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Abstract

About 115,000 years ago the last interglacial reached its terminus and nucleation of new ice

sheet growth was initiated. Evidence from the northernmost Nordic Seas indicate that the inception

of the last glacial was related to an intensification of the Atlantic Meridional Overturning

Circulation (AMOC) in its northern limb. The enhanced AMOC, combined with minimum

Northern hemisphere insolation, introduced a strong sea-land thermal gradient that together with a

strong wintertime latitudinal insolation gradient increased the storminess and moisture transport to

the high northern European latitudes, at a time when the Northern hemisphere summer insolation

approached its minimum.
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Introduction

Due to the general acceptance of the orbital (or Milankovitch) theory there is a basic

understanding of the fundamental drivers of the glacial cycles. The specific feedbacks that are

involved in the triggering or inception process of a glacial cycle remains, however, to a large degree

elusive. A common conceptual view is that the inception was initiated by lowered summer

insolation at high northern latitudes, which cooled the Nordic Seas and other high latitude oceans,

which in turn provided snow and sea-ice feedbacks which accelerated cooling by a freshening of the

surface ocean and concomitant reduction of the Atlantic Meridional Overturning Circulation

(AMOC) (Cortijo et al., 1994; Imbrie et al., 1992). Contradicting this scenario, we here show by a

combination of paleo-reconstructions and General Circulation Model (GCM) results from the

Bergen Climate Model (BCM) that the strength of the AMOC apparently increased in its northern

limb at the end of the last interglacial (marine isotope sub-stage (MIS) 5.5: ~126,000–115,000 yr),

at the time when major ice sheets nucleated. Our results indicate that nucleation of the Northern

European Ice Sheets was a result of the specific orbital forcing at that time, coexisting with an
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enhanced AMOC, increased winter precipitation, lowered snow melting due to reduced summer

insolation and related feedbacks.

Material and methods

Paleo-reconstructions

Three sediment cores have been studied at high temporal resolution through the MIS 5.5 and

the MIS 5.5/5.4 transition. All cores are obtained at IMAGES cruises with R/V Marion Dufresne.

MD95-2010 is from the Vøring Plateau, while MD99-2303 and MD99-2304 are from the Fram

Strait (Fig 1). They are located to reflect changes in extent and variability of Atlantic Water

transport towards the Arctic. Risebrobakken et al. (2005) determined the marine isotope stage 5 age

models of the cores through stable isotope correlation towards the chronology established on the

NEAP18K core (Chapman and Shackleton, 1999). The same age models have been used in this

study, and detailed information on the procedure can be found in Risebrobakken et al. (2005). The

studied time interval, 126,000–110,000 yr, is represented by 32 cm in MD95-2010 (1227.5–1259.5

cm core depth), 171 cm in MD99-2304 (2086.5–2257.5 cm core depth) and 31 cm in MD99-2303

(904.5–935.5 cm core depth). All three cores were sampled every cm throughout the studied time

interval, giving an approximate time resolution of 500 (MD95-2010 and MD99-2303) and 100

(MD99-2304) years.

Stable isotope measurements were performed every cm on the left coiling form of

Neogloboquadrina pachyderma (150–500 µm fraction), using Finnigan MAT 251 and MAT 252

mass spectrometers at the GMS lab at the University of Bergen, both equipped with automatic

preparation lines (“Kiel device”). The samples were crushed and cleaned with methanol in an

ultrasonic bath before being measured. All results are reported in ‰ vs. VPDB.
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The present number of minerogenic grains >0.5 mm has been counted every cm in all cores

through the studied time interval. These grains are assumed to be ice rafted, and they are presented

as number of grains/gram sediment.

The number of planktonic foraminifers was counted at irregular intervals at the 150–500 µm

fraction (26, 56 and 20 samples in MD99-2303, MD99-2304 and MD95-2010, respectively). A

minimum of 300 foraminifers was counted from each sample, if possible (in MD99-2303, MD99-

2304 and MD95-2010 this is valid for 14, 44 and 8 samples, respectively). The assemblages were

separated into Neogloboquadrina pachyderma sinistral and dextral, Globigerina quinqueloba and

other planktonic species. The relative abundance of N. pachyderma (s), N. pachyderma (d) and G.

quinqueloba were calculated for all samples with a total of more than 100 planktonic foraminifers

(in MD99-2303, MD99-2304 and MD95-2010 this is valid for 20, 51 and 20 of the counted

samples, respectively).

Model experiments

The applied model system consists of a global version of MICOM (Bleck et al., 1992), fully

coupled to a dynamic (Harder, 1996) and thermodynamic (Drange and Simonsen, 1996) sea ice

module. The model is configured with a local horizontal orthogonal grid system with one pole over

North America and the other pole over central Europe (Bentsen et al., 1999). The horizontal grid

resolution in the North Atlantic/Nordic Seas region is about 40 km in experiment E1, and 80 km in

experiments E2 and E3. For all model experiments there are 26 vertical layers; of which the

uppermost mixed layer (ML) has a temporally and spatially varying density. The specified potential

densities of the subsurface layers are chosen to ensure a proper representation of the major water

masses in the North Atlantic/Nordic Seas region. Furthermore, the bathymetry is computed as the

arithmetic mean value based on the ETOPO-5 database (NOAA, 1988). The experiments are

initialized with climatological temperature (Levitus and Boyer, 1994) and salinity (Levitus et al.,
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1994) fields, a two-meter thick sea ice cover based on the climatological sea ice extent, and an

ocean at rest. For experiment E1 the model set-up and integration follows the synoptic hindcast

simulations in Furevik et al. (2002). The model was then integrated for 30 years by applying the

monthly mean NCEP/NCAR atmospheric forcing fields, and thereafter forced by the daily

NCEP/NCAR reanalysis fields (Kalnay et al., 1996) for the period 1948–1996. From the

NCEP/NCAR reanalysis the wind stress, short wave, long wave, latent and sensible heatfluxes,

precipitation, runoff and sea level pressure (SLP) fields were used. During the spinup phase, the ML

temperature and salinity were relaxed towards the monthly mean climatological values of Levitus

and Boyer (1994) and Levitus et al. (1994), with a relaxation time scale of 30 days for a 50 m thick

ML. The relaxation was reduced linearly with ML thicknesses exceeding 50 m, and it was set to

zero in waters were sea ice were present in March (September) in Arctic (Antarctic) to avoid

relaxation towards temperature and salinity outliers in the poorly sampled polar waters. For the

integration with daily fields, freshwater fluxes, diagnosed from the salinity relaxation with

climatological fields were added to the ML.

For experiment E2 and E3 the model setup and integration is described in Otterå and Drange

(2004). The initialization is the same as above, and the spinup period for this model setup was 420

years were relaxation was applied on both temperature and salinity. For years 400–420 the mean

weekly freshwater relaxation fluxes were diagnosed and stored. The model was then run for a

further 80 yr period with temperature relaxation switched off, while the salinity relaxation was

reduced by increasing the relaxation time scale from 30 days to 2 yrs. In addition to this the

diagnosed freshwater fluxes were added to the ML. From year 500 we then start three sensitivity

experiments, one with orbital configuration as 125,000 yr BP (E2), one as 115,000 yr BP (E3) and

one for present day (control case, no changes made). The use of weak relaxation of salinity and the

diagnosed freshwater fluxes ensures that the strength of the AMOC remains fairly stable in the

control case, and that that temperature and salinity anomalies are free to develop, propagate and
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decay in the sensitivity experiment. Furthermore, for all simulations, the momentum, heat, and

freshwater fluxes are modified when the modeled surface state differs from the NCEP/NCAR

reanalysis surface state by a bulk parameterization scheme (Bentsen, 2002). Using this

configuration, it has been shown that the model system captures the main features of the observed

water mass exchanges between the North Atlantic and the Nordic Seas in a realistic manner (Nilsen

et al., 2003).

To simulate the extreme high and low values in high latitude summer insolation in E2 and

E3, the orbital parameters (eccentricity, obliquity and perihelion) are set at the values for 125,000 yr

and 115,000 yr, respectively. The NCAR/NCEP downward solar irradiance is then modified by a

latitude-time dependant factor f according to f=Sx/Sp, where Sp and Sx are the solar insolation

calculated for the present day situation (Kutzbach and Gallimore, 1988), and for the sensitivity

experiments E2 and E3, respectively. Using this factor gives about a 6 (10–12) % decrease

(increase) in summer solar irradiance at 60oN at 115,000 yr (125,000 yr) compared to the present

day situation (Otterå and Drange, 2004).

Results and discussion

The large-scale δ18O pattern is determined by global sea level changes, while the

superimposed variability of each record is the result of local temperature and salinity conditions.

The last interglacial is clearly present at all three sites (Fig. 2a). Relative abundance of the

foraminifer species provides information on temperature changes. Decreases in % N. pachyderma

(sin), the only polar specie, indicate increased influence of warmer water masses, also indicated by

increased percentages of the subpolar species (N. pachyderma (dex) and G. quinqueloba).  Thus,

MD95-2010 (Vøring Plateau) and MD99-2304 (eastern Fram Strait) show generally warm

interglacial conditions throughout MIS 5.5 (Fig. 2b–d), with relative abundances comparable to

Holocene values at the Vøring Plateau (Andersson et al., 2003) and in the eastern Fram Strait (Hald
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et al., 2004). The foraminifer data show that the early phase of the interglacial was warm at both

MD95-2010 and MD99-2304 followed by somewhat colder conditions. This pattern can possible be

linked to the general reduction of the Northern Hemisphere (NH) summer insolation. In the late

MIS 5.5, decreasing percentages of N. pachyderma (sin) indicate, however, renewed sea surface

temperature (SST) warming when the NH summer insolation approached its minimum.

Contemporaneously with this SST increase, the amounts of the planktic foraminifer Globigerina

quinqueloba increased in MD99-2304 (Fig. 2d). As this species is associated with the Arctic front

(Johannessen et al., 1994), this implies that the Arctic front migrated eastwards towards MD99-

2304. MD99-2303, located west of MD99-2304, contains a high productive, dominant polar,

foraminifer fauna throughout MIS 5.5 (Fig. 2), indicating a location underneath Arctic water

(Johannessen et al., 1994). MD99-2304 shows lower planktonic δ13C values than MD99-2303

throughout MIS 5.5 (Fig. 2e), supporting the interpretation of a different water mass and lower

productivity at that site. It has been shown that Atlantic water is characterized by lower δ13C values

than Arctic water (Johannessen et al., 1994). The signature of the two nearby cores are different,

however, we find no reason not to trust any of the results. The δ18O records are comparable for all

three sites and there is a strong similarity between the IRD records. The δ13C records indicate

different water masses, and the core with highest sedimentation rate shows both highest diversity of

foraminifer species and lowest total foraminifer content. Neither of these would have been the case

if one of the sites were influenced by bioturbation, any other sediment disturbances or dissolution.

We argue that the Arctic front was located between the sites, dividing the Arctic water from a

laterally restricted wedge of Atlantic water that was present in the easternmost part of the Fram

Strait. This argument is supported by the present day surface interface between Atlantic and Arctic

water masses, located between/near these sites and determined by the strong bathymetric gradient

(Fig. 1) (Manley, 1995; Quadfasel et al., 1987). Atlantic water influence both sites, however, the

high temperature and salinity core of the West Spitsbergen Current are located between the 200 m
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and 1500 m depth contours, thus influencing MD99-2304 while MD99-2303 is located west of this

zone (Quadfasel et al., 1987). From 116,000 yr both cores show the same Arctic water

characteristics. The significantly increased foraminifer abundance recorded by MD95-2010

indicates that Arctic water covered also this site at that time (Fig. 2e).

Thus, at the end of the last interglacial there was at the same time a warming of, and a lateral

restriction of, the Norwegian Atlantic Current/West Spitsbergen Current. A similar response of this

current regime, with an intensification of the slope current and an eastward confinement of the

Atlantic water, has been observed as a function of strong westerlies during the recent decades

(Blindheim et al., 2000; Dickson et al., 2000). The late MIS 5.5 warming might therefore be the

result of prevailing, strong westerlies providing enhanced warm water transport towards the Arctic.

Another plausible response to increased westerlies is an enhanced Ekman transport of warm

water into the Barents Sea. This type of response is demonstrated in the simulated northward

volume transport through the Barents Sea Opening (BSO) in the ocean model experiment (E1)

where the model is forced with observed (NCEP reanalysis) atmospheric forcing for the period

1948-1996. Associated with a stronger net inflow through the BSO, the Icelandic low extends more

north-east into the central Nordic Seas (increasing the westerlies), were the changes in the SLP

associated with one standard deviation change in the BSO volume transport index, exceeds 3hPa

(Fig. 3a). Near the Azores, one standard deviation change in the BSO volume transport index

correspond to a 3 hPa change in the SLP. An increased net transport of Atlantic water through the

Fram Strait and the BSO, forced by a prevailing low pressure anomaly and strong westerlies in the

Nordic Seas, has also been documented by studies of instrumental records (Dickson et al., 2000;

Loeng et al., 1997). It is therefore likely that the enhanced Atlantic water influx at the end of MIS

5.5 introduced rather warm SSTs and open water masses in the Barents Sea as well as in the Fram

Strait. The occurrence of a warm marine mollusc fauna in Arctic Russian sediments of MIS 5.5 age
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also indicates strong inflow of Atlantic water to the Barents Sea (Funder et al., 2002; Mangerud et

al., 1998; Mangerud et al., 1999; Raukas, 1991).

Northern Hemisphere summer insolation is considered to be a major forcing factor behind

glacial-interglacial cycles (Imbrie et al., 1993; Imbrie et al., 1992). Through MIS 5.5 the summer

insolation decreased from an extreme high, to reach a profound minimum at 115,000 yr. To assess

likely impacts of the orbital forcing on the ocean circulation, we investigated the response of the

AMOC to reduced insolation in order to resemble the situation at 125,000 yr and 115,000 yr with

the ocean-sea ice model. The obtained results show that the modeled AMOC intensified in response

to the lower summer insolation at high northern latitudes (Fig. 3b). Less sea ice melted during the

summer season, providing saltier waters to the high northern latitudes and an intensified overturning

circulation (Otterå and Drange, 2004). Warm conditions also existed in the North Atlantic at the end

of MIS 5.5 (Cortijo et al., 1994; Duplessy and Shackleton, 1985; McManus et al., 2002; Ruddiman

and McIntyre, 1979). The Nordic Seas have, however, in previous studies been considered as cold

at this time (Cortijo et al., 1994). Both our paleo-reconstructions and model results, on the contrary,

strongly indicate that the effect of an enhanced AMOC was noticeable in the northernmost Nordic

Seas and the Barents Sea. The increased presence of the warm Atlantic water is probably a

combined result of enhanced westerly wind forcing and increased salinity due to less summer sea

ice melting as the insolation forcing decreased. The late MIS 5.5 warming was probably not picked

up in previous studies due to low temporal resolution and the locations of the studied cores, which

were positioned too far to the west to capture the relatively narrow wedge of northward flowing

warmer water. Siricko et al. (2005) has, however, detected an aridity pulse in central Europe at the

time of the last glacial inception. A strong northern low SLP field at winter will probably

correspond with an equally strong high SLP winter field reaching towards central Europe,

introducing dry and cold conditions in that region. Thus, decreased precipitation in central Europe is
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a plausible response to the atmospheric regime that we postulate and, the central European aridity

pulse may be seen as supportive evidence for our hypothesis.

The latitudinal moisture flux from low to high latitudes is a function of the latitudinal

insolation gradient, with an increased moisture flux when the insolation gradient increases (Raymo

and Nisancioglu, 2003). The low-to-high latitude wintertime insolation gradient increased through

the glacial inception phase (Fig. 2c). Thus, the moisture transport towards the high north increased

both due to the strong ocean-land thermal gradient, the result of enhanced AMOC/warm SSTs and

decreasing high latitude insolation, and the increasing latitudinal insolation gradient. The moist,

maritime air masses combined with the cold atmospheric temperatures led to excess winter snow

and reduced summer melting. This was probably essential for the onset of glacial growth, by

introducing a strong positive glacial mass balance. An albedo feedback from the increased snow

cover probably further amplified the cooling effect, and under the prevailing conditions the glaciers

grew and ice sheets could nucleate.

The noticeable increase in % N. pachyderma (sin), indicating cooling, after the late MIS 5.5

warm phase coincides with the first major IRD input at 116,000 yr (Fig. 2b). According to the

present chronology, this first IRD peak coincides with the first onset of global sea level fall and ice

volume change after the interglacial (Chapman and Shackleton, 1999; Stirling et al., 1998). Sea

level changes are implemented in δ18O records, and the response to increased global ice volume is

also seen in the corresponding increase in δ18O (Fig. 2a). The IRD found in MD99-2303 and

MD99-2304 most probably originated from Spitsbergen (Risebrobakken et al., 2005), and more

IRD is seen closer to this source. Consequently, glaciers at Spitsbergen were large enough to reach

the coastline and initiate significant calving before major global ice sheet growth is observed.

Terrestrial evidence also support an early inception of glaciation at Spitsbergen (Mangerud et al.,

1998). This area was therefore implicated in the earliest inception phase of the major ice sheets of



11

the last glacial. The minor IRD content found in MD95-2010 probably originated from areas where

a limited Scandinavian Ice Sheet (SIS) reached the coast.

During the last glacial the growth and decay of the SIS and the Barents-Kara Sea Ice Sheet

(BKIS) were not synchronous. The BKIS had an early maximum extent, corresponding with a much

more limited SIS ice extent (Baumann et al., 1995; Svendsen et al., 2004). This asymmetric

behavior with an early inception and large expansion in the region south of the Barents-Kara Seas is

supported by our results. The probable presence of warm late MIS 5.5 SSTs in the Barents Seas

introduced a similar strong land-sea thermal gradient in Arctic Russia as in the Spitsbergen region.

The wind forcing and wintertime latitudinal insolation gradient would also provide excess winter

precipitation over northern Russia, which was met with reduced summer melting due to the

insolation minimum. As the summer insolation forcing decreased, the treeline was forced southward

in an east-west asymmetric pattern, with a larger shift in Siberia than in Scandinavia (Crucifix and

Loutre, 2002). This diminished the forest snow masking effect (Bonan et al., 1992), increased the

surface albedo throughout the year, which further amplified the cooling effect. Eventually ice sheets

nucleated, and a self-intensifying albedo feedback was maintained. We postulate that a stable

glacial regime was established on land during the inception phase. Prevailing, favorable conditions

for maintaining this glacial state caused the ice sheet to expand and ground at the epicontinental

Barents and Kara Seas as the global sea level fell. The BKIS reached its maximum position at

approximately 90,000 yr (Svendsen et al., 2004). A falling sea level and ice sheet expansion over

the Barents Sea eventually introduced an obstacle for the transport of Atlantic water into the

Barents Sea, thus, the moisture transport to the northern Russia were prevented. This development

may have been important for the ice sheet distribution later in the last glaciation, restricting the

BKIS when the SIS reached its maximum position.

If the Nordic Seas were covered by an increasingly more stable and perennial lasting sea ice

cover during the inception phase, as previously believed, both Spitsbergen and northern Russia



12

would be concealed from the moisture influx essential for major glacial growth. Existence of a

warm sea surface in the Fram Strait and the Barents Sea during the inception phase provides us with

a scenario that may explain the existence of large ice sheets in this area in the first phase of the

glacial. Thus, we conclude that the glacial inception was not due to a reduction of the AMOC, but

rather the opposite, a result of the confluence of increased influence of the AMOC in the

Arctic/sub-Arctic and its associated maritime climate, together with reduced summer insolation and

an enhanced moisture flux driven by an increased wintertime latitudinal insolation gradient.

The climate history of the present interglacial is in many ways comparable with MIS 5.5, and

the present conditions in Northern Europe do in some ways fulfill requirements for glacial

inception. Even in its present minimum position the Northern Hemisphere summer insolation is,

however, fundamentally different from the situation 115,000 yr. The insolation fall during the

Holocene has been less than half of the fall during MIS 5.5. The present value is also 40 W/m2

higher than the values at 115,000 yr. This difference in insolation forcing is probably, together with

the high levels of greenhouse gases, the main factor preventing glacial inception today.
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Figure legends

Figure 1

The main surface currents in the Nordic Seas and locations of the studied cores (MD95-2010

(66º41.05N, 04º33.97E: 1226 m water depth), MD99-2304 (77º37.26N, 09º56.90E: 1315 m water

depth) and MD99-2303 (MD99-2303; 77º31.18N, 08º23.98E: 2277 m water depth)) are shown in

the upper panel. NwAC = Norwegian Atlantic Current, NCC = North Cape Current, RAC = Return

Atlantic Current and EGC = East Greenland Current. The bathymetry is indicated by isolines every

500 m. The distribution of the surface water masses in the Fram Strait is indicated in the lower

panel, representing the area indicated by the grey square in the upper panel.

Figure 2

Downcore records from the studied cores and insolation parameters data (Laskar, 1990). Note scale

differences between similar records from different cores, resulting from the different oceanographic

regimes represented by the cores and vicinity to available IRD sources. Horizontal bars indicate the

isotope stages. Vertical bars highlight the transitional phase between the interglacial and the glacial

onset, as given by this study (117,000–114,000 yr). a) Neogloboquadrina pachyderma (s) δ18O

records from the cores (black), mean summer (June–September) insolation at 65ºN (green) and the

difference between mean summer (June–September) and mean winter (December to March)

insolation at 65ºN (brown). b) % N. pachyderma (s) (NPS) in the cores (black) (all foraminifer

counts were performed at the 150–500µm fraction) and number of Ice Rafted Debris (IRD) >500

µm/g sediment (red). c) % N. pachyderma (d) (NPD) in the cores (black) and the mean winter

(December–March) insolation gradient between 10ºN and 65ºN (blue). d) % G. quinqueloba in the

cores. e) Total number of planktic foraminifers/g sediment in the cores (black) and N. pachyderma

(s) δ13C records from the cores (orange).
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Figure 3

Modeled oceanic responses to atmospheric forcing and NH insolation. a) Normalized and detrended

time series of the simulated winter (DJFM) mean volume transport through the BSO for the period

1948-1996. b) Regression of the observed winter (DJFM) mean NCEP/NCAR SLP field on the

normalized simulated winter (DJFM) volume transport through the BSO for the period 1948–1996

for zero lag. The SLP field is detrended before applying the regression. The regression values (in

hPa) correspond to the typical anomaly associated to one standard deviation of the BSO volume

transport index. c) Changes in the simulated zonally averaged annual mean steamfunction values

(Sv) for the Atlantic basin for the last glacial inception shown as the difference between E3 and E2

(E3–E2, see methods), where the NCAR/NCEP downward solar irradiances in E2 and E3 are

modified to reflect the insolation values at 125,000 yr and 115,000 yr, respectively (Otterå and

Drange, 2004).
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