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Abstract

Machine learning is a growing topic in computer science. The growing
phenomenon that is machine learning keeps showing its usefulness in a large
amount of scenarios, from advertising to research. Terabytes of data are
stored every day on our computers and on computers in use by large busi-
nesses, research groups, hospitals, etc. These data serves many purposes
from medical data used in diagnosis, or consumer data from online shopping
to ensure that the consumer demand is fulfilled. However, with the large
amount of data that are produced, the applications of the data can stretch
far beyond that. Looking at data from one patient can be used to diagnose
the patient, looking at several patient data set can be used to find patterns in
the collections of patients and help prevent a disease in the future. However,
working with large amount of data are no simple task, and extracting the
important features in the data can be just as difficult. This is where the
concept of machine learning plays a large part today. In the field of neural
imaging, the applications that machine learning provide regarding finding
patterns and correlations can be very useful. A fMRI project can create sub-
stantial amounts of data and finding patterns in these data efficiently in new
ways can lead the way for findings granting better understanding on how the
brain, and we, work.
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1 Introduction

This section will introduce the structure of this thesis and the motivation
behind it. Work related to this thesis will be discussed and who this thesis
might be of value for.

1.1 Motivation

The motivations for this project started with the suggestion of the existence
of a generalized non-specific task-dependent network that showed correlation
with the task-independent network, discussed in the article ”On the existence
of a generalized non-specific task-dependent network”[1]. The observation
of this network was made while Kenneth Hugdahl, one of the authors of
this article, when he was preparing for a lecture looking at different brain
activation patterns related to different cognitive tasks. An observation like
this can have a massive impact on the field of neural imaging and how brain
activation of cognitive tasks are interpreted. From this article, it is clear that
the ability to observe hidden patterns in neural imaging can be important.
It was suggested to make a deep learning classifier to observe if a machine
learning approach would be able to find patterns in fMRI BOLD-images
related to cognitive tasks.

1.2 Related Work

This project is based on the observations done in the article about the Effort
Mode Network(EMN) from researchers at Haukeland University Hospital.[1]
This article, and other articles related to medical imaging and classifications
of brain activation network are therefore all valuable and related to this
project.

Machine learning is something that is widely used today and finding some-
thing that machine learning has not been used for can be a challenge. How-
ever, machine learning, or rather deep learning used to predict network re-
lated to brain activations from an fMRI-project is not that common. In this
thesis, the machine learning algorithm that will be addressed is the three-
dimensional convolutional network for classification, therefore articles related
to this will be most useful.

Several article exist discussing approach of implementing a machine-learning
algorithm to classify medical images. In addition, several pre-trained deep
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learning models exists for classification of medical images or other three-
dimensional images. This include deep learning networks platforms like
NiftyNet[3] and deep learning networks like DeepMedic[4].

However, just a few articles discuss the usages of deep learning on resting-
state functional magnetic resonate imagining, especially using three-dimensional
neural network on blood-oxygenation-level-dependent (BOLD) fMRI images.

An article related to the usages of three-dimensional convolutional neu-
ral network on fMRI BOLD-images from 2018 states: ”To the best of our
knowledge, this is the first study that employs a single blood-oxygenation-
level-dependent (BOLD) fMRI volume as the input of the 3D-CNN for task
classification”[5]. This article describes an approach to predict sensorimotor
tasks using 3D-CNN, which is very related to this project. The article as
mentioned, uses BOLD-images of the sensorimotor tasks as input and uses
the input in a 3D-CNN and compares it to another deep neural network pre-
trained on the same data set. It concludes that the 3D-CNN outperforms
the other feedforward deep neural network.

The 3D-CNN proposed in this thesis will have a similar approach to
implementation done in the article; ”3D convolutional neural network for
feature extraction and classification of fMRI volumes”[5], but will tackle a
different data set related to brain activation of cognitive tasks, and will use a
more complex network structure to better represent the data. In addition, the
article uses a modified LeNet-5 network, while the network proposed in this
thesis will be constructed from the ground up using Keras with TensorFlow.

1.3 Target Audience

This is thesis is mostly target at people in the field of computer science and
people working with medical imaging or other complex images, mostly three-
dimensional. The thesis focuses on using deep learning to classify functional
magnetic resonance images and will therefore have more importance for peo-
ple working with classifying brain activations or action recognition in other
fields. This does not limit the thesis to be relevant to people working in other
fields of interest since machine learning, deep learning, image classification,
and working with medical imaging are all topics of relevance and topics that
will most likely continue to have more importance in the time to come.
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1.4 Thesis Structure

Reading this first section will give a brief introduction to the topic and how
it will be approached. In Section 2 the research approach in this thesis is
discussed. Section 3 gives insight in how functional magnetic imagining works
in addition to some of the concepts related to fMRI that will be used in this
thesis. Machine learning concepts are introduced in this section as well. In
Section 4 the data acquisition is explained in addition to the brain activations
of different cognitive tasks used in this project and how they were collected.
Pre-processing is addressed in Section 5, explaining each step of the process.
In Section 6 concepts related to artificial neural networks that are used in this
project are presented. Section 7 will explain the implementation and design
choices done along the way. It will also introduce problems that accrued and
how some they were fixed during the implementation. The results will be
discussed in Section 8 from early iterations of the project to the final results.
The last section will conclude the project and discuss changes that could be
done in the future.

2 Research Approach

2.1 Project plan

The project I have started working on is a project lead by the fMRI research
group at Haukeland. The purpose of project is to explore data driven ap-
proaches to analyze the acquired neural imaging data and target the methods
most sensitive and most reliable to pick up the changes between the EMN
and DMN states of the neural activations.

First, I will be working closely with the fMRI research group at Haukeland
University Hospital on the mentioned project. Understanding the analysis is
important for developing a software that can optimize the analysis. I will then
start working on how this can be done differently, looking on which methods
that can be used to improve the analysis using software engineering. Lastly I
will create a software that can be used in this analysis and afterwards improve
it to be used in similar analysis. The expected result of the project will be:
Better understanding of the two networks EMN and DMN. Optimization of
the analysis process related to these networks. Software to be utilized in
conjunction with a similar analysis later.
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2.2 Research Questions

The research questions for this thesis will be: How do EMN and DMN inter-
play in each individual participant? Here the focus will be on each cognitive
tasks in conjunction with the DMN and how separable they are.

How can the experiment be optimized, i.e. shortened in time without the
loss off accuracy- to develop an easy-to-include experiment for future clini-
cal settings or multicentre studies. Here the focus will be on implementing a
machine learning approach to the fMRI analysis. It was decided in the begin-
ning of this project to use a three-dimensional convolutional neural network
(3D-CNN) as the model for this implementation.

2.3 Research Methodology

The method of approach to answer the research questions is a quantitative
one. Through a series of fMRI scans conducted by Haukeland University
Hospital as a part of a project to get a better understanding of the connec-
tion between EMN and DMN, data was collected from several volunteers,
including myself. The data will be analyzed using a machine learning model.
The important aspect here is to get an overview of the different cognitive
neural activations in relations to the default mode network, so that it is pos-
sible in later projects to improve on the methods used in the analysis.The
main goal of this thesis is to use the information gained from the analysis
to make/improve software such that these experiments can be shortened in
time without the loss of accuracy.

2.4 Research Validation

The thesis will be validated by the performance of the working software. The
criteria for the performance will be how well it can pick up and differentiate
the different cognitive tasks, how optimized this process is, and how this can
be used in other similar analysis. The thesis will also be validated by looking
at the result of the analysis of these networks. The metric for validation will
be the accuracy of which the classifier implemented with machine learning,
is able to predict the different neural networks.

2.5 Project Conclusion

The conclusion of the thesis will consider the working software and its signif-
icance to the analysis of the networks. I will look at both the strengths and
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weaknesses of the software and discuss how the software could be improved,
if possible. I will also consider and discuss how it can be applied to other
analyses and then discuss what changes should be made to make this possi-
ble. The process of the project is also a valid subject of discussion, where I
will look at the different approaches that was used to finish the software and
which of these approaches that worked, and which approaches that did not
produces the wanted results, and why.

3 Background

This chapter will introduce the information needed to get an understanding
of the work done in this thesis. A simple introduction to fMRI and the Blood
oxygenation level dependent (BOLD) imaging will first be presented. In later
sub-sections, concepts related to machine learning will be introduced. Most
of the information about machine learning will be from the book ”Machine
Learning, and algorithmic approach”[6].

3.1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is a measurement technique
that is used to measure changes in activity (function) in the brain, using
an MRI scanner to retrieve data from the tissue and visualize these data
with images. This is different from regular MRI where the focus is to study
the anatomy of the brain (or other parts of the body). Functional magnetic
resonance imaging is primarily done by looking at the blood flow in differ-
ent parts of the brain during the execution of different sensory or cognitive
tasks[2].
It is then possible to study all the parts of the brain that are active during
these different tasks and find connections between them, creating a network.
Researching the different networks of the human brain can be very important
for getting a better understanding of how the brain works and then use this
information to prevent, treat, and understand many of the illnesses that are
related to the brain.
When area of the brain is activated to solve a task, the neural activity in-
creases the regional cerebral blood flow (rCBF) to compensate for the in-
crease in metabolic activity. Oxyhemoglobin, oxygen-loaded hemoglobin, is
diamagnetic and therefore will give an increase in the signal strength that
is used retrieve information. This in turn makes the parts of the brain that
are activated during the task that the person in the MRI-scanner performed
simple to differentiate from the other parts of the brain using contrast[2]. A
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key concept in MRI and fMRI is the ability to look at contrast to highlight
the areas of the brain or other areas of the body of interest. In fMRI, we want
to use a contrast that can highlight the metabolic activity in certain parts of
the brain during the fMRI scans. Because of this, the contrast that nearly
all fMRI studies rely on is the blood-oxygenation-level-dependent (BOLD)
contrast[2]. In this project, BOLD-contrast neural image is what will be used
to classify different cognitive neural activations.

3.2 Effort Mode and Default Mode Network

As mentioned, researching the different neural networks of the brain is im-
portant getting a better understanding of the brain in the field of medicine.
One of these networks is the Default Mode Network (DMN). DMN is the
network that is active when the brain is in a resting state or in other words,
a task independent network. Recently the fMRI research group at Hauke-
land University Hospital, suggested the existence of a similar network, the
Extrinsic Mode Network (EMN), or Effort Mode Network, that was active
when the brain solved cognitive tasks. It is found that these two networks
are connected in that if one of the networks is up-regulated, the other is
down-regulated and vice versa[1].

3.3 Machine learning

Machine learning is about making an algorithm adapt its actions to data
so that the actions can be more accurate. Learning is a key concept, and
the objective of a machine learning algorithm is to learn from experience.
Another key concept is the ability for the machine learning model to follow
instructions so that it can generate a better performance based on previous
instructions[8]. The learning part of machine learning can be divided into
different types like supervised learning, unsupervised learning, or reinforced
learning.
In supervised learning, the machine learning algorithm is provided with a
set of training data and a set of labels/targets with the correct responses.
The algorithm tries to create a generalized solution to fit all possible data
points using the training data. Supervised learning is the most commonly
used learning method and is used in several machine learning algorithms
like, decision trees, support vector machines, neural networks, etc. Super-
vised learning is the learning method that will be used in this project.

Supervised learning can then be grouped into two approaches to deal with
different problems, regression and classification. To solve regression problems
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a mathematical function is suggested to best fit each data point in a data
set. New unlabelled data points can then be predicted using the created
mathematical functions. Classification problems consists of taking a data
point from a data set and predicting to which class the data point belongs.
The classification problem is discrete meaning that each data point belongs
only to one class/label. Classification is the method that will be used in this
project. The training data will be a set of neural images and the classes will
be the different cognitive tasks which are related to each image. This will
be explained in detailed in Section 4 about data acquisition and management.

Most machine learning approaches follows the same guidelines during
development of a machine learning model:
First data must be collected and prepared. The data is the input in the
machine learning algorithm and what the algorithm uses to predict new data
points or labels. It is therefore important to ensure that the quality of the
data is acceptable. Often professionals in the field from where the data is
collected takes part in ensuring that the data will be useful and that data
that would be damaging to the learning process is discarded.
Secondly, the important features in data must be specified. There are many
approaches for feature extracting based on the data and what features that
are deemed as important in the data and in the machine learning project.
Next, an algorithm has to be chosen. Several different machine learning
algorithm exists that each is useful in different scenarios. Parameters that can
be changed before training in the chosen algorithm is called hyper parameters.
Tuning of these parameters is important so that the chosen machine learning
model can best represent the input data.
Training the machine learning model is the next part of the process. The
data set is given as input to the algorithm and the algorithm tries to represent
these data. Lastly, the model must be evaluated and tested for the accuracy
on the data [6].

4 Data Acquisition

Data collection and preparation is an important and time consuming part of
a fMRI-analysis, and of a machine learning process. Large amounts of data
was collected in 2016, 2017, and 2018 for this fMRI-analysis. In this section,
the data acquisition process is presented with an explanation of the cognitive
tasks that the participants were instructed to perform.
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4.1 Data Collection

The data for this project was collected at Haukeland University Hospital
using one of several MRI-scanners available. The participants are placed
in the MRI-scanner containing a large electromagnet that produces a mag-
netic field with the power of 3.0 Tesla in the scanner. The magnetic field
aligns the hydrogen atoms in the participants body, or in this case, in the
brain. Radio waves are used to change the alignment of the hydrogen atoms,
when the scanner stops sending radio waves the hydrogen atoms returns to
their align state in the electromagnetic field. A signal is produced from this
process where the hydrogen atoms realign and the scanner interpreters this
signal to create an image. The oxygen-loaded hemoglobin, oxyhemoglobin,
will produce a different signal and this is why it is possible to differentiate
the different working part in the brain[2],[7].

Fifty-four healthy participants, including myself, was each scanned for
about an hour and were instructed to do different task throughout the scan-
ning process. There were three different tasks that the participants were
asked to solve: mental rotation (MR), working memory (WM), and mental
arithmetic (MA). The tasks were represented to the participants through a
set of goggles that could endure the magnetic field while providing the task
from a computer outside the room where the scanner where located. The
tasks had binary answers and were answered by clicking on a button that
was provided to the participants. Starting from a resting state, each partic-
ipant would do these tasks in interval for 17 scans then rest for 17 scans as
showed in Figure 1 and 2

Figure 1: Table showing the different task and when they were performed.
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Figure 2: Showing the scanning process.

4.2 Mental Rotation

In the mental rotation task the participants was asked to determine if two
three-dimensional object were the same object just rotated differently. Sev-
eral images with two three-dimensional objects were showed in quick succes-
sion and when the participant thought that the two object were identical,
they would push the button.

4.3 Working Memory

The working memory task was a modified Stroop test. Different words de-
scribing colour was presented to participants. The words also had different
colours and the point of the task was to remember the colour of the word, not
the colour the word described. Adding to this, the participants were asked
to click the button when a colour appeared that had appeared four words
earlier.
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4.4 Mental Arithmetic

Lastly, the mental arithmetic task presented the participants with two num-
bers. The task was to click the button every time these two numbers added
up to eleven. When the scanning was finished for each participant the data
was systematically stored and were controlled by radiologist before the data
could be used for research.

5 Pre-Processing

Pre-processing is a crucial part before using the neural images in an analysis.
Pre-processing is important to improve the detection of the areas of interest.
This can have a large impact on the analysis, as stated in the article ”Impact
of functional MRI data pre-processing pipeline on default-mode network de-
tectability in patients with disorders of consciousness”, where the usage and
importance of pre-processing on resting state fMRI is discussed.[16]

As mentioned in Section 4 the data preparation can be time consuming.
A large amount of the time in this project went to pre-processing of the data
and getting a understanding of the different tools and neural images that was
used.

In this section, we will take a look at the pre-processing process in this
project, and different pre-processing steps will be explained.

5.1 Why Pre-process?

Before the fMRI-data collected for this thesis can be used in an analysis, it
needs to be pre-processed. Slices from the fMRI data acquisition can end up
with different variations like noise, distortion, or other variations. There are
several different reasons for this, either technical, where the variation source
is from the scanner, or physiological, where its stems from the subject. By
pre-processing the data, it is possible to correct these variations that can
be quite severe, and even spoil the entire experiment if not corrected. The
data set that were used in this project went through a pre-processing pipeline
using SPM12 (Statistical Parametric Mapping) in Matlab, a software package
which is designed for analysis of brain imaging.
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5.2 Data Management

Before the data could be pre-processed, it needed to be unzipped and ex-
tracted from IMA file format. This was done using MRIConverter, a pro-
gram design for this purpose.

Next, the 306 fMRI-BOLD image files from each subject were extracted
and placed into individual folders. This was done for all the scans from 2017
and 2018. The scan from 2016 had 285 images instead of 306, different from
the ones from 2017 and 2018 and were therefore not included in the pre-
processing or the analysis. This is because the scanning-structure could not
be found from the 2016 scans, and it is therefore impossible to label the task
that the subjects were performing during the scan.

After all the images from each individual scan were organized in differ-
ent folders, the data were ready to be pre-processed. In this project, the
fMRI-BOLD-images goes through three steps of pre-processing; Realign and
Unwarp, Normalize (estimate and write), and Smooth, which all are func-
tions in SPM12. In the pre-processing of these images most of the parameters
for the pre-processing are set to default and will not be changed since these
are the standards in each pre-processing step.

5.3 Realign and Unwarp

First the Realign and Unwarp function is used to match images. Since move-
ment of the subject might occur in the scanning processing, it is important
to remove the differences caused by this movement between scans during
pre-processing so that the data can be properly used in later analysis. This
is done by the Realign function. It does this using a six parameters rigid
body transformation, moving the images in X, Y, or Z direction and/or ro-
tating the images over the X, Y, or Z-axis, and a least squares approach to
minimize the difference between two scans. Next it uses the Unwarp func-
tion. fMRI-BOLD scans are sensitive to magnetic inhomogeneity resulting
in deformation in images around air-filled cavities in the head. These defor-
mations might also occur out of movement in the subject. Only using the
realign function is not sufficient in this case because of changes in position,
shape and volume as a function of time in the image. After the Realign and
Unwarp step, it is created a new set of 306 images with the prefix ”u”, and
also a mean image of the subjects brain[15].
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Figure 3: SPM12 GUI start screen

Figure 4: Realign and unwarp for SPM12

5.4 Normalize

The second function is the Normalize function that is used on the images
with the prefix ”u”. The normalize function computes the warp which is
applied to the images to make them into a standardized space. The mean-
image from the previous step is used as the ”image to align”, which creates
a set of warps, and the rest of the images are warped accordingly. After this
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pre-processing step 306 new images are created adding the prefix ”w” to the
images, making a set of 306 images with the prefix ”wu”[15].

Figure 5: Normalization using SPM12

5.5 Smooth

The last function is the Smooth function that will be used on the images
with the prefix ”wu”. This step is used to suppress noise in the images. It is
done be applying a Gaussian smoothing kernel to the images. After this last
process in done a last set of 306 images are created with the prefix ”swu”,
and the images are ready to be used in an analysis[15].

Figure 6: Images before pre-processing
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Figure 7: Images after pre-processing

Most of the visual changes that are applied to the image is done during
the smooth operation which makes the images look a little more blurry. Since
these images are fMRI time-series it is difficult to show exactly how these
pre-processing steps effects the images.

6 Analysis using Neural Networks

6.1 Artificial Neural Network

Artificial neural networks (ANN) in computer science are models used in
machine learning, drawing inspiration from biological neural networks. An
artificial neural network model is composed of layers with each layer contain-
ing a set of neurons. The first layer in ANN contains the features in the data
and different combinations of these features are sent to neurons in the next
layer. The neurons contains an activation function and a weight. The data
from previous layers are multiplied by the weight in the neuron and used
in the activation function that might activate the neuron. If activated, out-
put from the neurons continues to the next layer in combination with other
activated neurons, until the last layer where the final output in the neural
network predicts the label[18].

ANN differs from several other machine-learning approaches since it learns
features from the data. The learning start with forward-propagation where
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the learning data is sent through the network and a label is predicted. A
loss-function is used to calculate the error of the prediction. Several different
loss functions can be used, for example; mean-squared, categorical-cross-
entropy, Kullback Leibler divergence depending on the use case of the neural
network. Each neuron that took part in predicting the output have their
weight (their importance to the prediction) changed accordingly through
back-propagation. This is done by using gradient decent to minimize the
error from the loss function. One full cycle of the input through the network
is called an epoch.

The reason for using a neural network in this project is the models ability
to find patterns and learn features. The fMRI BOLD scans from a partic-
ipant solving a mental rotation task might have some similarities with the
scans from the mental arithmetic task and an ANN will probably find the
features that differentiate the two. Looking at EMN it might also find the
connections between all the task-activated brain networks and it might be
easier to look at regulation between EMN and DMN.

6.2 Convolutional Neural Network

In this project, the focus will be on a convolutional neural network(CNN).
CNN is a class of neural network that are used for image predictions/labelling.
CNN is similar to a regular ANN, but it uses convolution operation using a
kernel on the input in the hidden layers. The kernel is a matrix that slides
over the image and that tries to represent each value that the kernel is cur-
rently covering in the image, with one value, multiplying each pixel/voxel
value with the values in the kernel and then adding these together, this pro-
cess is called convolution. Each neuron apply a kernel on the image promoting
different features for each different kernel[19].

Figure 8: 3D convolutional layer used on a three-dimensional image

Pooling, often Max Pooling or Average Pooling are also often used as a
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layer in CNN models. Max pooling takes the highest value from the image
where the kernel currently covers and represents that area of the image with
that value, while average pooling takes the average value from all values and
uses that to represent the area of the image[19].

Figure 9: Showing max pooling in 2D.

The same processes then follows as in a regular ANN: some neurons ac-
tivates and send their outputs to new neurons, a label is predicted, and a
loss function is used to calculate the error for back-propagation where the
weights of the kernels in the neurons are changed. Normally CNN is used
for two-dimensional images, but it is possible to modify it to work on three-
dimensional images that is needed for the images in this project. The models
are very similar, but the version modified for three dimensions applies a cube,
as its kernel on the three-dimensional image.

Figure 10: Simple representation of a 3D-CNN using fMRI image

6.3 Learning

As mentioned, the learning of the network is done using an algorithm called
back-propagation. Back-propagation uses the activation function and the

21



derivative of the activation function in all the nodes that fires during the
training in conjunction with the loss function. Back-propagation can be
divided into two parts; forward-pass/forward-propagation and backward-
pass/back-propagation. During the forward-pass, the data is sent to the
neurons through the network and are used in the activation function in these
neurons. The data from previous layers are multiplied by the weight of the
neuron and the product is used in the activation function in that neuron.
The output of the activation function is then sent to the next layer. The
derivatives of these function is also stored in the node, but only the data
from the (non-derivative) function is sent forward through the network. A
prediction is made at the end and the loss/error of the prediction is calcu-
lated. The next step is the backward-pass were the goal is to minimize the
loss. This is done using an optimizer. Optimizers are algorithms used to find
the global minima of the loss/error. An example of one such optimizer is
gradient descent/ steepest descent. The goal as mentioned is to change the
weight of the neurons to better predict the label of an input. For this we
need to find the derivative of the error in respect to the weight[6].

∂E

∂w
(1)

However, since the loss functions does not contain the weights we cannot
find the derivative directly, therefore the chain rule in derivatives must be
applied[6], showed in Figure 13 and in equation below.
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Figure 11: The input ”i” is multiplied with the weight ”w” that produces
”F-in”. F-in is sent to the activation function that produces ”F-out” that is
used to calculate the error

∂E

∂w
=

∂E

∂Fout
∗ ∂Fout

∂F in
∗ ∂Fin

∂w
(2)

At last the weight can be updated by subtracting the value of the previous
weight with the value of E/w multiplied by a given learning rate. The learning
rate determines how much the error effects the new weight.

Wnew = (W − ∂E

∂w
∗ lr) (3)

7 Design and Implementation

In this section, design choices will be discussed briefly. The focus in this
section is on the implementation of the 3D-CNN model and choices done
during development. After reading this section one should be able to replicate
the implementation done in this project.
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7.1 Design

Early on, it was decided that a 3D-CNN would be used in this project. The
goal for the 3D-CNN classifier is to classify complex data with high accuracy.
The design of the model should therefore represent this. In the beginning
of the design phase, it was decided that the network should be a complex
model to represent the complex data, in other words, a model with a large
amount of layers and neurons.

7.2 Implementation

The implementation of neural network was done using Python (3.6) in main
conjunction with the frameworks; Keras and TensorFlow. TensorFlow is an
open-source library developed by Google that can be used as an interface for
many machine-learning algorithms.[9] Keras is an API for high-level neural
networks for Python development that can be used with TensorFlow among
other libraries that are used for deep learning. Keras supports several neu-
ral networks and especially convolutional neural network that is used in this
project. It is a user friendly API with focus on modularity and easy exten-
sibility, which was determining factors for choosing this API for the project
since these features are desirable when testing and building a neural network
over a larger period[10].

Other packages that was used were ”numpy” for array objects and com-
puting, ”sklearn” for label encoding and splitting data, ”glob” for managing
directories, ”pandas” for reading xlsx-documents, ”os” for path manipula-
tion, ”nibabel” for reading the 3D-images, and ”timeit” for managing time
usage.

To get TensorFlow working with GPUs the NVIDA CUDA toolkit which
provides a set of tools for high performance GPU-accelerated applications,
and the library NVIDA cuDNN (NVIDA CUDA Deep Neural Network li-
brary) which is a library for working with deep neural network using GPUs,
must be installed.[12], [13].

Not all version of CUDA and cuDNN are compatible with all version of
TensorFlow. In this project TensorFlow-gpu 1.12.0 was used with CUDA 9
and cuDNN 7. For development of this network, the IDEs Pycharm Com-
munity Edition 2017.2.4 and Visual Code has been used. Anaconda was also
used to set up the environment for the program to run in. The IDEs were
then configured to work with the environment created by Anaconda.
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Figure 12: Creating a conda environment using TensorFlow GPU

TensorFlow comes with a lot of configuration that can be specified for
your network model. In this project a TensorFlow session is specified in
the start of the script to allow the GPUs to dynamically locate its memory
to training[11]. Setting up a TensorFlow session were also useful in the
beginning of the project to look up which devices TensorFlow finds and uses
during training[11]. When the session is configured, it can be set as a Keras-
session and the model will be trained using these configuration.

Figure 13: Creating a session using TensorFlow and Keras

The program starts by specifying a path to the folder containing each
subject folder with the fMRI BOLD-images for each subject. The path to
the onset-times for each of the different tasks are also specified at this point
and the label data from the xlsx-document is saved, creating a 306x1 sized
numpy array. Next a for-loop iterates over each folder for each subject and
read the images with the prefix; swu since these are the images that have
been pre-process. The image size is 79x95x79 and are stored in a numpy ar-
ray. After each iteration of the for-loop the array containing the image data
are added together vertically creating a numpy array with the dimension of
79x95x79 x N , where N is the number of subject times each image where the
number of images per subject was 306. When testing the network the number
of subjects has been different amounts from four to fifteen, but the final num-
ber of subjects that were used were thirty, making a 79x95x79x9180 numpy
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array. The label array is then repeated for each iteration of the for-loop to
be the same size as the image data, making the new array a 9180x1 sized
array. Lastly, the data is split into test and training data sets for both the
image data and the labels. When splitting the data it is possible to specify
a random state in the split-function. The random state makes sure that the
data is split in the exact same way each time when using the same random
state between runs. This is important when trying to replicate previous runs
in the early stages of building the network. It is then easier to see changes
done to the network in the result after training.

60% of the data was split into the training set and 40% to the test set. 33%
of the training set was also split into a validation set specified in the compile-
method of the code and used during training. There is a large amount of
data in this project so it could be argued that the training set should be
smaller. But because the data is very complex, which were represented in
the training result, a larger set of example to train on was important to learn
the important features in the data.

Working with 3-dimensional image data can be very memory intensive.
Using a laptop I was only able to read one subject data set before running
out of memory. Even when working with the computers at MMIV (Mohn
Medical Imaging Visualization Centre) at Haraldsplass (Bergen)[14], it was
not possible to run all the data at once on an Alienware computer with sev-
eral CPUs and GPUs, with early iterations of the program. This was fixed
by changing the data types to address the memory issue. The data type that
numpy-array used as default was a 64-bit float array. This was first changed
to a 32-bit array and then later to a 16-bit float array. The same images from
these arrays was compered to each other to see if the images was changed in
any way when converting the data. Since there were no difference between
the images it was possible to use the 16-bit float array without losing any
information in the images. It was then possible to run all the thirty subject
data sets.

Creating the model is a very simple process when using the Keras-framework.
There are a choice between using a Sequential model or a Functional model
when creating a deep learning model in Keras. The sequential API allows
constructing a deep learning model layer-by layer. The functional API is
more flexible and allows connections between layers not just between the
previous and the next layer. For this project, a sequential model was chosen.
The model is divided into twenty-one layers including the input and out-
put layers. The model uses 3D convolutional layers, Max pooling layers,
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flatten layers, dense layers and dropout layers. Each of the convolutional
layers and the dense layers uses the ReLU (Rectified Linear Unit) activation
function. ReLU is often seen as the default activation function because it
makes the model that uses it easier to train and will often increase the overall
performance[17]. ReLU is a piece-wise linear function that determines if the
neurons activates or not. It is decided by checking if the input is larger than
zero, using the formula below.

g(x) = max(0, x) (4)

Figure 14: Graph of the RELU activition function

During back-propagation, the derivative of this function is required for
the weights to be updated. For ReLU the derivative of the function is 1.0
when x is larger than zero and 0.0 when x is less or equal to zero.

The convolutional layers uses different kernel sizes with some larger ker-
nels in the beginning of the model and smaller kernels later in the model.
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Meaning that each image will have a generic feature extraction in the first
layers of the model and the convolutions sent through the network gets ap-
plied a more local feature extraction. The kernel size is also specified to
reduce the dimensionality through the model so it ends up with the dimen-
sion (1x1x1xN). For kernel stride the default setting of (1,1,1) was used for a
more detailed feature extraction of each image. As mentioned in Section 6,
max pooling layers was used to represent the important voxels in the images
during training. These were used in the beginning for finding the high value
voxels early in the training, implemented in the second and fourth layer.
A flatten layer was implemented before the dense layers to change the di-
mensionality to one-dimensional data that can be used in the dense layers.
There are three dense layers, were each neuron takes all the input data from
the previous layer creating a dense connection between layers. Two dropout
layers were added at the end of the model to reduce overfitting. The final
layer is a dense layer with four neurons with the softmax activation function.
The softmax activation function is used in multiclass labelling and since the
image can have four different labels this is used in the final layer with only
four neurons to predict the label at the end of training.

Softmax(x)i =
expxi∑

expxi

(5)
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Figure 15: Graph of the softmax function with x between 0 and 50

A lot of time was put into tuning the parameters of the model. Parame-
ters like kernel size, number of layers, and number of neurons were changed
constantly during the development and testing of the model. Each change
that were made to the network was done to increase the accuracy of the
prediction of the classifier after training. In the beginning, the model had
eleven layers and small kernel sizes of 3x3x3, which did not produce the
wanted results. The accuracy of the predictions at this point was around
50% or lower. The first thing that was changed for the kernel size was its
dimensions so it could fit the image better. The images has a dimension of
79x95x79 and when applying a 3x3x3 convolutional filter the dimension of
the image through the layers will end up a dimension of 1x6x1xN. This was
changed so that some of the filters had a kernel size of 3x4x3 to end up with
the desired dimension.
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Figure 16: A representation of the implementation of the network

The last step in building the network is to compile the model. First,
the optimizer is created. The optimizer that was chosen for this model is
the optimizer RMSprop with a learning rate of 0.0001. The optimizer also
contains a parameter called clipnorm which in this case is set to 1.0 and is
used for gradient clipping. Next a loss function must be specified, which
in this case ended up being the Kullback Leibler divergence loss function.
Finally the optimizer with the loss function is compiled with the model and
a metric for evaluation is chosen which in this case was chosen to be accuracy.

This last part of building the network went through a large amount of
changes before the final draft of the model. Several different optimizers,
learning rates, and loss functions were tested in combination with different
combinations of the network structure. RMSprop ended up being the most
reliable optimizer after some testing using the optimizer Adam and Stochastic
Gradient Descent (SGD). Different values of learning rates were also tested
from 0.1 to 0.0001. The smallest learning rate were chosen because of the
complexity of the data. With a larger learning rate, the model might not find
the features that are important. The decision of loss functions stood between
Categorical Cross-Entropy, Sparse Categorical Cross-Entropy, and Kullback
Leiber Divergence Loss, which all are used in multi-class classification. Kull-
back Leiber Divergence were chosen since it performed best during training
during early iterations of the model. The clipnorm parameter specified in the
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optimizer was crucial for making the artificial neural network model work. A
problem occurred during training making the model stop learning after num-
ber of epochs. It was revealed that this was related to weights overflowing
and to solve this issue gradient clipping was introduced using the clipnorm
parameter specified in the optimizer. Gradient clipping is a method used
to stop the gradient for taking large steps during updates that would result
in the updated weights to either overflow or underflow. This is discussed in
section 8.2 about the results from this project.

7.3 Network Model

In this subsection, the 3D-CNN model is presented visually and with a table
of the network structure. The values in the table are color coded and the
colored values in the table represent the arrows and layers in Figure 17

Figure 17: A representation of the final 3D-CNN-model
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Figure 18: A table showing the different parameters in the 3D-CNN-model.

8 Results

The 3D-convolutional deep learning network classifier that was created in this
project ended up predicting the cognitive neural activations and the default
mode network with an accuracy of over 85%, which is a great result. In this
section, the result from the project will be presented and discussed. First
the result from early iterations will be discussed and problems that occurred
during training. Next, methods to increase the accuracy will be presented.
Lastly the final results will be presented and discussed.

8.1 Results from Early Iterations

As mentioned in Section 7.2, early iterations of the deep learning network
was not producing high prediction accuracies. It mostly produces accuracies
between 45% and 55%. This was early in the project and during the con-
struction phase of the network, so lower accuracies was expected. During this
phase just a few data set were used to test the network. In the beginning,
only three data set were used, corresponding to 918 images. Using a few data
set was desirable in the beginning during the setup to minimize training and
prediction time to figure out if the network was fully functioning. Also, as
mentioned in Section 7.2, the data was very memory intensive and running
just half of the data sets could be a problem for even some of the computers
provided at MMIV.
Accuracies of about 50% are not great results. That the accuracies was in
that area of prediction could be an indication of that the network was not
learning anything useful from the data making the network predict randomly
each time, which support the accuracy results of around 50%. Many changes
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were made, most explained in Section 7.2 to make the network end up with
a high accuracy of above 80%. The next subsection will go more in depth
in the reason for these changes and the result that was this produced. Also
in the early iteration of the neural network Tensorboard was not used, and
most of the graphs and figures were created using the matplotlib-package in
Python.

Figure 19: The network predicting with 45% accuracy
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Figure 20: The network predicting with 51% accuracy
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Figure 21: Showing the epoch during training in early iterations of the net-
work

8.2 Increasing the Accuracy

First, I thought the reason for the low accuracy might be related to the
amount of data used in training. Since only three data sets were used in
early iterations of the network and 60% of the data was used in training
most of the time (different split percentages was used during the setup of
the network.). The fMRI BOLD-images are three-dimensional and therefore
more complex than your standard two-dimensional image and might there-
fore need more data to predict the networks. To accomplish this the data
structures used to store the data were changed to data structures with lower
memory usage as mentioned in Section 7.2. It was now possible to use more
data to train the network. On the computers at MMIV it was it was possible
to run all the data from the project. However, the accuracy did not show
any sign of improvement.

Another hurdle related to memory so far in the project was the size re-
striction on the network itself, since it to used up the memory on the machine.
A large complex network was, in early iteration of the network, out of the
question since this in turn made it difficult to process large amounts of data.
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The batch size was also restricted to a small value, often either one or two
because if any large value were used the system would run out of memory.
Changing the data structures helped lifting some of these restrictions and
made it possible to create a more complex network with larger batch sizes
during training. The decisions was then made to have the network have more
neurons and layers, and train for a longer time now with a larger batch size.
This indeed seem to improve the accuracy.

An observation was made at this point that the network seemed to not
learn from the data until several epochs in training. Starting off, it seemed to
be about two-hundred epochs, with a batch size of one, before the accuracy
increased. Using a large batch size, decreased the epochs needed. As above,
the reason for this is most likely related to the complexity of the data. This
is represented in figure 22 and 23.

The more complex neural network training on all the data was now able
to produce high accuracy results. It was clear from the results and the graphs
from training that the network was finally learning features from the data.
During training at this stage, the epoch-accuracy had a value of almost 80%.

36



Figure 22: Graph of training during early iterations showing accuracy. The
classifier learning slowly from the data
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Figure 23: Graph of training during early iterations showing loss. The clas-
sifier learning slowly from the data

Getting almost 80% accuracy was a huge breakthrough in the develop-
ment in the convolutional neural network and a percentage that was accept-
able for the complex data. Nevertheless, one issue remained. After training
for 300 epoch or more the convolutional network seemed to lose all progress
during training and ending up flattening out around 50% accuracy. The
network loss also increases substantially and flatten out on a high value.
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Figure 24: Graph of training accuracy with the curve flattening
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Figure 25: Graph of loss with the curve flattening

To better test this new undesirable behaviour the network model was
tested with different epochs and different batch sizes to determine when the
network model started failing. From the several runs of the model it seemed
to be very fluctuating when the model started failing, but it was always after
more than 100 epochs. It seemed the reason for this behaviour was due to
gradient explosion. Gradient explosion happens when the error gradients in
the network model becomes so large that the updates to the weights becomes
become large and the values of the weights overflow. When the weights in the
network overflows their value will become NaN and the weights are no longer
useful. This seemed to fit the predicament that the model was facing since it
out of nowhere lost it progress. To mitigate this the clipnorm parameter was
added to the optimizer to prevent gradient explosion. The network model
was now functioning perfectly and it was able to train on all the data sets
without complications.
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8.3 Final Results

With the fully functional classifier several training iterations was done to test
the predictions accuracy of the network. In this final stage, the Tensorboard
framework was used to get a better overview of the results in addition to
a representation of a model of the final functional 3D-CNN. In the end,
the deep three-dimensional neural network was able to predict the three
different cognitive brain networks and the default-mode-network with over
85% accuracy consistently.

Figure 26: Graph of epoch accuracy and loss
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Figure 27: Graph of validation accuracy and loss
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Figure 28: Graph of batch accuracy and loss

From Figure 26, 27, and 28, we can see an increase in accuracy values

43



compared to the accuracy in Figure 22. One of the best results from training
even had over 90% accuracy. To be able to get this high of an accuracy on
a complex fMRI-BOLD data set was something that was not thought of in
the beginning of this project.

Figure 29: A high accuracy percentage acquired during training. Graph of
epoch accuracy and loss during training of a classifier with over 90% accuracy
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Figure 30: Graph of epoch accuracy and loss during training of a classifier
with over 90% accuracy
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Figure 31: Graph of epoch validation accuracy and loss during training of a
classifier with over 90% accuracy
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Figure 32: Graph of batch epoch accuracy and loss during training of a
classifier with over 90% accuracy

As seen in figure 27, sometimes the loss during training increased, when
the accuracy increased. This behaviour was not expected since it is common
for the loss to increase in value when the accuracy increases. An explanation
for this can be that the neural activations is not easily separable. When the
models tries to predict a label for a data point it might be that there is a

47



low probability that it is the correct label. However, since the probability
for the correct label to be predicted is higher than the others, it still predicts
correctly. This will explain why the loss and the accuracy can be increasing
at the same time.

Lastly, we will look at a confusion matrix taken from a training example of
the 3D-CNN model using 906 neural images, with a 60% training split. The
vertical columns represent the different classes and the horizontal columns
represent the predictions. Each cognitive task and the default mode network
is associated with a number.

• 0 = Mental Arithmetic

• 1 = Mental Rotation

• 2 = Default Mode Network

• 3 = Working Memory
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Figure 33: Confusion matrix of predictions done om the fMRI-BOLD images

8.4 Answering the Research Questions

In the Section 2.3, the research questions were formulated as follows: First,
how do EMN and DMN interplay in each individual participant? Here the
focus will be on each cognitive tasks in conjunction with the DMN and how
separable they are.

Secondly, How can the experiment be optimized, i.e. shortened in time
without the loss off accuracy- to develop an easy-to-include experiment for
future clinical settings or multicentre studies. Here the focus will be on im-
plementing a machine learning approach to the fMRI analysis. It was decided
in the beginning of this project to use a three-dimensional convolutional neu-
ral network (3D-CNN) as the model for this implementation.
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From the results above we can clearly see that the the cognitive neural
activations are separable from each other, and the Default Mode Network.
This is represented in figure 33, which answers the first research question.

Through this thesis we have looked at the implementation of the 3D-
CNN from early iteration of the implementation to the final model. Ways
of improving the performance of the model and increasing the accuracy have
been discussed and the 3D-CNN suggested in this project can be easy to
include in future studies on similar data, which answers the second question.

9 Conclusion

In this final section, further work that could be done in this project is dis-
cussed, and finally the conclusion of this thesis is presented.

9.1 Further Work

Working with deep learning on an fMRI project, as mentioned, can be very
time consuming. Large part of the time put in to the project goes in to data
collection, pre-processing, machine learning model selection, parameters tun-
ing, training, and testing. Because of this there are several things that could
been done in this project that, unfortunately, was not inside the time frame
of this project. Given more time, the classifier constructed in this project
would be tested against the extrinsic mode network (EMN). This could in
turn support he argument for the existence of the EMN and inspire new ap-
proaches to identifying this network.

It could also be of interest to use the classifier on other cognitive or sen-
sory tasks to observe how well the classifier is generalized. Doing so might
also lead to observations on how to improve the network suggested in this
thesis, or other network that might be constructed in the future.

The classifier should also be compared to standard methods of identify-
ing brain activations at Haukeland. It would be interesting to see where,
and if, the classifier suggested in this thesis would perform better or worse
than the standard methods. In addition, the 3D-CNN classifier could be
compared and evaluated against other similar method using NiftyNet[3] or
DeepMedic[4].
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Other steps during pre-processing could also be tested. During develop-
ment, using histogram equalization or other similar contrast methods was
discussed. As mentioned in Section 5, pre-processing is a crucial part in dif-
ferentiating the different areas that we are interested in, and could therefore
have a direct effect in improving the accuracy of the classifier.

9.2 Conclusion

From this project, we have showed that 3D convolutional neural network
can be applied efficiently to BOLD neural images from an fMRI analysis.
The classifier suggested in this thesis have proven to be able to differen-
tiate and classify different cognitive brain activation with a high accuracy
percentage. The applications for the results found in this thesis could be
applied and built upon in several other scenarios. It can be a great tool for
fMRI analysis in general, and with more testing can lead the way for new
approaches for this type of analysis. In additions to this, better understand-
ing of 3D convolutional neural networks on complex 3D images given in this
thesis could be applied and extended upon in other project with a machine
learning approach, and can serve as a comparison to similar projects. As
mentioned, even though several changes could be made to the classifier, and
more research should be done related to this thesis, the work on this thesis
is completed.

9.3 Classifier

The classifier that was implemented in this thesis can be found on GitHub:
https://github.com/eivindKo/3DCNN
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