
Autonomous mobile robots
Giving a robot the ability to interpret human

movement patterns, and output a relevant
response.

Sindre Eik de Lange1, 2

Stian Amland Heilund1, 2

1Department of Computing, Mathematics and Physics, Western Norway
University of Applied Sciences

2Department of Informatics, University of Bergen

This thesis is submitted for the degree of
Master’s in Software Engineering

June 2019

Acknowledgements

We would like to thank Mohn Medical Imaging and Visualization Centre for giving us
the opportunity to work with superior equipment in great offices. Also, a big thank
you to our fellow master student Sathiesh Kaliyugarasan for deep (learning) discussions
about relevant topics and great memories from the lab.

Finally, we would like to give a special thank you to our supervisor Dr. Alexander
Lundervold for introducing us to this field, and for his always enthusiastic help and
guidance.

Abstract

The demographic challenges caused by the proliferation of people of advanced age,
and the following large expense of care facilities, are faced by many western countries,
including Norway (“eldrebølgen”). A common denominator for the health conditions
faced by the elderly is that they can be improved through the use of physical therapy.

By combining the state-of-the-art methods in deep learning and robotics, one can
potentially develop systems relevant for assisting in rehabilitation training for patients
suffering from various diseases, such as stroke. Such systems can be made to not
depend on physical contact, i.e. socially assistive robots.

As of this writing, the current state-of-the-art for action recognition is presented in
a paper called “Spatial Temporal Graph Convolutional Networks for Skeleton-Based
Action Recognition”, introducing a deep learning model called spatial temporal graph
convolutional network (ST-GCN) trained on DeepMind’s Kinetics dataset. We combine
the ST-GCN model with the Robot Operating System (ROS) into a system deployed
on a TurtleBot 3 Waffle Pi, equipped with a NVIDIA Jetson AGX Xavier, and a web
camera mounted on top. This results in a completely physically independent system,
able to interact with people, both interpreting input, and outputting relevant responses.

Furthermore, we achieve a substantial decrease in the inference time compared to
the ST-GCN pipeline, making the pipeline about 150 times faster and achieving close
to real-time processing of video input. We also run multiple experiments to increase
the model’s accuracy, such as transfer learning, layer freezing, and hyperparameter
tuning, focusing on batch size, learning rate, and weight decay.

Table of contents

List of figures viii

List of tables xi

1 Introduction 1

I Background 6

2 Artificial intelligence & machine learning 8

2.1 Fundamentals of machine learning . 10

2.1.1 Building blocks . 10

2.1.2 Training a model . 12

2.1.3 Reducing generalization error 16

2.1.4 Performance measures . 20

2.2 Machine learning models . 23

2.2.1 Decision trees . 24

2.2.2 Random forest . 25

2.2.3 Support vector machines . 26

2.2.4 Other models . 28

3 Deep learning 30

3.1 Artificial neural networks . 30

Table of contents v

3.1.1 Basics . 30

3.1.2 Training . 32

3.1.3 Transfer learning & fine-tuning 33

3.1.4 Reducing generalization error 34

3.2 Convolutional neural networks . 36

3.2.1 Batch normalization . 38

3.2.2 Rectified linear unit . 38

3.2.3 Convolutional layer . 39

3.2.4 Pooling . 40

3.2.5 Fully connected layer & output layer 41

3.2.6 Residual function . 42

3.3 Graph neural networks . 43

3.3.1 Graphs . 44

3.3.2 Combining graphs & artificial neural networks 45

3.3.3 Graph convolutional neural networks 47

4 Human action recognition & spatial temporal graph convolutional
networks 49

4.1 Human action recognition . 49

4.2 ST-GCN: The spatial temporal graph convolutional network 54

4.2.1 3D skeleton graph construction 54

4.2.2 The spatial graph convolutional neural network 55

4.2.3 Subset partitioning . 57

4.2.4 Network architecture & training 59

4.2.5 Experiments & results from the ST-GCN paper 61

4.2.6 Conclusion . 62

5 Robotics and computer vision 63

Table of contents vi

5.1 Modern robot applications . 64

5.2 ROS: the Robot Operating System . 66

5.2.1 Nodes & topics . 66

5.2.2 Message types . 67

5.3 ROS alternatives . 67

5.3.1 YARP: Yet another robot platform 68

5.3.2 Rock . 68

5.3.3 OROCOS: Open robotics control software 68

II Experiments 69

6 Retraining ST-GCN to increase its relevance for rehabilitation 71

6.1 The Kinetics human action video dataset 71

6.1.1 How the dataset was built . 71

6.1.2 Data distribution . 72

6.2 From videos to machine learning training 73

6.2.1 Label file . 73

6.2.2 Summary file . 74

6.2.3 Skeleton file . 74

6.2.4 Training data and validation data 75

6.3 Creating the Rehab dataset . 76

6.4 Adding a new class to the Rehab dataset 77

6.5 Training & evaluating our new ST-GCN model 79

6.6 Combining our model with robotics . 81

6.6.1 Deploying the model on the robot 82

6.6.2 Integrating the Robot Operating System 83

6.7 Evaluating the system . 86

Table of contents vii

7 Improving our system 87

7.1 Decreasing the inference time . 87

7.1.1 Identifying bottlenecks in our system 87

7.1.2 Substituting OpenPose with tf-pose 88

7.1.3 Modifying our pipeline . 89

7.2 Establish a new benchmark . 91

7.2.1 Recreating Yan et al.’s dataset using tf-pose 92

7.3 Increasing the accuracy of our ST-GCN model 98

7.3.1 Transfer learning . 98

7.3.2 Freezing layers . 101

7.3.3 Adding complexity . 102

7.3.4 Experimenting on NVIDIA’s DGX station 105

7.4 Combining the improved components 109

7.5 Final system overview . 113

7.6 Evaluation of our improved system . 114

8 Conclusion 118

8.1 Summary . 118

8.2 Future work . 120

References 122

List of figures

1.1 Robotic devices for motor functions training 2

1.2 IMUs example . 2

2.1 The relationship between AI, ML and DL 8

2.2 Traditional programming vs. machine learning 9

2.3 Linear regression . 12

2.4 Gradient descent . 15

2.5 Large vs. small learning rate . 16

2.6 Underfitting vs. overfitting . 16

2.7 Cross validation . 19

2.8 Confusion matrix - spam-email example 21

2.9 Prediction errors - housing prices example 22

2.10 Decision tree example . 24

2.11 Random forest architecture . 26

2.12 Linear SVM classification . 27

2.13 Linear SVM regression . 27

2.14 The four most common SVM kernels 29

3.1 Deep neural network architecture . 31

3.2 Perceptron . 31

3.4 Early stopping . 37

List of figures ix

3.5 Typical CNN architecture . 37

3.6 ReLU example . 39

3.7 3 × 3 CNN kernel example . 40

3.8 2 × 2 max pooling example . 41

3.9 Fully connected layers . 42

3.10 Softmax calculation example . 43

3.11 Resnet example . 44

3.12 A simple graph . 45

3.13 Image represented as a graph . 45

3.14 Graph neural network architecture . 46

3.15 Mapping from grid to vector in a GNN 47

3.16 Visualization of a graph convolution . 48

4.1 Visualization of the COCO keypoints 53

4.2 3D graph representing a skeleton’s movement over time 55

4.3 A graph with labeled nodes . 56

4.4 Skeleton partition strategies . 58

4.5 ST-GCN architecture . 59

5.1 Publish-subscribe mechanism for message exchange in ROS 66

6.1 Distribution of non-empty frames - Original dataset 72

6.2 From video to skeleton files . 73

6.3 From Kinetics files to rehab files . 76

6.4 Distribution of non-empty frames - Rehab dataset 79

6.5 Initial Rehab model performance . 81

6.6 TurtleBot 3 Waffle Pi . 82

6.7 High-level pipeline of our system . 83

6.8 NVIDIA’s Jetson Xavier . 83

List of figures x

6.9 ROS communication overview . 84

7.1 Distribution of non-empty frames - tf-pose vs. OpenPose 94

7.2 Distribution of non-empty frames - originally available vs. currently
available . 95

7.3 Distribution of non-empty frames - all benchmark datasets 96

7.4 Rehab validation set . 97

7.5 Distribution of non-empty frames - Rehab train and validation 98

7.6 Confusion matrix Rehab model experiment I 99

7.7 Transfer learning vs. non-transfer learning - accuracy 100

7.8 Transfer learning vs. non-transfer learning - loss 100

7.9 Confusion matrix Rehab model experiment II & III 103

7.10 Rehab model performance experiment IV 104

7.11 Added complexity vs. standard complexity - accuracy 105

7.12 Added complexity vs. standard complexity - loss 105

7.13 Transfer learning vs. non-transfer learning - accuracy 107

7.14 Transfer learning vs. non-transfer learning - loss 108

7.15 Added regularization vs. no regularization - accuracy 109

7.16 Added regularization vs. no regularization - loss 110

7.17 Confusion matrix for the optimal Rehab model’s test performance . . . 112

7.18 Final ROS communication overview . 113

7.20 Original- vs. final rehab model - accuracy 115

7.21 Original model vs. final rehab model - loss 115

7.19 Our robot . 117

List of tables

4.1 Various human action recognition approaches’ performance on Kinetics 61

4.2 Top 3 human action recognition performances on Kinetics motion . . . 62

6.1 Data distribution in the Rehab dataset 80

6.2 Rehab model performance - OpenPose 80

7.1 Robot prediction pipeline OpenPose . 88

7.2 Robot prediction pipeline tf-pose . 89

7.3 Robot prediction pipeline optimized . 91

7.4 Kinetics original distribution . 92

7.5 Kinetics currently available distribution 93

7.6 Summarizing benchmark results . 95

7.7 Further benchmark results . 96

7.8 Rehab model performance - tf-pose . 97

7.9 Rehab model performance experiment I 99

7.10 Rehab model performance experiment II & III 102

7.11 Rehab model performance experiment IV 104

7.12 Improved Rehab model performance 108

7.13 Rehab model test performance . 110

7.14 Final Rehab model performance comparison & summary 114

Chapter 1

Introduction

The Silver Tsunami is a term coined in 2002 by professor M. F. Maples, referring to
the Baby Boomer generation in the US: the 76.000.000 children born between 1946 and
1964 (Maples, 2002). This generation benefited from numerous medical advances made
in the 20th century and the resulting increase in life expectancy. Consequently, this
has led to a large generation of elders who will struggle with conditions such as cancer,
osteoporosis, arthritis, Parkinson’s, and stroke. The demographic challenges caused by
the proliferation of people of advanced age, and the following large expense of care
facilities, are faced by many western countries, including Norway (“eldrebølgen”). A
common denominator for the health conditions faced by the elderly is that they can be
improved through the use of physical therapy (Pergolotti et al., 2014) (Schröder et al.,
2012) (jeffersoncountyhealthcenter, 2017).

In the US, physical therapists are said to increase in demand by 31% by 2026
(of Labor Statistics, 2018), compared to the average 7% overall increase of all the
occupations in the US economy. “Historically, costs for physical therapy were unnoticed
by Medicare, but because of the dramatic increase, these costs are deemed unsustainable.”
(Brennan, 2012)

An effort to address this dramatic increase in demand for physical therapists is the
development, and implementation, of active-assistive robots as a supplement for the
rehabilitation process. These are robots in which the patient actively interacts with,
to complete one or multiple movements.

Technology cannot replace human touch and care, but considering the scalability
and possible ubiquity of robot-based solutions, they have the potential to become a
useful supplement.

2

Fig. 1.1 Example of robotic devices for motor functions training, distributed under the
terms of the Create Commons Attribution Non-Commercial Licence (Chang and Kim,
2013).

One large research area for such robots is post-stroke patient’s rehabilitation (Poli
et al., 2013), which is “the leading cause of movement disability in Europe, and the
US” (Rosamond et al., 2008). Furthermore, it is estimated by the World Health
Organization (WHO) that stroke events in Europe will increase by 30% between 2000
and 2025 (Truelsen et al., 2006).

An alternative to robots is the usage of inertial measurements units (IMUs), shown
in fig. 1.2, which is electronic devices equipped with accelerometers and gyroscopes to
report orientation (Spartonnavex, 2015). Patients can wear one or more IMUs, which
measures the patient’s movement.

(a) IMUs attached to patient, capturing data
about the patient’s movements.

(b) A patient moving with IMUs.

Fig. 1.2 IMUs example, distributed under Creative Commons Attribution License (Li
et al., 2015)

A common challenge of IMU-based and most robot-based approaches is that they
require physical contact with the patient. For active-assistive robots, the physical

3

contact creates safety concerns, while the IMUs can be challenging to attach without
professional supervision or assistance.

This thesis will aim to investigate methods for mitigating these challenges by
creating a socially-assistive robot, i.e. a robot that interacts with the patient through
social interactions. Examples of social interactions are auditory interactions, by talking
or playing sounds, or visual interactions based on movements. Equipping the robot
with sensors to give it the ability to interact with the patient results in a “social
exchange” (Lumen, n.d.) between the patient and the robot. To achieve this, we will
combine state-of-the-art approaches in both robotics and deep learning.

Initially, the goal is to create a system able to interpret input from the user in the
form of human movement, i.e. human action recognition. The current state-of-the-art in
human action recognition is based on deep learning models, e.g. the one presented in the
paper “Temporal Graph Convolutional Networks for Skeleton-based Action Recognition”
(Yan et al., 2018). This novel model, called spatial temporal graph convolutional
networks (ST-GCN), has the ability to learn from both the spatial and temporal
patterns in data, and it achieved substantial improvements over mainstream methods
on two large datasets, Kinetics (Kay et al., 2017) and NTU RGB+D (Shahroudy
et al., 2016b). We will explore the model’s abilities in our context, namely movements
relevant for physical rehabilitation.

For the robotic software and communication between components in our system, we
will use the Robot Operating System (ROS). This is an open source framework designed
to address the need to enable communication within systems consisting of different
components and subsystems, often operating in distinct programming languages, i.e.
heterogeneous systems. According to (Yoonseok Pyo, 2017), ROS is the most popular
robot software platform. This makes ROS a natural choice for our project.

In this thesis we extend the code base made available by the authors of ST-GCN
on GitHub, adding several features:

1. Extract a subset of both specific action classes, and random ones, from data
derived from the Kinetics dataset

2. Download, process and train on a new action class

3. Combine the data from 1) and 2), and update necessary parameters for training,
validation, and testing

4. Implement transfer learning, using their model trained on the Kinetics dataset

https://github.com/yysijie/st-gcn

4

5. Increasing the effects of transfer learning by

(a) Modifying the network architecture

• Adding fully connected layers(s)
• Adding extra spatial-temporal graph convolutional layer(s)

(b) Implement layer freezing/unfreezing

6. Replacing their pose estimation software, OpenPose (Cao et al., 2018), with the
significantly faster tf-pose-estimation (tf pose, 2019)

7. Extend their validation and testing functionality to include storage of:

• Confusion matrix

• Summary score file, containing train loss, validation loss and accuracy

• Overview of each file in the validation set, and the values outputted by the
model for each of those files

8. Implement data augmentation for newly defined action classes by modifying the
videos

• Frame flipping

• Frame zooming

Our code in its entirety also resides on GitHub: https://github.com/Sindreedelange/st-
gcn.

The main contributions of this thesis are:

• The aforementioned extension to the state-of-the-art project for action recognition
in deep learning, making it easier to tailor for specific projects, and giving a
better overview of the model evaluation process

• Defining a new relevant action class for human movement, namely jumping jacks,
with a CSV file containing URLs, start- and stop time, and label for 199 YouTube
videos, resulting in

199 ∗ 2 ∗ 2 = 796

videos for our newly defined action class when using our implemented data
augmentation functionality

5

• Combining state-of-the-art tools in robotics and deep learning in order to make
a proof of concept system, relevant for the rehabilitation process

This thesis will be split into two parts. Part I is an overview of the underlying theory
of deep learning and robotics, starting with machine learning, building towards deep
learning, ultimately explaining the theory behind the ST-GCN model. In Chapter 2 and
3 we introduce the fundamentals of machine learning and deep learning, respectively,
explaining model selection, common problems when training a model, and model
evaluation. Chapter 4 build on the deep learning models introduced in section 3.2 and
3.3 to explain the ST-GCN model. Lastly, in chapter 5 we give an overview of robotics
and computer vision.

In part II we introduce our experiments. Chapter 6 starts with retraining ST-
GCN on action classes relevant for the rehabilitation process, continuing with the
implementation of our pipeline in its entirety by combining hardware- and software.
We conclude chapter 6 with an evaluation of the system, and its components. This
leads to chapter 7 and efforts to improve the system by decreasing its inference- and
training time while increasing its accuracy. All of the experiments are evaluated using
relevant, quantitative metrics, such as confusion matrix, accuracy, training loss and
validation loss.

Ultimately, in chapter 8 we summarize our results and sketch out a possible path
for relevant further work. All figures in this thesis have been made using Matplotlib
(Hunter, 2007), Seaborn (Waskom et al., 2018), yED Graph Editor (yWorks GmbH,
n.d.), and NN-SVG (LeNail, 2019), with SVG icons from FlatIcon. Furthermore, the
LATEX template is a thesis template for Cambridge University Engineering Department.

https://www.flaticon.com/
https://github.com/kks32/phd-thesis-template

Part I

Background

7

The first part of this thesis will focus on the background of the various fields our
thesis touches, such as artificial intelligence, machine learning, robotics, and computer
vision. After reading part I, the reader will have enough background knowledge
to read and understand part II. Our work is a combination of robotics and machine
learning. The machine learning running in our robotics system is our main contribution,
as the robotics software components are relatively easy to construct using modern
robotics frameworks. Our discussion will therefore focus on machine learning, and our
introduction to robotics in chapter 5 is comparably short.

Chapter 2

Artificial intelligence & machine
learning

Artificial intelligence (AI) is a technical science aiming to equip machines with human-
like intelligence (Song, 2018). A practical definition of AI is one proposed by (Pérez
et al., 2018): “Artificial intelligence is the study of human intelligence and actions
replicated artificially, such that the resultant bears to its design a reasonable level of
rationality”. Today, AI is used in many domains, such as online advertising, driving,
aviation, medicine, personal assistance, and image recognition. A specific example of
AI is autonomous cars, using AI-algorithms on data from lidar sensors and cameras,
equipping the cars with the ability to make intelligent decisions about traffic behavior.

AI is an umbrella term, covering subfields such as machine learning (ML) and deep
learning (DL).

Fig. 2.1 The relationship between AI, ML and DL

9

The first general definition of ML was made in (Samuel, 1959): “Machine learning
is the field of study that gives computers the ability to learn without being explicitly
programmed.” Later, in 1997, a more engineering-oriented definition was given in
(Mitchell, 1997): “A computer program is said to learn from experience E with respect
to some task T and some performance measure P, if its performance on T, as measured
by P, improves with experience E.”

An example can be a spam filter, learning to classify emails as spam or not spam. In
this case, the task T is to detect if a new email is spam or not, the experience E is all the
previous emails that the program has learned from (data), and the performance measure
P has to be defined; for example the ratio of correctly classified emails (accuracy)
(Géron, 2017).

(a) Traditional approach (b) Machine learning approach

Fig. 2.2 Traditional programming vs. machine learning, with inspiration from (Géron,
2017).

Compare this to traditional programming, shown in fig. 2.2a, continuing with
the spam-example. To write such a program the programmer has to detect different
patterns in the email, distinguishing spam and not spam mail, and write a detection
algorithm for each of these patterns. This will most likely result in a long list of
complex rules that are hard to maintain and does not generalize well.

A classifier based on ML, shown in fig. 2.2b, automatically learns complex patterns
during training. Instead of manually writing complex rules, data is given to the model
so that it can automatically learn how to classify the emails. This program is much
shorter, easier to maintain, and most likely more accurate (Géron, 2017).

2.1 Fundamentals of machine learning 10

With that said, the performance of a ML model is dependent on the quality and
quantity of the data used to construct the model. A high quality dataset has a large
number of unique data points corresponding to the model’s task, for instance, if the
task is to classify spam or not spam, then the model needs a large dataset consisting
of unique emails of both spam and not spam, to maximize its performance. Such
high-quality datasets can be hard to obtain in some domains. Luckily, there are
techniques for maximizing the potential of limited datasets. These considerations and
other fundamental topics in machine learning will be presented in the coming sections.

2.1 Fundamentals of machine learning

ML is a huge field with a large number of subfields for many different types of problems.
In this section, the most important parts of this field will be introduced, providing the
reader with knowledge and context for understanding the following chapters.

2.1.1 Building blocks

ML can roughly be split into three somewhat overlapping classes, each with their own
subclasses;

1. Supervised learning

2. Unsupervised learning

3. Reinforcement learning

This section will give a short introduction to these three domains.

Supervised, unsupervised and reinforcement learning

In supervised learning, each training example consists of input variables, matrix X⃗,
and an output, vector y⃗. By being fed enough training examples, the model learns the
connection between X⃗ and y⃗. A trained model can then be tested by trying to predict
y⃗, given X⃗, where the prediction is referred to as ŷ. A more detailed overview of how
machine learning models are trained will be presented in section 2.1.2.

2.1 Fundamentals of machine learning 11

Unsupervised learning focuses on detecting hidden patterns and structures in data.
Unlike supervised learning, unsupervised learning does not have access to the correct
output y⃗, only the input X⃗. Common unsupervised learning tasks are clustering and
dimensionality reduction of X⃗.

Reinforcement learning is about making an agent, e.g. a robot, perform suitable
actions based on the environment. The agent gets rewarded when performing suitable
actions, and punished when making wrong decisions. By trying enough times, the
agent will hopefully learn the most appropriate action to do next (Bajaj, 2014). This
is achieved using various learning algorithms, with Q-learning (Watkins, 1989) being
one of the most popular and well-known examples.

Regression and classification in supervised learning

Regression and classification are two different types of tasks within machine learning.
In supervised learning, a regression algorithm tries to predict y⃗ as a continuous variable,
given X⃗. For example, when provided with a dataset about houses, the goal can be to
create a model that predicts the house prices based on other data about the houses.

A classification algorithm, on the other hand, tries to predict y⃗ as a categorical
variable, given X⃗. Continuing with the example from above, instead of y⃗ being the
specific sum, a classification algorithm will categorize the price, for example over/under
the median (Garbade, 2018). A supervised classification problem falls into one of the
following tasks:

• Binary: X⃗ is classified to ŷ, where ŷ is one of two non-overlapping classes.

• Multi-class: X⃗ is classified to ŷ, where ŷ is one of > 2 non-overlapping classes.

• Multi-labelled: X⃗ is classified to ŷ, where ŷ is several of > 2 non-overlapping
classes.

• Hierarchical: X⃗ is classified to ŷ, where ŷ is one class which is divided into
subclasses or grouped into superclasses.

(Sokolova and Lapalme, 2009)

2.1 Fundamentals of machine learning 12

2.1.2 Training a model

To give a short explanation of how a machine learning model can be trained, linear
regression will be used as an example. To make a prediction, a linear regression model
computes a weighted sum of the input features, and adds a constant called the bias
term, as shown in eq. 2.1 (Géron, 2017).

ŷ = θ0 + θ1x1 + θ2x2 + · · · + θnxn (2.1)

• ŷ is the predicted value

• n is the number of features

• xi is the ith feature value

• θj is the jth model parameter (including the bias term θ0 and the feature weights
θ1, θ2, · · ·, θn

Training a linear regression model means setting the parameters (bias and feature
weights) such that ŷ becomes as close to the target as possible. For example, finding
the line in fig. 2.3 that best fits the data points.

Fig. 2.3 Linear regression. The goal is to fit the line to the data points.

To set the parameters such that ŷ becomes as close to the target as possible, one
first needs to define a function that measures this distance, i.e. an error measure. One
common error measure for regression models is the root mean squared error (RMSE),
explained in section 2.1.4. Training a linear regression model means minimizing a

2.1 Fundamentals of machine learning 13

function expressing the error, also called a loss function or a cost function. One method
for minimizing the error function is using gradient descent. How this works is shown
in the following example.

Gradient descent example

To demonstrate how a model is trained using gradient descent, the line equation
ŷ = ax + b will be used as an example, where a and b are weights that will be updated
during training, and x is the only input variable, i.e. feature value. In this example,
the weights are initially set to a = 2 and b = 3. The input variable x = 2 is fed to the
model, with the target y = 5. The goal is to adjust a and b such that ŷ becomes as
close to 5 as possible. This example shows one iteration of weight updates. However,
normally the training process consists of many iterations, taking one small step towards
the minimum loss per iteration.

First, the model makes a prediction based on the given input variable x

ŷ = ax + b = 2 · 2 + 3 = 7 (2.2)

The model predicts 7, but we want it to predict 5. To calculate the distance between
the prediction and the target, a loss function has to be defined. In this example, the
squared error (SE) will be used, shown in eq. 2.3.

SE = (ŷ − y)2 = ((ax + b) − y)2 (2.3)

In gradient descent, for each weight, the partial derivative of the loss function with
respect to the weight is calculated to get the direction of the weight update (recall that
the gradient of a function points in the direction of steepest increase). In this case, the
weights are a and b, resulting in the partial derivatives below.

∂SE

∂a
= 2x((ax + b) − y) (2.4)

∂SE

∂b
= 2((ax + b) − y) (2.5)

Feeding the values for a, x, b and y to the equations gives

2.1 Fundamentals of machine learning 14

∂SE

∂a
= 2 · 2((2 · 2 + 3) − 5) = 8 (2.6)

and

∂SE

∂b
= 2((2 · 2 + 3) − 5) = 4 (2.7)

Now we have the tools needed to update the weights. The weights are updated by
using equation 2.8, where γ is the learning rate deciding how much the weight will be
updated.

w+ = w − γ · ∂SE

∂w
(2.8)

Using γ = 0.05, the new weights becomes

a+ = a − γ · ∂SE

∂a
= 2 − 0.05 · 8 = 2 − 0.4 = 1.6 (2.9)

b+ = b − γ · ∂SE

∂b
= 3 − 0.05 · 4 = 3 − 0.2 = 2.8 (2.10)

Now, the model can be tested again with the new weights and the same input

ŷ = ax + b = 1.6 · 2 + 2.8 = 6 (2.11)

The prediction is now closer to the target than the first prediction was, i.e. the
model has improved by being trained. By continuing updating the weights over more
iterations, the prediction will get closer and closer to the target, and the model will
get better and better until a minimum is reached, as visualized in fig. 2.4.

Hyperparameter tuning

Hyperparameters are set before the training and are usually static during training,
unlike the model’s weights. In the example above the learning rate was set to 0.05.
This hyperparameter has a big impact on the model’s performance and is therefore
important to set correctly. As shown in fig. 2.5, if the learning rate is too large, the
risk of jumping out of a local minima increases, and consequently, the complexity of

2.1 Fundamentals of machine learning 15

Fig. 2.4 Gradient descent. After each iteration of gradient descent the weights are
adjusted such that the loss decreases.

optimizing the weights. On the other hand, a learning rate that is too small makes the
convergence towards the local minima slow. Hence, the learning rate impacts both the
training and the performance of a model.

To demonstrate how the learning rate impacts the training, we will increase the
learning rate in the previous example to 0.5, giving us the weights:

a+ = a − γ · ∂SE

∂a
= 2 − 0.5 · 8 = 2 − 4 = −2 (2.12)

b+ = b − γ · ∂SE

∂b
= 3 − 0.5 · 4 = 3 − 2 = 1 (2.13)

Testing the model with the new weights

ŷ = ax + b = −2 · 2 + 1 = −3 (2.14)

As shown, changing the learning rate from 0.05 to 0.5 resulted in ŷ = 6 and ŷ = −3,
respectively. By using learning rate 0.5, the weights are updated too much, resulting in
a prediction further away from the target than the initial prediction, i.e. the learning
rate is too large.

2.1 Fundamentals of machine learning 16

(a) Large learning rate. If the learning rate is
too large, the risk of jumping out of a minima
increases.

(b) Small learning rate. If the learning rate is
too small, the steps against the minima are
too small, resulting in a slow convergence.

Fig. 2.5 Large vs. small learning rate

2.1.3 Reducing generalization error

When creating a machine learning model, the goal is to make it able to generalize well
to new data, i.e. minimizing the model’s generalization error. Minimizing this error is
equivalent to reducing the problem of overfitting - a phenomenon which occurs when a
model focuses too much on the details and noise in the training data, as shown in fig.
2.6c. Conversely, if the model struggles to adapt to patterns in the data, as shown in
fig. 2.6a, the model is underfitting.

(a) Underfitting - the model
struggles to adapt to the pat-
terns in the data.

(b) Just right - the model man-
ages to adapt to the train-
ing data without focusing too
much on the noise.

(c) Overfitting - the model fo-
cuses too much on the noise
in the training data.

Fig. 2.6 Underfitting vs. overfitting

Finding the balance between overfitting and underfitting is directly connected to
the so-called bias-variance trade-off. When given a training set of size k, bias measures

2.1 Fundamentals of machine learning 17

how close the model’s average prediction (over all possible training sets with size k)
is to the target. Variance measures how much the model’s prediction changes for the
different training sets (Kohavi et al., 1996). While more powerful models reduce bias,
they increase the variance and vice versa (Domingos, 2000).

As shown in fig. 2.6a, when the model is underfitting the variance is low (because
y barely changes when X changes) and the bias is high (because the average distance
from the line to the data points is high). For the model in fig. 2.6c the situation is
the opposite. The challenge is to find the optimal point in this trade-off (middle plot),
which varies from application to application.

To improve the performance of an underfitting model one can give it more data, or
create a more complex model. Conceptually, one could think that if supplying more
data to an underfitting model helps, then removing data should help an overfitting
model. This is not the case, at all, as one almost always want a larger dataset. To
improve a model that is overfitting one tries to reduce the aforementioned generalization
error, which can be done by using different techniques. One fundamental practice is -
before training a model on a dataset - to divide the dataset into three subsets; training
set, validation set, and test set.

• Training set: Often 80% of the entire dataset. Used to fit the model, meaning
that the model sees the data and learns from it during the training process.

• Validation set: Often 10% of the dataset. Used for evaluation of models during
model selection, and for fine-tuning hyperparameters based on this evaluation,
i.e. hyperparameter tuning. The model sees this data but does not directly learn
from it. The model is overfitting if the error on the validation set is larger than
the error on the training set.

• Test set: Often 10% of the dataset. Used for evaluation of the model after it
is completely trained using the training set and validation set. This data is
completely unseen for the model before this step, and the test set is only used
once to get the model’s final performance measure.

Batch size

Another important hyperparameter when training a model is batch size. If one has a
training set containing N data points, using batch size 1 means that all of these points,

2.1 Fundamentals of machine learning 18

one at a time, will be sent through the model during training. This means that the
model’s weights will be updated for each data point, i.e. N weight updates.

However, by using data parallelization one can experiment with increasing the
batch size from 1 to a larger and potentially better size. This can be done through
distributing the computations over multiple either central- or graphics processing units.
Specifically, say one increases the batch size to 32, it means that 32 data points will
run through the model training procedure at once. This leads to N

32 mini batches, and
as many weights updating processes. This leads to a decrease in both training time
and generalization error, because the number of operations is reduced, and one updates
the model based on the loss from a larger sample size (Smith et al., 2017).

Regularization

Techniques that aim to improve a model’s generalization ability without decreasing
training performance are called regularization techniques. Two types of regularization
are

1. L1 Regularization, or Lasso Regularization

2. L2 Regularization, or Ridge Regularization

L1 regularization adds a penalty to the error function. This penalty is the sum
of the absolute value of the error. More specifically, given the error function mean
squared error (MSE), shown in eq. 2.15.

MSE =
n∑

i=1
(yi − ŷi)2 (2.15)

Adding the penalty leads to the error function in eq. 2.16, where λ is the tuning
parameter deciding how strong the penalty is, and β is the weights.

MSEL1 =
n∑

i=1
(yi − ŷi)2 + λ

p∑
i=1

|βi| (2.16)

(Boehmke, n.d.)

Adding the sum of the absolute value of the weights to the error function forces the
model to penalize weights with big values. Machine learning models are more affected

2.1 Fundamentals of machine learning 19

by large weights than small ones, so by penalizing large weights the risk of overfitting
is reduced.

Like L1 regularization, L2 regularization also adds a penalty to the error function.
Instead of using the sum of the absolute value of the weights as a penalty, the sum of
the squared weights is used. The error function then becomes as shown in 2.17.

MSEL2 =
n∑

i=1
(yi − ŷi)2 + λ

p∑
i=1

β2
i (2.17)

(Boehmke, n.d.)

Cross validation

To choose a suitable batch size and to decide to what extent various regularization
techniques should be used, one must investigate the effect on the model’s generalization
ability. One commonly used technique for getting an estimate of how well a model
performs on new data is cross validation. In k-fold cross-validation, the training data
is folded into k subsets. The model is then trained k times, such that each time, one
of the k subsets is used for validation, and the other subsets are used for training, as
shown in fig. 2.7. The error is the average of the errors after k-epochs (Gupta, 2017).

Fig. 2.7 Cross validation - the training data is folded into k subsets, before the model
is trained k times on the different subsets, using one subsets for validation and the
others for training for each iteration.

This thesis focuses on the regularization methods most commonly used in deep
learning, and such methods will therefore be presented in section 3.1.4.

2.1 Fundamentals of machine learning 20

2.1.4 Performance measures

How a model’s performance is measured depends on whether it is a regression or a
classification model.

Performance measures for classifiers

A classifier can be evaluated by for example computing the number of correctly classified
objects divided by the total number of objects, giving the accuracy - the most common
evaluation method for classifiers (Sokolova and Lapalme, 2009). However, accuracy
alone does not necessarily indicate how good the model is. For example, if one class A

in the dataset occurs much more frequently than the other classes, i.e. an unbalanced
dataset, then the model can achieve relatively high accuracy by predicting A every
time. To detect this, one could use a confusion matrix.

The confusion matrix is a tool for evaluating the performance, sensitivity and
specificity of a classifier. The main idea is to compare the predictions and the targets,
then count the number of times each class A was predicted as class B. The confusion
matrix can, for instance, show how many times a model confuses spam with no spam,
and vice versa, as shown in fig. 2.8. In this case, out of 11 spam-emails, the model
classified 9 of them correctly, and out of 52 no-spam-emails, 47 was classified correctly.
This does not only give information about how good the model performs but also in
which areas the model can improve (Géron, 2017).

Performance measures for regression models

As mentioned in 2.1.2, the most popular performance measure for regression problems
is the root mean squared error (RMSE), shown in eq. 2.18. RMSE indicates how much
error the machine learning model makes in its predictions by calculating the distance
between the prediction and the actual solution, where large errors are weighted more
than small errors (Géron, 2017).

RMSE(X, h) =
√√√√ 1

m

m∑
i=1

(h(x(i)) − y(i))2 (2.18)

• m is the number of instances in the dataset

• X is a matrix containing all feature values of all instances in the dataset

2.1 Fundamentals of machine learning 21

Fig. 2.8 Confusion matrix - spam-email example

• x(i) is a vector of all the feature labels of the ith instance in X, and y(i) is its
label

• h is the prediction function that gives the prediction by taking x(i) as input

However, weighting large errors makes RMSE sensitive to outliers. Therefore, if
there are many outliers, one may consider using an alternative performance measure
for regression, called mean absolute error (MAE), shown in eq. 2.19 with the same
notations as for RMSE (Géron, 2017).

MAE(X, h) = 1
m

m∑
i=1

∣∣∣h(x(i)) − y(i)
∣∣∣ (2.19)

RMSE and MAE are both performance measures that measure the distance between
the prediction vector and the target vector. The goal is to make this distance as close
to zero as possible when predicting on the test set.

To demonstrate the difference between RMSE and MAE we will use the example
of housing prices, mentioned in 2.1.1. Given X⃗, comprised of information about 3
different houses, and the target vector y⃗, comprised of the corresponding house prices,
the model predicts ŷ(1) = 50000, ŷ(2) = 48000, ŷ(3) = 75000 while the actual labels are
y(1) = 55000, y(2) = 40000, y(3) = 76000. The predictions are visualized in fig. 2.9,

2.1 Fundamentals of machine learning 22

where the black curve represents the actual house prices given features. The resulting
RMSE and MAE are calculated below.

Fig. 2.9 Prediction errors - housing prices example. The grey, dashed lines represent
the error between the prediction (orange dots) and the target (black curve).

RMSE(X, h) =

√√√√1
3

3∑
i=1

(h(x(i) − y(i))2

=
√

1
3((50000 − 55000)2 + (48000 − 40000)2 + (75000 − 76000)2)

=
√

30000000

≈ 5477
(2.20)

2.2 Machine learning models 23

MAE(X, h) = 1
3

3∑
i=1

∣∣∣(h(x(i) − y(i))
∣∣∣

= 1
3(|50000 − 55000| +|48000 − 40000| +|75000 − 76000|)

≈ 4667

(2.21)

As we can see from comparing the computed values in eq. 2.20 and eq. 2.21, RMSE
outputs a larger value, resulting in a larger update value for the model’s weights,
causing its higher sensitivity to outliers.

2.2 Machine learning models

A well-known theorem in ML is the no free lunch-theorem, which establish that “for any
algorithm, any elevated performance over one class of problems is offset by performance
over another class” (Wolpert and Macready, 1997). For example, one cannot say that
artificial neural networks are always better than random forests, because for each
problem neural networks outperform random forests, there has to be a problem in
which random forests outperform neural networks. This is an interesting theoretical
theorem, however, in real situations, there are various reasons to prefer one model over
others.

Many factors play a role when it comes to choosing the best suitable machine
learning model, such as the size and complexity of the dataset. Therefore, different
machine learning models should be trained on the same problem, before evaluating the
performances to select the best model (Le, 2018).

The only machine learning model mentioned so far is linear regression. This section
will give an overview of some of the other common machine learning models, how they
work, and for which problems they are most suitable.

2.2 Machine learning models 24

2.2.1 Decision trees

Decision trees can perform both regression and classification tasks. How a decision tree
makes predictions is shown in fig. 2.10. Suppose that the model’s task is to predict
which class an instance belongs to; whale, lion, bird or cat. Start at the root node (the
top). This node asks if the instance weighs more than 100 kilograms. If the answer
is yes, then the algorithm moves on to the next node, which asks if the instance is a
mammal. Finally, the tree reaches a leaf node, and the prediction will be the content
of this node. So, the model traverses the tree, from top to bottom, until a leaf node is
reached, which will be the prediction (Géron, 2017). This is an example of a decision
tree performing a classification task. However, replacing the leaf nodes with numbers
can convert it into a regression task.

Fig. 2.10 Decision tree example. By starting at the top (root node), an input data
point is traversed through the tree to finally end up on the final prediction in a leaf
node.

The decision tree is built during training, which includes choosing the node’s values,
more specifically computing which features results in the optimal data partition, at each
node. There are various algorithms for computing this, such as algorithms based on the
gini index (Catalano et al., 2009) or entropy (Jaynes, 1957). During model training,
each available feature is tested to see which one results in the largest information gain.
More specifically, looking at fig. 2.10, given the three features’ weight, lives in the
sea, and mammal. Starting at the root node, the model can use either Gini index or
entropy to calculate each feature’s information gain, then split on whichever gives the
largest one, which in this case is weight.

2.2 Machine learning models 25

This process is repeated for the rest of the features in the data, continuing to either
all of the features are used, or reaching an explicitly defined limit for information
gain, defined in the hyperparameter list. More specifically, the information gained by
splitting on feature X < limit. Alternatively, there are two other hyperparameters
designed to limit the training process: setting maximum depth, or a maximum number
of leaves.

2.2.2 Random forest

A random forest model is an ensemble of decision trees, making a prediction by
aggregating the predictions from all of the trees, by predicting the class that gets the
most votes. A voting classifier like this often achieves higher accuracy than the best
tree in the ensemble. This is made possible due to the law of large numbers, which is
the principle behind the wisdom of the crowd.

This idea originates from a British scientist Francis Galton, who in 1906 tested
it in a competition designed for guessing an ox’s weight. Originally, he wanted to
show that a crowd comprised of mainly non-intellectuals would give a correspondingly
inaccurate answer. However, this prediction did not come to pass, as the crowd’s guess
was 1,197, and the actual weight was 1,198, prompting Galton to write “The result
seems more creditable to the trustworthiness of a democratic judgment than might have
been expected” (Surowiecki, 2005).

Here is a specific example from (Géron, 2017): think of a biased coin which has
51% chance of showing heads. If tossed 1000 times, the probability of obtaining a
majority of heads is close to 75%. With 10 000 tosses, the probability climbs to 97%.
Similarly, if an ensemble consists of 10 000 independent classifiers that are correct only
51% of the time, the majority vote of the ensemble is correct 97% of the time.

This principle makes random forests among the most powerful machine learning
algorithms available today (Géron, 2017).

Fig. 2.11 illustrates how a random forest makes a prediction. The ensemble consists
of six decision trees, where four of them predicts the same class, which ultimately
becomes the majority class, hence the final output.

Why random forest? Recall how decision trees are trained in section 2.2.1, calculat-
ing each available feature’s information gain at each node. Random forests, however,
incorporates randomness when training. Instead of searching for the best feature in the

2.2 Machine learning models 26

Fig. 2.11 Random forest architecture - by using an ensemble of decision trees to choose
the major vote, a random forest model often achieves higher accuracy than the best
tree in the ensemble.

whole dataset when splitting a node, it searches for the best feature among a subset
of the data, that is randomly picked at every node. This is called bagging, short for
bootstrap aggregating. In addition, each split is based on searching through a randomly
selected set of all possible features (feature bagging). This results in different trees in
the ensemble, trading a higher bias for a lower variance (Géron, 2017).

2.2.3 Support vector machines

A support vector machine (SVM) is a powerful ML model capable of performing both
linear- and non-linear classification and regression tasks.

Support vector machines for classification

The main idea behind SVM classification is to separate classes by the largest possible
margin, as shown in fig. 2.12. In other words, the goal is to fit the widest possible
street between the classes. This is called large margin classification. This street is fully
determined by the data points located at the edge of the street (the black points in
fig. 2.12), named support vectors. Note that adding more data points outside of these
support vectors will leave the decision boundary and the prediction unaffected.

2.2 Machine learning models 27

Fig. 2.12 Linear SVM classification - finding the line that separates classes by the
largest possible margin.

Support vector machines for regression

Instead of trying to fit the largest possible street between the two classes, SVM
regression tries to fit the line such that as many data points as possible are on the
street, given a maximum street width, as shown in fig. 2.13.

Fig. 2.13 Linear SVM regression - finding the line that fits as many data points as
possible on the street, given a maximum street width.

2.2 Machine learning models 28

Support vector machines training

During the training process, the model calculates the optimal line. What is optimal is
dictated by whether it is a classification- or a regression task. However, the calculations
are similar, in that they both use kernel functions. These are functions used to map
data into higher dimensional space (−→ ∞), in order to find the aforementioned optimal
line. The use of such functions is only necessary if the data’s complexity requires it,
i.e. if it comprises > 2 features.

There are many possible kernels proposed by researchers. However, the four most
basic kernels are:

• Linear: K(xi, xj) = xT
i xj

• Polynomial: K(xi, xj) = (γxT
i xj + r)d, γ > 0

• Radial basis function (RBF): K(xi, xj) = exp(−γ∥xi − xj∥2), γ > 0

• Sigmoid: K(xi, xj) = tanh(γxT
i xj + r)

Here, γ, r and d are kernel parameters (Hsu et al., 2003).

Each of these kernel functions is relevant for certain types of situations and data,
with their own pros and cons, most notably the situation of linearly- vs. non-linearly
separable data.

We plot the data separation of the Iris dataset (FISHER, 1936) using the four
presented kernel functions, in fig. 2.14. Please note that in order to plot the data, it
was necessary to choose two of the four features in the dataset. We used the Python
library Mlxtend (Raschka, 2018) for plotting the kernels.

2.2.4 Other models

Machine learning is a field with a long history, and there are many models beyond
the ones listed above that have been constructed and studied over the years. One
model that has become almost unavoidable these days is the artificial neural network
(ANN). ANN has become the most popular ML model in the last decade due to its
state-of-the-art performance and almost complete dominance across several applications.
There are many different versions of ANNs, such as convolutional neural networks
(CNNs), and recurrent neural networks (RNNs). These models will be introduced in
the following chapter.

2.2 Machine learning models 29

Fig. 2.14 The four most common SVM kernels plotted, using iris IRIS dataset.

Chapter 3

Deep learning

Deep learning refers to computational models comprised of multiple processing layers,
used to learn data representations at multiple levels of abstraction (Lecun et al., 2015).
The most common deep learning models are artificial neural networks (ANNs), with
various implementations such as convolutional neural networks (CNNs), and recurrent
neural networks (RNNs), each tailored for specific types of problems. For instance,
the development of CNNs has led to breakthroughs in image processing, while RNNs
are relevant for sequential data such as text and speech. This chapter will introduce
fundamental aspects in deep learning, as well as an overview over the aforementioned
deep learning models. The terms ANN and model will be used interchangeably.

3.1 Artificial neural networks

An ANN is made up by neurons and their weighted connections, where the neurons are
organized in layers. As shown in fig. 3.1, the first layer, the middle layers, and the last
layer are called the input layer, the hidden layers, and the output layer, respectively.

3.1.1 Basics

The first ANN appeared in 1958, named perceptron, shown in fig. 3.2. This is the
simplest neural network architecture, and is based on a special neuron called linear
threshold unit (LTU), visualized as the step-neuron in fig. 3.2. The LTU summarizes the
connected input neurons multiplied with the corresponding weights, i.e. the weighted
sum of the inputs, refer to eq. 3.1 (Géron, 2017).

3.1 Artificial neural networks 31

Fig. 3.1 Deep neural network architecture, consisting of one input layer, one or more
hidden layers, and one output layer.

z = w1x1 + w2x2 + · · · + wnxn = wT · x (3.1)

Fig. 3.2 Perceptron - the first neural network.

This weighted sum is then given to a step function, also referred to as activation
function, which calculates the output. The most common step function used with
perceptrons is the (linear) Heaviside step function, refer to eq. 3.2.

Heaviside(z) =

0 if z < 0
1 if z ≥ 0

(3.2)

Combining several LTUs results in a larger neural network, like the one in fig. 3.1.
However, a network only consisting of units with linear activation functions cannot
handle non-linear data and is therefore incapable of learning complex patterns. Luckily,

3.1 Artificial neural networks 32

ANNs have improved since 1958, incorporating non-linear activation functions, giving
them the ability to handle non-linear data.

Furthermore, key components such as improved regularization and normalization
techniques have been developed. Also, more data and more compute (Moore’s Law (Mol-
lick, 2006)) has made more complex architectures possible. For example, adding many
more layers to the ANNs have increased their practical expressiveness tremendously.

3.1.2 Training

Similarly to linear regression, explained in section 2.1.2, training an ANN means
optimizing all of the network’s weights, trying to minimize an error measure. During
this process, the network is fed one batch at a time, refer to section 2.1.3, where each
batch consists of one or more training instances. Based on each batch, the network
makes its predictions, before a loss function, introduced in section 2.1.2, is used to
compute the error for that batch. At first, the weights are randomly initialized, so to
improve the network they have to be adjusted such that the error decreases. The most
common way to update the weights in ANNs is through gradient descent.

Gradient descent on ANNs

Gradient descent on ANNs is a little more complicated than for linear regression,
explained in section 2.1.2, even though the principle is the same. The difference is the
way of calculating the gradients. ANNs consist of layers of variables depending on
variables in the previous layer, again depending on variables in the previous layer, etc.,
making it more complicated to compute the gradients with respect to every weight. To
calculate the derivative of the loss function with respect to a weight in the first layer,
all the relevant derivatives with respect to the weights in the next layers are needed.
Therefore, the method used for this is backpropagation. Starting with the last layer,
the derivative of the loss function with respect to the weights is computed, which is
used to find the derivative in the previous layer, and so on. This method, a form of
automatic differentiation, is based on the chain rule, shown in eq. 3.3. If variable z
depends on variable y, which itself depends on variable x, then z depends on x as well.
The chain rule can then be stated as

dz

dx
= dz

dy
· dy

dx
(3.3)

3.1 Artificial neural networks 33

So far, only gradient descent for regression tasks using squared error as the loss
function has been described. Alternatively, when faced with a classification task,
a popular loss function is categorical cross entropy (CCE), also called softmax loss,
refer to eq. 3.4. CCE is a combination of softmax activation, refer to eq. 3.5, and
cross-entropy loss (CE), refer to eq. 3.6.

CCE = − log

 esp

N∑
j

esj

 (3.4)

f(si) = esi

C∑
j

esj

(3.5)

where sj are the model’s predicted scores for each class in C.

CE = −
C∑
i

ti log(f(si)) (3.6)

Where ti and si are the ground truth.

(West and O’Shea, 2017)

Like mean squared error (MSE), CEE measures the distance between two vectors.
For classification tasks, these vectors are two probability distributions: the predicted
and the actual. For example, given three classes: [cat, dog, bird]. If the input is “dog”,
then the actual probability distribution is [0, 1, 0], while the predicted one can be for
example [0.2, 0.6, 0.2], representing the probabilities for each class. During training we
want the predicted probability distribution to converge towards the actual probability
distribution, which one needs a loss function for. For regression tasks the standard loss
function is MSE, but for classification tasks, one will always use cross-entropy loss.

3.1.3 Transfer learning & fine-tuning

“Transfer learning is the improvement of learning in a new task through the transfer
of knowledge from a related task that has already been learned” (Torrey and Shavlik,
2010). For example, if a model knows how to distinguish between images of cats and
dogs, then it can use that knowledge to learn how to distinguish between other objects,
such as wolfs and tigers, with increased accuracy and speed. Furthermore, it has even

3.1 Artificial neural networks 34

shown promise when applied to seemingly unrelated datasets, such as using knowledge
about human action recognition to improve medical image segmentation (Chen et al.,
2019). Further, in addition to increased accuracy and decreased training time, the data
size requirements are decreased, which is significant considering that the lack of useful
data is “one of the most serious problems in deep learning” (Tan et al., 2018).

As mentioned in section 3.1.2, the training process of a model is about optimizing
its weights, which are scalar values. These weights are randomly initialized, with
efforts being made to investigate a general relationship between each layer’s node
values, such as in (He et al., 2015) and (Glorot and Bengio, 2010). Relying on random
initialization is suboptimal, which is why transfer learning is useful. Specifically, a
commonly used way to do transfer learning is to load weights from a pre-trained model
into an untrained model as initial weights, often making the model’s weights more
favorable than the randomly initialized ones.

Freezing layers

Conceptually, when initializing model 1’s weights with the weights from model 2 that is
pre-trained on a specific task, model 1 is trained on the specific task before the training
process has even started. However, when using transfer learning between models and
tasks, the number of possible outputs, i.e. classes the network have, usually varies.
This means that by editing the number of classes in the dataset, the final layer(s) will
differ from model 1 to 2. These layers are randomly initialized, i.e. not optimized for
the task. This leads to shattering of the pre-loaded weights during the first couple of
training iterations, through gradient descent, explained in section 2.1.2. Thus, possibly
mitigating a majority of the benefits presented by transfer learning

One solution to this problem is freezing the pre-loaded layers, i.e. not updating
them during the first few epochs, such that the final layer(s) are the only ones trained.
Then, to specialize the entire model 1 to the new task, the frozen layers are unfrozen
after a few epochs.

3.1.4 Reducing generalization error

As for all other machine learning models, an optimal ANN has low generalization
error, meaning that it generalizes well to unseen data. In other words, the goal is
to create a model that performs well on both the training data and the test data.

3.1 Artificial neural networks 35

To make such a model, several techniques can be used. The best alternative for
reducing generalization error is to increase the amount of informative training data.
Unfortunately, training data is a restricted resource, forcing us to use other techniques
to reduce the generalization error (Srivastava et al., 2014). Some of them that are
particularly relevant for ANNs are introduced in this section.

Dropout

ANNs with a large number of parameters requires a large training set to prevent
overfitting. When the number of parameters is too large relative to the dataset, i.e.
the model is too complex compared to the data, one solution is dropout. Dropout
refers to dropping, or rather ignoring, nodes and their outgoing edges from a neural
network. The choice of which nodes to drop is made at random based on the Bernoulli
distribution (of Everyday Things, 2019), using a hyperparameter p to specify the
dropout ratio.

Adding dropout to a network can typically result in increased generalization ability.
When nodes are ignored for one iteration, it means that they are not trained that
iteration, thus updated fewer times during training. Therefore, the weights do not get
updated too much to fit the training data, resulting in better generalization ability.
Also, ignoring some of the nodes forces the network to learn different representations
of identical inputs, making the model generalize better.

More generally, considering that “Model combination nearly always improves the
performance of machine learning methods” (Srivastava et al., 2014), an optimal network
is more often than not a combination of multiple models. However, that requires a lot of
computation, data, and time. By implementing dropout, one approximates combining
an exponentially large set of different neural network architectures, efficiently.

In addition to increasing the generalization ability, dropout also decreases com-
putational needs per epoch due to the decreased number of parameters. However, it
increases the time it takes for the model to converge (Srivastava, 2014).

It is worth noting that dropout is only used during training - not when running
inference. This is because during inference one wants the model to have as much
information as possible. There are exceptions to this, most notably the technique
of using Monte Carlo dropout to obtain model uncertainty estimates. See (Gal and
Ghahramani, 2016) and (Murray, 2018).

3.2 Convolutional neural networks 36

(a) Standard neural network without
dropout

(b) Neural network using dropout -
ignoring a random set of the nodes
during training.

Data augmentation

As mentioned, the optimal way to increase a model’s generalization ability is to add
more training data. One way to obtain more data is to use data augmentation. For
example, in the image domain, augmented images can be flipped, zoomed and/or
rotated versions of the original images, leaving the distinct features of the image
unaffected: a horizontally flipped image of a cat will still be a cat (Shorten, 2018).
Such data augmentation also makes the model more invariant to transformations, e.g.
scaling or rotation. Depending on the task, this can be of great use.

Early stopping

During training of an ANN the training error and validation error initially decreases.
However, at some point the validation error usually starts increasing, i.e. the estimated
generalization error increases, and the model starts overfitting. Typical development
of error-values during model training is shown in fig. 3.4. The early stopping approach
is to stop model training when the validation error increases, improving the model’s
generalization ability.

3.2 Convolutional neural networks

Creating problem-specific architectures by reducing the number of connections between
the neurons is a common way to increase the generalization ability of ANNs, a widely
used approach since the 1980s when dealing with images is CNNs (Géron, 2017).

3.2 Convolutional neural networks 37

Fig. 3.4 Example of typical ANN training error and validation error development during
training. By stopping the training when the validation error starts to increase typically
improves the model’s generalization ability.

CNNs are able to achieve superhuman performance on complex tasks in areas like
image- and video processing, beating radiologists at narrow tasks (Guan et al., 2018),
and making self-driving cars a reality (Bojarski et al., 2016). The key component in
CNNs is the convolutional layer, making CNNs more suitable for image recognition
than any other machine learning architecture. This component has many names:
convolution, kernel, and filter, which we will used interchangeably. A typical CNN
architecture is shown in fig. 3.5, comprised of some standard layers. These layers will
be explained next, except for dropout, explained in section 3.1.4.

Fig. 3.5 Typical CNN architecture, inspired by the default network provided by NN-SVG
(LeNail, 2019).

3.2 Convolutional neural networks 38

3.2.1 Batch normalization

In section 2.1.3 we described how one can use the hyperparameter batch size to
decrease both the training time and the generalization error of a model. In (Ioffe and
Szegedy, 2015) the authors obtained state-of-the-art results in classification tasks by
implementing a normalization layer as part of their (CNN) model. Specifically, for each
mini batch, m, with size s, the values for data point n ∈ [1, ..., s] in the mini batch mn

is normalized according to the rest of the data points in the mini batch. So, if there are
data points ni and nj, where i and j ∈ n, in the mini batch, with features fni

∈ [0, 1],
and nj with features fnj

∈ [1, 256], these will be edited such that the variance and
mean of the mini batch is 1, and 0, respectively. In the example provided in fig. 3.5
the batch size is set to 8, with 8 images of size 128 × 128 sent through the network.

This is done in three steps:

1. Calculate the mean and variance of the input

µB = 1
m

m∑
i=1

xi (3.7)

σ2
B = 1

m

m∑
i=1

(xi − µB)2 (3.8)

2. Use the calculation from step 1) to normalize the inputs

xi = xi − µB√
σ2

B + ϵ
(3.9)

3. Get the output of the layer by scaling and shifting the input

yi = γxi + β (3.10)

It is important to note that β and γ in eq. 3.10 are learnable model parameters, thus
learned during the training process.

3.2.2 Rectified linear unit

As described in 3.1.1, the first ANNs were able to exclusively learn linear relationships,
because of their lack of non-linear functions. Rectified linear unit, or ReLU, is a

3.2 Convolutional neural networks 39

non-linear function, refer to eq. 3.11, giving ANNs the ability to successfully learn
non-linear relationships in the data: “Neural networks with rectified linear unit (ReLU)
non-linearities have been highly successful for computer vision tasks” (Dahl et al., 2013).

y = max(0, x) (3.11)

More specifically, each activation, ai, in the feature map, fai
, is processed using eq.

3.11. This process is visualized in fig. 3.6, showing that activations ∈ N<0 (blue) is
substituted with 0’s, while activations ∈ N>=0 (orange) are unedited.

Fig. 3.6 ReLU example - the negative feature map values are mapped to 0, while the
positive ones stay unchanged.

3.2.3 Convolutional layer

Eq. 3.12 describes how the output value at the spatial location x, visualized in fig. 3.7
as 7, is calculated using a convolutional layer. It is important to note here that the
input to the convolutional layer can be either the raw image, or feature map(s) already
processed through the network.

fout(x) =
K∑

h=1

K∑
w=1

fin(p(x, h, w)) · w(h, w) (3.12)

The function fout takes an x as input, and returns a feature value. The input
feature map is denoted by fin. In fig. 3.7, the orange matrix represents the pixel values,
or activations, within the K × K area with x as center. The green matrix is a K × K

convolution, containing learnable weights. A specific visualization is provided in fig.
3.7, with a 3 × 3 kernel, used for point detection in images (Salem Saleh Al-amri et al.,
2010).

3.2 Convolutional neural networks 40

Fig. 3.7 Visualization of a 3 × 3 CNN kernel calculation. The values in the feature
map to the right is a result of the dot product between the image/feature map’s values
(left) within the kernel size, and the kernel.

The green matrix, i.e. the filter, is randomly initialized and optimized during the
training process using gradient descent and backpropagation, as described in section
3.1.2. Normally, after training a CNN the early layers will recognize low-level features
such as lines and edges, while the later layers will recognize more high-level features such
as eyes and ears. This optimization happens automatically during training, meaning
that no manual work goes into ordering specific filters at specific positions.

The dot product of the orange and the green matrix results in a scalar called
activation, which is added to the feature map. After repeating the process described
above for inputs derived from every pixel in the original image, the feature map will
ultimately represent the feature that the filter is trained to recognize.

3.2.4 Pooling

The complexity of neural networks is a double-edged sword: it allows them to learn
complex patterns, hence solving complex problems, but it also requires a lot of compu-
tational power. With common CNN architectures comprised of several million learnable
parameters, a useful technique for decreasing the complexity level is pooling, which
reduces the size of the feature maps, i.e. the resolution. There are several different
pooling techniques, but the most common are max pooling and average pooling.

The techniques are quite similar, with both having a defined pooling window of
arbitrary size, which can be overlapping. An example of a non-overlapping, 2 × 2
window, max-pooling layer is visualized in fig. 3.8. The max pooling function:

aj = max
N×N

(an×n
i u(n, n)) (3.13)

computes the maximum value based on the input patch, captured by the window
function u(x, y) (Scherer et al., 2010).

3.2 Convolutional neural networks 41

Fig. 3.8 2 × 2 max pooling example - only the largest value within the pooling window
is added to the feature map.

3.2.5 Fully connected layer & output layer

Lastly in fig. 3.5 there is a 1 × 128 fully connected layer, outputting to a 1 × 10 output
layer. While the already described layers are used for data processing, such as feature
extraction, these layers are used to recognize patterns in these processed features -
culminating in a prediction.

Fully connected layers

A fully connected layer means that each activation in the input layer, in this case, the
output of the pooling layer, is connected to each activation in the fully connected layer,
which in turn is connected to each activation on the output layer. A simplified example
is visualized in fig. 3.9, where the input layer is the pooling layer, the hidden layer is
the fully connected layer, and the output layer is just that: the output layer. Originally,
in fig. 3.5, the 16 ∗ 32 ∗ 32 = 16 384 output activations from the pooling layer maps
to 128 activations which in turn maps to 10 activations. However, for visualization
purposes, these numbers are reduced to 10, 5 and 3, respectively.

Output layer

The output layer is the final layer, where one finds the model’s predictions. When doing
classification, more specifically single-label classification, this is usually calculated using
one of two non-linear functions:

3.2 Convolutional neural networks 42

Fig. 3.9 Simplified example of fully connected layers. In a fully connected layer, each
neuron is connected to every neuron in the previous layer.

1. Softmax, refer to eq. 3.5

2. Sigmoid
S(x) = 1

1 + e−x
= ex

ex + 1 (3.14)

Which to use depends on the number of unique classes the prediction can belong to, i.e.
whether one does multi-classification (Softmax) or binary-classification (Sigmoid). For
our thesis, distinguishing between many action recognition classes, Softmax is the most
relevant. This non-linear function takes in the probabilities of each unique class and
uses eq. 3.5 to edit their values, such that they add up to 1. This process is visualised
in fig. 3.10, where we have continued on fig. 3.9, and assigned values to the three
nodes in the output layer.

3.2.6 Residual function

In addition to the aforementioned CNN components, newer architectures often imple-
ment residual functions.

As mentioned in section 3.2.4, the complexity of neural networks is what grants
them the ability to learn complex patterns. One way of increasing their complexity,
thus their ability to learn more complex patterns, is to add more layers - making them

3.3 Graph neural networks 43

Fig. 3.10 Softmax calculation example. All the values in a layer is mapped to a number
between 0 and 1, where all the outputs sums up to 1.

deeper. “This makes sense, since the models should be more capable (their flexibility
to adapt to any space increase because they have a bigger parameter space to explore)”
(Ruiz, 2018). However, when adding more layers the problem of vanishing gradients
arise. As detailed in (Bengio et al., 1994), vanishing gradient describes the problem
of the gradients converging towards 0 during gradient descent. When the gradient is
0, the weights will be static, never updated, thus not learning. It is this problem the
adding of residual function(s) aims to solve, by adding skip connections, thus letting
the output from earlier layers skip x layers, then adding them to the output of layer
x + 1, visualized in fig. 3.11.

The benefits of adding residual functions were empirically proven in (He et al.,
2016). He et al. reported the ability to train a network 8× deeper than other then-
standard CNN networks, placing first in the 2015 ImageNet large scale visual recognition
challenge, classification task.

3.3 Graph neural networks

Graphs are used in many domains and systems because of their great expressive power,
as important tools for visualizing and representing patterns and relationship in data.
Recently, research of neural network algorithms applied to graphs, named graph neural
networks (GNNs), has gained traction (Zhou et al., 2018). More specifically, applying

3.3 Graph neural networks 44

Fig. 3.11 Resnet example, inspired by (He et al., 2016). Adding skip connections helps
to avoid the problem of vanishing gradient.

machine learning, a great learner of patterns, to a representation that reveals different
patterns and relationship within the data.

3.3.1 Graphs

Graphs are widely used across several fields of science and engineering, e.g., computer
vision, molecular chemistry, and pattern detection. An example of graphs used for
pattern detection is within cyber security, where internet traffic can be represented
as a graph. Malicious activity can be detected by finding specific activity patterns in
the graph (Choudhury et al., 2015). For computer vision, graphs can, for example,
be used to represent keypoints in images, relevant for action recognition and object
classification.

A graph G is defined as a pair (N, E), where N is the set of nodes and E is the set
of edges, as visualized in fig. 3.12 (Scarselli et al., 2009).

This structure can be applied to images where the pixels are the nodes, and the
neighboring pixels are connected through edges, as seen in fig. 3.13. Note that this is
for visualization purposes only, as mapping whole images to graphs is not typically
useful because of inefficiency, compared to using the standard image format. However,
as graphs can be used for the computer vision tasks, that we are interested in, it is
important that the reader has a clear visualization of this concept.

Nodes that are directly connected by an edge to a node n are called the neighbors
of n. Each node and edge represent some information about the data. The nodes
usually represent features of objects, while the edges usually represent the relationship

3.3 Graph neural networks 45

Fig. 3.12 A graph consists of nodes connected by edges. Figure inspired by Scarselli et
al.

Fig. 3.13 Image represented as a graph. The nodes represent the pixels’ position, while
the edges represent their relationship.

between the objects. For example, in a graph representing an image, refer to fig. 3.13,
the nodes can represent coordinates of different regions in the image, while the edges
can represent the relative position between the coordinates, like distance and angle.

Graphs may be either positional or non-positional. In a positional graph, each
node has a function that calculates its position relative to all its neighbors. Such
neighbor-positions can implicitly be used for storing spatial positions, which is a key
factor in graphs representing skeletons, thus vital for this thesis, and will be introduced
in section 4.2.1.

3.3.2 Combining graphs & artificial neural networks

It is the aforementioned node-edge relationship that GNNs take advantage of (Gori
et al., 2005). Each node n in a GNN has a state xn, which is dependent on the
information about n’s neighbors. When w is a set of parameters and fw is a parametric

3.3 Graph neural networks 46

function that reflects the dependence of a node on its neighborhood, the state xn can
be defined as

xn = fw(ln, xne[n], lne[n]), n ∈ N (3.15)

where ln, xne[n] and lne[n] are the label of n, the states of the nodes in the
neighborhood of n, and the labels of the nodes in the neighborhood of n, respectively.

Fig. 3.14 Graph neural network architecture - state x1 depends on the neighborhood
information, inspired by Gori et al.

Each node n also has an output vector on, which is defined by a parametric function
gw. Eq. 3.16 takes the state xn and the label ln as input, such that on only depends
on the state, and the label of the node.

on = gw(xn, ln), n ∈ N (3.16)

Eqs. 3.15 and 3.16 together realize a parametric function ϕw(G, n) = on meant
for operating on graphs, such that we have a method to produce an output on for
each node. We can now set up a machine learning problem, consisting of adjusting
the parameters w to minimize the error between ϕw and the data in the learning set
L = {(Gi, ni, ti)|1 ≤ i ≤ p}. Each triple (Gi, ni, ti) denotes a graph Gi, one of its
nodes ni, and the output target t2

i . The solution to the learning problem can then
be approximated using gradient descent to for example minimize the quadratic error
function shown in 3.17 (Gori et al., 2005).

3.3 Graph neural networks 47

w =
p∑

i=1
(ti − ϕw(Gi, ni))2 (3.17)

3.3.3 Graph convolutional neural networks

As described in section 3.2, standard CNNs have a fixed grid that traverses an image
with a particular step size to extract features from the image. Since the pixels in images
are in spatial order, the grids are moved from left to right, top to bottom (Niepert
et al., 2016b). Furthermore, the spatial order in the grids enables a natural mapping
to vector space representation, as shown in fig. 3.15.

Fig. 3.15 Mapping from grid to vector in a GNN. Figure inspired by Niepert et al.

Because nodes in a graph generally have no fixed order, such as pixels in an image,
there are two things that have to be determined before we can construct analogous
convolutions on graphs:

1. A sequence of nodes from which neighborhoods can be created

2. A mapping from the graph domain to a vector representation

In (Niepert et al., 2016b), these two problems are addressed for arbitrary graphs.
For each input graph, its nodes and their order, for which neighborhood graphs are
created, are first determined. For each node, x, from which a neighborhood graph is to
be created, the neighborhood N , consisting of k nodes, is extracted and normalized,
comprise a k × 1 vector V with labels lk for node k ∈ N . Normalized, in this instance,

3.3 Graph neural networks 48

means that the neighborhood nodes are mapped into a space with a fixed linear order.
This normalized neighborhood then works as a grid with a natural spatial order, and
can be combined with convolutional- and fully connected layers as in standard CNNs,
refer to section 3.2. This method makes it possible to assign nodes from different graphs
to the same relative position in their vector representations, if the graph structures are
similar. Fig. 3.16 visualizes this process.

Fig. 3.16 Visualization of a graph convolution. The graph is first mapped into a space
with a fixed linear order, before a filter slides over the values as in standard CNNs.

Chapter 4

Human action recognition &
spatial temporal graph
convolutional networks

The spatial temporal graph convolutional network (ST-GCN) was presented in a paper
written by Sijie Yan, Yuanjun Xiong and Dahua Lin, published in January of 2018
(Yan et al., 2018). As mentioned in the introduction, the ST-GCN serves as a starting
point for our thesis.

Yan et al.’s paper describes a project designing and training a graph convolutional
network (GCN) to recognize actions from video data. In short, it proves that this
general approach to action recognition “outperforms former state-of-the-art models”
(Yan et al., 2018). This is achieved by combining information about both the spatial
configuration and temporal dynamics of 18 keypoints in the human body. These
keypoints are mostly joints that are crucial for determining human movement, such as
the shoulders and hips.

This chapter will give an overview of some approaches to human action recognition
before introducing the main components in ST-GCN.

4.1 Human action recognition

Human action recognition is a popular and important research area, as it is vital for
understanding actions in videos. Classifying actions from videos can be challenging, and

4.1 Human action recognition 50

can be done in several ways, such as appearance, depth, optical flow, feature encoding,
deep LSTM, temporal convolutional networks, and human skeletons. Among these
approaches, the human skeletons solution usually convey the most useful information
for action recognition. This is due to skeletons of human bodies are more robust to
noise in the data, such as illumination change and scene variation. Before jumping into
the details about dynamic human skeletons, alternative methods for action recognition
will be presented.

Appearance

Appearance-, or RGB methods, for action recognition mainly look at the appearance
features in the video. For instance, if a tennis racket is seen in the video, this affects
the classifier’s final prediction. Appearance does not require foreground segmentation
or tracking of body parts, resulting in more robustness to camera movement and low
resolution (Wu et al., 2011).

A paper written by Xinxiao Wu et al. (Wu et al., 2011) describes a method for
action recognition in videos using appearance, where interest points first are defined,
and then the appearance around those interest points is considered. Such interest
points are coordinates in the video where the variation of spatial-temporal intensity is
high, in other words, coordinates referring to areas with lots of movement. Appearance
can also be used to classify actions in static images, as presented in (Maji et al., 2011).

Depth

Exploiting depth points to classify actions can be done in several ways (Wang et al.,
2012), (Vieira et al., 2012), (Chen et al., 2016), and have shown promising results.
A paper written by W. Li et al. (Li et al., 2010) presents such a method for action
recognition on sequences of depth maps.

A depth map is an image containing information about the 3D-positions of the
objects in the scene. For instance, a depth map of a person will visualize the person
in a different color than the background, because the distances from the camera are
different. The idea in Li’s paper is to extract a bag of 3D points from the depth maps,
and use a Gaussian mixture model (GMM) to capture the statistical distribution of
the points to classify the person’s posture. This posture is then fed to an action graph,
which classifies the action.

4.1 Human action recognition 51

In this case, each node in the action graph represents a posture, where all the
postures are shared by the graph’s action classes. Every action is encoded in one or
multiple paths in the graph. To construct the graph, training samples of depth maps
are used to learn how to encode the graph and recognize all actions. One major benefit
of this method is that it does not require joint tracking.

Optical flow

Optical flow is the distribution of velocity vectors that represents the movement of
brightness patterns in an image. In a video, optical flow can arise from relative motion
of objects between two video frames. This can convey important information about
object movement in videos, making it suitable for action recognition (Horn and Schunck,
1981).

In a paper written by Karen Simonyan et al. (Simonyan and Zisserman, 2014),
experiments showed that optical flow combined with CNNs achieved good performance
for action recognition on videos. The input to the CNN was constructed by stacking
optical flow fields generated from the videos, describing the motion between the video
frames. The CNN then extracts the features from the input, before the action is
classified using the softmax function described in section 3.5.

Feature encoding

Researchers has developed a video representation that captures the video-wide temporal
evolution (VTE) of videos, used for action recognition. This method starts with
considering a video X = [x1, x2, ..., xn], consisting of n frames, where the frame at t is
represented by vector xt. The frames x1, ..., xn are extracted from each video, before
a feature vector vt is generated, representing the action occurring in frames x1 to xt.
This vector is the result of a function V (t), which can be based on methods such
as independent frame representation, focusing solely on each independent frame, and
moving average, extracting average behavior within a fixed temporal window.

Afterwards, a video representation u is learned for each video by using ranking
machines, i.e. the usage of machine learning algorithms to rank models that are
meant to retrieve information (Mohri et al., 2012). Lastly, these video specific u
representations are used as a representation for action classification, which finally can
be classified using for example a SVM classifier, described in 2.2.3 (Fernando et al.,
2015).

4.1 Human action recognition 52

Long short-term memory networks

A human body pose can be represented by an ensemble of 3D coordinates of body
joints. Thus, human movements can be represented by time series of such coordinates.
Furthermore, as mentioned in section 2.2.4, RNNs have proven to be among the best
ML models for learning sequential data (Yin et al., 2017).

The main component in RNNs today is a long short-term memory (LSTM) unit,
first presented in (Hochreiter and Schmidhuber, 1997), expanding RNNs’ abilities to
solve complex tasks. (Shahroudy et al., 2016a) uses such a (deep) LSTM-based RNN
model to identify the correlation between human joints over time by feeding the model
with time series of body joints coordinates, classifying the time series into an action.

Temporal convolutional neural networks

Another approach for 3D human action recognition is temporal convolutional neural
networks (TCN), described in (Kim and Reiter, 2017). The input to a standard TCN is
a matrix representing features in a video. For each frame in a video, a D-dimensional
feature vector is extracted, for example using a CNN, such that for a video of T

frames, the input X is a concatenation of all the feature vectors from the frames:
X ∈ RT ×D. By sending this feature matrix through a network consisting of residual
blocks, explained in section 3.2.6, a final prediction can be made using an activation
function, relevant for the specific task. Their approach achieved state-of-the-art results
on the largest 3D human action recognition dataset, NTU-RGB+D.

Dynamic human skeletons

Over the past years, several methods for extracting human skeletons from 2D videos
have been presented. The methods have largely focused on detecting body parts on
individuals (Felzenszwalb and Huttenlocher, 2005). In 2018, OpenPose presented a
new approach to efficiently detect the 2D pose of people in an image. The architecture
secures high accuracy on constructing the skeletons and provides the ability to achieve
real-time performance, independent of the number of people in the image (Cao et al.,
2018).

OpenPose is based on the deep learning software Caffe developed by Berkeley AI
Research (Jia et al., 2014). Caffe was an effort from then Ph.D. student Yangqing Jia,
now a research scientist at Google, to create an open source framework simplifying

4.1 Human action recognition 53

efforts to recreate state-of-the-art deep learning results such as Alex Krizhevsky’s
AlexNet from 2012 (Krizhevsky et al., 2012). Jia was motivated by the lack of such
frameworks in the deep learning domain at that time (Alliance, 2016).

The method used in OpenPose starts with taking a collection of images as the input,
before feeding them to a CNN which gives confidence maps for body part detection,
and part affinity fields for parts association. Part affinity fields are 2D vector fields
between two parts, that indicates in which degree the parts are associated. Finally,
after the confidence maps and affinity fields are parsed for all images in the collection,
both the 2D coordinates (X, Y) in the image’s pixel grid, and the confidence score C,
for each of the detected body parts for all people in the image, are returned as the
output.

OpenPose offers various models, trained on various datasets, able to extract different
amounts of keypoints from single images. One option is a model trained on the “COCO
keypoints dataset” (Cao et al., 2018), extracting 18 keypoints, i.e. (X, Y) coordinates
for 18 body keypoints. It is this model, visualized in fig. 4.1, Yan et al. used for action
recognition on the Kinetics dataset. How Yan et al. use these keypoints to classify
actions will be explained in the next section.

Fig. 4.1 Visualization of the keypoints extracted by OpenPose’s COCO model, inspired
by Cao et al.

4.2 ST-GCN: The spatial temporal graph convolutional network 54

4.2 ST-GCN: The spatial temporal graph convolu-
tional network

Yan et al.’s uses the 18 keypoints, extracted using OpenPose, and exploits the fact
that human joints move in small, local groups within the skeleton, known as body
parts. Adding this restriction to action classifier models causes a large improvement
because the joints are then constrained to move within the local area and not the whole
skeleton. For example, it is generally problematic for a human to move their elbow
more than one meter away from their shoulder.

This section will give an overview of the main components in ST-GCN, including
details about the network, such as its construction and architecture.

4.2.1 3D skeleton graph construction

The skeleton graph is constructed as an undirected spatial temporal graph: G = (V, E),
on a skeleton sequence with N keypoints and T frames. The graph contains the node
set V = {vti|t = 1, ..., T, i = 1, ..., N}, which includes every joint in a skeleton sequence.
Furthermore, each node have a feature vector consisting of both coordinate vectors,
and estimation confidence of the i-th joint on frame t.

The graph is constructed on the skeleton sequences in two steps:

1. Connecting each node within one frame to each other, directly or indirectly,
following the structure of the human body, resulting in a spatial connection

2. Connect each joint within one frame to the same joint in the following frame,
resulting in a temporal connection

The outcome is a 3D graph representing a skeleton’s movement over consecutive
frames, as illustrated in fig. 4.2, with the blue edges representing the spatial dimension,
and the orange edges representing the temporal one.

4.2 ST-GCN: The spatial temporal graph convolutional network 55

Fig. 4.2 3D graph representing a skeleton’s movement over time, inspired by Yan et al.
The blue edges represent the spatial connection between nodes within a skeleton, while
the orange edges represent the temporal connections between the skeletons.

4.2.2 The spatial graph convolutional neural network

As presented in section 3.2, a convolution in a standard CNN can be expressed as

fout(x) =
K∑

h=1

K∑
w=1

fin(p(x, h, w)) · w(h, w) (4.1)

where p is the sampling function enumerating the neighbors of x, and w is the
weight function providing the kernel. To use the same principle on graphs, the sampling
function and the weight function need modifications.

Sampling function on graphs

A sampling function is a function that enumerates through a set of items, which for
images are pixels. As stated in section 3.3.1, graphs consists of nodes and edges instead
of grids of pixels, which leads to the definition of a new sampling function, adapted to
graphs. This sampling function can be defined as

B(vti) = {vti|d(vtj, vti) ≤ D} (4.2)

4.2 ST-GCN: The spatial temporal graph convolutional network 56

where B(vti) is the neighbor set of node vti, and d(vtj, vti) is the minimum length
from vtj to vti. Thus, the sampling function can be written as

p(vti, vtj) = vtj (4.3)

In Yan et al.’s paper, D is set to 1, meaning that the neighbor set B(vti) only
consists of the nodes that have 1 edge between them and the node vti, visualized as
the blue nodes with the orange node as root in fig. 4.3.

Fig. 4.3 Visualizing an example of labeled nodes when number of neighbors is set to 1.
The root node (orange) is connected to its neighbors (blue) when D = 1.

Using this method may result in neighbor sets with a different number of nodes,
unlike convolutions on images where the sampling function has a constant number of
pixels in the grid. This introduces some challenges when the weight function is defined.

Weight function on graphs

Defining a weight function for 3D-graphs is more tricky than on images because a
neighbor set has no natural arrangement like pixels in grids. One solution to this
problem, introduced in (Niepert et al., 2016a), is to label all the nodes in the neighbor
set around the root node, which Yan et al. used. However, instead of assigning a
unique label to every node in the neighbor set, they partitioned the neighbor set B(vti)
of a node vti into a fixed number of K subsets, such that each node can be mapped to
its subset label. The weight function can then be implemented as in eq. 4.4, where
lti(vtj) is the mapping function that maps a node in the neighborhood to its subset
label.

4.2 ST-GCN: The spatial temporal graph convolutional network 57

w(vti, vtj) = w′(lti(vtj)) (4.4)

Spatial graph convolution

Eq. 4.5 says that for each node vtj in the neighborhood B(vti), calculate the dot
product between the result from the sampling function and the result from the weight
function, and normalize the output with Zti(vtj), where Zti(vtj) equals the number
of nodes in the corresponding subset, added to balance the impact of different sized
subsets to the output.

fout(vti) =
∑

vtj∈B(vti)

1
Zti(vtj)

fin(p(vti, vtj)) · w(vti, vtj) (4.5)

To modify the equation such that it works on graphs, the sampling function p and
the weight function w have to be replaced with p shown in eq. 4.3 and w shown in eq.
4.4. This finally results in a general equation for convolutions on spatial graphs:

fout(vti) =
∑

vtj∈B(vti)

1
Zti(vtj)

fin(vtj) · w(lti(vtj)) (4.6)

4.2.3 Subset partitioning

When designing a partitioning strategy, one has to design the mapping function l,
making sure that it is possible to implement. There are several ways to split the
neighbor set of a node into partitions. Some of them will be introduced in this
subsection.

4.2 ST-GCN: The spatial temporal graph convolutional network 58

Fig. 4.4 Visualization of different skeleton partition strategies, inspired by Yan et al.
Body joints are drawn with blue dots. Neighborhood for node n, with size = 1 is
drawn with red, dashed circles. 1) Example of a skeleton and some neighborhoods,
with the orange nodes as root nodes and the green nodes as neighbors 2) Uni-labeling
3) Distance partitioning 4) Spatial configuration partitioning.

Uni-labeling

All nodes within the same subset has the same label, refer to 2) in fig. 4.4.

Distance partitioning

Every subset has a root node with distance 0, while all the other neighbors in the
subset have distance 1, refer to 3) in fig. 4.4.

Spatial configuration partitioning

In spatial configuration partitioning, refer to 4) in fig. 4.4, the nodes are labeled with
respect to their distances from the skeleton gravity center, shown as a black circle,
which is the average coordinate of all keypoints in the skeleton at a frame. This
partitioning strategy divides the neighbor set into three subsets:

1. The root node, colored orange

2. The centripetal group, consisting of the nodes that are closer to the gravity center
than the root node, colored green

3. The centrifugal group, consisting of the nodes that have a longer distance to the
gravity center than the root node, colored pink

4.2 ST-GCN: The spatial temporal graph convolutional network 59

This strategy is inspired by the fact that motions of body parts can be broadly
categorized as concentric and eccentric motions, or in other words, body parts moving
towards (concentric) or away (eccentric) from the skeleton gravity center. Experiments
performed by Yan et al. showed that this strategy achieves the best performance, and
it is the partition strategy used in the ST-GCN network (Yan et al., 2018).

4.2.4 Network architecture & training

Fig. 4.5 ST-GCN architecture as interpreted from Yan et al. The network consists of
batch normalization layers, ST-GCN layers, pooling layers, fully connected layers, and
finally the Softmax function. Each ST-GCN layer uses a residual function. Also, the
TCN block consists of a batch normalization 2D layer, ReLu, convolutional 2D layer,
another batch normalization 2D layer, and uses dropout.

The majority of the layers making up ST-GCN has been explained in section 3.2.
The first layer in ST-GCN is a batch normalization layer, followed by 9 layers of
spatial temporal graph convolution operators, called ST-GCN layers. Among these nine
ST-GCN layers, the initial three have 64 channels as output, the three next layers have
128 channels as output, and the final three layers have 256 channels as output. All
these layers have kernel size 9.

4.2 ST-GCN: The spatial temporal graph convolutional network 60

To avoid overfitting, dropout with 0.5 probability is sometimes used after each
ST-GCN layer. The 4th and the 7th layers have strides set to stride 2, to work as
pooling layers. The resulting tensor is sent through a global pooling layer, outputting a
256 dimension feature vector for each sequence. These tensors are finally fed to a fully
connected layer, connected to a softmax classifier, outputting a 1 × C vector consisting
of the probabilities for each class, where C is equal to the number of unique classes in
the dataset.

The paper describes using two large datasets for network training:

1. Kinetics - assembled by DeepMind, consisting of approximately 300 000 raw
video clips taken from YouTube. It covers 400 different human action classes
with 400-1150 video clips for each action class. Each clip lasts around 10 seconds
and is labeled with a single class (Kay et al., 2017).

2. NTU RGB+D - assembled by the ROSE Lab at the Nanyang Technological
University, Singapore. The dataset covers 60 labeled action classes and consists of
56 880 action samples. In addition to the RGB video, each sample also contains
depth map sequences, 3D skeletal data, and infrared videos (Shahroudy et al.,
2016b).

The network uses mini-batch gradient descent, which is a variant of gradient descent
explained in 2.1.2. Here, the model’s weights are updated after calculating the gradient
for each batch, unlike for all the data points in the training set at once. Cross-entropy
loss, described in section 3.1.2, is used as the loss function during training. This can
be seen in their code:

1 import torch.nn as nn
2 self.loss = nn.CrossEntropyLoss()

Furthermore, it has a base learning rate 0.01, which is decayed by 0.1 after every 10th
epoch, starting from epoch 20. The change in learning rate is defined as steps:

1 lr = self.arg.base_lr *
2 (0.1**np.sum(
3 self.meta_info[’epoch’]>= np.array(self.arg.step)))

To reduce the risk of overfitting, two different augmentation techniques are used to
replace dropout layers when training on the Kinetics dataset. The first technique,

https://deepmind.com/research/open-source/open-source-datasets/kinetics/
http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp

4.2 ST-GCN: The spatial temporal graph convolutional network 61

named random moving, simulates the camera movement, resulting in the skeleton
getting different joint coordinates than the original video. The second augmentation
technique takes random fragments from the original skeleton sequence and uses these
to train the model, similar to dropout 3.1.4.

4.2.5 Experiments & results from the ST-GCN paper

The results of Yan et al.’s ST-GCN model was compared with other state-of-the-art
methods and other input modalities, using the deep learning framework PyTorch
(Paszke et al., 2017) and 8 TITANX GPUs (Yan et al., 2018). On the Kinetics dataset,
ST-GCN was compared with three different approaches for skeleton based action
recognition:

• Feature encoding approach on hand-crafted features (Fernando et al., 2015).

• Deep LSTM (Shahroudy et al., 2016c).

• Temporal ConvNet (Soo Kim and Reiter, 2017).

The comparison was based on recognition performance, namely accuracy for both
top-1 and top-5 predictions. Results provided by Yan et al., shown in table 4.1, show
that ST-GCN outperforms the previous skeleton-based models. However, frame-based
methods such as RGB and optical flow, see sections 4.1 and 4.1 respectively, still
outperform ST-GCN on this dataset.

Top-1 (%) Top-5 (%)
RGB 57.0 77.3
Optical Flow 49.5 71.9
Feature Encoding 14.9 25.8
Deep LSTM 16.4 35.3
Temporal ConvNet 20.3 40.0
ST-GCN 30.7 52.8

Table 4.1 Performance for human action recognition models on the Kinetics dataset.
Frame-based models are listed in the top row, while skeleton based models are listed
in the following rows

4.2 ST-GCN: The spatial temporal graph convolutional network 62

4.2.6 Conclusion

On the Kinetics dataset, it turns out that video frame-based models like RGB frames
and optical flow are superior to ST-GCN. The argument for this is that a large amount
of action classes in this dataset requires recognizing the objects and scenes that the
people in the video are interacting with 6.1, i.e. person-object actions. To verify this, a
subset of 30 classes related to body motions, independent of the surroundings, named
as “Kinetics-Motion”, was tested against the frame-based models. The results, shown
in table 4.2, verifies that the difference in performance decreases.

Method RGB CNN Flow CNN ST-GCN
Accuracy (%) 70.4 72.8 72.4

Table 4.2 Top 3 human action recognition approaches tested on the “Kinetics motion”
subset of the Kinetics dataset

The conclusion is that ST-GCN can recognize actions from dynamic skeleton
sequences which is complementary to RGB modality. Further, ST-GCN is also very
flexible, which opens up many possibilities for future work. As the authors point out,
one natural question to answer then becomes how to include contextual information,
such as scenes, objects, and interactions.

Chapter 5

Robotics and computer vision

Robotics and computer vision are technologies under constant development and rapid
change, as they are key components in advanced systems that continually make existing
products obsolete.

Robotics is defined as the study of robots (May, 2017). Modern robots comprise
several components touching a number of different fields, such as mechanics, electronics,
thermodynamics and power conversion technology, computer and information tech-
nology, and materials science (Angelo, 2007). Combining all these fields into a robot
requires experts from the different domains to cooperate, making robotics a complex
field, especially considering today’s advanced robots (Asano et al., 2019) (Asano et al.,
2017) (Stories, 2019).

Computer vision is “the transformation of data from a still or video camera into
either a new representation or a decision” (Bradski and Kaehler, 2008). In this case, a
new representation might mean converting a video of a person into a skeleton sequence,
while a decision might be concluding whether or not there is a person in the video.
This way, computer vision gives robots the ability to see and feel the environment
surrounding them by using cameras, sensors, and computer vision algorithms.

The number of robots taking advantage of computer vision has increased significantly
over the last years, with this combination being used in many booming fields, such as
the automobile industry, space robots, and surgical robots (Pugh, 2013). To be able to
create relevant robots efficiently, one needs tools that simplify the development process.
One tool for such tasks is the Robot Operating System (ROS), which is compatible with
a large number of today’s modern robots. This chapter will focus on some relevant
examples and the main concepts of ROS.

5.1 Modern robot applications 64

5.1 Modern robot applications

This section will give an overview of the present status in the field of robotics, presenting
some state-of-the-art robot applications within different domains.

Self-driving cars

The car domain is currently converging towards robotics, in the sense that cars are
becoming more and more autonomous, equipped with cameras and sensors capturing
data about the environment. An important component in autonomous cars is computer
vision. Image streams from the cameras are sent through computer vision algorithms
in real-time to give the car the ability to act based on what it sees.

Today, all Tesla cars have an autopilot function which can steer your vehicle through
highway interchanges and exits based on the destination (Tesla, 2019). This still requires
the driver to focus on the road and take action when it is needed. However, Tesla
claims that the hardware available in their cars is sufficient to drive fully autonomously,
such that the cars can become self-driving through software updates in the future.
Fully self-driving cars can pick the user up and drive to their destination while they
are taking a nap. Tesla’s CEO, Elon Musk, claims that fully self-driving cars will be
on the market in 2020 (wire.com, 2019), making them relevant to launch a driverless
taxi service (Wiggers, 2019).

Waymo is an American company also aiming for creating fully self-driving cars
(Waymo, 2019). Since their beginning in 2009, starting as the “Google self-driving car
project”, they have worked with developing self-driving cars. In 2019 they officially
released a commercial autonomous taxi service in the USA, where you can order an
autonomous taxi using their app. However, the service is in its early phases, and the
wait list to ride with a Waymo car is relatively long (theverge.com, 2019).

It is important to note that a significant amount of highly knowledgeable experts,
such as John Krafcik (CEO of Waymo), Rodney Brooks (founder of Rethink robotics),
and many more, claim that fully autonomous cars, able to drive on regular streets
and in all conditions, are a long way off (TIBKEN, 2018) (Brooks, 2018). With that
said, the major advances made in the field over the recent years are still extremely
impressive, and will likely at least lead to useful new technology in cars, and some
form of restricted autonomy for cars and other vehicles.

5.1 Modern robot applications 65

Computer vision in space

Computer vision is not only applicable here on Earth - it is also highly relevant for space
exploration, shown by its use on the Mars Rover project. Furthermore, “Increasing
the level of spacecraft autonomy is essential for broadening the reach of solar system
exploration. Computer vision has, and will continue to, play an important role in
increasing autonomy of both spacecraft and Earth-based robotic vehicles” (Matthies et al.,
2007). This is motivated by the problems of communication latency and bandwidth
limitations, which Matthies et al. describe as severely constraining humans’ ability to
remotely control robot functions.

Surgical robots using computer vision

Robotics has become an important and established part of clinical surgery (Rosen et al.,
2010). The motivation behind using surgical robots is to increase the effectiveness of
surgical procedures. In fact, the US has identified three top application areas in their
health care system that will benefit the most, economically, by new technology, by
2026:

1. Robot Assisted Surgery ($40B).

2. Virtual Nursing Assistant ($20B).

3. Administrative Workflow Assistance ($18B).

(Matt Collier, 2017)

A surgical robot often needs sensors that enable it to adapt to its rapidly changing
environment. Such sensors might be force sensors and computer vision systems, giving
the robot a natural transition into the human senses of touch and sight, critical abilities
for making robots relevant as a surgical assistant.

Computer vision on such robots can be used on images from different sensors, like
ultrasound, spectroscopy, and optical coherence tomography (OCT). Robots capable
of seeing subsurface structures provides major benefits when it comes to, for instance,
resecting a brain tumor. “This type of sensing can alert the surgeon before he or she
accidentally cuts a major vessel that is obscured by the tumor” (Kazanzides et al.,
2008).

5.2 ROS: the Robot Operating System 66

5.2 ROS: the Robot Operating System

ROS is a state-of-the-art, open source framework for writing robot software, consisting
of tools, libraries, and conventions that facilitate the programming of robot behavior
(ROS.org, 2019a). It is designed to address the challenge of having a heterogeneous
ecosystem, i.e. systems consisting of different robots, operating in distinct programming
languages. The framework builds on a message system that sends messages between
nodes via topics, using the publish/subscribe pattern (Eugster et al., 2003), often
abbreviated to pub/sub. This section will introduce ROS and discuss some of its main
components.

5.2.1 Nodes & topics

Normally, a robot consists of many nodes, described as “a process that performs
computation” (ROS.org, 2019b). For example, one node can control the wheels’ motors,
another node can control the navigation, while a third node controls the laser sensor(s).
The communication between these nodes is facilitated by the use of topics, giving the
nodes the ability to exchange messages asynchronously, visualized in fig. 5.1.

Fig. 5.1 Publish-subscribe mechanism for message exchange in ROS. Nodes can com-
municate with each other by publishing and subscribing to the same topic.

Topics are named message buses that nodes can publish or subscribe to (ROS.org,
2019c). When two nodes communicate, they don’t know which node they are com-
municating with. Instead, nodes that need data subscribe to a topic that provides
relevant data. Concurrently, nodes that generate data can publish to a relevant topic,
making it visible for other nodes in the ecosystem.

5.3 ROS alternatives 67

5.2.2 Message types

The data type of a topic is determined by the publishing node. If a node publishes mes-
sages of type string to a topic, then a subscribing node can only receive string messages.
ROS provides a large number of different message types divided into categories. One cat-
egory is sensor_msgs, containing message types such as sensor_msgs/LaserScan,
where one message represents a single scan from a planar laser range-finder, and
sensor_msgs/Image, where one message represents one image.

By sending sensor_msgs/Image messages over a topic, a robot and a computer
can exchange images or videos between each other by publishing and subscribing to
the same topic.

However, ROS is used in our project because of their simple pub/sub message
exchanging pattern, but also because it offers a wide range of packages and great
simulation tools.

Packages are software that provides some specific functionality. For example, if you
want to create a map with a robot by driving it around, ROS has a package for that,
and if you want to control your robot with a joystick, ROS has a package for that also.
Furthermore, ROS has great simulation tools to test the robot’s behavior, such as Rviz
(Kam et al., 2015) and Gazebo (Koenig and Howard, 2004). Gazebo provides the user
with the ability to add physical constraints to the virtual environment, making the
simulations more realistic, while Rviz is used to visualize how the robot is interpreting
its sensor data.

5.3 ROS alternatives

The robotics community offers alternatives to ROS for creating robot software, such
as Yet another robot platform (YARP), Rock and Open robotics control software
(OROCOS). Similar to ROS, these alternatives are open source software for creating
robot applications. They all have a high focus on simplifying message sending between
different components within a robotic system.

5.3 ROS alternatives 68

5.3.1 YARP: Yet another robot platform

YARP is a library and toolkit for communication between devices used on everything
from humanoid robots to small embedded devices (YARP, 2019). Its way of creating
robot control systems is building them as a collection of programs, which can com-
municate via common connection types such as TCP, UDP, XML, etc. The creators’
main goal for YARP is to increase the lifetime of robot software projects.

5.3.2 Rock

Rock is a software framework created by “DFKI robotics innovation center” in the
German research center for artificial intelligence, used to develop robotic systems (Rock,
2019). It provides a collection of ready-to-use packages and was created to specifically
address issues such as

• Sustainability - by focusing on error detection, reporting, and handling

• Scalability - by giving the tools the ability to manage big systems

• Reusability - by making most of the functionality totally independent from
Rock’s integration framework, such that the algorithms can be used in different
frameworks

Actually, Rock can cooperate with ROS by exchanging data between Rock ports
and ROS topics.

5.3.3 OROCOS: Open robotics control software

OROCOS is a free software project for robot development (OROCOS, 2019). The
project combines both component-based and object-oriented reusability strategies. It
provides a component-based infrastructure and a library of ready-to-use components,
making it possible to manage interactions within an application at a high level. Similar
to ROS, OROCOS also uses an (anonymous) pub/sub message system through data-flow
ports, which are comparable to topics in ROS (Khemaissia, 2013).

Part II

Experiments

The following part lays out the experiments done to answer our hypothesis

By combining state-of-the-art techniques from computer vision and
robotics it is possible to construct robots capable of accurate, real-time
human action recognition, making it feasible to deploy such systems as

robotic physical therapists.

70

A challenge when creating a system based on computer vision and robotics is the
rapid, ongoing change in the technology.“The pace of technological development poses
the end user with the perpetual headache of trying to decide what is worth using and
how to use it” (Eason, 2014). In each field, techniques and solutions quickly become
obsolete, and that’s particularly true for techniques in the two fields’ intersection. This
has led to a general lack of up-to-date and useful documentation, with a plethora of
choices among often difficult to compare techniques and approaches.

Chapter 6

Retraining ST-GCN to increase its
relevance for rehabilitation

This chapter lays out the steps necessary to develop a system combining ST-GCN and
ROS, such that it can function as a supplement in the rehabilitation process. Given the
complex structure ST-GCN is built on, modifications such as extracting relevant action
classes from the Kinetics dataset or adding new classes are challenging. However, we
have identified some solutions and will try to explain our process in an understandable
way.

6.1 The Kinetics human action video dataset

As explained in section 4.2.4, our action recognition DL model is trained on the Kinetics
human action video dataset, referred to as Kinetics from now on. The 400 actions
in Kinetics include: singular person actions, e.g. clapping, laughing, shaking head;
person-person actions, e.g. hugging, shaking hands; and, person-object actions, e.g.
playing tennis, baking cookies, drinking beer (Kay et al., 2017).

6.1.1 How the dataset was built

Initially, DeepMind identified relevant action classes from previously created action
datasets. Next, the data for each of the defined action classes were generated by
matching titles of YouTube videos with the action names. These went through two
quality checks. First, they used image classifiers outputting the videos with a position

6.1 The Kinetics human action video dataset 72

in the form of a time interval in every video where one of the actions potentially
occurred. Further quality check was crowdsourced using Amazon’s “Mechanical turk”
(Buhrmester et al., 2011), by creating a simple web app and exposing it to willing
labelers.

6.1.2 Data distribution

A human might understand which action is taking place in a video filmed from a
first-person perspective. For example, if a person is doing paragliding, then another
person can recognize the action by seeing what the person performing the action sees.
However, this is not possible for a model that requires skeleton data as input to classify
actions. For such a model to be successful at human action recognition, the data needs
to contain explicit informative signals, i.e. easily visible humans performing actions.

After looking through some of the videos in the Kinetics dataset one discovers that
some videos are recorded from a first-person perspective, providing no or very little
skeleton-data to our deep learning model. To investigate this further one can take a
look at the amount of skeleton-data the pose estimator is able to extract from each
video in Kinetics.

Fig. 6.1 Distribution of the number of non-empty frames in the videos in the original
dataset. The left side of the plot shows that there is a significant amount of data with
a notable amount of empty frames.

Fig. 6.1 shows the distribution of the number of skeleton-frames in the videos in
Kinetics. There is a significant amount of data with a lot of empty frames. Yan et al.
implemented a way to filter out the (completely) empty videos by adding the metadata

6.2 From videos to machine learning training 73

information “has_skeleton”, which we will come back to in section 6.2.2. However, one
can argue that a human requires in the excess of 1 second of visual input to categorize
a human action. This is naturally dependent on the complexity of the movement. Now,
using videos with a frame rate of 30 fps, this means approximately 30 frames, which
means that a case can be made that a significant amount of the videos contains too
little skeleton data, even for a human-level skeleton-based recognition system.

6.2 From videos to machine learning training

The ST-GCN project used the pose estimation software OpenPose to extract skeletons
from the videos in Kinetics. The returned JSON files for each video frame are then
combined into a single file, called a skeleton file, together with meta data information
about the video. Furthermore, they construct a corresponding summary file, and a label
file. This process is illustrated in fig. 6.2. Lastly, the skeleton files and the summary
file is used to generate four new files, referred to as training- and validation data.

Fig. 6.2 From video to skeleton files. Each video is mapped to a skeleton file which is
related to the summary file and the label file.

6.2.1 Label file

The label file is a TXT file containing the name of each class in the dataset. Each class
name, or label, is separated by a new line, such that one can use their line number to
identify them, i.e. each label has a unique index number. More formally, each class
c has a corresponding index number i, such that the label file l can be defined as

6.2 From videos to machine learning training 74

l = [ci, ..., cn], where n is equal to the number of classes. Here is a print-out of the first
five lines from the label file:

1 abseiling
2 air drumming
3 answering questions
4 applauding
5 applying cream

6.2.2 Summary file

The summary file is a JSON file containing metadata for the skeleton files. For each
skeleton file, there is a key-value entry in the summary file, where the skeleton file’s
name corresponds to the summary file’s key. Further, the values correspond to the
skeleton files metadata. An example entry:

1 {
2 "---QUuC4vJs": {
3 "has_skeleton": true,
4 "label": "testifying",
5 "label_index": 354
6 },
7 ...
8 }

Note the sub key “has_skeleton” - this is a boolean value, that is “false” if all of the
frames in the video are empty, i.e. there are no humans present in the video, else it is
“true”. Its value is used to ignore the files that contains no skeleton information when
generating training and validation data.

6.2.3 Skeleton file

As mentioned, the skeleton files contain the data from each frame in the video, and
the meta data about the video. Continuing with the example entry from 6.2.2, here is
an illustration of the corresponding skeleton file:

6.2 From videos to machine learning training 75

1 { "data":
2 [{"frame_index": 1,
3 "skeleton":
4 [{"pose": [0, ..., 0.41],
5 "score": [0, ..., 0.46]}]
6 },
7 {...},
8 {"frame_index": n,
9 "skeleton":

10 [{"pose": [...], "score": [...]}]}
11],
12 "label": "testifying",
13 "label_index": 354
14 }

6.2.4 Training data and validation data

The aforementioned files are sufficient to train a DL model. However, the authors of
the paper chose to compress the data into four new files - the training and validation
data. These are made up of two files for training: train_data.npy, train_label.pkl, and
two files for validation: val_data.npy, and val_label.pkl.

The nature of the content is the same for the train- and validation files. Visualizing
the train files using Python:

1 train_label_pkl =
2 [[’---QUuC4vJs’, ... , video name n], [354, ..., video label n]]
3 train_data_npy =
4 [size of dataset][num channels][num frames][num keypoints][num values]

Specifically, the skeleton files and their corresponding entries in the summary file
are used to construct these label- and data files, such that the label files contain the
video’s name and its label, while the data files contain the frame information. They
have corresponding index number, simplifying lookups.

6.3 Creating the Rehab dataset 76

6.3 Creating the Rehab dataset

This section describes how we went from the original set of skeleton files generated
from Kinetics, referred to as Kinetics skeleton files from now on, using OpenPose, to
our own reduced set of skeleton files exclusively containing action classes relevant for
rehabilitation, referred to as Rehab skeleton files from now on. The Kinetics summary
file also had to be reduced to a new one, called Rehab summary file. The process is
shown in fig. 6.3.

Fig. 6.3 From Kinetics files to rehab files. To create a dataset consisting of skeleton
files more relevant for rehabilitation, we extracted relevant skeletons from the Kinetics
skeleton files.

Initially, we identified 5 classes from the original Kinetics dataset; squat, lunge,
deadlift, push-ups, and pull-ups, because of their relevance for physical training, and
thus by extension rehabilitation. By iterating through the Kinetics summary file we
created the Rehab summary file, containing the instances from Kinetics summary file
with a label corresponding to one of our selected labels. Simultaneously, we iterated
through the Rehab summary file to extract the matching Kinetics skeleton files. These
skeleton files were copied to a new folder, containing the Rehab skeleton files. The
Rehab skeleton files represent our new dataset, named Rehab dataset from now on.

Further, when iterating through the Kinetics summary file to create the Rehab
summary file, we extracted 700 random entries containing action classes not in the 5
identified classes - 600 for training, 100 for validation. Lastly, we changed their labels
to “unknown”. This to account for the relatively small set of action classes in the
Rehab dataset.

6.4 Adding a new class to the Rehab dataset 77

6.4 Adding a new class to the Rehab dataset

Further, the ST-GCN project comes with a CSV file, where each row has the name of
the action class, the URL to the video on YouTube, and the start- and stop time stamp
specifying which part of the video is relevant for the dataset.

When basing the Rehab dataset on Kinetics, the selection of action classes are
restricted to the ones present in Kinetics. Since we need a more flexible system, we
wanted to develop a pipeline making it possible to add whatever action classes deemed
relevant. Thus simplifying the process of tailoring the program for the rehabilitation
process. Our pipeline is a five-step process:

1. Identifying a class to add

2. Obtaining videos of the identified action class

3. Cleaning the videos such that one gets the relevant parts and making sure it is
the correct size

4. Running the videos through pose estimation software (OpenPose) to obtain the
body keypoint coordinates for each frame

5. Constructing the skeleton files, based on the body joint coordinates from step 4

1) Identifying a class to add

When completing this step we had to select a class not present in the original Kinetics
dataset that has a large enough volume of data available online. We ended up choosing
“jumping jacks”, due to the availability of online videos where this action is performed.

2) Obtaining videos of the identified action class

The procedure used to obtain the videos was inspired by the ST-GCN paper. This
included creating a CSV file 6.2, and running a script iterating through that file, using
YouTube-dl (Y. C. Hsuan, 2011) to download the videos, before cutting them at the
corresponding time stamps using FFmpeg (Bellard, 2000), and lastly outputting the
videos to a selected folder.

6.4 Adding a new class to the Rehab dataset 78

The video URLs was identified manually, searching for “jumping jacks” on YouTube.
The URLs that linked to relevant videos was copied into the CSV file, together with
the labels and time stamps. This resulted in a CSV file consisting of approximately
199 different URLs to videos of people doing jumping jacks.

In order to have a balanced dataset, i.e. approximately the same amount of
videos for each class as in Kinetics, data augmentation, explained in section 3.1.4, was
necessary. There are many different augmentation techniques, however, not all are
relevant for our case. We identified frame flipping and zooming to initially be the
most relevant for this project. Flipping and zooming generate new videos with body
keypoints different from the original videos.

Augmentation techniques such as changing the contrast or brightness would not
have worked, because it does not affect the position of the body keypoints. The
augmentation was done using the open source program OpenCV (Bradski, 2000),
increasing number of jumping jacks videos from 199 to 796.

3) Cleaning the videos

Yan et al. resized each video to the resolution of 340 × 256 and set the frame rate to
30 fps. It was essential that we followed suit, and generated our own keypoints from
videos using the same resolution and frame rate, using FFmpeg.

4) Obtaining coordinates

Each processed/cleaned video of jumping jacks was run through OpenPose to extract
the coordinates of each keypoints from the person performing the action. This resulted
in one folder per video, each folder containing one JSON file for each frame, i.e. 300
files for a video with 300 frames.

5) Constructing the skeleton files

We created a Python script iterating through all the folders mentioned in step 4). For
each folder, all its JSON files were merged into one skeleton file. Further, for those
folders containing < 300 frames, we padded them by adding the first n frames to the
end. Here n is the difference between 300 and the number of original frames. Finally,
the new skeleton files, generated from the jumping jacks videos, was placed in the same

6.5 Training & evaluating our new ST-GCN model 79

folder as the Rehab skeleton files, such that we could train a new model on the Rehab
dataset. As in section 6.1.2, we plot the number of non-empty frames, shown in fig.
6.4.

Fig. 6.4 Distribution of the number of non-empty frames in the Rehab dataset. The
plot shows a more favorable distribution, compared to fig. 6.1, considering the decrease
of videos on the left side of the plot.

6.5 Training & evaluating our new ST-GCN model

Before training the model, we extracted the usual validation set from the training
set. This was done using a Python script, defining the desired training/validation
ratio. Furthermore, we produced our own test set by recording videos of ourselves,
performing actions from the Rehab dataset. The motivation for this distribution is
explained in section 2.1.3.

The training was done by running the train script, supplied by Yan et al., on two
NVIDIA TITAN RTX GPUs (4608 CUDA cores, 24 GB memory) running in parallel,
using the hyperparameters specified in the ST-GCN project.

Further in this section we use the validation set to evaluate the performance of our
newly trained ST-GCN model, customized for rehabilitation exercises. The test set is
held out until we have trained and identified an optimal rehab model. Optimal here
means first and foremost largest validation accuracy.

The data distribution is summarized in table 6.1, and the model’s performance, on
the validation set, is presented in in table 6.2.

6.5 Training & evaluating our new ST-GCN model 80

Class label Training Validation Test
Jumping Jacks 706 78 10
Squat 999 50 10
Lunge 609 50 10
Deadlifting 656 49 10
Push up 465 49 10
Pull up 971 50 10
Unknown 600 100 10
Total 5006 426 70

Table 6.1 Data distribution in the three splits of the Rehab dataset, training-, validation-
and test set.

Top 1 accuracy (%)
Validation set 48.36

Table 6.2 Rehab model performance on data pose estimated by OpenPose

Looking at the validation accuracy in table 6.2 it is evident that the model is
suboptimal. For a more complete picture of the model’s performance, we show the
corresponding confusion matrix, produced during the validation process, in fig. 6.5.

It is quite interesting that the model is somewhat able to recognize “push-ups”, and
not at all “lunge”, considering the difference in the amount of data, read from table 6.1.
Further, the confusion matrix provides more optimism than the validation accuracy.
This is based on though it struggles with classes such as “lunge” and “unknown”,
it shows that the model has the potential to learn the movements, shown by its
72/78 accuracy on “jumping jacks”, and the aforementioned surprising accuracy on
“push-ups”.

With that said, as the model’s accuracy is suboptimal, we do not evaluate its
performance on the test set. For this to be relevant the model should have significantly
higher validation accuracy. Efforts to achieve this is presented in chapter 7.

6.6 Combining our model with robotics 81

Fig. 6.5 Confusion matrix showing the Rehab model’s performance on the validation
set. The model struggles with most of the classes, especially “lunge” and “unknown”,
however it seemingly performs well on videos of “jumping jacks”.

6.6 Combining our model with robotics

The final step in the process includes combining our trained ST-GCN model with
a robot, such that the patient can get feedback on their movement(s). We used a
Turtlebot 3 Waffle Pi (Foundation, n.d.), shown in fig. 6.6. This robot is compatible
with ROS, thus we used ROS to control its behavior.

Fig. 6.7 shows a visualization of how we want the whole system’s pipeline to
be, at a high level. A web camera mounted on the robot captures a 0-10 seconds
video of a person performing some action. This video is sent through pose estimation
software, constructing the skeleton files, explained in section 4.2.1, necessary for running
inference. Further, the generated skeleton sequences are sent through the ST-GCN
model, returning a prediction on which action it thinks was performed. Lastly, the
model’s output is used by the robot, when deciding on the relevant feedback for the
person.

6.6 Combining our model with robotics 82

Fig. 6.6 TurtleBot 3 Waffle Pi, the robot in our system.

6.6.1 Deploying the model on the robot

Until this point, our machine learning model has been running on a powerful workstation
computer. However, the robot is incapable of functioning properly with a large computer
on top. The machine learning model had to be transferred to a smaller computer, still
powerful enough to run the inference process efficiently.

The Turtlebot 3 Waffle Pi comes with a Raspberry Pi 3 Model B. However,
Raspberry Pi is only equipped with a relatively modest ARM Cortex CPU and
a weak Broadcom GPU. We require a GPU that is compatible with NVIDIA’s CUDA
framework platform to run our neural network. We therefore decided to replace the
Raspberry Pi with NVIDIA’s Jetson Xavier, shown in fig. 6.8. Xavier is a small
(105mm × 105mm), fast and power efficient embedded AI computing device, built
around a CUDA compatible NVIDIA 512-core Volta GPU, and loaded with 16GB of
memory and 137GB/s of memory bandwidth (NVIDIA, 2018).

TurtleBot has a microcontroller called OpenCR, used to control TurtleBot’s motors
based on the commands it receives from Raspberry Pi. OpenCR communicates with
Raspberry Pi between its micro-USB port and Raspberry Pi’s USB port. Replacing
Raspberry Pi with Xavier involves getting the communication between OpenCR and
Xavier to work properly. Xavier also has a USB port, but to communicate with OpenCR,
a specific port named ttyACM0 has to to be enabled. After ensuring that this port was
enabled, the communication between OpenCR and Xavier was successfully established

6.6 Combining our model with robotics 83

Fig. 6.7 The figure above shows a high-level view of our system pipeline, starting with
recording of a person performing an action, ending with the person receiving feedback
on their performed action, and everything in between. With inspiration from Yan et
al., and SVG files from FlatIcon.

Fig. 6.8 NVIDIA’s Jetson Xavier, the computing device used on the robot in our
system. Image from NVIDIA’s homepage (NVIDIA, 2018).

through a USB cable. The next step was to install ROS on Xavier, such that ROS
nodes can publish TurtleBot navigation commands to ROS topics and thereby being
able to control the robot’s actions.

6.6.2 Integrating the Robot Operating System

Fig. 6.9 shows how the components in the system use ROS to communicate, where
the blue squares are ROS topics, the orange squares are ROS nodes, and the green
hexagon is the robot.

The communication in ROS starts with the ST-GCN node. This script feeds the
pose keypoints extracted from the web camera to ST-GCN, then receives a prediction.

6.6 Combining our model with robotics 84

Fig. 6.9 ROS communication overview. By subscribing and publishing to relevant
topics, the TurtleBot can react based on the ST-GCN model’s output.

The prediction is then sent to the ROS topic stgcn_prediction. A code snippet from
this node is shown below.

1 # ’ST-GCN’ node
2
3 rospy.init_node(’st-gcn’)
4
5 prediction = run_inference(video)
6
7 # Publish the prediction to a ROS topic
8 publisher = rospy.Publisher(’stgcn_prediction’, String, queue_size = 1)
9 publisher.Publish(prediction)

Line 3 initializes the node, giving it the name “st-gcn”. After our machine learning
model has run inference on the recorded video, a publisher-object is created at line 8.
The publisher can publish messages of types String to the “stgcn_prediction” topic,
with queue_size 1. Queue size 1 means that if the publisher is publishing messages with
a higher rate than ROS is able to send over the wire, then some messages get queued.
The queue_size parameter decides how many messages this queue can take before
the oldest messages get deleted. Since our application only publishes one message per
prediction, a queue size larger than 1 is unnecessary. Line 9 publishes the prediction
to the topic.

On the other side of the “stgcn_prediction” topic, we find the “TurtleBot controller”
node, which both subscribes to the “stgcn_prediction” topic and publishes to the
“cmd_vel” topic. This way, the node can receive the prediction and control the
TurtleBot based on what it receives. The “cmd_vel” topic contains information about
how the TurtleBot should navigate, so by publishing messages to this topic one can
control the TurtleBot’s movement. TurtleBot subscribes to this topic, ready to take

6.6 Combining our model with robotics 85

action as soon as a message is published. The code below shows an example of how
the code in “TurtleBot controller” node can look like.

1 # ’TurtleBot controller’ node
2
3 rospy.init_node(’turtlebot_controller’)
4 velocity_publisher = rospy.Publisher(’cmd_vel’, Twist, queue_size = 1)
5
6 def callback(prediction):
7 if prediction.data == ’squat’:
8 vel_msg.linear.x = 1
9 velocity_publisher.publish(vel_msg)

10
11 time.sleep(2)
12
13 vel_msg.linear.x = 0
14 velocity_publisher.publish(vel_msg)
15 else:
16 # Do nothing
17
18 rospy.Subscriber(’stgcn_prediction’, String, callback)

Line 3 initializes the node, giving it the name “turtlebot_controller”. The next line
creates a publisher-object, used to publish messages of type Twist to the “cmd_vel”
topic, with queue_size set to 1. “Twist” is the message type TurtleBot uses for
navigation commands. The “callback” method is triggered when it receives a message,
i.e. when the topic the node subscribes to receives a message. In this example, if the
prediction is “squat”, then the node publishes a velocity message to the TurtleBot,
saying that it should start driving in the x-direction, i.e. straight ahead. The robot
drives for two seconds before the velocity is set to zero again. If the prediction is
something other than squat, the robot stays unmoved. Note that this is an example of
how the robot can react. In a rehabilitation process, it is natural with more informative
feedback.

Lastly, line 18 defines which topic the node subscribes to. In this case, the topic is
“stgcn_prediction”, containing messages of type String. It also defines which method
that will be triggered when a message is received, which is the “callback” method.

6.7 Evaluating the system 86

6.7 Evaluating the system

To reiterate, the hypothesis we want to answer is: By combining state-of-the-art
techniques from computer vision and robotics it is possible to construct robots capable of
accurate, real-time human action recognition, making it feasible to deploy such systems
as robotic physical therapists.

Completing this chapter we have constructed a functional robot capable of human
action recognition, and human interaction. The accuracy of the machine learning
model ended up being 48.36% on the validation set, with the corresponding confusion
matrix to provide an overview on how the model performed on each class in the rehab
dataset.

Further, our system cannot be classified as a real-time system, because the robot
uses an excess of about 150 seconds to provide the user with feedback. For the robot
to be relevant for rehabilitation, it is preferable that the feedback-time is close to 0
seconds and a significant increase in accuracy.

Based on these evaluations, our conclusion so far is that the robot has potential,
but is currently unusable for a rehabilitation process due to unsatisfactory accuracy
and running time. This leads us to the next chapter, which deals with improving the
robot.

Chapter 7

Improving our system

As presented in the previous chapter, running the system on Jetson Xavier resulted in
an inference time of more than 2 minutes on a 10 seconds video, which is unsatisfactory.
Furthermore, the accuracy of the model was suboptimal. Both of these has to be
improved in order for us to positively answer our hypothesis. This chapter will go
through the experiments done to improve the system, by both reducing the inference
time and improving the underlying model.

7.1 Decreasing the inference time

Ideally, the inference time should be close to 0 seconds, i.e. close to live classification.
In order to achieve this, each part of the system needs to be analyzed such that we
can establish which ones can, and should, be optimized. Note that we continue to use
10 seconds videos for our experiments.

7.1.1 Identifying bottlenecks in our system

Our system is running several processes, some more time consuming than others.
Identifying the bottlenecks is about identifying the processes consuming the majority
of the total time, such that one can focus on optimizing those. For this the Python
package Pyinstrument was used, which provides the user with the running time for
every process and subprocess. By running our inference pipeline using this tool, we got
the results shown in table 7.1. Note that the time we want to reduce is where the user

7.1 Decreasing the inference time 88

is waiting for feedback from the robot, i.e. after the video has been recorded, referred
to as total waiting time.

Process Time used (s)
Initializing environment 5.6
Imports 11.4
OpenPose skeleton estimation 130.9
Inference 3.2
Total waiting time 151.1

Table 7.1 Each process in the robot’s prediction pipeline and their time requirements,
when using OpenPose. Time requirements are calculated using Pyinstrument.

OpenPose is clearly the largest bottleneck in the system, making it the top priority
to either improve or substitute, in order to decrease the inference time.

A study of the recent literature on pose estimation led us to the software TF-pose-
estimation (tf-pose), a Tensorflow implementation of OpenPose created by NVIDIA
researchers (Madeleine Waldie, 2018). As mentioned in section 4.1, OpenPose is based
on the deep learning software Caffe. Tf-pose uses similar algorithms, but by using
TensorFlow instead of Caffe, the pose estimation is significantly faster. Thus, by
substituting OpenPose with tf-pose in our pipeline, the inference time should decrease
notably.

7.1.2 Substituting OpenPose with tf-pose

The substitution is illustrated using code:

OpenPose

1 openpose_bin_path = ’openpose/build/examples/openpose/openpose.bin’
2
3 cmd = (f’{self.openpose_bin_path} --video {input_fpath} --model_folder

{self.model_folder} --write_json {output_fpath} --model_pose COCO
--keypoints_scale 3’)

4
5 parent = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE,

stderr=subprocess.PIPE)

7.1 Decreasing the inference time 89

tf-pose

1 pose_est_path = ’tf-pose-estimation/run_video.py’
2
3 cmd = (f’python {pose_est_path} --video {input_fpath} --output_json

{output_fpath}’)
4
5 parent = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE,

stderr=subprocess.PIPE)

Testing our pipeline after the substitution gave us the results presented in table 7.2.

Process Time used (s)
Initializing environment 5.6
Imports 11.5
Tf-pose skeleton estimation 30.8
Inference 1.0
Total waiting time 48.9

Table 7.2 Each process in the robot’s prediction pipeline and their time requirements,
when using tf-pose. Time requirements are calculated using Pyinstrument.

By replacing OpenPose with tf-pose the pose estimation time was reduced from
130.9 seconds to 30.8 seconds. I.e. tf-pose is 4-5 times faster than OpenPose. Therefore,
tf-pose was deemed the pose estimation tool to use in further experiments.

7.1.3 Modifying our pipeline

As the results in table 7.2 show, sending a 10 seconds video through tf-pose to extract the
skeleton files takes more than 30 seconds. Even though this is a significant improvement
from using OpenPose, 30 seconds is still a long time to wait to get feedback from the
robot.

Our pipeline so far is

1. Record video

2. Pose estimation

7.1 Decreasing the inference time 90

3. Run inference

One way to further improve our system is to combine the video recording (1) and
the pose estimation (2), lowering the time used on the pose estimation step. Our new
pipeline is then:

1. Record video

• Pose estimation on each frame, as they are recorded

2. Run inference

With this pipeline, the recording and pose estimation runs concurrently, such that
the skeleton files are ready for the inference process as soon as the recording has
finished. The implementation of this new approach is shown below.

1 estimator = TfPoseEstimator(model_path)
2 cam = cv2.VideoCapture(0)
3
4 duration = 10
5 start_time = time.time()
6
7 # recording video
8 while (time.time() - start_time) <= duration:
9 video_frame = cam.read()

10 estimator.inference(video_frame)
11
12 tfpose_skeleton_to_stgcn(skeleton_file_path)

The while loop processes the actual video recording. In line 9, one new video frame
from the web camera is read. In line 10, the method “inference” takes the video frame
as input for pose estimation. This method extracts the skeleton from the frame, and
creates a JSON file containing these values, as explained in section 6.2. After the
recording is done, the code in line 12 combines all of the frame skeleton files into an
ST-GCN-compatible skeleton file, i.e. something that can be ran through the model.
The new pipeline was profiled using Pyinstruments, giving the results shown in table
7.3.

The results show that the new pipeline reduces the total waiting time from 30.8
seconds to 1.0 second. The time-consuming steps are now before the video recording,

7.2 Establish a new benchmark 91

Process Time used (s)
Initializing environment 5.6
Imports 12.2
Record a 10 seconds video 10.0
Inference 1.0
Total waiting time 1.0

Table 7.3 Each process in the robot’s optimized prediction pipeline and their time
requirements, when using tf-pose. Time requirements are calculated using Pyinstrument

i.e. initializing the environment and importing necessary packages. These steps only
have to be done once, meaning that after initialization, one can use a loop to run as
many video recordings as desired in the same environment, resulting in no waiting
time before the recording starts. This is why the “Initializing environment”- and
“Imports”-processes listed in table 7.3 are not taken into account when calculating
“Total waiting time”.

Reducing “Total waiting time” this way has a trade-off: the video’s frame frequency,
or frames per second (fps). In the current setup, we can record at a maximum of
9 fps. This is because the inference on each frame (line 10) takes some time, more
precisely 1/9 = 0.11 seconds on average, and the next frame is not read from the web
camera before the inference has finished (we will not pursue ways of parallellizing the
recording and the inference in this work, e.g. multi-threaded inference). From table 7.1
and 7.2 we calculate that OpenPose is 4.25 times slower than tf-pose. Hence, in our
new pipeline, OpenPose would have used 0.11 × 4.25 = 0.47 seconds on each frame,
resulting in a fps value of 1/0.47 = 2.1. When comparing 9 fps videos with 2.1 fps ones,
our conclusion is that 9 fps is sufficient for action recognition since one clearly can see
which movement is being done, while a 2.1 fps video is too “laggy”. This motivates us
to use our new pipeline combined with tf-pose for further experiments.

7.2 Establish a new benchmark

After successfully decreasing the inference time, enough to make the system usable, we
needed to establish a benchmark for our newly implemented pose estimation software,
tf-pose. This would serve as a necessary baseline for improving the model. This is
because a final product will still be dependent on being accurate, not just fast.

7.2 Establish a new benchmark 92

7.2.1 Recreating Yan et al.’s dataset using tf-pose

To establish a new tf-pose benchmark it was necessary to recreate the skeletons from
the Kinetics dataset in their entirety using this new pose estimation software. We used
essentially the same pipeline as described in section 6.4. The CSV files, specifying
the video’s extension, start- and stop time, and labels, were provided by the ST-GCN
project’s GitHub repository.

The CSV files are divided into the standard three subsets: train, validation, and
test, providing us with the distribution used in Yan et al.’s experiments. At the time
of writing this article this distribution is as follows:

Subset name Number of videos
Training 246 535
Validation 19 907
Test 38 686
Total 305 128

Table 7.4 Data distribution for the original Kinetics dataset, split into the standard
training-, validation- and test sets.

However, the test data is unlabeled, and we do not have the resources needed to
label them. This gave us approximately 260 000 videos to download and process.

Downloading the data

As mentioned in section 6.4, we used Youtube-dl to download YouTube videos. This
tool has a large set of features. However, it currently does not offer the ability to
download specific parts of videos. Therefore, the entire videos needed to be downloaded.

With 260 000 YouTube videos to be downloaded, with sizes ranging from a couple
of MBs to a couple of GBs, we calculated that we needed several TBs of storage.
However, we made a few modifications to the pipeline, and deleted each full YouTube
video after extracting the relevant part. I.e. we combined the downloading and the
cleaning of the videos. This resulted in decreased storage needs, down to a couple of
hundred GBs.

7.2 Establish a new benchmark 93

The still relatively large storage and time requirements led us to transfer the pipeline
to an external server. Further, in order to run the pose estimation software, it was
necessary that this server was equipped with sufficiently sophisticated GPU(s).

Explicitly missing data

YouTube videos are often region restricted or deleted, making us unable to recreate
the dataset in its entirety.

After running the pipeline we ended up with the following distribution:

Subset name Number of videos
Training 223 572
Validation 18 404
Total 241 976

Table 7.5 Data distribution for the currently available parts of the Kinetics dataset,
split into the standard training-, validation sets. Ignoring the test set because of the
lack of corresponding label.

This means that about 20 000 of the videos used by Yan et al. were currently
unavailable. We call the dataset in table 7.5 the currently available dataset.

Implicitly missing data

In section 6.1.2, we visualized OpenPose’s ability to recognize humans in videos,
by plotting the number of non-empty frames in each video. After substituting the
pose estimator, we wanted to test the new software’s human-identification ability to
investigate whether we are trading speed for accuracy.

To compare these two pose estimation softwares, we processed the 240 000 videos
in the currently available dataset using tf-pose, to a (skeleton) dataset we call tf-pose-
cur. Then we plotted the distribution of non-empty frames in the videos from this
tf-pose-cur dataset, versus the dataset used in Yan et al.’s project, called OpenPose-og.
This visualization is shown in fig. 7.1.

Here, we can clearly see that there is a significant increase in the number of videos
with low-to-no amount of skeleton data. Further, it is interesting to note that on

7.2 Establish a new benchmark 94

Fig. 7.1 The distribution of the number of non-empty frames in two pose-estimated
versions of the Kinetics datasets: the currently available videos, processed by tf-pose
(orange), and the originally available videos, processed by OpenPose (blue). One can
clearly see a notable increase in the number of videos with a low amount of skeleton
data when using tf-pose compared to OpenPose.

the other end of the scale there difference is small. This could potentially mean that
OpenPose is superior when pose data is difficult to extract, however, when this is not
the case they perform more or less the same.

Get the benchmark

Running the tf-pose-cur dataset through the training and validation process, using
the same hyperparameters as Yan et al. resulted in a benchmark accuracy of 24.32% -
about 6 percentage points less than their reported benchmark: 30.7%. Our re-training
attempt using tf-pose was motivated by obtaining a comparable benchmark to Yan et
al.’s benchmark. Therefore, this result was worse than we hoped for. Note that the
performance is measured on the validation set.

However, as mentioned, the number of videos in the currently available dataset
(240 000), and Yan et al.’s dataset (260 000) is notably different.

To test tf-pose and OpenPose under as similar conditions as possible we generated,
or, rather, extracted a new dataset. We name this (skeleton) dataset OpenPose-cur.
This was done by comparing the two datasets tf-pose-cur and OpenPose-og, extracting
the files from OpenPose-og that was also in tf-pose-cur. The process was quite similar
to the data extraction task explained in section 6.3, except the extraction check was

7.2 Establish a new benchmark 95

on each skeleton file’s name, not their classes. OpenPose-cur now consisted of skeleton
frames from the same videos as tf-pose-cur, though processed by different software.

The OpenPose-cur dataset was run through the same training and validation
process to get a new benchmark, comparable to our model. This lead to an increase in
validation accuracy: 30.9%, from the Yan et al.’s reported 30.7%. This was surprising,
because deep learning models usually perform better with larger data sets. However,
the difference is relatively insignificant. Still, it is interesting that model performance
did not decrease.

One possible explanation is that it seems like a majority of the unavailable videos did
not contain human actions, i.e. empty videos. So, comparing the number of non-empty
frames from OpenPose-og to the number of non-empty frames in OpenPose-cur, there
is a notable decrease in the lower part of the plot, as shown in fig. 7.2.

Fig. 7.2 Comparing the distribution of non-empty skeleton-frames in the pose-estimated
original dataset vs. the pose-estimated currently available dataset, both processed by
OpenPose. One can see there is an evident decrease in the left part of the plot.

We sum up the benchmark results in table 7.6, and their datasets’ distribution of
non-empty frames in fig. 7.3.

Skeleton dataset Benchmark (%)
OpenPose-og 30.70
OpenPose-cur 30.90
tf-pose-cur 24.32

Table 7.6 Summarizing the benchmark results from the three (skeleton) datasets.

7.2 Establish a new benchmark 96

Fig. 7.3 The distribution of non-empty frames from the three benchmark datasets:
“OpenPose-og”, visualized in green, - the original OpenPose dataset used by Yan et
al. “tf-pose”, visualized in orange - the currently available dataset, pose estimated by
tf-pose. Lastly, “OpenPose-cur”, visualized in blue - the currently available dataset,
pose estimated by OpenPose.

Furthermore, Yan et al. report results on the data subset “Kinetics motion” dataset,
explained in section 4.2.6: 72.4%. Our model, trained on the tf-pose-cur dataset,
got an accuracy of 57.71% when validating on this Kinetics motion data subset. We
summarize these benchmarks in table 7.7 indicating that there is a real tradeoff between
speed and accuracy in our current setup. Note that we did not re-run this experiment
with the new OpenPose-cur dataset, because of the relatively insignificant performance
difference.

Dataset Pose estimator Accuracy (%)
Original OpenPose 30.70
Currently available tf-pose 24.32
Motion OpenPose 72.40
Motion tf-pose 57.71

Table 7.7 Summarizing the benchmarks of models trained on OpenPose- and tf-pose
generated data. One can see a clear decrease in accuracy when switching from OpenPose
to tf-pose.

7.2 Establish a new benchmark 97

Lastly, in section 6.3 we introduced a subset of action classes relevant for rehabili-
tation, named “Rehab data”. This dataset consists of 6 classes plus a set of random
videos, labeled as “unknown”. This is independent of the experiments presented by
Yan et al.

We ran the equivalent subset of data from the currently available videos, processed
using tf-pose, through the training process. We name this model Rehab model. This
new model was run through the validation process, giving better results than the
OpenPose model (table 6.2).

Accuracy (%)
Validation set 62.65

Table 7.8 Rehab model performance on data pose estimated by tf-pose.

The corresponding confusion matrix is shown in fig. 7.4

Fig. 7.4 Confusion matrix showing the Rehab model’s performance on the validation
set. This is an improvement from the confusion matrix showing the result from an
equivalent process, using OpenPose, rather than the currently used tf-pose.

Considering that tf-pose generated data had shown inferior results earlier, this
seemed out of the ordinary. The reason for this abnormality could be due to the

7.3 Increasing the accuracy of our ST-GCN model 98

difference in the number of empty frames in the data. This was investigated by plotting
the number of empty frames in the Rehab subsets for training and validation, for both
OpenPose-og and tf-pose-cur in fig. 7.5. Here we can see that the difference in the
number of non-empty frames is more or less insignificant, showing that the abnormality
is not due to the difference in the number of empty frames.

Fig. 7.5 The distribution of non-empty frames from the two splits of the Rehab dataset:
train and validation. Comparing the pose estimation softwares: OpenPose (orange),
and tf-pose (blue).

7.3 Increasing the accuracy of our ST-GCN model

With a new benchmark defined, we wanted to increase the accuracy of our new rehab
model. As explained in chapter 3, there are many ways of improving deep learning
models, and this section will lay out how we did this.

7.3.1 Transfer learning

As mentioned in section 3.1.3, an important tool when training deep learning models
is transfer learning. This has the potential to both increase accuracy and decrease
training speed, all while demanding less data. The amount of data is a general problem
in deep learning, and this specific domain of action recognition is no exception, making
transfer learning an important technique to include in our work.

7.3 Increasing the accuracy of our ST-GCN model 99

In section 3.1.3 it was also said that transfer learning is about improving learning
in a new task through the transfer of knowledge from a related task that has already
been learned. In our case, the related task that has already been learned is general
human movements, i.e. the model trained on the entire Kinetics dataset. The new task
is to learn specialized human movements.

By transferring the weights from the pre-trained model to our rehab model, the
weights will be initialized before the training starts. In theory, this will lead to faster
convergence towards a minimum. Hence, less training data is needed to achieve similar
performance as a model trained on more data with randomly initialized weights. We
wanted to see if this theory could work in practice for our project. The results after
training the Rehab model taking advantage of transfer learning are shown in table 7.9,
with the corresponding confusion matrices in fig. 7.6

Accuracy (%)
Validation set 83.05

Table 7.9 Rehab model performance after implementing transfer learning.

Fig. 7.6 Confusion matrix showing the Rehab model’s performance on the validation
set after using transfer learning. This confusion matrix combined with table 7.9 shows
a significant increase in performance.

7.3 Increasing the accuracy of our ST-GCN model 100

Lastly, we can plot the accuracy and loss calculated during training using transfer
learning, against not using transfer learning:

Fig. 7.7 Plotting the mean accuracy of the model during training when using transfer
learning vs. the mean accuracy of the model during training when not using transfer
learning. It is evident that transfer learning results in a significant increase in model
accuracy.

Fig. 7.8 Plotting the model’s mean train- and validation loss when using transfer
learning vs. the model’s mean train- and validation loss when not using transfer
learning. One can see a clear increase in the difference between training loss and
validation, resulting in an overfitting model. However, considering the size of the
accuracy increase this is definitely the way forward.

We can see from table 7.9 that transfer learning results in a overall significantly
improved model, with an increase of approximately 20 percentage points. As most of
the classes in this dataset were present in the Kinetics dataset, an increase in accuracy
is not surprising. Note that based on the accuracy- and loss plots, fig. 7.7 and fig. 7.8,
the model overfits to the training data.

7.3 Increasing the accuracy of our ST-GCN model 101

Visualization of loading the weights from one model to another, using Python:

1 def load_weights(self, model, weights_path):
2 weights = torch.load(weights_path)
3 weights = OrderedDict([[k.split(’module.’)[-1], v.cpu()] for k, v in

weights.items()])
4
5 model_dict = model.state_dict()
6 pretrained_dict = {k: v for k, v in weights.items() if k in model_dict}
7 model_dict.update(pretrained_dict)
8
9 model.load_state_dict(model_dict)

10
11 return model

7.3.2 Freezing layers

As explained in section 3.1.3, transfer learning is often combined with freezing/un-
freezing of pre-trained layers, such that one optimizes the gains from using pre-trained
weights.

Whether a layer is updated during training is decided by each layer’s boolean
attribute “requires_grad”. So, after loading the pre-trained weights, we set all but
the last (fully connected) layers’ “requires_grad” to False. Specifically, we used the
model’s “children” attribute, freezing every child node up to the last one. Visualized
using Python:

1 if freeze:
2 for child in model.children()[:-2]:
3 for name, param in child.names_parameters():
4 param.requires_grad = False

Then, after a couple of updates to the last layer(s), we unfreeze the frozen nodes,
such that the entire rehab model can be optimized to the rehab dataset. In addition,
these processes should be combined with a change in learning rate as well, with a
decrease after unfreezing, for example halving the learning rate. Here visualized in
Python:

7.3 Increasing the accuracy of our ST-GCN model 102

1 def unfreeze_all(self):
2 for child in self.model.children():
3 for param in child.parameters():
4 if param.requires_grad is False:
5 param.requires_grad = True
6 self.adjust_lr(specific_adjustment=0.5)

Lastly, we edit the learning rate schedule by changing the hyperparameters “steps”
and “base learning rate”, explained in section 4.2.4. We decreased the base learning
rate from 0.1 to 0.01, and changed the step interval from [20, 30, 40, 50] to [10, 20, 30,
40].

These changes, combined with unfreezing pre-trained layers and halving the learning
rate after finishing 10% of the epochs, leads to an overall decrease in the network’s
learning rate. This is motivated by the fact that we do not want to change the loaded
weights too much, as they represent general human action recognition - we only want
to specialize them to our smaller subset of human action recognition. The result was
a small increase in accuracy, shown in table 7.10, with the corresponding confusion
matrix, fig. 7.9, also not showing a great accuracy increase.

Accuracy (%)
Validation set 84.77

Table 7.10 Rehab model performance after implementing transfer learning, layer
freezing, and hyperparameter tuning.

Note that one could also consider using different learning rates for each (group of)
layers, e.g. discriminative learning rates.

7.3.3 Adding complexity

We have shown that freezing the pre-trained layers, thereby only training the randomly
initialized layers for the first few epochs, resulted in an increase in accuracy, albeit
small. This motivated us to experiment with adding more (randomly initialized) layers
to the model, i.e. increasing its complexity and capacity.

7.3 Increasing the accuracy of our ST-GCN model 103

Fig. 7.9 Confusion matrix showing the Rehab model’s performance on the validation
set after using transfer learning, layer freezing, and hyperparameter tuning. There is
not a notable difference from fig. 7.6, except for the eight more correctly classified
videos of “unknown”.

We experimented with adding one new ST-GCN layer and one or more fully
connected layer(s), both explained in section 4.2.4. Furthermore, we tried increasing
the number of activations in these newly added layers: from 256, to 512. Here visualized
in Python:

1 self.st_gcn_networks = nn.ModuleList((
2 st_gcn(in_channels, 64, kernel_size, 1, residual=False, **kwargs),
3 st_gcn(64, 64, kernel_size, 1, **kwargs),
4 st_gcn(64, 64, kernel_size, 1, **kwargs),
5 st_gcn(64, 64, kernel_size, 1, **kwargs),
6 st_gcn(64, 128, kernel_size, 2, **kwargs),
7 st_gcn(128, 128, kernel_size, 1, **kwargs),
8 st_gcn(128, 128, kernel_size, 1, **kwargs),
9 st_gcn(128, 256, kernel_size, 2, **kwargs),

10 st_gcn(256, 256, kernel_size, 1, **kwargs),
11 st_gcn(256, 512, kernel_size, 1, **kwargs), # Increased output size
12 st_gcn(512, 512, kernel_size, 1, **kwargs), # Newly added
13))

7.3 Increasing the accuracy of our ST-GCN model 104

14 ...
15 self.fcn2 = nn.Conv2d(512, 512, kernel_size=1) # Newly added
16 self.fcn = nn.Conv2d(512, num_class, kernel_size=1) # Increased input size

We conclude that one extra fully connected layer with size 512 for its in- and output,
while not adding a new ST-GCN layer, but rather increasing the last ST-GCN’s layer
output size and the final fully connected layer’s input size, gave the most improvement
of these experiments: 0.5 percentage points validation accuracy increase, shown in
table 7.11 with the corresponding confusion matrix in fig. 7.10.

Accuracy (%)
Validation set 85.26

Table 7.11 Rehab model performance after implementing transfer learning, layer
freezing, hyperparameter tuning, and added complexity.

Fig. 7.10 Confusion matrix showing the Rehab model’s performance on the validation
set after using transfer learning, layer freezing, hyper-parameter tuning, and added
complexity.

Now, it rather seems that these experiments show that adding complexity actually
results in an inferior model that overfits to the training data. This can be seen from

7.3 Increasing the accuracy of our ST-GCN model 105

plotting this more complex model versus the model from section 7.3.2, shown in fig.
7.11 and 7.12.

Fig. 7.11 Plotting the mean accuracy of the model during training when adding a fully
connected layer vs. the model’s mean accuracy during training when not having an
extra fully connected layer. The addition of a fully connected layer seems to improve
the model’s accuracy, minimally.

Fig. 7.12 Plotting the model’s mean train- and validation loss when adding a fully
connected layers vs. the model’s mean train- and validation loss without an extra
fully connected layer. Here we can clearly see a decrease in the model’s generalization
ability, i.e. increased overfitting.

Fig. 7.12 actually looks a lot like fig 7.8, making us interested in exploring methods
to decrease the model’s generalization error, i.e. implement regularization techniques.

7.3.4 Experimenting on NVIDIA’s DGX station

As mentioned in section 6.4, we used two NVIDIA TITAN RTX GPUs running in
parallel, with the hyperparameters specified in ST-GCN’s project for training. However,

7.3 Increasing the accuracy of our ST-GCN model 106

we were fortunate enough to gain access to NVIDIA’s DGX station, sporting four
NVIDIA® Tesla® V100 Tensor Core GPUs, integrated with a fully-connected four-way
NVLink™ architecture, delivering 500 teraFLOPS of AI power. This provided us with
about 32GB×4 = 128GB of GPU memory, putting us in a position to run more, and
faster hyperparameter tuning.

With this state-of-the-art hardware it was possible to test if we could recreate and
possibly surpass Yan et al.’s reported score on the full Kinetics dataset, but more
importantly improve our tf-pose benchmark. This was motivated by a couple of reasons.
One is we had not verified their reported results - if we were unable to recreate this,
maybe the tf-pose benchmark was not that far off. Another being to see if small
adjustments made possible by more advanced hardware were enough to increase the
OpenPose benchmark, and if so, by how much. Furthermore, if these experiments
result in increased accuracy for the OpenPose dataset, would it have the same impact
on our tf-pose dataset?

Recreating Yan et al.’s benchmark

Yan et al. reported a 30.7% accuracy on the 400 class Kinetics dataset. They used
8×TITANX GPUs, giving them about 12GB×8 = 96GB of GPU memory.

Using the processed OpenPose data, made available by Yan et al. through both
GoogleDrive and BaiduYun, we are able to verify the reported results. The model
even surpassed the reported results, albeit by a relatively insignificant margin, giving a
validation accuracy of 31.6%, using their hyperparameters.

Improving tf-pose benchmark

As with the OpenPose data, we recreated the tf-pose benchmark using the DGX and
got approximately identical results: 24.32%. Hence, we have shown that using DGX
compared to RTX or TITANX does not in itself produce a change in performance.
This was expected. However, as mentioned, using the DGX gives us the ability to
run more, and faster hyperparameter tuning, which is generally how deep learning
networks are optimized.

We tried quadrupling the batch size, increasing the learning rate, increasing the
number of epochs by 600%, and 10× the weight decay. None of these changes gave
a noticeable increase in model performance, that is, until we tried transfer learning

7.3 Increasing the accuracy of our ST-GCN model 107

by using the weights from an OpenPose-trained network to train on tf-pose data.
More specifically, we trained a model on the full Kinetics dataset, pose estimated by
OpenPose, i.e. “OpenPose-og”, loaded those weights into a new model, and trained
that model on the full Kinetics dataset, pose estimated by tf-pose, i.e. “tf-pose-cur”.
This gave a performance boost on the validation accuracy of about 2 percentage points:
26.26%. As an interesting aside, this result ties in with the results from (Carreira
and Zisserman, 2017), reporting that performing transfer learning in videos, using
the Kinetics dataset, has shown considerable benefits, comparable to the benefits of
pre-training ConvNets on the ImageNet dataset.

We have visualized the two training processes non-transfer learning and transfer
learning in fig. 7.13 and 7.14. Note that the jump in fig. 7.13 is explained by differences
in the learning rate schedulers.

Fig. 7.13 Plotting the model’s mean training accuracy when using transfer learning vs.
the mean accuracy when using randomly initialized weights. The two approaches has
a notable initial performance difference that seems to somewhat smooth out after the
first 20 epochs. However, the approach using transfer learning gets a better accuracy.

As the loss figs. 7.14, 7.12 and 7.8 show that the ST-GCN network has a problem
with overfitting. This led us to run the same experiments mentioned in the above
paragraph, on this improved benchmark model, with a couple of additions: adding
regularization in the form of a 0.2 dropout to each ST-GCN layer in each model and
improving the learning rate scheduler by limiting the number of times the learning
rate is decayed. This led to an even more improved model, shown in fig. 7.15 and 7.16,
where we can clearly see an increase in the model’s generalization ability, and a small
accuracy gain, more specifically 26.46%.

Note that we did try with higher values of dropout, up to 0.5. However, 0.2 seemed
to produce the best results.

7.3 Increasing the accuracy of our ST-GCN model 108

Fig. 7.14 Plotting model mean train- and validation loss when using transfer learning
vs. not using transfer learning. Like fig. 7.13, the transfer learning approach is superior
in the start of the training process, with the differences more or less evens out at the
end. However, the mean loss on the validation set for the transfer learning approach is
slightly better than the mean loss on the validation set for the non-transfer learning
approach.

Experimenting with the model pre-trained using DGX

Now that we have an improved tf-pose benchmark of 26.46%, with 0.2 dropout
implemented throughout the transfer learning process, we should see some improvements
with regards to the rehab model’s generalization ability. Our new benchmark model
was used for transfer learning to train the rehab model, as in the start of this section,
doing hyperparameter tuning on layer freezing and adding more layers.

This resulted in a model with the following results:

Accuracy (%)
Validation set 82.56

Table 7.12 Rehab model performance after improving the benchmark model by im-
plementing transfer learning×2, adding regularization, layer freezing, hyperparameter
tuning, and added complexity.

This is a decrease of about 2 percentage points of validation accuracy from the
previous optimal model, from table 7.9. By considering the accuracy alone we should
have probably continued with the previous optimal model. However, a 2 percentage
points increase is rather insignificant when taking into account the model’s increased
generalization potential with regularization implemented. Therefore, we choose to go
forward with the “Added regularization”-model shown in fig. 7.16.

7.4 Combining the improved components 109

Fig. 7.15 Plotting the mean accuracy of the model during training when adding
regularization in the form of 0.2 dropout to each ST-GCN layer in the model vs. the
mean accuracy without added regularization. One can see that adding regularization
results in a model with improved, albeit small, accuracy.

7.4 Combining the improved components

The improvement of the robot, explained in section 7.1, and the deep learning model,
explained in sections 7.2 and 7.3, were two separate processes. As mentioned, decreasing
the inference time on the robot to one second effected the fps negatively, going from
30 fps to 9 fps. This means that when the robot predicts on a captured video, it
essentially predicts on a 9 fps video.

Recall that we imitated Yan et al.’s video pre-processing, i.e. editing each videos
resolution (340 × 256), and more notably their fps (30). This means that all of the
training data, validation data, and most importantly test data consists of 30 fps
videos. However, to get the best possible estimate on how well the robot would
perform in a production environment, we wanted to modify the test videos such that
they approximate the data that the robot will actually see and base its predictions
on. Accordingly, we produced a more realistic test set, tailoring its specifications to
skeleton data produced by the robot, by changing the fps of all the test set videos from
30 fps to 9 fps using FFmpeg, resulting in each video having 1/3 of the original amount
of frames. We name this test set test-9fps. Note that according to FFmpeg’s homepage
the videos “will have frames dropped, in order to match the target rate” FFmpeg (2018),
i.e. it will ignore 2/3 of the frames to downsample the videos to the correct frame rate.

As has been shown in section 7.2.1, fewer frames of skeleton data usually lead to
inferior results. This is to be expected because the model has less data to base its
prediction on. Therefore, in an effort to approximate the original 30fps, we implemented

7.4 Combining the improved components 110

Fig. 7.16 Plotting the model’s mean train- and validation loss during training when
adding 0.2 dropout to each ST-GCN layer in the model vs. having no extra regulariza-
tion. There is a clear closing of the gap between train- and validation loss, meaning
that adding 0.2 dropout results in a model with increased generalization ability.

copying of frames. For each frame in each video in the test set, we copied it three
times to increase the video’s fps to 27 fps. We name this test set test-27fps. Note that
this functionality was also implemented on the robot.

We identified our optimal Rehab model in the former section, which we now test
on the two newly defined test sets: “test-9fps” and “test-27fps”, and the original test
set defined in section 6.5, called test-30fps. This is an effort to get a better sense of
how well our model would perform on live recordings on the robot. The results are
shown in table 7.13.

The confusion matrices generated during these test processed are shown in table
7.13.

Test set Accuracy (%)
test-9fps 67.14
test-27fps 84.29
test-30fps 82.86

Table 7.13 The optimal Rehab model’s performance on the three different test sets.

A significant increase in accuracy from “test-9fps” to “test-27fps” is to be expected,
because our model is trained on 30 fps videos, and predicts on skeleton files not
conveying any information about the time between the frames. Considering our model
is trained on 30 fps videos, it interprets every skeleton sequence as a 30 fps sequence.
Therefore, when the model is given a 9 fps video, it interprets the video as unusually

7.4 Combining the improved components 111

fast movements, which it may not recognize. Therefore, by tripling every frame the
connection between the spatial and the temporal aspect becomes almost the same as
what the model is trained on.

Following the same logic, one would expect the model to perform better on “test-
30fps” than “test-27fps”. With that said, the difference is insignificant considering the
size of the test sets. However, it would have been interesting to create a larger test set
to examine whether or not the performance differences between the original 30fps test
set and the 27fps test set still stands.

(a) Confusion matrix showing the optimal Rehab model’s performance
on the test set with videos having 9 frames per second.

7.4 Combining the improved components 112

(b) Confusion matrix showing the optimal Rehab model’s performance
on the test set with videos having 27 frames per second.

(c) Confusion matrix showing the optimal Rehab model’s performance
on the test set with videos having 30 frames per second.

Fig. 7.17 Confusion matrices showing the optimal Rehab model’s performance on the
three test sets. When comparing subfigure a) vs. subfigures b) and c) one can clearly
see a performance increase with a significant increase in frames per second.

7.5 Final system overview 113

7.5 Final system overview

Fig. 7.18 shows an overview of the final ROS communication in our system implemented
on the robot.

Fig. 7.18 Final ROS communication overview in our system. The orange squares are
nodes, while the blue nodes are topics. Each node has its own task, such as displaying
messages on the screen, controlling the robot, or running ST-GCN. The use of topics
and the publish/subscribe mechanism simplifies the communication between the nodes.

The process starts with the node “Pick action class”. This node has a list of
all the action classes in the Rehab dataset. It picks one of these classes randomly
before publishing it to the two topics action_class and display_message. We call the
randomly picked class X. The node “Displayer” subscribes to the display_message
topic, displaying all the messages it receives on the robot’s 7 inch screen. This was
done by using the Python library PyGame (Shinners, 2000).

By using this library we can customize the content and appearance of the messages
shown on the screen, ensuring that the robot always communicates with the user.
Combining PyGame with ROS makes it possible to show messages on the screen
synchronously with the other processes in the system.

This way, the user is told to perform action X. Next, the node “Recording and
ST-GCN” starts the recording which creates the skeleton files. After recording, the
skeleton files are sent through our model, which outputs a prediction. This prediction
is sent to the ROS topic stgcn_prediction, as described in section 6.6.2. Further, the
“TurtleBot controller” node, subscribing to the topics action_class and stgcn_prediction,
compares the two values on the topics to see if the model’s prediction corresponds with

7.6 Evaluation of our improved system 114

action X. If these values are the same, the message “correct” is sent to the ROS topic
display_message, else the message “wrong” is sent. This way the user receives feedback
on the performed movement. Further, the robot subscribes to cmd_vel, which the
“Turtlebot controller” node can send velocity messages to. These messages will depend
on whether the prediction corresponds with action X. Our final robot is shown in fig.
7.19.

7.6 Evaluation of our improved system

We have demonstrated that initializing a model’s weights by using transfer learning
gives a significant boost in both overall accuracy and the time requirements to achieve
these results. To obtain the optimal model for human action recognition, extensive
hyperparameter tuning was performed. This lead to a validation accuracy increase
of approximately 36 percentage points compared to the model from chapter 6, called
Original model. We summarize and visualize this significant improvement in table 7.14,
and fig. 7.20 and 7.21.

Model name Dataset Accuracy (%)
Original Validation 48.36
Final rehab Validation 82.56

Table 7.14 Final Rehab model performance on the validation set compared to Rehab
model from section 6.5.

7.6 Evaluation of our improved system 115

Fig. 7.20 Plotting the model’s mean accuracy during training of the original model from
chapter 6 vs. the final rehab model after implementing transfer learning, layer freezing,
increasing model complexity and extensive research into hyperparameter tuning. One
can see a significant increase in model performance.

Fig. 7.21 Plotting the model’s mean training- and validation loss during training
of the original model from chapter 6 vs. the final rehab model after implementing
transfer learning, layer freezing, increasing model complexity and extensive research
into hyperparameter tuning. It is evident that the model performance is increased,
while the model’s generalization ability is not compromised.

While the model achieved a considerable increase in accuracy, its generalization
ability was deemed questionable, as seen in fig. 7.21. We demonstrated that imple-
menting regularization techniques, such as dropout, notably improved the model’s
generalization ability. Its generalization ability was proven adequate when evaluated
on the test data, as shown in table 7.13 and fig. 7.17.

Lastly, we reduced the inference time from 151.1 seconds to 1 second. The first
step in this process was to identify bottlenecks in our system. The largest bottleneck
was OpenPose, prompting us to replace it with the faster pose estimation software

7.6 Evaluation of our improved system 116

tf-pose. This resulted in a decreased total waiting time, from 151 seconds to 31 seconds.
Further, we modified our pipeline such that the skeleton files were created as the video
was recorded, instead of after the video recording. Our new pipeline resulted in a
significant improvement in waiting time, ending at 1.0 second.

7.6 Evaluation of our improved system 117

Fig. 7.19 Our robot, with the main components: NVIDIA Jetson AGX Xavier, 7" LCD
screen, Logitech web camera, 2 Sandberg powerbanks (20 000 mAh each), OpenCR
microcontroller and Wi-Fi antennas, built on original TurtleBot components.

Chapter 8

Conclusion

8.1 Summary

In this thesis we have combined the fields of deep learning and robotics to explore if
such technologies can be used to create a robot relevant for rehabilitation purposes. In
part I we introduced background theory from the two fields. initially explaining the
fundamental theory behind machine learning in chapter 2, before advancing towards
deep learning in chapter 3, and the specific ST-GCN that we used in our experiments.
Lastly, we presented the theory behind the robotics software utilized in this project.

Part II started with training an ST-GCN model on a subset of the original data,
more relevant for rehabilitation. Initially extracting the relevant action classes from the
Kinetics dataset, before adding a new relevant class, creating our Rehab dataset. Next,
we set up two pipelines: one for training an ST-GCN model, and one for combining
this trained model with robotics for running inference on the robot. The first pipeline
was set up by forking the original ST-GCN GitHub project, implementing necessary
software to construct the rehab dataset, and train a model on this subset. By using
the Robot Operating System, we managed to enable communication between the robot
and the program running in the system - setting up the second pipeline. Chapter 6
culminates to an evaluation of the robots and its software, deeming them unsatisfactory
due to the slow run time and low accuracy. This led to chapter 7, where we performed
extensive research on how to decrease the running time, and increase the model’s
accuracy and generalization ability. The solution to decreasing the time demand was
substituting the original pose estimation software with a faster version. To further
improve the model, we utilized various machine- and deep learning methods, explained

8.1 Summary 119

in chapter 2 and 3, such as transfer learning with layer freezing, and regularization
techniques. The experiments led to an improved model accuracy by about 36 percentage
points, and reduction in time requirement of our system by 150×. Lastly, when we
combined the improved model and the robotics, we saw a difference in the data used
for model training and evaluation, and the data generated on the robot, i.e. the
production environment. This led us to process the test videos in such a way that
it approximated the data in the production environment. As a result, the test set
accuracy increased further to a final value of 84.29%. Thus proving our doubts about
the model’s generalization ability wrong.

The hypothesis we wanted to answer is: By combining state-of-the-art techniques
from computer vision and robotics it is possible to construct robots capable of accurate,
real-time human action recognition, making it feasible to deploy such systems as robotic
physical therapists.

The accuracy of our model is not world-class compared to papers such as (Olatunji,
2018), reporting results up to 95%, for human action recognition. This comparison
is albeit dubious when considering the two datasets: they used a significantly larger,
more dense dataset: “Vicon physical action dataset” (Dua and Graff, 2017), having 20
action classes, with approximately 30 000 videos per class. With that said, considering
our convincing increase in model performance only focusing in model optimization, and
Olatunji’s amount of data, it is likely we could converge towards the same performance
if we experimented with data optimization. This could be everything from setting the
threshold for the required number of non-empty frames > 0 for ignoring videos, to
implementing additional data augmentation, such as flipping frames. Be that as it may,
seen from a technical point of view, we have proven that it is feasible to construct a
robot with the ability to perform accurate, almost real-time human action recognition,
by combining state-of-the-art in robotics and deep learning for computer vision.

Further, seen from a domain point of view, more specifically rehabilitation, we
would need to cooperate with a professional physical therapist to answer our hypothesis.
There is no doubt about the system’s relevance for rehabilitation in general, as explained
in chapter 1. However, we lack the domain knowledge to deem the performance results
relevant for professional assisting, as it is now. In other words, we are unable to
conclude that it is feasible to combine state-of-the-art in robotics and deep learning
into a robotic physical therapist assistant. This is left for future work, with the hope
that this project can be a building block.

8.2 Future work 120

8.2 Future work

There are several interesting paths to explore for improving the system:

• Is it possible to implement the system on a humanoid robot, e.g. Pepper, such
that the robot can physically show what movements to do? Would this be an
improvement compared to showing the movement on a screen?

• Can the dataset be tailored more towards rehabilitation, either by adding or
subtracting movements? Are there some action classes more relevant for certain
rehabilitation, while not relevant for others? I.e. is there some natural separation
of human movement? If so, would such a separation increase the model’s ability?

• How would exploration of data optimization affect the model’s performance?
Would an increased requirement to the number of non-empty frames in a video
lead to an increase or decrease in accuracy? Is it feasible to develop a natural
way to pad padded videos? For example copying frames containing information
and use them to fill in the empty ones?

• How could one best enable continuous learning in our system? To make the system
learn after being placed in production. I.e. user-specific patterns, analogous to
how e.g. Apple’s personal assistant Siri improves as you use it. Perhaps active
learning could be added? E.g. ask the user to perform movements that are
particularly difficult for the system to classify.

• How would substituting the robot’s current computational device, Jetson Xavier,
with NVIDIA’s newest small, computational device sporting a GPU: Jetson
Nano, affect the system? Would the reduced fps lead to a significant decrease
in accuracy? If so, would the size-accuracy trade-off be desirable? Maybe it is
possible to copy frames such that one approximates the fps original, as we did in
our system?

• With the shown increase of generalization ability using data approximating data
generated on the Jetson Xavier, what effect would it have to implement this type
of data processing in the pipeline from the start? What effect would it have on
the transfer learning? Regularization efforts?

• Could we transform the use case from a classification problem to a regression
problem? How would one go about to construct the dataset, such that the model

8.2 Future work 121

learns optimal techniques for human movement? Would the experiments aimed
at optimizing the model’s accuracy performed in this project be relevant for this
use case?

References

E. V. Alliance. The Caffe Deep Learning Framework: An Interview with the
Core Developers, 2016. URL https://www.embedded-vision.com/industry-analysis/
technical-articles/caffe-deep-learning-framework-interview-core-developers.

J. A. Angelo. Robotics: a reference guide to the new technology. Libraries Unlimited,
2007.

Y. Asano, K. Okada, and M. Inaba. Design principles of a human mimetic humanoid:
Humanoid platform to study human intelligence and internal body system. Science
Robotics, 2(13):eaaq0899, 2017.

Y. Asano, K. Okada, and M. Inaba. Musculoskeletal design, control, and application of
human mimetic humanoid Kenshiro. Bioinspiration & Biomimetics, 14(3):036011, apr
2019. doi: 10.1088/1748-3190/ab03fc. URL https://doi.org/10.1088%2F1748-3190%
2Fab03fc.

P. Bajaj. Reinforcement learning, 2014. URL https://www.geeksforgeeks.org/
what-is-reinforcement-learning/.

F. Bellard. ffmpeg. https://github.com/FFmpeg/FFmpeg, 2000.

Y. Bengio, P. Simard, and P. Frasconi. Learning Long-term Dependencies with Gradient
Descent is Difficult. Trans. Neur. Netw., 5(2):157–166, Mar. 1994. ISSN 1045-9227.
doi: 10.1109/72.279181. URL http://dx.doi.org/10.1109/72.279181.

B. Boehmke. Regularized Regression, n.d. URL http://uc-r.github.io/regularized_
regression#lasso. Accessed: 2018-12-12.

M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End
to End Learning for Self-Driving Cars. CoRR, abs/1604.07316, 2016. URL http:
//arxiv.org/abs/1604.07316.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with the OpenCV
library. " O’Reilly Media, Inc.", 2008.

G. P. Brennan. Managing Physical Therapy Resources: An Analogy to the Freedom of
the Commons and the Need for Collective Action. Journal of orthopaedic & sports

https://www.embedded-vision.com/industry-analysis/technical-articles/caffe-deep-learning-framework-interview-core-developers
https://www.embedded-vision.com/industry-analysis/technical-articles/caffe-deep-learning-framework-interview-core-developers
https://doi.org/10.1088%2F1748-3190%2Fab03fc
https://doi.org/10.1088%2F1748-3190%2Fab03fc
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
http://dx.doi.org/10.1109/72.279181
http://uc-r.github.io/regularized_regression#lasso
http://uc-r.github.io/regularized_regression#lasso
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316

References 123

physical therapy, 42(6):486–488, 2012. URL https://www.jospt.org/doi/pdfplus/10.
2519/jospt.2012.0108.

R. Brooks. Bothersome Bystanders and Self Driving Cars, 2018. URL https://
rodneybrooks.com/bothersome-bystanders-and-self-driving-cars/.

M. Buhrmester, T. Kwang, and S. D. Gosling. Amazon’s Mechanical Turk: A New
Source of Inexpensive, Yet High-Quality, Data? Perspectives on Psychological
Science, 6(1):3–5, 2011. doi: 10.1177/1745691610393980. URL https://doi.org/10.
1177/1745691610393980. PMID: 26162106.

Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh. OpenPose: Realtime Multi-
Person 2D Pose Estimation using Part Affinity Fields. CoRR, abs/1812.08008, 2018.
URL http://arxiv.org/abs/1812.08008.

J. Carreira and A. Zisserman. Quo Vadis, Action Recognition? A New Model and the
Kinetics Dataset. CoRR, abs/1705.07750, 2017. URL http://arxiv.org/abs/1705.
07750.

M. Catalano, T. Leise, and T. Pfaff. Measuring Resource Inequality: The Gini
Coefficient. Numeracy, 2, 07 2009. doi: 10.5038/1936-4660.2.2.4.

W. H. Chang and Y.-H. Kim. Robot-assisted Therapy in Stroke Rehabilitation. Journal
of stroke, 15(3):174, 2013.

C. Chen, K. Liu, and N. Kehtarnavaz. Real-time human action recognition based on
depth motion maps. Journal of Real-Time Image Processing, 12(1):155–163, Jun
2016. ISSN 1861-8219. doi: 10.1007/s11554-013-0370-1. URL https://doi.org/10.
1007/s11554-013-0370-1.

S. Chen, K. Ma, and Y. Zheng. Med3D: Transfer Learning for 3D Medical Image
Analysis. CoRR, abs/1904.00625, 2019. URL http://arxiv.org/abs/1904.00625.

S. Choudhury, L. Holder, G. Chin, K. Agarwal, and J. Feo. A selectivity based
approach to continuous pattern detection in streaming graphs. arXiv preprint
arXiv:1503.00849, 2015.

G. E. Dahl, T. N. Sainath, and G. E. Hinton. Improving deep neural networks for
LVCSR using rectified linear units and dropout. In ICASSP, pages 8609–8613. IEEE,
2013. URL http://dblp.uni-trier.de/db/conf/icassp/icassp2013.html#DahlSH13.

P. Domingos. A unified bias-variance decomposition. In Proceedings of 17th Interna-
tional Conference on Machine Learning, pages 231–238, 2000.

D. Dua and C. Graff. UCI Machine Learning Repository, 2017. URL http://archive.
ics.uci.edu/ml.

K. D. Eason. Information technology and organisational change. CRC Press, 2014.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of
Publish/Subscribe. ACM Comput. Surv., 35(2):114–131, June 2003. ISSN 0360-0300.
doi: 10.1145/857076.857078. URL http://doi.acm.org/10.1145/857076.857078.

https://www.jospt.org/doi/pdfplus/10.2519/jospt.2012.0108
https://www.jospt.org/doi/pdfplus/10.2519/jospt.2012.0108
https://rodneybrooks.com/bothersome-bystanders-and-self-driving-cars/
https://rodneybrooks.com/bothersome-bystanders-and-self-driving-cars/
https://doi.org/10.1177/1745691610393980
https://doi.org/10.1177/1745691610393980
http://arxiv.org/abs/1812.08008
http://arxiv.org/abs/1705.07750
http://arxiv.org/abs/1705.07750
https://doi.org/10.1007/s11554-013-0370-1
https://doi.org/10.1007/s11554-013-0370-1
http://arxiv.org/abs/1904.00625
http://dblp.uni-trier.de/db/conf/icassp/icassp2013.html#DahlSH13
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://doi.acm.org/10.1145/857076.857078

References 124

P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial Structures for Object Recognition.
International Journal of Computer Vision, 61(1):55–79, Jan 2005. ISSN 1573-
1405. doi: 10.1023/B:VISI.0000042934.15159.49. URL https://doi.org/10.1023/B:
VISI.0000042934.15159.49.

B. Fernando, E. Gavves, J. M. Oramas, A. Ghodrati, and T. Tuytelaars. Modeling
Video Evolution for Action Recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

FFmpeg. Changing the frame rate, 2018. URL https://trac.ffmpeg.org/wiki/
ChangingFrameRate.

R. A. FISHER. The Use of Multiple Measurement in Taxonomic Problems. Annals
of Eugenics, 7(2):179–188, 1936. doi: 10.1111/j.1469-1809.1936.tb02137.x. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x.

O. S. R. Foundation. TurtleBot, n.d. URL https://www.turtlebot.com/.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages
1050–1059, 2016.

D. M. J. Garbade. Regression Versus Classification Machine Learning:
What’s the Difference?, 2018. URL https://medium.com/quick-code/
regression-versus-classification-machine-learning-whats-the-difference-345c56dd15f7.
Accessed: 2018-12-12.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS’10). Society for Artificial Intelligence and
Statistics, 2010.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks,
2005., volume 2, pages 729–734 vol. 2, July 2005. doi: 10.1109/IJCNN.2005.1555942.

Q. Guan, Y. Huang, Z. Zhong, Z. Zheng, L. Zheng, and Y. Yang. Diagnose like a
Radiologist: Attention Guided Convolutional Neural Network for Thorax Disease
Classification. CoRR, abs/1801.09927, 2018. URL http://arxiv.org/abs/1801.09927.

P. Gupta. Cross Validation in Machine Learning, 2017. URL https://towardsdatascience.
com/cross-validation-in-machine-learning-72924a69872f. Accessed: 2018-12-12.

A. Géron. Hands-On Machine Learning with Skikit-Learn and TensorFlow. O’Reilly
Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. CoRR, abs/1502.01852, 2015.
URL http://arxiv.org/abs/1502.01852.

https://doi.org/10.1023/B:VISI.0000042934.15159.49
https://doi.org/10.1023/B:VISI.0000042934.15159.49
https://trac.ffmpeg.org/wiki/ChangingFrameRate
https://trac.ffmpeg.org/wiki/ChangingFrameRate
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://www.turtlebot.com/
https://medium.com/quick-code/regression-versus-classification-machine-learning-whats-the-difference-345c56dd15f7
https://medium.com/quick-code/regression-versus-classification-machine-learning-whats-the-difference-345c56dd15f7
http://arxiv.org/abs/1801.09927
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f
http://arxiv.org/abs/1502.01852

References 125

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Comput., 9
(8):1735–1780, Nov. 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

B. K. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence, 17(1):
185 – 203, 1981. ISSN 0004-3702. doi: https://doi.org/10.1016/0004-3702(81)90024-2.
URL http://www.sciencedirect.com/science/article/pii/0004370281900242.

C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A Practical Guide to Support Vector Clas-
sification. Technical report, Department of Computer Science, National Taiwan
University, 2003. URL http://www.csie.ntu.edu.tw/~cjlin/papers.html.

J. D. Hunter. Matplotlib: A 2D graphics environment. Computing In Science &
Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. CoRR, abs/1502.03167, 2015. URL http:
//arxiv.org/abs/1502.03167.

E. T. Jaynes. Information Theory and Statistical Mechanics. Phys. Rev., 106:620–630,
May 1957. doi: 10.1103/PhysRev.106.620. URL https://link.aps.org/doi/10.1103/
PhysRev.106.620.

jeffersoncountyhealthcenter. The Future of Physical Therapy for Baby
Boomers. https://www.jeffersoncountyhealthcenter.org/about/news/
the-future-of-physical-therapy-for-baby-boomers, 2017. [Online; accessed
2019-04-05].

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional Architecture for Fast Feature Embedding.
CoRR, abs/1408.5093, 2014. URL http://arxiv.org/abs/1408.5093.

H. R. Kam, S.-H. Lee, T. Park, and C.-H. Kim. RViz: A Toolkit for Real Domain Data
Visualization. Telecommun. Syst., 60(2):337–345, Oct. 2015. ISSN 1018-4864. doi:
10.1007/s11235-015-0034-5. URL http://dx.doi.org/10.1007/s11235-015-0034-5.

W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola,
T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman. The Kinetics Human
Action Video Dataset. CoRR, abs/1705.06950, 2017. URL http://arxiv.org/abs/
1705.06950.

P. Kazanzides, G. Fichtinger, G. Hager, A. Okamura, L. Whitcomb, and R. Taylor.
Surgical and Interventional Robotics - Core Concepts, Technology, and Design
[Tutorial]. IEEE Robotics & Automation Magazine, 15(2):122–130, 2008. ISSN
1070-9932.

S. Khemaissia. OROCOS researchgate, 2013. URL https://www.researchgate.net/
post/Differences_between_ROS_and_OROCOS.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.sciencedirect.com/science/article/pii/0004370281900242
http://www.csie.ntu.edu.tw/~cjlin/papers.html
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://link.aps.org/doi/10.1103/PhysRev.106.620
https://link.aps.org/doi/10.1103/PhysRev.106.620
https://www.jeffersoncountyhealthcenter.org/about/news/the-future-of-physical-therapy-for-baby-boomers
https://www.jeffersoncountyhealthcenter.org/about/news/the-future-of-physical-therapy-for-baby-boomers
http://arxiv.org/abs/1408.5093
http://dx.doi.org/10.1007/s11235-015-0034-5
http://arxiv.org/abs/1705.06950
http://arxiv.org/abs/1705.06950
https://www.researchgate.net/post/Differences_between_ROS_and_OROCOS
https://www.researchgate.net/post/Differences_between_ROS_and_OROCOS

References 126

T. S. Kim and A. Reiter. Interpretable 3D Human Action Analysis with Temporal
Convolutional Networks. CoRR, abs/1704.04516, 2017. URL http://arxiv.org/abs/
1704.04516.

N. Koenig and A. Howard. Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154
vol.3, Sep. 2004. doi: 10.1109/IROS.2004.1389727.

R. Kohavi, D. H. Wolpert, et al. Bias plus variance decomposition for zero-one loss
functions. In ICML, volume 96, pages 275–83, 1996.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

J. Le. A Tour of The Top 10 Algorithms for Machine Learn-
ing Newbies, 2018. URL https://towardsdatascience.com/
a-tour-of-the-top-10-algorithms-for-machine-learning-newbies-dde4edffae11.

Y. Lecun, Y. Bengio, and G. Hinton. Deep Learning. Nature, 521(7553), 2015. ISSN
0028-0836.

A. LeNail. NN-SVG: Publication-Ready Neural Network Architecture Schematics.
Journal of Open Source Software, 4:747, 01 2019. doi: 10.21105/joss.00747.

H.-T. Li, J.-J. Huang, C.-W. Pan, H.-I. Chi, and M.-C. Pan. Inertial Sensing Based
Assessment Methods to Quantify the Effectiveness of Post-Stroke Rehabilitation.
Sensors, 15(7):16196–16209, 2015. ISSN 1424-8220. doi: 10.3390/s150716196. URL
http://www.mdpi.com/1424-8220/15/7/16196.

W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3D points. In 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition -
Workshops, pages 9–14, June 2010. doi: 10.1109/CVPRW.2010.5543273.

Lumen. Understanding Social Interaction. https://courses.lumenlearning.com/boundless-
sociology/chapter/understanding-social-interaction/, n.d. [Online; accessed
2019-04-07].

J. M. N. S. Madeleine Waldie, Abhinav Ayalur. Hello World! Robot Re-
sponds to Human Gestures, 2018. URL https://news.developer.nvidia.com/
hello-world-robot-responds-to-human-gestures/.

S. Maji, L. Bourdev, and J. Malik. Action recognition from a distributed representation
of pose and appearance. In CVPR 2011, pages 3177–3184, June 2011. doi: 10.1109/
CVPR.2011.5995631.

M. F. Maples. Gero-Counselor Prepare: The Silver Tsunami Is Headed Our Way.
VISTAS Online, pages 41–44, 2002.

http://arxiv.org/abs/1704.04516
http://arxiv.org/abs/1704.04516
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://towardsdatascience.com/a-tour-of-the-top-10-algorithms-for-machine-learning-newbies-dde4edffae11
https://towardsdatascience.com/a-tour-of-the-top-10-algorithms-for-machine-learning-newbies-dde4edffae11
http://www.mdpi.com/1424-8220/15/7/16196
https://news.developer.nvidia.com/hello-world-robot-responds-to-human-gestures/
https://news.developer.nvidia.com/hello-world-robot-responds-to-human-gestures/

References 127

L. Y. P. C. Matt Collier, Richard Fu. Artificial Intelligence (AI):
Healthcare’s New Nervous System. https://www.accenture.com/us-en/
insight-artificial-intelligence-healthcare, 2017. [Online; access 2019-01-11].

L. Matthies, M. Maimone, A. Johnson, Y. Cheng, R. Willson, C. Villalpando, S. Gold-
berg, A. Huertas, A. Stein, and A. Angelova. Computer Vision on Mars. Interna-
tional Journal of Computer Vision, 75(1):67–92, Oct 2007. ISSN 1573-1405. doi:
10.1007/s11263-007-0046-z. URL https://doi.org/10.1007/s11263-007-0046-z.

S. May. What Is Robotics?, 2017. URL https://www.nasa.gov/audience/forstudents/
5-8/features/nasa-knows/what_is_robotics_58.html.

T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997. ISBN 0070428077, 9780070428072.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. Mit
Press, 2012. ISBN 9780262018258. URL http://www.jstor.org/stable/j.ctt5hhcw1.

E. Mollick. Establishing Moore’s Law. IEEE Annals of the History of Computing, 28
(3):62–75, July 2006. ISSN 1058-6180. doi: 10.1109/MAHC.2006.45.

S. Murray. An exploratory analysis of multi-class uncertainty approximation in Bayesian
convolution neural networks. Master’s thesis, University of Bergen, 2018.

M. Niepert, M. Ahmed, and K. Kutzkov. Learning Convolutional Neural Networks for
Graphs. CoRR, abs/1605.05273, 2016a. URL http://arxiv.org/abs/1605.05273.

M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for
graphs. In International conference on machine learning, pages 2014–2023, 2016b.

NVIDIA. Jetson Xavier Module. https://developer.nvidia.com/embedded/buy/jetson-
agx-xavier, 2018.

S. of Everyday Things. Bernoulli’s Principle, 2019. URL https://www.encyclopedia.
com/science-and-technology/physics/physics/bernoullis-principle.

U. B. of Labor Statistics. Physical Therapist Assistants and Aides - Job Out-
look. https://www.bls.gov/ooh/healthcare/physical-therapist-assistants-and-aides.
htm#tab-6, 2018. [Online; access 2019-01-11].

I. E. Olatunji. Human Activity Recognition for Mobile Robot. CoRR, abs/1801.07633,
2018. URL http://arxiv.org/abs/1801.07633.

OROCOS. OROCOS, 2019. URL http://www.orocos.org/.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS-W, 2017.

J. A. Pérez, F. Deligianni, D. Ravì, and G. Yang. Artificial Intelligence and Robotics.
CoRR, abs/1803.10813, 2018. URL http://arxiv.org/abs/1803.10813.

https://www.accenture.com/us-en/insight-artificial-intelligence-healthcare
https://www.accenture.com/us-en/insight-artificial-intelligence-healthcare
https://doi.org/10.1007/s11263-007-0046-z
https://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what_is_robotics_58.html
https://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what_is_robotics_58.html
http://www.jstor.org/stable/j.ctt5hhcw1
http://arxiv.org/abs/1605.05273
https://www.encyclopedia.com/science-and-technology/physics/physics/bernoullis-principle
https://www.encyclopedia.com/science-and-technology/physics/physics/bernoullis-principle
https://www.bls.gov/ooh/healthcare/physical-therapist-assistants-and-aides.htm#tab-6
https://www.bls.gov/ooh/healthcare/physical-therapist-assistants-and-aides.htm#tab-6
http://arxiv.org/abs/1801.07633
http://www.orocos.org/
http://arxiv.org/abs/1803.10813

References 128

M. Pergolotti, A. Deal, B. Reeve, and H. Muss. The underutilization of occupational
and physical therapy for older adults with cancer. Journal Of Clinical Oncology, 32
(15), 2014. ISSN 0732-183X.

P. Poli, G. Morone, G. Rosati, and S. Masiero. Robotic technologies and rehabilitation:
new tools for stroke patients’ therapy. BioMed Research International, 2013, 2013.

A. Pugh. Robot vision. Springer Science & Business Media, 2013.

S. Raschka. MLxtend: Providing machine learning and data science utilities and
extensions to Python’s scientific computing stack. The Journal of Open Source
Software, 3(24), Apr. 2018. doi: 10.21105/joss.00638. URL http://joss.theoj.org/
papers/10.21105/joss.00638.

Rock. Rock Robotics, 2019. URL https://www.rock-robotics.org/.

W. Rosamond, K. Flegal, K. Furie, A. Go, K. Greenlund, N. Haase, et al. Heart
Disease and Stroke Statistics Á 2008 update Á a Report from the American Heart
Association Statistics Committee and Stroke Statistics Subcommittee. Circulation,
117, 2008.

J. Rosen, B. Hannaford, and R. Satava. Surgical Robotics: Systems Applications and
Visions. Springer US, 2010. ISBN 9781441911254. URL https://books.google.ht/
books?id=AhB8NQEACAAJ.

ROS.org. About ROS, 2019a. URL http://www.ros.org/about-ros.

ROS.org. ROS - nodes, 2019b. URL http://wiki.ros.org/Nodes.

ROS.org. ROS - topics, 2019c. URL http://wiki.ros.org/Topics.

P. R. Ruiz. Understanding and visualizing ResNets, 2018. URL https://
towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8.

M. Salem Saleh Al-amri, D. N.V. Kalyankar, and D. Khamitkar S.D. Image segmen-
tation by using edge detection. International Journal on Computer Science and
Engineering, 2, 05 2010.

A. L. Samuel. Some Studies in Machine Learning Using the Game of Checkers. IBM J.
Res. Dev., 3(3):210–229, July 1959. ISSN 0018-8646. doi: 10.1147/rd.33.0210. URL
http://dx.doi.org/10.1147/rd.33.0210.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The Graph
Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, Jan
2009. ISSN 1045-9227. doi: 10.1109/TNN.2008.2005605. URL https://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=1555942.

D. Scherer, A. Müller, and S. Behnke. Evaluation of Pooling Operations in Convolutional
Architectures for Object Recognition. In Proceedings of the 20th International
Conference on Artificial Neural Networks: Part III, ICANN’10, pages 92–101, Berlin,
Heidelberg, 2010. Springer-Verlag. ISBN 3-642-15824-2, 978-3-642-15824-7. URL
http://dl.acm.org/citation.cfm?id=1886436.1886447.

http://joss.theoj.org/papers/10.21105/joss.00638
http://joss.theoj.org/papers/10.21105/joss.00638
https://www.rock-robotics.org/
https://books.google.ht/books?id=AhB8NQEACAAJ
https://books.google.ht/books?id=AhB8NQEACAAJ
http://www.ros.org/about-ros
http://wiki.ros.org/Nodes
http://wiki.ros.org/Topics
https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8
https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8
http://dx.doi.org/10.1147/rd.33.0210
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1555942
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1555942
http://dl.acm.org/citation.cfm?id=1886436.1886447

References 129

G. Schröder, A. Knauerhase, G. Kundt, and H.-C. Schober. Effects of physical
therapy on quality of life in osteoporosis patients - a randomized clinical trial.
Health and Quality of Life Outcomes, 10(1):101, Aug 2012. ISSN 1477-7525. doi:
10.1186/1477-7525-10-101. URL https://doi.org/10.1186/1477-7525-10-101.

A. Shahroudy, J. Liu, T. Ng, and G. Wang. NTU RGB+D: A Large Scale Dataset for
3D Human Activity Analysis. CoRR, abs/1604.02808, 2016a. URL http://arxiv.org/
abs/1604.02808.

A. Shahroudy, J. Liu, T. Ng, and G. Wang. NTU RGB+D: A Large Scale Dataset for
3D Human Activity Analysis. CoRR, abs/1604.02808, 2016b. URL http://arxiv.org/
abs/1604.02808.

A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. NTU RGB+D: A Large Scale Dataset
for 3D Human Activity Analysis. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016c.

P. Shinners. PyGame. http://pygame.org/, 2000.

C. Shorten. Data Augmentation on Images, 2018. URL https://towardsdatascience.
com/data-augmentation-and-images-7aca9bd0dbe8. Accessed: 2018-12-18.

K. Simonyan and A. Zisserman. Two-Stream Convolutional Networks for Action
Recognition in Videos. CoRR, abs/1406.2199, 2014. URL http://arxiv.org/abs/1406.
2199.

S. L. Smith, P. Kindermans, and Q. V. Le. Don’t Decay the Learning Rate, Increase
the Batch Size. CoRR, abs/1711.00489, 2017. URL http://arxiv.org/abs/1711.00489.

M. Sokolova and G. Lapalme. A systematic analysis of performance measures for
classification tasks. Information Processing & Management, 45(4):427 – 437, 2009.
ISSN 0306-4573. doi: https://doi.org/10.1016/j.ipm.2009.03.002. URL http://www.
sciencedirect.com/science/article/pii/S0306457309000259.

L.-Y. Song, Jialu. Artificial Intelligence and Modern Home Design. MATEC Web
Conf., 227:02004, 2018. doi: 10.1051/matecconf/201822702004. URL https://doi.
org/10.1051/matecconf/201822702004.

T. Soo Kim and A. Reiter. Interpretable 3D Human Action Analysis With Temporal
Convolutional Networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, July 2017.

Spartonnavex. What is an IMU? https://www.spartonnavex.com/imu/, 2015. [Online;
accessed 2019-04-05].

N. Srivastava. Improving Neural Networks with Dropout. In The Journal of Machine
Learning Research, volume 15, pages 1929–1958, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
A Simple Way to Prevent Neural Networks from Overfitting. Journal of Ma-
chine Learning Research, 15:1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

https://doi.org/10.1186/1477-7525-10-101
http://arxiv.org/abs/1604.02808
http://arxiv.org/abs/1604.02808
http://arxiv.org/abs/1604.02808
http://arxiv.org/abs/1604.02808
http://pygame.org/
https://towardsdatascience.com/data-augmentation-and-images-7aca9bd0dbe8
https://towardsdatascience.com/data-augmentation-and-images-7aca9bd0dbe8
http://arxiv.org/abs/1406.2199
http://arxiv.org/abs/1406.2199
http://arxiv.org/abs/1711.00489
http://www.sciencedirect.com/science/article/pii/S0306457309000259
http://www.sciencedirect.com/science/article/pii/S0306457309000259
https://doi.org/10.1051/matecconf/201822702004
https://doi.org/10.1051/matecconf/201822702004
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

References 130

R. Stories. CUE3: Toyota’s basketball robot plays in Tokyo, 2019. URL https:
//robotreporters.com/cue3-toyotas-basketball-robot-plays-in-tokyo/.

J. Surowiecki. The Wisdom of Crowds. Anchor, 2005. ISBN 0385721706.

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A Survey on Deep Transfer
Learning. CoRR, abs/1808.01974, 2018. URL http://arxiv.org/abs/1808.01974.

Tesla. Tesla’s autopilot, 2019. URL https://www.tesla.com/autopilot.

tf pose. tf-pose github, 2019. URL https://github.com/ildoonet/tf-pose-estimation.

theverge.com. Waymo releases app, 2019. URL https://www.theverge.com/2019/4/
16/18311820/waymo-app-google-play-self-driving-car.

S. TIBKEN. Waymo CEO: Autonomous cars won’t ever be able to
drive in all conditions, 2018. URL https://www.cnet.com/news/
alphabet-google-waymo-ceo-john-krafcik-autonomous-cars-wont-ever-be-able-to-drive-in-all-conditions/.

L. Torrey and J. Shavlik. Transfer learning. In Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques, pages
242–264. IGI Global, 2010.

T. Truelsen, B. Piechowski-Jóźwiak, R. Bonita, C. Mathers, J. Bogousslavsky, and
G. Boysen. Stroke incidence and prevalence in Europe: a review of available data.
European journal of neurology, 13(6):581–598, 2006.

A. W. Vieira, E. R. Nascimento, G. L. Oliveira, Z. Liu, and M. F. M. Campos.
STOP: Space-Time Occupancy Patterns for 3D Action Recognition from Depth Map
Sequences. In L. Alvarez, M. Mejail, L. Gomez, and J. Jacobo, editors, Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Applications, pages 252–
259, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-33275-3.

J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble for action recognition
with depth cameras. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1290–1297, June 2012. doi: 10.1109/CVPR.2012.6247813.

M. Waskom, O. Botvinnik, D. O’Kane, P. Hobson, J. Ostblom, S. Lukauskas, D. C.
Gemperline, T. Augspurger, Y. Halchenko, J. B. Cole, J. Warmenhoven, J. de Ruiter,
C. Pye, S. Hoyer, J. Vanderplas, S. Villalba, G. Kunter, E. Quintero, P. Bachant,
M. Martin, K. Meyer, A. Miles, Y. Ram, T. Brunner, T. Yarkoni, M. L. Williams,
C. Evans, C. Fitzgerald, Brian, and A. Qalieh. mwaskom/seaborn: v0.9.0 (july
2018), July 2018. URL https://doi.org/10.5281/zenodo.1313201.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, UK, May 1989. URL http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf.

Waymo. Waymo, 2019. URL https://waymo.com/.

N. E. West and T. O’Shea. Deep architectures for modulation recognition. In 2017
IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN),
pages 1–6, March 2017. doi: 10.1109/DySPAN.2017.7920754.

https://robotreporters.com/cue3-toyotas-basketball-robot-plays-in-tokyo/
https://robotreporters.com/cue3-toyotas-basketball-robot-plays-in-tokyo/
http://arxiv.org/abs/1808.01974
https://www.tesla.com/autopilot
https://github.com/ildoonet/tf-pose-estimation
https://www.theverge.com/2019/4/16/18311820/waymo-app-google-play-self-driving-car
https://www.theverge.com/2019/4/16/18311820/waymo-app-google-play-self-driving-car
https://www.cnet.com/news/alphabet-google-waymo-ceo-john-krafcik-autonomous-cars-wont-ever-be-able-to-drive-in-all-conditions/
https://www.cnet.com/news/alphabet-google-waymo-ceo-john-krafcik-autonomous-cars-wont-ever-be-able-to-drive-in-all-conditions/
https://doi.org/10.5281/zenodo.1313201
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://waymo.com/

References 131

K. Wiggers. Tesla plans to launch driverless taxi service
in 2020, 2019. URL https://venturebeat.com/2019/04/22/
tesla-plans-to-launch-driverless-taxi-service-in-2020/.

wire.com. Elon Musk promise, 2019. URL https://www.wired.com/story/
elon-musk-tesla-full-self-driving-2019-2020-promise/.

D. H. Wolpert and W. G. Macready. No Free Lunch Theorems for Optimization. Trans.
Evol. Comp, 1(1):67–82, Apr. 1997. ISSN 1089-778X. doi: 10.1109/4235.585893.
URL https://doi.org/10.1109/4235.585893.

X. Wu, D. Xu, L. Duan, and J. Luo. Action recognition using context and appearance
distribution features. CVPR 2011, pages 489–496, 2011.

M. S. R. G. G. P. H. F. V. J. M. F. N. J. P. Y. C. Hsuan, R. Amine. youtube-dl.
https://github.com/ytdl-org/youtube-dl, 2011.

S. Yan, Y. Xiong, and D. Lin. Spatial Temporal Graph Convolutional Networks
for Skeleton-Based Action Recognition. CoRR, abs/1801.07455, 2018. URL http:
//arxiv.org/abs/1801.07455.

YARP. YARP, 2019. URL https://www.yarp.it/.

W. Yin, K. Kann, M. Yu, and H. Schütze. Comparative Study of CNN and RNN for
Natural Language Processing. CoRR, abs/1702.01923, 2017. URL http://arxiv.org/
abs/1702.01923.

L. J. D. L. Yoonseok Pyo, Hancheol Cho. ROS Robot Programming (English). ROBO-
TIS, 12 2017. ISBN 9791196230715. URL http://community.robotsource.org/t/
download-the-ros-robot-programming-book-for-free/51.

yWorks GmbH. yED, n.d. URL https://www.yworks.com/.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun. Graph Neural Networks:
A Review of Methods and Applications. CoRR, abs/1812.08434, 2018. URL http:
//arxiv.org/abs/1812.08434.

https://venturebeat.com/2019/04/22/tesla-plans-to-launch-driverless-taxi-service-in-2020/
https://venturebeat.com/2019/04/22/tesla-plans-to-launch-driverless-taxi-service-in-2020/
https://www.wired.com/story/elon-musk-tesla-full-self-driving-2019-2020-promise/
https://www.wired.com/story/elon-musk-tesla-full-self-driving-2019-2020-promise/
https://doi.org/10.1109/4235.585893
http://arxiv.org/abs/1801.07455
http://arxiv.org/abs/1801.07455
https://www.yarp.it/
http://arxiv.org/abs/1702.01923
http://arxiv.org/abs/1702.01923
http://community.robotsource.org/t/download-the-ros-robot-programming-book-for-free/51
http://community.robotsource.org/t/download-the-ros-robot-programming-book-for-free/51
https://www.yworks.com/
http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1812.08434

	Table of contents
	List of figures
	List of tables
	1 Introduction
	I Background
	2 Artificial intelligence & machine learning
	2.1 Fundamentals of machine learning
	2.1.1 Building blocks
	2.1.2 Training a model
	2.1.3 Reducing generalization error
	2.1.4 Performance measures

	2.2 Machine learning models
	2.2.1 Decision trees
	2.2.2 Random forest
	2.2.3 Support vector machines
	2.2.4 Other models

	3 Deep learning
	3.1 Artificial neural networks
	3.1.1 Basics
	3.1.2 Training
	3.1.3 Transfer learning & fine-tuning
	3.1.4 Reducing generalization error

	3.2 Convolutional neural networks
	3.2.1 Batch normalization
	3.2.2 Rectified linear unit
	3.2.3 Convolutional layer
	3.2.4 Pooling
	3.2.5 Fully connected layer & output layer
	3.2.6 Residual function

	3.3 Graph neural networks
	3.3.1 Graphs
	3.3.2 Combining graphs & artificial neural networks
	3.3.3 Graph convolutional neural networks

	4 Human action recognition & spatial temporal graph convolutional networks
	4.1 Human action recognition
	4.2 ST-GCN: The spatial temporal graph convolutional network
	4.2.1 3D skeleton graph construction
	4.2.2 The spatial graph convolutional neural network
	4.2.3 Subset partitioning
	4.2.4 Network architecture & training
	4.2.5 Experiments & results from the ST-GCN paper
	4.2.6 Conclusion

	5 Robotics and computer vision
	5.1 Modern robot applications
	5.2 ROS: the Robot Operating System
	5.2.1 Nodes & topics
	5.2.2 Message types

	5.3 ROS alternatives
	5.3.1 YARP: Yet another robot platform
	5.3.2 Rock
	5.3.3 OROCOS: Open robotics control software

	II Experiments
	6 Retraining ST-GCN to increase its relevance for rehabilitation
	6.1 The Kinetics human action video dataset
	6.1.1 How the dataset was built
	6.1.2 Data distribution

	6.2 From videos to machine learning training
	6.2.1 Label file
	6.2.2 Summary file
	6.2.3 Skeleton file
	6.2.4 Training data and validation data

	6.3 Creating the Rehab dataset
	6.4 Adding a new class to the Rehab dataset
	6.5 Training & evaluating our new ST-GCN model
	6.6 Combining our model with robotics
	6.6.1 Deploying the model on the robot
	6.6.2 Integrating the Robot Operating System

	6.7 Evaluating the system

	7 Improving our system
	7.1 Decreasing the inference time
	7.1.1 Identifying bottlenecks in our system
	7.1.2 Substituting OpenPose with tf-pose
	7.1.3 Modifying our pipeline

	7.2 Establish a new benchmark
	7.2.1 Recreating Yan et al.'s dataset using tf-pose

	7.3 Increasing the accuracy of our ST-GCN model
	7.3.1 Transfer learning
	7.3.2 Freezing layers
	7.3.3 Adding complexity
	7.3.4 Experimenting on NVIDIA's DGX station

	7.4 Combining the improved components
	7.5 Final system overview
	7.6 Evaluation of our improved system

	8 Conclusion
	8.1 Summary
	8.2 Future work

	References

