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Preface

This dissertation is submitted as part of fulfillment for the degree of Philosophiae Doctor at

the University of Bergen. The research presented in this dissertation has been conducted at

the Department of Chemistry at the University of Bergen, in the period 2015-2019, under the

supervision of Associate Professor John Georg Seland and the co-supervision of Associate

Professor Kristine Spildo.

The main focus of this thesis has been to study the mass transport properties of hydrogels

using Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging

(MRI). This thesis is divided into two parts. The first part consists of an introduction outlining

the background for the project as well as the aims, and chapters summarizing theoretical as-

pects of hydrogels (Chapter 2), NMR (Chapter 3), and diffusion (Chapter 4). Chapter 5 gives

a description of the materials and main experimental techniques used in this project. Main re-

sults are summarized in Chapter 6. The thesis proceeds with concluding remarks (Chapter 7).

The second part of this dissertation consists of three research papers included at the end of the

thesis.
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Chapter 1

Introduction

During the past six decades, drug delivery has become a major research topic in the pharma-

ceutical field. Conventionally, the therapeutic concentration of a drug in the blood is achieved

by repeated administrations in the form of pills or injections. This strategy leads to an un-

stable drug concentration in the blood as it peaks shortly after the administration and rapidly

declines afterwards. A Drug Delivery System (DDS) delivers a pharmaceutical compound in

a controlled manner with respect to time period and release rate, and maintains the drug level

in the organism within the therapeutic window (Figure 1.1) [1, 2].
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Figure 1.1: A schematic illustration of the drug concentration in the organism when using dif-
ferent administration methods. Single dose of a drug in a form of a pill leads to the abrupt rise
of the drug concentration above the toxic level. After a short period of time, the drug concen-
tration drops below the effective level. Periodic dosages can cause the drug concentration to
go above the toxic level and below the effective level. Adapted from [2].



2 Introduction

Hydrogels have drawn widespread interest as potential candidates for applications in ar-

eas such as DDS, tissue engineering scaffolds, contact lenses and wound dressings, owing to

their adjustable porous structure [3, 4]. Ideally, the release of a drug from a DDS should

be correlated with changes in physiological environment such as pH or temperature [5].

A prominent example of such stimuli-responsive DDS are hydrogels composed of Poly(N-

isopropylacrylamide) (P(NIPAM)), which show a reversible phase transition at temperatures

above 34◦ C at which the hydrogel network collapses [6, 7]. Stimuli-responsive hydrogels may

be combined with a vehicle such as surfactant micelles or cyclodextrins (CD) that allow the

inclusion of hydrophobic drugs [8].

Due to their non-invasive character, Nuclear Magnetic Resonance (NMR) spectroscopy

and Magnetic Resonance Imaging (MRI) techniques have been increasingly used to study

DDS by monitoring swelling and molecular mass transport in the form of molecular diffusion

and flow [9–11]. NMR has proven to be useful in characterizing the molecular dynamics of

hydrogels through measurements of longitudinal (T1) and transverse (T2) relaxation times, as

well as self-diffusion coefficients (Ds) [12–14]. In addition, MRI methods are commonly used

in the study of the ingress of water into solid oral dosage forms, such as tablets and capsules,

and the subsequent hydration, swelling and erosion of such polymer matrices [9, 10].

Conventionally, the analysis of DDS is usually performed by a combination of gravimet-

ric studies of water uptake and the kinetics of drug release measured using ultraviolet–visible

spectroscopy [15]. However, such studies do not provide information about the distribution of

the diffusing drug in the sample, or the mobility of the drug and solvent prior to and during

the drug release. In addition to providing the same information as that obtained using con-

ventional methods, NMR and MRI methods give insight into local transport processes during

drug release in one experimental procedure [16].

The aims of this dissertation were as follows:

1. To establish a reliable methodology for determining the structural properties of hydro-

gels.

2. To investigate the effect of hydrogel structural properties on diffusional processes in the

model DDS.

3. To examine how NMR and MRI techniques can be used in order to improve existing

experimental procedures to characterize drug release from hydrogels.
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Chapter 2

Hydrogels

Since the pioneering work of Wichterle and Lim published in Nature in 1960 [17], the fields of

drug delivery and hydrogels have evolved significantly. The highly porous structure makes hy-

drogels an ideal DDS, as it allows loading of drugs into the hydrogel and subsequent controlled

release. Thus, local drug concentration is maintained through the whole release time. Hy-

drogels are three-dimensional crosslinked networks composed of hydrophilic polymer which

are biocompatible due to the capability to absorb large amount of water (up to 99% of to-

tal weight). On the other hand, hydrogels are insoluble in water as their network structure is

maintained by crosslinks. There are two main categories of crosslinks: chemical and physical.

Chemical crosslinking results from the formation of covalent bonds between polymer chains,

and produces permanent hydrogels. Typically, chemical crosslinking methods involve addi-

tion of small molecules that form chemical bonds between polymer chains [18, 19]. Physical

crosslinking is a result of intermolecular reversible interactions between polymer chains, such

as ionic interactions, polymerized entanglements or hydrogen bonds [19, 20]. The main types

of crosslinks are presented in Figure 2.1. The crosslinking method plays a large role in deter-

mining the hydrogel’s network structure, which in turn plays a critical factor in controlling the

rate of the drug release from hydrogels. In this study, only free radical polymerization is used

to prepare hydrogels.
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ξ

Mc

Chemical
crosslink Physical
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Figure 2.1: Schematic structure of the hydrogel polymer network. Mesh size, ξ and the aver-
age molecular weight between the crosslinking points, Mc are defined. Adapted from [19].

As shown in Figure 2.2, hydrogels can be classified in terms of the physical properties,

ionic charges, methods of preparation, rate of biodegradation, and crosslinking methods [21].

Figure 2.2: Classification of hydrogels based on the different properties. Adapted from [21].

Figure 2.3 presents the monomers used in this work. The composition of the hydrogel

can affect bioadhesion, an important feature of adhering to biological surfaces, which has to

be taken into account while designing a drug delivery system. Bioadhesion can be used as a

method of targeting drugs to a specific site, and it allows longer residence times on the applica-

tion site [22]. Neutral hydrogels, as those prepared from polymerized N-isopropylacrylamide

(NIPAM) (Figure 2.3), are nonadhesive to cells and proteins. The addition of an ionic poly-

mer, such as polymerized Acrylic Acid (AAc) containing carboxyl or hydroxyl groups (Figure

2.3) can promote bioadhesion [3].
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Figure 2.3: Structure of the monomers, N-isopropylacrylamide (NIPAM) and Acrylic Acid
(AAc), and crosslinker, N,N’-Diallyl L-tartardiamide (DAT), used for the synthesis of the
P(NIPAM)-based hydrogels.

Loading and releasing of the hydrophobic drugs into hydrogels is rather inefficient. Thus,

the use of hydrogels is limited to delivery of the hydrophilic drugs. Strategies to improve the

delivery of the hydrophobic drugs by means of hydrogels are proposed in Section 2.2.

2.1 Properties of hydrogels

2.1.1 Swelling theory

For nonionic hydrogels, polymer chains are constrained by crosslinks that serve as elastic

junctions. According to the Flory-Rehner theory, when a nonionic hydrogel is placed in an

excess solvent, the polymer chains begin to absorb solvent and swell. This thermodynamic

force of mixing is opposed by a retractive force of the polymer chains [23]. When these

two forces are equal, a state of equilibrium is reached. Equation 2.1 describes this physical

situation in terms of the Gibbs free energy (∆Gtotal):

∆Gtotal = ∆Gmixing +∆Gelastic (2.1)

Here, ∆Gmixing represents the change in free energy due to polymer mixing between the solvent

and the polymer chains, which is a measure of the compatibility of the polymer with the solvent

molecules [3]. ∆Gelastic is the change in free energy due to elastically effective crosslinks in

the hydrogel network.

Equation 2.1 can be differentiated with respect to the number of solvent molecules, keep-

ing temperature and pressure constant. The corresponding change of the chemical potential

(∆µtotal) is then:

∆µtotal = ∆µmixing +∆µelastic = µ1−µ1,0 (2.2)
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Where µ1 is the chemical potential of the solvent in the hydrogel, and µ1,0 is the chemical

potential of the pure solvent (outside the hydrogel) [3, 24]. When the hydrogel is in equilibrium

with solvent, µ1 = µ1,0. Thus, ∆µmixing and ∆µelastic must balance each other.

∆Gmixing from Equation 2.1 can be expressed using the enthalpy of mixing (∆Hmixing) and

the entropy of mixing (∆Smixing) :

∆Gmixing = ∆Hmixing−T ∆Smixing (2.3)

Where T is the temperature. Furthermore, the ∆Hmixing term is:

∆Hmixing = kBT n1χν2s (2.4)

Where kB is the Boltzmann constant, n1 is the number of water molecules in the swollen gel,

χ is the polymer-solvent interaction parameter, and ν2s is the polymer volume fraction in the

swollen gel. The ∆Smixing term is:

∆Smixing =−kB(n1lnν1 +n2lnν2s) (2.5)

Where ν1 is the volume fraction of water and n2 is the number of free polymer molecules.

Assuming that n2 = 0, the ∆Gmixing becomes:

∆Gmixing = kBT (n1lnν1 +χn1lnν2s) (2.6)

The differentiation of ∆Gmixing with respect to the number of solvent molecules leads to:

∆µmixing = kBT × [ln(1−ν2s)+ν2s +χ +ν
2
2s] (2.7)

The chemical potential difference per mole is obtained by multiplying Equation 2.7 with Avo-

gadro’s constant:

∆µmixing = RT × [ln(1−ν2s)+ν2s +χ +ν
2
2s] (2.8)

The change of chemical potential due to the elastic retractive forces of the polymer chains can

be determined from the theory of rubber elasticity [3, 25, 26]. ∆Gelastic depends on the number
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of effective chains (excluding free ends), ve and the linear expansion factor of the network, α:

∆Gelastic =
RT ve

2
× (3α

2−3− lnα
3) (2.9)

The corresponding change of chemical potential due to the elastic retractive force is:

∆µelastic = (
∂Gelastic

∂n1
)T,P = RTV1

ve

V0
× (ν

1
3
2s−

ν2s

2
) (2.10)

V0 represents the volume of the unswollen polymer and V1 the molar volume of the solvent.

The total change of the chemical potential is the sum of two contributions and when the state

of equilibrium swelling is reached, it equals zero:

∆µ = ∆µmixing +∆µelastic = 0 (2.11)

Based on the condition expressed in Equation 2.11 Flory derived a formula for calculation of

the number average chain molecular weight (Mc) value from the swelling ratio obtained in the

equilibrium swelling experiment:

1
Mc

=
2

Mn
−

v̄
V1
[ln(1−ν2s)+ν2s +χ +ν2

2s]

ν
1
3
2s− ν2s

2

(2.12)

In Equation 2.12, Mn represents the number average molecular weight before crosslinking, v̄ is

the specific volume of the polymer. The root-mean-square end-to-end distance of the polymer

chains between crosslinks in an unperturbed state (
√〈

r̄0
2
〉
) depends on the number average

molecular mass of the chains between crosslinks:

√〈
r̄0

2
〉
= l

√
2CNMc

Mr
(2.13)

where l is the bond length along the polymer backbone (0.154 nm for vinyl polymers), CN is

the Flory characteristic ratio, and Mr is the molecular weight of the repeat units.

2.1.2 Mesh size

Mesh size of the hydrogel (ξ ) is defined as the linear distance between two adjacent crosslinks
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[3]. The mesh-size of the network is related to the swelling factor of the hydrogel, ν2s:

ξ =
√〈

r̄0
2
〉
×ν

− 1
3

2s (2.14)

ν2s can be experimentally determined by measuring the mass swelling ratio (Qm):

ν2s =

1
ρpol

Qm
ρsolv

+ 1
ρpol

(2.15)

where ρpol is the density of the hydrogel and ρsolv is the density of the solvent. Qm is calculated

based on:

Qm =
Ws

Wd
(2.16)

where Ws is the weight of the swollen hydrogel and Wd is the weight of the dry hydrogel.

Figure 2.4 summarizes the swelling process of hydrogel accompanied with the change in

polymer network structure. Hydrogel mesh size can be adjusted by varying polymer con-

Figure 2.4: Swelling of the initial hydrogel in the presence of water. The filled circles represent
chemical crosslinks, ξ represents the mesh size.

centration, crosslinking density, introduction of ionic polymers or changing conditions of the

polymerization reaction (i.e. type of solvent, temperature, pH) [3]. As shown in Figure 2.5,

drug release from hydrogels strongly depends on the drug to mesh size ratio [27].

When the mesh size is much larger than the drug (Figure 2.5-Fast diffusion), the drug

release process is dominated by diffusion. Small drug molecules migrate freely through the

network. The self-diffusion is similar to the one in solution (D0) and depends on the radius

of the drug molecule and the viscosity of the solution [27, 28], as expressed by the Stokes-

Einstein equation:
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D0 =
kBT

f
(2.17)

where f is the friction coefficient which is dependent on the solvent viscosity and the

geometry of the diffusing particle [29] .

When the mesh size matches the drug size (Figure 2.5-Slow diffusion), the effect of steric

hindrance on drug diffusion becomes significant. The polymer chains induce frictional drag

on diffusing drugs, and since the meshes in certain regions of the hydrogel network are smaller

than the drugs, the path length for drug transport increases [27, 30]. The overall effect is slow

drug diffusion, which allows for slow release.

For a very small mesh size combined with very large drug molecules (Figure 2.5-

Immobilization), strong steric hindrance immobilizes the drugs. Drugs remain physically en-

trapped inside the network and can be release only after a combined degradation and diffusion

process [27, 31].

time

time

time

Fast diffusion

Slow diffusion

Immobilization

Figure 2.5: The dependence of the drug to mesh size ratio on the drug diffusion. Fast diffusion
occurs when the mesh size is much larger than the drug molecule. Slow diffusion occurs
when the size of drug approaches the mesh size. Drugs larger than a mesh size are physically
entrapped (immobilized) inside the network. Adapted from [27].

There are many methods available for determining hydrogel mesh size, the most frequently

used methods are listed in Table 2.1.
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Table 2.1: Summary of methods used for characterizing the mesh size of hydrogels

Method References
Equilibrium swelling [23, 32, 33]
Rheology [33–35]
NMR [33, 36]
Small-angle X-ray scattering [37]
Small angle neutron scattering [38]

2.1.3 Elastic behavior of hydrogels

According to Flory’s theory, the equilibrium shear elastic modulus corresponds to the

frequency-independent elastic modulus (G′) for a hydrogel network of Gaussian chains [25]:

G′ = A
ρ

Mc
RT (2.18)

where A is the structure factor, ρ is the polymer density, Mc is the number average chain

molecular weight, R is the universal gas constant, T is the temperature. The structure factor

A is determined by the assumed type of network. For an affine network, the crosslinks are

embedded in the network and do not fluctuate. Thus, only the network chains contribute to the

decrease of entropy of the network upon deformation (A = 1) [23]. For a phantom network, the

crosslinks do fluctuate over time without being hindered by the neighboring polymer chains

(A = 1- 2
f , f being the functionality of the crosslinks) [39, 40].

Equation 2.18 can be developed to express the hydrogel mesh size, assuming that the mesh

is either of cubical [41] or spherical [42] shape. Assuming cubical shape, the mesh size is

defined as:

ξ
rheo
c =

(
RT

G′NA

)1/3

(2.19)

where NA is the Avogadro’s number.

The following equation describes the mesh size for the spherical shape:

4
3

π(ξ rheo
s ) =

RT
G′NA

(2.20)

2.1.4 Stimuli-responsive behavior

Stimuli-responsive hydrogels have over many years gained researchers’ attention. Such hy-

drogels respond to external stimuli such as temperature or pH by changing their properties
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drastically (dimension, structure, viscosity) [43]. Of special interest are thermoresponsive hy-

drogels in which only a small temperature change around a Lower Critical Solution Temper-

ature (LCST) induces collapse of polymer chains and Volume Phase Transition (VPT). Since

the earliest report of the LCST of P(NIPAM) in water by Scarpa et al. in 1967 [44], P(NIPAM)

has become one of the most investigated thermosensitive polymers. Aqueous solutions of

P(NIPAM) exhibits a LCST at 32◦ C, independent of polymer molecular weight and concen-

tration [45]. P(NIPAM) hydrogel swollen in H2O undergoes VPT at 34◦ C [6, 7]. The Volume

Phase Transition Temperature (VPTT) is 1◦ C higher for the P(NIPAM) hydrogel swollen in

D2O. [7] This shift in VPTT can be explained by the slightly lower dielectric constant of D2O

(εD2O = 78.06 at 25◦ C) compared to H2O (εH2O = 78.37 at 25◦ C) [46].

Figure 2.6 schematically summarizes the VPT phenomenon. P(NIPAM) hydrogels are

swollen below VPTT, due to the strong hydrogen bonds formed between water and the amide

or carbonyl groups of P(NIPAM). When the temperature is elevated, this hydrogen bonding is

weakened and subsequently breaks above LCST. The hydrogel aggregates are formed through

polymer-polymer hydrogen bonding, expelling water from the network [47]. The phase transi-

tion is initiated by dehydration of the isopropyl groups and the main polymer chain, followed

by the dehydration of the amide groups [48].

Temperature > VPTT

Swollen hydrogel Unswollen hydrogel

Figure 2.6: Schematic illustration of volume phase transition of temperature-responsive hy-
drogels. In response to the temperature increase over the VPTT, a temperature-responsive
hydrogel in a swollen state, carrying a hydrophilic drug (shown as red hexagons) undergoes
volume phase transition and becomes shrunk after expelling the solvent and drug.
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2.2 Hydrogels as complex drug delivery systems

The use of hydrogels has been limited to delivery of hydrophilic compounds. However, it is

estimated that more than 40% of marketed drugs and 60% of the drugs in the research phase,

are hydrophobic [49]. One of the main approaches to improve the compatibility of hydrogels

with hydrophobic compounds is the introduction of the molecules capable of forming inclusion

complexes with hydrophobic molecules, such as micelles or cyclodextrins.

Surfactant micelles

Surfactants are amphiphilic molecules consisting of a hydrophilic head group and an alkyl hy-

drophobic tail (Figure 2.7). One of the fundamental properties of surfactants is that monomers

in solution tend to form aggregates, so-called micelles. Micellization is a mechanism for re-

moving hydrophobic groups from contact with water, thereby reducing the free energy of the

system [50]. The concentration where micelles start to form is called the Critical Micelle

Concentration (CMC). In a micelle, the surfactant hydrophobic group is directed towards the

interior of the cluster and the hydrophilic head group is directed towards the solvent. Thus, mi-

celles can be successfully used as carriers of hydrophobic compounds which can be physically

entrapped in the core of the micelles.

Surfactants are classified according to their hydrophilic head group and thus can be non-

ionic, anionic or cationic. In this work, only cationic surfactant was used. Cationic surfactants

are mainly based on amine-containing hydrophilic head group. They are frequently used as

antibacterial agents, which may be advantageous also in certain drug delivery applications

[51].

Figure 2.7: Schematic illustration of a reversible surfactant micellization. The surfactant head
groups are marked in blue. The black curved lines represent the surfactant hydrophobic tail
groups. Hydrophilic compounds can only be adsorbed within the micelle head-group compart-
ment; while hydrophobic compounds can only be incorporated in the micelle core compart-
ment.
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β -cyclodextrins

Cyclodextrins (CDs) are a family of cyclic oligosaccharides with a hydrophilic outer surface

and a hydrophobic central cavity. β -Cyclodextrin (βCD) consists of 7 α-D-glucopyranoside

units (Figure 2.8a). The general structure of cyclodextrin can be described as a truncated

hollow cone with primary and secondary hydroxyl groups oriented outward (Figure 2.8b).

CDs possess an unique ability to act as molecular containers by entrapping guest molecules in

their internal cavity. Drug - CD complex formation occurs through a non-covalent interaction

between the drug and the CD cavity [52, 53]. Drug complexation by CDs is a dynamic process

where the drug molecule continuously associates and dissociates from the CD [54].

) )

Figure 2.8: The chemical structure (a) and the truncated hollow cone of the βCD molecule
(b). Taken from [53].

Because of the limited solubility of the βCD molecules, they are often incorporated to

polymers by chemical modifications [55, 56]. βCDs can act as a crosslinker for the formation

of a hydrogel [57, 58].

Drug delivery systems based on hydrogels containing moities such as micelles or CDs

have been shown to successfully encapsulate and provide controlled release of the hydropho-

bic compounds [59, 60]. In this dissertation we chose to study the thermosensitive hydrogel

system composed of P(NIPAM)-based polymer with embedded surfactant micelles and βCDs

in order to gain detailed knowledge in transport of such molecules within and from these hy-

drogel systems.
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[Hydrogels]



Chapter 3

NMR theory

In 1946, two independent research groups of Felix Bloch and Edward Purcell described NMR

for condensed matter [61, 62]. The importance of the discovery was recognized by the Nobel

Prize in Physics awarded to Bloch and Purcell in 1952. Since then, NMR has developed into

a broad research field with applications in physics, chemistry and medicine. This chapter is

written based on the books by Keeler [63] and Günther [64].

3.1 NMR signal

The spin of a nucleus can be considered as a magnetic moment (~µ). When ~µ is placed in a

static magnetic field (~B0) directed along the z axis (Figure 3.1), the time dependence of ~µ is

given by:

d~µ
dt

=~µ× γ~B0 (3.1)

The proportionality constant in Equation 3.1 (γ) is called a gyromagnetic ratio and depends on

the nucleus.
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μ

B0

x y

z
ωL

Figure 3.1: Precession of a magnetic moment (~µ) in a static magnetic field (~B0) with Larmor
frequency (~ωL). Here, ~µ could be replaced by the magnetization vector (~M).

Equation 3.1 can be solved in the rotating frame of reference, where the xy-plane is rotating

with an angular frequency (~ω).

In the rotating frame of reference, Equation 3.1 transforms to:

d~µ
dt

=~µ× (γ~B0 +~ω) (3.2)

When ~ω = −γ~B0, d~µ
dt = 0, and the solution is given by ~µ = constant, meaning that ~µ is static

in the rotating frame of reference, and further that ~µ is precessing around ~B0 in the laboratory

frame with the Larmor frequency (~ωL):

~ωL =−γ~B0 (3.3)

3.2 RF-pulse

The magnetization has to be rotated to the xy-plane in order to be measured. An oscillating

electromagnetic pulse is used to excite all the spins. The magnetic part of the electromagnetic

radiation is called ~B1. This weak magnetic field oscillating for a short time interval along the

x-direction is called a Radio Frequency (RF) pulse. As shown in Figure 3.2, the ~B1 pulse is

applied perpendicular to the static magnetic field; in the xy-plane. The most commonly used

flip angles are 90◦ (π

2 ) and 180◦ (π).
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B0

x

y

z

M 900 pulse
Receiver coil

a)

b)

B1

x

y

z

ωL

Figure 3.2: (a) If the radiofrequency field is applied for a certain time, the magnetization vector
(~M) is rotated into the xy-plane. (b) To an external stationary observer (coil), the ~M is rotating
at the Larmor frequency (~ωL) and can induce a signal in the coil.

The magnetic part of the RF field can be expressed as two vectors rotating in opposite

directions in the xy-plane [63]. In the following section only one vector is taken into account

(Figure 3.3).

x

y

x

y

x

y

x

y

x

y

laboratory frame

rotating frame

B1

ωL

ωL

x

y

x

y

x

y

x

y

x

y

Figure 3.3: The motion of the field ~B1 viewed in a fixed axis system (laboratory frame, top
row). The bottom row presents the motion of the ~B1 field in a rotating axis frame, which is
rotating at ~ωL about the z-axis. The other vector will be rotating counterclockwise, and does
not have to be taken into account. Adapted from [63].

Given the resonance condition in the rotating frame of reference ~B1 is static, and the time

dependence of ~µ is given by:

d~µ
dt

=~µ× γ~B1 (3.4)

It can be shown that this corresponds to a rotation of ~µ around ~B1 in the yz-plane with an

angular frequency ~ω1 = γ~B1.

The rotation angle is given by θ = γB1tp, where tp is the duration of the RF field pulse.
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A summation over all ~µs will give the total magnetization vector (~M):

~M = ∑~µ (3.5)

d ~M
dt = 0 in the rotating frame of reference, where ~M will be statically aligned along the

z-axis (~B0), but will have no components in the x’y’-plane since the individual ~µ vectors are

out of phase with each other and the sum of the x’y’-components will be zero.

When a RF field is applied, phase coherence is created between the ~µ vectors and the time

dependence of ~M is given by:

d ~M
dt

= ~M× γB1 (3.6)

When the RF field is turned off, relaxation processes can be introduced according to the

well known Bloch-equations:

dM′x
dt

=−dM′x
T2

(3.7)

In Equation 3.7, T2 is the transverse relaxation time.

dM′y
dt

=−
dM′y
T2

(3.8)

dMz

dt
=−M0−Mz

T1
(3.9)

In Equation 3.9, M0 is the magnetization at thermal equilibrium, and T1 represents the spin-

lattice relaxation time.

Defining Mx + iMy = Mxy, the solution from Mxy is given by:

Mxy = M0e−t/T2 (3.10)

where M0 is the value of the xy-magnetization at t = 0.

In an inhomogeneous magnetic field, Equation 3.10 changes to [65]:

Mxy = M0e(−t/T ?
2 ) (3.11)

where the time constant apparent transverse relaxation time (T ?
2 ) defines the overall decay rate
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due to both homogeneous (T2) and inhomogeneous contributions (T †
2 ):

1
T ?

2
=

1
T2

+
1

T †
2

(3.12)

The solution for the z-magnetization is given by:

Mz = M0(1−A0e−t/T1) (3.13)

A0 is an integration constant that depends on the initial conditions. For Mz(0) = 0, A0 = 1

(after a 90◦ pulse). For Mz(0) =−M0, A0 = 2 (after a 180◦ pulse).

3.2.1 Shaped RF pulses

Figure 3.4 presents the three most common types of RF pulses used in modern NMR experi-

ments. Rectangular pulses, also called hard pulses, excite the whole range of chemical shifts

and are applied when no spatial or spectral selection is necessary. The duration of a rectangular

pulse is on the order of microseconds. The frequency profile corresponding to the rectangu-

lar pulse is sinc (Figure 3.4a) [66]. When spatial selectivity is required, the sinc or gaussian

pulses are applied (Figure 3.4b-c). The frequency profile produced by the sinc pulse is a rect-

angle. However, this profile is only an ideal approximation since a sinc pulse have a finite

duration and is obtained by truncating the pulse envelope [66, 67]. A gaussian pulse produces

the frequency profile in a gaussian form.

Sinc or gaussian-shaped RF pulses are reduced in intensity and increased duration (hun-

dreds of microseconds to milliseconds) comparing to hard pulses [68].
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FT
B1

tp

a)

FT

FT

b)
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Pulse shape Frequency profile

Figure 3.4: RF pulses shapes and corresponding frequency profiles; (a) rectangular RF pulse
with amplitude, B1 and duration, tp produces a sinc-shaped frequency profile; (b) sinc RF pulse
and rectangular frequency profile; (c) gaussian RF pulse and frequency profile. Frequency
profiles can be calculated by Fourier transformation (FT). Adapted from [68].

3.3 NMR spectrum

A Fourier Transform (FT) of the Free Induction Decay (FID) gives a spectrum with peaks

corresponding to the resonance frequencies of the spins in the sample. With an applied ~B0, the

resonances of a molecule appear at ν0±∆ν . The local magnetic field (Blocal) is influenced by

the chemical environment of a nucleus of the molecule. The magnitude of Blocal is given by:

Blocal = B0(1−σ) (3.14)

where σ is known as shielding constant of the particular proton.

The corresponding signal frequency is:

ν =
γB0(1−σ)

2π
(3.15)

According to Equation 3.15, the signal frequency varies with ~B0. As NMR spectrometers

operate at different ~B0 fields, the comparison of the signal frequencies between spectrome-

ters operating at different field strengths is difficult. Therefore, the position of a peak in the

spectrum is specified by measuring its frequency separation from the reference peak νre f , and

dividing this difference by the frequency of the reference peak. The chemical shift (in Equation
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3.16) (δ ) is defined as follows:

δ = 106× ν−νre f

νre f
(3.16)

The δ values are quoted in ’parts per million’ (ppm).

3.4 Spin echo

Due to small local inhomogeneities in the ~B0, the Larmor precession frequencies of the spins

varies throughout the sample. As shown in Equations 3.11 - 3.12, the FID decay after applying

a RF pulse is faster than due to T2- relaxation effects alone [69]. The pulse sequence discovered

in 1950 by Edward Hahn [70] refocuses any decay due to the magnetic field inhomogeneities.

Therefore, the Hahn spin echo pulse sequence shown in Figure 3.5 is a fundamental component

of many modern NMR experiments. In this pulse sequence, the initial 90°x pulse aligns the

magnetization vector along the -y axis. During the first time interval following the RF pulse

(τ)-delay, the magnetization vector precesses freely from -y to x-axis and rotates in the x-y

plane at a rate, Ω. The angle through which the vector rotates is Ωτ . The 180°x pulse flips the

magnetization vector to a mirror image position. The angle is Ωτ with respect to y-axis, and

π−Ωτ with respect to -y-axis. During the second τ-delay the vector continues to evolve freely

acquiring the Ωτ phase. At the end of the sequence, the total phase is (π−Ωτ)+Ωτ = π and

the magnetization vector is aligned along the y-axis. Thus, the final magnetization vector is

independent on the offset Ω.

x

-y π-Ωτ

90o 180o

RF

τ τ

Ωτ Ωτ

Figure 3.5: The Hahn spin echo experiment. After the first 90◦ pulse the NMR signal decays
because of the field inhomogeneities. The 180◦ pulse applied after τ-delay inverts the magne-
tization vector. During the second τ-delay, the magnetization vector is refocused and a spin
echo is produced after 2τ .
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3.5 Pulsed Field Gradient (PFG) NMR

3.5.1 Magnetic Field Gradient

The magnetic field can intentionally be made inhomogeneous for a short period of time. This

effect can be accomplished by applying a magnetic field along the z-axis (Bz) (Figure 3.6). Bz

varies linearly with the z-axis. The magnetic field, due to the combination of the gradient and

the B0 becomes [63]:

Bz = B0 +Gz (3.17)

where Gz is the magnetic field gradient (T m−1 or G cm−1) in the z - direction. Since

the effective magnetic field varies by B0 +∆Bz, the Larmor frequencies of nuclei at different

positions vary by ωL +∆ωz.

B0 B0

z z

(a) (b)

Figure 3.6: The effect of a magnetic field gradient on the NMR spectrum. The sensitive volume
of the sample is shown by the gray rectangle (a) NMR sample in a homogeneous magnetic
field, ~B0. The spectrum is expected to have the narrow line. (b) The gradient is applied, and
Bz varies with z. Spins in different parts of the sample have different Larmor frequencies. The
spectrum is expected to have a broad line. Adapted from [63].

3.5.2 Pulsed Field Gradient Spin Echo (PFGSE)

Almost all NMR diffusion experiments are based on different forms of spin echoes (Figure 3.5)

[70]. In 1965 Stejskal and Tanner introduced the Pulsed Field Gradient (PFG) NMR technique

for measuring self-diffusion [71].

The PFG NMR method is a well-established technique for studying molecular motion

without disturbing the investigated system. The PFGSE pulse sequence is based on the Hahn

spin echo as shown in Figure 3.7. A gradient pulse, Gz located after the first 90◦ RF pulse,
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Bz

90o 180o

δ
Δ

RF

Gz

τ 2τ

Figure 3.7: The Pulsed Field Gradient Spin Echo (PFGSE) experiment. The upper part
presents the schematic diagram of a pulse sequence. The bottom part shows the phase evolu-
tion of the spins at different locations along the gradient direction [71].

induces a position-dependent increase of the Larmor precession of the spins, which leads to a

defocussing process for the transverse magnetization. During the diffusion time (∆), a number

of spins change their position on the z-axis. A 180◦ RF pulse in the middle between the 90◦ RF

pulse and the signal acquisition forms a spin echo and refocuses any chemical shift evolution

at the start of acquisition. The signal decay is governed by T2. The amplitude of Stejskal and

Tanner signal is given by:

S(g,2τ) = M0exp
(
−2τ

T2

)
exp
[
−γ

2
δ

2G2
(

∆− δ

3

)
Ds

]
(3.18)

Equation 3.18 can be normalized with respect to the echo intensity (E) obtained at G=0:

E(g,∆) = E(g,2τ) =
S(g,2τ)

S(g = 0,2τ)
= exp

[
−γ

2
δ

2G2
(

∆− δ

3

)
Ds

]
= exp(−bDs) (3.19)

where b is known as the diffusion weighting factor and is defined by−γ2δ 2G2(∆− δ

3 ). The

normalized signal amplitude, E
E0

decreases exponentially with increasing gradient strength, G

(Figure 3.8a). The Ds may be obtained from the slope of a linear plot of ln( E
E0
) against b as

shown in Figure 3.8b.
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Figure 3.8: Diffusion of sucrose (10 mM) in the solution recorded as calibration of the diffu-
sion probe. (a) Echo attenuation. (b) Fitting of Equation 3.19 results in self-diffusion coeffi-
cient (Ds) equal to 4.37 ± 0.05 × 10−10 m2 s−1.

3.6 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) developed from the application of NMR to radiological

imaging with the goal to correlate NMR signals with spatial locations [72]. This can be ac-

complished by applying a spatially changing magnetic field across the sample. Three magnetic

field gradients are used in MRI experiments, Gx, Gy and Gz. The result is a 2D or 3D image.

3.6.1 Slice selection

In MRI, slice selection is the first step in signal localization. Inhomogeneous and phase-

separated samples can be characterized by means of slice-selective NMR to obtain localized

information about the chemical environment. As shown in Figure 3.9, application of the mag-

netic field gradient pulse applied in the z-direction (Gz) leads to a transverse slice of the sample.

When a magnetic gradient is applied in the z-direction, the Larmor frequency expressed in

Equation 3.3 becomes spatially dependent ωz [63]:

ωz =−γBz =−γ(B0 +Gzz) (3.20)

According to Section 3.5.1, Gz in Equation 3.20 may be defined as:

Gz =
∂B0

∂ z
(3.21)
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Figure 3.9: Example of the slice selection. The selected slice (z5) of thickness ∆z is highlighted
in gray. Only 1H for the selected slice will contribute to the signal.

Keeping in mind that the Larmor frequency in B0, ωL, is expressed by Equation 3.3, the fre-

quency at position z is:

ωz = ωL− γGzz (3.22)

To excite a slice of a certain thickness given by ∆z, centered at z0 the RF pulse should have

a frequency profile (∆ωz) extending from
(
−γGzz0 + γGz

∆z
2

)
to
(
−γGzz0− γGz

∆z
2

)
[72].

By setting the bandwidth of the RF pulse (BW ) equal to ∆ωz one obtains:

BW = ∆ωz =

(
−γGzz0 + γGz

∆z
2

)
−
(
−γGzz0− γGz

∆z
2

)
=−γGz∆z (3.23)

Slice selection can be achieved by applying a selective RF pulse (Figure 3.4b-c) and a

magnetic field gradient simultaneously (Figure 3.10) [73]. The slice thickness can be adjusted

by varying the BW , and Gz:

∆z =
BW
|γGz|

(3.24)
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Figure 3.10: The effect of magnetic gradient and slice selective pulse on the frequency spec-
trum. (a) Frequency spectrum in the absence of magnetic field gradient. (b) The frequency
spectrum in the presence of the magnetic field gradient. The spatial profile presented in here
corresponds to the RF coil region. (c) Application of a selective pulse bandwidth (BW ) to-
gether with a magnetic field gradient. A slice of thickness proportional to BW is selected.
Adapted from [73].

Because the signal arises only from a discrete slice of the sample, the sensitivity of the

spatially-selective NMR experiment is reduced by:

Sz

S0
∼ ∆z

L
=

BW
γGL

(3.25)

where Sz is the signal resulting from the slice-selective experiment, S0 is the signal in the

absence of spatial selection, L is the length of the sample or the RF coil and ∆z is the slice

thickness [73].

The local spin density, ρz for spins within the volume element dV is ρzdV. The NMR signal

from this element may be written as:

dS(Gz, t) = ρzexp[iωzt]dz (3.26)

Inserting Equation 3.20 into Equation 3.26 results in:

dS(Gz, t) = ρzexp[i(γB0 + γGzz)t]dz (3.27)

Here, relaxation effects are neglected. A transformation into the rotating frame of reference

followed by explicit integration over all space allows to write Equation 3.27 in terms of the

observed signal S as function of time and therefore becomes:

S(t) =
∫∫∫

ρzexp[iγGzzt]dz (3.28)
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where symbol dz represents integration over all space. Mansfield and Grannel [74] simplified

the meaning of Equation 3.28 by introducing the concept of k-space which is defined by:

k =
γ

2π

t∫

0

G(t)dt (3.29)

where γ for 1H is 2.675 × 108 rad s−1 T−1. Here, G represents the maximum strength of the

magnetic field gradient. The k-space vector units are in reciprocal space units: m−1.

3.6.2 Spatial encoding

The next steps in the image formation are defined as space encoding of the image [75]. After

a slice has been selected, the positions of the 1H signals within the slice need to be localized.

The signals are differentiated by applying two additional gradients, frequency-encoding (Gx)

and phase-encoding (Gy) gradients.

When the frequency-encoding gradient (Gx) is applied, the frequencies along the x-axis

are changed spatially. The time integrals of the applied Gx control the sampling of the k-space

(kx) as follows:

kx =
γ

2π

t∫

0

Gx(t)dt (3.30)

Gx is applied during the signal acquisition.

When a phase-encoding gradient (Gy) is applied, the frequencies along the y-axis are

changed spatially. Gy is applied before the acquisition of the signal. The corresponding k-

space (ky) is defined as:

ky =
γ

2π

t∫

0

Gy(t)dt (3.31)

The combination of the frequency-encoding and phase-encoding gradients provides the

basis for the application of the inverse two-dimensional Fourier transform. The signal of the

2D image is defined as [76]:

M (kx,ky) =
∫

x

∫

y

m (x, y)e−i2π[kxx+kyy]dxdy (3.32)
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Figure 3.11 presents an example of a sequence for a spin echo 2D imaging with a 180◦

pulse, and phase and frequency encoding. Starting at kx = 0 and ky = 0, the gradient pulse

applied along the x-axis (Gx) moves the position in k-space to kx,max. The 180◦ pulse moves

the position in k-space to the left side of the k-space diagram (−kx,max). The position in k-

space is moved to a specific position along ky in the diagram using a positive phase-encoding

gradient (Gy). The line is sampled by using Gx along to the x-axis direction until all of k-space

is covered. The value of Gy is varied in a steplike fashion allowing to gather information from

the whole k-space during different repetitions.

kx

ky

180o pulse

Read gradient along x

kx,max-kx,max

Δkx

Δky

RF

Gx

Gy

Gz

90o 180o
a) b)

Phase gradient 
along y Gradient along x

Figure 3.11: The pulse sequence (a) and the k-space coverage (b) for a 2D MRI experiment
using a standard spin-echo sequence with phase and frequency encoding. Starting at kx = 0
and ky = 0, the gradient pulse applied along the x-axis (Gx) moves the position in k-space
to kx,max. The dashed line represents the action of the 180◦ pulse which changes kx,max to
−kx,max. Applying a positive phase-encoding gradient (Gy) moves the position in k-space to
the highest line (−kx,max and ky,max). Gy is pictured as a series of horizontal lines to denote
that it is being stepped regularly through varying values during different repetitions. The line
is sampled (black dots) by using Gx parallel to the x-axis direction. Subsequently, the position
returns to kx = 0 and ky = 0 and new lines are sampled at different ky positions (gray dots).

The separation between points in k-space shown in Figure 3.11 (∆kx and ∆ky) is propor-

tional to the inverse of the Field of View (FOV) in image space [76]:

∆ki =

(
1

FOVi

)
(3.33)

where i represents the spatial dimensions x or y. The spatial resolution ∆ i in the resultant
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image is determined by the highest value of the sampled k-space (ki,max):

∆ i =
2

ki,max
(3.34)

where ∆ i is the spatial resolution in direction i.

3.6.3 1D Chemical Shift Imaging (CSI)

The 1D Chemical Shift Imaging (CSI) NMR method, based on a well-known MRI experi-

ment, can be used to study the transport processes in colloidal systems [77–82]. NMR signals

are phase-encoded for position by applying rectangular magnetic field gradients of varying

strength. The pulse sequence for a 1D CSI experiment is shown in Figure 3.12.

RF

Gz

tE/2 tE/2

δ

90° 180°

Figure 3.12: 1D Chemical Shift Imaging (CSI) pulse sequence. Application of the 90◦ RF
pulse and the refocusing 180◦ RF pulse results in an echo at time tE . The magnetic field
gradient pulse encoding the signal for position, is applied along the z-axis (Gz). δ indicates
the duration of the Gz pulse [16].

For the 1D CSI experiment, only phase encoding is used and ky is varied along the kx = 0

axis.

3.6.4 Solvent suppression

In a 1H NMR single pulse spectrum, the area of a signal is directly proportional to the number

of 1H nuclei contributing to this signal. Consequently, intensities of the solvent signals are

much larger than the resonances of interest. One can avoid this issue by using deuterated

solvents. However, protons in some chemical groups such as -NH or -OH, are exchangeable

with deuterium ions and thus ’disappear’ from the 1H NMR spectrum. Moreover, deuterated

solvents are much more expensive than protonated ones, thus their usage may be limited when
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large amounts of solvent are required for sample preparation. Alternatively, the solvent signal

can be suppressed by saturation with a low-power selective RF pulse applied on the solvent

resonance [83]. Many other solvent suppression techniques have been developed, and the most

common methods are summarized in the review by Zheng and Price (2010) [84].

3.6.5 Localized spectroscopy

Application of the magnetic field gradients described in Sections 3.6.1 - 3.6.2 allows for selec-

tive excitation of a Volume of Interest (VOI) in the sample [77, 85–87]. The two most widely

used methods for excitation of VOI use three orthogonal spatially-selective pulses: 90°-180°-

180° as in Point Resolved Spectroscopy (PRESS) [85] or 90°-90°-90° as in the STimulated

Echo Acquisition Mode (STEAM) pulse sequence [86]. In this dissertation, the STEAM pulse

sequence was used to obtain spectra from selected VOIs.
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Chapter 4

Diffusion

The term diffusion refers to the random translational incoherent motion of molecules. There

are two common forms of diffusion: self-diffusion and mutual diffusion (Figure 4.1). Although

having the same units (length2 time−1), the physical origins of these phenomena are different.

Self-diffusion, denoted by the self-diffusion coefficient (Ds) is the random Brownian motion

of molecules in pure or uniform solution resulting from the internal kinetic energy [29, 88].

Self-diffusion is the most fundamental form of transport involved in all chemical reactions,

since the reacting species must collide before they can react [29, 89]. At infinite dilution,

Ds of a molecule relates to its molecular size and is sensitive to molecular interactions and

temperature [90, 91].

For a particle at infinite dilution, the self-diffusion coefficient is denoted by D0 and relates

to the hydrodynamic size through the Stokes-Einstein relation (Equation 2.17). For a sphere

with an effective hydrodynamic radius (Rh), in a solvent viscosity (η), the friction coefficient

in Equation 2.17 is given by:

f = fsphere = λπηRh (4.1)

where the λ parameter depends on the boundary conditions. When the particle interacts

strongly with the solvent molecules such that the solvent layer closest to the surface moves at

the same velocity as the particle (the so-called stick boundary condition), the λ parameter is

equal to 6 [29].

Mutual diffusion (also known as inter diffusion or concentration diffusion) is caused by

the gradient of the chemical potential, and is characterized by a mutual diffusion coefficient

(Dm). A concentration inhomogeneity of any component in a system results in mass fluxes to
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achieve thermodynamic equilibrium. In a volume-fixed reference frame there is only one Dm.

Self-diffusion Mutual diffusion Flow

Figure 4.1: A scheme representing the difference between self-diffusion, mutual diffusion, and
flow. For self-diffusion, the uniform background indicates the uniform concentration of the
molecules. For mutual diffusion, the gradient color of the background reflects a concentration
gradient in the sample. In the illustration of flow, the large arrows indicate the direction bulk
fluid movement. Adapted from [92].

There are many methods for measuring diffusion, the most common ones are summa-

rized in Table 4.1. Numerous non-NMR methods exist for measuring diffusion such as light

scattering, neutron scattering, fluorescence studies, but their application can be limited by a

concentration range, complex sample preparation or are invasive in nature [91, 93].

Table 4.1: Summary of methods used for measuring diffusion and the type of diffusion mea-
sured.

Method Type of Diffusion References
Rayleigh scattering Self [94]
Taylor dispersion Mutual [95]
Small-angle neutron scattering Self [96]
Fluorescence correlation spectroscopy (FCS) Self and mutual [97, 98]
Fluorescence recovery after photobleaching (FRAP) Self [99]
Dynamic light spectroscopy Mutual [100]
NMR/MRI diffusion Self and Mutual [16, 101, 102]

4.1 Propagation

For isotropic diffusion in three dimensions, the flux of a particle (J(r, t)) is given by Fick’s

first law of diffusion [29, 88, 103]:

J(r, t) =−Dm∇c(r, t) (4.2)
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where r is the position vector, ∇c is a concentration gradient and t is time. The minus sign

indicates that the direction of flow is from higher to lower concentration [29, 88, 103]. Since

the number of diffusing particles is conserved, the continuity theorem applies and the diffusion

equation can be written as:
∂c(r, t)

∂ t
=−∇×J(r, t) (4.3)

Equation 4.3 describes the accumulation or loss of particles from the point located at r. Com-

bining Equations 4.2 and 4.3, Fick’s second law of diffusion can be derived:

∂c(r, t)
∂ t

= Dm∇
2c(r, t) (4.4)

where ∇2 is the Laplace operator.

4.2 Self-diffusion equation

A diffusion propagator (P(r0,r1, t)) describes the conditional probability of finding a particle

initially at a position r0, at a position r1 after a time t [29, 89]. Contrary to mutual diffusion,

there is no concentration gradient in self-diffusion. Therefore, the concentration terms in the

diffusion equations are replaced with the diffusion propagator P(R, t), which describes the

probability for a molecule to move a distance R = r1 - r0. If the term c(r, t) is replaced

with P(r0,r1, t)in Equation 4.2, J becomes the conditional probability flux. Thus, the same

substitution in Equation 4.4 leads to:

∂P(r0,r1, t)
∂ t

= Ds∇
2P(r0,r1, t) (4.5)

where Ds is the self-diffusion coefficient. Equation 4.5 is the Einstein diffusion equation.

For three dimensional diffusion in an isotropic and homogeneous medium (where P→ 0

and r1→ 1), the propagator P(r0,r1, t) is determined from Equation 4.5 using Fourier trans-

forms and is given by a Gaussian function [29, 89]:

P(r0,r1, t) = (4πDst)−3/2exp
(
−(r1− r0)

2

4Dst

)
(4.6)



38 Diffusion

For isotropic diffusion, Ds can be determined by the mean-squared displacement (MSD),

〈R2〉, by:

〈R2〉= nDstd (4.7)

where td is the diffusion time, and n is the dimensionality of the system. As shown by Equation

4.7, MSD varies linearly with time for free diffusion and such diffusion is said to be ’Fickian’.

For real systems (e.g. polymer networks [30]), the diffusion will be anisotropic as a re-

sult of the physical arrangement or obstructions [29, 89]. As 〈R2〉 will be influenced by any

boundaries, Ds can provide information about the restricting geometry. Thus, for restricted or

obstructed diffusion, the Ds is time-dependent and dependent on the geometry of the confined

space [91]. When taking place in confined geometries, MSD is not a linear function of time.

In a sphere of radius a the restriction effect (ζ ) on diffusion can be described as:

ζ =
Dstd
a2 (4.8)

R

r0

r1

ζ<<1 ζ~1 ζ>>1

(a) (b) (c)

Figure 4.2: The effect of measurement timescale when measuring free diffusion (top) with
diffusion in a restricted geometry (bottom). The molecule’s displacement occurs along the
z-direction. The starting position (at t = 0) is denoted as an open circle (r0), while the final
position (at t=td) is presented as a closed circle (r0). R is the displacement between the initial
and the final positions. Adapted from [29].

The effects of the restrictions are often described for three timescales:

a) a short-time limit (ζ � 1) where the diffusion is unrestricted as the diffusing molecules do

not reach the boundaries of the restriction. MSD is given by Equation 4.7.

b) intermediate times (ζ ∼ 1) where the sampled MSD approaches the length scale of the

restricting geometry. MSD will not scale linearly with td:

〈R2〉= αDst
2/dw
d (4.9)
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where α is a time-independent scaling constant and dw is the random walk dimension [29].

c) a long-time limit (ζ � 1) where MSD depends only on the shape, dimensions and orienta-

tion of the restricting geometry and is independent of the td .

4.3 Diffusion in hydrogels

Solute diffusion in hydrogels depends on intermolecular interactions between the solute

and the polymer network [104]. Solute self-diffusion decreases in the presence of hydro-

gen bonding or hydrophobic interactions with the hydrogel [105, 106]. Many models have

been developed to describe relationships between hydrogel structure and transport properties

[30, 102, 107].

In the absence of intermolecular interactions, the self-diffusion coefficient of solute in

the hydrogel (Dgel
s ) decreases due to hydrodynamic interactions with the polymer network

[104, 108, 109]:

Dgel
s = D0

s × exp
(
−Rh

ξ

)
(4.10)

where D0
s represents self-diffusion coefficient of solute in solution, Rh is a hydrodynamic

ratio of a diffusing solute and ξ is a hydrogels mesh size. Transport of a molecule/particle in

hydrogels takes place within the water-filled voids in the space between the polymer chains

[30]. Thus, any reduction in the size of these spaces will directly influence the transport

properties.
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Chapter 5

Materials and Methods

5.1 Hydrogel synthesis

The polymer network systems studied here was based on the Poly(N-isopropylacrylamide-

co-acrylic acid) (P(NIPAM-co-AAc)) polymer (Paper I) and Poly(N-isopropylacrylamide)

(P(NIPAM)) (Papers II and III). Hydrogels were prepared by the free radical crosslinking

polymerization procedure using N-isopropylacrylamide (NIPAM) (Papers I, II and III) or NI-

PAM and Acrylic Acid (AAc) (Paper I) as monomers, N,N’-Diallyl L-tartardiamide (DAT) as a

crosslinker, the activator N,N,N’,N’-Tetramethylethylenediamine (TEMED), the initiator Am-

monium Persulfate (APS), and distilled water as a solvent. The monomers, the crosslinker and

the initiator were dissolved in distilled water. The total concentration of the monomers was 0.7

mol L−1. In Paper I, the molar ratio of NIPAM to AAc was 0.95 to 0.05, and the concentration

of DAT was varied between 0.006 and 0.143 mol L−1 . In Papers II and III, only NIPAM was

used as a monomer, and the concentration of DAT was 0.024 mol L−1 (Paper II) and 0.048 mol

L−1 (Paper III). After deoxygenating the solutions by sonication in ultrasonic bath and nitro-

gen bubbling, the polymerization reaction was started by adding the activator. The free radical

polymerization reactions for P(NIPAM-co-AAc)-based hydrogel is presented in Figure 5.1.
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Figure 5.1: Synthetic scheme for the preparation of P(NIPAM-co-AAc) hydrogels studied in
Paper I by free radical copolymerization. R represents the hydroxyl group in acrylic acid or
-NH-CH-(CH3)2 groups in N-isopropylacrylamide.

5.2 NMR experiments

All the NMR experiments in Papers I and II were performed on a Bruker Ascend 500 WB

MHz NMR spectrometer equipped with a Bruker DiffBB broadband gradient probe capable of

delivering gradients of strength 17 T m−1 in the z-direction. All the MRI experiments in Paper

III were performed on a Bruker Ascend 500 WB MHz NMR spectrometer equipped with a

commercial Bruker MicWB40 micro imaging probe head in combination with the Micro 2.5

gradient system capable of producing magnetic field gradient pulses up to 1.5 T m−1.

5.2.1 Temperature control

In the NMR experiments, the temperature was maintained at 25°C using a Bruker Variable

Temperature Unit. In the MRI experiments, the temperature was maintained at 31°C or at 40°C

with a Bruker BCU20 cooling device. A calibration curve for the temperature was prepared

using the standard Bruker reference sample containing 80% glycol in DMSO-d6 (Figure 5.2a).

Due to the time delay between BCU20 unit and the sample, a temperature - time calibration
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curve was prepared (Figure 5.2b) and employed for the study.
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Figure 5.2: (a) The temperature calibration curve used in the MRI experiments. The fitting of
a linear function to the experimental data yields real temperature = temperature (BCU20) ×
0.94 + 16. (b) The temperature - time correlation curve. The real temperature term refers to
the calibrated temperature in the sample.

5.2.2 Pulsed Field Gradient Stimulated Echo (PFGSTE)

During the Stejskal-Tanner Pulsed Field Gradient Stimulated Echo (PFGSTE) sequence the

information on spin phases is stored in the longitudinal direction during diffusion time, ∆

which is limited by T1. Magnetic susceptibility of some samples, such as porous materials or

colloidal suspensions, can be heterogeneous. Thus, a distribution of magnetic field gradients

will be associated with nonuniform sample magnetization. Such background gradients may

lead to a decrease in the observed T2 through the effect of translational diffusion of nuclear

spins [110, 111]. To reduce the effects of the background gradients, two 180◦ pulses are

introduced in the PFGSTE sequence. For the self-diffusion measurements in Paper I, the 2D

stimulated echo (diffSteBp) pulse sequence was used [111]. As shown in Figure 5.3, two

gradient pulses with opposite signs enclose a 180◦ pulse. This sequence is used to remove the

effect of internal gradients in the sample. The dephasing resulting from internal static gradients

is removed by means of the 180◦ pulse. The effect of the applied gradient is kept by reversing

the gradient after the 180◦ pulse. The gradient pulses are centered in the gaps between the RF

pulses. The delay between the first two 90◦ pulses is called τ . δ defines the effective length

of the gradient pulses describing the phase encoding strength of the two gradient pulses. The

distance between the two 180◦ pulses, which are the effective centers of the two gradient pulse

pairs, is called the diffusion time( ∆). A spoiler gradient, Gspoiler is used to get rid of coherent

magnetization during the evolution period.
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Figure 5.3: Schematic illustration of the diffSteBp pulse program [111].

5.2.3 Slice-selective NMR

In Paper II the slice-selective NMR experiment (diffSe) was used to probe the penetration

of the surfactant molecules into the poly(NIPAM) hydrogel. The experimental details are

presented in [16]. The pulse sequence and the experimental setup dimensions are shown in

Figure 5.4. In the slice-selective diffSe pulse sequence, the 180◦ pulse is sine shaped and has

duration of 500 µs. The two G1 gradients are for diffusion weighting, whereas the G2 gradient

is used for spatial encoding [112].

90° 180°

500μs

τ τ

G1G1

G2

RF

Gz

a)

0 mm

-12 mm

12 mm

-22 mm

5 mm

RF
coil
24 mm

5.9 mm

- 5.9 mm

FOV
21 mm

Ω1

Ω2

b)

Figure 5.4: Schematic illustration of slice-selective diffusion experiment; (a) diffSe pulse se-
quence (b) experimental setup with dimensions. Ω1 and Ω2 represent the position of the slices
at which the self-diffusion spectra were obtained.

Because of the RF coil shape, the self-diffusion coefficients from various z-positions (Ω1

and Ω2) obtained using the slice-selective diffSe NMR experiment were normalized to the
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center of the RF coil, Ω0 by using the following relationship:

Ds(Ω1,2) = Ds(Ω0)×1.09 (5.1)

The above mentioned relationship was determined experimentally by measuring the Ds coef-

ficient of sucrose in 10 mM solution as a function of z-position as shown in Figure 5.5.
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Figure 5.5: Self-diffusion coefficients as a function of the slice position. The gray rectan-
gle symbolizes the self-diffusion coefficient measured using the same pulse sequence (diffSe)
without the slice selection.

5.2.4 1D Chemical Shift Imaging (CSI)

In Paper II, the 1D Chemical Shift Imaging (CSI) experiment was used to follow the penetra-

tion of the surfactant molecules into P(NIPAM) hydrogel. The 1D chemical shift profiles were

recorded using the pulse sequence presented in Figure 3.12 and the experimental setup shown

in Figure 5.4b. Figure 5.6 shows an example of the chemical shift profiles of sucrose in 10

mM solution. Due to the shape of the RF coil, the signal decreases in intensity in the edges of

the chemical shift profile. At the positions 10 mm > z > 8 mm and -10 mm < z < -8 mm the

intensity of the signal is 0 because the measured volume is outside of the RF coil.
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Figure 5.6: (a) Chemical shift image of 10 mM sucrose solution. (b) Chemical shift profile -
normalized intensity plotted as a function of z-position.

5.3 MRI experiments

5.3.1 Multi-slice multi-echo (MSME)

In Paper III, the MSME sequence shown in Figure 5.7 was used to follow the effect of the

elevated temperature on the structure of the P(NIPAM) hydrogel. A standard MSME protocol

with 2.91 ms echo time (TE) and 700 ms repetition time (TR) was used to acquire multislice

images. Image slice thickness was 2 mm and field of view (FOV) was 25× 15 mm2. 5 saggital

slices were collected. The image pixel size was 64 × 64 giving the corresponding resolution

of 391 × 234 µm. For obtaining the T1-weighted images using MSME only the first echo is

used as shown in Figure 3.11. The intensity of this echo will be T1-weighted since TR has an

intermediate value and TE is short.

T2 relaxation time values were also measured using the MSME sequence with TR of 3631

ms and TE of 3 ms. The number of echo images was 100, and one repetition was used. The

FOV was 12× 12 mm2 and with an acquisition matrix of 64× 64 this provided a resolution of

188 × 188 µm. 12 axial slices were collected. For obtaining a series of T2-weighted images

using the MSME sequence multiple echoes are used together with a corresponding sampling

of k-space. The echoes will be T2-weighted with increasing echoes, as indicated in Figure 5.7,

while TR is relatively long.
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Figure 5.7: Pulse sequence of MSME.

5.3.2 Diffusion Tensor Imaging (DTI) with Echo Planar Imaging (EPI)

Diffusion Tensor Imaging (DTI) with Echo Planar Imaging (EPI) method combines the diffu-

sion measurement with EPI to allow fast acquisition of diffusion data. In EPI, multiple lines

of imaging data are acquired after a single RF excitation. As in a conventional spin echo se-

quence (Section 3.4), an DTI EPI sequence begins with 90° and 180° RF pulses. As shown in

Figure 5.8 after the 180° RF pulse, the frequency-encoding Gx oscillates rapidly from a posi-

tive to a negative value, forming a train of gradient echoes [113]. Each echo is phase encoded

differently by the phase-encoding Gy gradient pulses.

RF

Gz

Gy

Gx

Signal

Figure 5.8: A pulse sequence for the DTI with EPI MRI experiment. Adapted from [113].

The DTI-EPI sequence was used with TE of 22 ms and TR of 3200 ms. The gradient pulses

were applied with duration time (δ ) of 3 ms and gradient separation (∆) of 8.6 ms. A spatial
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resolution of 63 × 133 µm was achieved by using a 12 × 12 mm2 FOV and 192 × 90 image

size. 12 axial slices were collected.

5.3.3 STimulated Echo Acquisition Mode (STEAM)

In Paper III, the localized spectra from rectangular voxels were obtained by using the STEAM

pulse sequence shown in Figure 5.9 [86, 114, 115]. In STEAM method, three 90◦ RF pulses

generate a simulated echo after the last 90◦ pulse with an identical delay to that between the

first two 90◦ pulses. With the applied gradients, only signals undergoing three slice-selective

pulses are refocused to create a desired stimulated echo from the voxel.

The STEAM pulse sequence was used to select two 6.5 × 6.5 × 1 mm3 voxels located in

the release medium and one 3 × 3 × 3 mm3 voxel located in the hydrogel. Using the nomen-

clature of Paper III, the STEAM pulse sequence was applied with the following parameters:

TE = 3 ms, TR = 4000 ms. The STEAM sequence was combined with variable power and

optimized relaxation delay (VAPOR) water suppression.

90o 90o 90o

Gz

Gy

Gx

TE/2 TE/2TM

Figure 5.9: A schematic illustration of a STEAM pulse sequence. TE refers to the echo time
and TM is the mixing time.
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Chapter 6

Main results and discussion

The aims of this thesis were to (i) set up a reliable methodology for characterizing the mesh

size of P(NIPAM)-based hydrogels, (ii) to investigate in detail mass transport processes in

such hydrogels, and (iii) to establish new methods for measuring the release and penetration

of secondary drug carriers from and into the model hydrogels. The results are presented in

three scientific papers, labeled I to III.

Paper I reports a detailed comparison of the scaling of the mesh size (ξ ) of chemically

crosslinked P(NIPAM-co-AAc) hydrogels with crosslinker concentration (Ccl) determined by

using three experimental methods: dynamic swelling, rheometry, and NMR self-diffusion of

probe embedded in the hydrogels. The mesh sizes were found to exhibit strong power-law

decay with increasing crosslinker concentration for all of the studied methods. The scaling

function ξ = kCn
cl was introduced to describe the variation of mesh size with crosslinker con-

centration.

Paper II presents a novel NMR protocol to measure the transport of surfactant molecules

in the model hydrogel, at microscopic and macroscopic scales, by combining 1D Chemical

Shift Imaging (CSI) with slice-selective diffusion experiments. By applying our experimental

protocol we were able to determine the mutual and self-diffusion coefficients of the surfactant

in the non-equilibrium hydrogel-based system within the same short time frame. Furthermore,

it was shown that the results obtained gave insight into structure-dependent diffusional behav-

ior of surfactant molecules.

Paper III is dedicated to a MRI study of the temperature-induced shrinking of the

P(NIPAM) hydrogel at 31°C and 40°C. The study revealed that the rate of hydrogel shrinking,

reduction in water mobility, and the release of incorporated βCDs due to the volume phase
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transition (VPT) are controlled by the destination temperature and the rate of heating of the

model system.

6.1 Correlating the hydrogel mesh size with the crosslinker concen-

tration (Paper I)

Several studies, listed in Table 6.1, investigated the effect of the crosslinker concentration

on various properties of hydrogels. For all hydrogels in Table 6.1 an increase in crosslinker

content resulted in decreased swelling ratio.

Table 6.1: Summary of studies of the effect of crosslinker concentration on hydrogel structural
properties. The results obtained from equilibrium swelling experiments were recalculated
using Equation 2.16.

Hydrogel type Crosslinker Crosslinker con-
centration [mM]

Method Swelling
degree

Reference

Poly(acrylamide-
co-acrylic acid)

BIS∗ 0.011-0.024 Swelling 287.4-9.6 [116]

Poly(dimethyl
acrylamide-co-
stearyl acrylate)

BIS∗ 1.3-19.5 Rheology [117]

Swelling 1.5-1.4
Poly(acrylic
acid-co-methyl
methacrylate)

BIS∗ 32.4-259.4 Swelling 0.9-0.7 [118]

Rheology
Polyethylene ox-
ide

PETRA† 28.4-284.0 Swelling 6.0-1.3 [119]

Polyacrylamide BIS∗ 0.1-1.3 Swelling 19.4-14.8 [120]
Probe
diffusion

Carboxymethyl-
cellulose and
sodium alginate

BIS∗ 0.005-0.01 Swelling 70-35 [121]

∗ BIS = N,N’-Methylenebisacrylamide, † PETRA = Pentaerythritol tetraacrylate

There are a number of methods commonly used to characterize the influence of crosslinker

concentration on hydrogel structure, among which the equilibrium swelling is the most widely

used. However, the equilibrium swelling method is only helpful in determining the water

content in the hydrogel, from which the mesh size can be calculated from Equations 2.14-

2.16. However, it does not provide any information about other important parameters such as
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crosslinking efficiency or homogeneity of the hydrogel.

As explained in Section 2.1.2, the mesh size of the hydrogels is directly proportional to the

swelling degree, and thus decreases with increasing crosslinker concentration even though the

polymer concentration is kept constant [116–121]. The classical theory relates the mesh size

to polymer concentration in physical gels [122]:

ξ ≈
√〈

r̄0
2
〉(Cp

C∗

)−v/(3v−1)

(6.1)

where Cp represents polymer concentration, C∗ is the overlapping concentration, and v is the

Flory exponent. The dependence of the hydrogel mesh size on the crosslinker content is not

demonstrated in Equation 6.1. Thus, in Paper I we aimed to address the following research

questions:

1. To what extent is determination of hydrogel mesh size dependent on the applied method?

2. How does the mesh size of the hydrogel scale with crosslinker concentration?

Three experimental methods were employed to characterize the effect of the crosslinker

concentration (Ccl) on the hydrogels mesh size (ξ ). These methods were: probe diffusion

studied by PGSE NMR, dynamic swelling, and rheometry. The hydrogel mesh size calcu-

lated by using the aforementioned methods was found to be strongly model dependent, and

decreases with increasing crosslinker concentration for all the methods applied. The mesh

sizes were determined for hydrogels in two different states of hydration (swelling), namely the

initial and equilibrium states. Hydrogel is in the initial swelling state just after crosslinking,

before dialysis. The water content is the same as in the monomer blend before crosslink-

ing. The hydrogel is in the equilibrium state after it has been incubated in excess solvent, and

when the polymer-solvent interaction is balanced by the elastic retractive force of the polymer

chains as explained in Section 2.1.1. The mesh size of the hydrogel in the initial state was mea-

sured using rheometry and dynamic swelling. The equilibrium swelling and probe diffusion

experiments were conducted using hydrogel in equilibrium with solvent.

The scaling formula in Equation 6.2 was used to describe the differences in mesh sizes

determined by the three methods.

ξ = k(Ccl)
n (6.2)
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where Ccl is the crosslinker concentration. The resulting values of n for the dynamic

swelling experiments, probe diffusion and rheology measurements are summarized in Table

6.2.

Table 6.2: The scaling component, n determined for swelling, rheology and probe diffusion
methods at different hydration states of the hydrogel

Method Scaling exponent, n State

Swelling -0.73 ± 0.05 Equilibrium

Swelling -0.48 ± 0.05 Initial

Rheology -0.18 ± 0.02 Initial

Rheology -0.27 ± 0.02 Equilibrium ∗

Probe diffusion -1.01. ± 0.30 Equilibrium
∗ Calculated with Equation 6.3.

Figure 6.1 shows the dependence of the hydrogel mesh size on the crosslinker concentra-

tion in the equilibrium state. For the two lowest crosslinker concentrations, the mesh sizes

obtained from the probe diffusion and dynamic swelling experimens show the highest values,

while the mesh sizes calculated from the rheology data are smaller. However, for the most

crosslinked hydrogels, the results obtained using rheometry are larger than those calculated

using probe diffusion and dynamic swelling. A detailed description of mesh size determina-

tion using dynamic swelling, rheometry and probe diffusion will be given in the following

sections.

6.1.1 Swelling

As the basis for our studies the dependency of the hydrogel Qm on the crosslinker concentration

was investigated. The mesh size was calculated by measuring the Qm factor (Equation 2.14-

2.16) for both the initial and equilibrium states. The results are shown in Figure 6.2. Clearly,

the mesh size of the hydrogel in the equilibrium state decreases from 65 nm to 7 nm as a result

of a lower swelling degree with increasing crosslinker concentration. The difference between

the mesh sizes obtained in the initial state and in the equilibrium state decreases at higher

crosslinker concentration. The values of the scaling exponent were n = -0.73 ± 0.05 and n =

-0.48 ± 0.05 for equilibrium and initial state, respectively.
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Figure 6.1: Comparison of the mesh sizes at equilibrium obtained using dynamic swelling,
rheometry and probe diffusion PGSE NMR experiments. The function expressed in Equation
6.2 is fitted to the data [33].

1

2

4

6

8
10

2

4

6

8
100

M
es

h 
si

ze
 [n

m
]

5 6 7 8 9
0.01

2 3 4 5 6 7 8 9
0.1

2

Crosslinker concentration [mol l
-1

]

 Equilbrium state
 Initial state

 

Figure 6.2: Mesh size of P(NIPAM-co-AAc) determined by swelling method as function of
crosslinker concentration in the equilibrium state and in the initial state. The function ex-
pressed in Equation 6.2 is fitted to the data, which yields exponent (n) values of n = -0.73 ±
0.05 for the equilibrium state, and n = -0.48 ± 0.05 for the initial state [33].

6.1.2 Rheology

In the rheology measurement, the hydrogels were studied using frequency sweep measure-

ments just after crosslinking (initial state). The plateau values of the G′ were used to calculate

the mesh sizes of the hydrogels. The G′ values, which can serve as indicator of the structure

rigidity, increase with crosslinker concentration. The mesh sizes were determined by using the
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expressions in Equations 2.18 - 2.20 for cubic and sphere models. Figure 6.3 shows the de-

pendence of mesh size on the crosslinker concentration determined using cubic and spherical

models. The n exponent, obtained by fitting the results from the initial state of hydration to

Equation 6.2, was -0.18 ± 0.02.

1

2

4

6

8
10

2

4

6

8
100

M
es

h 
si

ze
 [n

m
]

5 6 7 8 9
0.01

2 3 4 5 6 7 8 9
0.1

2

Crosslinker concentration [mol l
-1

]

 Cubic model
 Spherical model

 

Figure 6.3: Mesh sizes obtained by the rheological measurements applying cubic and spher-
ical models, are presented as a function of crosslinker concentration in the initial state. The
function expressed in Equation 6.2 is fitted to the data, which yields exponent (n) values of n
= -0.18 ± 0.02 [33].

As the hydrogel network expands isotropically during the swelling process, the values of

G′ in the initial state could be related to G′ at the solvent equilibrium using the the following

relation [26]:

G′eq = ν
1
3
2sG
′
i (6.3)

In Equation 6.3, G′i is the elastic modulus in the initial state and G′eq is the modulus in the

equilibrium state. ν2s holds the same meaning as in Equation 2.14. The fitting of the mesh

sizes at equilibrium calculated from the rheology measurements using Equation 6.3 yields n =

-0.27 ± 0.02.

6.1.3 Probe diffusion

In this part of the study, four dextrans with different molecular weights were used as probes.

First, the probe diffusion in pure solvent (D0
s ) was determined in order to estimate its hydro-
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dynamic radius (Rh) by Equation 2.17.

Figure 6.4 presents the dependence of the D0
s coefficient values on the molecular weight of

the dextran.
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Figure 6.4: D0
s coefficients of dextrans used in aqueous solutions obtained by fitting Equation

3.19.

After determining the hydrodynamic radii of the dextrans, the probe diffusion in the hy-

drogel (Dgel
s ) in the equilibrium state was studied. The diffusion of probe in hydrogels occurs

within the water-filled regions in the space limited by the polymer chains. The mesh size of

a hydrogel can be indirectly obtained by comparing the Dgel
s to the D0

s . The restricted diffu-

sivity of the probe can be expressed as the diffusion quotient (Dgel
s

D0
s

). In our study, the least

restricted diffusion was detected for the smallest dextran molecule (Mw = 5 kDa) diffusing

in the 0.012 mol L−1 crosslinked hydrogel. The corresponding Dgel
s

D0
s

ratio was 0.98 indicating

that the diffusion is almost free (as in Figure 4.2a). On the other hand, the most restricted dif-

fusion was measured using the largest dextran molecules (Mw = 513 kDa) in the 0.036 mol

L−1 crosslinked hydrogel. The respective diffusion quotient was 0.36. There are many models

relating the restricted diffusion of the probes in the hydrogel with the mesh size [30]. In this

study, the mesh size of the hydrogel was calculated by Equation 4.10. The results are presented

in Figure 6.5. The fitting of the mesh sizes obtained from the probe diffusion experiment by

the function expressed in Equation 6.2 yields n values of n = -1.01 ± 0.30.

Probe diffusion experiments were found to be very sensitive to the size of the diffusing
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molecules [123] which can lead to the overestimation of the mesh size. The study revealed

that the ratio between the Rh of the probe and the ξ of the hydrogel is critical for the validity

of the mesh size determination by the diffusion NMR.
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Figure 6.5: Mesh sizes obtained from the PGSE NMR experiments using dextrans with differ-
ent molecular weight as probes. The function expressed in Equation 6.2 is fitted to the data,
which yields exponent (n) values of n = -1.01 ± 0.30. The last two data points marked by
hollow circles were not used for the fitting of the power law function [33].

6.2 Investigating structure-dependent diffusion in hydrogels (Paper

II)

The study in Paper I revealed a strong dependence between the hydrogel mesh size (controlled

by the crosslinker concentration) and the self-diffusion of the embedded probe. We decided to

continue the investigation of the diffusion processes using the model system from Paper I with

some alterations:

1. One crosslinker concentration (0.024 M DAT) was chosen based on the results obtained

in Paper I. The mesh size of the hydrogel prepared with 0.024 M DAT was 22 nm.

The probe diffusion experiment conducted in Paper I revealed that the mesh size of this

hydrogel is appropriate for studying diffusion of the probes with the Rh from 1 to 14 nm.

2. The model dextran molecules used as probes were replaced with surfactant. In this

case, surfactant micelles can act as drug carriers as they can solubilize poorly solu-

ble drugs and thus increase their bioavailability. Optimally, a surfactant used in this
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study would be non-ionic. The CMC of the non-ionic surfactants are in the range of

µM. Since one of the main motivations of the Paper II was to detect changes in the

concentration-dependent surfactant structure, non-ionic surfactant were not considered

since their CMC values may be too low to be detected using NMR methodology. There-

fore, a cationic surfactant (C14TAB) with CMC of 3.8 mM was chosen as its CMC

is high enough to detect changes in concentration-dependent structures using diffusion

NMR.

3. To simplify the model system, acrylic acid was excluded in the following investigation.

The swelling test prepared prior to this study shown, as expected, that the mesh size of

the P(NIPAM) hydrogel is smaller than in the case of the P(NIPAM-co-AAc) with the

same crosslinker concentration. The following subsection explains the effect of acrylic

acid on the mesh size.

Effect on acrylic acid addition on the mesh size

In Paper I the studied hydrogel consisted of 95 mol% P(NIPAM) and 5 mol% P(AAc). In the

following papers P(AAc) was not added to the hydrogel blend. In this section the effect of

adding 5 mol% P(AAc) on hydrogel swelling will be discussed.

As shown in Table 6.3, P(NIPAM)-based hydrogel swelling was improved by incorpora-

tion of AAc. Comparing to the samples prepared with only P(NIPAM), the equilibrium mass

swelling ratios of the hydrogels containing 5 mol% AAc were 17, 10 and 8 times higher for

the hydrogels crosslinked with 0.012 M, 0.024 M and 0.048 M crosslinker, respectively.

Table 6.3: Equilibrium mass swelling ratios, Qm and respective mesh sizes, ξ SW determined for
hydrogels consisting of P(NIPAM-co-AAc) and P(NIPAM) prepared with different crosslinker
concentrations, Ccrosslinker. The hydrogels were swollen in distilled H2O.

Ccrosslinker
[mol L−1]

Qm
(P(NIPAM-
co-AAc))
[a.u.]

ξ SW

(P(NIPAM-
co-AAc))
[nm]

Qm
(P(NIPAM))
[a.u.]

ξ SW (P(NIPAM))
[nm]

0.012 932 40 54 16
0.024 429 22 43 11
0.048 217 13 27 7

The addition of the ionizable groups of AAc into the polymer structure lead to the increased

swelling capacity of the hydrogel. Carboxylic groups of AAc are ionized above the pKa value
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(4.35 [124]) initiating ionic repulsion between negative COO− groups, resulting in polymer

network expansion and increased solvent absorption. Similar phenomenon was described by

Zhang et al. [125] and Cuggino et al. [124].

Experimental design

Kwak et al. [101] described the differences between the release and the penetration experi-

ments with large and small reservoirs measured by PFGSE NMR and 1D 31P NMR imaging.

Based on these results, we decided to use the simplified penetration experiment with confined

reservoir as shown in Figure 6.6. The surfactant-free P(NIPAM) hydrogel crosslinked with

0.024 M DAT was placed in the bottom of the 5 mm o.d. NMR tube. The same amount of the

50 mM C14TAB solution was added on top of the hydrogel.

Hydrogel

Surfactant 
solution

Figure 6.6: Illustration of the experimental setup. The gray arrows indicate the direction of the
diffusion of the surfactant molecules.

1D CSI pulse sequence described in Section 3.6.3 was used together with slice-selective

diffusion (diffSe) pulse sequence described in Section 5.2.3 to monitor the penetration of the

surfactant molecules in the P(NIPAM) hydrogel. The detailed information about the dimen-

sions of the RF coil and the FOV are presented in Figure 5.4.

The evolution of the intensity of the surfactant and hydrogel signals was followed with

1D chemical shift images as shown in Figure 6.7. Results presented in Figure 6.7a indicate

swelling of the hydrogel due to the interaction with the surfactant molecules. The development

of the surfactant signal shown in Figure 6.7b reveals the diffusion from the solution to the

hydrogel. This time- and position-dependence of the surfactant molecules were used for the
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calculations of the Dm by:
Cgel

C0
= er f c

z
2
√

Dmt
(6.4)

In Equation 6.4, Cgel refers to the surfactant concentration in the hydrogel, C0 is the initial

concentration of the surfactant in the solution (50 mM), z is the position in the NMR tube, and

t is time.

The calculated Dm for this system was 7.7 ± 0.5 × 10−11 m2s−1.

(a) (b)

Solution Solution

Gel Gel

Figure 6.7: (a) Polymer and (b) surfactant peak areas obtained via integration, plotted as func-
tions of the vertical position in the NMR tube. The dashed line indicated the position of the
initial interface. The color scale shows the intensity [16].

The self-diffusion of the surfactant molecules was measured at two positions, in the so-

lution and in the hydrogel. The time-dependent evolution of the surfactant self-diffusion co-

efficients is presented in Figure 6.8. The surfactant self-diffusion coefficient measured in the

solution (Dsln
s ) remained constant during the entire experiment at 6.7 ± 0.3 ×10−11 m2s−1. In

the hydrogel, the self-diffusion coefficient (Dgel
s ) decreased with time reaching a plateau after

45h at 6.6 ± 0.5 ×10−11 m2s−1.

Combining the results obtained from 1D CSI experiments with the self-diffusion of the sur-

factant in the solution and in the hydrogel in Figure 6.9, one can gain a valuable insight into the

structure-dependent transport properties. Knowing that the CMC of the C14TAB surfactant is

3.8 mM, it is easy to relate the surfactant self-diffusion to the structure of the surfactant. Thus,

it was found that in the beginning of the experiment, the surfactant diffused into the hydrogel

in the form of the monomers, and after reaching the CMC in the hydrogel, self-assembles into

the micelles [126]. Furthermore, the Rh sizes of the monomers and micelles were estimated
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Figure 6.8: The time-dependent evolution of the diffusion coefficient of the surfactant in solu-
tion and in hydrogel [16].

using Equations 2.17 and 4.1 to be 0.4 ± 0.1 nm and 3.0 ± 0.2 nm, respectively. Similarly

to the results obtained in Paper 1, the diffusion quotient of Dgel
s

Dsln
s

reflects the obstruction of the

diffusion path originating from the hydrogel network.
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Figure 6.9: Combination of the 1D CSI experiment with slice selective self-diffusion measure-
ment. The self-diffusion coefficient of the surfactant in the solution and in the hydrogel shown
as a function of the surfactant concentration [16].

It was found that the slice-selective self-diffusion experiments alone provided a more de-

tailed picture of the release process than the 1D CSI, allowing the identification of surfactant

forms. Moreover, the interactions within the hydrogel network were also identified using the

slice-selective self-diffusion experiments.
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6.3 Investigating volume phase transition in hydrogel using MRI (Pa-

per III)

As described in Section 2.1.4, P(NIPAM) hydrogels swollen in H2O undergoes VPT at 34°C

[6, 7]. Due to this property, P(NIPAM) hydrogels find application in drug delivery systems, as

the VPTT is close to the body temperature of 37°C. Therefore, we decided to investigate the

changes in water mobility in the P(NIPAM) hydrogel as a function of the temperature as well

as the release of the βCDs from the hydrogel.

The model hydrogel was chosen to be of the same type as used in Paper II. However, some

alterations listed here were performed.

1. In order to simplify the experiment, the surfactant molecules, which show concentration-

dependent structure alterations, were replaced by βCDs. The estimated Rh of the βCDs

is of 0.8 nm.

2. Since the mesh size of the hydrogel used in Paper II (crosslinked with 0.024 M DAT) was

11 nm, the ratio between the hydrogel ξ and the Rh of βCD molecules could be too large

to detect any hindrance of the βCD mobility due to the polymer network. Therefore, we

chose to use a hydrogel with smaller mesh size. Thus, the P(NIPAM) hydrogel studied

in Paper III was crosslinked with 0.048M DAT (ξ = 7 nm).

3. Initial test were performed using the diffBB probe (as in Papers I and II). However, due

to the construction of the probe, it was impossible to follow the changes in hydrogel

structure. Thus, the study was performed using the micro imaging probe.

4. In order to mimic the release measurements performed conventionally, a release experi-

ment was performed instead of the penetration experiment in Paper II.

Experimental setup

In Paper III the hydrogel containing βCD molecules was placed at the bottom of the NMR

tube as shown in Figure 6.10, followed by the addition of the βCD-free water on top of the

hydrogel. The temperature was elevated to 31°C or 40°C by immediate temperature-jump (T-

jump) or slow heating with a rate of 1°C per 4 minutes. In the T-jump experiments the sample

was inserted into the the thermally equilibrated microimaging probe.
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Release medium

Hydrogel + bCDs

Figure 6.10: Illustration of the experimental setup. The gray arrows indicate the direction of
the diffusion of the βCD molecules.

The structure of the hydrogel was monitored using images obtained using the MSME pulse

program (Section 5.3.1). The hydrogel shrinking ratio is defined as an area of the hydrogel

measured at various sampling times (A) divided by the initial area of the hydrogel (A0). The

A/A0 ratio as a function of time is shown in Figure 6.11. As expected, the P(NIPAM) hy-

drogels shrink moderately at 31°C. However, as the temperature is below the VPTT of this

polymer network, the hydrogel does not collapse. When the temperature is elevated to 40°C,

the hydrogel collapses as its A/A0 ratio decreases to approximately 20 % of the initial value.

Interestingly, at 40°C a difference in the shrinking rate between the T-jump (Figure 6.11a) and

the slow heating (Figure 6.11b) can be observed.

As shown in Figure 6.12, the structure of the hydrogel also affects the water T2 relaxation.

The data show that T2 decreases with decreasing A/A0 ratio.

The release of βCD molecules from the P(NIPAM) hydrogels was also found to be

temperature-dependent (Figure 6.13). The fastest release of the βCD molecules was mea-

sured at 40°C after the T-jump, while the slowest release followed the T-jump to 31°C. The

results correlate well with the kinetics of the hydrogel shrinking presented in Figure 6.11. It

was found that the hydrogel with the fastest shrinking rate releases the highest amount of βCD

molecules.

Water diffusion in the hydrogel was also measured. However, this measurement did not

exhibit the same level of sensitivity to changes in hydrogel structure as T2 relaxation and βCD

release.

To conclude, at temperatures above the VPTT of the P(NIPAM) hydrogel, the release of

βCD molecules from the hydrogel was found to correlate well with the shrinking kinetics.
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Figure 6.11: Time-dependence of the A/A0 ratio of the hydrogels in water at (a) 31°C and 40°C
obtained by the T-jump, (b) 40°C obtained by the slow heating. In (b) empty symbols refer
to the data points recorded during the heating of the hydrogel (transition temperatures). The
transition temperatures are indicated with arrows. The gray rectangle represents the change of
the temperature of the BCU20 cooling device.
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For the experiment performed at temperature below the VPTT, the release of βCD molecules

increased linearly. Water T2 relaxation was found to be strongly dependent on the shrink-

ing degree of the hydrogel. The results presented in Paper III provide valuable insight into

temperature-dependent behavior of the P(NIPAM) hydrogel with βCD moieties in terms of
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Figure 6.13: Thermally induced βCD release from the P(NIPAM) hydrogel measured in re-
lease medium in voxel 1 and 2. All the values are normalized against the initial βCD con-
centration determined in the hydrogel. Graph (a) refers to 31°C and 40°C obtained by the
T-jump, graph (b) represents the data measured at 40°C obtained by the slow heating. In (b)
the dashed lines refer to the data points recorded at the transition temperatures, between 25°C
and 40°C. The transition temperatures are indicated with arrows. The gray rectangle represents
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water T2 relaxation and release of embedded βCD molecules.
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[Main results and discussion]
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Chapter 7

Concluding remarks

NMR spectroscopy and MRI are powerful methods in determining molecular mobility in

model hydrogel systems. In this dissertation, various NMR methods provided information

about probe mobility in hydrogels in equilibrium (Paper I) and non-equilibrium (Papers II and

III) states, revealing information about the microscopic structure of hydrogels.

The findings in Paper I revealed strong scaling of the mesh size with crosslinker concen-

tration, as confirmed by dynamic swelling, rheometry and diffusion NMR experiments. In

general, the mesh sizes obtained using diffusion NMR were larger than the results from the

dynamic swelling measurements. The results obtained from dynamic swelling and diffusion

NMR were in good agreement with theoretical predictions. However, the results obtained

using rheometry revealed possible limitations with regards to application of the rubber elas-

ticity theory, as the mesh sizes calculated from the storage modulus of the hydrogels were

significantly different from those obtained using the two other methods. Further investigations

are necessary to explain the differences in mesh sizes obtained using rheology and dynamic

swelling in hydrogel systems. Additionally, the results of the diffusion NMR experiments

showed the dependence of the probe molecular size on the measured mesh size which should

be properly addressed when using this method. Furthermore, by following the probe diffusion

in various hydrogels, non-uniformity and inefficiency in the crosslinking of the network was

detected. Additional diffusion experiments could be performed in order to map the extent of

crosslinking efficiency issues in this hydrogel system.

In Paper II, correlation of the chemical shift images with localized self-diffusion measure-

ments gave insight into the structure-dependent diffusional behavior of surfactant molecules

in the hydrogel. The combination of the 1D Chemical Shift Imaging (CSI) and slice selec-
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tive NMR diffusion methods enabled us to follow the swelling of the hydrogel, as well as the

molecular transport in the hydrogel-surfactant system. This NMR protocol may be further im-

plemented in release studies where hydrophobic drug is solubilized in surfactant micelles and

embedded in the hydrogel. In addition to application to study various DDS, our experimental

approach may be useful in investigating concentration dependent structures at the interfaces

between two immiscible liquids. Therefore, further work on developing the experimental part

of this NMR protocol could be of interest.

In Paper III, the results reveal correlation between the kinetics of shrinking of the ther-

mosensitive hydrogel system as a result of the VPT, the T2 relaxation, and the release of the

βCD molecules embedded in the hydrogel. Concerning the study of the VPT, it could be ben-

eficial to establish the explanation for the differences between the sensitivity of the water T2

relaxation measurements and self-diffusion in the collapsing hydrogel. Also, it would be of

interest to study the phase transition in various hydrogel-systems as well as under different

thermal conditions.

With the studies presented in Papers I-III we were able to establish the relationship between

the mesh size of the hydrogel and the crosslinker content, as well as to correlate the structural

properties of the hydrogels and the diffusional behavior of such model systems. NMR and

MRI techniques were proven to be of great use in improving the experimental procedures to

characterize the drug release from hydrogels.
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[Conclusions and further work]
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Determining the scaling of gel mesh size with changing crosslinker
concentration using dynamic swelling, rheometry, and PGSE NMR
spectroscopy
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ABSTRACT: We studied the scaling behavior of the mesh size (ξ) of chemically crosslinked poly(N-isopropylacrylamide-co-acrylic acid)
hydrogels with changing crosslinker concentration (Ccl) from 0.006 to 0.143 mol L−1. Three experimental methods were employed,
namely dynamic swelling, rheometry, and probe diffusion by pulsed gradient spin-echo NMR. The mesh sizes determined by probe dif-
fusion are dependent on the probe size. The scaling model of ξ �ðCclÞn (n < 0) could describe variation of the mesh size, obtained by
any of the aforementioned techniques, with the crosslinker concentration. Thus, for hydrogels in equilibrium with water, the obtained
values of the scaling exponent (n) are −0.73 ± 0.05 for dynamic swelling, −1.0 ± 0.3 for probe diffusion, and −0.27 ± 0.02 for rheological
measurements. We demonstrated that the scaling of the mesh sizes for probe diffusion and dynamic swelling results was in good agree-
ment with theoretical prediction. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46695.
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INTRODUCTION

In an ideal drug delivery system, drug release is synchronized
with the physiological status of a patient in response to changes
in a biological environment.1 Often, motions of drug molecules
are restrained by drug carriers in order to reach the first-order
release rate.2 Among the controlled-release systems, hydrogels
have drawn considerable attention in recent years.3–6 In a hydro-
gel, the release rate is substantially reduced due to restricted dif-
fusion of drug molecules in the tridimensional network. On a
macroscopic scale, fractal resistance and tortuosity are much
higher in a hydrogel than they are in pure solvents.7–9

To understand the restricted diffusion in such drug formulation,
the crucial point in establishing a theory is to determine the sin-
gle characteristic length defined as the average distance between
two adjacent crosslinks, also known as the mesh size.10 The diffu-
sion coefficient (D) of drug molecules (i.e., solutes) can be related
to the mesh size (ξ) by

D
D0

= exp −
rs
ξ

� �
, ð1Þ

which indicates that drug release from a hydrogel is determined
by the ratio of the solute radius (rs) and the mesh size (ξ).11,12

Here, D0 is the diffusion coefficient of the solute in the absence
of restrictions.13,14 With a certain drug, regardless of the interac-
tion between the drug molecule and the hydrogel, the diffusion
of the drug molecules depends only on the mesh size.2,15,16 Thus,
in order to design a formulation for a controlled-release purpose,
establishing reliable methods for determining the mesh size, and
understanding the differences between the values one gets from
different techniques become crucial.17,18 Poly(N-isopropylacryla-
mide-co-acrylic acid) [poly(NIPAM-co-AAc)] is a model
hydrogel for controlled-release studies due to its thermo- and
pH-responsive properties.19–22 This polymer has been investi-
gated in the forms of macroscopic hydrogels, films, micro- and
nanoparticles.19,20,23–25 The mesh size of hydrogels in the
hydrated state can be determined by experimental techniques
such as dynamic swelling, inverse size-exclusion chromatography,
fluorescence recovery after photobleaching, probe diffusion by
pulsed gradient spin-echo (PGSE) NMR, rheometry, and
dynamic light scattering.10,13,14,26–31 In the present study, we used
poly(NIPAM-co-AAc) as the model hydrogel and focused on the
characterization of the mesh size by means of dynamic swelling,
rheometry, and PGSE NMR. The difference between the mesh
sizes obtained by these methods have been established. Also, it
was found that variation of the mesh size (obtained by any of the

Additional Supporting Information may be found in the online version of this article.

© 2018 Wiley Periodicals, Inc.
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aforementioned techniques) with the crosslinker concentration
could be described by the scaling model of ξ � ðCclÞn. This is the
first report dedicated to a thorough investigation and a detailed
comparison of the scaling of the mesh size with the crosslinker
concentration determined using the aforementioned three differ-
ent methods.

EXPERIMENTAL

Materials
N-Isopropylacrylamide (NIPAM, >99%), acrylic acid (AAc, 99%,
anhydrous, containing 200 ppm hydroquinone monomethyl
ether), ammonium persulfate (APS, Bioxtra ≥98.0%), N,N,N0,N0-
tetramethylethylenediamine (TEMED, ≥99.5%), and (+)-N,N0-
diallyltartramide (DAT, ≥99%) were purchased from Sigma-Aldrich
(Oslo, Norway) and used as received. Samples subjected to NMR
measurements were prepared using deuterium oxide (99.9 atom

% D, Sigma-Aldrich). For the rest of the experiments, Milli-Q water
was used. Four types of dextran were purchased from Sigma-
Aldrich with average molecular weights of 5, 12, 68 and 513 kDa.

Synthesis of Hydrogels
Hydrogels were prepared by free radical polymerization in aqueous
solutions using NIPAM and AAc as monomers, DAT as crosslin-
ker, and a redox couple APS/TEMED as initiator. A mixture of the
monomers, DAT, and APS was dissolved in 5 mL of distilled water
in a glass vial. The solution was put into an ultrasonic bath for
10 min, followed by 5 min nitrogen bubbling to deoxygenate the
solution. After degassing, 12 μL of 6.63 M TEMED was added.
The reaction was carried out at room temperature for 24 h. The
scheme of the reaction route is shown in Figure 1. For preparing
the hydrogel, the total concentration of the monomers (NIPAM
and AAc) was set at approximately 0.7 mol L−1, and the molar
ratio of NIPAM to AAc was 0.95–0.05. One equivalent of TEMED

Figure 1. The synthetic route for poly(NIPAM-co-AAc) hydrogels. R represents the hydroxyl group in acrylic acid or NH-CH-(CH3)2 groups in N-
isopropylacrylamide.
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with respect to APS was used. Based on the expected variation of
mesh sizes with crosslinker content, the concentration of DAT was
varied in a logarithmic manner between 0.006 and 0.143 mol L−1.
The conversion of the monomers in the hydrogel was monitored
using 1H NMR, and complete conversion (>95%) was achieved for
all hydrogels with various amount of crosslinkers.

After the synthesis, the hydrogels were dialyzed for 1 week by
changing dialysis medium daily in order to remove unreacted
monomers. Afterward, the hydrogels were dried for 3 days at
room temperature. The concentrations of the reactants for each
sample are listed in Table I.

Determination of the Swelling Behavior of the Hydrogels
The dry hydrogels (approximately 100 mg) were incubated indi-
vidually in beakers with an excess amount of water. At each time
point, water was discarded, and samples were superficially dried
with tissue paper, weighed and put into fresh water. The mass
swelling ratio (Qm) of the hydrogels is calculated based on

Qm =
Ws

Wd
, ð2Þ

where Ws is the weight of the swollen hydrogel and Wd is the
weight of the dry hydrogel.

Rheological Characterization
Rheological characterization of the hydrogels was carried out on a
Kinexus rheometer (Malvern Instruments Ltd, Worcestershire, UK)
using cone and plate geometry. All measurements were subjected to a
closed environment by using a thermal hood to minimize water loss.
Amplitude sweep studies (strain 0.01–10% at constant frequency of
2 Hz) were performed at 298 K in order to determine the linear vis-
coelastic region. Afterward, frequency sweep tests from 10 to 0.1 Hz
at a constant strain (γ0 = 0.01) were performed at 298 K to determine
the storage modulus (G0) and the loss modulus (G00) of hydrogels.

PGSE NMR Characterization
PGSE NMR was carried out on a Bruker Avance III 500 WB spec-
trometer (Rheinstetten, Germany) operating at 500 MHz for pro-
tons, equipped with a commercial NMR probe (diff30) capable of

producing magnetic field gradient pulses up to 17 T/m in the z-
direction. The measurements were performed at 298 (±1) K using a
stimulated echo sequence with bipolar field gradient pulses (diff-
SteBp).32,33 For the NMR measurements, the hydrogels were first
dried in air. The dried samples were subsequently incubated in
5 mg mL−1 dextran solution prepared with D2O until swelling equi-
librium was reached. The samples were then carefully transferred
into standard 5 mm NMR tubes. For the diffusion experiments, the
signal intensity was recorded as a function of gradient strength (g) at
32 different values between 0.05 and 5.73 T/m. The maximum
values of g (gmax) were chosen to obtain almost complete attenuation
(>90%) of the dextran resonances. The gradient duration time (δ)
and the diffusion time (Δ) were fixed at 2 and 50 ms, respectively.
Peak area was used to compute diffusion coefficients by using the
Stejskal–Tanner equation34:

I
I0
= e−γ

2 g2δ2 Δ−δ
3ð ÞD, ð3Þ

where I/I0 is the signal attenuation, Δ is the effective diffusion time,
D is the diffusion coefficient (m2 s−1), γ is the gyromagnetic ratio of
the observed nucleus (26.7522 × 107 rad T−1 s−1), g is the applied
gradient amplitude (T m−1), and δ is the effective gradient pulse
width. Due to the size distribution of the dextran molecules, the sig-
nal attenuations will not be mono-exponential. For diffusion of dex-
tran in a dilute solution, this may be taken into account by fitting
the signal attenuations to a distribution of diffusion coefficients.35

However, for diffusion of dextran in the hydrogels, additional effects
from restricted diffusion and trapping of dextran molecules have to
be accounted for, and in our opinion, a model based on a distribu-
tion of diffusion coefficients would then not give a correct descrip-
tion of the observed behavior. We therefore chose to obtain average
diffusion coefficients by fitting the initial slope of the signal attenua-
tion using eq. (3). Four dextrans with different molecular weights
(5, 12, 68, and 513 kDa) were used as probes for the measurements.

Theory
Mesh Size Based on Swelling Experiment. In the swelling exper-
iments, Flory’s theory was used to determine the mesh size. The
mesh size of a swollen hydrogel (ξsw) is dependent on the root-
mean-square end-to-end distance of the polymer subchain

between two crosslinking points in the unperturbed state (
ffiffiffiffiffiffiffiffi
hr20i

p
)

in the following manner:

ξsw = v−
1
3

2s

ffiffiffiffiffiffiffiffi
hr20i

q
, ð4Þ

where v2s is the volume fraction of the polymer, which equals the
reciprocal value of the volumetric swelling degree (Qv

−1).

For calculating
ffiffiffiffiffiffiffiffi
hr20i

p
, the following expression is used:

ffiffiffiffiffiffiffiffi
hr20i

q
= l

2Mc

M0

� �1
2

C
1
2
N , ð5Þ

where l is the length of a C C bond (l = 0.154 nm), Mc is the
molar mass of the subchain between two crosslinking points, M0

is the molar mass of the monomer (calculated from the weighted
ratio of the two monomers), and CN is the Flory’s characteristic

Table I. Ten Hydrogels Were Synthesized with Different Concentrations
of DAT

Sample
no.

NIPAM
(mol L−1)

AAc
(mol L−1)

DAT
(mol L−1)

DAT
(wt %)

1 0.669 0.033 0.006 0.13

2 0.669 0.033 0.009 0.18

3 0.668 0.032 0.012 0.25

4 0.668 0.032 0.019 0.40

5 0.668 0.032 0.024 0.50

6 0.669 0.033 0.036 0.75

7 0.669 0.033 0.048 1.00

8 0.668 0.035 0.072 1.50

9 0.668 0.032 0.098 2.00

10 0.668 0.033 0.143 3.00
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ratio, which is a measure of the extension of the polymer chain
in a disordered condition. Here, CN is calculated to be 11.46
based on the weight ratio of the monomers in the hydrogel.

Assuming a statistical copolymerization in the synthesis, the
molar mass of the subchain between two crosslinking points (Mc)
is given by the average molar mass of monomers (M0) and the
degree of crosslinking (dc) as

36

Mc =
1
2
M0d

−1
c , ð6Þ

and

dc =
nDAT

nNIPAM + nAAc + nDAT
, ð7Þ

where nDAT, nNIPAM, and nAAc are the number of moles of DAT,
NIPAM, and AAc, respectively.

The value of the volumetric swelling ratio (Qv) can be obtained
by measuring the increase of the weight of the hydrogel during
the swelling process in the following manner:

Q−1
v =

1
ρpol

Qm
ρsolv

+ 1
ρpol

, ð8Þ

where Qm is the mass swelling ratio, and ρsolv and ρpol are the
densities of the solvent and the hydrogel, respectively. For hydro-
gel swollen in water at 298 K, ρsolv is 1.0 g mL−1, and ρpol is
1.1 g mL−1. Based on eqs. (4–8), the mesh size of the hydrogels
can be obtained by determining the swelling ratio of the hydrogel
at each stage. Thus, we have

ξsw = l
nDAT

nNIPAM + nAAc + nDAT

� �−1
2 Qmρpol

ρsolv
+ 1

� �1
3

: ð9Þ

For a specific hydrogel, all the parameters of eq. (9) are known
except Qm, which can be measured.

Mesh Size Based on Rheological Measurements. The mesh size
estimated from rheological measurements is based on the Flory’s
theory of rubber elasticity of Gaussian chains.37 According to
Flory’s theory, the equilibrium shear elastic modulus corresponds
to the frequency-independent elastic modulus G0 (plateau modu-
lus) in the following manner:

G0 =A
ρ
Mc

RT , ð10aÞ

ve =
ρ
Mc

, ð10bÞ

where A is the structure factor, ρ is the polymer density, Mc is the
number average chain molecular weight, R is the universal gas con-
stant, T is the temperature, and ve is the number of effective network
chains per volume unit of polymer. The structure factor A equals
1 − 2=f for a phantom network, where f is the functionality of
the crosslinks.38,39 G0 is the plateau value of the storage modulus,
which was used as the elastic modulus G, since G00 � G0.37,40

The number of effective network chains per volume unit of poly-
mer ve is related to the density of effective junctions (ne) in the
following manner41,42:

ve =
f
2

� �
ne: ð11Þ

By using the expression obtained for the elastic modulus in eqs.
(10a) and (10b), two different approaches have been adopted for cal-
culation of ne and ultimately mesh size. In the first approach, the
volume element of the hydrogel is considered to be a cube. An esti-
mation for the mesh size can be determined from the average spac-
ing between the neighboring entanglements.43 The calculation is
based on the assumption that these intersections are evenly dispersed
and positioned in the center of a cubic shaped volume element (for
details see Ref. 43). Considering that all of the cubic elements con-
tribute to the extension of the total volume of the gel, an expression
for the length (L) of a side of the cubic element and the mesh size at

the initial state (ξrheoc, i ) could be obtained in the following manner:

ξrheoc, i =
L
2
=

RT
G0NA

� �1
3

, ð12Þ

where NA is the Avogadro’s number.

The other approach to characterize the mesh size is to replace the
true network with idealized spheres as suggested in the equivalent
network theory.44–46 Radius of such spheres corresponds to the
average mesh size, which is comparable to the results determined
by the other methods.44 Based on the definition of crosslinking
density, the spherical volume competing for each crosslink can be
determined by the following equation:

4
3
πðξrheos, i Þ

3

=
RT
G0NA

: ð13Þ

Thus, using this approach, the expression for the mesh size at the

initial state (ξrheos, i ) can be written as

ξrheos, i =
3
4π

� �1
3 RT

G0NA

� �1
3

=
3
4π

� �1
3

ξrheoc, i ffi 0:62 ξrheoc, i : ð14Þ

Mesh Size Based on PGSE NMR Measurements. The principle
of computing the mesh size by PGSE NMR is different from the
other two methods. In hydrogels, the diffusion of probe mole-
cules primarily occurs within the water-filled regions in the space
delineated by the polymer chain. Due to a comparably higher
fractal resistance and tortuosity, the diffusion of the probe mole-
cule is slower than it is in solution. The mesh size of a hydrogel
can be indirectly obtained by comparing the diffusion coefficient
of the probe in a gel phase to the diffusion coefficient in a dilute
solution using diffusion models. The restricted diffusivity of
probe molecules due to the polymer network can be expressed as

the diffusion quotient (Dg

D0
) where Dg is the diffusion coefficient of

the dextran probe trapped in a polymer network and D0 is the
diffusion coefficient of the dextran probe in the absence of a
polymer network. According to the hydrodynamic scaling model,
the mesh size can be estimated by eq. (1). The hydrodynamic
radius of the dextran probe (rs) can be obtained from the mean-
inverse diffusion coefficient measured in a dilute solution by the
Stokes–Einstein equation in the following manner47:
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rs =
kBT
6πηD0

, ð15Þ

where kB is the Boltzmann’s constant, T is the absolute tempera-
ture, and η is the viscosity of D2O (η = 1.0939 mPa s) at 298 K.48

Thus, using eqs. (1) and (15), one gets the following expression:

ξNMR =
kBT
6πηD0

ln
D0

Dg

� �−1

: ð16Þ

RESULTS

Mesh Sizes Obtained by Dynamic Swelling
The swelling of the hydrogels is driven by the affinity of the poly-
mer and the solvent. When the interaction of polymer–solvent is
balanced by the elastic retractive force, the gel swelling process
reaches equilibrium after approximately 6 days for all of the
hydrogels (Figure 2). The equilibrated volumes of the hydrogels
with different crosslinker concentrations were used for obtaining
the mesh size using eq. (9). The results are presented in Figure 3

and Table II. Variation of the mesh size with the crosslinker con-
centration follows a clear trend, meaning that a higher crosslinker
concentration leads to a lower swelling degree (Figure 2), and
further results in a smaller mesh size (Figure 3). For example,
upon an increase in the crosslinker (DAT) concentration from
Ccl = 0.006 mol L−1 to Ccl = 0.098 mol L−1, the obtained mesh
size decreased from 65 to 8 nm. The hydrogel with the highest
crosslinker concentration of Ccl = 0.143 mol L−1 had the lowest
measured mesh size of 7 nm.

Mesh sizes were also determined for the samples at the initial
state just after crosslinking. In this case, the swelling degree at
the initial state (Qmc) was used in eq. (9). The results are pre-
sented in the Table II and Figure 3. Comparing the mesh sizes at
the initial state (ξswi ) to the mesh sizes at the equilibrium state
(ξsweq ), one notices a decrease in difference of mesh size at the two

states once the crosslinker concentration is increased. With the
smallest crosslinking concentration (Ccl = 0.006 mol L−1), the
mesh size at the equilibrium state is approximately five times
larger than the mesh size at the initial state (ξsweq ffi 5ξswi ), whereas

for the sample containing Ccl = 0.143 mol L−1 DAT, the former
is only two times larger than the latter (ξsweq ffi 2ξswi ).

Mesh Sizes Obtained by Rheological Measurements
The values of the storage modulus (G0) during frequency sweep
tests for the fully crosslinked hydrogels with varying crosslinker
concentration is presented in Figure 4. The storage moduli of the
hydrogels are independent of the frequency, which indicates that
hydrogels are mechanically strong and elastic. Thus, the plateau
value of the storage modulus (G0) was used to compute the mesh
size of the hydrogels. The hydrogels containing higher crosslinker
concentration exhibited higher G0 values. This means that more
rigid structures were formed with increasing crosslinker concentra-
tion (see Supporting Information Figure S1). The measurement
uncertainty is higher for the hydrogels with the specific values of
such crosslinker concentrations in parenthesis.

Figure 2. Swelling ratio as a function of time for the samples with different
crosslinker concentration. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Mesh size of poly(NIPAM-co-AAc) determined as a function of cross-
linker concentration at the equilibrium state (ξsweq ) and the initial state (ξswi ).

The function of ξ= kðCclÞn is fitted to data, which yields the exponent (n)
values of n = −0.73 ± 0.05 (for the equilibrium state), and n = −0.48 ± 0.05
(for the initial state). [Color figure can be viewed at wileyonlinelibrary.com]

Table II. The Mesh Sizes at Equilibrium and at the Initial State Retrieved
by Means of Dynamic Swelling Is Presented

Ccl (mol L−1) Qms Qmc

ffiffiffiffiffiffiffiffiffi
hr20i

q
(nm)

ξsweq
(nm)

ξswi
(nm)

0.006 1502.7 12.8 5.7 67 14

0.009 931.7 12.7 4.7 47 12

0.012 931.7 12.5 4.0 40 10

0.024 428.7 12.0 2.8 22 7

0.036 182.0 12.0 2.4 14 6

0.048 216.5 12.4 2.1 13 5

0.072 163.9 11.9 1.7 10 4

0.098 143.0 11.7 1.5 8 4

0.143 128.3 12.1 1.3 7 3

Ccl is the crosslinker concentration in the hydrogels, Qms is the swelling

ratio at equilibrium, Qmc is the swelling ratio after crosslinking,
ffiffiffiffiffiffiffiffiffi
hr20i

q
is

the root-mean-square end-to-end distance of the polymer subchain
between two crosslinking points in the unperturbed state, ξsweq is the mesh
size at the equilibrium, and ξswi is the mesh size just after crosslinking.
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The theoretical functionality of the crosslinker (f ) is 4 as each
DAT molecule can react with four polymeric segments. Thus, for
the hydrogels in the initial state, the combination of Eqs. (10a),
(10b), and (11) leads to the following expression:

G0 = neRT: ð17Þ
To calculate the density of the rheologically active junctions using
eq. (17), we assumed that each crosslinker molecule forms only
one crosslink. The results are presented in Table III and Support-
ing Information Figure S2. The values of ne are within 2% of the
theoretical crosslinker concentration for the sample with 0.006 M
DAT and only 0.5% for the sample with 0.143 M DAT (see Sup-
porting Information Table S1). This means that the efficiency of
the crosslinker to form the junction decreases when more cross-
linker was added.

As described in the Theory section, two models were used to
obtain the mesh sizes for the hydrogels with different crosslinker
concentrations. In Table III and Figure 5, the values of the mesh

sizes determined by these two models (ξrheoc, i and ξrheos, i ) are sum-

marized. The active crosslinked intersections in the hydrogel

network can be estimated by applying the classical theory of rub-
ber elasticity [eqs. (10a) and (10b)], which indicates that increas-
ing the number density of active intersections results in an
increase of G0. Also, an increase in the number of active intersec-
tions results in a reduction in the molar mass of the subchain
between two crosslinking points (Mc). Thus, the hydrogel net-
works with higher crosslinker concentration exhibit a smaller
average mesh size.

In the rheology measurements, the hydrogels were synthesized in
the compartment of rheometer suggesting that the mesh size

obtained by the rheological measurements (ξrheoc, i and ξrheos, i ) are

comparable to the mesh size at the initial state in the dynamic
swelling (ξswi ). The mesh size assuming a spherical volume ele-

ment (ξrheos, i ) is approximately 38% lower than the mesh size

assuming a cubic volume element (ξrheoc, i ).

Mesh Size Obtained by PGSE NMR Spectroscopy
The 1H NMR spectra for the dextrans are identical due to the
same chemical structure of the monomer. Three peaks of theTable III. Comparison Between the Mesh Size Determined from Rheologi-

cal Measurements Assuming a Cubic-Shaped Volume Element [ξrheoc, i ;

eq. (12)] and a Spherical Volume Element [ξrheos, i ; eq. (13)]

Ccl (mol L−1) G0 (Pa) ne (mol m−3) ξrheoc,i (nm) ξrheos,i (nm)

0.006 297 0.12 24 15

0.009 480 0.19 20 13

0.012 445 0.18 21 13

0.024 562 0.23 19 12

0.036 822 0.33 17 11

0.048 883 0.36 17 10

0.072 1160 0.47 15 9

0.098 1310 0.53 15 9

0.143 1660 0.67 14 8

ne represents the density of effective junctions.

Figure 5. Mesh sizes obtained by the rheological measurements (ξrheoc, i and

ξrheos, i for cubic and spherical models, respectively) are presented as a func-

tion of crosslinker concentration. The function ξ= kðCclÞn is fitted to data,
which yields the exponent (n) value of n = −0.18 ± 0.02. [Color figure can
be viewed at wileyonlinelibrary.com]

Figure 6. 1H NMR signal decay for 5 kDa dextran in hydrogel.

Figure 4. Characterization of the storage modulus as a function of fre-
quency. [Color figure can be viewed at wileyonlinelibrary.com]
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dextran are not overlapped with the peaks of poly(NIPAM-co-AAc)
hydrogels; therefore, they are used for the analysis. These peaks were
assigned to the chemical shift of OH (4.91 ppm) and CH2 (3.66 and
3.47 ppm) groups. PGSE NMR spectra of the dextran (5 kDa) are
shown in Figure 6. The integrals of the CH2 resonances were used
for determining the diffusion coefficients of the probes in the hydro-
gels (Dg). For more detailed information, we refer to Supporting
Information Figures S3–S7 and Supporting Information Table S2.

The sizes of the dextrans were determined by measuring the probe dif-
fusion in pure D2O. Table IV reports the diffusion coefficients of dex-
trans (D0) together with their hydrodynamic radii (rs).

49 The results
are in good agreement with the data reported by Wallace et al.13 and
Jowkarderis and van de Ven.14 The mesh sizes for each hydrogel can
be calculated using eq. (1). The results are presented in Table V and
Figure 7. The difference between D0 and Dg increased with increases
in the crosslinking concentration and the size of the dextrans. The
results of the probe diffusion measurements indicate that the diffusion

quotient (Dg

D0
) decreases exponentially with increasing dextran size

(rs), as described in eq. (1) (see Supporting Information

Figure S8). For each hydrogel, the diffusion quotient (Dg

D0
) was

fitted to eq. (1) varying the dextran size, which yields one value
of the mesh size for each crosslinker concentration (see Support-
ing Information Figure S8).50 For the two lowest DAT concentra-

tion measured, values of Dg

D0
were similar for all of the dextran

probes used. Thus, the values of ξNMR were estimated to be
104 and 103 nm, for the samples with crosslinker concentrations
of 0.006 and 0.009 mol L−1, respectively. For the four dextran
probes used, for the crosslinker concentrations above

0.009 mol L−1, the differences in values of Dg

D0
were more pro-

nounced. For the sample featuring Ccl = 0.036 mol L−1, the value

of Dg

D0
was 0.88 for the 5 kDa dextran and 0.36 for the 513 kDa

dextran, which corresponds to ξNMR values of 18 nm (for 5 kDa
dextran) and 35 nm (for 513 kDa dextran). This indicates that
the diffusivity of the 513 kDa dextran is significantly restricted by
the hydrogel network, whereas the 5 kDa dextran is relatively free
to move within the pores. The value of ξNMR decreased from
8.9 nm (for Ccl = 0.072 mol L−1) to 7.0 nm (for Ccl =
0.143 mol L−1). Entrapment of the dextran molecules in the gel
network was observed in the signal echo decay for 68 and
513 kDa dextrans in the hydrogels with 0.072 and 0.143 mol L−1

DAT. Therefore, it was not possible to obtain meaningful diffu-
sion coefficients for these situations. Thus, the mesh size (ξNMR)
for these hydrogels is estimated based on the dextran 5 and
12 kDa probes, only.

DISCUSSION

In Figures 3, 5, and 7, we present the scaling of the mesh size
with crosslinker concentration determined using the three afore-
mentioned methods. The results can be put into two categories in
terms of the swelling state of the hydrogels. In the first one, the
mesh sizes were obtained immediately after the crosslinking,
namely the initial state. This includes the results obtained imme-

diately after crosslinking using rheometry (ξrheoc, i and ξrheos, i ) and

dynamic swelling (ξswi ). In the second category, we consider the
mesh sizes when the hydrogels are in equilibrium with the sol-
vent (i.e., water), including the mesh sizes obtained by dynamic
swelling in equilibrium (ξsweq ) and probe diffusion using PGSE

NMR (ξNMR). In Figures 3, 5, and 7, variations of the mesh sizes
with crosslink concentrations are presented in log–log plots.
Regardless of the method used, the mesh sizes exhibit strong
power-law decay with the increase of the crosslinker

Table IV. Diffusion Coefficients of Dextrans Used in the Aqueous Solu-
tions D0 Obtained by Fitting eq. (3) to NMR Data, and the Corresponding
Hydrodynamic Radii rs Obtained Using eq. (15)

Mw (kDa) D0 × 1011 (m2 s−1) rs (nm)

5 12.33 ± 0.02 1.6 ± 0.1

12 8.2 ± 0.1 2.4 ± 0.1

68 4.5 ± 0.1 4.5 ± 0.1

513 1.45 ± 0.02 13.8 ± 0.3

Table V. For Poly(NIPAM-co-AAc) Hydrogels, Average Mesh Sizes Mea-

sured Using PGSE NMR (ξNMR)

Ccl (mol L−1) Dg,d1
D0,d1

Dg,d2
D0,d2

Dg,d3
D0,d3

Dg,d4
D0,d4

ξNMR (nm)

0.006 0.96 0.82 0.93 0.92 104 ± 80

0.009 0.90 0.94 0.91 0.91 103 ± 54

0.012 0.98 0.93 0.71 0.79 41 ± 14

0.024 0.96 0.90 0.71 0.45 27 ± 6

0.036 0.88 0.78 0.63 0.36 12 ± 2

0.048 0.84 0.78 0.67 0.46 9.6 ± 0.2

0.072 0.85 0.75 — — 8.9 ± 0.7

0.143 0.79 0.71 — — 7.0 ± 0.1

The crosslinker concentrations in the hydrogel is represented by Ccl;
Dg,d1
D0,d1,

Dg,d2
D0,d2,

Dg,d3
D0,d3, and

Dg,d4
D0,d4 represent the diffusion quotients for dextrans with

molecular weight of 5, 12, 68, and 513 kDa, respectively; ξNMR is the
value of the mesh size obtained by using different dextrans.

Figure 7. The mesh size obtained from PGSE NMR experiments (ξNMR) by
using dextrans with different molecular weight as probes. The function

ξ = kðCclÞn is fitted to data, which yields the exponent (n) value of n = −1.0
± 0.3. The last two data points marked by hollow circles were not used for
the fitting of the power law function.
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concentration. Therefore, the function ξ= kðCclÞn is used to
determine the scaling exponent (n).

For the hydrogels in the initial state, the value of n varies with
the methods. As can be seen in Figures 3 and 5, the values of the
scaling exponent were n = −0.48 ± 0.05 (dynamic swelling) and
n = −0.18 ± 0.02 (rheological measurements). In the following
discussion, first we will convert the mesh sizes determined by
rheometry (obtained for hydrogels in the initial state) to the mesh
sizes for the case of analogous (in terms of crosslinker concentra-
tions) hydrogels in equilibrium with water. This is followed by a
comparison between the mesh sizes obtained by different
methods. Second, we will make a comparison between our exper-
imental results and the theoretical scaling of ξ on the degree of
crosslinking dc. At the end, the subjects of crosslinking nonuni-
formity and inefficiency of the network will be discussed.

Mesh Size When the Hydrogels Are in Equilibrium with Water
The swelling process corresponds to an isotropic expansion of
the network. The dependence of the stored energy on strain is
the same form for the hydrogel both in the initial state and in the
equilibrium. If G0

i and G0
eq are the respective moduli in the initial

state and at the equilibrium, then one has40

G0
eq = v

1
3
2sG

0
i, ð18Þ

where v2s holds the same meaning as in eq. (4). Now using the values
of (i) the storage modulus obtained from rheometry (which was at
the initial state), (ii) v2s from the dynamic swelling experiments, and
(iii) eqs. (12) and (14), the aim is to get the mesh sizes for analogous
equilibrated swollen gels obtained during swelling measurements

(ξrheoc,eq and ξrheos, eq). The results are presented in Figure 8 together

with the mesh size obtained by the other methods.

Figure 8 shows that the mesh size is strongly model dependent.
Based on the data, ξNMR and ξsweq show the highest values at the

two lowest crosslinker concentrations. For these concentrations,

the values of ξrheoc,eq and ξrheos, eq are lower than ξNMR and ξsweq . The

difference between the mesh sizes obtained using these methods
decreased with the increment of the crosslinker concentration.

However, for the most crosslinked hydrogels ξrheoc,eq and ξrheos, eq are

larger than ξNMR and ξsweq .

Scaling of Mesh Size on Crosslinker Concentration
The relationship between mesh size and polymer concentration
has been thoroughly discussed in the theoretical understanding of
gelation process. In a physical gel, mesh size relates to polymer
concentration by37

ξ≈
ffiffiffiffiffiffiffiffi
hr2i

p cp
c*

� �−ν=ð3ν−1Þ
, ð19Þ

where cp is polymer concentration, c* is the overlapping concen-
tration, and ν is the Flory exponent (ν = 1/2 in Θ solvents, 3/5 in
good solvents). For a certain polymer solution, when the overlap-
ping concentration is constant, the mesh size scales with polymer
concentration with a power of −3/4 in a good solvent and −1 in a
Θ solvent. However, in a chemically crosslinked gel, the relation-
ship presented in eq. (19) becomes uncertain. According to the
results presented in Figure 8, the mesh size decreases although
the total polymer concentration is kept constant. This indicates
that the relationship between mesh size and polymer concentra-
tion diverges from the classical theory. Since the scaling of mesh
size with changing crosslinker concentration is not directly mani-
fested in eq. (19), we use the Flory approximation to evaluate the
fractal dimension of the crosslinker density.

In the percolation model,51 the mesh size evolves with jp−pcjβ where
p is the probability of bond formation, pc is the critical value of p at
the gel threshold, and β is the space dimension. The critical length
(pc) has been interpreted in two equivalent ways, using either sol or
gel phase. In the dynamic swelling experiment, the former interpre-
tation is applied, as shown in the following equation:

ξ= v−
1
3

2s

ffiffiffiffiffiffiffiffi
hr20i

q
� d−7

C =10: ð20Þ

This equation is obtained from eq. (4) utilizing three equations,
namely (i) the Flory–Rehner equation [eq. (21)], (ii) eq. (22) [from
eq. (21) using the fact that Mc is inversely proportional to the cross-
linker density Mc � d−1

c ], and (iii) eq. (23) [from eq. (5)]:

v2s �Q−1
v �M−3

c =5, ð21Þ

v2s � d3c =5, ð22Þ
ffiffiffiffiffiffiffiffi
hr20i

q
�M1

c =2� d−1
c =2: ð23Þ

Equation (20) shows that the mesh size of a hydrogel decreases
with the crosslinker density by the power of −0.7. Equation (7)
shows that if the total concentration of the monomers is con-
stant, dc is proportional to the crosslinker concentration (Ccl),
which gives the following expression:

ξ�ðCclÞ−0:7: ð24Þ
Thus, eq. (24) provides the general form of the scaling relation-
ship between ξ and Ccl.

Figure 8. Comparison of the mesh sizes at equilibrium obtained using
dynamic swelling, rheometry and probe diffusion PGSE NMR experiments.

The function ξ= kðCclÞn was fitted to data. [Color figure can be viewed at
wileyonlinelibrary.com]
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The experimental results show a fairly consistent agreement with
theory, where scaling exponents of −0.73 and −1.0 were obtained
for, respectively, dynamic swelling and probe diffusion experi-
ments. Clearly, the scaling exponent obtained using dynamic
swelling is very close to the theoretical value given in eq. (24),
while the absolute value obtained in the probe diffusion experi-
ments is too high. As seen in Figure 8, the deviation between
these two methods is more pronounced for the two largest mesh
sizes, where the probe diffusion experiments result in significantly
higher values. Probe diffusion experiments are very sensitive to
the size of the diffusing molecules,13 and it is possible that the
size of the dextran molecules used in our study are too small to
properly detect the largest mesh sizes in samples with smallest
degree of crosslinking, which may lead to an overestimation of
the mesh size. Furthermore, an even larger difference in the scal-
ing exponent is found for the rheological measurements, where
for both of the approaches the scaling exponents (n) was −0.27.

As shown in Figure 8, ξrheoc,eq and ξrheos, eq are smaller than ξsweq at low

crosslinker concentrations, but due to a lower scaling exponent,
they crossover ξsweq at higher crosslinker concentrations. Some

previous studies of hydrogel systems have shown similar mesh
sizes obtained using rheology and swelling experiments,52,53 while
others have shown significant differences, which was explained
by a possible failure of the rubber elasticity theory.54 Further
investigations are necessary in order to explain the differences in
mesh sizes obtained using rheology and dynamic swelling in
hydrogel systems.

Crosslinking Efficiency
In this study, the hydrogels were prepared by free radical copoly-
merization of monomers. The resulting network contains local
highly crosslinked domains, which affect the physical properties
of hydrogels, such as their swelling, elastics, and permeability
properties.55 In the rheometry section, we reported low crosslink-
ing efficiency (see Supporting Information Table S1). This low
crosslinking efficiency indicates that during the gelation process
some crosslinker molecules participated in the formation of elas-
tically inactive forms such as loops, trapped entanglements and
dangling chains.39,42,56,57 Moreover, the distribution of the cross-
linker may be nonuniform, and therefore the spatial distribution
of the pores may differ for the samples with the same chemical
content.58 Crosslinking nonuniformity and inefficiency increase
with crosslinker concentration.59 In all of the samples, there is
most likely a group of large pores in the hydrogel network, which
is accessible to all dextran probes. Within these pores, the diffu-
sivity of the probe molecules is not significantly restricted. How-
ever, there are also regions with a denser network with smaller
pores, where the diffusion of the probe is strictly limited. The
analysis of diffusion PGSE NMR for the 513 kDa dextran in the
most crosslinked gels supports this hypothesis. For the hydrogel
with the crosslinker concentration of Ccl = 0.143 mol L−1, the
ratio of the dextran size (for 513 kDa molecule) and the mesh
size was rs/ξNMR = 1.97, which suggests entrapment of the probe
molecule within the polymer network. However, the measured

value of Dg,d4
D0,d4

(0.46) for the high crosslinker concentration was

higher the values for the less crosslinked sample (see Table V),
which implies that the mobility of the dextran actually increased.

This result indicates that pores with sizes much larger than the
value of ξNMR exist, where the dextran molecule can almost freely
diffuse. Consequently, the diffusion in these large pores has a
great influence on the measured diffusion coefficient. For the
same average mesh size, the extent of this restriction in diffusion
increases with increasing molecular size of the probe.60 Since the
crosslinking nonuniformity and inefficiency of the network
increase with crosslinker concentration, probe molecules with dif-
ferent sizes experience different network restrictions. This is in
agreement with our PGSE NMR results, where for the two least
crosslinked hydrogels, the mesh sizes calculated for all of the
probes are very similar (see Supporting Information Table S2).

CONCLUSIONS

In summary, in order to investigate the mesh size of
poly(NIPAM-co-AAc) hydrogels with different crosslinker con-
centrations at initial state (just after crosslinking) and equilibrium
state (with water) three different methods were employed, namely

dynamic swelling (ξswi and ξsweq ), rheometry (ξrheoc, i , ξrheos, i , ξrheoc,eq , and

ξrheos,eq ) and probe diffusion PGSE NMR (ξNMR). The results show

that the mesh size decreases with increasing crosslinker concen-
tration in the hydrogels. More specifically, while at low crosslink-

ing concentrations ξrheoc,eq and ξrheos,eq were found to be smaller than

ξsweq and ξNMR, at high concentrations they were found to be larger

than ξsweq and ξNMR. The mesh sizes obtained by the probe diffu-

sion (ξNMR) were generally larger than the mesh sizes measured
by dynamic swelling (ξswi and ξsweq ), in particular for the samples

with low degrees of crosslinking and thus the largest mesh sizes.
A possible explanation could be that the dextran molecules used
in our study are too small to properly detect the largest mesh
sizes. We also analyzed the effect of probe molecular size (rs) on
the measured mesh size. The probe diffusion gave also indication
about a certain degree of crosslinking nonuniformity and ineffi-
ciency of the network. Although the mesh sizes exhibited a
model-dependent nature, it was found that they exhibited a
strong scaling behavior with respect to crosslinker concentrations.
The results were fitted using the function ξ= kðCclÞn, which gave
exponent values of −0.73 ± 0.05 for the dynamic swelling experi-
ments (close to the theoretical prediction), −1.0 ± 0.3 for the
probe diffusion, and −0.27 ± 0.02 for the rheology measurements.
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Figure S1: Plateau values of G’as a function of crosslinker concentration. Data fitted

with a function of G′ = k(Ccl)n, which yields the exponent (n) value of n = 0.55.
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Figure S2: The values of the network junction density (ne) as a function of the theoretical

crosslinker concentration. Data fitted with a function of ne = k(Ccrosslinker,theoretical)n, which

yields the exponent (n) value of n = 0.55.
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Table S1: The theoretical crosslinking concentration Ccl, the density of effective junctions

ne and measured percentage of efficiency of the crosslinker

Ccl [mol m−3] ne [mol m−3] % efficiency

6 0.12 2.00

9 0.19 2.15

12 0.18 1.38

24 0.23 0.95

36 0.33 0.92

48 0.36 0.74

72 0.47 0.65

98 0.53 0.54

143 0.67 0.47

2 PGSE NMRMeasurements

All PGSE NMR experiments were recorded on Bruker Avance III 500 WB using diffSteBp

pulse sequence. The intensity data were processed and fitted to Equation S1 using

Bruker Topspin software package (version 3.5) and Igor Pro 6.37 software.

I
I0

= e−γ
2g2δ2(∆− δ3 )D (S1)

Hydrodynamic radius of each dextran probe was estimated using Equation S2.

rs =
kBT

6πηD0
(S2)

Figure S3 shows the echo amplitude as a function of gradient strength for all dextran

probes in aqueous solutions with fit to Equation S1.

For the free solutions, ln(
I
I0

) is linearly dependent on the parameter γ2g2δ2(∆ − δ
3 )

with the negative slope being the self-diffusion coefficient. The resulting Stejskal-Tanner
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Figure S3: Normalized echo attenuations for the diffusion of the -CH2 group of the

dextrans, where b = γ2g2δ2(∆− δ
3 ). Lines represent the fitting of the data to Equation S1.

plots of the echo intensities of the signals from dextran 5 kDa, 12 kDa, 68 kDa and 513

kDa probes are shown in Figure S4, Figure S5, Figure S6 and Figure S7. In the free

solutions, the intensities of the NMR signals follow a fast decay. Significant differences

can be observed for the NMR signals of dextran 1 and dextran 2 in the presence of the

polymer network. Here, two slopes corresponding to a fast and a slow intensity decay

can be observed. The slow decay indicates severe restriction of the probe diffusion. The

slope of the slow decay becomes flatter with the increasing crosslinker concentration.

The corresponding diffusion coefficients, obtained by fitting the data using Equation

S1, are listed in Table S2. The diffusion coefficients for the hydrogel samples stated in

Table S2 were calculated based on the fast decays of the signal intensities.
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Equation S1.
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Figure S5: Normalized echo attenuations for the diffusion of the -CH2 group of dextran

12 kDa, where b = γ2g2δ2(∆ − δ
3 ). The solid lines represent the fitting of the data to

Equation S1.

5



0.01

2

4

6

8
0.1

2

4

6

8
1

I/I
o

250x10
9200150100500

 b [sm
-2

]

 Solution
 0.006M DAT
 0.009M DAT
 0.012M DAT
 0.024MDAT
 0.036M DAT
 0.048M DAT

Figure S6: Normalized echo attenuations for the diffusion of the -CH2 group of dextran

68 kDa, where b = γ2g2δ2(∆ − δ
3 ). The solid lines represent the fitting of the data to

Equation S1.
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Figure S7: Normalized echo attenuations for the diffusion of the -CH2 group of dextran

513 kDa, where b = γ2g2δ2(∆ − δ
3 ). The solid lines represent the fitting of the data to

Equation S1.
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Table S2: Diffusion coefficients of dextran 5 kDa, 12 kDa, 68 kDa and 513 kDa in

poly(NIPAM-co-AAc) hydrogels as measured by PGSE NMR. Ccl [mol l−1] represents

the crosslinker concentrations in the hydrogel; Dg,d1, Dg,d2, Dg,d3 and Dg,d4 [m2 s−1]

represent the diffusion coefficients for dextran 5 kDa, 12 kDa, 68 kDa and 513 kDa,

respectively

Ccl Dg,d1 × 1011 Dg,d2 × 1011 Dg,d3 × 1011 Dg,d4 × 1011

Free solution 12.33±0.02 8.2±0.1 4.5±0.1 1.45±0.02

0.006 11.81±0.03 6.7±0.2 4.16±0.08 1.33±0.03

0.009 11.06±0.02 7.7±0.3 4.1±0.2 1.31±0.02

0.012 12.09±0.04 7.6±0.3 3.18±0.07 1.14±0.03

0.024 11.90±0.03 7.4±0.3 3.19±0.08 0.65±0.02

0.036 10.85±0.04 6.4±0.1 2.8±0.1 0.53±0.02

0.048 10.33±0.01 6.40±0.07 3.01±0.07 0.67±0.04

0.072 10.46±0.03 6.1±0.1 3.41±0.04 0.85±0.05

0.143 9.7±0.4 5.6±0.2 3.65±0.04 0.94±0.03
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a b s t r a c t

Hypothesis: Incorporation of the drug-loaded surfactant micelles into polymer hydrogels is a common
method used to achieve controlled drug delivery. The characterization of the diffusion processes in drug
delivery systems is critical in order to tune the drug loading and release.
Experiments: We present a simple and efficient NMR protocol to investigate the transport of the surfac-
tant molecules in hydrogels on micro- and macroscale under non-equilibrium conditions. Our experi-
mental protocol is based on a combination of 1H 1D NMR chemical shift imaging and slice-selective
diffusion experiments, which enables determination of the mutual and self-diffusion coefficients of the
surfactant in the non-equilibrium hydrogel-based system within the same short time frame.
Findings: Our results show that the self-diffusion coefficient of the positively charged surfactant in the
hydrogel (Dgel

s ) decreases with the increasing surfactant concentration until it reaches a plateau value
of 6:6� 0:5� 10�11 m2 s�1. The surfactant self-diffusion in the solution (Dsln

s ) remains constant over the
experiment with an average value of 6:7� 0:3� 10�11 m2 s�1. The surfactant mutual diffusion coefficient
obtained from 1D chemical shift imaging in this hydrogel system (Dm) is 7:7� 0:5� 10�11 m2 s�1.
Correlation of the localized Ds to the 1D chemical shift images gives insight into the structure-
dependent diffusional behavior of surfactant molecules in the hydrogel. This NMR protocol will be of
great value in studies of concentration dependent structures on the interfaces between two immiscible
liquids.

� 2018 Elsevier Inc. All rights reserved.

1. Introduction

In drug delivery, one of the common strategies to achieve a
controlled release of a hydrophobic drug is to enclose a substance
of interest in surfactant micelles, which can be embedded in a
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hydrogel [1,2]. Poly(N-isopropylacrylamide) [poly(NIPAM)] is a
model hydrogel for controlled release studies due to its thermo-
responsive properties [3]. This polymer has been investigated in
the forms of macroscopic hydrogels, films, micro- and nanoparti-
cles [4–8]. As drug delivery systems, hydrogels have been limited
to carry hydrophilic drugs, where the loading and releasing of
the drug is rather inefficient. The formation of surfactant micelles
allows either for the incorporation of drug molecules in the
hydrophobic microdomain of the micelle core or condensation on
the surface [9]. Micelles and vesicles of cationic surfactants have
received much interest as carriers for chemotherapeutic agents
bearing carboxylate groups due to possible drug complexation by
anion binding [10,11]. The detailed knowledge of transport and
release of surfactant molecules is essential to optimize the design
of a drug delivery matrix. In this context, the measurement of dif-
fusion coefficients represents one of the main approaches to better
understand molecular mobility of the surfactant molecules. Diffu-
sion measurements can be used to quantify and to predict the
release rates of entrapped drugs from given matrices, and to pro-
vide structural information about the hydrogel network [12]. In
hydrogels, there are two distinct types of transport mechanisms
characterized on different length and time scales: self-diffusion
and mutual diffusion. The first type occurs in the absence of a con-
centration gradient and is caused by Brownian motions [13]. Self-
diffusion coefficients (Ds) can be measured on a millisecond time
scale, using pulsed-field gradient NMR [14], fluorescence correla-
tion spectroscopy [15] or fluorescence recovery after photobleach-
ing [16]. On the other hand, mutual diffusion occurs in the
presence of a concentration gradient and can be described by Fick’s
laws [17,18]. Mutual diffusion coefficients (Dm) are measured on
time scales ranging from minutes to hours or days, using UV/VIS
absorption spectroscopy [19], quasielastic light scattering spec-
troscopy [20], holographic interferometry [21], NMR imaging [22]
or fluorescence correlation spectroscopy [23]. Moreover, mutual
diffusion associated with the release or uptake involves the cross-
ing of the solution/hydrogel interface, a phenomenon not experi-
enced by the analyte during the self-diffusion measurements
[24]. Here, we present a combination of 1D Chemical Shift Imaging
(1D CSI) and Slice-Selective Diffusion (SSD) experiments for study-
ing both mutual and self-diffusion in one experimental protocol.
The 1D CSI method with submillimeter spatial resolution in one
dimension can be used to obtain time-resolved information about

the spatial distribution of surfactant molecules in a hydrogel sys-
tem [25]. Kwak et al. demonstrated the potential of the 31P 1D pro-
filing for investigation of the macroscale mutual diffusion by
recording the concentration profiles of the phosphate ions in dex-
tran gels [26]. The important advantage of using the 1D CSI method
is that the concentration profiles of all different chemical species in
the sample can be obtained simultaneously in a single experiment.
This method has previously been used to characterize the diffusion
processes of several different pharmaceutical molecules in col-
loidal gels [27]. The dissolution behaviors and molecular transport
in polymer tablets have also been studied by applying 1D CSI
[28,29]. The SSD method can be used to determine self-diffusion
coefficients in specific positions of the model system. Moreover,
the combination of the two pulse sequences in one experimental
protocol allows measurements of both diffusion coefficients on
the same sample, under the same experimental conditions [24,26].

The main purpose of this work is to design a single NMR exper-
imental protocol, which covers the diffusion processes in the
model drug delivery system on microscopic and macroscopic
scales. We demonstrate the usefulness of a method which combi-
nes 1D CSI and SSD NMR to study surfactant diffusion in poly
(NIPAM) hydrogels under non-equilibrium conditions.

2. The method

1H 1D CSI NMR [25,27] and SSD [30] experiments were com-
bined in one experimental protocol to investigate the mutual and
self-diffusion processes of the surfactant molecules in hydrogels
under non-equilibrium conditions. In the experimental setup
(Fig. 1), the surfactant diffusion occurs from the solution to the
gel. The initial concentration of the surfactant in the gel (Cgel) is
zero. As the access to the bottom phase and the edges of the hydro-
gel is limited by the walls of the NMR tube, only the upper face of
the hydrogel was exposed to the surfactant solution over the
hydrogel. Thus, the surfactant diffusion was restricted to one
dimension only, which simplifies both the setup of the experi-
ments and the evaluation of the results.

2.1. Chemical shift imaging

From the 1D CSI experiment, the concentrations of various
molecules can be determined as functions of position and time.

Fig. 1. Illustration of the experimental setup. The interface between surfactant solution and gel was aligned with the center of the radiofrequency (rf) coil (z = 0). X1 and X2

represent the position of the slices at which the self-diffusion spectra were obtained. X1 corresponds to the slice in the solution whereas X2 corresponds to the slice in the gel.
The position- resolved chemical shift image recorded at the beginning of the experiment (t = 0 h) is presented in the middle. The corresponding concentration profile of a
C14TAB signal is shown to the right.
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Using Fick’s second law of diffusion for the case of the one-
dimensional free diffusion into a semi-infinite slab, surfactant
mutual diffusion coefficient, Dm, can be determined [17,22]:

@C
@t

¼ Dm
@2C
@z2

 !
; ð1Þ

where C is the concentration, t is the time, and z is the position.
When no initial surfactant concentration is present in the gel, Fick’s
second law of diffusion can be rewritten [18]:

Cgel

C0
¼ erfc

z
2
ffiffiffiffiffiffiffiffiffi
Dmt

p : ð2Þ

Concentration profiles were phase-corrected and normalized to
the initial concentration of the surfactant in the solution, C0. By fit-
ting the experimentally obtained concentration profiles using Eq.
(2), Dm can be estimated. An example of the obtained concentra-
tion profiles is shown in Fig. 1, where the peak intensity is plotted
against sample heights (z-position). The Field of View (FOV) along
the z-axis was calculated using:

FOV ¼ 2pNslices

2cGmaxd
; ð3Þ

where Nslices is the amount of slices recorded along z-axis, c is the
gyromagnetic ratio (c1H ¼ 2:675� 108 rad s�1 T�1), Gmax is the max-
imum strength of the magnetic field gradient, and d is the length of
the gradient pulse. The spatial resolution in the z-direction was cal-
culated by dividing the FOV by Nslices.

2.2. Slice- selective diffusion NMR

Slice-selective diffusion experiments [31] were accomplished
by applying a sine-shaped 180� radiofrequency (RF) pulse with
variable frequency offsets (X) in the presence of a magnetic field
gradient. By simultaneously applying a magnetic field gradient
(Gz), all spins experience a frequency offset that depends on the
vertical position (z) from the center of the gradient coil:

X ¼ cGzz: ð4Þ
Hence, a soft pulse with a bandwidth (DX) that is employed at

this offset can selectively excite a horizontal slice of the sample
centered at z with a thickness that is obtained by:

Dz ¼ DX
cGz

: ð5Þ

3. Materials and methods

3.1. Materials

N-isopropylacrylamide (NIPAM, >99%), ammonium persulfate
(APS, BioXtra, 98%), N,N,N,N-tetramethylethylenediamine (TEMED,
P99%), (+)-N,N-diallyltartramide (DAT, P99%), tetrade-
cyltrimethylammonium bromide (C14TAB) were purchased from
Sigma-Aldrich, and used as received. Samples were prepared using
deuterium oxide (99.9 atom% D, Sigma-Aldrich).

3.2. Methods

3.2.1. Hydrogel preparation
Hydrogel was prepared by free radical polymerization in aque-

ous solutions using NIPAM as monomer, DAT as crosslinker, and a
redox couple APS/TEMED as initiator. A mixture of NIPAM, DAT and
APS, was dissolved in 5 ml of distilled water in a glass vial. The
solution was put into an ultrasonic bath for 10 min, followed by
5 min nitrogen bubbling to deoxygenate the solution. After that,

12 ll of 6.63 M TEMED was added. The reaction was carried out
at room temperature for 24 h. In hydrogel preparation, the total
concentration of the monomer was fixed at 0.7 mol L�1. One equiv-
alent of TEMED with respect to APS was used. Crosslinker concen-
tration was fixed to 0.024 mol L�1. After the synthesis, the hydrogel
was dialyzed extensively for one week by changing dialysis med-
ium daily in order to remove unreacted monomers. The hydrogel
was then dried for 3 days at room temperature. The dried sample
was subsequently incubated in excess amount of D2O until swel-
ling equilibrium was reached. The average mesh size, determined
from the swelling experiment, was determined to be 11 nm (ESI).

3.2.2. Surfactant/hydrogel sample
Based on the article by Kwak et al. [26], where the differences

between Dm values obtained from the release and penetration
experiments with large and small reservoirs were studied, we
decided to use the simplified penetration experiment and confine
the reservoir to the same volume as the hydrogel. The experimen-
tal setup was designed to meet the conditions of the diffusion
model derived for two semi-infinite media (Fig. 1). Hydrogel of
known mass was placed in the bottom of the 5 mm o.d. NMR tube.
The 50 mM surfactant (C14TAB) solution was added as shown in
Fig. 1 and the NMR tube was placed in the spectrometer defining
the starting point of the experiment (t0). The hydrogel and the
solution lengths were both 22 mm. The sample was positioned so
that the interface between surfactant solution and hydrogel was
at the center of the gradient and RF coils (z = 0 mm). The sample
temperature was maintained at 298 K.

3.2.3. NMR experiments
All the NMR experiments were performed on a Bruker Avance

III 500 WB MHz NMR spectrometer equipped with a Bruker DIFF-
30 gradient probe capable of delivering gradients of strength
17 T/m in the z-direction.

Spatially resolved 1H NMR spectra were acquired with a 1D CSI
pulse sequence [25,27], shown in Fig. 2a, with the following

Fig. 2. NMR pulse sequences for the 1D CSI (a) and the SSD (b) experiments. In (a)
the 90� and 180� RF pulses produce a spin echo at time tE . A magnetic field gradient
pulse of length d and strength G encodes the signal with respect to position. Signal
acquisition starts at the echo maximum. The spin system returns to equilibrium
during a delay tR between each repetition of the pulse sequence (not shown in the
figure). In (b) the 180� pulse is sine shaped and has duration of 500 ls. The two G1

gradients are for diffusion weighting, whereas G2 gradient is used for spatial
encoding.
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parameters: tE = 0.9 ms, tR = 4 s, d = 0.13 ms. Gz was incremented
from �0.28 to 0.28 T/m in 64 steps. With these particular parame-
ters the field of view is 20.65 mm, and the spatial resolution in the
z-direction is 323 lm.With four transients per gradient increment,
a z-resolved chemical shift image was recorded in less than 20 min.

SSD experiments were performed using the pulse sequence
shown in Fig. 2b. A sine-shaped 180� pulse (Sinc3.1000) with dura-
tion of 500 ls was used for slice selection, and the strength of the
gradient, G2was 0.2 T/m. For localized diffusion of the C14TAB spe-
cies in the solution, four scans were collected for each experiment
with X1 = 50 kHz, whereas eight scans were recorded for the diffu-
sion of the species localized in the hydrogel with X2 = �50 kHz. X1

and X2 correspond to the single slices (1 mm thick) located at
5.87 mm and �5.87 mm from the center of the RF coil,
respectively.

Due to the shape of the RF coil, the signal decreases in intensity
in the edges of the chemical shift images (Fig. 1,
8 mm > z > 7 mm). At the positions 10 mm > z > 8 mm and
�10 mm < z < �8 mm the intensity of the signal is 0 because the
measured volume is outside of the RF coil.

4. Results and discussion

4.1. Concentration profiles

In Fig. 3 the NMR spectrum obtained from z = 0 mm position of
the chemical shift image recorded at the end of the experiment is
presented. The peaks for the hydrogel (P1-P4) and C14TAB (S1-S5)
are labeled in the spectrum.

Fig. 4 shows examples of chemical shift images recorded at the
beginning (t = 0 h) and at the end (t = 55 h) of the experiment. For
t = 0 h, the surfactant peaks are present in the solution
(8 mm > z > 0 mm) but absent in the hydrogel
(�8 mm < z < 0 mm). In the chemical shift image recorded after
55 h, the surfactantpeaks are alsopresent in thehydrogel, indicating
diffusion of C14TAB from the solution to the polymer network.

Fig. 5 shows the integrals of the polymer and surfactant peaks at
the beginning and at the end of the diffusion experiment. For the
C14TAB signal at t = 0 h the decrease in signal intensity can be
observed at 1 mm > z > �2 mm. This is most likely due to the
uneven interface and the fact that the first chemical shift image
was recorded after approximately 20 min from the injecting the sur-
factant solution on top of the hydrogel, and therefore a possible dif-
fusion of the surfactant to the hydrogel in the interface area. As
described earlier, the decrease in signal intensities is observed in
the edges of the RF coil (8 mm > z > 7 mm and
�8 mm < z < �7 mm). Chemical shift images were recorded for
55 h. At the end of the experiment, change in the position of the
interface was observed.

4.1.1. Hydrogel
Fig. 6a shows the evolution of the signals from the hydrogel

network during penetration of the C14TAB solution. Over the
whole experimental time, the polymer peak increased in inten-
sity from 0 mm to 4.8 mm, indicating swelling of the polymer
network upon interaction with C14TAB molecules. During the
experiment, the initial border of the hydrogel has been moved
from 2 mm to 4 mm in the +z direction. This swelling influenced
the average mesh size which increased from 11 nm (at t = 0 h) to
12 nm (at t = 55 h).

4.1.2. Surfactant
Over the course of the experiment (Fig. 6b), the C14TAB signal

in solution decreases (z values from 0 to 8 mm), with a corre-
sponding increase in the gel (z values from 0 to �8 mm). This
indicates diffusion from solution to the polymer network as
the system moves to equilibrium. The time evolution of the sig-
nal intensity from C14TAB to the left of the interface is used for
the calculations of Dm. The signal integrals have been converted
into molar concentration using a known initial C14TAB concen-
tration (50 mM) as an internal reference. Fitting the experimen-
tal data between 0 h and 55 h to Eq. (2) resulted in
Dm ¼ 7:7� 0:5� 10�11 m2 s�1 (Fig. S1, ESI). Due to the changes
in the interface between the hydrogel and the surfactant solu-
tion, the quality of the fitting by the model in Eq. (2) is reduced
in the end of the experiment. We intend to examine this matter
in future research.

Fig. 4. 1H Chemical shift images recorded at t = 0 h and t = 55 h after the addition of the 50 mM C14TAB on top of the hydrogel. Slices located at the position of
�8 mm < z < 0 mm correspond to the hydrogel phase, whereas spectra located at 8 mm > z > 0 mm correspond to the solution phase.

Fig. 3. 1H spectrum of the hydrogel in equilibrium with C14TAB, at z = 0 mm at the
end of the experimental time.
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4.2. Self-diffusion studies

The frequency offsets of the slice-selective pulses, X1 and X2,
were chosen such that the self-diffusion was measured respec-
tively in the solution and in the hydrogel. Fig. 7 presents the evo-
lution of the C14TAB self-diffusion coefficients in the solution
(X1) and hydrogel (X2). As expected, the self-diffusion of C14TAB

in the solution (Dsln
s ) remains constant at an average level of

6:7� 0:3� 10�11 m2 s�1, indicating that the C14TAB concentration
in the solution is still above CMC. The C14TAB self-diffusion in

the hydrogel (Dgel
s ) decreased during the experiment, with the ini-

tial fast decrease during the first 25 h. The Dgel
s reaches a plateau

after 45 h with a value of around 6:6� 0:5� 10�11 m2 s�1. The
C14TAB concentration in the two slices was retrieved from the 1D
CSI experiments. The concentration profiles were normalized with
respect to the initial concentration of C14TAB, using the maximum
intensity of the profile. Thus, relating the localized values of Ds to
the concentration data gives valuable insight into the structure-
dependent transport properties.

In the hydrogel, the initial Dgel
s is more than 5 times higher than

Dgel
s measured in the same position at the end of the experiment. As

it is visualized in Fig. 8, the C14TAB diffuses first into the hydrogel
in the form of monomers, and subsequently, after reaching the
critical micelle concentration (CMC = 3.81 mM) in the gel phase,
self-assembles into the micelles [32]. Fig. 8 shows that at the end
of the experiment, the C14TAB concentration in the X2 position is
4–5 times lower than from the position located at X1. The diffusion
in the hydrogel thus decreases due to the increasing C14TAB con-
centration. Self-diffusion coefficients of the self-assembled
micelles in poly (NIPAM) hydrogel are about 1:8� 0:2�
10�10 m2 s�1 to 6:1� 0:8� 10�11 m2 s�1. Considering surfactant
monomers and micelles as spherical bodies, the hydrodynamic
radius of C14TAB micelles (Rh) was calculated from the Ds using
the Stokes-Einstein equation [33]:

D ¼ kBT
6pgRh

; ð6Þ

where kB is a Boltzmann’s constant, T is the absolute temperature
and g is the viscosity of D2O (g = 0.0010939 Pa s) at 298 K [34].
The estimated hydrodynamic radius of C14TAB in the monomeric
form is 0:4� 0:1 nm. Thus, the surfactant monomers are around
28 times smaller than the hydrogel’s initial average mesh size,
which implies that they can diffuse freely in the hydrogel network.

Fig. 5. The measured peak integrals of the polymer (a) and C14TAB (b) signals obtained via integration, plotted as function of the vertical position in the NMR tube. The zero
position (z = 0 mm, dashed line) represents the center of the RF coil. The change in the initial border of the hydrogel is highlighted in gray. The estimated error in the signal
intensity was �5%.

Fig. 6. Experimental results for the hydrogel-surfactant system. (a) Polymer and (b) C14TAB peak areas obtained via integration, plotted as functions of the vertical position in
the NMR tube. The dashed line indicated the position of the initial interface. The color scale shows the intensity.
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At the end of the experiment, the estimated hydrodynamic radius of
the micelle both in the solution and in the hydrogel was
3.0 ± 0.2 nm, which is around 4 times smaller than the initial hydro-
gel mean mesh size. An independent self-diffusion study of the
C14TAB in solution as a function of concentration shown in Fig. 9

is in a close agreement with the Dsln
s values (for experimental

details, please see ESI) proving the validity of the SSD measure-

ments. The values of Dgel
s for concentrations lower than CMC are

similar to those obtained in solutions confirming that the monomer
diffusion in the polymer network is unrestricted, and indicating that
there are no significant interactions with the hydrogel. However,

after reaching CMC in the hydrogel, Dgel
s values are 2–4 times lower

than those in the solution for the same C14TAB concentrations indi-
cating that the mobility of the surfactant micelles is hindered due to
the obstruction from the polymer network. Moreover, the presence
of the hydrogel enhances the interactions between micelles compa-
rable to those in a solution with effectively higher surfactant
concentrations [35]. As hydrophobic drugs will be entrapped in
the lipophilic core of the surfactant micelles, the diffusion of such
drugs will be equal to the diffusion of the micelle and thus equally
hindered by the polymer network.

The combination of 1D CSI and SSD into one experimental pro-
tocol enables a detailed comparison of mutual and self-diffusion
processes in hydrogel systems. For our experimental series of sur-

factant diffusion into the hydrogel, the final value of Dgel
s

Dgel
m
was around

0.8. This result suggests that the time and space sampled during
SSD experiments are sufficient to adequately describe the mutual
diffusion of the investigated system. As shown above, the localized
self-diffusion measurements provide a more detailed picture of the
release process than the 1D CSI alone, allowing the identification of
both surfactant forms (monomers or micelles) as well as a descrip-
tion of their interactions within the polymer network.

In addition to quantitative screening of drug delivery systems,
the presented NMR protocol may be implemented in studies of
concentration dependent structures on the interfaces between
two immiscible liquids for application in improved oil recovery
[36], liquid-liquid extraction [37], monitoring the formation and
stability of emulsions [38], and dissolution kinetics [37]. Our
experimental approach enables monitoring of both swelling and
solute diffusion which can be used to analyze homogeneity of
alignment media such as lyotropic liquid crystalline and stretched
polymer gels [39,30]. Combined 1D CSI and SSD NMR experiment
can be used to perform NMR titrations and in situ monitoring of
the chemical reactions through providing information about mech-
anisms as well as stoichiometry of complexes and products [40,41].

5. Conclusion

The swelling and molecular transport in the hydrogel-
surfactant system formulations designed for controlled drug
release in water are highly complex processes. 1D CSI NMR and
PFG-NMR are complementary techniques for studies of these
processes because of the differences in length and time scales.
We have demonstrated that the combination of the 1D CSI NMR
and SSD NMR methods provides detailed information on the diffu-
sion processes as well as on the structure of the surfactant in the
non-equilibrium hydrogel-based system. Important applications
in areas such as drug delivery are strongly affected by rates of
micellar diffusion in polymeric gels, which are determined by the
hydrodynamic and electrostatic micelle-micelle and micelle-gel
interactions, as well as the thermodynamic relations that govern
micelle formation. When applied to drug delivery systems, the
experimental protocol presented in this paper will give a detailed
description of the local dynamic processes, as it gives a unique
opportunity to follow the development of the local transport pro-
cesses during drug release. Compared with previously reported
approaches to study self- and mutual diffusion processes [24,26],
our experimental protocol provides information about the
structure-dependent diffusional behavior in a simple and
straightforward manner. The presented NMR protocol may be

Fig. 7. The diffusion coefficient of the surfactant in solution (slice located at
+5.87 mm from the center of the RF coil) and in hydrogel (slice located at�5.87 mm
from the center of the RF coil) shown as a function of the experiment time.

Fig. 8. The C14TAB concentration in solution (average value obtained from three
positions located within the X1 slice) and in hydrogel (average value obtained from
three positions located within the X2 slice) shown as a function of the experiment
time.

Fig. 9. The self-diffusion coefficient of the surfactant in solution (slice located at
+5.87 mm from the center of the RF coil) and in gel (slice located at �5.87 mm from
the center of the RF coil) shown as a function of the surfactant concentration. The
Dsln

s values from independent diffusion studies are shown for comparison (empty
triangles). The dotted line is drawn to guide the eye.
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implemented in studies of concentration dependent structures on
the interfaces between two immiscible liquids for application in
improved oil recovery [36], liquid-liquid extraction [37], monitor-
ing the formation and stability of emulsions [38], and dissolution
kinetics [37]. In future research, we will study the diffusional
behavior of liposomes incorporated in biopolymer-based hydrogel
system.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jcis.2018.08.112.
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1. The hydrogel mesh size determination

The average mesh size of the pNIPAM hydrogel was determined from the
Flory’s theory. The mesh size of a swollen hydrogel (ξsw) is dependent on
the root-mean-square end-to-end distance of the polymer subchain between two
crosslinking points in the unperturbed state (

√
r20):

ξsw = ν
− 1

3
2s

√
r20, (S1)

where ν2s is the volume fraction of the polymer, which equals the reciprocal
value of the volumetric swelling degree (Q−1

v ). For calculating
√
r20, the following

expression is used:

√
r20 = l(

2Mc

M0
)

1
2C

1
2

N , (S2)

where l is the length of a C-C bond (l = 0.154 nm), Mc is the molar mass
of the subchain between two crosslinking points, M0 is the molar mass of the
monomer (M0 = 113.16 gmol−1), and CN is the Flory’s characteristic ratio,
which is a measure of the extension of the polymer chain in a disordered con-
dition (For NIPAM CN = 11.7 [1]). Assuming a statistical copolymerization in
the synthesis, the molar mass of the subchain between two crosslinking points
(Mc) is given by the average molar mass of monomers (M0) and the degree of
crosslinking (dc) as

Mc =
1

2
M0d

−1
c , (S3)

and
dc =

nDAT
nDAT + nNIPAM

, (S4)
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where nDAT and nNIPAM are the number of moles of DAT and NIPAM,
respectively. The value of the volumetric swelling ratio (Qv) can be obtained by
measuring the increase of the weight of the hydrogel during the swelling process
in the following manner:

Q−1
v =

1
ρpol

Qm

ρsolv
+ 1

ρpol

, (S5)

where Qm is the mass swelling ratio, and ρsolv and ρpol are the densities of
the solvent and the hydrogel, respectively. For hydrogel swollen in water at 298
K, ρsolv is 1.0 gmL−1, and ρpol is 1.1gmL−1. The mass swelling ratio (Qm) of
the hydrogels is calculated based on:

Qm =
Ws

Wd
, (S6)

where Ws is the weight of the swollen hydrogel and Wd is the weight of the
dry hydrogel.

Based on eqs.(S1-S6), the mesh size of the hydrogel can be obtained by
determining the swelling ratio (Qm) of the hydrogel.

Table S1: The values for the number of moles of DAT,nDAT and NIPAM,nNIPAM , and the
mass swelling ratio,Qm used for the mesh size calculation

parameter value
nDAT (mol) 0.129×10−3

nNIPAM (mol) 3.509×10−3

Qm (a.u.) 50.8

2. Mutual diffusion coefficient (Dm) determination

3. C14TAB self-diffusion studies in solutions

The independent C14TAB self-diffusion studies in solutions with varying con-
centration were performed on a Bruker AVANCE DRX 600 MHz NMR spec-
trometer equipped with a a triple resonance cryoprobe head with gradient unit.
The measurements were performed at 298 (± 1) K using a stimulated echo
sequence with the longitudinal eddy current delay and bipolar sine shaped gra-
dient pulses, and two spoiling gradients (ledbpgp2s). The signal intensity was
recorded as a function of gradient strength (g) at 16 different values between
0.68 and 32.35 G/cm. The maximum values of g (gmax) were chosen to obtain
almost complete attenuation (>90%) of the C14TAB resonances. The gradient
duration time (δ) and the diffusion time (∆) were 1.5-2 ms and 100-200 ms,
respectively.

2
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Figure S1: Time-development of the normalized concentration profiles of C14TAB in the
hydrogel fitted with Equation 2. The resulting Dm is 7.7 ±0.5 × 10−11m2s−1.
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