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Abstract
We prove that any Fourier–Mukai partner of an abelian surface over an algebraically closed
field of positive characteristic is isomorphic to a moduli space of Gieseker-stable sheaves.
We apply this fact to show that the set of Fourier–Mukai partners of a canonical cover of a
hyperelliptic or Enriques surface over an algebraically closed field of characteristic greater
than three is trivial. These results extend earlier results of Bridgeland–Maciocia and Sosna
to positive characteristic.

1 Introduction

The main motivation of this paper is the recent series of results in the study of equivalences
of derived categories of sheaves of smooth projective varieties over fields other than the field
of complex numbers. For instance, over finite fields, the first named author proves that the
Hasse–Weil zeta function of an abelian variety, as well as of smooth varieties of dimension
at most three, is unaltered under equivalences of derived categories [9,11]. Moreover, Ward
in his thesis [35] produces examples of genus one curves over Q admitting an arbitrary
number of distinct Fourier–Mukai partners, revealing in this way consistent differences with
the case of elliptic curves over C. Finally, Lieblich and Olsson in [17] extend to positive
characteristic seminal works of Mukai and Orlov concerning derived equivalences of K3
surfaces. In particular, they prove that any Fourier–Mukai partner of a K3 surface X over
an algebraically closed field of characteristic p �= 2 is a moduli space of Gieseker-stable
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sheaves on X , and in addition X admits only a finite number of Fourier–Mukai partners.
While Orlov’s proof relies on Hodge theory, Lieblich–Olsson’s proof relies on deformation
theory of perfect complexes and on the theory of liftings to the Witt ring.

Inspired by the results of [17], in this paper we focus on special classes of abelian and K3
surfaces that arise as canonical covers of hyperelliptic and Enriques surfaces. Our first main
result is an extension of a work of Sosna [34, Theorem 1.1] to positive characteristic.

Theorem 1.1 Let S be a hyperelliptic surface over an algebraically closed field of charac-
teristic p > 3 and let A be its canonical cover. Then any smooth projective surface that is
derived equivalent to A is isomorphic to either A or its dual ̂A.

We refer to Theorem 4.4 for a slightly stronger result. One of the main ingredients in the
proof of Theorem 1.1 is the characterization of Fourier–Mukai partners of abelian surfaces in
positive characteristic as moduli spaces of Gieseker-stable sheaves. In particular we extend
the result [6, Theorem5.1] of Bridgeland–Maciocia to positive characteristic. In the following
we denote byD(X) the bounded derived category of coherent sheaves on a smooth projective
variety X .

Theorem 1.2 Let A be an abelian surface over an algebraically closed field k of positive
characteristic and let Y be a smooth projective variety over k. Suppose furthermore that
there is an equivalence of triangulated categories � : D(A) → D(Y ). Then Y is an abelian
surface and A is isomorphic to a moduli space of Gieseker-stable sheaves on either Y or its
dual ̂Y .

The proof of the previous theorem is based on the notion of filtered equivalence (cf.
[17,18]). We recall that a derived equivalence � : D(X) → D(Y ) of surfaces induces a
homomorphism �CH : CH∗(X) → CH∗(Y ) between the numerical Chow groups. Then
one says that � is filtered if �CH(0, 0, 1) = (0, 0, 1). In Proposition 3.1 we show that in the
case of abelian surfaces, a filtered equivalence induces an isomorphism between the surfaces.
Hence in order to complete the proof of Theorem 1.2, we construct an equivalence of derived
categories

� : D(A)
�−→ D(Y )

�−→ D(Y )

where� is an autoequivalence such that the moduli spaceMY (v) of Gieseker-stable sheaves
with v = �CH(0, 0, 1) is a smooth surface that admits a universal family U . This completes
the proof as the composition of � with the Fourier–Mukai functor associated to U is a
filtered equivalence. We have been able to perform this strategy only if the rank component r
of �CH(0, 0, 1) is non-zero. In the other case r = 0, we had to involve Mukai’s equivalence
SY : D(Y ) → D(̂Y ) induced by the Poincaré bundle in order to apply the same plan.
This explains why the conclusions of Theorem 1.2 and [6, Theorem 5.1] are not completely
symmetric.

In Sect. 6 we observe that one can push the techniques of [17] a little further in order to
prove that K3 surfaces that are canonical covers of Enriques surfaces in characteristic p > 3
do not admit any non-trivial Fourier–Mukai partner. This in particular extends the second
part of the result of Sosna [34, Theorem 1.1] to positive characteristic.

Theorem 1.3 Let S be anEnriques surface over an algebraically closed field of characteristic
p > 3 and let X be its canonical cover. Then any smooth projective surface that is derived
equivalent to X is isomorphic to X.

123



Derived equivalences of canonical covers of hyperelliptic…

1.1 Notation

Unless otherwise specified we work over an algebraically closed field k of positive charac-
teristic p.

2 Backgroundmaterial

2.1 Fourier–Mukai transforms and Chow groups

Let k be an algebraically closed field of positive characteristic p. The bounded derived
category of sheaves of a smooth projective variety X is defined as D(X) := Db

(Coh(X)
)

.
The category D(X) is k-linear and triangulated. If Y is another smooth projective variety, an
object E in D(X × Y ) defines a Fourier–Mukai functor via the assignment:

�E : D(X) → D(Y ), F �→ Rp2∗
(

p∗
1F

L⊗ E)

where p1 and p2 denote the projections from X × Y onto the first and second factor respec-
tively. An important theorem of Orlov tells us that any equivalence F : D(X) → D(Y ) is of
Fourier–Mukai type, i.e. there exists a unique up to isomorphism kernel E in D(X ×Y ) such
that F � �E . Finally we recall that the composition of Fourier–Mukai transforms is again
of Fourier–Mukai type.

Now consider an abelian surface A over k. We denote by CH∗(A)num = ⊕iCHi (A)num
the graded ring of algebraic cycles modulo numerical equivalence so that

CH0(A)num � Z, CH1(A)num � NS(A) and CH2(A)num � Z,

where NS(A) denotes the Néron–Severi group of A up to torsion. Moreover we set
CH∗(A)num,Q := CH∗(A)num ⊗ Q. For an object F in D(A) we denote by v(F) ∈
CH∗(A)num,Q its Mukai vector (see [7, Sect. 5.2] and [2, p. 3]). Hence the Mukai vector
of a locally free sheaf E on A is v(E) = (

rk(E), c1(E), χ(E)
)

and the map

v : D(A) → CH∗(A)num,Q

factors through the Grothendieck group K (A) of locally free sheaves via the Chern character

ch : K (A) → CH∗(A)num,Q.

Finally, we denote theMukai pairing on CH∗(A)num,Q by

〈(r , l, χ), (r ′, l ′, χ ′)〉A := l · l ′ − r χ ′ − χ r ′,

so that by the Grothendieck–Riemann–Roch Theorem there are equalities

〈v(F), v(G)〉A = −χ(F,G) for any objects F,G in D(A) (2.1)

(as usual χ(F,G) = ∑

i (−1)idimHomi
D(A)(F,G)).

Given another abelian surface B, a Fourier–Mukai functor �E : D(A) → D(B) induces
a group homomorphism �CH

E : CH∗(A)num,Q → CH∗(B)num,Q through the formula

�CH
E (−) := pr2∗

(

pr∗1(−) · v(E)
)

where pr1 and pr2 denote the projections from the product A × B onto the first and second
factor respectively.We point out that in general�CH

E does not respect the grading. As showed
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in [7] and [10, Sect. 3], we have that
(

�E ◦�E ′
)CH � �CH

E ◦�CH
E ′ , and that�CH

E is invertible
if �E is an equivalence. Finally, we note that if �E is an equivalence, then it follows that

〈

�CH
E

(

v(F)
)

, �CH
E

(

v(G)
)〉

B = 〈

v(F), v(G)
〉

A (2.2)

from (2.1), and by the fact that v ◦ �E = �CH
E ◦ v.

We conclude this subsection by pointing out the following peculiar fact true for abelian
surfaces. Its proof is identical to that of [7, Corollary 9.43] with the opportune modifications.
Moreover it holds in any dimension.

Proposition 2.1 If � : D(A) → D(B) is an equivalence of derived categories of abelian
surfaces, then

�CH(

CH∗(A)num
) = CH∗(B)num.

We will tacitly use the previous result throughout the rest of the paper.

Notation 2.2 Given an abelian surface A over k we denote by CH∗(A) = ⊕iCHi (A) the
graded ring CH∗(A)num.

2.2 Some examples of (auto)equivalences

Wedenote by A an abelian surface and by ̂A its dual variety.Moreover letP be the normalized
Poincaré line bundle on A × ̂A so that SA := �P : D(A) → D(̂A) is an equivalence of
triangulated categories [23]. The action of SCH

A swaps the first and third entry of a vector,
e.g.:

SCH
A

(

CH0(A)
) = CH2(̂A), SCH

A

(

CH2(A)
) = CH0(̂A), and SCH

A

(

CH1(A)
) = CH1(̂A).

Let now H be a line bundle on A and h be its class inCH1(A). The autoequivalence TA(H⊗n) :
D(A) → D(A) (n ∈ Z) defined by F �→ F ⊗ H⊗n acts on the numerical Chow rings as:

TA(H⊗n)CH(r , l, χ) =
(

r , l + r n h, χ + n l · h + r n2
h2

2

)

. (2.3)

Finally, the shift functor [1] : D(A) → D(A) acts on CH∗(A) by − 1.

2.3 Isogenies and exponents

If A is an abelian variety over k, we denote by nA : A → A the multiplication-by-n-map and
by A[n] its kernel. We say that an elliptic curve E over k is ordinary (resp. supersingular)
if E[p](k) = Z/pZ (resp. E[p](k) = 0) (cf. [16]). Therefore E is supersingular if and only
if pE is inseparable and the j-invariant is defined over Fp2 , the finite field with p2 elements
(cf. [33, Theorem V.3.1]). The exponent expϕ of a separable isogeny ϕ : A → B of abelian
varieties is the smallest positive integer that annihilates its kernel. Finally we recall that if
ϕ : A → B is an isogeny of exponent e, then there exists an isogenyψ : B → A of exponent
e such that ψ ◦ ϕ = eA and ϕ ◦ ψ = eB (cf. [3, Proposition 1.2.6]).

Proposition 2.3 Let ν : A → B be a separable isogeny of exponent e and denote by ν∗ :
CH1(B) → CH1(A) the pull-back homomorphism. Then there is an inclusion of groups
e2CH1(A) ⊂ Im(ν∗).
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Proof Letμ : B → A be the isogeny such thatμ◦ν = eA and note that Im
(

e∗
A : CH1(A) →

CH1(A)
) ⊂ Im(ν∗). We conclude by using [21, Remark 10.19] which shows that for any

line bundle L , e∗
AL is algebraically equivalent, hence numerically equivalent, to L⊗e2 . ��

Proposition 2.4 If E and F are supersingular elliptic curves and l �= p = char(k) is a prime,
then there exists an integer r � 0 and a separable isogeny ξ : F → E of degree lr .

Proof Since E and F are supersingular, their j-invariants are defined over Fp2 . Moreover
by [14, Corollary 78] there exists an isogeny ξ ′ : FFp2

→ EFp2
of degree lr for some

positive integer r � 0. Therefore we obtain our desired isogeny from ξ ′ by extension of
scalars. Finally we observe that ξ is separable as the degree of every non-separable isogeny
is divisible by char(k) [33, Corollary 2.12]. ��

2.4 Line bundles on a product of two elliptic curves

Let (E, OE ) be an elliptic curve over k. We denote theMumford bundle on E × E by

ME = OE×E (
E ) ⊗ pr∗1OE (−OE ) ⊗ pr∗2OE (−OE )

where 
E ⊂ E × E is the diagonal divisor and pr1, pr2 are the projections of E × E onto
the first and second factor respectively. Given another elliptic curve (F, OF ), line bundles
LE and LF on E and F respectively, and a morphism ϕ : F → E , we define a line bundle
on the product E × F

L(ϕ, LE , LF ) := (1E × ϕ)∗ME ⊗ pr∗E LE ⊗ pr∗F LF (2.4)

where prE and prF are the projections onto E and F respectively.

Proposition 2.5 If ϕ : F → E and ψ : F → E are isogenies, then
(

1E × (ϕ + ψ)
)∗ME � (1E × ϕ)∗ME ⊗ (1E × ψ)∗ME .

Therefore for any choice of line bundles ME and NE on E, and line bundles MF and NF on
F, there are isomorphisms

L(ϕ + ψ, ME ⊗ NE , MF ⊗ NF ) � L(ϕ, ME , MF ) ⊗ L(ψ, NE , NF ).

Proof The proof is a simple application of the see-saw principle. ��
If LE , L ′

E and LF , L ′
F are line bundles on E and F respectively such thatdE := deg LE =

deg L ′
E and dF := deg LF = deg L ′

F , then the classes of L(ϕ, LE , LF ) and L(ϕ, L ′
E , L ′

F )

coincide in CH1(E × F). We denote by l(ϕ, dE , dF ) the numerical class of L(ϕ, LE , LF )

(or L(ϕ, L ′
E , L ′

F )).

Corollary 2.6 With notation as in Proposition 2.5, in CH1(E × F) there are equalities of
classes

l(ϕ + ψ, dE + d ′
E , dF + d ′

F ) = l(ϕ, dE , dF ) + l(ψ, d ′
E , d ′

F )

where dE and dF are the degrees of ME and MF respectively, and d ′
E and d ′

F are the degrees
of NE and NF respectively.

Finally we show that any line bundle L ∈ Pic(E × F) can be realized as a line bundle of
the form (2.4).
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Proposition 2.7 For any line bundle L ∈ Pic(E × F) there exists a morphism ϕ : F → E
and line bundles LE ∈ Pic(E) and LF ∈ Pic(F) such that L � L(ϕ, LE , LF ).

Proof Denote by LE the restriction of L to E ×{OF }, and similarly let LF be the restriction
of L to {OE } × F . Set now L ′ := L ⊗ pr∗E L

−1
E ⊗ pr∗F L

−1
F . We note that the restriction of

L ′ to {OE } × F is trivial, while the restrictions L ′|E×{y} lie in Pic0(E) for all y ∈ F . Thus
by the universal property of the dual variety [26, Theorem on p. 117], there exists a unique
morphism ϕ̃ : F → ̂E such that

L ′ = (1E × ϕ̃)∗PE

where PE is the normalized Poincaré line bundle on E × ̂E (namely the restrictions of PE to
{OE }× ̂E and E×{O

̂E } are trivial). Moreover we have an isomorphismME � (1E ×η)∗PE

induced by the isomorphism η(x) = OE (x − OE ). Hence L ′ � (

1E × (η−1ϕ̃)
)∗ME and

the conclusion of the proposition follows by setting ϕ = η−1ϕ̃. ��

2.5 Lifting results

Let k be a perfect field of positive characteristic p and let W (k) be the ring of Witt vectors
with quotient field K . We recall that it is a complete discrete valuation ring such that K is
of characteristic zero (see for instance [31, Sect. II.6]). We will denote by W both W (k) and
finite extensions of W (k). If X denotes a smooth projective scheme over k, a projective lift
of X over W is a flat morphism ψ : X → W where X is a projective scheme, together with
the choice of an isomorphism between the closed fiber Xk and X . Grothendieck’s existence
theorem establishes that smooth curves always lift, as well as the line bundles on them.
Moreover ordinary abelian varieties admit a canonical lift over W characterized by the fact
that the absolute Frobenius lifts with the abelian variety (we recall that an abelian variety A
is ordinary if A[p](k) � (Z/pZ)dim A). We refer to [22, Appendix, Theorem 1] for the proof
of the following result.

Theorem 2.8 Let A be an ordinary abelian variety over a perfect field k of positive char-
acteristic p. Then there exists a projective lift A → W of A together with a morphism
FA : A → A compatible with the Frobenius of W such that FA|A is the absolute Frobenius
FA of A. The pair (A, FA) is called a canonical lift and is unique up to a unique isomor-
phism inducing the identity on A. Moreover, the restriction morphism Pic(A) → Pic(A) is
surjective and

Pic(A)FA := {L ∈ Pic(A) | F∗
AL � L⊗p} � Pic(A).

Finally, if ϕ : A → B is a morphism between ordinary abelian varieties, then there exists a
unique morphism ϕ̃ : A → B of canonical liftings such that FB ◦ ϕ̃ = ϕ̃ ◦ FA and ϕ̃|A = ϕ.

Another result that we will need in the sequel is the existence of liftings of étale covers. A
reference for the following theorem is [32, Sect. IX, 1.10].

Theorem 2.9 Let S be the spectrum of a complete local Noetherian ring, and let X → S be
a proper S-scheme. Moreover denote by X0 the closed fiber over the unique closed point of
S. Then the assignment X ′ �→ X ′ ×X X0 yields an equivalence between the category of finite
étale coverings of X and the category of finite étale coverings of X0.
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2.6 Moduli spaces

Let A be an abelian surface defined over a field k and let h ∈ NS(A) be the class of an ample
line bundle. Given a vector v = (r , l, χ) ∈ CH∗(A) with integral coefficients, we consider
themoduli spaceMh(v) ofGieseker-semistable sheaveswithMukai vector v, where stability
is computed with respect to h. We want to show that, under certain assumptions, these spaces
are irreducible and are Fourier–Mukai partners of A. We will need the following criterion
for fully faithfulness:

Theorem 2.10 [19, Theorem 2.6] A Fourier–Mukai functor �U : D(M) → D(A) between
the derived categories of two smooth abelian surfaces over k is fully faithful if the following
three conditions are satisfied:

(i) Homi (�U (k(x)),�U (k(y)) = 0 if 0 > i or i > dim X or when x �= y;
(ii) Hom0(�U (k(x)),�U (k(x)) = k for all x ∈ M;
(iii) �U∨[2] ◦ �U (k(x)) � k(x) for some x ∈ M.

Now we can turn to the proof of the following:

Theorem 2.11 If r > 0 and χ are coprime integers, then every Gieseker-semistable sheaf on
A with Mukai vector v is Gieseker-stable. Moreover, if in addition 〈v, v〉A = 0, thenMh(v)

is a smooth irreducible projective variety of dimension two which admits a universal family
U onMh(v)× A. Furthermore,Mh(v) has trivial canonical bundle and the Fourier–Mukai
functor �U : D(Mh(v)) → D(A) induces an equivalence of derived categories.

Proof The first assertion follows by [8, Remark 4.6.8] (cf. also [8, Remark 6.1.9]), while
the second follows by [24, Corollary 0.2]. The existence of a universal sheaf follows by
[25, Theorem A.6]. We remark, as noted by Lieblich–Olsson [17, Remark 3.17], that while
the results of [25] are just stated for characteristic 0, the argument is true also in positive
characteristic. The only tricky point in the algebraic setting is determining the non-emptiness
of these spaces, which can be done using the work of Langton [15, Theorem on p. 99].

To prove the irreducibility of Mh(v), we use an argument of Mukai. Let M ⊆ Mh(v)

be an irreducible component. The smoothness of Mh(v) implies that M is also a connected
component of the moduli space. Suppose that M �= Mh(v). Let U be the universal family
of Mh(v) restricted to M × A. We can construct the Fourier–Mukai functor

�U∨[2] : D(A) → D(M). (2.5)

Observe that we have an isomorphism of functors �U∨[2](−) � Rp1∗RHom(U, p∗
2(−))[2].

This functor sends any stable sheaf on A whose corresponding point lies on M ⊂ Mh(v)

to a skyscraper sheaf at that point on M , while it sends all the stable sheaves on A that are
not on M to zero (see for example [13, Proof of Theorem 2.2]—the proof uses only that
there are no nontrivial homs between stable sheaves of the same slope so it works also in
positive characteristic). On the other hand, for any sheafF on M , theMukai vector of�U (F)

only depends on the Mukai vector of F as it is obtained by convoluting v(F) with v(U∨).
This leads to a contradiction as skyscraper sheaves and the zero object have different Mukai
vectors.

Finally, we only have to show that �U is an equivalence. We will prove that it is fully
faithful using Theorem 2.10, and then conclude by [7, Proposition 7.6]. We remark that, even
though Chapter 7 of [7] is in characteristic 0, this proposition uses only the fully-faithfulness
of �U and some general results about k-linear categories and adjoint functors, so it works in
our setting.
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By [25, Proposition 3.12] the universal family U is strongly simple. In particular we have
that

(i) Homi (�U (k(x)),�U (k(y)) = 0 if 0 > i or i > dim X or when x �= y;
(ii) Hom0(�U (k(x)),�U (k(x)) = k.

So we just need to check that there is a skyscraper sheaf such that

�U∨[2] ◦ �U (k(x)) � k(x).

By the definition of universal family the functor�U sends a skyscraper sheaf k(x) to a stable
sheaf Ux ∈ Mh(v). The above discussion implies that E := �U∨[2](Ux ) is a skyscraper sheaf
on Mh(v). Since �U∨[2] is the left adjoint of �U , the strong simplicity of U implies that
HomD(Mh(v))(E, k(x)) � k, and so we are finished. ��

2.7 Relative moduli spaces

We also need to consider relative moduli spaces of Gieseker-semistable sheaves on a projec-
tive lift f : A → W of an abelian surface A over the ring ofWitt vectors. Let h be the class of
an ample line bundle as before, and let˜h be a lifting of h toA. Let v = (r , l, χ) ∈ CH∗(A) be
a vector with integral coefficients such that l is the class of a line bundle L that lifts to a line
bundle ˜L on A. Moreover set ṽ = (r ,˜l, χ) where˜l is the class of ˜L . By [20, Theorem 0.7]
(or [15, Theorem 0.2]) there exists a projective scheme MA/W (̃v) → W of finite type that
is a coarse moduli space for the functor of families of pure Gieseker-semistable sheaves with
Mukai vector v on the geometric fibers of f (where stability is computed with respect to˜h).
Moreover, there exists an open subscheme Ms

A/W (̃v) ⊂ MA/W (̃v) that is a coarse moduli
space for the subfunctor of families of pure Gieseker-stable sheaves. Thus, if (r , χ) = 1 (i.e.
every Gieseker-semistable sheaf is Gieseker-stable), then we haveMs

A/W (̃v) = MA/W (̃v).
Note that if we denote the closed fiber of f by Ak and the geometric generic fiberby Aη, then
there are isomorphisms

MA/W (̃v)|Ak � Mh(v) and MA/W (̃v)|Aη � Mhη (vη)

where Mhη (vη) is the moduli space of pure Gieseker-stable sheaves with vector vη =
(r , l̃|Aη , χ) on Aη, and hη is the restriction of˜h to Aη. The smoothness of the moduli space
implies that ˜f : MA/W (̃v) → W is formally smooth and of finite type, and hence flat. So,
with a choice of isomorphism MA/W (̃v)|Ak � Mh(v), it is a lift of Mh(v).

3 Filtered derived equivalences

An equivalence � : D(A) → D(B) of derived categories of abelian surfaces is filtered if

�CH(0, 0, 1
) = (0, 0, 1).

In [17, Theorem 6.1] the authors prove that if two K3 surfaces have a filtered equivalence
between them, then they are isomorphic. The proof of this statement is quite involved and
uses deformation theory of complexes in order to lift a derived equivalence of K3 surfaces
in positive characteristic to an equivalence of K3 surfaces in characteristic zero. Here we
notice that a filtered equivalence of abelian surfaces still induces an isomorphism. As the
kernel of an equivalence of abelian varieties is a sheaf (up to shift), its proof turns out to be
rather simple.
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Proposition 3.1 Let � : D(A) → D(B) be a filtered equivalence between the derived cat-
egories of two abelian surfaces. Then there exists an isomorphism f : A → B and a line
bundle L on A × B such that � is isomorphic to (− ⊗ L) ◦ f∗ up to shift. In particular A
and B are isomorphic.

Proof Equivalences of derived categories of abelian varieties send (up to shift) structure
sheaves of points Ox to sheaves. This is proved in [5, Lemma 10.2.6] in characteristic zero,
but its proof extends to positive characteristic without any change. Hence we can suppose
that �(Ox ) is a sheaf with Mukai vector (0, 0, 1), so it is itself a skyscraper sheaf. Since the
argument holds for all points x in A, the proposition follows by [7, Corollary 5.23]. ��
We now prove Theorem 1.2 of the introduction, which relies on the following technical
proposition.

Proposition 3.2 Let� : D(A) → D(B) be an equivalence between the derived categories of
two abelian surfaces. Then there exists an equivalence� : D(A) → D(C)whereC ∈ {B, ̂B}
such that the vector

�CH(0, 0, 1) := (r , l, χ)

satisfies the following conditions:

(i) r is positive;
(ii) l is the class of an ample line bundle on C;
(iii) r is coprime with χ .

Moreover we have C = B (resp. C = ̂B) if the first component of �CH(0, 0, 1) is nonzero
(resp. zero).

Proof Set

v0 := �CH(0, 0, 1) = (r0, l0, χ0).

We split our argument in several steps.

Step 1 Given an equivalence � : D(A) → D(B) as in the statement, there exists an equiva-
lence �1 : D(A) → D(C) with C ∈ {B, ̂B} such that the first entry of the vector

v1 := �CH
1 (0, 0, 1) = (r1, l1, χ1)

is positive. Moreover we have C = B if r0 �= 0, and C = ̂B otherwise.
If r0 > 0 there is nothing to prove and we simply set �1 = � : D(A) → D(B). If r0 < 0,

we set �1 := � ◦ [1] : D(A) → D(B) in order to make r0 positive. Suppose now that r0 = 0
and χ0 �= 0. Then it is enough to set�1 := SB ◦� if χ0 > 0, and�1 := SB ◦�[1] if χ0 < 0.
Observe that both these equivalences are betweenD(A) andD(̂B). Sowe are left with the case
r0 = χ0 = 0. Let �CH(1, 0, 0) := w0 = (s0, b0, ξ0). By noting that v(Ox ) = (0, 0, 1) for
any point x ∈ B, and v(OB) = (1, 0, 0), by (2.2) we find that 〈v0, w0〉B = l0 ·b0 = 1. Hence,
if B0 is a line bundle with class b0, then the composition

(

TB(B0) ◦ �
)CH sends (0, 0, 1) to

(0, l0, 1) as showed in (2.3). Thus we set �1 := SB ◦ TB(B0) ◦ � : D(A) → D(̂B) and we
have the desired equivalence.
Step 2 Given an equivalence �1 : D(A) → D(C) as in the previous step, there exists an
equivalence �2 : D(A) → D(C) so that in v2 := �CH

2 (0, 0, 1) = (r2, l2, χ2), r2 > 0 and χ2

is coprime with r2.
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Let w1 := �CH
1 (1, 0, 0) = (s1, b1, ξ1), so 〈v1, w1〉C = 1 and

I − r1 ξ1 − χ1 s1 = 1 where I := l1 · b1. (3.1)

By (3.1), it is possible to choose an n so that χ1 + nI is relatively prime with r1. Let B1 be a
line bundle with numerical class b1. By (2.3) the homomorphism

(

TC (B⊗n
1 ) ◦ �1

)CH sends
(0, 0, 1) to

v2 := (r2, l2, χ2) =
(

r1, l1 + r1 n b1, χ1 + n I + r1 n
2 b21
2

)

.

Our choice of n ensures that r2 and χ2 are relatively prime.
Step 3 Given an equivalence �2 : D(A) → D(C) as in the previous step, there exists an
equivalence �3 : D(A) → D(C) satisfying the conditions of the proposition.

Let � be an ample line bundle with class θ ∈ CH1(C). For any integer d > 0, the
equivalence TC (�⊗(r1 d)) ◦ �2 sends (0, 0, 1) to
(

r1, l1 + r1 n b1 + r21 d θ, χ1 + n I + r1 n
2 b21
2

+ r1 d
(

θ · (l1 + r1 n b1)
) + r31 d

2 θ2

2

)

.

Choose d large enough so that the second component is an ample class and set �CH
3 :=

TC (�⊗(r1 d)) ◦ �2. The first component of v3 := �CH
3 (0, 0, 1) is positive by the previous

steps, and the third component of v3 is congruent to χ2 modulo r1. ��
Theorem 3.3 Let A be an abelian surface and let � : D(A) → D(Y ) be an equivalence of
derived categories of smooth projective varieties. Then Y is an abelian surface. Moreover,
A is isomorphic to a moduli space of Gieseker-stable sheaves on either Y , or its dual ̂Y ,
according to whether the rank component of �CH(0, 0, 1) is non-zero, or zero, respectively.

Proof By general theory Y has trivial canonical bundle and Kodaira dimension 0. Let l �= p
be a prime and consider the �-adic cohomology groups Hi

ét (Y ,Q�). By [9, Lemma 3.1] the
equivalence � induces an isomorphism

H1
ét (Y ,Q�) ⊕ H3

ét (Y ,Q�)(2) � H1
ét (A,Q�) ⊕ H3

ét (A,Q�)(2)

which leads to the equality of Betti numbers:

b1(Y ) = b1(A) = 4.

Since Y is a smooth, projective surface with Kodaira dimension 0 and b1 = 4, it is isomorphic
to an abelian surface (See Theorem 6 and the table on p. 25 of [4]).

By Proposition 3.2 we may fix an equivalence � : D(A) → D(C) with C ∈ {Y , ̂Y } such
that in the vector

v := �CH(0, 0, 1) = (r , l, χ),

the rank component r is positive, the class l is ample, and χ is coprime with r . Moreover,
C = Y if the rank component of �CH(0, 0, 1) is non-zero, and C = ̂Y otherwise.

By Theorem 2.11 there exists a universal family U on Ml(v) × C , which induces an
equivalence

�U : D(Ml(v)) → D(C)

such that �CH
U (0, 0, 1) = v. As the composition

(

�−1
U ◦ �

)CH sends (0, 0, 1) to (0, 0, 1), by
Proposition 3.1 we get A � Ml(vl). ��
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4 FM partners of canonical covers of hyperelliptic surfaces

In this and the next section, we will work, unless otherwise specified, under the assumption
that the characteristic p of the base field is bigger than 3.

We denote the set of Fourier–Mukai partners of a smooth projective variety X by

FM(X) := { Y | Y is a smooth projective variety with D(Y ) � D(X)}/�.

In the case of an abelian variety A, we say that its set of Fourier–Mukai partners is trivial if
FM(A) = {A, ̂A}.

A hyperelliptic surface over an algebraically closed field k of positive characteristic p > 3
is a smooth projective minimal surface X with KX ≡ 0, b2(X) = 2, and such that each fiber
of the Albanese map is a smooth elliptic curve (cf. [1, Sect. 10]). These surfaces can be
described as quotients (E × F)/G of two elliptic curves E and F by a finite group G. The
group G acts on E by translations, and on F in a way such that F/G � P1. Moreover, there
are only a finite number of possibilities for the action of G on E × F , which have been
classified by Bagnera–De Franchis [1, 10.27].

By [1, Sect. 9.3] the order n of the canonical bundle of X is finite with n = 2, 3, 4, 6.
Therefore we can consider the canonical cover π : ˜X → X of the surface X , which is the
étale cyclic cover associated to the canonical bundle ωX . The degree of π is the order n of
ωX , and in addition π comes equipped with an action of the cyclic group that realizes X as
the quotient ˜X/(Z/nZ). According to Bagnera–De Franchis’ list [1, 10.27], the canonical
cover ˜X of an arbitrary hyperelliptic surface X = (E × F)/G is an abelian surface that sits
inside a tower of surfaces

E × F
π ′−→ ˜X

π−→ X ,

where π ′ is an étale cyclic cover of degree at most three. Moreover, if π ′ has degree three,
then F admits an automorphism group of order three and has j-invariant equals to zero.
Therefore the dual morphism ̂π ′ realizes the dual of ˜X as one of the following varieties: (i)
the product E × F , (i i) an étale cyclic cover of E × F of degree two, or (i i i) an étale cyclic
cover of E × F of degree three such that F has an automorphism group of order three.

4.1 The work of Sosna

In [34, Theorem 1.1] the author proves that the set of Fourier–Mukai partners of the canonical
cover of a complex hyperelliptic surface is trivial. By using Bagnera–De Franchis’ classi-
fication, Sosna’s theorem boils down to proving the following result concerning derived
equivalences of special abelian surfaces.

Theorem 4.1 (Sosna) Let E and F be complex elliptic curves and let A be a complex abelian
surface. Then the set FM(E × F) is trivial. Moreover, if E × F → A is a degree two étale
cyclic cover, then FM(A) is trivial. Finally, the same conclusion holds if E × F → A is a
degree three étale cyclic cover and rk NS(A) ∈ {2, 4}.

In view of Theorem 2.9 we prefer to work with étale covers rather than quotients. Thus
we reformulate Sosna’s theorem in the following version.

Proposition 4.2 Given a complex abelian surface A, then the set FM(A) is trivial in the
following cases:
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(i) A is isomorphic to the product E × F of two elliptic curves;
(ii) A is a degree two étale cyclic cover of a product E × F of two elliptic curves;
(iii) A is a degree three étale cyclic cover of a product E × F of two elliptic curves and

rk NS(A) ∈ {2, 4}.
Proof If A → E×F is a cover of degree one, two, or three, then the dual isogeny E×F → ̂A
realizes ̂A as a quotient of two elliptic curves. Then by Theorem 4.1 we conclude that FM(̂A)

is trivial. As FM(A) = FM(̂A) and rk NS(A) = rk NS(̂A), the proposition follows at once.
��

As an application of Proposition 4.2, we deduce some further finitiness results that will
be useful towards the proof of Theorem 1.1.

Proposition 4.3 If ϕ : A → E × F is an isogeny with degϕ = 8 and expϕ = 2, then FM(A)

is trivial. The same conclusion holds if rk NS(A) ∈ {2, 4}, degϕ = 27 and expϕ = 3.

Proof We show that the dual abelian variety ̂A satisfies the hypotheses of Proposition 4.2.
The result will follow as FM(A) = FM(̂A). Let q be either 2 or 3 and consider an isogeny
ψ : E×F → A of exponent q such thatψ◦ϕ = qA (recall that qA denotes themultiplication-
by-q-map on A). As deg qA = q4 and degϕ = q3, we deduce that degψ = q . Hence the
dual isogeny ̂ψ is a cyclic cover of E × F of order q . The second statement follows as
rk NS(A) = rk NS(̂A). ��

4.2 Strategy of the proof of Theorem 1.1

Since an abelian surface and its dual have the same Fourier–Mukai partners, the following
theorem implies Theorem 1.1.

Theorem 4.4 Let A be an abelian surface over an algebraically closed field of characteristic
p > 0. Then FM(A) is trivial in the following cases:

(i) A is isomorphic to the product E × F of two elliptic curves;
(ii) p > 2 and A is a degree two étale cyclic cover over the product E × F of two elliptic

curves;
(iii) p > 3 and A is a degree three étale cyclic cover over the product E × F of two elliptic

curves such that F admits an automorphism of order 3.

In order to prove the previous theorem, we will consider the following set of hypotheses

Setting 4.5 We denote by E and F two elliptic curves over an algebraically closed field k of
characteristic p > 0.Moreover we set ν : A → E×F to be either an isomorphism of abelian
surfaces, or an étale cyclic cover of degree dν = 2, 3 (as in the hypotheses of Theorem 4.4).
Finally we assume that p > deg ν.

Remark 4.6 Since the exponent of an isogeny divides its degree, the exponent of the isogeny
ν of Setting 4.5 is either 1 if ν is an isomorphism, or dν otherwise. Now let μ : E × F → A
be an isogeny of exponent dν such thatμ◦ν = (dν)A. Then the dual isogeny μ̂ : ̂A → E×F
is either an isomorphism, or else its degree and exponent satisfy (deg μ̂, exp μ̂) = (d3ν , dν).

As an application of Theorem 2.9 we deduce that both the isogenies ν and μ̂ of Setting 4.5
and Remark 4.6 lift to the ring of Witt vectors. In the following result we check that their
degrees and exponents remain unchanged when passing from the special fiber to the general
fiber.
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Proposition 4.7 Let E and F be elliptic curves and ϕ : A → E × F be an étale isogeny of
abelian surfaceswith degree relatively primewith p. IfE → R andF → R are projective lifts
of E and F over an Henselian local ring R with residue field k, then there exists a projective
lift A → R of A and an isogeny ϕR : A → E ×R F such that ϕR lifts ϕ and its restriction
ϕη : Aη → Eη × Fη to the geometric general fibers is an isogeny with degϕη = degϕ and
expϕη = expϕ

Proof By Theorem 2.9 there is a projective lift A → R of A and an étale cover ϕR : A →
E ×R F that specializes to ϕ. Up to composing ϕR with a translation of E ×R F , we can
suppose that ϕR is a homomorphism of groups. We are going to prove that the restriction
of ϕR to the geometric generic fiber of A is an isogeny ϕη : Aη → Eη × Fη such that
degϕη = degϕ. To see this we notice that the kernel K of ϕR is a finite étale group over R
and moreover, as ϕ is separable, we have

degϕη = ∣

∣ker ϕη

∣

∣ = ∣

∣Kη

∣

∣ = ∣

∣Kk
∣

∣ = ∣

∣ker ϕ
∣

∣ = degϕ

where Kk is the closed fiber and Kη is the geometric generic fiber. In addition, since K is a
finite étale group scheme over R, the closed fiber is killed by multiplication by n if, and only
if, the same is true for the geometric generic fiber. So we have also equality of the exponents.

��
We will deduce Theorem 4.4 from the following technical proposition.

Proposition 4.8 Assume the hypotheses of Setting 4.5 and let� : D(B) → D(A) be an equiv-
alence of derived categories of abelian surfaces. Suppose that there exists an equivalence
� : D(B) → D(C) with C ∈ {A, ̂A} such that the Mukai vector

v := (r , l, χ) = �CH(0, 0, 1)

satisfies the following conditions:

(E1) r is positive;
(E2) the class l ∈ CH1(C) is is ample;
(E3) χ is coprime with r .

Set λ = ν if C = A, and λ = μ̂ otherwise (see Remark 4.6). In addition assume that there
exist projective lifts E → W and F → W of E and F over a finite ramified extension of the
ring of Witt vectors respectively such that the following conditions hold:

(A1) If we let λW : C → E ×W F be the lift of λ determined by Proposition 4.7, and let
L an ample line bundle on C with numerical class l, then L lies in the image of the
restriction map

ρ:Pic(C) → Pic(C).

(A2) If deg ν = 3 and F admits an automorphism of order three, then rk CH1(Cη) ∈ {2, 4}
where Cη is the geometric generic fiber of C → W.

Then B is either isomorphic to C or ̂C. In particular we have that FM(A) is trivial.

Proof We divide our argument in several steps.

Step 1.We first prove that there exists a projective lift B → W of B such that the geometric
generic fiber Bη is derived equivalent to Cη. Let L be an ample line bundle on C with class l.
Then Theorem 3.3 implies that B is isomorphic to a moduli spaceMl(v) of Gieseker-stable
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shaves with Mukai vector v = (r , l, χ) ∈ CH∗(C). Now consider a preimage ˜L of L under
ρ as in (A1) and the relative moduli space

M
˜l (̃v) → W ,

where ṽl := (r ,˜l, χ) and˜l is the class of ˜L . As discussed in Sect. 2.7, this is a projective lift
of B and the geometric generic fiberMη is a moduli space of Gieseker-stable sheaves on Cη

with Mukai vector vη = (r ,˜l|Cη , χ). Therefore as discussed in Theorem 2.11, the conditions
(E1), (E3), and 〈vη, vη〉Cη = 0 imply thatMη is an abelian surface. In addition there exists
a universal family Uη on Mη × Cη that induces an equivalence �U : D(Cη) → D(Mη).
Step 2. Now we prove that under the assumptions of Theorem 4.4 the abelian surface Cη is

isomorphic to eitherMη or its dual̂Mη. By the Lefschetz principle we can suppose that the
abelian surface C is defined over a subfield of the complex numbers C and therefore that Cη

is defined over C. Suppose first that ν : A → E × F is an isomorphism. Then both λ and
λW are isomorphisms and therefore so is the restriction λη : Cη → Eη × Fη of λW to the
geometric generic fibers. As a product of elliptic curves has no non-trivial Fourier–Mukai
partners (Theorem 4.1), there is an isomorphism Cη � Mη.

Suppose now that ν : A → E × F is a degree two cyclic cover. By Remark 4.6 we
have (deg λ, exp λ) ∈ {(2, 2), (8, 2)} and by Proposition 4.7 we have (deg λη, exp λη) =
(deg λ, exp λ). Therefore by Propositions 4.2 and 4.3 we deduce that either Cη � Mη or

Cη �̂Mη. The case when ν has degree three follows similarly by using the condition (A2).
Step 3. The argument of [17, Lemma 6.5] (based on a result of Matsusaka–Mumford) proves
that the isomorphism Cη � Mη (resp. Cη � ̂Mη) between the geometric generic fibers of
the two liftings induces an isomorphism C � B (resp. C � ̂B) between the closed fibers.
This immediately yields that either B � A or B � ̂A, and hence that FM(A) is trivial. ��

5 Finding a suitable equivalence

In this section we finish the proof of Theorem 1.1. According to Proposition 4.8, we only
need to verify its hypotheses. We work under the hypotheses of Setting 4.5 and assume that
the abelian surface B is a Fourier–Mukai partner of A. In the following we will examine two
cases: (a) at least one of the two elliptic curves E or F is ordinary, and (b) both E and F are
supersingular.

The following two propositions show the existence of an equivalence � : D(B) → D(C)

satisfying the hypotheses (E1), (E2) and (E3) of Proposition 4.8, without further assumptions
on the elliptic curves.

Proposition 5.1 Let A and B be abelian surfaces and � : D(B) → D(A) be an equivalence
of derived categories. Fix two distinct primes p1 and p2. Then there exists an equivalence
� : D(B) → D(C) with C ∈ {A, ̂A} such that the vector

(r , l, χ) := �CH(0, 0, 1)

satisfies one the two following statements:

(i) r is relatively prime with both p1 and p2;
(ii) either p1 divides r but not χ and p2 divides χ but not r , or vice versa.
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Proof Set

v0 := (r0, l0, χ0) = �CH(0, 0, 1)

w0 := (s0, h0, ξ0) = �CH(1, 0, 0).

Since � is an equivalence, by (2.2) we have that

1 = 〈v0, w0〉A = I − s0 χ0 − r0 ξ0, where I := l0 · h0. (5.1)

Let H0 be a line bundle on A such that its class in the Néron–Severi group is h0. Therefore
at the level of numerical Chow rings the equivalence �n := TA(H⊗n

0 ) ◦ � : D(B) → D(A)

(n ∈ Z>0) sends (0, 0, 1) to

vn := �CH
n (0, 0, 1) = (

r0, l0 + r0 n h0, χn
)

where

χn := χ0 + n I + r0 n
2 h20
2

. (5.2)

We divide the proof in five cases.

Case I Suppose that neither p1 nor p2 divides χ0. In this case the equivalence � is given by
the composition SA ◦ � : D(B) → D(̂A).

Case II Suppose that both p1 and p2 divide both r0 and χ0. By (5.1) we see that I is relatively
prime with p1 and p2 as well. Now choose a positive integer n coprime with both p1 and
p2. Therefore by looking at the definition (5.2) of χn , this immediately implies that χn is
relatively prime to both p1 and p2. We conclude then as in Case I.

Case III Suppose that both p1 and p2 divide r0, and that precisely one of them, say p1,
divides χ0. We choose a positive integer n such that n is relatively prime to both p1 and p2.
By (5.1) I is relatively prime to p1, and by (5.2) p1 does not divide χn . Moreover, again by
(5.2) and the fact that n is general, we can suppose that p2 does not divide χn as well. We
then set � := SA ◦ �n .

Case IV Suppose that both p1 and p2 divide χ0 and that precisely one of them, say p1, divides
r0. In this case we proceed as in Case III by considering the composition SA ◦ � in place
of �.

Case V Suppose that one of the primes, say p1, divides both r0 and χ0, but p2 divides neither
r0 nor χ0. Let n = p2 and consider �n . By (5.1) p1 does not divide I , and hence p1 does
not divide χn . Moreover, by our choice of n, we have that p2 does not divide χn as well. We
then conclude as in Case I. ��
Proposition 5.2 Assume the hypotheses of Setting 4.5 and let � : D(B) → D(A) be an
equivalence of triangulated categories. Moreover assume that deg ν ≥ 2. Then there exists
an equivalence � : D(B) → D(C) with C ∈ {A, ̂A} such that the vector

(r , l, χ) := �CH(0, 0, 1)

satisfies the following conditions:

(i) r is positive and relatively prime with p;
(ii) the class l ∈ CH1(C) is ample;
(iii) χ is relatively prime with r .
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Now set λ = ν if C = A and λ = μ̂ otherwise. Then the class l is the pull-back of some
ample class in CH1(E × F) via λ.

Proof By using Proposition 5.1 with p1 = p and p2 = deg ν, we can find an equivalence
� : D(B) → D(C) with C ∈ {A, ̂A} such that the vector

v0 := (r0, l0, χ0) = �CH(0, 0, 1)

satisfies one of the two following conditions: (a) r0 is relatively prime to both p1 and p2,
or (b) one of the primes p1 and p2 divides r0 but not χ0, while the other divides χ0 but not
r0. Set λ = ν if C = A and λ = μ̂ otherwise. We claim that there exists an equivalence
�1 : D(B) → D(C) such that in the vector

v1 := (r1, λ∗l1, χ1) = �CH
1 (0, 0, 1),

r1 is positive and relatively prime with p, and l1 ∈ CH1(E × F). In order to prove the claim,
we distinguish the two cases (a) and (b) mentioned above. First consider case (a). As r0 is
not zero, we can make it positive by composing with the shift functor, if necessary. Let L
be a line bundle representing l0 and m be a positive integer such that p22 divides (r0 m + 1).
Hence we can write 1 + r0 m = p22 u for some integer u and we consider the composition
TC (L⊗m) ◦ �. Then

(

TC (L⊗m) ◦ �
)CH

(0, 0, 1) = (

r0, (p22 u) l0, χ1
)

for some integer χ1. By Proposition 2.3 there exists a class l1 ∈ CH1(E × F) such that
(p22 u) l0 = λ∗(u l1). This proves the claim in case (a) as we can set �1 := TC (L⊗m) ◦ �

and v1 := (r0, (p22 u) l0, χ1).
Now consider case (b). If necessary we replace � with SC ◦ � in order to make r0

divisible by p1 = p but relatively prime with p2 = deg ν. Let L and m be as above. Then
the equivalence �1 := TC (L⊗m) ◦ � sends the vector (0, 0, 1) to

�CH
1 (0, 0, 1) =

(

r0, p22 u l0, χ0 + m l20 + r0 m
2 l

2
0

2

)

:= (r0, p22 l2, χ2)

where l2 is a class in CH1(C). Since 〈v0, v0〉C = 0, we have that l20 = 2r0χ0 and hence

χ2 = χ0 + 2m r0 χ0 + m2 r20 χ0.

As p1 divides r0 but does not divide χ0, it follows that

χ2 ≡ χ0 �≡ 0 (mod p).

Hence,
(SC ◦ �1

)CH
(0, 0, 1) = (

χ2, p22 ω, r0) = (χ2, λ∗ω′, r0
)

for some elements ω ∈ CH1(C) and ω′ ∈ CH1(E × F). Also, p2 = deg ν does not divide
r0 (here we use the fact that SCH

C induces an homomorphism CH1(C) → CH1(̂C); see
Sect. 2.2). If necessary we can make the integer χ2 positive by composing with the shift
functor. This concludes the proof of the claim.

Now let w = (s, h, ξ) be the Mukai vector of �CH
1 (1, 0, 0) so that 〈w, v1〉C = 1.

Moreover let H be a line bundle whose numerical class is h and note that

I − r1 ξ − χ1 s = 1 where I := l1 · h. (5.3)
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Choose a positive integer n such that

n p22 I + χ1 �≡ 0 (mod q) for every prime divisor q �= p2 of r1 that does not divide I .

Now set�2 := TC (H⊗(n p22))◦�1 and (r2, l2, χ2) := �CH
2 (0, 0, 1).With a simple calculation

we find

r2 = r1, l2 = λ∗l1 + r1 n p22 h, χ2 = χ1 + n p22 I + r1 n
2 p42

h2

2
. (5.4)

We note that r2 is not divisible by p, and moreover that by (5.4), χ2 is not divisible by any
prime divisor q �= p2 of r1 that does not divide I . On the other hand, if a prime divisor
q �= p2 divides both r1 and I , then by (5.3) it does not divide χ1, and hence does not divide
χ2. Finally we prove that χ2 is not divisible by p2 in the case where p2 divides r1. But this
follows by the construction of �1, and by noting that in the case (b) discussed earlier, p2
does not divide r0.

Now consider the composition �3 := TC (λ∗�⊗(r2 d)) ◦ �2 where � := OE (OE ) �
OF (OF ) and d � 0 is a positive integer. By a direct computation we have that �CH

3 sends
the vector (0, 0, 1) to

v3 := (r2, l2 + r22 d λ∗θ, χ3)

where θ is the numerical class of � and

χ3 := χ2 + r2 d (l2 · λ∗θ) + r32 d
2 (λ∗θ)2

2
.

By Proposition 2.3 and (5.4) we can write l2 = λ∗l3 for some class l3 ∈ CH1(E × F), and
hence

χ3 ≡ χ2 + r2 d pc2 (l3 · θ) + r32 pc2 d
2 θ2

2
≡ χ2 (mod p2)

as the isogeny λ has degree either pc2 with c = 1 ifC = A, and c = 3 otherwise. Therefore the
first component of v3 is still positive and relatively primewith p, while the second component
is a pull-back of an ample class in CH1(E × F) (for d � 0). Moreover χ3 ≡ χ2 (mod r2)
and hence it is still relatively prime with r2 = r1. Our desired equivalence is hence given by
� := �3. ��

Now we consider separately the case of supersingular abelian surfaces and the case of
abelian surfaces that are not supersingular.

5.1 The case where one of the two curves is ordinary

The above results imply that when one of the elliptic curve involved is not supersingular then
we can construct an equivalence satisfying (E1), (E2) and (E3). In order to conclude we
need to prove that the hypotheses (A1) and (A2) of Proposition 4.8 hold as well. We will first
prove a couple of auxiliary results.

Proposition 5.3 Let E and F be ordinary elliptic curves. Then there exist projective liftings
E → W and F → W of E and F over the ring of Witt vectors, respectively, such that the
restriction morphism Pic(E ×W F) → Pic(E × F) is surjective.
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Proof Theproduct E×F is an ordinary abelian surface so it has a canonical lift (Y → W , FY )

by virtue of Theorem 2.8. Moreover the restriction morphism Pic(Y) → Pic(E × F) is
surjective. However by using the universal property of the fiber product, it is immediate to
show that Y � E ×W F where E → W and F → W are the canonical lifts of E and F
respectively. ��
Proposition 5.4 If E is an ordinary elliptic curve and F is supersingular, then for any
projective lifts E → W and F → W of E and F respectively, the restriction morphism
Pic(E ×W F) → Pic(E × F) is surjective.

Proof As Hom(E, F) = 0 we obtain an isomorphism Pic(E × F) � Pic(E) × Pic(F). Let
now pr∗E LE ⊗ pr∗F LF be an arbitrary line bundle on E × F . Since line bundles on curves
lift, we can consider lifts LE and LF of LE and LF respectively. Hence the line bundle
pr∗ELE ⊗ pr∗FLF on E ×W F is a lift of pr∗E LE ⊗ pr∗F LF . ��
Proposition 5.5 Assume the hypotheses of Setting 4.5 and let � : D(B) → D(A) be an
equivalence of derived categories of abelian surfaces. If both E and F are ordinary elliptic
curves, then the hypotheses of Proposition 4.8 hold.

Proof By Propositions 3.2 and 5.2 there exists an equivalence � : D(B) → D(C) with
C ∈ {A, ̂A} such that the vector �CH(0, 0, 1) = (r , λ∗l, χ) satisfies the hypotheses (E1),
(E2) and (E3) of Proposition 4.8. Let L be a line bundle on E×F with class l ∈ CH1(E×F).
By Proposition 5.3 there exist projective lifts E → W and F → W of E and F to the ring
of Witt vectors W , and a lift L ∈ Pic(E ×W F) of L . Let λW : C → E ×W F be the lift
of λ : C → E × F defined by Proposition 4.7. It follows that λ∗

WL lifts λ∗L which proves
condition (A1). In order to prove (A2) we can assume that F has an automorphism of order
three. Then by Theorem 2.8 the geometric generic fiberFη admits an automorphism of order
three and hence rk CH1(Eη ×Fη) ∈ {2, 4} where Eη is the geometric generic fiber of the lift
E → W . ��
Proposition 5.6 Assume the hypotheses of Setting 4.5 and let � : D(B) → D(A) be an
equivalence of derived categories of abelian surfaces. If E is ordinary and F is supersingular
or vice versa, then the hypotheses of Proposition 4.8 hold.

Proof By Propositions 3.2 and 5.2 there exists an equivalence � : D(B) → D(C) with C ∈
{A, ̂A} such that the vector �CH(0, 0, 1) = (r , λ∗l, χ) satisfies the hypotheses (E1), (E2)

and (E3) of Proposition 4.8. By Proposition 5.4 we can choose general lifts E andF of E and
F toW respectively and a line bundle L ∈ Pic(C) such that the condition (A1) holds (see the
argument of Proposition 5.5). Furthermore, since any fixed elliptic curve has a 1-dimensional
family of deformations and for any choice of E , there are only finitely many elliptic curves
isogenous to Eη, we may choose E and F so that there are no non-trivial morphisms between
the geometric generic fibers Eη and Fη. It follows that rk NS(Eη × Fη) = 2 independently
of whether F admits an automorphism group of order three or not. As in Proposition 5.5 this
immediately implies that rk NS(Cη) = 2. ��

5.2 Supersingular case

We are going to prove that the hypotheses of Proposition 4.8 hold when the elliptic curves
E and F are both supersingular. The following proposition proves the conditions (E1), (E2)

and (E3).
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Proposition 5.7 Assume the hypotheses of Setting 4.5 with deg ν ≥ 2 and assume that the
elliptic curves E and F are supersingular.Moreover let� : D(B) → D(A) be an equivalence
of derived categories of abelian surfaces. Then there exists an equivalence� : D(B) → D(C)

with C ∈ {A, ̂A} such that the Mukai vector

(r , l, χ) := �CH(0, 0, 1)

satisfies the following conditions:

(i) r is positive and relatively prime with p;
(ii) the class l ∈ NS(C) is ample;
(iii) χ is relatively prime with r .

Now set λ = ν if C = A, and λ = μ̂ otherwise. Then l = λ∗l ′ where l ′ = l(ϕ, d1, d2) is the
class of a line bundle on E × F with ϕ an étale isogeny.

Proof Proceeding as in the proof of Proposition 5.2, we can construct an equivalence �1 :
D(B) → D(C) where C ∈ {A, ̂A} such that in the vector

v1 := (r1, λ∗l1, χ1) = �CH
1 (0, 0, 1),

r1 is relatively prime with p, and l1 = l(ϕ,m1,m2) is the class of a line bundle on E × F for
some morphism ϕ : F → E and integers m1,m2 (see Proposition 2.7). We notice that we
can assume r1 positive by eventually composing with the shift functor. First, suppose that ϕ
is either the constant morphism or non-separable. Let t �= p be a prime and let ξ : F → E
be a separable isogeny of degree tk (k ∈ Z>0) determined by Proposition 2.4. Now consider
the composition of equivalences �2 := TC

(

λ∗(1E × ξ)∗ME
) ◦ �1 : D(B) → D(C). As

the class of (1E × ξ)∗ME is l(ξ, 0, 0), by Corollary 2.6 we have that �CH
2 sends the vector

(0, 0, 1) to

v2 := (

r1, λ∗l(ϕ + r1 ξ, m1, m2), χ2
)

for some integer χ2. Recall that if f1 and f2 are two isogenies of elliptic curves with f1
inseparable, then f1 + f2 is separable if and only if f2 is separable. Then as r1 is relatively
prime with p, the isogeny γ := ϕ + r2 ξ is separable (indeed the composition of separable
isogenies is separable, and themultiplication-by-nmap is separable if and only if n is coprime
with p), and hence étale.

Let w := (s, h, ζ ) = �CH
2 (1, 0, 0) and note that 〈v2, w〉C = 1. By Proposition 2.3 the

class p22 h (where p2 = degν) is in the image of the pull-back λ∗ : CH1(E × F) → CH1(C).
Therefore we can write

p22 h = λ∗l(ψ, k1, k2)

for some morphism ψ and integers k1, k2. Consider the equivalence �3 := TC (H⊗(n p p22)) ◦
�2 which sends the vector (0, 0, 1) to

v3 :=
(

r1, λ∗l
(

γ + r1 p n ψ, m1 + r1 p n k1, m2 + r1 p n k2
)

,

χ2 + p p22 n I + r1 p
2 p42 n

2 h2

2

)

where

I := λ∗(γ, m1, m2) · h.
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As (r1 p n)ψ is either the zero morphism or non-separable, we have that γ + (r1 p n )ψ is a
separable isogeny. Now choose a positive integer n so that

p p22 n I + χ2 �≡ 0 (mod q) for every prime divisor q �= p2 of r2 that does not divide I .

By the same argument as Proposition 5.2, this choice of n ensures that the third component
of v3 is relatively prime with r1.

Now we define the line bundle � := OE (OE ) �OF (OF ) on E × F and we consider the
equivalence TC (λ∗�⊗(r1 d)) ◦ �3 with d � 0 a positive integer. Take θ := l(0E , 1, 1) to be
the class of �. The equivalence TC (λ∗�⊗(r1 d)) ◦ �3 sends (0, 0, 1) to

v4 =
(

r1, λ∗(γ + r1 n pψ,m1 + r1 p n k1 + r21 d, m2 + r2 p n k2 + r21 d), χ4

)

where

χ4 := χ2 + p p22 n I + r1 p
2 p42 n

2 h2

2

+ r1 d
(

θ · λ∗l(γ + r1 p n ψ,m1 + r1 p n k1,m2 + r1 p n k2)
) + r31 d

2 θ2

2
.

As χ4 is congruent to the third component of v3 modulo r1, we have that χ4 is still relatively
primewith r1.Moreover, for d sufficiently large the second component of v4 is ample. Finally,
r1 is relatively primewith p, and hence TC (λ∗�⊗(r1 d))◦�3 is the equivalence we are looking
for.

To conclude the proof we need to analyze the case when ϕ is separable. But in this case
the proof is simpler as there is no need to introduce the isogeny ξ and the equivalence �2.
Then it is enough to set γ = ϕ and proceed as in the inseparable case. ��
Proposition 5.8 Assume the hypotheses of Setting 4.5 and let � : D(B) → D(A) be an
equivalence of derived categories of abelian surfaces. Moreover assume that the elliptic
curves E and F are both supersingular. Then the hypotheses of Proposition 4.8 hold.

Proof By Propositions 3.2 and 5.7 we can find an equivalence � : D(B) → D(C) with
C ∈ {A, ̂A} such that the vector

v := (

r , λ∗l(ϕ,m1,m2), χ
) = �CH(0, 0, 1)

satisfies the assumptions (E1), (E2), and (E3) of Proposition 4.8. The class l(ϕ,m1,m2) is
the class of an ample line bundle L(ϕ, M1, M2) on E × F where M1 and M2 are line bundles
on E and F respectively, and ϕ : F → E is the constant morphism OE in the case where
ν is an isomorphism, or an étale isogeny otherwise. Let E → W be a lift of E to the ring
of Witt vectors. If ϕ = OE is the constant morphism, then on any lift F → W of F we
can construct a lift of L = M1 � M2 by simply lifting M1 and M2 to W and taking their
exterior product. Now assume that ϕ is a separable isogeny. Then Theorem 2.9 determines
a projective lift F → W of F and an étale cover ϕ̃ : F → E that specializes to ϕ. It is
not difficult to check that L(ϕ, M1, M2) lifts to a line bundle L on E ×W F . This goes as
follows. As line bundles on curves lift, we can find a lift of OE (OE ) which in turn allows
us to construct a lift ME,W to W of the Mumford line bundle ME (cf. Sect. 2.4). Denote
by M1,W and M2,W the liftings of M1 and M2 on E and F respectively. The line bundle
L := (1E ×W ϕ̃)∗ME,W ⊗ pr∗EM1,W ⊗ pr∗FM2,W is a lift of L(ϕ, M1, M2), where prE and
prF are the obvious projections. In conclusion the line bundle λ∗

WL lifts λ∗L(ϕ, M1, M2)

where λW : C → E ×W F is the lift from Proposition 4.8. This proves the condition (A1) in
the case deg ν = 1, 2.
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Now suppose deg ν = 3 and that F has an automorphism ρ : F → F of order three.
By a result of Deuring (cf. [29, p. 189 or p. 172]) it is possible to lift a supersingular elliptic
curve together with an endomorphism over a finite ramified extension W of the ring of Witt
vectors. Thus we have lifts F0 → W and ρW : F0 → F0 of F and ρ to W . The étale cover
ϕ̂ : E → F determines a lift E0 of E together with a lift ϕ̃0 of ϕ̂ over W . Now, denote by
λW ,0 : C0 → E0 ×W F0 the lift of λ as defined in Proposition 4.8. After noting that there is
an isomorphism (1E × ϕ)∗ME � (ϕ̂ × 1F )∗MF , and hence that

L(ϕ, M1, M2) � (ϕ̂ × 1F )∗MF ⊗ pr∗EM1 ⊗ pr∗FM2,

the previous argument shows that the line bundle λ∗L(ϕ, M1, M2) lifts to C0. Moreover
the restriction of ρW to the geometric generic fiber (F0)η is an automorphism that is not
proportional to the identity. Hence rk CH1

(

(E0)η × (F0)η
)

is either 2 or 4 according to
whether or not there is an isogeny between (E0)η and (F0)η. As the rank of the Néron–Severi
group does not change under separable isogenies, we have that rk CH1((C0)η) ∈ {2, 4}where
(C0)η is the geometric generic fiber of C0. In particular the assumption (A2) holds. ��

6 Canonical covers of Enriques surfaces

An Enriques surface S over an algebraically closed field k of characteristic p �= 2 is a
smooth projective minimal surface with canonical bundle ωS of order two, χ(OS) = 1, and
b2(S) = 10. The canonical cover π : X → S induced by ωS is a double étale cover with X a
K3 surface. Let � : D(Y ) → D(X) be a derived equivalence so that Y is itself a K3 surface
by [17, Proposition 3.9]. We aim to prove Theorem 1.3, namely that X � Y .

In [17] the authors prove that Shioda-supersingular K3 surfaces do not admit any non-
trivial Fourier–Mukai partners, thus we can assume that X has Picard rank less than 22. Since
in odd characteristic Shioda-supersingularity is equivalent to Artin-supersingularity (cf. for
instance [30]), we can assume that the formal Brauer group of X is of finite height. In particu-
lar there exists a lift X → W of X over the ring of Witt vectors such that NS(X) � NS(Xη),
where as usual Xη is the geometric generic fiber [28, p. 505]. By the work of Jang [12,
Theorem 2.5] there is a primitive embedding of the Enriques lattice �(2) := U (2)⊕ E8(−2)
of S into NS(X) such that the orthogonal complement of the embedding does not contain
any vector of self intersection −2. Using the isomorphism NS(X) � NS(Xη), together with
the characterization of Enriques-K3 surfaces in terms of its periods [27, Theorem 1.14],
we deduce that Xη is a K3 surface arising as the canonical cover of an Enriques surface.
In particular Xη does not have any non-trivial Fourier–Mukai partner thanks to [34, Theo-
rem 1.1]. On the other hand, [17, Proposition 8.2] implies that Y is isomorphic to a moduli
space Mh(v) of h-Gieseker-stable sheaves for some Mukai vector v = (r , l, χ). Since all
the line bundles on X deform to line bundles over X → W , we can consider the relative
moduli space MX /W (r ,˜l, χ) → W where˜l is a lift of l. The geometric generic fiber of
MX /W (r ,˜l, χ) → W is by construction a Fourier–Mukai partner of Xη and therefore, by
the previous considerations, it is isomorphic to Xη. We conclude by using [17, Lemma 6.5],
which says that the isomorphism between the geometric generic fibers of relative K3 surfaces
induces an isomorphism between the closed fibers.
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