
Deep transfer learning in medical
imaging

Satheshkumar Kaliyugarsan

Department of Informatics, University of Bergen

Department of Computing, Mathematics and Physics, Western

Norway University of Applied Sciences

This thesis is submitted for the degree of
Master’s in Software Engineering

June 2019

Acknowledgements

I would like to express my greatest appreciation to my supervisor Dr. Alexander Selvikvåg
Lundervold for introducing me to this field and for giving me this golden opportunity to
work with this project. I would specially thank him for all the encouragement and guidance
throughout this work.
I would also thank my co-students Sindre Eik de Lange and Stian Amland Heilund for all the
"deep learning" discussions and the fun we had during this period.
Thanks to the Mohn Medical Imaging and Visualization Centre where the experiments and
studies were performed. Especially thanks to Dr. Eli Renate Grüner for the arrangement of
the lab facilities.
Finally, I would like to thank my family and friends for their endless support and trust on me
throughout this work.

Abstract

A common stumbling block for supervised learning methods based on deep convolutional
neural networks (CNNs) is the large number of labeled examples required for training. To
alleviate this problem, almost all two-dimensional CNNs designed for tasks involving images
initialize their weights from another network trained on a different task for which there is
ample data. Typically, the ImageNet challenge dataset is used, a collection of approximately
1.2 million labeled images from 1000 different categories.

The effect of transferring weight between medical imaging tasks is however less well-
studied. As creating labeled data for medical images is often a time-consuming, difficult and
unreliable process, the amount of training data available is in general very small. This makes
successful transfer learning a highly valued prospect.

In this work, we investigate the effect of transferring weights from convolutional neural
networks trained to perform medical imaging tasks on large amounts of data, to networks
created to solve our target problems.

Table of contents

List of figures vi

List of tables viii

1 Introduction 1

I Background 5

2 Introduction to machine learning 6
2.1 What is machine learning? . 6
2.2 Traditional programming vs machine learning 7
2.3 Different types of machine learning . 7
2.4 Data: a limiting factor in machine learning 9
2.5 Understanding features . 9
2.6 Overfitting and underfitting . 10
2.7 Bias-variance tradeoff . 11
2.8 Model evaluation . 13

3 Deep learning for computer vision 16
3.1 Neural networks . 16
3.2 Activation functions . 18
3.3 Training multilayer neural networks . 19
3.4 Convolutional neural networks . 22
3.5 Regularization . 25

4 Transfer learning for deep neural networks 28
4.1 Transfer learning in computer vision . 28

Table of contents v

II Experiments 31

5 Transfer learning for 2D medical images 32
5.1 Introduction . 32
5.2 Methods and materials . 33
5.3 Experimental results . 36
5.4 Discussion . 39

6 Transfer learning for 3D medical images 40
6.1 Introduction . 40
6.2 Methods and materials . 41
6.3 Experimental results . 47
6.4 Discussion . 53

7 Conclusion and future work 55

References 56

List of figures

1.1 Published papers in artificial intelligence 2
1.2 Breast examination . 3

2.1 Traditional programming versus machine learning 7
2.2 Overfitting, underfitting, and good balance 10
2.3 Bias-variance tradeoff . 12
2.4 Confusion matrix for binary classification 14

3.1 Artificial neuron . 16
3.2 Neural network . 17
3.3 Activation functions . 18
3.4 Neural network training . 20
3.5 Dice coefficient . 21
3.6 Gradient descent . 22
3.7 Architecture of a convolutional neural network 23
3.8 Visualization of features in a trained CNN 24
3.9 Convolution operation . 24
3.10 Max pooling . 25
3.11 Dropout . 27
3.12 Example of bad data augmentation . 27

4.1 Transfer learning . 30
4.2 CNN as feature extractor . 30

5.1 Our transfer learning approach . 33
5.3 DenseNet with some additional layers . 34
5.4 Oversampling imbalanced data . 36
5.5 Confusion matrix of the prediction result for the MURA dataset 37
5.6 Results . 38

List of figures vii

5.7 Confusion matrix for the ChestX-ray dataset 39

6.2 Patch-based image analysis. 43
6.3 The high-resolution, 3D convolutional network architecture 44
6.4 Illustration of skip connections . 44
6.5 Examples of T1-weighted images in the IXI dataset 46
6.6 Partion of the local BraTS training set . 47
6.7 Ground truth labels and segmentation results for IXI 48
6.8 Training and validation loss for BraTS . 49
6.9 Box plot of the average dice score obtained on the BraTS training set and the

validation set . 50
6.10 Ground truth and segmentation results for Brats18_CBICA_AQG_1 51
6.11 Ground truth and segmentation results for Brats18_CBICA_AUQ_1 51

List of tables

5.1 Accuracy for each X-ray type in MURA 37

6.1 Total number of learnable parameters for the high-resolution, 3D convolu-
tional network . 44

6.2 The average Dice score on the training and validation set 50
6.3 Segmentation results obtained using training set S1 52
6.4 Segmentation results obtained using training set S2 52
6.5 Segmentation results obtained using training set S3 52
6.6 Segmentation results on the test set obtained using training set S4 53

Chapter 1

Introduction

The human brain has an impressive ability to acquire knowledge and adapt to changing
enviroments. Humans can learn in many different ways, e.g., through pattern recognition,
trial and error, demonstration, intuition and introspection. In artificial intelligence (AI), some
of these learning approaches are implemented using mathematical functions, making “it
possible for machines to learn from experience, adjust to new inputs and perform human-like
task” [51]. Even though AI is far behind natural intelligence, it is not a futuristic fiction
found only in science fiction books and movies: AI is already having a huge impact on us.

Governments [39, 80], companies [4] and universities [54] are investing vast resources on
AI. For instance, last year MIT announced a $1 billion plan for a new college that combines
AI, machine learning (ML), and data science with other academic disciplines[54]. Another
example is the government in Germany who has planned to spend 3 billion euros within
2025 in AI research and development to close the knowledge gap between them and world
leading nations in this field, like China and the United States [39]. The 2018 AI Index report
published by experts and researchers from Stanford and other top institutions shows that this
field has grown tremendously in recent years, and also that it is expected to continue to grow.
For instance, the growth rate of published AI papers on Scopus has increased by more than
8x from 1997 to 2017 (seen in figure 1.1).

AI is one of the most popular technological terms of our time, but it is actually not a new
concept. In fact, the term “AI” was invented back in 1955 by John McCarthy in his proposal
for a conference on this subject [64].

According to John McCarthy, it is “the science and engineering of making intelligent
machines” [98]. Many scientists have been contributing to this field since then, but why is
AI so popular today, when it has been around for decades?

In 2006, Geoffrey E. Hinton et al. published a paper [43] demonstrating how to train
a deep neural network to recognize handwritten numbers with an error rate of only 1.25.

2

Fig. 1.1 The graph compares the growth rate of published AI papers from 1997 to 2017 with
computer science and all other fields.(Source: [85])

The accuracy in itself was not that impressive, since other algorithms, like support vector
machines (SVM) had already gotten an error rate of 1.4. The big deal was that up until
this point it was considered an impossible task to train deep neural networks to perform
useful tasks, and most researchers had left this idea. The study of multi-layer artificial neural
networks is today known as “deep learning”.

“Deep learning has seen a dramatic explosion in the past 6 years, largely driven by
increase in computational power and the availability of massive new datasets”[26]. Deep
learning has shown to be applicable to tackle highly complex tasks that no other machine
learning (ML) algorithms can compare to, such as translating from one language to another
with human-level performance [6], or beating world’s best players in games like Go [88] and
more recently StarCraft II [5].

Healthcare stands to benefit enormously from recent improvements in deep learning.
However, the medical community has only recently begun to realize what can be achieved
with this technology.

Several applications have already shown some impressive results in a wide range of
medical tasks, including occlusion detection in stroke imaging [10], classification of abnor-
malities on chest radiographs [50, 78, 99], and melanoma recognition in dermoscopy images
[25, 37, 105]. A survey conducted by Geert Litjens et al. in 2017 provides an overview of
papers using deep learning methods for different medical imaging tasks [61]. Lundervold
[62] gives an updated overview, focusing on applications related to magnetic resonance
imaging (MRI).

3

Such applications can be used to mitigate the workload of radiologists. An article
published by the Norwegian newspaper Bergens Tidende in 2016 pointed out that the
Radiology Department at Haukeland University Hospital had more than 7000 examinations
queued due to shortage of radiologists [74].

The situation only gets worse as the workload of the Radiology Department continues to
increase each year (see figure 1.2).

Fig. 1.2 The growth rate of breast examination from 2013 to 2017 at the Radiology Depart-
ment at Haukeland University Hospital. (Data source: [74])

Shortage of radiologists has led them to work more overtime to get their job done. This
situation is particularly worrisome considering that long workdays reduces radiologists
diagnostic accuracy [56, 57].

Short supply of radiologists is a problem we see in all other developed countries as well.
This problem underlines the need for new technologies like deep learning, to reduce the
heavy workload of clinicians [94].

Implementing deep learning algorithms in hospitals can improve patient care, reduce the
workload of clinicians, and assist them in making better decisions. In order to develop deep
learning algorithms that works well, large amount of quality data are required. To give you
an idea, a group of researchers at Stanford who developed an algorithm to detect pneumonia
on frontal chest radiographs had access to 112.120 X-ray images, each annotated with up to
14 different diseases [78].

A common problem when applying deep learning methods in medical imaging is that
you often do not have access to such an amount of labeled data [26], as creating labeled data
for medical images is often challenging.

4

One way to mitigate this problem is to apply a technique called transfer learning [104].
It is a very natural idea, informed by our own approach to learning: People often learn
something in one context which informs how well they learn and perform in another context.
For instance, a programmer who knows Java can apply that knowledge in learning C# faster.

Nowadays, almost all two-dimensional convolutional neural networks (CNN) designed for
tasks involving images utilize this idea: knowledge is transferred from a network trained on
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset [83], containing
more than 1.2 million labeled images from 1000 different categories.

The effect of transferring knowledge from other tasks is however less well-studied. The
idea investigated in this work is the effect of transferring knowledge from CNNs trained to
perform medical imaging tasks, where there is an ample supply of training data, to a network
created to solve our target problems.

The key contributions of this thesis are:

• A new transfer learning approach for 2D medical images, involving indirect transfer
from ImageNet to the target network by first passing through a network trained on data
more similar to the target dataset.

• Analysis about the impact of the data set size and the value of the layers in a CNN
when using transfer learning in volumetric medical images.

This thesis will be split into two parts. Part 1, Background, will give the reader an
overview of the fundamental theory behind transfer learning in computer vision. Chapter
2 introduces the basics of machine learning theory. The following chapter 3 will present
the theory behind neural networks and how they are utilized in computer vision. Chapter
4 presents the technical details around transfer learning and the advantages of using this
approach in computer vision tasks.

In part 2, Experiments, we will present our experiments in transfer learning for medical
image analysis. In chapter 5, we describe an approach to transfer learning in 2D medical
images, discuss the methods and materials used, and explain the results obtained. In chapter
6, we will look at the value of transfer learning in 3D medical images by presenting two
different experiments. Similar to chapter 5, we will discuss the methods and materials and
present the findings at the end of the chapter. Chapter 7 summarizes our results and addresses
potential future work.

All the figures in this thesis have been created using yEd [106] and Matplotlib [48].

Part I

Background

Chapter 2

Introduction to machine learning

In this machine learning (ML) introduction, we will give you an overview of some basic
concepts and techniques in ML. It is essential to understand the fundamental concepts
introduced in this chapter before continuing to the rest of the thesis.

2.1 What is machine learning?

Machine learning (ML) is a sub-field of AI, based on computer science, mathematics, and
statistics. In 1959, Arthur Samuel, one of the pioneers in this field, defined machine learning
as, “A Field of study that gives computers the ability to learn without being explicitly
programmed”[31]. This definition is slightly vague. In 1997, Tom Mitchell provided a more
operational and engineering-oriented definition: “A computer program is said to learn from
experience ‘E’ with respect to some class of tasks ‘T’ and performance measure ‘P’ if its
performance at tasks in ‘T’ as measured by ‘P’ improves with experience ‘E’”[12].

Put simply, the idea of machine learning is to enable computer programs to learn from
data and make decisions based on the knowledge they acquire.

To give you an idea of the concept, spam filters typically utilizes machine learning
algorithms to distinguish between spam and non-spam emails (T). These algorithms learn
from previous examples of data (E). The performance can be measured in different ways,
reflecting users end goal. For instance, in this case, one can use the ratio of true results to
say how well the program works (P). This performance metrics is called accuracy and is
commonly used in classification problems. We will discuss performance metrics in more
detail later in this chapter.

2.2 Traditional programming vs machine learning 7

2.2 Traditional programming vs machine learning

In traditional programming, the data and set of rules are executed on the computer to create
the result. While in machine learning, the data and the result is executed on the computer
to create the program (see figure 2.1). This machine learning program can then be used to
predict unknown data.

So, instead of creating rules for spam filtering yourself or use existing rules (e.g., white-
listing or blacklisting), machine learning algorithms learn these rules all by themselves. You
do not have to maintain large complex lists of rules as these algorithms can figure them out
for you.

Fig. 2.1 Traditional programming versus machine learning.

2.3 Different types of machine learning

Machine learning approaches can roughly be divided into three categories: supervised
learning, unsupervised learning and reinforcement learning. In addition, algorithms that
can handle unlabeled and labeled data together are categorized as semi-supervised learning.
These algorithms are usually a combination of supervised and unsupervised learning.

Supervised learning

In supervised learning, the algorithms learns from training data where the label is included,
and the goal is to make predictions on future data based on these examples. This type
of machine learning has had great success in recent years and is behind essentially all the
economic value of AI [75]. The tasks within supervised learning are divided into classification
and regression problems. In regression you want to predict real-values, called continous
values. For example, the price of a house given the location, size, etc.

2.3 Different types of machine learning 8

In classification you want to predict the category of the input data. For instance, whether
an email is spam or not.

Common algorithms within supervised learning are k-nearest neighbor, logistic regression,
linear regression, support vector machines, decision trees, and neural networks. Some of
these algorithms are constrained to do either classification or regression, like linear regression.
Others, like decision trees, can be used for both problems with minor modifications.

Unsupervised learning

In unsupervised learning, we want to find patterns and relationships from unlabeled data.
Typical tasks within unsupervised learning are clustering, dimensionality reduction and
association rule learning [31]. Common algorithms for these tasks are k-means, Kernel
Principal Component Analysis (PCA) and the Apriori algorithm for association rule learning.

Unsupervised learning can actually be used as preprocessing for supervised learning. For
instance, say you have to work with high dimensional data with lots of information, like the
health status of patients. These types of data are often difficult to visualize, and algorithms
are prone to overfit the data due to the high complexity. People with domain knowledge
can reduce the complexity by doing feature engineering, where they create new features and
remove unnecessary features manually, but this can be a time-consuming work.

An alternative for feature engineering is feature extraction, where new features are learned
directly from the data. Kernel PCA is a well-known algorithm for feature extraction. It
projects high dimensional data to lower dimensions without losing too much information.
However, there is a risk that important feature are removed since it learns without labels.
A main challenge with unsupervised learning is that there is no right or wrong answer.
Therefore, it is difficult to evaluate the performance of the algorithm.

Reinforcement learning

This is probably what people think about when they hear the word AI. In real life, as well as
in most video games, you get rewards and penalties based on your decisions. By cleverly
using these feedback signals, one can learn how to improve ones performance.

Reinforcement learning works the same way. Here you have an agent that tries to
maximize a reward by taking actions in an environment. Based on the effect of the actions,
the agent learns what is wise to do. Many of the most high profile AI achievements in later
years are based on reinforcement learning (typically combined with supervised learning).

2.4 Data: a limiting factor in machine learning 9

For example, Google DeepMind’s AlphaStar used this technique to beat human professionals
in StarCraft II [5], and AlphaZero to beat world champions at Go and chess [87, 88].

2.4 Data: a limiting factor in machine learning

Machine learning algorithms performance are confined by the quality and quantity of the
data. In addition to making sure the training data contains the signals necessary to produce
useful predictions, you must always make sure that future data sufficiently is similar to the
training data. It is necessary to use a training set that is representative for the future cases you
want to generalize to. In general, in order for the machine learning algorithms to perform
well, it is important that the provided data is of high quality. If the training data is full of
errors and noise, then the insights from these data will be flawed.

According to a report published by CrowdFlower in 2016, data scientist spend most of
their time on cleaning and organizing data [22]. “Data cleaning, is the process of detecting
and correcting (or removing) corrupt or inaccurate records from a record set, table or database.
The term refers to identifying incomplete, incorrect, inaccurate, irrelevant, etc. parts of the
data an then replacing, modifying, or deleting this dirty data”[38].

For example, missing values must typically be handled in some way before it can be
passed into a machine learning algorithm since most algorithms cannot deal with missing
values. There are several methods for dealing with missing values, one simple way is to
drop columns or instances with missing values. This is usually not the best solution as it
might lead to information loss and significantly reduce the size of your data set. By carefully
imputing, or replacing, missing values it is sometimes possible to deal with this issue without
losing too much performance.

2.5 Understanding features

The success of machine learning models often depends on how you utilize the features
and their types (e.g., continuous and categorical). This is part of what is called feature
engineering, one of the most crucial parts of building machine learning systems. “Coming
up with features is difficult, time-consuming, requires expert knowledge. ‘Applied machine
learning’ is basically feature engineering”[68].

This process typically involves concepts such as feature extraction and feature selection:

2.6 Overfitting and underfitting 10

• In feature selection, we select a subset of useful futures and ignore the irrelevant
ones (e.g., constant and redundant features). This is actually a part of many learning
algorithms, for example, decision trees do it implicitly.

• In feature extraction, new useful features are learned from the original data. The
idea is to project existing features into a new feature space with lower dimensionality.
Examples of feature extraction methods include Linear Discriminant Analysis (LCA),
and Principal Component Analysis (PCA) (note that these methods rely on linearity
assumptions).

2.6 Overfitting and underfitting

A complex model usually fits the training data better than a simple model. For example,
increasing the depth of a decision tree will not decrease the accuracy in the training set.
However, the best fitting model is not necessarily the final model you want to use. The end
goal in machine learning is to find a model that generalizes well.

When a model performs well on training examples and poorly on new instances, we
say that the model overfits. Overfitting refers to models that are too closely adapted to
the training data and makes predictions on new data based on details and noise from the
training examples. The opposite of overfitting, when the models are too simple to capture the
underlying relationship in the training data, is called underfitting. These fitting issues are
very common, and often the main reason for poor performance of machine learning models.

Fig. 2.2 An example of overfitting, good balance, and underfitting

2.7 Bias-variance tradeoff 11

2.7 Bias-variance tradeoff

The only way to find out how well your model generalizes to new data is by testing it on
unseen data. A simple way to do this in practice is by splitting the dataset into two sets:
training set and test set. Generally, people use 80 % of the data for training and the rest for
testing (note that this split depends on the amount of data you have available). The training
set is used to fit the model, and the test set is used to estimate the generalization error of the
final model. An alternative approach is to use cross-validation, which uses multiple splits
into training and test. This provides a more robust measure of generalization performance
and is particualry useful when there is little data available. A model’s generalization error
can be expressed as the sum of three kinds of prediction errors [31]:

• Bias refers to the error due to modeling assumptions. A model with high-bias has a
tendency to underfit the training data.

• Variance refers to the error due to variations in the training data. Models with high-
variance tend to overfit the training data.

• Irreducible error refers to error due to noise in the data. This error can only be reduced
by cleaning the dataset.

High variance models tend to be simple. Working on decreasing the variance will increase
the bias, similarly, reducing the bias will increase the variance. Reducing just one of the
error, will not improve the model, so you need to find the optimal balance between bias and
variance that minimizes the generalization error. Hence the name tradeoff (see figure 2.3).
An optimal balance between them would never overfit nor underfit.

How can we find the optimal balance between bias and variance?
In practice, it is not possible to calculate the exact bias and variance error. However, there

is actually a common diagnosing method that can be used to determine whether a model
is prone to high bias or high variance. This method involves comparing the training error
and the generalization error estimate from the test set. When both of these errors are high,
the model is susceptible to high bias and tends to underfit the data. If the training error is
significantly lower than the generalization error, the model is prone to high variance and has
most likely overfit the training data.

2.7 Bias-variance tradeoff 12

Fig. 2.3 Bias-variance tradeoff

How can we prevent these problems?
In case of overfitting, the ideal solution is to collect more training data. Unfortunately,

in most cases this is not an option. Other alternatives are to use a simpler model or apply
regularization to the model (L1, L2, dropout, etc). Regularization is a collection of techniques
used to penalize complexity in a model (we will discus this further in chapter 3).

To prevent underfitting, the simplest solution is to train a more complex model. If this
does not work, other options are to perform feature engineering (e.g., create new features
and remove irrelevant features) or, if applicable, use less regularization.

A general practice when working with reducing overfitting and underfitting is to divide
the data set into three subsets: training, validation and test set. The validation set is used to
tune the hyperparameters (e.g., regularization) and select the "best" performing model for
your problem. If the data set is too small, you can use other methods such as cross-validation
or bootstrap.

Note that performance measures based on the validation set will be biased since the
validation set is used to select the best performing model. Therefore, it can only be used to
give a biased estimate of the generalization error. If you have several models that perform
equally well, you should always select the simplest one.

Once you have found the model and hyperparameters to use for your task, a final model
is trained on the entire training set (training and validation data) with these settings. This
newly trained model is then evaluated on the test data to make sure that the model is neither
overfitting nor underfitting.

2.8 Model evaluation 13

You should never reuse the same test set if you are not satisfied with your final model
and want to tune your model or swap it with another one. If you do this, it will no longer be
unbiased, which might lead to poorer performance than expected once you deploy the new
model into production. Your only option is to gather more data to create a new test set.

2.8 Model evaluation

The performance evaluation of models is an essential part of any machine learning project.
After all, this is what you look at the end of the project to see if you have achieved the final
goal. There are several evaluation measures that can be used to assess your models. The
selection, however, is bound by the specific machine learning problems you are facing (e.g.,
classification, regression, clustering, etc.) [109]. In this section, we will focus on the ones
used for classification tasks.

We have already mentioned the accuracy metric earlier in this chapter. This measure alone
does not always give you a clear picture of the performance. For example, a well-known
problem in medical datasets is that they often consist of a majority class and a minority class
(e.g., more normal samples than abnormal events) [97]. Classifying everyone as the majority
group will give you a high accuracy straight away, even though it is a bad classifier.

A better way to evaluate the performance of a classification problem is to use a confusion
matrix. A confusion matrix is a table that shows the number of correct and incorrect
classifications for each class. The rows in a confusion matrix correspond to the true class
label, and the columns correspond to the predicted class label. For binary classification, there
are four possible cases in a confusion matrix:

• True positives (TP): The actual class is positive, and the predicted class is positive

• False positives (FP): The actual class is positive, but the predicted class is negative

• True negatives (TN): The actual class is negative, and the predicted class is negative

• False negatives (FN): The actual class is negative, but the predicted class is positive

2.8 Model evaluation 14

Fig. 2.4 Confusion matrix for binary classification.

These outcomes give us a better understanding of the performance and are useful to
calculate various metrics such as accuracy, precision, recall, and AUC-ROC curve [27] for
binary classifiers.

Accuracy
Accuracy is a useful metric if you have a relatively balanced dataset. The formula for
accuracy is:

T P+T N
T P+FP+T N +FN

However, when we have an unbalanced dataset, we need other options.

Precision
“The precision is the ability of the classifier to not label as positive a sample that is
negative”[13]. The formula for calculating precision score is:

T P
T P+FP

Recall
“The recall can be described as the ability of the classifier to find all the positive

samples”[13]. The formula for calculating recall score is:

T P
T P+FN

2.8 Model evaluation 15

To find a good balance between precision and recall, one can use the F1 score, which
gives you the harmonic average between them [31]. The formula for F1 score is:

F1 =
T P

T P+ FN+FP
2

In practice, a classifier cannot have high recall and high precision at the same time.
Increasing the recall will decrease the precision, and vice versa. Thus, you have to look at
what is important in the classification task before choosing what you want to try to minimize.
For instance, in a cancer detection task, it is typically better to classify a healthy patient as
cancerous than classifying a cancerous patient as healthy.

Chapter 3

Deep learning for computer vision

Deep learning is a small subfield of machine learning, but it is what draws the huge interest in
artificial intelligence and machine learning these days. The idea of deep learning is nothing
new, but has actually been around for decades. Deep learning algorithms are based on a class
of machine learning algorithm called artificial neural networks (ANNs). The popularity of
deep learning has exploded in the last decade, thanks to the rapid advances in computing
power and the availability of tremendous amounts of data. Deep learning algorithms currently
form the state-of-the-art machine learning models in many domains, including healthcare,
finance, self-driving cars and more.

In this chapter, we will present the basic concepts of ANNs, and continue with deep
neural networks and look at how they are used in the field of computer vision.

3.1 Neural networks

ANN models are very loosely inspired by the biological neural networks in the brain. Similar
to the biologicalneural networks, ANNs are made up of a set of computational units, called
neurons (also known as nodes). Figure 3.1 shows the structure of an artificial neuron.

Fig. 3.1 Artificial neuron.

3.1 Neural networks 17

A neuron calculates the dot product between the input signals X = [x1,x2, . . . ,xn] and its
corresponding weights W = [w1,w2, . . . ,wn] as follows:

s = X̄ ·W̄ =
n

∑
i=1

xiwi

An additional constant called a bias is often added to the weighted sum to give ANN
models more flexibility. We use b to denote the bias parameter:

s = X̄ ·W̄ =
n

∑
i=1

xiwi +b

This value is then passed through an activation function Φ that calculates the output signal
(we will discuss activation functions in section 3.2). That is the basic concept of an artificial
neuron.

Modern ANNs are just a group of neurons stacked together in layers. They consist of
an input layer, one or more hidden layers, and an output layer. ANN with more than one
hidden layer is commonly referred to as a deep neural network (DNN) [31].

Fig. 3.2 Example of a deep neural network with two hidden layers

There are various types of architectures for ANNs, such as feedforward neural networks,
recurrent neural networks, convolutional neural networks, and more. The ANN model shown
in figure 3.2 is called a feedforward network since the data is only passed in one direction,
from the input layer through the hidden layers to the output layer. The bias neurons and the
weights we see between the neurons in this figure are the part of the network that actually
learns during training. The weights are usually randomly initialized before training, often
by using something called He initialization from He et al. [41]. During the training process,

3.2 Activation functions 18

described in section 3.3, these weights get updated so that the network becomes able to
correctly predict the true value Y for every (or most) training example X.

ANNs with more than one layer of learnable weights can represent nonlinear relationships
between input variables and output variables [86], thanks to nonlinear activation functions.

3.2 Activation functions

Activation functions are crucial for making ANNs able to learn and tackle complex tasks. As
mentioned in section 3.1, they are functions used in neurons to calculate output signal based
on input signals. The output signal of these functions decides whether the data given to the
neuron is deemed relevant to what extent it should be passed on to the next neuron [11].

In order to have the ability to learn complex tasks, ANNs must add nonlinear activation
functions to their neurons. If ANNs did not use nonlinear activation functions, then they
would only be able to solve linearly separable problems, regardless of how many hidden
layers they use [107]. This is because compositions of linear dot product operations are still
linear.

There are various types of nonlinear activation functions, some of them are shown in
figure 3.3.

Fig. 3.3 Activation functions.

Historically, the most common activation functions to use were the sign, sigmoid and the
hyperbolic tangent functions [17]:

3.3 Training multilayer neural networks 19

Φ(s) = sign(v)

Φ(s) =
1

1+ e−s (sigmoid f unction)

Φ(s) =
e2s −1
e2s +1

(tanh f unction)

However, an activation function called rectified linear unit (ReLU) has become more
popular in the last few years because it was found to significantly accelerate the training
of multilayered neural networks compared to other functions [55]. ReLu simply sets all
negative outputs to zero and leaves the rest untouched:

Φ(s) = max{s,0}(ReLU)

3.3 Training multilayer neural networks

Preprocessing image data

In general, it is a good practice to normalize the data (between 0 and 1) before we feed them
into the network. We do this to increase the speed of the learning process. For image data,
this can be achieved by subtracting the mean from each pixel and then dividing the result by
the standard deviation.

Backpropagation

In section 3.1 we mentioned that the weights in ANN models gets updated during the training
so that the ANN can correctly predict the true value for each training example.

But how do we train a neural network?
First, for each training example, we propagate the data forward through the network to the
output layer to make a prediction. A loss function (see section 3.3) is then used to calculate
the network’s prediction error (the difference between the true value and the predicted value).

This prediction error is then propagated back through the network to calculate the effect
each weight had on the error. This technique is commonly known as backpropagation.

The weights are then updated according to the impact they had on the error using an
optimization method (such as gradient descent, discussed later in this section). When the

3.3 Training multilayer neural networks 20

network has iterated once through all training elements, we say that it has completed an
epoch. Figure 3.4 illustrates the entire training process.

Fig. 3.4 Neural network training. Note that this illustration is inspired by the figure on p. 4 in
A performance and power analysis [69].

Loss functions

As mentioned before, a loss function tells us how well the network manages to predict the
correct output for the provided data. In this section, we will go through some commonly
used loss functions.

Cross-entropy

Cross-entropy is a loss function often used in classification tasks. The equation for cross-
entropy is as follows:

loss =−
n

∑
i=1

yilog(ŷi)

Where n is the number of instances, y is the true value, and ŷ is the predicted value. Cross-
entropy gives you an output value between 0 and 1, where high values denote bad perfor-
mance, and vice versa.

Root mean square error

Root mean square error (RMSE) is a loss function usually utilized for regression tasks. It
measures the difference between the predicted value and the actual value, as shown in the
following equation:

3.3 Training multilayer neural networks 21

loss =

√
1
n

n

∑
i=1

(yi − ŷi)2

Dice coefficient

The dice coefficient (Dice), is a commonly used loss function in medical image segmentation
tasks [91]. Segmentation can be seen as a form of classification, where the task is to classify
each pixel within an image. The equation for Dice loss is as follows:

loss =
y∩ ŷ

|y|+ |ŷ|

Dice loss gives you an output value between 0 and 1, where the dice score of 1 indicates
perfect prediction.

Fig. 3.5 Dice coefficient

Gradient descent

Gradient descent is a general optimization algorithm used to find the minimum value of a
function. In neural networks, gradient descent is used to iteratively update the weights in such
a way that reduces the prediction error of the network. The algorithm is fed the derivative
of the loss function with respect to all the weights in the network from backpropagation.
Then, it updates the weights in each layer by moving them a step in the opposite direction
of their gradients. This entire process is repeated until we have reached a local or global
minimum, as shown in figure 3.6. The size of each step is determined by a hyperparameter
called learning rate. A small learning rate will cause the algorithm to converge slowly. On
the other hand, with a large learning rate, the algorithm might overshoot the minimum.

3.4 Convolutional neural networks 22

There are three variants of gradient descent: batch gradient descent, stochastic gradient
descent, and mini-batch gradient descent [81]. Batch gradient descent utilizes the entire
training set to calculate the gradient of the loss function in each iteration. This means that this
method, in general, is very slow and computationally intensive. On the other hand, stochastic
gradient descent uses a random training sample at each iteration, which makes this method
significantly faster than batch gradient descent. However, the movement on the loss surface
will be very irregular, making it difficult to find the optimum value. Mini-batch gradient
descent is a combination of batch and stochastic gradient descent, where one selects a random
subset of the training set at each iteration to calculate the gradients. More information about
gradient descent and other optimization algorithms can be found in Sebastian Ruder’s paper
titled An overview of gradient descent optimization algorithms [81].

Fig. 3.6 Gradient descent

3.4 Convolutional neural networks

There are various types of neural networks, and each one has its own advantages and
disadvantages. In this section, we will look at a class called convolutional neural networks
(CNNs) that have been shown to work particularly well for computer vision tasks. Instead of
receiving the input data as a vector of pixel values (as in feedforward networks 3.2), CNNs
receives them as a matrix of pixel values (with width, height, and depth). In this way, we can
keep the spatial relationships within the images. CNNs are like the artificial neural networks
described in the introduction, but each neuron is only connected to a selection of neurons in

3.4 Convolutional neural networks 23

the previous layers (local connectivity), and weights are shared, in a manner motivated by
principles used by the mammalian visual cortex. They were first introduced by Fukushima
in 1980 [30], and famously used together with backpropagation by LeCun in 1989 [58] in
a work that has inspired their use in computer vision ever since. In recent years, several
CNN architectures such as AlexNet [55], ResNet [42], and DenseNet [47] have demonstrated
state-of-the-art performance in various computer vision task.

Components of CNNs

In this subsection, we will go through the three primary layers in a CNN: the convolution
layer, the pooling layer, and the fully connected layer.

Fig. 3.7 Architecture of a convolutional neural network. (Source: [59])

Convolutional layer

The convolutional layer is the core building block in a CNN. Its function is to automatically
extract useful features from input images. Typically, in the first layer, it finds the edges,
colors, and other low-level features. As you get deeper in the network, the convolutional
layers will learn more complex features (see figure 3.8). In order to represent these features,
convolutional layer uses a set of matrices called kernels (also known as filters). Each of these
kernels has the same number of dimensions as the input image, by design with the same
depth size (e.g., the number of color channels), but smaller height and width size. During the
training phase, when we propagate the data forward, each kernel slides over the activations
produced by the previous layer with a predefined step size called a stride. It calculates the dot
product between the kernel and the receptive field (i.e., a restricted region in the input that
has the same size as the kernel). The output matrix from this process is called an activation

3.4 Convolutional neural networks 24

map (or a feature map). Figure 3.9 shows an example of how a 2x2x1 kernel with stride of 1
slides over a 3x3x1 input.

Fig. 3.8 Visualization of features learned from the ImageNet dataset. Adapted from p. 4 in
Visualizing and Understanding Convolutional Networks [108].

Fig. 3.9 An illustration of convolutional operation

3.5 Regularization 25

Pooling layer

As shown in figure 3.7, after a convolutional layer we usually have a pooling layer however,
in many modern architectures these are replaced by strided convolution. The main purpose
of a pooling layer is to compress the activation maps to reduce the number of parameters in
the network, reducing computational and memory requirements. The two most widely used
pooling approaches in practice are max pooling and average pooling. As shown in figure
3.10, max pooling works by sliding a window across the input data (i.e., activation map),
similar to a convolution, and at each step, we select the largest value in the pooling window.
Average pooling, on the other hand, calculates the average value in the pooling window at
each step. Note that pooling layers do not have any learnable parameters, which means that
important information can be thrown away in this process.

Fig. 3.10 Max pooling with 2x2 pooling window and stride 2

Fully connected layer

Fully connected layers work the same way as feed-forward networks. As the name implies,
all the neurons in a fully connected layer have a connection to all the neurons in the next
following layer (see figure 3.2). Fully connected layers are usually added at the end of
the network to learn the mapping between the high-level features and the output classes.
Again, modern architecture often drop these and replace them by convolutions, giving rise to
fully-convolutional CNNs.

3.5 Regularization

CNN architectures are normally comprised of millions of parameters, giving them extremely
high capacity and also making them prone to overfitting the training data. To deal with the

3.5 Regularization 26

problem of overfitting, one can use various types of regularization techniques such as L1 and
L2 regularization, dropout, early stopping, and data augmentation.

Early stopping

Early stopping is simply the process of stopping the training before it starts to overfit the
training data. This technique is widely used in practice, often in combination with other
regularization techniques to improve the generalization error. Overfitting is detected by
measuring the training and validation loss, stopping the training process when the validation
loss becomes significantly worse than the training loss.

L1 and L2 regularization

The basic idea of L1 and L2 is to add a penalty to the prediction error based on the complexity
of the model. In practice, we do this by adding one of these terms to the loss function.
L1 regularization treats each weight similarly and encourages them to become zero. The
equation for L1 regularization is as follows:

Loss = error(y− ŷ)+λ

N

∑
i=1

|wi|

On the other hand, L2 regularization penalizes larger weights harder but does not force
them to become zero. The equation for L2 regularization is as follows:

Loss = error(y− ŷ)+λ

N

∑
i=1

w2
i

Dropout

The last regularization technique we will look at in this section is called dropout. Hinton et al.
introduced this technique in a paper [44] in 2012, and it has shown to improve the performance
of state-of-the-art neural networks in various domains [89]. The idea behind dropout is that
at each training iteration, we ignore a set of neurons randomly with a predefined probability
value (usually 50%). In other words, this means that the randomly selected neurons will
not be considered during a certain training iteration. In this way, we end up with a simpler
network at each iteration, and each neuron becomes less finely-tuned to the particularities of
other neurons.

3.5 Regularization 27

Before dropout After dropout

Fig. 3.11 An example of how dropout works in a feed-forward network

Data augmentation

The ideal solution to prevent overfitting is to collect more training data. In practice, this can
be expensive and is often not an option. However, one way to obtain more data essentially for
free is by utilizing a technique called data augmentation. This technique consists of creating
new training data from existing ones by applying simple transformations such as flipping,
rotating, scaling, zooming, or more advanced, domain specific transformations. Note that
data augmentation should be used with caution since it can change the meaning of the images
(see figure 3.12).

Fig. 3.12 Rotating the image on the left 180 degrees will change the semantic meaning of the
image, but will still have the same label value.

Chapter 4

Transfer learning for deep neural
networks

Transfer learning is one of the hottest topics in deep learning. Andrew Ng said at NIPS 2016
that "transfer learning will be the next driver of ML success"[82].

As mentioned in the introduction, transfer learning is the process of using the knowledge
learned in one process and applying it to a different task. Although this is a very is a simple
idea, it has shown to be a very powerful technique for deep neural networks in domains such
as computer vision [24, 40], and natural language processing [46]. Nowadays, it is often
shown to be advantageous to use pre-trained models for computer vision tasks rather than
training them from scratch [65]. However, the transfer learning performance is dependent
upon the similarity between the source task and the target task; the more similar tasks are,
the more value is provided [23, 104].

In this chapter, we will present the technical details around transfer learning and the
advantages of using this approach in computer vision tasks.

4.1 Transfer learning in computer vision

As we have seen earlier, the first few layers of CNNs often end up learning low-level features,
such as edges, colors, shapes, etc. Such features appear to be common across different kinds
of images [104]. Thus, it is often better to use the weights from another network trained to
perform a similar task as a starting point instead of training from scratch. This is a form of
transfer learning, also known as fine-tuning or pre-training.

4.1 Transfer learning in computer vision 29

Transfer learning methods

In practice, there are various types of approaches to transfer learning in computer vision
tasks. The two most commonly used strategies are:

Using a pre-trained model

Training CNNs from scratch is a difficult task due to the enormous amount of training data
and computational power required to train them. Thus, people usually initialize the weights
for their target network from an already trained network. For instance, most deep learning
frameworks provides a set of state-of-the-art 2D models pre-trained on the ImageNet dataset
[83].
Note that if the purpose of the target task is different from the source task, as in figure 4.1,
then you have to remove the output layer and add a new one with random weights to fit your
problem. Or potentially more than one layer, depending on whether you need additional
capacity for your target task. In addition, how many layers you should retrain (unfreeze)
depends on the similarity between the tasks, and the amount of data that are available for the
target problem. For example, if you have a small dataset you should probably not unfreeze
many layers due to the risk of overfitting. On the other hand, if you have a large dataset, you
can fine-tune the entire network without concerns for overfitting. As the weights in the earlier
layers are typically more valuable after transfer than those on later layers, one can also use
discriminative learing rates. That is, lower learning rates for early layers than for later layers.

Using a pre-trained model as fixed feature extractor

Instead of doing all the feature engineering manually as we mentioned in chapter 2, one
can use pre-trained models to find the most important features for us. In order to do this,
it is required that the pre-trained model at least partially contains your target problem. For
example, if you want to classify cats and dogs, one can use a pre-trained model on ImageNet
as a fixed feature extractor. As shown in figure 4.2, we can do this by removing the last
fully connected layer and feeding the extracted features into a new ML model that learns to
solve the target problem. It is also possible to use features extracted from one or more earlier
layers, making this approach less dependent on the closeness of the tasks as earlier layers
often contain generally useful features.

As you can see, this approach reduces the size of the features, which means that the
extracted dataset can fit in a traditional ML algorithm such as SVM, random forest, etc.
Tradional ML algorithms do not require the same amount of computational power and data as
CNNs; thus, you may want to use this approach when you are low on data and computational

4.1 Transfer learning in computer vision 30

power. Or if you want to combine features automatically extracted by neural networks
together with manually designed features, perhaps based on a different data source, in a
single model.

Fig. 4.1 An example of transferring weights from a model trained to classify two classes to a
target model fine-tuned to classify four different classes. Dotted lines indicates randomly
initialized weights

Fig. 4.2 An example of using a pre-trained model as a fixed feature extractor

Let us turn to some experiments in transfer learning for medical image analysis.

Part II

Experiments

The purpose of this thesis is to investigate the value of transferring knowledge from medical
tasks that have a vast amount of annotated training data to other tasks with less training
examples, and constructing techniques and software facilitating such transfer. The final goal
is to enable application-specific 3D segmentation in medical data with a relatively modest
need for manual input. In this part we present our experiments as follows:

1. Transfer learning in 2D medical image classification tasks

2. The impact of layers in transfer learning in 3D medical image segmentation tasks

3. The effect of dataset size in transfer learning in 3D medical image segmentation tasks

Chapter 5

Transfer learning for 2D medical images

5.1 Introduction

The advantage of applying supervised deep learning algorithms in medical imaging tasks has
been demonstrated thoroughly across many applications. In order to develop such algorithms,
large amounts of data are required. Unfortunately, in the medical domain, the main challenge
for machine learning methods is access to such amounts of annotated data [26].

To overcome this problem, a couple of studies have investigated the benefits of transferring
weights from a model pre-trained on the ImageNet dataset to medical tasks in recent years,
including thoraco-abdominal lymph node detection and interstitial lung disease classification
[84], Intima-media boundary segmentation, polyp detection, pulmonary embolism detection,
colonoscopy frame classification [92], ultrasound kidney detection [79], and more recently,
classification of cellular morphological changes [53]. All of these studies have demonstrated
that transfer learning from ImageNet outperforms models trained with random weights, or in
the worst case, provides the same performance.

In this chapter, we propose a technique that involves indirectly transfer from ImageNet to
the target network, by first passing through a network more similar to the target dataset. The
idea is illustrated in figure 5.1. Independeltly from our work, an article [23] published by Yin
Cui et al. in 2018 demonstrated that one could improve the transfer learning performance
with such an approach. We are not aware of any studies that have applied this approach for
transfer learning in 2D medical images. The investigations described in this chapter were
also presented by the author at NVIDIA’s GTC Europe 2018 conference in Münich [52].

5.2 Methods and materials 33

Fig. 5.1 Transferring knowledge from one task to another

5.2 Methods and materials

Datasets

In this case study, we used the following two publicly available X-ray datasets:

• MURA dataset (figure 5.2a) provided by Andrew Ng’s Standford ML group consist
of 40,895 upper limb musculoskeletal X-ray images from 14,982 studies, where
each study is manually labeled as either normal or abnormal(5,915 abnormal studies,
containing a total of 15,117 images) [77]. In our research, we used 13,773 of these
studies for training and validation (8402 no finding and 5371 abnormality) and left out
the rest for testing (665 no finding and 544 abnormality).

• NIH ChestX-ray dataset (figure 5.2b) contains 112,120 automatically annotated frontal-
view X-ray images from 30,805 unique patients, each of them labeled with up to 14
different diseases such as pneumothorax, nodule, and effusion [99]. Of these, we used
53137 for training and validation (50500 no diagnosis and 2637 pneumothorax) and
12526 for testing (9861 no diagnosis and 2665 pneumothorax). Note that detecting
pneumothorax from frontal-view X-ray images alone is not a very realistic task from a
radiologists perspective, but it is a very good test-case for machine learning.

5.2 Methods and materials 34

(a) Mura image (b) Chest X-ray image

Network architecture

Following the approach taken by the CheXNet study from Andrew Ng’s Standford ML group
[78], we used a DenseNet121 network with some additional layers. An illustration of the
architecture used in our study is shown in figure 5.3 (see experimental setting for details).
A well-known problem when training deep neural networks is the challenge of propagating
valuable gradients to the early layers (e.g., gradients gets smaller as we backpropagate), which
makes it hard to train these layers. This problem is commonly referred to as the vanishing
gradient problem [34]. The Dense blocks shown in figure 5.3 alleviates the vanishing gradient
problem by connecting all the layers to each other as a directed acyclic graph. Note that
these blocks are an extension of residual blocks [103], that will be explained in chapter 6.

Fig. 5.3 An illustration of the architecture used in our transfer learning study. Note that this
illustration is inspired by the figure on p. 3 in Densely Connected Convolutional Networks
[47].

Deep learning frameworks

In recent years, several open-source deep learning frameworks have been developed and
backed by major technology companies, such as Google (TensorFlow) and Facebook (Py-
Torch). This has made the process of implementing and modifying DNN easier. In order

5.2 Methods and materials 35

to construct and train our networks in this study, we used Pytorch through the fast.ai deep
learning library. A short summary of these libraries is given below.

Pythorch

Pytorch is a popular open-source python deep learning framework built by Facebook’s AI
group [67]. It is a flexible framework based on a machine learning library called Torch [20]
and offers among other things support for running tensor calculation such as NumPy [71] on
Graphical Process Units (GPUs) and algorithmic differentiation operations on tensors which
makes it easier to train DNN [72, 73].

Fastai

Fastai is a deep learning library built on top of PyTorch developed with the aim of simplifying
the process of training DNN, utilizing state-of-the-art deep learning approaches in various
domains (e.g., computer vision, natural language processing, etc) [45].

Experimental setting

Our models were all trained using the following regime:

Optimizer: Adam

Learning rate: Base learning rate 0.0001, with scaled down learning rates for earlier
layers when using transfer learning (i.e. discriminative learning rates)

Data augmentation: Random horizontal flips

Image sizes: 299 x 299

Batch size: 16

GPU: NVIDIA GTX 1080 Ti

Model: Pytorch’s DenseNet121, with the last layer removed and the following added:
AdaptiveConcatPool2d, AdaptiveMaxPool2d, BatchNorm, Linear, BatchNorm, Lin-
ear, LogSoftmax

5.3 Experimental results 36

Preprocessing

As shown in figure 5.4a, we encountered the problem of imbalanced classes in the ChestX-ray
dataset (ratio difference 1:19). In order to deal with this problem, we decided to oversample
the pneumothorax class by duplicating each sample 18 times (see figure 5.4b). Note that we
could have combined this method with another technique called undersampling to lower the
risk of overfitting. As the name implies, undersampling is the process of reducing the size of
the majority class, for instance, by selecting a subset of the majority class.

(a) Imbalanced (b) Balanced

Fig. 5.4 Oversampling imbalanced data

Model evaluation

In order to assess our approach, we choose as our target objective detection the detection of
pneumothorax from chestX-ray dataset, pre-trained on the MURA dataset. We compare the
training loss with a model trained from scratch on the chestX-ray and with another model
pre-trained on ImageNet. As we have seen earlier, training loss represents the price paid for
the inaccuracy of predictions during the training.

5.3 Experimental results

MURA

The pre-trained MURA model used for our transfer learning approach achieved a study-wise
testing accuracy of 82.66%. By study-wise we mean that if an image in a study gets classified
as abnormal, every other image in the study receives the same prediction even though they

5.3 Experimental results 37

could have been classified as normal beforehand. The reason for study-wise prediction is,
in a real case scenario, a radiologist would likely have classified an X-ray examination as
abnormal if one of the images showed an abnormality.
The confusion matrix depicted in Figure 5.5 and accuracy measurement for each study type
shown in Table 5.1 provides further detail about the obtained classification result.

Fig. 5.5 Confusion matrix of the prediction result for the MURA dataset

Type Accuracy

1: Wrist 86.97%
2: Forearm 83.33%
3: Hand 82.63%
4: Humerus 86.02%
5: Shoulder 74.36%
6: Elbow 83.75%
7: Finger 81.71%

Table 5.1 Accuracy for each X-ray type in the MURA dataset

5.3 Experimental results 38

Transferring to ChestX-ray

As we can observe in figure 5.6, the pre-trained models learn significantly faster than the
model trained from scratch. In addition, the model whose weights were initialized from
the model trained on MURA reaches a lower training loss quicker. This illustrates how our
approach to transfer learning leads to less need for training data: a given loss value is reached
earlier for the network pre-trained on ImageNet and then MURA compared to the network
pre-trained only on ImageNet.

Fig. 5.6 Training loss for our models

The difficulty of this medical task led to prediction accuracy of only 82.09% on the test
set. The confusion matrix of the classification results is shown in figure 5.7 Our source code
for this study is publicly available at: https://github.com/skaliy/Deep_Learning_Kaliy.

https://github.com/skaliy/Deep_Learning_Kaliy

5.4 Discussion 39

Fig. 5.7 Confusion matrix for the ChestX-ray dataset

5.4 Discussion

In this study, we have presented an approach for transfer learning in 2D medical images,
where we first train a network pre-trained on the ImageNet dataset to detect abnormality in
bone X-rays, before fine-tuning this network for the primary task of classifying pneumothorax
in chest X-rays. Upon completing the study, we learned that the ChestX-ray dataset contains
a lot of label noise (e.g., examples of chest drain treated patients annotated as pneumothorax)
[70]. In addition, we expect that transferring weights from a more accurate network would
lead to a more significant effect. This project is an important step in our larger-scale effort to
investigate the value of transfer learning for medical images. We are particularly interested
in 3D medical images, where ImageNet is less relevant, making the idea of transferring from
other, medical tasks more important, as we will study in the next chapter.

Chapter 6

Transfer learning for 3D medical images

6.1 Introduction

The challenge of having small numbers of training subjects is particularly prevalent for
segmentation of regions in 3D medical images such as magnetic resonance imaging (MRI).
Here, manual delineation is difficult, time-consuming, and expensive, and the established
automatic or semi-automatic methods are slow. In order to overcome this problem, a couple
of studies have converted 3D medical images to 2D to be able to use CNNs pre-trained on
ImageNet data [101, 102]. However, the downside of going to 2D is that we might lose
informative spatial relationships between the pixels in the images. Due to the fact that there
are no good transfer learning strategies in 3D medical images, it is still common to use
networks trained from scratch. However, the potential of using transfer learning is mentioned
in a couple of papers [60, 96].

In this chapter, we will investigate the effect of transferring weights from a network
trained on a large-scale 3D medical dataset to another 3D medical task with a smaller number
of training samples. As far as we are aware, there are only a few studies that have looked
into the value of this approach. Lundervold et al. created a 3D CNN for segmentation of
left and right kidneys from DCE-MRI, pre-trained on the task of left and right segmentation
of the hippocampus in T1-weighted MR images [63]. More recently, Chen et al. created
a large-scale 3D medical dataset called 3DSeg-8, and utilized models pre-trained on this
dataset for various 3D medical imaging tasks (e.g., lung segmentation, pulmonary nodule
classification, and liver segmentation) with great success. [18].

6.2 Methods and materials 41

6.2 Methods and materials

Datasets

The following two datasets were used in our experiments:

• The IXI dataset (figure 6.1a) contains 581 T1 weighted scans and 579 T2-weighted
scans of 581 different healthy subjects [Group]. Each image has a volume dimension
of 256 x 256 x 150. The T1 weighted scans highlight structures with fat and is typically
used to look at anatomy. On the other hand, T2 weighted scans highlight areas with
water and is useful to detect pathology [95].

We have already co-registered and automatically labeled the images with up to 42
different features (e.g., hippocampus, cerebellum, amygdala, etc.) using FreeSurfer
6.0 [28], NumPy [71], and Nibabel [14] as a part of another project. Segmentation
of all the 42 different regions proved to be a difficult task due to difficulties in the
ground truth labels (see preprocessing for further details). An essential part of transfer
learning is to have a source network that performs well on a particular task. Therefore,
we decided to reduce the complexity of the task by only looking at the hippocampus.
This part of the brain has an important function in learning and memory [3]. Changes
in the volume of the hippocampus are often associated with various neuropsychiatric
diseases (e.g., epilepsy, Alzheimer’s disease, etc.) [19, 29], but manual segmentation
of the hippocampus to measure volumes is quite difficult [15]. In order to alleviate
this problem, several automatic techniques have been developed, such as multi-atlas
methods [49, 76]. However, these methods still require a lot of processing time [16].
Over the past year, a couple of studies have shown that the computation time can be
significantly reduced by using CNNs, and still achieve high segmentation performance
[16, 93, 100].

• The Multimodal Brain Tumor Image Segmentation Benchmark Challenge 2018 (BraTS)
training dataset consist of 285 studies, where 75 subjects are low grade gliomas(LGG)
and 210 subjects are high grade gliomas (HGG) [7–9, 66]. Each study contains four
MRI modalities (T1, T1ce, T2, FLAIR) of size 240 x 240 x 155, and are manually
segmented by one to four neuroradiologists [66]. Since the IXI dataset only consists of
T1 weighted and T2 weighted scans, we restriced ourselves to the same modalities in
this dataset. As shown in figure 6.1b, the tumor is annotated into three different subre-
gions: Edema (the pink region), non-enhancing core (green region), and enhancing
core (blue region). Edema is usually represented in FLAIR images [9], and because of
this, we have decided to exclusively look at the tumor core (non-enhancing core and

6.2 Methods and materials 42

enhancing core together) in our experiments. This led us to exclude the LGG images,
where the major part of the tumor is comprised of edema and non-enhancing core [21].
According to an article published by Tidsskrift for Den Norske Legeforening in 2011,
HGG affects around 200 Norwegian patient’s every year, and has a poor prognosis
(e.g., a five-year survival rate of 6.1 %) [90]. In addition, HGG treatments make great
demands on follow-up care (e.g., regular medical checkups). Deep learning algorithms
that can segment tumor regions accurately from the early stages can, therefore, be a
highly valuable tool for clinicians to improve the treatment of HGG patients.

(a) IXI (b) BraTS

Library

Tensorflow

Tensorflow is a widely used open source library for numerical computation and uses a
structure known as a dataflow graph to describe the computational data flow in an application.
It was initially developed by the Google Brain team for internal use in their machine learning
and deep learning research [2]. TensorFlow is a flexible library that can run on both GPUs
and CPUs across a wide range of platform including Windows, MacOS, Linux, Android, and
iOS [2, 31]. In addition, Google has provided experimental support for running TensorFlow
on Tensor Processing Units (TPUs), which are Google’s own application-specific integrated
circuits (ASICs) specialized for machine learning tasks [Google]. The TensorFlow library is
constantly evolving with frequent updates. Recently, Google released TensorFlow 2.0 alpha
that aims to simplify the process of using this library [ten].

6.2 Methods and materials 43

NiftyNet

Niftynet is a deep learning library built on top of Tensorflow designed for research in medical
image analysis [33]. The purpose of this library is to simplify the process of developing deep
learning algorithms for 2D, 3D, and 4D medical imaging tasks, such as image segmentation,
image registration, and image generation [33]. Note that CNNs utilized for 3D, and 4D
medical imaging tasks have usually larger amounts of learnable parameters compared to
CNNs used for 2D images, which means that they require more computational power. In
order to moderate this problem, NiftyNet uses a patch-based image analysis approach as
shown in figure 6.2. A window sampler samples image windows from the input data, and a
window aggregator decodes the output from the network. There are different types of window
samplers that can be used to generate these windows, such as weighted sampling, where the
sampling probability of each window depends on the frequency of the classes. Less frequent
classes are sampled more often. As a result of this window sampling, NiftyNet does not use
the term epochs.

Fig. 6.2 Patch-based image analysis.

Network architecture

Following the approach by Wenqi Li et al. for segmentation of 155 neuroanatomical regions
from brain MRI images [60], we used a high-resolution, 3D convolutional network (High-
Res3DNet). An illustration of the HighRes3DNet used in our experiments is presented in
figure 6.3, and the number of learnable parameters for this network is shown in table 6.1.
Note that each residual block in this network utilizes skip-connections, as illustrated in figure
6.4. Skip connections were introduced in ResNet in 2015 by Kaiming He. et al., where
they demonstrated state-of-the-art performance in the ILSVRC with a 152 layer deep neural
network that utilized such connections [42]. Before skip connections, no one had managed to

6.2 Methods and materials 44

train such deep neural networks due to the vanishing gradient problem (discussed in chapter
5).

Fig. 6.3 Visualization of the high-resolution, 3D convolutional network architecture utilized
in our experiments

Fig. 6.4 An illustration of skip connection between two residual blocks in high-resolution,
3D convolutional network.

Layers Learnable parameters

1. Conv_0 964
2. Res_1 42060
3. Res_2 153132
4. Res_3 610380
5. Conv_1 5602
6. Conv_2 174
Total 812312

Table 6.1 Total number of learnable parameters for the high-resolution, 3D convolutional
network used in our experiments.

6.2 Methods and materials 45

Experimental setting

Our models were all trained using the following regime:

Optimizer: Adam

Window sampling: Weighted

Learning rate: Base learning rate 0.001

Regularization: L2

Data augmentation: Rotation (-10.0, 10.0) and scaling (-10.0, 10.0)

Patch sizes: 96 x 96 x 96

Batch size: 2

GPU: NVIDIA Tesla V100

Model: NiftyNets’s HighRes3DNet

Preprocessing

Normalization

All the MRI modalities for IXI and BraTS were normalized by subtracting the mean value
and dividing by the standard deviation.

Removing abnormal training data

A problem we encountered in the IXI dataset was that some of the images were cropped
differently than the rest, for instance, the IXI642 image shown in figure 6.5. This was caused
by our co-registration of the T1 and T2 images. To handle this problem, we decided to train
a network on the entire dataset, and remove the images that the network predicted poorly on.
By applying this approach, we ended up removing 145 images from the dataset. Note that
our source network trained on this modified dataset can slightly overfit these data due to this
approach, making it impossible to compare our results from the hippocampus segmentation
with other similar studies that we have mentioned earlier. But as we are mainly interested in
creating a well-performing source network, this is not deemed problematic. The cropping

6.2 Methods and materials 46

issue could have been handled by building a more robust network. However, this is out of the
transfer learning studies scope.

IXI416 IXI642 IXI325 IXI192

Fig. 6.5 Examples of T1-weighted images in the IXI dataset

Data split

• We split the modifed IXI dataset randomly into 364 training subjects, 44 validation
subjects and 44 testing subjects.

• The HGG cases from the BraTS dataset is split randomly into 105 training samples,
63 validation samples, and 42 test samples to assess the value of our transfer learning
approach. No subject was present in more than one of these dataset.

Model evaluation

The impact of the pre-trained layers

In order to study the value of layers transferred from the pre-trained IXI model, we have
decided to fine-tune five unique models on the BraTS dataset with freezing different layers
(e.g., conv_0 frozen, conv_0 and res_1 frozen, etc.). In addition, we will train a model from
scratch that will be our baseline model. The value of each layer will be assessed through the
training- and validation loss, and the average Dice score of the segmentation results on the
training- and validation data.

The effect of training set size in the target task

The best performing models from the previous study will be used in this experiment to
investigate the effect of the BraTS training set size. Note that, if the model trained from
scratch is not one of them, then it will get a free pass into this experiment since it is our
baseline model. To analyze how each model is affected by the size of the training data, we

6.3 Experimental results 47

partition the training set into four sets (e.g., S1, S2, S3, S4), and train all the models on each
of them. Every set except the first one builds on the previous set, as shown in figure 6.6. The
performance of the models will be evaluated based on the training time and the average Dice
score of the segmentation result on the test data.

Fig. 6.6 An illustration of how we partition the training set

6.3 Experimental results

IXI

The source model trained on the training set and the validation set achieved an average Dice
score of 0.87 on the test set. Some of these segmentation results and their corresponding
ground truth labels are presented in figure 6.7. Because we dropped a couple of subjects
from the dataset in the preprocessing phase, we decided to train the final model on the entire
modified dataset for a couple of iteration with a small learning rate. This approach might give
a performance and robustness boost. However, there is no way to evaluate the performance
without bias since the model has seen all the available data.

6.3 Experimental results 48

Ground truth labels

Segmentation results

Fig. 6.7 Comparison of ground truth labels and segmentation results from four test cases in
the modified IXI dataset

The impact of layers in transferring from IXI to BraTS

The training loss and the validation loss obtained by our models are presented in figure 6.8.
Note that the loss functions are actually very spikey, but have been smoothed to visualize the
value of each layer. The reason for this unstable fluctuations is likely caused by the small
network architecture, the batch size and the patch-based image analysis approach shown in
6.2. As we can deduce from the loss functions, the pre-trained models with the early layers
frozen converge significantly faster than the other models. This indicates that the early layers
from our pre-trained model are more useful than the higher layers when transferring weights
to solve our task in the BraTS dataset. These results are consistent with the theory we have
seen earlier that the early layers learn more task-general features (e.g., edges, patterns, etc.),
and higher layers learn more task-specific features (see figure 3.8).

6.3 Experimental results 49

Training loss

Validation loss

Fig. 6.8 The training and validation loss for our models. Note that the specified model
number implies how many layers that are frozen.

Although the loss is very low for some of our pre-trained models, the segmentation
performance of these models is still poor, as shown in table 6.2. From the obtained results
we can see that the pre-trained models 1, 2, and 3 overfits. From the actual loss functions, it
was difficult to say when the models began to overfit. However, note that the purpose of this
experiment is to investigate the value of the transferred layers. Hence, this is not something
we need to worry about in this experiment, but it will be taken into consideration in the

6.3 Experimental results 50

following experiment, where we will evaluate the generalization performance of the best
performing models in this experiment, based on the size of the training set.

Training Dice Validation Dice
Scratch 0.5334 0.4602
Model 1 0.6389 0.4785
Model 2 0.6748 0.4377
Model 3 0.6406 0.4071
Model 4 0.2371 0.2109
Model 5 0.0556 0.0447

Table 6.2 The average Dice score on the training and validation set for each of our models.

Based on the box plots shown in figure 6.9, we assume the poor segmentation performance
in this experiment is mainly caused by not having enough training samples for particular
kinds of cases, such as training subject Brats18_CBICA_AQG_1 with multiple tumor cores.
The pre-trained models 1, 2, and 3 are the only models that are able to segment this subject
with the dice score of 0.1580, 0.2152, and 0.1470 as shown in figure 6.10. Even though the
segmentation results are bad, it is interesting to observe the performance of the pre-trained
models on this subject. It suggests that the pre-trained models have learned something
valuable from the IXI dataset that can be used in this task.

Training subject Brats18_CBICA_AUQ_1 is another example that suggest the same thing.
Model 1, 2, and 3 achieves the Dice score of 0.2103, 0.6887, and 0.4989 (see figure 6.11),
while the model trained from scratch is not able to segment the tumor core. This observation
is also indicated in the box plot of the segmentation results on the training set in figure 6.9a.
As we can see, the lower quartiles (e.g., 25% of the lowest values) for model 1,2, and 3 are
significantly higher than the model trained from scratch.

(a) Training Dice score (b) Validation Dice score

Fig. 6.9 Box plot of the Dice scores obtained by each of our models on the training set and
the validation set. The dots indicate outliers.

6.3 Experimental results 51

Ground truth label Model 1 Model 2 Model 3

Fig. 6.10 Ground truth and segmentation results for training subject Brats18_CBICA_AQG_1

Ground truth label Model 1 Model 2 Model 3

Fig. 6.11 Ground truth and segmentation results for training subject Brats18_CBICA_AUQ_1

The effect of training set size in the target task

Based on the results and observations from the previous experiment, we decided to utilize
three different pre-trained models where layer 1, 2 and 3 were frozen respectively, in addition
to a model initialized with random weights. The models with more layers frozen seem to
have too low capacity to be trained, as seen from the Dice scores on the training data in table
3.5. In order to alleviate the problem of overfitting as we saw in the previous experiment, we
chose to compare the average Dice score of the segmentation results on the training set and
the validation set at an iteration where the loss functions started to indicate overfitting. If
the average Dice score on the validation set was significantly lower than the average Dice
score on the training set, we chose a model from an earlier iteration and evaluated again.
This can be seen as a form of early stopping performed manually. However, this approach
was very time-consuming and computationally expensive, which made it challenging to find
a good balance between overfitting and underfitting. The inference (segmentation) time on
each subject was around 17 seconds. For instance, for the smallest training set S1 plus the
validation set (e.g., 26 training subjects and 63 validation subjects), the inference could take

6.3 Experimental results 52

up to 25 minutes. Calculation of Dice score on each image came in addition, so it could
easily take up to 40 minutes per evaluation.

The segmentation performance on the training, validation, and test sets for each model
trained on the four different training cases are presented in tables 6.3, 6.4, 6.5, and 6.6.

Training Dice Validation Dice Test Dice Number of iterations
Scratch 0.5821 0.3744 0.4261 500
Model 1 0.7500 0.3920 0.4312 500
Model 2 0.7476 0.3780 0.3611 500
Model 3 0.6867 0.3214 0.3388 500

Table 6.3 Segmentation results obtained using training set S1

Training Dice Validation Dice Test Dice Number of iterations
Scratch 0.5000 0.3810 0.4526 1000
Model 1 0.6421 0.4169 0.4819 500
Model 2 0.6319 0.4143 0.4708 500
Model 3 0.6178 0.3887 0.4677 500

Table 6.4 Segmentation results obtained using training set S2

Training Dice Validation Dice Test Dice Number of iterations
Scratch 0.4623 0.3712 0.4175 1000
Model 1 0.6390 0.3900 0.4540 1000
Model 2 0.6567 0.4257 0.4918 1000
Model 3 0.6040 0.3993 0.4675 1000

Table 6.5 Segmentation results obtained using training set S3

6.4 Discussion 53

Training Dice Validation Dice Test Dice Number of iterations
Scratch 0.5924 0.5175 0.5103 5000
Model 1 0.6830 0.4450 0.5565 1500
Model 2 0.6437 0.4088 0.4550 1500
Model 3 0.6439 0.4382 0.5019 1500

Table 6.6 Segmentation results on the test set obtained using training set S4

Even though the segmentation performance is still poor (discussed in the previous
experiment), we can see some interesting indications in the obtained results. In all the
training cases, the best generalization error is achieved by one of the pre-trained models.
In addition, in case S2 and S4 we can see that the pre-trained models are selected from an
earlier training iteration compared to the model trained from scratch, which means that the
training time is decreased for these models. Note that the training time is dominated by the
(CPU-based) sampling of class-weighted windows. The actual updating of network weights
through gradient descent and backpropagation happening on the GPU is a relatively small
portion of the process. For other sampling configurations, the time saved per iteration by
reducing the number of parameters in the network through freezing would be much greater,
further increasing the value of transferring from pre-trained networks.

6.4 Discussion

In this study, we presented the potential of using transfer learning in 3D CNN for volumetric
medical images, by first training a network on the task of segmenting the left and right
hippocampus on a large-scale MRI dataset of healthy patients, and fine-tuned this network to
segment tumor core in a smaller MRI dataset. Although the overall segmentation performance
of our models was bad, we got some interesting suggestions. The obtained results indicate
that our approach to transfer learning can decrease the training time and might improve
the segmentation performance compared to a model trained from scratch. We expect that
our findings would have been more significant with better preprocessing techniques for
splitting the data into training, validation, and test sets. We further believe that using modern
best practices, such as decreasing the learning rate during the training would give better
results. But this is beyond the scope of this investigation since it would require a lot of
experimentation to find a good learning rate schedule for each mode. In addition, note that
using all the MRI sequences in the brain tumor dataset would also lead to better segmentation,

6.4 Discussion 54

but would not be as suitable for our transfer experiments from the T1 + T2 images of IXI. We
have also experimented with using different CNN architectures and found better results using
e.g. DenseVNet [32]. However, these architectures are not as well-suited for our transfer
learning experiments.

Our source code for this study is publicly available at: https://github.com/skaliy/niftynet_
brain. Future transfer learning investigations will be added to this repository.

https://github.com/skaliy/niftynet_brain
https://github.com/skaliy/niftynet_brain

Chapter 7

Conclusion and future work

In this thesis, we described a new approach for transfer learning in 2D CNN for medical
images. We proposed a technique that involves first training a network pre-trained on the
ImageNet dataset to the medical domain, before fine-tuning this network for the primary task
in the medical domain. Our obtained results indicated that this approach to transfer learning
leads to less need for training data.

In addition, we investigated the potential of transfer learning in 3D CNN for volumetric
medical images, an area that is not well-studied. Although the obtained segmentation
performance was poor due to the difficulty in the target dataset and limitations in the
framework, we got some interesting indications. Our findings suggest that the training time
can be reduced and might improve performance slightly as well. We expect that better
preprocessing methods and using state-of-the-art techniques would give better results.

In the future work, we would like to develop further on this study and create preprocessing
methods and utilize state-of-the-art techniques that can be used to improve the segmentation
performance of the networks in various volumetric medical image segmentation tasks. In
addition, we want to create a sort of ImageNet dataset for 3D MRI, and pre-train a couple
of state-of-the-art models on this dataset than can be used in local projects at Haukeland
University Hospital.

References

[ten] TensorFlow Core. https://www.tensorflow.org/alpha. Accessed: 2019-05-13.

[2] Abadi, M., Agarwal, A., Barham, P., et al. (2015). TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software available from tensorflow.org.

[3] Anand, K. S. and Dhikav, V. (2012). Hippocampus in health and disease: An overview.
Annals of Indian Academy of Neurology, 15(4):239.

[4] anonymous (2017). Battle of the brains. https://www.economist.com/business/2017/12/
07/google-leads-in-the-race-to-dominate-artificial-intelligence.

[5] Arulkumaran, K., Cully, A., and Togelius, J. (2019). AlphaStar: An Evolutionary
Computation Perspective. arXiv preprint arXiv:1902.01724.

[6] Awadalla, H. H., Aue, A., Chen, C., Chowdhary, V., Clark, J., Federmann, C., Huang,
X., Junczys-Dowmunt, M., Lewis, W., Li, M., et al. (2018). Achieving human parity on
automatic chinese to english news translation.

[7] Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J.,
Farahani, K., and Davatzikos, C. (2017a). Segmentation labels and radiomic features
for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive
(2017).

[8] Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J.,
Farahani, K., and Davatzikos, C. (2017b). Segmentation labels and radiomic features for
the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive, 286.

[9] Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J. S., Freymann, J. B.,
Farahani, K., and Davatzikos, C. (2017c). Advancing the cancer genome atlas glioma
MRI collections with expert segmentation labels and radiomic features. Scientific data,
4:170117.

[10] Barreira, C. M., Bouslama, M., Haussen, D. C., Grossberg, J. A., Baxter, B., Devlin,
T., Frankel, M., and Nogueira, R. G. (2018). Abstract WP61: Automated Large Artery
Occlusion Detection IN Stroke Imaging-ALADIN Study. Stroke, 49(Suppl_1):AWP61–
AWP61.

[11] Bell, J. (2014a). Machine learning: hands-on for developers and technical professionals.
John Wiley & Sons.

[12] Bell, W. (2014b). Machine learning: for developers and technical professionals. Wiley.

https://www.tensorflow.org/alpha
https://www.economist.com/business/2017/12/07/google-leads-in-the-race-to-dominate-artificial-intelligence
https://www.economist.com/business/2017/12/07/google-leads-in-the-race-to-dominate-artificial-intelligence

References 57

[13] Bonnin, R. (2017). Machine Learning for Developers. Packt Publishing.

[14] Brett, M., Markiewicz, C. J., Hanke, M., et al. (2019). nipy/nibabel: 2.4.1.

[15] Carmichael, O. T., Aizenstein, H. A., Davis, S. W., Becker, J. T., Thompson, P. M.,
Meltzer, C. C., and Liu, Y. (2005). Atlas-based hippocampus segmentation in Alzheimer’s
disease and mild cognitive impairment. Neuroimage, 27(4):979–990.

[16] Carmo, D., Silva, B., Yasuda, C., Rittner, L., and Lotufo, R. (2019). Extended 2D
Volumetric Consensus Hippocampus Segmentation. arXiv preprint arXiv:1902.04487.

[17] CHARU, C. A. (2019). NEURAL NETWORKS AND DEEP LEARNING: A Textbook.
SPRINGER.

[18] Chen, S., Ma, K., and Zheng, Y. (2019). Med3D: Transfer Learning for 3D Medical
Image Analysis. arXiv preprint arXiv:1904.00625.

[19] Chen, W., Li, S., Jia, F., and Zhang, X. (2011). Segmentation of hippocampus based
on ROI atlas registration. In 2011 IEEE International Symposium on it in Medicine and
Education, volume 1, pages 226–230. IEEE.

[20] Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7: A matlab-like
environment for machine learning. Technical report.

[21] Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., and van, W. T. (2019). Brain-
lesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Fourth Inter-
national Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada,
Spain, September 16, 2018, Revised Selected Papers, Part II, volume 11384. Springer.

[22] CrowdFlower (2016). Data Science Report. Technical report.

[23] Cui, Y., Song, Y., Sun, C., Howard, A., and Belongie, S. (2018). Large scale fine-
grained categorization and domain-specific transfer learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4109–4118.

[24] Dai, J., He, K., and Sun, J. (2016). Instance-aware semantic segmentation via multi-task
network cascades. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3150–3158.

[25] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and Thrun,
S. (2017). Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542(7639):115.

[26] Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui,
C., Corrado, G., Thrun, S., and Dean, J. (2019). A guide to deep learning in healthcare.
Nature medicine, 25(1):24.

[27] Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters,
27(8):861–874.

[28] Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2):774–781.

References 58

[29] Frisoni, G. B., Fox, N. C., Jack Jr, C. R., Scheltens, P., and Thompson, P. M. (2010).
The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology,
6(2):67.

[30] Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological cybernetics,
36(4):193–202.

[31] Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow:
concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Inc.

[32] Gibson, E., Giganti, F., Hu, Y., Bonmati, E., Bandula, S., Gurusamy, K., Davidson,
B., Pereira, S. P., Clarkson, M. J., and Barratt, D. C. (2018a). Automatic multi-organ
segmentation on abdominal CT with dense v-networks. IEEE transactions on medical
imaging, 37(8):1822–1834.

[33] Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D. I., Wang, G., Eaton-Rosen, Z.,
Gray, R., Doel, T., Hu, Y., et al. (2018b). NiftyNet: a deep-learning platform for medical
imaging. Computer methods and programs in biomedicine, 158:113–122.

[34] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pages 315–323.

[Google] Google. Cloud Tensor Processing Units (TPUs). https://cloud.google.com/tpu/
docs/tpus. Accessed: 2019-05-13.

[Group] Group, B. I. A. IXI Dataset. https://brain-development.org/ixi-dataset. Accessed:
2019-05-12.

[37] Haenssle, H., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., Kalloo, A.,
Hassen, A. B. H., Thomas, L., Enk, A., et al. (2018). Man against machine: diagnostic
performance of a deep learning convolutional neural network for dermoscopic melanoma
recognition in comparison to 58 dermatologists. Annals of Oncology, 29(8):1836–1842.

[38] Haldorai, A. and Ramu, A. (2018). Cognitive Social Mining Applications in Data
Analytics and Forensics. IGI Global.

[39] Hansen, H. (2018). Germany plans 3 billion in AI investment: gov-
ernment paper. https://www.reuters.com/article/us-germany-intelligence/
germany-plans-3-billion-in-ai-investment-government-paper-idUSKCN1NI1AP.

[40] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings
of the IEEE international conference on computer vision, pages 2961–2969.

[41] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034.

[42] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
https://brain-development.org/ixi-dataset
https://www.reuters.com/article/us-germany-intelligence/germany-plans-3-billion-in-ai-investment-government-paper-idUSKCN1NI1AP
https://www.reuters.com/article/us-germany-intelligence/germany-plans-3-billion-in-ai-investment-government-paper-idUSKCN1NI1AP

References 59

[43] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554.

[44] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

[45] Howard, J. et al. (2018). fastai. https://github.com/fastai/fastai.

[46] Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text
classification. arXiv preprint arXiv:1801.06146.

[47] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708.

[48] Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3):90–95.

[49] Iglesias, J. E. and Sabuncu, M. R. (2015). Multi-atlas segmentation of biomedical
images: a survey. Medical image analysis, 24(1):205–219.

[50] Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H.,
Haghgoo, B., Ball, R., Shpanskaya, K., et al. (2019). Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. In Thirty-Third AAAI Conference
on Artificial Intelligence.

[51] Joiner, I. A. (2018). Emerging Library Technologies: It’s Not Just for Geeks. Chandos
Publishing.

[52] Kaliyugarasan, S. and Lundervold, A. S. (2018). Transfer learning in medical images:
a case study.

[53] Kensert, A., Harrison, P. J., and Spjuth, O. (2018). Transfer learning with deep
convolutional neural networks for classifying cellular morphological changes. SLAS
DISCOVERY: Advancing Life Sciences R&D, page 2472555218818756.

[54] Knight, W. (2018). MIT has just announced a $1 billion plan to create
a new college for AI. https://www.technologyreview.com/the-download/612293/
mit-has-just-announced-a-1-billion-plan-to-create-a-new-college-for-ai/.

[55] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

[56] Krupinski, E. A., Berbaum, K. S., Caldwell, R. T., Schartz, K. M., and Kim, J. (2010).
Long radiology workdays reduce detection and accommodation accuracy. Journal of the
American College of Radiology, 7(9):698–704.

[57] Krupinski, E. A., Berbaum, K. S., Caldwell, R. T., Schartz, K. M., Madsen, M. T., and
Kramer, D. J. (2012). Do long radiology workdays affect nodule detection in dynamic CT
interpretation? Journal of the American College of Radiology, 9(3):191–198.

https://github.com/fastai/fastai
https://www.technologyreview.com/the-download/612293/mit-has-just-announced-a-1-billion-plan-to-create-a-new-college-for-ai/
https://www.technologyreview.com/the-download/612293/mit-has-just-announced-a-1-billion-plan-to-create-a-new-college-for-ai/

References 60

[58] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural
computation, 1(4):541–551.

[59] LeNail, A. (2019). NN-SVG: Publication-Ready Neural Network Architecture Schemat-
ics. The Journal of Open Source Software, 4:747.

[60] Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M. J., and Vercauteren, T. (2017).
On the compactness, efficiency, and representation of 3D convolutional networks: brain
parcellation as a pretext task. In International Conference on Information Processing in
Medical Imaging, pages 348–360. Springer.

[61] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Van
Der Laak, J. A., Van Ginneken, B., and Sánchez, C. I. (2017). A survey on deep learning
in medical image analysis. Medical image analysis, 42:60–88.

[62] Lundervold, A. S. and Lundervold, A. (2019). An overview of deep learning in medical
imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2):102 – 127.

[63] Lundervold, A. S., Rørvik, J., and Lundervold, A. (2017). Fast semi-supervised
segmentation of the kidneys in DCE-MRI using convolutional neural networks and transfer
learning.

[64] Maglogiannis, I. G. (2007). Emerging artificial intelligence applications in computer
engineering: real word ai systems with applications in ehealth, hci, information retrieval
and pervasive technologies, volume 160. Ios Press.

[65] Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A.,
and van der Maaten, L. (2018). Exploring the limits of weakly supervised pretraining. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 181–196.

[66] Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren,
Y., Porz, N., Slotboom, J., Wiest, R., et al. (2014). The multimodal brain tumor image
segmentation benchmark (BRATS). IEEE transactions on medical imaging, 34(10):1993–
2024.

[67] Mishra, P. (2019). Introduction to PyTorch, Tensors, and Tensor Operations. In PyTorch
Recipes, pages 1–27. Springer.

[68] Ng, A. (2013). Machine Learning and AI via Brain simulations. Andrew Ng.

[69] NVIDIA (2015). GPU-Based Deep Learning Inference: A Performance and Power
Analysis. Whitepaper, November.

[70] Oakden-Rayner, L. (2017). Exploring the ChestXray14 dataset: problems.

[71] Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trelgol Publishing USA.

[72] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in PyTorch. In NIPS-W.

[73] Paszke, A., Gross, S., Chintala, S., and et al., C. (2016). pytorch.
://github.com/pytorch/pytorch.

References 61

[74] Pedersen, K. (2016). 7000 undersøkelser i kø hos røntgenlegene.
://www.bt.no/nyheter/lokalt/i/eLBba/7000-undersokelser-i-ko-hos-rontgenlegene.

[75] Peng, T. and Sarazen, M. (2018). Andrew Ng Warns of Centralized AI Power.
:/www.syncedreview.com/2018/05/29/andrew-ng-warns-of-centralized-ai-power/.

[76] Pipitone, J., Park, M. T. M., Winterburn, J., Lett, T. A., Lerch, J. P., Pruessner, J. C.,
Lepage, M., Voineskos, A. N., Chakravarty, M. M., Initiative, A. D. N., et al. (2014). Multi-
atlas segmentation of the whole hippocampus and subfields using multiple automatically
generated templates. Neuroimage, 101:494–512.

[77] Rajpurkar, P., Irvin, J., Bagul, A., Ding, D., Duan, T., Mehta, H., Yang, B., Zhu, K.,
Laird, D., Ball, R. L., et al. (2017a). Mura: Large dataset for abnormality detection in
musculoskeletal radiographs. arXiv preprint arXiv:1712.06957.

[78] Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A.,
Langlotz, C., Shpanskaya, K., et al. (2017b). Chexnet: Radiologist-level pneumonia
detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.

[79] Ravishankar, H., Sudhakar, P., Venkataramani, R., Thiruvenkadam, S., Annangi, P.,
Babu, N., and Vaidya, V. (2017). Understanding the mechanisms of deep transfer learning
for medical images. arXiv preprint arXiv:1704.06040.

[80] Rosemain, M. and Rose, M. (2018). France to spend $1.8 billion on
AI to compete with U.S., China. https://www.reuters.com/article/us-france-tech/
france-to-spend-1-8-billion-on-ai-to-compete-with-u-s-china-idUSKBN1H51XP.

[81] Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747.

[82] Ruder, S. (2017). Transfer Learning - Machine Learning’s Next Frontier. Accessed:
2019-05-25.

[83] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252.

[84] Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., and
Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection:
CNN architectures, dataset characteristics and transfer learning. IEEE transactions on
medical imaging, 35(5):1285–1298.

[85] Shoham, Y., Perrault, R., Brynjolfsson, E., Clark, J., Manyika, J., Niebles, J. C., Lyons,
T., Etchemendy, J., Grosz, B., and Bauer, Z. (2018). The AI Index 2018 Annual Report.
Technical report, AI Index Steering Committee and Human-Centered AI Initiative and
Stanford University.

[86] Shukla, A. (2010). Intelligent Medical Technologies and Biomedical Engineering:
Tools and Applications: Tools and Applications. Igi Global.

https://www.reuters.com/article/us-france-tech/france-to-spend-1-8-billion-on-ai-to-compete-with-u-s-china-idUSKBN1H51XP
https://www.reuters.com/article/us-france-tech/france-to-spend-1-8-billion-on-ai-to-compete-with-u-s-china-idUSKBN1H51XP

References 62

[87] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., et al. (2017a). Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815.

[88] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., et al. (2017b). Mastering the game of go without human
knowledge. Nature, 550(7676):354.

[89] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958.

[90] Storstein, A., Helseth, E., Johannesen, T. B., Schellhorn, T., Mørk, S., and van Helvoirt,
R. (2011). Høygradige gliomer hos voksne. Tidsskrift for Den norske legeforening.

[91] Taha, A. A. and Hanbury, A. (2015). Metrics for evaluating 3D medical image segmen-
tation: analysis, selection, and tool. BMC medical imaging, 15(1):29.

[92] Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., Gotway, M. B.,
and Liang, J. (2016). Convolutional neural networks for medical image analysis: Full
training or fine tuning? IEEE transactions on medical imaging, 35(5):1299–1312.

[93] Thyreau, B., Sato, K., Fukuda, H., and Taki, Y. (2018). Segmentation of the hippocam-
pus by transferring algorithmic knowledge for large cohort processing. Medical image
analysis, 43:214–228.

[94] Topol, E. J. (2019). High-performance medicine: the convergence of human and
artificial intelligence. Nature medicine, 25(1):44.

[95] van der Plas, A. (2015). MRI Technique. Accessed: 2019-05-24.

[96] Wachinger, C., Reuter, M., and Klein, T. (2018). DeepNAT: Deep convolutional neural
network for segmenting neuroanatomy. NeuroImage, 170:434–445.

[97] Wan, X., Liu, J., Cheung, W. K., and Tong, T. (2014). Learning to improve medical
decision making from imbalanced data without a priori cost. BMC medical informatics
and decision making, 14(1):111.

[98] Wang, F.-Y. (2012). A big-data perspective on AI: Newton, Merton, and analytics
intelligence. IEEE Intelligent Systems, 27(5):2–4.

[99] Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and Summers, R. M. (2017). Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classifi-
cation and localization of common thorax diseases. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2097–2106.

[100] Xie, Z. and Gillies, D. (2018). Near Real-time Hippocampus Segmentation Using
Patch-based Canonical Neural Network. arXiv preprint arXiv:1807.05482.

[101] Xu, Y., Géraud, T., and Bloch, I. (2017). From neonatal to adult brain MR image
segmentation in a few seconds using 3D-like fully convolutional network and transfer
learning. In 2017 IEEE International Conference on Image Processing (ICIP), pages
4417–4421. IEEE.

References 63

[102] Yang, Y., Yan, L.-F., Zhang, X., Han, Y., Nan, H.-Y., Hu, Y.-C., Hu, B., Yan, S.-L.,
Zhang, J., Cheng, D.-L., et al. (2018). Glioma grading on conventional MR images: a
deep learning study with transfer learning. Frontiers in neuroscience, 12.

[103] Yoshida, K. and Lee, M. (2018). Knowledge Management and Acquisition for Intelli-
gent Systems, volume 11016. Springer.

[104] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are
features in deep neural networks? In Advances in neural information processing systems,
pages 3320–3328.

[105] Yu, Z., Jiang, X., Zhou, F., Qin, J., Ni, D., Chen, S., Lei, B., and Wang, T. (2019).
Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional
Features. IEEE Transactions on Biomedical Engineering, 66(4):1006–1016.

[106] yWorks GmbH (n.d.). yED.

[107] Zafar, I., Tzanidou, G., Burton, R., Patel, N., and Araujo, L. (2018). Hands-on
Convolutional Neural Networks with TensorFlow: Solve Computer Vision Problems with
Modeling in TensorFlow and Python. Packt Publishing Ltd.

[108] Zeiler, M. D. and Fergus, R. (2013). Visualizing and understanding convolutional
networks (2013). arXiv preprint arXiv:1311.2901.

[109] Zheng, A. (2015). Evaluating Machine Learning Models. Technical report.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	I Background
	2 Introduction to machine learning
	2.1 What is machine learning?
	2.2 Traditional programming vs machine learning
	2.3 Different types of machine learning
	2.4 Data: a limiting factor in machine learning
	2.5 Understanding features
	2.6 Overfitting and underfitting
	2.7 Bias-variance tradeoff
	2.8 Model evaluation

	3 Deep learning for computer vision
	3.1 Neural networks
	3.2 Activation functions
	3.3 Training multilayer neural networks
	3.4 Convolutional neural networks
	3.5 Regularization

	4 Transfer learning for deep neural networks
	4.1 Transfer learning in computer vision

	II Experiments
	5 Transfer learning for 2D medical images
	5.1 Introduction
	5.2 Methods and materials
	5.3 Experimental results
	5.4 Discussion

	6 Transfer learning for 3D medical images
	6.1 Introduction
	6.2 Methods and materials
	6.3 Experimental results
	6.4 Discussion

	7 Conclusion and future work
	References

