐹𝐹!(𝑡) 
Each fish farm, 𝐹𝐹!(𝑡), has a swarm of fish agents, FA(t), and is represented by 3 

× 3 × 3 grids that are all assumed equal to 3*20 m × 3*20 m × 3*20 m. Additionally, 
the grid outside the aquaculture sites measures 200 m × 200 m × 200 m. In this study, 
the farms’ positions are set hypothetically in the first two simulation scenarios, while 
they are based on real aquaculture data in the third scenario. The swarm of fish agents 
has some social rules that manage the individual movements in the swarm, consumes 
pathogens and produces pathogens.  

The pathogens swarm 𝑃(𝑡) 
The pathogens swarm consists of many individual pathogens, as shown in 

equation 4. 

                     P(t) = {𝑃𝐴!(𝑡),𝑃𝐴!(𝑡),…, 𝑃𝐴!(𝑡)}                                         (4) 

where 𝑃𝐴!(𝑡) is the pathogen agent j, and n is the total number of pathogens at time t. 
In reality, the swarm of pathogens also has social rules (e.g., move together and 

align with one another), and the swarm relates to the landscapes to facilitate the 
individual pathogens’ movements (Reynolds 1999). In this study, however, we have 
ignored the social rules, while, as we will see in the next section, the pathogens’ 
dependence on the landscape steer the movements of individuals. 

 
2.2.2 Agent-based model  

The agent-based approach is applied to simulate fish disease dynamics and 
pathogen transmission in a fjord aquaculture system. Table I shows the agent-based 
model’s agents. We have two types of agents; fish and pathogen. Each agent has 
many attributes and behavioral rules that update the values of these attributes in the 
context of time and space. 

TABLE I: AGENTS IN THE MODEL 
Agent type Attributes Behavioral rules 
Fish • Position 

• Health status 
• Energy 
• Vaccinated 

• Update position 
• Update health status 
• Update energy (resistance 

factor) 
• Shed pathogens 

Pathogen • Position 
• Life span 
• Ability 

• Update position 
• Update life span 
• Update ability 

 
We designed our model in a rectangular shape with 501 × 201 × 3 patches (a patch 

is a grid in NetLogo). Each fish farm has a maximum population of 1000 fish; 
however, you would expect to see approximately 1000 times more fish in an actual 
fish farm of this size. This simplification was made to save computer resources while 
running the model. A tick is the time step in the model, and it can represent 10 
minutes, one hour, or one day (it can be selected by the user, time-step). 
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The fish agent FA(t) 
The fish are located in the farms, and each fish farm 𝐹𝐹!(𝑡) has a swarm of fish 

that is composed of many fish agents, FA(t), as is shown in equation 5. 

𝐹𝐹!(𝑡)  = {𝐹𝐴!(𝑡),𝐹𝐴!(𝑡),…, 𝐹𝐴!(𝑡)}                                (5) 

Fish agent 𝐹𝐴!(𝑡) has several attributes and behavioral rules that update these 
attributes (see Table I). In this context, we are interested in the position, energy, and 
health status attributes, as well as the behavioral rules that governs the values taken by 
these attributes and that produce pathogens.  
Fish swimming rules: Fish agents swim within cages, and since we use a large time 
step in our simulations in this study (i.e., 10 minutes or one hour), the fish’s positions 
are updated randomly at each time step, as shown in equation 6. 

                          𝐹𝐴!.𝑝 𝑡  = 𝑅! ∗  
!"#!,!,!!!"#!,!,!

!
+  𝐹𝐹! 𝑡                             (6) 

where 𝐹𝐴!.𝑝 𝑡   is the fish position vector, 𝑅! is a unit random vector in 3D, 
(𝑚𝑎𝑥!,!,! −𝑚𝑖𝑛!,!,!) is the fish farm dimensions, and 𝐹𝐹! 𝑡  is the farm position 
vector in the simulation space. Fish can swim in different formations, and they can 
socialize to form a school. We have previously investigated the effects of different 
swimming behaviors on infectious fish diseases (Alaliyat and Yndestad 2015b). 
Since, in this study, we used a large time step, we have chosen to ignore the social 
rules, and assumes that the fish is distributed randomly in the fish farm.	
Fish energy attribute: Each fish has an epidemic resistance factor, which is a value 
between 0 and 1. We assign reference values of 0.8 with some noise, as shown in 
equation 7.   

                                 𝑅𝐹 !  =   𝑅𝐹 !"# ± 𝑅! ∗ 𝑁!"                                              (7) 

where   𝑅𝐹 !   is the resistance factor of fish i,   𝑅𝐹 !"# is the reference resistance factor 
value that can be set by the user, 𝑅 is a random number in the range of [0,1], and 𝑁!" 
is the noise value.                              	
Infection rules: Fish agents are categorized into four main health states as in the SEIR 
(susceptible, exposed, infected and removed) model (Bjørnstad 2005). In the 
following text, we will explain how the fish health state of individuals will be updated 
over time. A susceptible fish becomes infected if there are many pathogens around it, 
the pathogens have a good ability to infect, and the fish has a week 𝑅𝐹, as determined 
by the Algorithm I procedure. Salama tried to quantify the infection probability, but 
his results depended on laboratory data (Salama and Murray 2011). In our model, this 
probability can vary between different values, and it is also related to the densities of 
fish and pathogens.  
 

Algorithm I: infection rules  

1: For each susceptible fish agent i…then 
2:       If    (𝑅𝐹 ! ∗  𝑝!  ∗  𝑎𝑏!!! !" !   ≥   𝑇!),  
                 Where 

   𝑅𝐹 !  is a fish 𝑖 resistance factor, 𝑝! is any pathogen 𝑗 in 𝑟 distance from fish 𝑖, 𝑎𝑏! 
is the infection ability of pathogen j, and 𝑇! is a selected threshold. 

3:              get infected 

4:       End if 
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5:   End for each 

Once the fish has been infected, it will leave the susceptible category and enter the 
exposed category. All fish agents transfer between the four health states. Therefore, 
the population of agents is divided into four groups or compartments consisting of 
individuals that are susceptible, exposed, infected and removed. The fish agents are 
heterogeneous, and each agent has it´s own individual discrete SEIR model. The 
contact rate in the SEIR model is equivalent to the individual fish infection rules in 
ABM. The fish agent health state in ABM is dynamically updated. The number of fish 
with the same health state provides the number of fish agents in the four groups. 

The process for updating the fish health states at each time step is achieved by 
applying the health-state update method, shown in Algorithm II.    
 

Algorithm II: Fish health-state updating  

1: For each fish agent…then 
2:      Check health status 
3:     If fish is susceptible then 
4:          If there are a number of pathogens around the fish then 
5:       1. Change fish state to exposed 
6:     2. Die by normal death rate 
7:        Else  
8:        Die by normal death rate  
9:        End If 
10:     End If 
11:     If fish is exposed then 
12:        If fish passed exposed period then 
13:       1. Change fish state to infected 
14:     2. Die by illness death rate 
15:        Else  
16:       Die by normal death rate  
17:        End If 
18:     End If 
19:     If fish is infected then 
20:        Produce a pathogen by a given probability “shedding rate”  
18:        If fish passed infected period then 
19:       1. Change fish state to recovered 
20:     2. Die by normal death rate 
21:        Else  
22:       Die by illness death rate  
23:        End If 
24:     End If 
25:     If fish is recovered then 
26:        If fish passed immune period then 
27:       1. Change fish state to susceptible 
28:     2. Die by normal death rate 
29:       Else  
30:      Die by normal death rate  
31:       End If 
32:     End If 
33: End for each 

 
Pathogens production process: Each time step the infected fish, 𝑖 , may shed a 
pathogen, 𝑗, at a certain probability where that fish is located. Different sources refer 
to different units, and values range from 106.5 PFU/fish/h (PFU=plaque forming units) 
(Gregory 2008), 105-108 CFU/fish/h (CFU=colony forming units) (Rose et al. 1989) 
and 6.8*103 TCID50 /ml/ kg fish/ h/ (maximum rates) (TCID50=the amount of virus 
required to kill 50% of infected hosts) (Urquhart et al. 2008). The units are not single 
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pathogens; rather, they are units that are measurable in the lab. Since the numbers are 
very high and computationally difficult to implement in the model, we set a 
probability between 0-1 (adjustable) that an infected fish sheds a pathogen, but this 
pathogen represents a large number of pathogens, i.e. effectively a rate of pathogens 
per time unit. 

The pathogen agent PA(t) 
The pathogens swarm P(t) consists of many individual pathogens, as shown in 

equation 8. 

                   P(t) = {𝑃𝐴!(𝑡),𝑃𝐴!(𝑡),…, 𝑃𝐴!(𝑡)}                                         (8) 

where 𝑃𝐴!(𝑡) is the pathogen agent j, and n is the total number of pathogens at time t. 
The pathogen agent 𝑃𝐴!(𝑡) has three main attributes (see Table I): position in the 

space, ability to infect fish, and life span.  

Moving rules: The pathogens are moved by sea currents. Each pathogen moves based 
on the current speed and direction, which is based on the location of the pathogen at 
the start of each time step. Pathogens inherit the current direction of the place they are 
presently located, and by moving to a new place, they inherit the direction of that new 
place. When moving, the pathogen might hit dry land. In that case, the pathogen is 
removed from the model (dies). 

The pathogen j updates its position, as shown in equations 9 & 10. 

                               𝑃𝐴!.𝑝 𝑡 + ∆𝑡  = 𝑃𝐴!.𝑝 𝑡 + 𝑣(𝑡 + ∆𝑡)                                  (9)    

                           𝑣(𝑡 + ∆𝑡) = 𝐶!" ∗  𝑅!(𝐶!, 𝑠𝑡𝑑)                                         (10) 

where 𝑃𝐴!.𝑝 𝑡 + ∆𝑡   is the new pathogen agent j position, 𝑃𝐴!.𝑝 𝑡  is the current 
pathogen agent j position, 𝑣 is the pathogen velocity, t is the time step, 𝑣(𝑡 + ∆𝑡) is 
the magnitude of the velocity, 𝐶!" is the relative current speed that is inherited from 
the grid where the pathogen j is, and 𝑅! is a normally distributed random floating 
point with a mean of 𝐶! (average current speed in this area) and a standard deviation 
𝑠𝑡𝑑. 

The velocity direction is related to the pathogen’s orientation. The pathogen’s 
orientation is defined by two variables: heading (𝑃𝐴!(𝑡)!!") and pitch (𝑃𝐴!(𝑡)!"#). 
Heading is the angle between the forward vector of the pathogen projected onto the 
horizontal plane and the vector [0 1 0], and pitch is the angle between the forward 
vector of the pathogen and the horizontal plane. We calculated these variables using 
equations 11 & 12. 

                                   𝑃𝐴!(𝑡)!!" = 𝐶!   +  𝑅!(𝐶!"#$, 𝑠𝑡𝑑)                                    (11) 

                                 𝑃𝐴!(𝑡)!"# = 𝑝𝑖𝑡!" –  𝑅! ∗ 𝑝𝑖𝑡!                                              (12) 

where 𝐶! is the currents’ direction angle, 𝑅! is a normally distributed random floating 
point with a mean of 𝐶!"#$ (current heading bias variable) and a standard deviation 
𝑠𝑡𝑑,𝑝𝑖𝑡!" is the initial pitch value, 𝑅! is a random number in the range of [0,1], and 
𝑝𝑖𝑡! is the pitch value.                             

Life cycle: Pathogen life span is a function of seawater condition (temperature and 
salinity). Salama estimated the life span for infectious salmon anemia virus (ISAV), 
infectious pancreatic necrosis virus (IPNV) and salmonid alphavirus (SAV) to be 
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between 8.33 and 62.5 hours (Salama and Murray 2011). The life span’s relation to 
the sea temperature can be modeled using the following equation (Stene et al. 2014). 

                                      𝑃𝐴!(𝑡)!"= a * exp (- x / b)                                            (13) 

where x is the water temperature, a is the pathogen life span at a water temperature of 
0°C, and b is the decay rate. 	
Ability to infect: Each pathogen has an attribute that represents the ability to infect, 
that takes values between 0 and 1. We use 0.8 as the initial value and added some 
noise, as is shown in equation 14.     

                                   𝑃𝐴!(𝑡)!"  = 𝑃𝐴!(𝑡)!"! ±  𝑅! ∗ 𝑁!"                                 (14) 

where 𝑃𝐴!(𝑡)!" is the ability of pathogen j to infect,  𝑃𝐴!(𝑡)!"! is the initial ability 
value that can be set by the user, 𝑅! is a random number in the range of [0,1], and 𝑁!" 
is the noise value. 

Once the pathogens arrive at the neighboring sites (i.e., susceptible farms), they 
will try to infect the susceptible healthy individual fish in that farm. We apply the 
same infection rules as in Algorithms I & II. 

The density of pathogens is directly related to the risk value in both space and time. 
A disease outbreak occurs only if there is a high density of pathogens and a high 
density of fish, as indicated by the following equation: 

                                  𝑅𝑖𝑠𝑘 (𝑡, 𝑠)  =  𝐶 ∗  𝐼!(𝑡, 𝑠)  ∗  𝐼!(𝑡, 𝑠)                                (15) 

where Risk (t,s) is the infection risk value in time and space, 𝐼!(𝑡, 𝑠) is the pathogen 
density at time t and in space s, 𝐼!(𝑡, 𝑠) is fish density at time t and space s, and C is a 
constant. 

 
2.2.3 Investigations 

Fish disease dynamics and pathogen transmission depend on many different 
factors, such as fish density, farm location, fish and pathogen conditions and 
environmental conditions. In this study, we have built an agent-based model and 
simulated a variety of scenarios to investigate the effects of different combinations of 
parameter values on the fish disease dynamics. First, we investigated the minimum 
safe distance from the infected site under a variety of environmental conditions. Then, 
we investigated the effects of fish density, sea currents and temperature on the spread 
of an infectious disease from a source (producer)  facility to a destination (consumer)  
facility, and we simulated the disease dynamics across time. Finally, we built 
scenarios based on empirical data to test the effects of the fjord’s topography and the 
domino effect (producer-consumer facilities) on the spread of the infectious disease. 
Table II shows the model parameters that the user of our model may change.  

 
TABLE II: MODEL PARAMETERS 

Parameter Min value Max value Default value 
Fish number 1 1000 100 
Shedding rate (%) 0 100 50 
Infection period (days) 0 100 2 
Immune period (days) 0 100 5 
Infectious radius (patches) 0 20 0.5 
Initial infected (%) 0 100 5 
Prior immunity (%) 0 100 0 
Mortality (%) 0 100 3 
Mortality_normal (%) 0 100 0.00001 
Pathogen-ability 0 1 0.8 
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RF 0 1 0.8 
Weight (kg) 0 10 4 
Current speed (m/s) 0 1 0.15 
Current speed std. 0 0.1 0.03 
Current heading (degree) 0 360 90 
Current heading bias (degree) -5 5 0 
Current heading std. 0 90 30 
Sea temperature (ºC) 0 20 10 
Vaccinated   Off* 
Time step   10 min* 

*Parameters that can select between many values or be turned on/off. 

2.2.4 Verification and validation 

In general, and in aquaculture industry specifically, it is often very difficult to 
validate epidemiological simulation models due to the lack of reliable field data. The 
logical choice of validation techniques in such situations is to use cross-validation 
(i.e. to run a validated model for some simplified scenarios where the results are 
known or obvious) or to compare the model output with other available models that 
have been validated (so-called model alignment) (Chen et al. 2004).  

We have done both (Alaliyat and Yndestad 2015c): We ran our model for a simple 
scenario where the results were as expected, and we aligned it with well-known 
models, such as the SIR model (Skvortsov et al. 2007). Internal validation or 
verification is very important also in ABMs. When the model is implemented by 
using NetLogo tool, the model must be verified by investigating whether the model 
behaves as expected. The purpose of the verification process is to build confidence in 
the behavioral characteristics that we assign to the agents and their interactions. We 
have tested the model under extreme conditions where the outcome is easily 
predictable to assess the validity of the agent descriptions used to ensure model 
consistency (avoid logical errors) as well as model coherence.  

 

3 Results 
 
3.1 Infection risk in an open area 

In this experiment we designed a simulation space to identify the risk of becoming 
infected in the vicinity of an infected aquaculture site: We assumed that the risk of a 
fish becoming infected is related to the concentration of pathogens in the space. The 
individual fish becomes infected by the procedure described in Algorithm I, so that 
the risk of any aquaculture site becoming infected in the area in the vicinity of the 
infected farm depends on the densities of the fish and pathogens at this site, as shown 
in equation 15. Table III shows the selected parameters from table II to which we 
assigned the values listed during the simulation experiment.  

	
TABLE III: INFECTION RISK IN AN OPEN AREA EXPERIMENT  
Parameters	of	Susceptible	farm	 Values	

Fish	number	 100,	250,500,750,1000	
Current	speed	(m/s)	 0.05,	0.1,	0.15,	0.2,	0.25	
Sea	temperature	(ºC)		 5,	7.5,	10,	12.5,	15	

Figure 3 shows the farthest distance that live pathogens can reach alive (i.e. Risk 
Distance) based on the sea currents and water temperature during a simulation time of 
8 days (cold water favors survival). The infection risk, which results from the 
presence of pathogens in a space unit (𝐼!), is a function of current speed and water 
temperature. This risk decreases as the distance increases from the infected site. 
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Figure 3 allows us to estimate the threshold (𝐷!) (between blue and other colors) of 
the farthest distance (𝐹𝑎𝑟!  (𝑡𝑒𝑚𝑝,𝐶𝑠)) that the pathogens can spread; under normal 
sea-water and currents conditions. This threshold can change significantly depending 
on the current speed and the sea-water temperature. In this case, the threshold is 
determined by a current speed of 15 𝑐𝑚/𝑠 and a sea-water temperature of 10°.  

   𝐹𝑎𝑟!(𝑡𝑒𝑚𝑝,𝐶𝑠) >  𝐷!       if 

                𝑡𝑒𝑚𝑝 <  10°     and 

                𝐶𝑠 >  15 𝑐𝑚/𝑠      

(16) 

where 𝐹𝑎𝑟!(𝑡𝑒𝑚𝑝,𝐶𝑠) is the maximum distance where pathogens can travel alive, 𝐷! 
is a derived threshold from figure 3, 𝑡𝑒𝑚𝑝 is a sea-water temperature, and 𝐶𝑠 is the 
current speed. 
 

 
Figure 3: Risk distance from the infected site. 

 
The results (see figure 3) show that the farthest distance that the pathogens spread 

to does not exceed 12 km (𝐷!) given the current speed and water temperature 
threshold. This distance could be considerably larger, however, if the current speed 
was higher and/or if the water was colder.  

Using ABM, we are able to track the pathogens in time and space. That enables us 
to identify the spatial characteristics of the spread of a disease. Figure 4 shows the 
pathogen concentration (density) in each spatial cell resulting from running the 
simulation for a period of time. Thus, if the susceptible fish farm is located in the 
more risky (more red) area, then the greater is the probability that a fish in the farm 
becomes infected.  
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Figure 4: Pathogen concentration in two dimensions (2-D) after a period of time. 

 
The pathogen density as described in equation 15 is dependent on four main 

variables: water temperature, current speed, distance from the infected site, and fish 
density at the infected site. From our simulation results, the pathogen density 𝐼! in cell 
𝑥,𝑦, 𝑧  after the period of time t can be modeled using the following exponential 

decay equation:  

𝐼! 𝑥,𝑦, 𝑧, 𝑡 =  a!  ∗  exp −
!"#$ !,!,!,!

!!
∗ Cs x, y, z, t ∗  𝐼!/ 𝑑𝑖𝑠 x, y, z, t     (17) 

where temp x, y, z, t  is the water temperature, Cs x, y, z, t  is the current speed, 
𝑑𝑖𝑠 x, y, z, t  is the distance from the infected site, a! is the pathogen density at the 
infected site, b! is the decay rate, and 𝐼! is the fish density at the infected site. We 
have derived the previous equation by estimating the relation between each input 
variable (i.e. water temperature) and the simulating results (pathogen density), then 
we combined these relations in one equation and validated this equation.                                 
 

3.2 Infection risk between two fish farms in fjord area  
In the next scenario, we extended the previous scenario by locating a susceptible 

fish farm at the edge of the risk area associated with the infected farm, i.e. at a 
distance, dis = 9.6 𝑘𝑚 <  𝐷! from that farm. We simulated the fish disease dynamics 
in the infected farm that constituted the source of the pathogens to be transferred to 
the susceptible farm. We designed the simulation space so as to test the effects of 
changes in parameter values on the spread of the infectious disease from the source to 
the destination, and then we simulated the disease dynamics in the susceptible farm as 
well. We used the same scaling for time and space as in the previous scenario, and we 
used the default values shown in Table II for this model. Table IV shows the 
parameter values in Table II that we varied in this simulation experiment.  

	
TABLE IV: INFECTION RISK BETWEEN TWO FISH FARMS 
Parameter	 Values	

Fish	producer-farm	number	 100,	1000	
Fish	consumer-farm	number	 100,1000	
Current	speed	(m/s)	 0.05,	0.25	
Sea	temperature	(ºC)		 5,15	
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 Figure 5 shows the percentage of the infected individuals (prevalence) in the two 
fish farms (infected and susceptible) under a variety of current speeds, sea 
temperatures and fish population parameter values.  

 
Figure 5: Percentage of infected fish at site one, an infected farm (blue), and site two, a susceptible 

farm (red), as a result of water temperatures, current speeds and fish population values. 
 

With regard to the infection risk equation (15), the infection risk at cell (x,y,z) must 
be greater than a risk threshold 𝑅!  that can be derived from the simulation results, in 
order for an infection to occur in this cell. The 𝐼! 𝑥,𝑦, 𝑧, 𝑡  in equation 17 is 
dependent only on sea-water temperature, current speed and producer farm pathogen 
density, since the distance is fixed at 9.6 km. The results show that the susceptible 
fish farm, located at (9.6 km, 0, 0), will become infected only if the sea-water 
temperature is low (< 5°); if this is the case, then all fish become infected at the site. 
In the case when the water temperature is 15°, most of the pathogens die before 
arriving at the susceptible fish farm, so the pathogens will not infect that site. The fish 
densities in both the infected and susceptible farms play major roles, as described in 
equations 15 and 17, and shown in figure 5. The disease is spreading faster when the 
population is higher as shown in the lower two rows in figure 5. 

The spread of a disease inside a facility is faster when the current speed is low, as 
we see illustrated by the infected farm in the left two columns of figure 5. The 
infection at the susceptible fish farm starts only after the arrival of a sufficient number 
of pathogens at the site (equation 17); our results show that this happens after an 
average of two days across the simulation experiments in cases of higher fish density 
(e.g. 1000 individuals) in the susceptible farm, and the disease will spread to most of 
the individuals in the susceptible farm in approximately the same amount of time. In a 
case of lower fish density (e.g. 100 individuals), this time is approximately doubled.  

 

3.3 Infection risk in a multi-farm system in fjord area (domino-effect) 
In this scenario, we designed the simulation space so as to test the effects of a 

number of parameter values on the spread of the infectious disease across many fish 
farms, including the disease dynamics in each of them. In this scenario, the farms 
may, in principle, take the role as infected and susceptible and do so simultaneously; 
any farm can simultaneously shed pathogens to the others and receive pathogens from 
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the others. We used the same scaling for time and space as in the previous scenarios, 
and we used the default values shown in Table II in the model. Figure 6 shows the 
experimental setup of the simulation. We have run two different scenarios in the 
Romsdalsfjord. We have selected these areas because they are different in terms of 
their geospatial and aquaculture nature. 

 

 
(a) 

 
(b) 

Figure 6: Aquaculture system in part of the Romsdalsfjord (TN = tons): (a) Midsund 
area. (b) Vestness area. 

Scenario A (Midsund):  
In this scenario, we included three farms (see figure 6(a)), and we used the 

average current speed and direction recorded in May 2008. We scaled the fish 
population, so that each fish in reality represents 15 tons of fish. In Table V we 
summarize the parameter values applied. These facilities are located within 𝐷!, - less 
than 12 km apart. We assume that 5% of the fish population in the Bogen facility is 
initially infected. Figure 7(left hand side) shows the disease dynamics in each site at 
Midsund. 

 
TABLE V: SCENARIO A PARAMETERS: MIDSUND AREA 

Parameter	 Bogen	MD	 Juvika	 Myrane	

Fish	number	 400	 100	 200	
Current	speed	(m)	 0.15	 0.15	 0.15	
Sea	temperature	(°C)	 8	 8	 8	
Current	direction	(degree)	 270	 270	 270	

 
Scenario B (Vestness):  

In this scenario, we included three farms (see figure 6(b)), and we used the 
average current speed and direction recorded in April 2008. Again, each fish 
represents 15 tons of fish in reality. In Table VI we summarize the parameter values 
applied. These facilities are also located within 𝐷!, less than 12 km apart. We assume 
that 5% of the fish population in Gjermundnes facility is initially infected. Figure 
7(right hand side) shows the disease dynamics in each site at Vestness. 
 

TABLE VI: SCENARIO B PARAMETERS: VESTNESS AREA 
Parameter	 Gjermundnes	 Gjermundnesholmene	 Furneset	

Fish	number	 150	 100	 200	
Current	speed	(m)	 0.15	 0.15	 0.15	
Sea	temperature	(°C)	 7	 7	 7	
Current	direction	(degree)	 270	 270	 270	

 
The simulation results from both scenarios, presented in figure 7, show the effects 

of current patterns and the geometry of the fjord on the spread of fish disease in parts 
of Romsdalsfjord, Midsund and Vestnes. In scenario A, the Myrane facility did not 
get infected because it was not located along the path of the sea currents that passed 
the infected sites during this period, - even though it was located within the risk 



	 19	

distance (𝐷!). As a result, the 𝐼! 𝑥,𝑦, 𝑧, 𝑡  is very low, so the infection risk (equation 
15) for Myrane is less than 𝑅!. While Juvika got infected after almost three days. 
However, in scenario B, the Gjermundnesholmene facility became infected and 
produced pathogens that infected the Furneset facility, which is located along the path 
of the currents that pass Gjermundnesholmene. Consequently, the 𝐼! 𝑥,𝑦, 𝑧, 𝑡  is 
sufficiently high to cause an infection risk (equation 15) above the threshold 𝑅!. Thus 
the infection took place. 

 
Figure 7: Epidemic curves (results after 10 days). 

 
The infection of the Juvika and Gjermundnesholmene farms started after a 

sufficient amount of pathogens had arrived at each location. This took place after an 
average of four days. The Furneset facility was infected after 6 days because the 
distances from the two infected source sites were longer (see equation 17). 

The simulation results show that the sea current patterns play major roles in the 
spread of fish disease in Norwegian fjords. The pathogens are moved by sea currents, 
so if the fish farms are not in the path of the sea currents carrying pathogens from the 
infected sites, or they are located sufficiently far apart (beyond DT), then the chance 
of infection is very low (as in the Myrnane case). 
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4 Discussion 
4.1 Infection risk in an open area 

It is very important to evaluate the infection risk in space and time when we want 
to assess the probability that a fish farm could act as the origin of an epidemic or as an 
intermediator.. This evaluation is particularly important when we want to build and 
locate a new fish farm (Taranger et al. 2015) so as to prevent the spread of fish 
diseases in an aquaculture system. E.g. how will the surrounding area be affected if 
the fish in this new farm become infected? The first simulation scenario helps answer 
this question by exhibiting the risk values in space and time in the vicinity of such a 
new, hypothetically infected farm. 

In this scenario, we studied the risk resulting from the pathogens that are 
predominently relocated by sea currents (Murray and Peeler 2005). The pathogens  
could, however, also move by way of fish boats or any other ships, or by way of 
escaped, infected fish. In our simulations, we focused on movement caused by the sea 
currents and sink effect. It is, however, easy to adjust our model to include other such 
factors.  

Sea current speed and direction may vary significantly in the time and space 
domain considered, and we can expect values to remain steady for only a few days -or 
even less (MODS 2012). In reality, we utilized empirical material reflecting average 
values, limited value ranges under which our model ran, and simulated the worst-case 
scenarios when the infection pressures are at most. The results demonstrate how the 
risk patterns are determined by the sea current patterns, - affected by the geometry of 
the fjord (see figure 4). 

The pathogen’s life span is associated with the sea temperature and salinity 
(Groner et al. 2016) and is influenced by significant changes in these values (Stene et 
al. 2014). In our model, it is easy to include such changes by way of modifications in 
parameter values.  

The sea currents and sea-water temperature impact the distance that the pathogens 
can travel (spread) and thus the associated risk. A high water temperature decreases 
the distance since the pathogen’s life span is shorter in hot than in cold water, while 
strong currents can move the pathogens farther away from its point of origin. The 
results demonstrate the current speed and water temperature thresholds (15 m/s and 
10 degrees, respectively) at which the risk distance increased considerably (> 𝐷! =
12 𝑘). 

As shown in equation 15, the infection risk in space and time is dependent on the 
densities of the pathogens and fish. In this scenario, we investigated the factors that 
affect the pathogen density in each space cell in the vicinity of the infected site over a 
period of time. We derived from our theory and discussion equation 17, which shows 
the effects of water temperature, current speed, distance from the infected site, and 
fish density at the infected site on the pathogen’s density. The pathogen’s density 
exponentially decreases near the infected site as the water temperature increases. 
Moreover, the pathogen’s density decreases as the distance from the infected site 
increases. The pathogen life span exponentially decreases as the water temperature 
increases. Conversely, if the water gets colder, then the pathogens spread to a larger 
area . The pathogens spread more with high current speeds. The pathogen density at a 
fixed position in the vicinity of the infected site 𝐼! 𝑥,𝑦, 𝑧, 𝑡  is dependent only on 
water temperature, current speed and fish density at the infected site.  
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Building risk maps around the fish farm facilities in different environmental 
conditions helps inform management of the fish industry and helps prevent the spread 
of fish diseases that cause serious losses in Norwegian aquaculture. 
4.2 Infection risk between two fish farms in a fjord area 

If we assume there is a disease outbreak in an aquaculture facility and there is 
another aquaculture facility located within the infection risk of the infected fish farm 
(<12 km), then what will happen to the susceptible fish farm that is located in the risk 
area in the course of time? To answer this question, we simulated the fish disease 
dynamics in an aquaculture system that consisted of two fish farms located within a 
risk distance (9.6 km). We simulated the disease dynamics in the infected farm, the 
pathogen transmission time from the source to the destination, and the disease 
dynamics in susceptible farm. 

The fish disease dynamics in fish populations are affected by many key factors, 
such as fish density, fish swimming behavior, water temperature, sea currents and 
other environmental factors (Alaliyat and Yndestad 2015b). The infection process 
occurs only when there is a sufficient number of pathogens in the vicinity of the 
susceptible fish (see Algorithm I). The fish disease dynamics in a single fish 
population is faster with higher fish densities and lower sea current speeds (Alaliyat 
and Yndestad 2015a). The pathogens are moved by sea currents, so with high-speed 
sea currents, the pathogens spread across larger distances and move faster to nearby 
sites. The number of pathogens released from the infected site increases as the fish 
population increases (Alaliyat and Yndestad 2015a).  

Once the pathogens arrive at a susceptible farm, the infection process will start as 
soon as a sufficient number of pathogens arrive the susceptible fish (see Algorithm I). 
The rules of disease transmission that applies to an infected farm, also applies to the 
susceptible farm.  

The results demonstrate that a susceptible fish farm, located 9.6 km from the 
infected farm, will become infected after two to four days, depending on the fish 
density, provided the average sea-water temperature is 5°. The pathogens need less 
than 12 hours to cross the 9.6 km distance from the infected site when the current 
speed is 0.25 m/s. Yet, based on the diffusion factor that spread the pathogens to a 
wider area, the probability of reaching the susceptible site is considerably reduced in 
only 12 hours. In addition, even if the pathogens arrive at the susceptible farm, the 
pathogen density and the fish density in that farm will have to be sufficiently high to 
initiate an infection (equation 15). 

 
4.3 Infection risk in a multi-farm system in fjord area (domino-effect)  

It is important to test our agent-based model on real case studies with more than 
two fish sites, to simulate cases where the fish farms are infected and susceptible 
sites, and to include the effects of the topography of the fjord on the simulated fish 
disease dynamics. In these scenarios, we hypothetically assume that there is an 
infection in the Romsdalsfjord during the particular period of the year. The 
Romsdalsfjord is an area that hosts many fish farms that are located close to each 
other (Figure 1), and the dynamics of the sea currents in the fjord exhibit a very 
complex pattern (Figure 2). 

Our results show the effects of the topography of the Romsdalsfjord on the spread 
of fish disease. In scenario A, the Myrane facility was not infected even though it was 
close to the infected site Bogen (the distance between them is 8.4 km, which is less 
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than 12 km). This is because it was not located along the path of the sea currents that 
passed the infected sites during this period. However, in scenario B, the 
Gjermundnesholmene facility was infected and produced pathogens that, 
subsequently, infected the Furneset facility, located along the path of the sea currents 
that passed Gjermundnesholmene. In this scenario, the Gjermundnesholmene facility 
was initially a susciptble site, and then an infected site that shed pathogens.These 
simulation experiments support the idea that vicinity is a not a sufficient cause for 
infection; in fact, the current patterns are just as important (Stene et al. 2014). The 
pathogens need a transport vehicle to bring them from the infected site to the 
susceptible farm.  

We used monthly average sea current speed and direction in the Romsdalsfjord. 
Note that the currents in the fjords change significantly due to wind and other factors. 
E.g. the current direction in the Romsdalsfjord changes in the spring as a result of the 
melting snow causing fresh water to be transported along the fjord towards the sea. 
Tides can cause the water to move back and forth within a range of a few kilometers, 
and this supports the results from other studies that have demonstrated the impact of 
the close sea distance between the farms (Aldrin et al. 2010; Tavornpanich et al. 
2012). 

There are some limitations in applying the model to real cases in order to analyze 
the risk and provide advice to the fish industry. Scaling the model in space and time is 
one of these limitations. We introduced a portion of the individuals (fish and 
pathogens) in our simulation, since representing a huge number of agents is 
computationally very demanding. This, however, limits the contact between agents. In 
addition, there are several factors of uncertainty pertaining to the process of 
transmitting illness between fish. We are not in the possession of data on this process, 
and the available data are based on the lab experiments that have limited relevance in 
empirical settings (Salama and Murray 2011).  

 

4.4 Using agent-based methods 
Pathogen transmission within and between aquaculture farms is dependent on a 

variety of interrelated biological, physical and environmental factors, such as fish 
density, shedding rate, infection radius, current speed, current direction, pathogen life 
span, seawater temperature, and seawater salinity. ABM simulates the overall 
dynamics based on how individuals (fish and pathogens) interact and adapt to such 
factors. ABM provides insights into the underlying structural causes of emerging 
dynamic phenomena resulting from the interactions between individuals. Models 
developed previously have predominantly been relying on differential equations in 
describing the overall population dynamics of fish diseases (e.g., Murray 2009; Green 
2010) or they have been hydrodynamic models combined with particle tracking and 
statistical analyses (MODS 2012, Stene et al. 2014). Mathematical models, such as 
the SIR model, do not cover the individual variety of the biological and physical 
characteristics of fish as well as other animals; fish vary in their resistance to 
pathogens, and the pathogens themselves vary in their ability to infect fish. In non-
ABM models this variability in fish and pathogens is being ignored. The analysis is 
based on the assumption that the populations are homogenous. By using ABM, we are 
able to address specific spatial aspects of the spread of infections and address the 
stochastic nature of the infection process of fish diseases. 

ABM provides flexibility in modeling, implying that additional complexity may be 
introduced to form the basis for simulation-based analyzes. Agents may be added to 
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or removed from the model, and the attributes and behavioral rules can be modified as 
well. For an example, the swimming rules have been included in previous model to 
create new ones (Alaliyat and Yndestad 2015b). 

 Another reason for applying ABM is the lack of empirical data we experience 
regarding fish disease transmission. In ABMs, the parameters characterizing disease 
transmission, such as fish infection rules and the shedding rates, may easily be varied, 
to assess how sensitive the results are to the assumptions we introduce in the models. 
We may assess sensitivities at a high level of resolution rather than merely address the 
sensitivity aggregate characteristics such as the contact rate in an SIR model.  

There are limitations in an ABM approach to the modeling and simulation of fish 
disease dynamics. Typically the magnitude of the population (fish and pathogens) is 
too large for a full-scale simulation, even on massive computers. By scaling down, the 
contact frequency may be affected and suffer from not being sufficiently 
representative. Moreover, as reliable data on pathogen are hard to come by, the 
pathogen model component is based on a theoretical foundation. The validation of 
dynamic fish disease models is inherently challenging, not the least because of the 
lack of reliable empirical data. 

Previous models have typically focused on the analysis of historical data to support 
future predictions in similar cases (Stene 2013). The pathogen transmission and fish 
disease dynamics vary significantly, depending on a variety of factors such as sea 
currents and water temperature. In a model such variations may be included as a basis 
for sensitivity analyses. The results are generally applicable, but may not be used for 
point prediction due to the uncertainties characterizing the underlying structural 
assumptions. The results of the sensitivity analyses will guide us in our evaluation of 
the validity of any prediction made based on the model, - i.e. tell us whether we can 
trust the predictions produced by such a model.  

ABMs are stochastic models that can capture the randomness in natural systems. 
Therefore, it may well be advantageous to apply ABM in the modeling and simulation 
of fish infectious disease dynamics compared to the application of simple 
deterministic models (such as the SIR model), often characterized by static estimates 
of parameters that, in reality, vary across the populations and are sensitive to the 
varying, environmental conditions.  

 

5 Conclusions and future work 
The aquaculture industry is one of the main industries in Norway. Emergent 

diseases continue to pose a serious challenge to the industry and constrains its 
development. Predicting fish disease dynamics is important when preventing and 
combating fish diseases. The results of such predictions may facilitate the 
management process and inform the aquaculture industry, and it also helps combat the 
spread of diseases by applying actions to stop the spread of the disease, such as 
through vaccinations or removal of the pathogens. Fish diseases typically cause large 
economic losses to the aquaculture industry and might threaten wild populations of 
species as well. To manage our natural resources, such as fish, in a sustainable way, 
we rely on analyses based on validated models in which we have confidence.  

Models, such as the SIR model, predict the spread of fish diseases based on the 
assumption that the fish population is homogeneous, and focus on the population as a 
whole. In this paper, we assume that the fish and pathogens are heterogeneous. To do 
so, we applied an agent-based approach in our modeling of the dynamics of fish 
diseases within and between aquaculture facilities in a Norwegian fjord. Using this 
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approach, we consider the interaction of each individual with others and with the 
natural environment in the context of space and time. The agents in our model are fish 
and pathogens.  

We predict the dynamics of the pathogen transmission patterns so to identify the 
infection risk in a space-time domain. Our results show (see figure 4) that the 
pathogen density decreases as the distance from the infected site increases. Pathogen 
density at a fixed position around the infected site decreases exponentially by 
increasing sea-water temperature, while pathogen density increases when current 
speed and fish density at the infected site increase. Because the pathogens are 
predominantly relocated by sea currents, such currents play a major rule in the 
pathogen transmission process, The infection risk is a function of fish and pathogen 
density, and that risk increases when these densities increase. 

Adding fish swimming behavior or additional social behavior rules to the swarm 
of pathogens constitutes a potential extension of the model. Also, we may include 
additional key parameters associated with the fish industry process (i.e., stocking and 
harvesting process) or its interaction with the outside environment, including escaped 
fish, wild fish, feed, and the working environment. 

ABMs are inherently flexible and represent the systems structure at the level of 
individuals (high resolution).  The interaction unfolding between individuals may be 
analyzed in the context of a wide variety of scenarios, in particular pertaining to the 
environment in which the interaction takes place. Fish infectious disease dynamics is 
a complex process that results from the extensive network of interactions existing 
between large variety of characteristics of fish, pathogens and seawater. The high 
resolution facilitated by an agent-based approach offers an opportunity to describe the 
system in relatively realistic terms, - provided we know the processes taking place at 
that detailed level and the variety in the parameter values governing these processes.  

NetLogo is the software applied in this work. It offers a simple user interface that 
facilitates changes in parameter values and immediate responses to such changes. 
This way, the models developed may easily be shared among a variety of stakeholders 
that may benefit from experimentation, simulation and analysis of the results.  
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ABSTRACT 

In this paper, we present two optimisation methods 
for a generic boids swarm model which is derived from 
the original Reynolds’ boids model to simulate the 
aggregate moving of a fish school. The aggregate 
motion is the result of the interaction of the relatively 
simple behaviours of the individual simulated boids1. 
The aggregate moving vector is a linear combination of 
every simple behaviour rule vector. The moving vector 
coefficients should be identified and optimised to have a 
realistic flocking moving behaviour. We proposed two 
methods to optimise these coefficients, by using genetic 
algorithm (GA) and particle swarm optimisation 
algorithm (PSO). Both GA and PSO are population 
based heuristic search techniques which can be used to 
solve the optimisation problems. The experimental 
results show that optimisation of boids model by using 
PSO is faster and gives better convergence than using 
GA.  

INTRODUCTION 

Many animals in the nature move in groups: fish 
swim in schools, birds fly in flocks, sheep move in 
herds, insects move in swarm and ants distribute to find 
a food source and then all ants follow path to the food. 
Simulating the aggregate motion is an important issue in 
the areas of artificial life and computer animation and in 
a lot of their applications such as games and movies. 
Reynolds (1987) proposed a first computer model of 
group animal motion such as fish schools and bird 
flocks. He called his model as “boids model”, where 
boids refer to the generic flocking simulated creatures. 
The aggregate moving of the simulated boids is the 
result of the interaction of the relatively simple 
behaviours of the individual simulated boid. An 
interesting look at boids can be taken from the 
perspective of artificial life where is the holistic 
emergent phenomena is the result of interactions of 
independent entities (Anthony 2002). The boids model 
has three simple rules applied to the boids. The rules 
are: each boid move to avoid crowding with its 

                                                             
1 Boids are bird-like objects that were developed in the 1980s to model flocking 
behaviour. 

neighbours, match and coordinate its movements with 
its neighbours, and move to gather with the others. 
Other rules such as avoiding obstacles and goal seeking 
have been included in steering behaviour model 
(Reynolds, 1999) and in many simulations based on 
boids model later on. For instance, Delgado (2007) 
extended the basic boids model to include the effects of 
fear. Olfaction was used to transmit emotion between 
animals, through pheromones modelled as particles in a 
free expansion gas. Hartman and Benes (2006) added a 
complementary force to the alignment (steer towards the 
average heading of neighbours) that they call the change 
of leadership. This steer defines the chance of the boid 
to become a leader and try to escape. 

After 1987, the boids model is often used in 
computer graphics to provide realistic life-look 
representations of the aggregate motion of groups. For 
instance, in the 1998 Valve Video Game Company has 
used boids model in Half-Life video game for the flying 
bird-like creatures (Valvesoftware.com 2014). The 
boids model represented an enormous step forward 
compared to the traditional techniques used in computer 
animation for motion pictures. The first animation 
created with the boids model was in the computer 
animation shot film called Stanley and Stella in: 
Breaking the Ice in 1987 (Ice' and Malone, 2014). After 
that, the boids model was used in a feature film 
introduction of Batman Returns in 1992 (Returns and 
Burton et al., 2014). Then the boids model has been 
used in many games and films and in many other 
interesting applications.  

In the boids swarm model, each rule is represented 
by a vector. The vector by its two components 
(magnitude and direction) is adaptive to the 
environment. The boid moving vector is a linear 
combination of every behaviour rule vector.  The setting 
of the moving vector coefficients becomes more 
difficult by increasing more behaviour rules. These 
coefficients should be determined and optimised to have 
a realistic moving behaviour. In this context, we use two 
optimisation algorithms to optimise the boids model by 
finding the best coefficients values and combination in 
order to minimise the objective function. Firstly, we 
propose a GA to optimise the coefficients in a generic 
boids model. Secondly we substitute the GA by PSO to 
optimise the coefficients in the same generic boids 
model and use PSO to find food sources. Then we do a 
comparison of these two models by focusing on the 
advantages and disadvantages of each algorithm.  

Proceedings 28th European Conference on Modelling and 
Simulation ©ECMS Flaminio Squazzoni, Fabio Baronio,  
Claudia Archetti, Marco Castellani  (Editors) 
ISBN: 978-0-9564944-8-1 / ISBN: 978-0-9564944-9-8 (CD) 



 

THE BOIDS MODEL 

In 1986, Reynolds has developed the boids model. 
His published paper about the boids model (Reynolds 
1987) was cited so many times and extended in so many 
different ways.  Many of the extensions present 
additional rules to the boids, some describe constrained 
solution, some tend to easy solutions usable in computer 
games, some extend the previous work in spite of 
computational complexity, etc.  

Reynolds (1987) describes the flock behaviour2 as a 
result of the motion and the interaction of boids. Each 
boid has three simple rules of steering behaviours that 
describe how an individual boid move based on the 
positions and velocities of its flock mates (social 
reaction). 

• Separation (figure 1(a)): each boid keep a 
distance from other boids nearby to avoid 
collision and prevent crowding.  

• Alignment (figure 1(b)): each boid match the 
direction and the speed of its neighbours. This 
rule causes boids to follow each other. 

• Cohesion (figure 1(c)): each boid tends to move 
to the average position of its neighbours. 

 
(a) 

 
(b) 

 
(c) 

 
(a) Separation rule 
(b) Alignment rule 
(c) Cohesion rule 

Figure 1: The boids social rules (Reynolds 1987). 

Reynolds (1999) has extended the boids model to 
include more individual-based rules of the steering 
behaviours, to have more advanced individuals which 
are capable to finish specific task or adapt to complex 
environments. Some of these behaviours are: 

• Obstacle avoidance (figure 2(a)): The obstacle 
avoidance behaviour allows the boids move in 
cluttered environment by dodging around 
obstacles.  

• Leader following (figure 2(b)):  this behaviour 
causes one or more boids to follow another 
moving boid selected as a leader.   

                                                             
2 We mean by Flock behaviour in this paper as behaviour of flock, school, herd 
and swarm.  

  
(a) 

 
(b) 

Figure 2: Steering behaviours rules (a) Obstacle avoidance (b) 
leader following(Reynolds 1999). 

Based on Reynolds model, we have implemented a 
generic boids swarm model in Unity3D (Unity3d.com 
2014), the program is written in MonoDevelop Unity- 
C# (Docs.unity3d.com 2014). The aim is to develop a 
generic model that can be used in simulating the 
aggregate motion for flocks of birds, schools of fish or 
herds of animals. The model has five rules: 

• Cohesion: steer to move toward the average 
position of local flock mates (as in the original 
Reynolds’ model). By applying cohesion rule 
keeps the boids together. This rule acts as the 
complement of the separation.  If only cohesion 
rule is applied, all the boids in the flock will 
merge into one single position. Cohesion (𝐶𝑜ℎ!) 
of the boid (𝑏!) is calculated in two steps. First, 
the center (𝐹𝑐!) of the flock (𝑓) that has this boid 
is calculated as in equation 1. Then the tendency 
of the boid to navigate toward the center of 
density of the flock is calculated as the cohesion 
displacement vector as in equation 2.  

𝐹𝑐! =
!!
!∀!!∈!                                      (1) 

     Where, 𝑝!  is the position of boid j and N is the 
total number of boids in 𝑓 

    𝐶𝑜ℎ!!𝐹𝑐! −  𝑝!                                      (2) 

• Alignment: steer to match the heading and the 
speed of its neighbours. This rule tries to make 
the boids mimic each other’s course and speed. 
Boids tend to align with the velocity of their 
flock mates. The alignment (𝐴𝑙𝑖!) is calculated in 
two steps. First, the average velocity vector of 
the flock mates (𝐹𝑣!) is calculated by equation 3. 
Then 𝐴𝑙𝑖! is calculated as the displacement vector 
in equation 4. 

𝐹𝑣! =
!!
!∀!!!"                                     (3) 

    𝐴𝑙𝚤!!𝐹𝑣! −  𝑣!                                      (4) 

         Where 𝑣! is the velocity vector of boid i 
     If this rule was not used, the boids would bounce 

around a lot and not form the beautiful flocking 
behaviour that can be seen in the nature. 

• Separation: steer to avoid collection and 
overcrowding with other flock mates. There are 
many ways to implement this rule. An efficient 
solution to calculate the separation (𝑆𝑒𝑝!) is by 
applying equation 5. Vectors defined by the 



 

position of the boid 𝑏!  and each visible boid 𝑏!  are 
summed, then separation steer (𝑆𝑒𝑝!) is calculated 
as the negative sum of these vectors. 

𝑆𝑒𝑝! = − 𝑝! − 𝑝!∀!!!"                           (5) 

      If only the separation rule is applied, the flock 
will dissipate. 

• Leader following: steer to follow another moving 
boid selected as a leader (𝑝!). The leader 
following (𝐿𝑒𝑑!) is calculated by equation 6.     

𝐿𝑒𝑑! = 𝐿 ∗ 𝑝! − 𝑝!                                 (6) 

     Where 𝐿 is a leader strength factor. (Note: the 
moving vector (velocity) has limits, minimum 
and maximum). 

• Random movement: this rule is added to have 
more realistic flock behaviour. This rule is 
depending on the random number generator 
inside the game engine (Unity3D). The random 
movement (𝑅𝑎𝑛𝑑!) is calculated as in equation 7.      

𝑅𝑎𝑛𝑑! = −𝑓𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑟                         (7) 

Where 𝑟 is a unit sphere random vector and 
𝑓𝑓𝑎𝑐𝑡𝑜𝑟 is a flock random strength factor. 

Then the moving vector (𝑉!) is for boid (𝑏!) is 
calculated by combining all the steering behaviour 
vectors as in equation 8. 

𝑉! =    𝑤! 𝐶𝑜ℎ! +  𝑤! 𝐴𝑙𝚤!  + 𝑤!𝑆𝑒𝑝!  +  𝑤!𝐿𝑒𝑑! +  𝑤!𝑅𝑎𝑛𝑑!      (8) 

Where 𝑤! are the coefficients describing influences of 
each steering rule and used to balance the five rules. 

We have used the Unity3D to implement the boids 
model to get the benefits of using a game engine. The 
first benefit is the amazing visualisation that we get in 
Unity3D. So we skip wasting time to model and 
program the boid’s shape and its geometry. In Unity3D, 
it is easy to build a boid such as a bird, a fish or a sheep 
and attach some life-look animation to it, or import the 
3D model of the boid from other programs and attach a 
built in animation to it or program the animation from 
the scratch. In this model we exploit the collision 
detection component in Unity3D game engine to avoid 
the obstacles. Each obstacle has a physic’s collision 
component that doesn’t let other objects to move 
through the collision bounds (obstacle’s space). In 
another words, the obstacles will be excluded from the 
boids flocking space. We will show the results in the 
experimental results section. 

GENETIC ALGORITHMS FOR OPTIMISATION 
OF BOIDS MODEL 

In this section, we will give an overview of GA in 
general and some examples of its applications. Then we 
present our proposed model (GA for optimisation of 
boids model). 

Genetic Algorithm: 
     Genetic algorithm (GA) is an optimisation and 
search technique based on the principles of genetic and 
natural selection (Haupt, 2003). A GA allows a 
population composed of many individuals to evolve 
under specified selection rules to a state that maximise 
the fitness (i.e., minimizes the cost function). Genetic 
algorithms (GAs) were invented by John Holland in 
1960s and were developed by him and his students in 
1960s and 1970s. Holland (1975) presented the GA as 
an abstraction of biological evolution and gave a 
theoretical framework for adaptation under GA. 

GA belong to the larger class of evolutionary 
algorithms, which generate solutions to optimization 
problems using techniques inspired by natural evolution 
such as selection (reproduction), crossover 
(recombination) and mutation. The evolution process 
starts from a population of individuals generated 
randomly within the search space and continues for 
generations. In each generation, fitness of every 
individual is evaluated, and multiple individuals are 
randomly selected from the current population based on 
their fitness and modified by recombination and 
mutation operation to form a new population. Then this 
new population will be used for the next generation of 
the evolution. In general, the search process ends when 
either a maximum number of generations have been 
produced or a fitness level has been reached for the 
population. The flowchart of GA is shown in (figure 3). 

 

 
Figure 3: Flowchart of GA 

In a GA, it’s necessary to be able to evaluate how 
good a potential solution is relative to other potential 
solutions. The fitness function is responsible for 
performing this evaluation and returning a fitness value 
(positive integer number) that reflects how optimal the 
solution is. The fitness function is associated with the 
objective function of the problem. The fitness value of 
the individual is used to determine the probability with 
which the individual is selected into the new population. 
A common metaphor for the selection process is a 
roulette wheel selection (Fogel, 2000).  

Traditional methods of search and optimization are 
too slow in finding a solution in a very complex search 
space. GA is a robust search method requiring little 
information to search effectively in a large or poorly 
understood search space. In particular a genetic search 



 

progress through a population of points in contrast to 
the single point of focus of most search algorithms. 
Moreover, it is useful in the very tricky area of 
nonlinear problems. GAs have been used to solve 
optimisation problems in different fields such as 
automotive design, engineering design, robotics, 
optimised routing, games, etc. Chen (2006) has applied 
GAs to optimise the behaviour of a school of fish. 

 
GA for optimisation of moving vector in the boids 
model:   

The moving vector (𝑉!) in equation 8 for each boid 
(𝑏!) is a combination of all the five steering behaviour 
vectors. And the movements are balanced by the 𝑤! 
weight coefficients, so these coefficients should be 
optimized to have realistic and life-look behaviour. We 
have removed the random steering behaviour in the 
moving vector to exclude the random movements for 
the boids. The new moving vector is: 

𝑉! =    𝑤! 𝐶𝑜ℎ! +  𝑤! 𝐴𝑙𝚤!  + 𝑤!𝑆𝑒𝑝!  +  𝑤!𝐿𝑒𝑑!               (9) 

 We have used GA to optimise these coefficients and 
getting the benefit from using GA for parameters 
optimisation and finding a global optimum solution. The 
goal is to find the optimal solutions in terms of the 
variables (coefficients). Thus we should define 
mathematically what is the optimal solution. We begin 
the GA by defining the chromosome. The chromosome 
is an array of the coefficients values that will be 
optimised. In this case the chromosome has four 
variables and is written as a four-element row vector. 

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = 𝑤!,𝑤!,𝑤!,𝑤!                            (10) 

Then we should formulate the cost function that gives a 
cost for each chromosome. 

𝑐𝑜𝑠𝑡 = 𝑓(𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒) = 𝑓(𝑤!,𝑤!,𝑤!,𝑤!)           (11) 

  In our case, the optimal solution is to have life-look 
flock behaviour. Measuring the flock behaviour can be 
very complicated process, expensive computationally 
and then time consuming.  Since the purpose of this 
paper is to build a generic boids model and optimise it 
by different optimisation methods, we suggest a simple 
cost function. In the flowing, we explain the proposed 
cost function which is divided into five parts. 

 
• Related to the alignment rule: The divergence 

between the direction of the boid and the average 
direction of the flock should be minimised. The 
divergence is the angle 𝜃  between the boid 
velocity vector 𝑣! and the average flock velocity 
vector. 

𝑐𝑜𝑠𝑡! = 𝜃                                  (12) 

• Related to the leader following rule: The 
divergence between the direction and the 
distance of the boid and the direction and the 
distance of the leader should be minimised.  

𝑐𝑜𝑠𝑡! = 𝑑                                 (13) 

Where d is the distance between 𝑝!  and 𝑝! 
𝑐𝑜𝑠𝑡! = 𝛼                                 (14) 

Where 𝛼 is the angle between the boid velocity 
vector 𝑣! and the leader velocity vector. 
 

• Related to the separation and cohesion rules: The 
boids distribution should be optimised to avoid 
crowding or losing contact and having nice 
flocking. To do this; we calculate the distance 
between the boid and the flock center first 𝑑!. 
Then we check all the boids, if they are nearby 
(<keepd) or far enough (>keepd).  
 
If ( 𝑝! − 𝑝! ≤ 𝑘𝑒𝑒𝑝𝑑), 

𝑐𝑜𝑠𝑡! = 𝑑! ∗
!!!!! !!""#$

!

!""#$!∀!!!"                 (15) 
 
But for the far boids,  
If ( 𝑝! − 𝑝! > 𝑘𝑒𝑒𝑝𝑑)  

𝑐𝑜𝑠𝑡! = 𝑑! ∗
!!!!! !!""#$

!

!!!!""#$ !∀!!!"               (16) 

Then the cost is: 
𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡! +  𝑐𝑜𝑠𝑡! + 𝑐𝑜𝑠𝑡! + 𝑐𝑜𝑠𝑡! + 𝑐𝑜𝑠𝑡!        (17) 

We have used the continuous GA as explained in 
(Haupt, 2003). We used the parameters in (Table 1). We 
will analyse the results in experiment results section. 

 
Number of optimisation variables 4 
Upper limit on optimisation variables 1 
Lower limit on optimisation variables 0 
Maximum iteration 100 
Minimum cost 0 
Population size  20 
Mutation rate 0.2 
Selection rate 0.5 

Table 1: GA parameters 

PARTICLE SWARM OPTIMISATION OF BOIDS 
MODEL 

      In this section, we will give an overview of PSO 
algorithm in general and some examples of its 
applications. Then we present our proposed model (PSO 
for optimisation of boids model). 

Particle Swarm Optimisation: 
PSO is a computational method that optimises a 

problem by iteratively trying to improve a candidate 
solution with regard to a given measure of quality. 
Kennedy and Eberhart introduced PSO in 1995 
(Kennedy, 1995). PSO was originally used to solve non-
linear continuous optimization problems, but more 
recently it has been used in many practical, real-life 
application problems. For example, PSO has been 
successfully applied to track dynamic systems 
(Eberhart, 2001) and evolve weights and structure of 
neural networks (Zhang, 2000). PSO draws inspiration 
from the sociological behaviour associated with bird 
flocking. It is a natural observation that birds can fly in 
large groups with no collision for extended long 
distances, making use of their effort to maintain an 
optimum distance between themselves and their 
neighbours.  

Cui  (2009) has developed a hypried PSO and boids 
model (Boids-PSO), where cohesion rule and alignment 



 

rule are both employed to improve the PSO algorithm 
for boids simulation and to overcome the weekness of 
biological background of PSO. But in our case we use 
PSO as an optimisation technique to optimise the 
coefficients in the moving vector.    

The PSO methodology operates by placing a group 
of individual particles into a continues search space, 
wherein each particle is initialised with a random 
position and a random initial velocity in the search 
space. The position and velocity are updated 
synchronously in each iteration of the algorithm. Each 
particle adjust its velocity according to its own flight 
experience and the other’s experience in the swarm in 
such a way that it accelerates towards positions that 
have high fitness values in previous iterations. In other 
words, each particle keeps track of its coordinates in the 
solution space that are associated with the best solution 
that has achieved so far by its self. This value is called 
personal best (pbest), Another best value that is tracked 
by the PSO is the best value obtained so far by any 
particle in the neighbourhood of that particle. This value 
is called (best). So the basic concept of PSO lies in 
accelerating each particle toward its pbest and the gbest 
locations, with a random weighted acceleration at each 
time step as shown in (figure 4). 

 

 

 
sk :  current searching point. 
sk+1: modified searching point.   
vk: current velocity. 
vk+1: modified velocity.   
vpbest : velocity based on pbest. 
vgbest : velocity based on gbest 

 

Figure 4: Concept of particle position modification by PSO 

The modification of the particle’s position can be 
mathematically modelled according to equation 18. 

𝑣 𝑘 + 1 =  𝑣 𝑘 + 𝑐!𝑅! 𝑝𝑏𝑒𝑠𝑡  − 𝑠! 𝑘 +  𝑐!𝑅! 𝑔𝑏𝑒𝑠𝑡  − 𝑠! 𝑘   

(18) 

Where, 
 𝑣 𝑘  is the velocity of a particle at iteration k. 
 𝑅! and 𝑅! are random numbers in the range of  [0,1] 
with the same size of the swarm population. 
𝑐! and 𝑐! are learning factors which will be fixed 
through whole the process. 

In order to improve the local search precision, Eberhart 
(2001) added the inertia weight w to equation 18 to be 
as following equation. 

𝑣 𝑘 + 1 =  𝑤𝑣 𝑘 + 𝑐!𝑅! 𝑝𝑏𝑒𝑠𝑡  − 𝑠! 𝑘 +  𝑐!𝑅! 𝑔𝑏𝑒𝑠𝑡  −

𝑠! 𝑘           (19) 

The inertia weight controls the momentum of the 
particle by weighing the contribution of the previous 
velocity. 

Chatterjee (2006) suggested a dynamic change of 
inertia weight in his work. 

Clerc (1999) indicates that the use of a constriction 
factor K may also be necessary to ensure convergence 
of the particle swarm algorithm, defined as when all 
particles have stopped moving. Then the velocity is 
calculated by the equation:  

𝑣 𝑘 + 1 =  𝐾[𝑣 𝑘 + 𝑐!𝑅! 𝑝𝑏𝑒𝑠𝑡  − 𝑠! 𝑘 +  𝑐!𝑅! 𝑔𝑏𝑒𝑠𝑡  −

𝑠! 𝑘 ]               (20) 
𝐾 =  !

!! !! !!!!!
                               (21) 

Where 𝜑 =  𝑐! + 𝑐! and 𝜑 > 4. 
Then the new position for the particles is the 

addition of the position at k iteration and the distance 
that the particles will fly with the new velocity 𝑣 𝑘 + 1 . 
The position is updated by equation 22. 

𝑠! 𝑘 + 1 =  𝑠! 𝑘 + 𝑣 𝑘 + 1                  (22) 

The flow chart of a general PSO algorithm is shown 
in (figure 5). 

 
Figure 5: flow chart of general PSO algorithm 

Path Planning using PSO: 
One of the main applications of PSO is the path 

planning. PSO has been applied massively for path 
planning intensely in robots (Chen X 2006 and 
Nasrollahy 2009). 

In the boids model, PSO can be applied to the flock 
leader, to plan and smooth his path. For this purpose; we 
have used PSO algorithm to plan the path to the target 
(i.e. food source). We have used the Euclidian distance 
between the particle and the target as a fitness function 
in the PSO. 

In PSO for path planning, the inertia weight w is 
calculated according to the next equation.    

 
𝑤 = 𝑤!"#$" −  

!!"#$"!!!"#

!
 𝑘                             (23) 



 

Where, K is the iteration maximum number and k is the 
current iteration. By linearly decreasing the inertia 
weight from a relatively large value to a small value, the 
PSO tends to have more global search ability at the 
beginning of the run while having more local search 
ability near the end of the run.  

As in robot’s applications, PSO gives advantages to 
the path planning particularly in the dynamics 
environment containing stationary and moving 
obstacles.  

We have used the parameters in (Table 2) for the 
PSO. In case of facing obstacles; the leader is looking to 
his target, if there is an obstacle whose obscures the 
target and the distance to this obstacle is less than a 
threshold, the leader will change his direction randomly 
to his right or his left by 45-degrees angle.  

 
Swarm size 20 
Dimension of the problem 2 
Maximum iteration 100 
c1 (cognitive parameter) 2 
c2 (social parameter) 2 
C (constriction factor) 1 
Inertia start 0.9 
Inertia end 0.4 
Upper limit on optimisation variables 100 
Lower limit on optimisation variables -100 

Table 2: PSO parameters for path planning 
 

 
(a) 

 
(b) 

Figure 6: PSO for path planning without obstacles (a) and with 
an obstacle (b). 

PSO for optimisation of moving vector in boids model: 
As in GA for optimisation of the moving vector in the 

boids model, we have applied PSO to find the optimum 
coefficients for the moving vector (𝑉!) in equation 9 for 
each boid (𝑏!). We have used the same cost function as 
in equations from 12 to 17.  We have used the PSO as 
explained in (Kennedy, 1995).  

 
Population size 20 
Dimension of the problem 4 
Maximum iteration 100 
c1 (cognitive parameter) 2 
c2 (social parameter) 2 
C (constriction factor) 1 
Inertia start 0.9 
Inertia end 0.4 
Upper limit on optimisation variables 1 
Lower limit on optimisation variables 0 

Table 3: PSO parameters 

We have used the parameters in (Table 3) and we have 
used equation 23 to calculate the Inertia. We will 
analyse the results in next section. 

THE EXPERIMENT RESULTS 

For testing the boids model without/with the GA and 
PSO, we have made a fish school in Unity3D. we have 
used a ready fish boid from unity website to have a nice 
fish shape with some animations such as moving the 
fish tail. The fish school has 50 fish (figure 7a).  Firstly 
we have implemented the boids model as in equation 8 
with excluding the random steering, and then we added 
the random steering and the leader factor. Figure 
7(b,c,d) shows the simulation from different  efforts.  It 
was observed that the model need time to have a nice 
flocking shape with/without random movement. And 
the random movement was important to avoid obstacles 
since we didn’t have a separate steering behaviour for 
avoiding the obstacles. The simulation of a fish school 
depends on the boids model as in equation 8 with equal 
weight coefficients gives a good flocking shape but the 
model was slow to get the nice flocking shape. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7: (a) Fish school system (b) the boids simulation 
without random movement after few frames from the start (c) 
the boids simulation with random movement (d) the boids 
simulation with random movement and adding leader factor 
and some obstacles. 

Using the GA for optimisation the moving vector by 
finding the optimal coefficients, made the school of fish 
getting the nice flock shape sooner, but its very 
computational costly. The frame rate went down from 
more than 30 frames per second to almost 3 frames per 
second (this depends on the parameters of GA). And it 
is noticeable that after passing the start time and having 
the flock shape, there is no noticeable difference 
between the original boids model and the boids model 



 

with GA. Figure 8(a) shows a screen shot from the 
simulation with GA. 

 
(a) 

 
(b) 

Figure 8: The boids simulation with (a) GA, and (b) PSO 

PSO was faster than GA, and gave more noticeable 
results as shown in (figure 8(b)). It is observed that the 
boids get the flock shape faster and even the flock 
behaviour is look nicer than before.  

We depend on our observation of the simulation 
results to do the comparison between the different 
models, because each simulation/run is different from 
other simulations/runs and it depends on the starting 
positions and the random numbers. We have selected 
the same population size and the number of iterations 
for both GA and PSO algorithms. The other parameters 
in GA, were selected by running the GA on many 
standard optimisation problems and from the literature 
(Haupt, 2003). The other parameters in PSO algorithm, 
were selected from the literature and the path planning 
algorithm. These parameters are selected to have a good 
convergence. The cost function  or the objective fuction 
in general should be connected to the type of simulation. 
In our experiment, the objective function is to have nice 
fish school behaviour.   

CONCLUSIONS AND FUTURE WORK 

The boids model is often used in computer graphics 
to provide realistic life-look representations of the 
aggregate motion. For instance, many animations 
require natural-looking behaviour from a large number 
of characters (boids). The aggregate motion of the group 
is the result of the interaction of the individuals, so let 
each individual generate its own motion, this is easier 
and produces natural and unscripted motion. The 
individual’s moving is calculated by combining all the 
steering behaviour vectors. To have a natural behaviour 
in different environments, the boid’s movements should 
be optimised and adapted. GA and PSO algorithm are 
used to optimise a generic boids model by optimising 
the coefficients of the moving vector to minimise the 
cost function. 

The challenge is to write rules to define natural 
behaviours. In the boids model, we have defined the 
cost function which is divided into five parts. These 
parts are related to the steering behaviours in the model. 
Thus the cost function reflects how the fish school 
should look in the nature. Our cost function is not 
computationally costly and measures simply the boids 

behaviour. The cost function (objective function) should 
be connected to type-of-problem we want to solve, and 
reflects how we want the flock/swarm to behave. The 
setting of moving vector coefficients is determined by 
the cost function. We use GA and PSO to find the best 
coefficients values (waights of the behaviours rules) to 
minimise the cost function which reflects the wanted 
behaviour.  

GA and PSO have many similarities and both of 
them use population-based approaches. GA is known as 
a good algorithm to find the global optimal solution 
where is PSO could stuck in the local optimum. But 
PSO has advantage over GA concerning the time. In the 
boids model, where we have adaptive boids in a 
dynamic environment, we are interested in a nice 
flocking behaviour (convergence) as in nature, and in 
time consuming. From the experiments for both GA and 
PSO, we observed that PSO is much faster than GA, and 
gives a faster convergence, and because the PSO is 
computationally less costly than GA, we could notice 
the convergence more in PSO than GA.  

The challenge is to balance between the convergence 
(nice flocking behaviour and the adaptively) and the 
time consuming. Having more advanced cost function 
probably will give better results, but it will be very 
expansive and lead to a very slow model. Applying the 
optimisation algorithm not continuously such as 
applying the optimisation algorithms for only some 
parts of the simulation such as at beginning of the 
simulation until the boids get a nice flock shape which 
is wanted, or when the boids facing obstacles or 
enemies, will accelerate the model.    
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Abstract 
Risk of pathogen transmission in Norwegian fjords depends on two main factors: 

location of farms and the density of fish in each farm. This paper presents a novel 
method to find the optimal values of these two variables that yield the optimal 
aquaculture system with a minimum risk of spreading disease and high fish production. 
For this purpose, agent-based models (ABMs) are used to simulate and analyze fish 
disease dynamics within and between fish farms in Norwegian fjords. Moreover, a 
modified particle swarm optimization (PSO) algorithm is used to identify the optimal 
values of fish density and farm's location for each farm. The objective function is 
defined as being the weighted sum between the fish density and the infection risk. We 
validated the PSO algorithm with the optimal objective function by demonstrating the 
capability of the algorithm to drive the system to produce an expected behavior and 
output in tested, known scenarios.  

The simulation results demonstrate the ability of the PSO algorithm to converge 
rapidly to the optimal solution. In only 18 iterations, it finds an optimal solution that is 
three times larger than the initial fish farm density and in a location that keeps the risk 
of infection at an accepted level. The use of the PSO algorithm in finding optimal 
parameter values of ABMs, will open for new applications of the model in aquaculture 
industry management, such as planning for a sustainable aquaculture industry. 
 
Keywords: Risk of infection, Particle swarm optimization (PSO), Agent-based 
modeling, Fish farming. 
 

1 Introduction 
Over the past couple of years, the Norwegian aquaculture industry has experienced 

a period of rapid growth. This progress has resulted in challenges for the industry such 
as losses due to diseases and various kinds of harmful impacts on the marine ecosystem 
(Olaussen, 2018). The Norwegian government aims at promoting an environmentally 
sustainable aquaculture industry by minimizing the risks of disease and harm to the 
marine environment and thus retaining biological diversity. Infectious diseases and 
parasites make up one of the five key areas of concern to the Norwegian government 
in terms of where aquaculture may potentially have a negative impact on the 
environment (FKD, 2009; Fiskeridirektoratet, 2018). 

In this context, it is necessary to develop, assess and apply validated methods and 
models that can help us effectively analyze and facilitate the management of the 
aquaculture industry. The Norwegian Directorate of Fisheries applies strict rules to 
licenses for building and operating aquaculture facilities (The Norwegian Aquaculture 
Act, 2005), and they use systems to control the operations of the fish industry. For 
example, based on regulations, the application of the MOM (Monitoring – On growing 
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fish farms - Modeling) method is mandatory as a way to monitor the effects of fish 
farming on the seabed and on the benthic fauna under and near the farming facilities. 
This method describes how effects on the seabed are to be monitored and which 
environmental thresholds are to be applied (Ervik et al., 1997). SINTEF has developed 
systems for monitoring and decision support in sea-based aquaculture (www.sintef.no). 
These systems are based on statistical analyses and particle tracking in hydrodynamic 
models. 

Marine aquaculture systems consist of several facilities, located in a dynamic 
environment and influenced by a variety of factors (e.g. seawater temperature and sea 
currents). These factors are fluctuating in the space and time domains. For instance, the 
sea currents in the fjords exhibit a complex pattern of behavior that is predictable only 
over a short time period (Institute of Marine Research, 2018). A disease emerging from 
the system is a product of the interactions between the parts of the system (i.e. fish and 
pathogens). The system exhibits a complex behavior, and there are, typically tipping 
points1 where a small change in one or more of the parameters (e.g. fish density) that 
characterize the system can dramatically affect the behavior of the whole system. These 
tipping points separate two modes of behavior; the first mode of behavior is when the 
fish disease prevalence is decreasing or is under control, while the second one is when 
the disease dynamics is unstable and the disease is out of control (i.e. disease prevalence 
is increasing). Thus, finding the optimal fish density and location for each facility in 
the system can stabilize fish disease dynamics in the aquaculture system and 
subsequently, limiting the negative impact on the environment 

The main aim of this study is to develop a management tool and methods that 
determine the optimal production size in a defined marine aquaculture system with 
many facilities of variable fish density and locations (we assume that all farms have 
equal physical size2). This optimal production is based on a minimization of the 
infection risk within and between the aquaculture sites. This optimal production is 
ensured by increasing the number of fish and minimizing the infection risk (i.e. increase 
the harvest of farms) by changing the locations of fish farms. The infection risk is 
identified based on local conditions such as fish density, sea temperature, sea currents, 
and distances between aqua sites (Alaliyat et. al., in press). 

Previous studies on infectious disease dynamics in aquaculture systems have 
predominantly used mathematical models that were based on the assumption that a fish 
population is homogeneous (e.g., Murray, 2009; Green, 2010; Stene, 2013). The 
previous mathematical models treat fish as the unit of analysis, not the pathogens, i.e., 
they do not treat the pathogens as individuals who may survive without hosts, and, in 
their simplest form, they do not represent environmental conditions explicitly in the 
model. Many researchers have used such models to simulate disease dynamics, and 
some of them have coupled these models with simple hydrodynamic models or distance 
measures of transmission between separate populations (Ogut, 2001; Viljugrein et al., 
2009; Aldrin et al., 2010; Werkman et al., 2011; Salama & Murray, 2011). 

In Norway, hydrodynamic models, coupled with particle tracking and statistical 
analyses, have been widely applied to identify the salmon louse and pancreas disease 
(PD) transmission dynamics in Norwegian fjords (MODS, 2012, Stene et al., 2014). 
SINTEF has developed the SINMOD hydrodynamic model (www.sinmod.no) that 
combines physical and biological processes in the ocean. These models typically do not 

                                                
1 Tipping Points: places where a small change in an input can dramatically affect the outcome.  
2 We assume equal size (volume) of all modeled farms in this study, and subsequently, the number of fish (fish 
population) is a proxy for fish density.  
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include a variety of pathogens. Moreover, statistical analyses are based on the 
assumption that fish populations are homogeneous. 

Agent-based methods have been applied to simulate the transmission of human viral 
diseases such as influenza (Ciofi et al., 2008; Milne et al., 2008; Khalil et al., 2010). 
We have previously applied the agent-based method to simulate fish disease dynamics 
(Aalaliyat et al., 2013; Alaliyat & Yndestad 2015a; Alaliyat & Yndestad 2015b; 
Alaliyat & Yndestad 2015c; Alaliyat et al., in press). Agent-based models (ABMs) may 
be valuable for analyses focusing on individual interactions (i.e., where the overall 
dynamic behavior depends upon the interaction between individual fish and pathogens) 
and may also allow for the incorporation of the spatial aspect of the system that has not 
previously been utilized.  

Previous studies that used mathematical models to simulate fish diseases focused 
on providing qualitative assessments of various infectious diseases using statistical 
analysis methods (Murray & Peeler, 2005; Gregory, 2008; Viljugrein et al., 2009; 
Kristoffersen et al., 2009; Tavornpanich et al., 2012; Taranger et al., 2015). These 
models were predominantly based on historical data and were applied to the study of 
various factors governing fish disease outbreaks. In Norway, Tavornpanich built risk 
maps and spatial determinants of the pancreas disease (PD) in Norwegian Atlantic 
salmon farming sites (Tavornpanich et al., 2012), while Stene studied factors that 
trigger PD outbreaks (Stene, 2013).   

Norwegian aquaculture growth invariably involves the expansion of cultivated 
areas and increased fish densities in aquaculture installations. In terms of farmed 
individuals, many negative effects have been identified as a consequence of poorly 
regulated sector growth and poor management practices. As a result, there is a need for 
models that help us predict fish disease dynamics, that allow for integration with other 
sectors, and that are not based only on statistical analyses of historical data. Using 
agent-based methods, we study specific spatial aspects of the spread of infections and 
address the stochastic nature of the infection process in fish diseases (Alaliyat & 
Yndestad, 2015b). ABMs can also include all external factors that affect fish disease 
outbreaks such as the interaction with wild fish, ship traffic and other marine activities. 

ABMs have been widely used in decision support for management in a variety of 
fields (Skov-Petersen, 2008). ABMs have been extensively used in biology, including 
the analysis of the spread of epidemics (Hunter et al., 2017). Several methods have 
already been proposed to automate exploration in the parameter space of ABMs. For 
example, the tool “BehaviorSpace” in NetLogo allows us to automatically investigate 
the parameter space (Wilesnsky, 2009). This space is a Cartesian product of possible 
values that each parameter can take. When the model is coupled with a high degree of 
uncertainty associated with the values of these parameters, sensitivity analysis becomes 
a significant contribution to the analysis of the model behavior (Kocabas & 
Dragivevica, 2006). When, however, we have a large number of parameters where each 
can take a wide range of values, the parameter space becomes large, and the systematic 
exploration of that space surpasses our computational capabilities. Brueckner proposed 
a method that differentially explores the whole parameter space focusing on the most 
interesting areas (Brueckner & Parunak, 2003). He used a search agent to travel in the 
parameter space to look for values that provide the highest values in the fitness function 
between the desired model behavior and the simulation.  

If a particular model behavior is desired, then one must identify the model 
parameter values that will provide that behavior. The solution space can contain many 
potential solutions that leave a brute-force approach inefficient. Genetic algorithms 
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(GA) have been applied to properly tune ABM parameters in the exploration of such 
large solution spaces (Joyce et al., 2012). 

We previously developed an aquaculture agent-based system model (AABSM) to 
simulate fish disease dynamics and predict pathogen transmission patterns in 
aquaculture systems (Alaliyat et. al., in press). The AABSM has many parameters that 
relate to the individual attributes and their behavior rules, the environment, and the 
network between the agents or between the agents and the surrounding environment. 
These parameters determine the global behavior dynamics of the system, and small 
changes in a single parameter sometimes lead to major modifications of the dynamics 
of the entire system. Parameter setting in preparation for a model simulation of the 
AABSM can be a very tedious process unless we have a strategy for exploring the 
parameter space.  

The AABSM is a bottom-up model that has been built on simple individual and 
environmental dynamics rules. For instance, individual fish become infected if it is 
exposed to pathogens that move along with the sea currents. The generic model is, 
however, complex. The model has many non-linear and dynamic relations (e.g. 
relationship between pathogen lifespan and seawater temperature). Therefore, the 
model output (i.e. behavior) is sensitive to the initial conditions. The infection risk 
depends on many input parameters such as seawater temperature, current speed and 
direction, farm locations, and the fish density (Alaliyat et al., in press).  

With the purpose of finding an optimal aquaculture system that results in lower 
infection rates and maximum fish production, we need to find an optimal fish density 
and location (in x, y coordinates) of each facility in the system. We need to vary the 
location and the fish density across all possible values and conduct a follow-up analysis 
to find the best combination of parameter values. For instance, even if we have an 
aquaculture system of merely three facilities, each characterized by three parameters 
(location in x and y, and fish density), and we have as few as 100 possible values for 
each parameter, then the possible combinations of these nine parameters are 100#. 
Consequently, it is impossible to go through all the combinations of parameter values. 
Swarm Intelligence (SI) algorithms are well-suited to handle such large solution spaces. 
We define a cost function that measures the performance of the AABSM, and then the 
particle swarm optimization (PSO) algorithm automatically searches for the model 
parameter values that maximize the objective function value (Alaliyat et al., 2014). 

We have defined a number of simulation scenarios to test our algorithms. In the 
first scenario, we defined a simple aquaculture system with only two fixed positioned 
facilities; - where one facility is infected, while the other one is a susceptible farm. We 
aim at exploring the impact of the fish density in the susceptible farm (defined as a 
parameter) on the infection rate in that farm. In subsequent scenarios, we defined an 
objective function as a weighted sum between the fish density and the infection risk to 
facilitate the optimization. First, we applied a PSO algorithm to identify which 
combination of fish density in and location of the susceptible farm within a well-defined 
area, that will provide the highest values of the objective function (i.e. lower infection 
rate under a maximum fish production). Therefore, instead of running the model for all 
the possible parameter values of fish density and location, which could take very long 
time, and then conducting follow-up sensitivity analyses, the PSO algorithm 
automatically searches for the parameter values that provide the highest objective 
function value. We need to improve the normal PSO algorithm to fit this optimization 
problem, since the AABSM is a stochastic model, and a standard PSO can easily 
become stuck in local minima. Finally, we have extended this scenario in order to find 
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optimal fish density and locations for all the three facilities in the aquaculture system; 
- only one of which is initially infected. 

 

2. Materials and methods 
2.1 Materials 

We present a generic model that uses an ABM and a PSO algorithm. The model can 
be used for different fish infectious diseases in different areas, but the data used in our 
simulations are inspired by the aquaculture industry in the Romsdalsfjord3. The 
aquaculture data, including the maximum allowed capacity, are available online on the 
Norwegian directorate of fisheries webpage, www.fiskeridir.no/. The oceanographic 
data include sea currents data (speed and direction) and seawater temperature. In our 
simulations, we used the monthly average sea currents data from the SINMOD model 
(MODS, 2012) with a resolution of 800 m x 800 m, and we added noise to achieve 
natural variety. Seawater temperature monthly average data are available online on the 
Institute of Marine Research webpage, www.imr.no/en/. The water temperature varies 
in water column as well (Alaliyat & Yndestad, 2015b). Infection, and shedding 
parameters and pathogen life span depend on the type of pathogen and fish. In this 
study, we use data references for PD (Stene et al., 2014; Alaliyat & Yndestad, 2015b).   

To implement models using agent-based methods, NetLogo 3D was used. NetLogo 
is a multi-agent programmable modeling environment. The NetLogo toolkit allows for 
simulations within a geographic information system environment, and it is easy to 
include physical and environmental data as well (Wilensky, 1999). NetLogo was used 
also to implement the PSO algorithm to optimize the ABMs. We used also MATLAB 
to analyze the simulation results and to create figures that are easy to interpret 
(MATLAB, 2015).  

 

2.2 Methods 
2.2.1 Aquaculture system model 

The aquaculture system generally consists of a set of fish farms in a semi-closed area 
(i.e. fjord), a swarm of pathogens and the landscape. This system S(t) can be formulized 
as: 

 𝑆(𝑡) 	= 	 { 𝐹𝐹 𝑡 , 𝑃 𝑡 , 𝐿 𝑡 , 𝑁(𝑡)}                                         (1) 

where FF 𝑡  represents a set of fish farms, P(t) a swarm of pathogens, L(t) the 
landscape or the environment in which the fish farms and pathogens are located, and 
N(t) is the relationships between the system parts (Yndestad, 2010). 
The Fish farms FF(t)  

In this study, the modeled aquaculture systems represent parts of the Romsdalsfjord. 
The choice of this area is due to the data availability and abundance of research activity 
in it. Fish farms can hypothetically be located at any position in the simulated space. 
Fish farms shed pathogens if they are infected and consume pathogens if they are 
susceptible sites. Closer distance between the farms (i.e. higher cohesion) increases the 
infection risk, while higher separation decreases the infection risk.  

Fish farms have these parameters at the beginning of the simulation: fish 
population, location in the landscape and number of initially infected fish (see Table I). 
                                                
3	Romsdalsfjord is 88 km long and located in the Romsdal district of Møre og Romsdal County in mid-Norway.	
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We assume that all the fish farms have equal physical size. Fish individuals are only 
located in the fish farms’ sites, while the pathogens move in the whole landscape. In 
this study, fish individuals (i.e. agents) move randomly inside the farms. Therefore, 
swarm properties (i.e. cohesion, separation, and alignment forces) are ignored. The fish 
population and farm location parameters take values that are limited within value ranges 
shown in Table I. Within these ranges, we identify the optimal combinations of values 
of these parameters that provide us with an optimal aquaculture system (maximum 
production with minimum infection risk). 

 
TABLE I: FISH FARM PARAMETERS 

Parameter Min value Max value 
Fish population 100 1000 
Location X -248.5 248.5 

Y -148.5 148.5 
Z 0 0 

Number of initial infected 0 Max (fish population) 

 

The pathogen swarm 𝑃(𝑡) 
The pathogens swarm consists of many individual pathogens, as the following: 

                     P(t) = {𝑃𝐴2(𝑡), 𝑃𝐴3(𝑡),…, 𝑃𝐴4(𝑡)}                                         (2) 

where 𝑃𝐴5(𝑡) is the pathogen agent j, and n is the total number of pathogens at time t. 
Pathogens move by sea currents and their social characteristics (i.e. cohesion, 
separation, and alignment forces) are ignored. Our model assumes that the simulation 
space is free of pathogens at the beginning.  

The landscape L(t) 

 The landscape, 𝐿(𝑡), in this study is limited to the terrain, the sea currents and the 
water temperature that represent parts of the Romsdalsfjord.  
1. The terrain is divided into many 3D grids (i.e. cells) with 13 x 13 x 13 points 

(pixels). Each fish farm is represented by 3 x 3 x 3 grids, equal to 3*20 m x 3*20 
m x 3*20 m.  

2. The sea currents model is built on the average current speed and angle in the 
Romsdalsfjord. The user can set the average current angle and current speed in the 
beginning of the simulation; then, during each time step, a random deviance is 
added to these current angles and speeds.  

3. The sea temperature changes in time and space. The user can set the average water 
temperature at the surface level, and then, some noise to account for the variation 
present in nature is added. The water temperature varies at the lower levels of the 
sea as well as in the following:  

                         𝑇 𝑥, 𝑦, 𝑧, 𝑡 = 𝑇: 𝑥, 𝑦, 𝑧, 𝑡 − 𝐶	𝐿 𝑦 	                           (3) 

where	𝑇(𝑥, 𝑦, 𝑧, 𝑡) is the water temperature at the position (x, y, z) at the time t, 
𝑇: 𝑥, 𝑦, 𝑧, 𝑡  is the water temperature at the surface level (y = 0, maximum 
temperature value at the surface), C is a constant that represents the decay rate, and 
𝐿 𝑦  is the water levels of the sea. 

 

 
The relationships N(t) 
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There are mutual relations between all the system elements (i.e. fish, pathogens and 
landscape). N(t) represents the relationships between fish and pathogens (e.g. infection 
process), and between them and the landscape (e.g. pathogen transmitter by sea 
currents). As described above, the aim of this study is to identify the optimal fish 
density and location for each farm in the aquaculture system, at a minimum infection 
risk and high production. In order to model the infection risk, methods of pathogen 
dynamics are introduced.				

The pathogen dynamics 

Infected fish produce pathogens in the aquaculture system. Pathogens may have the 
following dynamic properties: 

Transport in seawater  
The pathogens are moving by sea currents. Each pathogen moves according to the 

current speed and direction by the position of the pathogen at the beginning of the time 
step. The pathogen 𝑃𝐴5(𝑡) updates its position as: 

𝑣(𝑡) 	= 𝐶>?	.		𝑅4(𝐶>, 𝑠𝑡𝑑_𝑠)                                                     (4) 

𝑃𝐴E(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡)	 =	𝑃𝐴E 𝑥, 𝑦, 𝑧, 𝑡 	+ 𝑣 𝑡 ∗ 	∆𝑡                     (5) 

where 𝑣(𝑡) 	 is the magnitude of the velocity, 𝐶>? is the relative current speed, which 
is inherited from the grid where the pathogen is and depends on the geometry of the 
fjord (e.g., changes in the width of the fjord, the presence of islands and peninsulas, 
etc.), 𝑅4 is a normally distributed random floating point with a mean of 𝐶>	(average 
current speed in this area), 𝑠𝑡𝑑_𝑠 is a current speed standard deviation. In the next 
equation, 𝑃𝐴E(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡)		 is the new pathogen agent j position, 𝑃𝐴E(𝑥, 𝑦, 𝑧, 𝑡) is the 
current pathogen agent j position, 𝑣 𝑡 	is the pathogen velocity, and ∆𝑡 is the time step. 

The velocity direction is connected to the orientation of the pathogen that is defined 
by two variables: heading 𝑃𝐴5(𝑡)IJK and pitch 𝑃𝐴5(𝑡)LMN. Heading is the angle between 
the forward vector of the pathogen projected onto the horizontal plane and the vector 
[0 1 0], and pitch is the angle between the forward vector of the pathogen and the 
horizontal plane. We calculate these variables as: 

𝑃𝐴5(𝑥, 𝑦, 𝑧, 𝑡)IJK = 𝐶K 	+	𝑅4(𝐶OMP>, 𝑠𝑡𝑑_𝑑)                             (6) 

𝑃𝐴5(𝑥, 𝑦, 𝑧, 𝑡)LMN = – 	𝑅5	.		𝑝𝑖𝑡T                                                   (7) 

where 𝐶K is the sea current direction angle, 𝑅4 is a normally distributed random floating 
point with a mean of 𝐶OMP>	(current heading bias variable used to offset the direction 
given by the grid) and a current direction standard deviation 𝑠𝑡𝑑_𝑑, 	𝑅5	is a random 
float number in the range of [0,1], and 𝑝𝑖𝑡T is the pitch value that represents the sinking 
effect on the pathogens.    
Mortality in seawater 

The pathogen lifespan is a function of seawater temperature and salinity (Stene, 
2013). For example, salmon pancreas disease virus (SPDV) can live more than 4 days 
in the cold water, but this value is decreased exponentially in the hot water (Alaliyat & 
Yndestad, 2015c). The life span related to the seawater temperature can be modeled as 
in the following equation (Stene et al., 2014, Alaliyat & Yndestad, 2015b). 

                                𝑃𝐴5(𝑥, 𝑦, 𝑧, 𝑡)UV= a * exp (- T/ b)                                           (8)  
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where T is the water temperature, a is the pathogen lifespan at 0° water temperature, 
and b is the decay rate. 

	

Pathogen density in infected fish farms 

The total number of pathogens at fish farm 𝐹𝐹W 𝑥, 𝑦, 𝑧, 𝑡  is calculated as:           

                             𝑃𝐴E(𝑥, 𝑦, 𝑧, 𝑡)	 if 
𝑥XM4 ≤ 𝑥 ≤ 𝑥XPZ
𝑦XM4 ≤ 𝑦 ≤ 𝑦XPZ
𝑧XM4 ≤ 𝑧 ≤ 𝑧XPZ

                                      (9) 

where, 𝑥XM4, 𝑦XM4, 𝑧XM4, 𝑥XPZ, 𝑦XPZ, 𝑧XPZ are the surfaces of the cube that represents 
the fish farm in the 3D simulation space. Pathogen density depends on different factors 
such as: fish population, sea currents, distance between fish farms and seawater 
temperature (Alaliyat et. al., in press).  

Pathogen-fish interaction  
The infection is happening when the susceptible fish exposed to pathogens. The 

individuals are heterogeneous: fish resist differently to the pathogens. Also, individual 
pathogens have different abilities to cause a disease. Algorithm I summarizes the 
procedures of pathogen-fish infection process.    

  
Algorithm I: infection rules (Alaliyat et. al., in press) 

1: For each susceptible fish agent i then 
2:       If  		(𝑅𝐹	M ∗ 	 𝑝5	.		𝑎𝑏5L]	M4	? 		≥ 		 𝑇:),  
                 where 

  	𝑅𝐹	M is a fish 𝑖  resistance factor  
   𝑝5 is any pathogen 𝑗 in 𝑟 distance from fish 𝑖, 𝑎𝑏5 is the ability of pathogen j to infect, and 𝑇: 

is a selected threshold. 
3:             Get infected 

4:       End If 

5:   End For each 
 

The infection risk 
Disease dynamics in the system depends mainly on the infection process (see 

Algorithm I) and fish health recovery process (illustrated in the following section), and 
these processes depend on many parameters, while in normal compartmental models 
such as SIR model, there are only two rates that measure disease dynamics: infection 
rate or contact rate and recovering/removing rate (Bjørnstad, 2005). The fish will get 
infected if there are enough pathogens in the surrounding area. The number of 
pathogens in any cell in the simulation space at any time depends on many parameters 
such as 1) position of fish farms, 2) number of infected fish in the all facilities, 3) water 
temperature and 4) sea current speeds and directions. Pathogen density is directly 
connected to the risk value in the space and time. Disease outbreak occurs only if there 
is a high density of pathogens and high density of fish, as in the following (Alaliyat et. 
al., in press): 

                        IR	 𝑥, 𝑦, 𝑧, 𝑡 = 	𝐾 ∗ 	𝐼T 𝑥, 𝑦, 𝑧, 𝑡 ∗ 		 𝐼c(𝑥, 𝑦, 𝑧, 𝑡)                          (10)	

where IR (x, y, z, t) is the infection risk value in position (x, y, z) at time t, 𝐼T(𝑥, 𝑦, 𝑥, 𝑡) 
is pathogen density at time t at (x, y, z), 𝐼c(𝑥, 𝑦, 𝑧, 𝑡) is fish density at time t at (x, y, z), 
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and K is a constant. This equation, with two variables, that we will convert it to an 
objective function, in order to optimize by using PSO algorithm. 

Optimal fish density and farm location  
In such complex systems as marine aquaculture systems, it is difficult to change the 

environment (i.e. seawater) but the fish farm parameters (i.e. location and fish density) 
can be adjusted, specifically before issuing the farming licenses. As indicated earlier, 
we can minimize the infection risk (see equation 10) by control fish density and farm’s 
location.  

In this case, we have multi-objective optimization (MOO) problem (i.e. multiple 
criteria decision-making). We aim to maximize the aquaculture system production (i.e. 
increase number of fish) while minimizing the infection risk. In MOO, there is no single 
existing solution that simultaneously optimizes all the objectives because the objective 
functions are conflicting, and there exist a number of Pareto optimal solutions4. One 
way to solve MOO problems is to combine the objective functions in one single 
objective function by weighting each of them. Therefore, we define our single objective 
function5 as it has these control variables: farm location in	(𝑥	and	𝑦), and fish density 
𝐼c	(𝑥, 𝑦). Our objective function is a combined of two objective functions: 1) maximize 
fish population (i.e. maximize the production) and 2) minimize the infection rate. We 
can write this combined objective function that we aim to maximize as:  

𝐽 = 	𝑤:	 1 −	𝐴? +	𝑤2	.		𝐼c	(𝑥, 𝑦)                              (11) 

where 𝐴? is the attack-rate (i.e. the percentage of the new infected fish over the number 
of susceptible fish in the beginning of the simulation period), 𝐼c	(𝑥, 𝑦) is the fish 
density, and 𝑤: and 𝑤2 are selected weights that determine the influence of the attack-
rate (proxy for infection risk) and fish density on the objective function value6. In order 
to achieve the goal of this study, we apply PSO algorithm to search for optimal sites 
distribution and optimal fish density in each farm.  

PSO search space 
Search space is the domain of the objective function (see equation 11) to be 

optimized. PSO will search in fish farm location (x,y), and fish density	𝐼c to find best 
values that maximize the value of the objective function. PSO will try to increase fish 
population and farms’ separation to increase the value of the objective function. The 
search space is three-dimension (x,y,	𝐼c) multiplied by the number of fish farms to be 
optimized. 
The accepted risk 

As indicated earlier, we can’t minimize the infection risk without regarding the fish 
density, and vice versa. In this study, each farm has limited values of fish density (i.e. 
minimum and maximum values). Therefore, we search for the optimal solution within 
a defined range of constrained values. The termination condition of PSO algorithm is 
whether a number of a defined maximum iterations or after a defined number of 
interactions without finding better solution.  

                                                
4	A solution is called Pareto optimal, - if none of the objective functions can be improved without degrading some 
of the other objective values.	
5	Objective function is a function of state and control variables, and when it is to maximum the objective function, 
it is called a fitness function.	
6	We have to normalize 𝐼c	and 𝐴? before we use the equation.	
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Particle Swarm Optimization  

In this study, we apply the particle swarm optimization (PSO) algorithm to search 
for the values of the control variables (i.e. fish density and farm’s location) to maximize 
the objective function (equation 11).  We modify the continuous PSO algorithm to solve 
this problem. The search space is discrete; it is the cell coordinate that contains two 
integer numbers (x, y) and the number of fish in each farm, If. Each particle represents 
a solution (i.e. vector of values of (x,y) and If) and modifies its position by applying the 
standard continuous PSO algorithm as the following:  

 
𝑣 𝑘 + 1 = 	𝑤𝑣 𝑘 + 𝑐2𝑅2 𝑝𝑏𝑒𝑠𝑡	– 𝑠 𝑘 +	𝑐3𝑅3 𝑔𝑏𝑒𝑠𝑡	– 𝑠 𝑘  

(12) 
 

𝑠 𝑘 + 1 = 	 𝑠 𝑘 + 𝑣 𝑘 + 1                                              (13) 

where 

𝑣 𝑘  is the velocity of a particle at iteration k. 
𝑠 𝑘  is the position of a particle at iteration k.  
 𝑅2 and 𝑅3 are random numbers in the range of [0,1] with the same size of swarm 
population. 
𝑝𝑏𝑒𝑠𝑡 is the particle’s personal best solution has achieved so far. 
𝑔𝑏𝑒𝑠𝑡	is the best solution achieved among all the particles. 
𝑐2 and 𝑐3 are learning factors, which will be fixed through the whole process. 
𝑤 is the inertia weight: 
 

                     𝑤 = 𝑤>NP?N − (
mnopqormstu

v
)	𝑘                                          (14) 

 
where M is the iteration maximum number and k is the current iteration, and we change 
the real position values to integer values that represent fish population and the indexes 
of the cells at each iteration. 

2.2.2 Agent-based model  

Fish disease spread in aquaculture systems can be modeled by ABM technique. In 
the following, we will describe the agent-based model (see Figure 1). The model 
contains two types of agents: fish and pathogen. The agents and the landscape have 
attributes whose values are updated in time-space domain depending on the 
relationships in the model.  
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Figure 1: Agent-based model of fish disease spread   
The fish agent model 

Each individual fish 𝐹𝐴M(𝑡) has a resistance factor 𝑅𝐹M that the user can set between 
0 and 1 for all individuals at the beginning, and then some noise is added to each 
individual value by using normal distribution functions to obtain some variation. 
Health status update 

Fish agents are categorized into three main health states as in the SIR model 
(susceptible, infected and recovered) (Bjørnstad, 2005).  The fish health status is 
modified as shown in Figure 2. The susceptible fish 𝐹𝐴M(𝑡) gets infected if there are 
many pathogens around it with good abilities to infect and the fish has a weak resistance 
factor (𝑅𝐹) as the procedure in Algorithm I. Once the fish become infected, there will 
be a delay for a short period (latency period LP) before the fish get sick. In the sickness 
period, the infected fish are shedding pathogens and they have more mortality rate. We 
suppose that after the infection period the infected fish will enter the recovery/removed 
category (see Figure 2). 

 

 
Figure 2: Fish health status update 

Shedding of pathogen  

The infected fish 𝐹𝐴M(𝑡) sheds pathogen 𝑃𝐴5(𝑡) at the same position where it is at 
each time step by a given probability. Different sources use different measure units and 
values (Rose et al., 1989; Gregory, 2008; Urquhart et al., 2008). The units are not single 
pathogens but are units that are measurable in the lab. Since the numbers are very high 
and computationally difficult to implement in the model, we set the probability to 
between 0-1 (adjustable) that an infected fish sheds a pathogen, but this pathogen 
represents a large number of pathogens. 
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Fish agent movements 
Fish are swimming in the cages, and since we use a substantial time step in our 

simulations in this study (10 minutes), the positions of the fish are updating randomly 
at each time step as:  

 
𝐹𝐴w 𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡 = 		𝑅w 	

XPZx,y,zrXM4x,y,z
3

+	𝐹𝐹W 𝑥, 𝑦, 𝑧, 𝑡              (15) 
 

where 𝐹𝐴w 𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡 		is the fish i position vector, 𝑅w	is a unit random vector in 3D, 
(𝑚𝑎𝑥Z,|,} − 𝑚𝑖𝑛Z,|,}) is the fish farm dimensions, and 𝐹𝐹W 𝑥, 𝑦, 𝑧, 𝑡  is the farm 
position in the simulation space.  

Pathogen agents model 

The pathogen agent 𝑃𝐴5(𝑡) has three main attributes (see Figure 1), position, ability 
to infect fish, and life span. Each pathogen has an ability attribute that the user can set 
between 0 and 1 for all individuals at the beginning, and then, some noise is added to 
the value of each individual to get some variation. Pathogen agents move by sea 
currents, and spread through fjord following normal distribution functions to have some 
diffusion as in equations 4,5,6 and 7. Pathogen life span is depending on the seawater 
temperature (see equation 8).  

 

3 Simulation results 
The model has 19 parameters that directly affect the behavior of an individual and 

thus the behavior of the whole system. Since the physical size of the fish farms was 
constant, the number of fish is proxy for fish density. The maximum number of fish in 
the farm is 1000 while you would expect to see about 1000 times more fish in an actual 
fish farm in the Romsdalsfjord (www.fiskeridir.no), then we use an approximate scale 
1 fish in the model is equal 1000 fish. Table II provides an overview of the model 
parameters.  

 
TABLE II: MODEL PARAMETERS 

Parameter Min value Max value Default 
value 

Farm (i) location (-248.5,-148.5, 0) (248.5,148.5, 0)  
Fish number in Farm (i) 1 1000 100 
Initial infected in Farm (i) (%) 0 100 10 
Shedding probability (%) 0 100 50 
Infection period (days) 0 100 4 
Infectious radius (patches) 0 20 1 
Prior immunity (%) 0 100 0 
Mortality (%) 0 100 1 
Mortality_normal (%) 0 100 0.00001 
Pathogen-ability 0 1 0.8 
RF 0 1 0.8 
Weight (kg) 0 10 4 
Current speed (m/s) 0 1 0.20 
Current speed std. 0 0.1 0.01 
Current heading bias (degree) -5 5 0 
Current heading std. 0 90 45 
Temperature (°C) 0 20 8 
Vaccinated   Off* 
Time step   10 min* 

*Parameters that select between many values or on/off. 
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3.1 Scenario 1: Sensitivity analyses of fish density 
In this scenario, we built an AABSM that contains two fish farms located close to 

each other (i.e. distance between them is 9.6 km) in the Romsdalsfjord, near the 
Midsund7 municipality. One farm is 10% initially infected and is shedding pathogens 
that spread to the second farm that was initially a susceptible (non-infected) farm. The 
aim is to investigate the effects of fish density on the attack-rate (𝐴?) (the attack rate is 
a proxy for infection risk).  

The model was run with the default values in Table II for both facilities. We varied 
the number of fish in the susceptible farm across many different values, starting with 
100 and ending at 1000 individuals, adding 10 individuals at each run. We measure the 
𝐴?	 in every run as the model output.  

By conducting a sensitivity analysis of the susceptible fish population parameter, we 
were able to identify a threshold where the 𝐴?	is acceptable, and the fish population is 
maximum with this accepted risk.  

 
Figure 3: Attack-rate vs. fish population  

 
Figure 3 shows the 𝐴?	for different fish population values, and shows that 𝐴?	is 

increasing as the fish population increases. The AABSM is a stochastic model, this may 
yield a variety of results when exposed to Monte-Carlo simulations using the same 
input parameter values. Figure 3 shows large variations of 𝐴? values (blue line) because 
of the stochasticity introduced by the model and simulator. That is why we applied a 
mean filter to remove the noise (red line). By exploring the 𝐴? response of the model 
to the fish density, we can derive 𝐴?	thresholds that are acceptable. The result shows 
that 𝐴?	will not exceed 50% when the average size of the fish population is less than 
450 individuals. According to this result, we can hold the infectious under control in a 
case of disease spread by setting a threshold of the fish density (fish population = 450). 

 
 
 

                                                
7	Midsund	is	a	municipality	in	Møre	og	Romsdal	County,	Norway.	It	is	part	of	the	Romsdal	region.	
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3.2 Scenario 2: A PSO algorithm to find the optimal fish densities and 
farm locations 
Case A: Find the optimal fish density and location for a new fish facility that we want 
to locate near to the infected site. 

In this scenario, we extended the AABSM from scenario 1, to vary the location of 
the susceptible farm in the (x, y) space domain with the purpose of reaching a lower 
𝐴?	and a maximum fish density. We used the objective function that is derived from 
equation 11:  

                         𝐽 = 	𝑤:	 1 −	𝐴? + m ÄÅ	 Z,| rÄÅ	 Z,| ÇÉt

ÄÅ	 Z,| Çpxr	ÄÅ	 Z,| ÇÉt
																								            (16) 

where 𝑤: = 	𝑤2 = 0.5 (the desire to fish population is equal to the desire of the 𝐴?	 on 
the objective value), 𝐼c	 𝑥, 𝑦 XM4 = 100 and  𝐼c	 𝑥, 𝑦 XPZ = 600. 

We applied the default model parameter values described in Table II for both farms 
except for the fish number (i.e. amount of fish that corresponding to the fish density) in 
the susceptible farm that is being varied. The PSO algorithm was applied to 
automatically identify the model parameters in Table III that yield a highest value for 
the objective function, calculated as in equation 16.  

 
TABLE III: PARAMETERS TO TUNE 

Parameter Min value Max value 
Fish population 100 600 
X 50 150 
Y -30 30 

 
Each particle in PSO represents a solution (i.e. vector of x,y,If). That is why we need 

to run the model for each particle at each iteration to evaluate this solution. In addition, 
because of the stochasticity in ABMs (i.e. random processes are represented by way of 
Monte-Carlo simulation), one simulation is not enough to evaluate the objective 
function in equation 16. This compels us to run it three times for the same parameter 
values to obtain a more reliable result. This is very costly in terms of computation, and 
the problem, therefore, lends itself better to parallel processing.  

 
TABLE IV: PSO PARAMETERS 

Population	size	 10	
Dimension	of	the	problem	 3	
Maximum	iteration	 50	
c1	(cognitive	parameter)	 2	
c2	(social	parameter)	 2	
Inertia	start	 0.9	
Inertia	end	 0.4	
Upper	limit	on	optimization	variables	 x	=	150,	y	=	30,	f	=	600	
Lower	limit	on	optimization	variables	 x	=	50,	y	=	-30,	f	=	100	

 
The PSO algorithm uses the parameters in Table IV to find the optimal solution. 

Figure 4 shows the simulation space; the red cells show the initial particle positions 
(i.e. points represent fish farm locations) at the beginning of the running PSO algorithm. 
The black line traces the best farm location that has been found by PSO. The PSO found 
the best solution in equation 16 (0.84, see Figure 4) which is the optimal farm location 
(50,-30) within the white rectangle (see Figure 4), and the associated optimal fish 
density (fish population = 506) at iteration 18.  
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Figure 4: The left side shows the part of the Romsdalsfjord where is the simulation took place, and the 
right side shows the best solution tracking in PSO, red cells are the initial random particles’ positions. 

 
Figure 5 shows the PSO convergence when the model is running three times for each 

particle. The PSO needs only 18 iterations to identify the optimal values for the selected 
input parameters of the AABSM. Comparing to the previous scenario, PSO found 
optimal fish density in the white area (i.e. area around the location of fish farm proposed 
in scenario 1) that gives minimum infection risk (Ar = 0 in this case), while in the 
previous scenario Ar=0 is only achieved if the fish population is ≤150. PSO 
convergence depends on the algorithm parameters that balance the exploration and 
exploitation abilities of the PSO algorithm (Qian & Li, 2017).  

 
 

Figure 5: PSO convergence when the model is run three times for each particle, x-axis is the number of 
iterations vs. y-axis is the objective function value. 

 

Case B: Find the optimal fish density and location for all facilities in an aquaculture 
system of three sites. 

We extended the AABSM in case A, to include three farms instead of only two, and 
we vary the locations and fish densities for all farms, with the purpose of having a lower 
𝐴?	and a maximum fish density. We extended the objective function in equation 16 to 
include the 𝐴?	and fish density to all facilities that form the system: 
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                   𝐽 = 1/3 𝑤:	 1 −	𝐴?(𝑖) + m ÄÅ	 ZÉ,|É rÄÅ	 ZÉ,|É ÇÉt

ÄÅ	 ZÉ,|É ÇpxrÄÅ	 ZÉ,|É ÇÉt
	3

Má:                  (17) 

 
where 𝐴?(𝑖) is the attack-rate in farm i, 𝐼c	 𝑥M, 𝑦M  is the fish density of the farm i, and 
𝑤:	, 𝑤2	 are selected weights (0.5 in this scenario).  

The farms are located in the Romsdalsfjord, near the Vestness8 municipality. In farm 
1, 5% of the fish is initially infected and is producing pathogens that spread to other, 
initially susceptible, farms (see Figure 6). 

 

 
 

Figure 6: The map shows the part of the Romsdalsfjord where is the simulation took place and the best 
solution which the PSO algorithm found after 15 iterations (The red points show the farm locations in 

reference to the center of the system). 
 

We run the PSO algorithm with the parameter values listed in Table V. Figure 6 
portrays the simulation space. The white areas show the allowed locations for each 
farm, and the red cells show that the optimal solution (i.e. optimal fish density and 
location) has been found by PSO at iteration 15. Figure 7 shows the PSO convergence.  

 
TABLE V: PSO PARAMETERS FOR CASE B 

Population	size	 10	
Dimension	of	the	problem	 9	
Maximum	iteration	 50	
c1	(cognitive	parameter)	 2	
c2	(social	parameter)	 2	
Inertia	start	 0.9	
Inertia	end	 0.4	
Upper	limit	on	optimization	variables	 x	=	x0	+	30,	y	=	y0	+	

30,	f	=	200	
Lower	limit	on	optimization	variables	 x	=	x0	-	30,	y	=	y0	-	

30,	f	=	100	
Farm	1	(x0	=	150,	y0	=	0),	Farm	2	(x0	=	-20,	y0	=	-10),	Farm	3	(x0	=	-150,	y0	=	5)	

 
 
The PSO algorithm started with a random set of parameter values that are limited 

according to Table V, and found optimal values for farm locations and fish densities 
that give the maximum value (0.55, see Figure 7) in the objective function. Figure 6 
shows the optimal values that are found by PSO algorithm. For Farm 1, the optimal 
location is (168,3) and the fish population is 100. For Farm 2, the optimal location is (-
                                                
8 Vestnes is a municipality in Møre og Romsdal County, Norway. Vestnes is part of the traditional district of 
Romsdal. 
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20,-40) and the fish population is 200. And for Farm 3, the optimal location is (-164,35) 
and the fish population is 200. We validated the PSO algorithm results by running the 
AABSM with the optimal solution several times to test the behavior and output of the 
system. 

 

 
 

Figure 7: PSO convergence for aquaculture system in Figure 6, , x-axis is the number of iterations vs. 
y-axis is the objective function value. 

 

4 Discussion 
The infection rate in the aquaculture system depends on a variety of environmental, 

physical, and biological factors such as sea currents, water temperature, and fish 
densities and farm locations. The infection process at any location at a specific point in 
time (t) depends on fish and pathogen densities (see equation 10). Thus, by optimizing 
the fish density and location of facilities, we can reduce the infection risk and 
subsequently the outbreaks of diseases. We developed a method by which we explore 
the alternative values for these variables in order to find the optimal combination of 
values, i.e. the optimal solution that minimizes infection in the system and that would 
cause the system to keep the infection under control. We tested the method, presented 
in this paper, using different simulation scenarios as described in section 3. The results 
demonstrate how the method may help us identify the optimal values for facilities with 
fish densities and locations that reduce the risk of disease spread and thus increase the 
production.  

 

4.1 Simulation results  
4.1.1 Sensitivity analyses of fish density  

A large number of fish crowded together in a small area provides an environment 
conducive to the development and spread of infectious diseases. In a crowded 
environment, fish are stressed and more susceptible to disease (Ogut, 2001). Pathogens 
can reproduce faster in a crowded aquaculture system, and they can easily find fish to 
infect. A higher density of fish results in a high contact ratio and, consequently, a high 
infection rate (calculated in Algorithm I), leading to disease outbreaks.  
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Larger fish populations will affect fish swimming behavior and limit their access to 
food (Alaliyat et al., 2014; Alaliyat & Yndestad, 2015). However, more fish usually 
means a larger fish production. Therefore, we need to find the optimal fish density for 
a fish farm that results in the highest production while considering the hazard of 
infectious diseases and keeping them under control.  

By applying sensitivity analysis of the attack-rate to the fish population (Figure 3), 
we can derive a threshold of fish population (proxy for fish density) that gives an 
acceptable increase in the attack-rate (an acceptable infection risk). The threshold for 
the fish population is 450 if we require that the attack-rate must be under 50%. Deriving 
such thresholds helps us develop strategies to combat and control infectious diseases. 

The infectious fish disease outbreak occurs only if the attack-rate	passes the 
threshold (𝑅:). This is equivalent to the reproduction number in the compartmental 
models that determine the equilibrium of the model (Diekmann et al., 1990). The 
infection risk in the susceptible farm depends on the densities of the pathogens and fish 
(see equation 10). Pathogen density generally depends on many parameters such as the 
fish density of the infected farms in the aquaculture system, the distance between the 
farms, the seawater temperature, and the speed and direction of the sea currents 
(Alaliyat et. al., in press). The fish density in the susceptible farm is the second main 
factor that affects the infection rate. Therefore, finding the optimal value of fish density 
which will not allow the attack-rate to exceed a certain value (e.g. 50%), will reduce 
the risk of disease outbreaks and lead to a sustainable fish industry.  

 
4.1.2 A PSO algorithm to find the optimal fish densities and farm locations 

The AABSM presented has many parameters that affect the dynamics of the 
model. In scenario 1, we tested the sensitivity of its dynamic behavior to a single 
parameter (fish density) by running the model across several different values of that 
parameter and by conducting a follow-up analysis. This process is very time 
consuming, and it becomes more difficult when varying several parameter values 
simultaneously (Calvez & Hutzler, 2006). Therefore, the parameter setting process of 
the AABSM can become very extensive, tedious and time consuming, provided we 
have no automatic strategy for quickly exploring the parameter space to find the optimal 
values (maximizing the objective function).  

 The choice of strategies for exploring the parameter space depends on the 
motivation for building and using the model. When using the AABSM for fish industry 
management, we need to find the AABSM parameters values that may support the 
sustainability of the fish farm industry (Alaliyat, 2014). Therefore, we applied the PSO 
algorithm to find the optimal combination of values for the fish density and the location 
of the farms, i.e. the one that give highest value in equations 16 and 17. We started with 
the simplest scenario (Figure 4) to demonstrate the ability of the PSO to find the optimal 
solution (farm location = (50,-30) and fish population = 506) and thus to validate our 
results. Figure 5 shows that the PSO needs only 18 iterations to search through the 
parameter space (search domain) (Table III) in the pursuit of the optimal solution. The 
use of the PSO algorithm provides an opportunity to explore the effects of changing the 
value for more than one parameter at the same time (e.g. fish population and farm’s 
location). Thus, we found an optimal farm location (50,-30) that gives the opportunity 
of operating a fish farm at a  fish population of 506 with minimum risk of infection 
(attack-rate = 0 in this case). Without the use of the PSO algorithm, this attack-rate = 0 
is only achieved when the fish population is less than 150 (see Figure 3). This result 
shows the possibility to increase the fish density to three times its initial value (increase 
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fish population from 150 to 506) by changing the location of the farm to the optimal 
place, while we keep the risk at minimum value.     

 In the scenario of the three aquatic sites (Figure 6), we extended the objective 
function to include all the sites (equation 17). We exposed the model to 50 iterative 
simulations to demonstrate its ability to identify a better solution (see Figure 7). Our 
results show the ability of the PSO to find the optimal combination of values of the fish 
density and locations of the farms that yield the highest value in equations 17. The PSO 
found the optimal values in iteration 15. In this scenario, the PSO algorithm found the 
best solution in fewer number of iterations than the previous scenario, although the 
number of exposed variables for the optimization process is larger (9 variables), 
because the best solution is clearly separated in this case (farm 2 and farm 3 are not 
infected). The PSO algorithm is a stochastic optimization technique and it is 
convergence depends on the initialization process and the solution space (Qian & Li, 
2017). The PSO searches through a large number of parameter values to find the 
optimal values of fish density and farm locations that also stabilize the system and keep 
the infection under control (find the maximum value of the objective function). 

 

4.2 Using the PSO algorithm  
If we use the “NetLogo behaviorspace” to explore the three input parameters in 

Table III within their suggested domains, then we have to run the AABSM 100*60*500 
times. On the average, each run requires approximately 10 minutes, which means the 
simulation of this scenario must run for 3 ∗ 10à minutes. Therefore, we need to develop 
a strategy to explore the model’s input parameter values in an efficient way. Using SI 
algorithms such as PSO, help us adjust the input parameters of the model depending on 
the feedback from the model output. The PSO algorithm explores the possible 
parameters values in an efficient way to find the optimal values in few steps. 

The global computation time required to run the PSO algorithm is (n*N) * T, where 
n is the number of particles, N is the number of iterations, and T is the time to compute 
the objective function. The PSO with the parameters in Table IV needs 10*50*10 
minutes only, and n is 10, N is 50, and T is 10 min on average. The PSO substantially 
reduces the time requirement, but still needs very long time to complete the 
calculations. Based on the previous cases, it takes approximately three and a half days 
to complete each simulation. There are two ways to reduce the PSO simulation time; 
by reducing the particle number or by distributed computations. Reducing the particle 
number affects the ability of the PSO to find the global maxima. This makes the use of 
distributed computations the best choice, - enabled by the fact that the simulated models 
are independent of each other.  

 

Stochasticity  
Due to the stochasticity of the agent-based model and the simulator, repeated agent-

based simulations may yield slightly different results, - even if the underlying model is 
exactly the same. Therefore, one simulation is not sufficient to evaluate the objective 
function. We studied the stochasticity of the AABSM and NetLogo simulator by 
running the model with same settings several times. Then, we analyzed the output of 
the model (i.e. objective function value in equation 17) by assessing its variance. The 
variance is @ 0.14 when the number of simulations is 5, while it is @ 0.1 when the 
number of simulations is 10 or 20. To avoid obtaining unexpected values (abnormal) in 
which the PSO is stuck, we run the model three times to evaluate the objective function.  
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Validation 

We follow the PSO trajectory to identify the optimal solution. Thus, we prove that 
the PSO is exploring the input domains and is converging to the highest value of the 
objective function. Then, we validate the PSO algorithm with the optimal values by 
running the model several times under the optimal parameter values so as to 
demonstrate the capability of the PSO to drive the system to produce the optimal 
solutions. 

 
GAs vs PSO 

The PSO algorithm converges faster than GAs, but it is more likely to get stuck at 
a local minimum (Alaliyat et al., 2014). However, by modifying the PSO and adding 
evolution to it, it can avoid becoming stuck at a local minimum.   

 

4.3 Agent-based method to simulate fish infectious diseases   
ABMs have been widely used for decision support in different fields (Skov-Petersen, 

2008). By using agent-based methods, we are able to study specific spatial aspects of 
the spread of infectious diseases and address the stochastic nature of the infection 
process in fish diseases. Agents (fish and pathogens) are described individually in a 
heterogeneous population, and ABMs can also include all external factors that affect 
fish disease outbreaks such as the interaction with the wild fish, ship traffic, and other 
marine activities. Moreover, ABMs provide a flexible framework for analysis and 
testing. For example, adding more agents to the model, adjusting the complexity of 
agents by changing their behavior and changing the environment and its dynamics.  

Agent-based method is the appropriate method for simulating the spread of 
infectious diseases in fish to identify the infection risk. In this complex system (spread 
of fish infectious diseases); it is difficult to describe the aggregate dynamics using 
differential equations without reference to the behavior of the individual agents that 
cannot clearly be defined through aggregate transition rates, - for example, fish stress 
and swimming behavior. While, by modeling how agents behave individually, the 
aggregate dynamics emerges from the behavior of all the agents (fish and pathogens).  

ABMs typically operate with many parameters, and we must develop a method to 
automatically explore the parameter space effectively since systematic exploration is 
impossible when the parameter space is huge. Using PSOs to explore the parameter 
space saves a great deal of time and makes the ABMs more accurate for use in 
management processes.  

ABMs have some limitations in terms of their application to simulate fish diseases. 
We cannot consider the entire population of fish and pathogens, respectively, and we 
must scale down the system in the space and time domains in order to reduce the 
computational complexity.  
 

5 Conclusions and future work 
To ensure an environmentally sustainable aquaculture industry, it is essential to use 

reliable methods and models for its analysis and management. In this study, we 
developed an agent-based model to simulate fish disease dynamics within and between 
many fish farms in Norwegian fjords. Then, we presented a framework that uses a PSO 
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algorithm to find the optimal combination of values for farms locations and fish 
densities, i.e. the combination that yields an optimal aquaculture system with the 
highest possible production. For this reason, we used an objective function that is a 
weighted average between the fish density and the infection risk, in order to select the 
best optimal system among those generated by PSO. Since the physical size of the fish 
farms was constant, the number of fish was a proxy for fish density in the farm and the 
attack rate was a proxy for infection risk. The optimal aquaculture system is obtained 
by finding the best farms distribution and optimal fish density in each of them, i.e. the 
combination that minimizes the infection risk (i.e. that maximizes the production by 
maximizing the number of healthy fish). 

In this paper, it has been demonstrated how effective the use of an agent-based 
approach is in the simulation of infectious diseases. In fact, ABMs can include specific 
spatial aspects of the infection spread and address the stochastic nature of the infection 
process for fish diseases. ABMs can also include all external factors that affect fish 
disease outbreaks such as interactions with the wild fish, ship traffic, and other marine 
activities. On the other hand, ABMs have many input parameters that altogether 
determine the global behavior of the system. Each of these parameters can take a wide 
range of values. This makes the identification of optimal values a complex and time-
consuming process. Thus, we used a PSO algorithm in order to explore the parameter 
space of the ABM in a search for the optimal combination of input values (i.e. fish 
density and farm’s location), so as to, eventually, attain the desired behavior. The use 
of the PSO algorithm helps in identifying optimal ABMs input parameter values based 
on the feedback from the ABMs outputs (i.e. objective function values).  

The method developed is validated by running the model repeatedly with optimal 
parameter values; this proves also its capability to drive the system so as to produce 
predefined behaviors and outputs. Our simulation results show how the PSO algorithm 
presented finds the optimal values of fish densities and farm locations that keep the 
disease prevalence under control. In addition, the algorithm convergence is rapid and 
guaranteed; in only 18 iterations, it finds the best solution (fish density and farm 
location) that results in an increase in the fish density up to three times its original value 
while keeping the risk of infection at the same level. 

As the next step, the plan is to apply the method, presented in this paper, to other 
scenarios that include more fish farms and more complex contexts. Using other 
optimization algorithms, such as genetic algorithms, to conduct a comparative study 
with the PSO is also a part of the future work. Moreover, improving the objective 
function is an important task. However, simulating more complex scenarios requires 
the use of distributed computations since the simulation time on a single computer will 
take a very long time. Thus, we are aiming for the application of parallel computing. 
This will allow us to simulate larger areas including many fish farms, include more 
agents (fish and pathogens), simulate more realistically sea currents with tides and 
include seasonal variation in seawater temperature.  
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