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Abstract 

 

Sequence database search engines are bioinformatics algorithms that identify peptides from 

tandem mass spectra using a reference protein sequence database. Two decades of 

development, notably driven by advances in mass spectrometry, have provided scientists with 

more than thirty published search engines, each with its own properties. In this review, we 

present the common paradigm behind the different implementations, and its limitations for 

modern mass spectrometry datasets. We also detail how the search engines attempt to alleviate 

these limitations, and provide an overview of the different software frameworks available to the 

researcher. Finally, we highlight alternative approaches for the identification of proteomic mass 

spectrometry datasets, either as a replacement for, or as a complement to, sequence database 

search engines. 
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Introduction 

 

Mass spectrometry has become the technique of choice for proteomics as part of the 

large scale analysis of proteins in complex samples (Aebersold & Mann, 2003; Aebersold et al., 

2013). The direct measurement of intact proteins, so-called top-down proteomics, remains 

analytically challenging, impairing its application to complex mixtures (Kelleher, 2004). As 

illustrated in Figure 1, high throughput, shotgun proteomics approaches, also referred to as 

bottom-up proteomics, therefore digest proteins into peptides after reduction of disulfide 

bonds. The peptides are subsequently separated, generally by liquid chromatography (LC), and 

are then brought into the mass spectrometer source for ionization. Two ionization techniques 

are principally used in proteomics: electrospray ionization (Fenn et al., 1989) and matrix 

assisted laser desorption ionization (MALDI) (Karas et al., 1985; Tanaka et al., 1988; Soltwisch 

et al., 2009).  

Once ionized, the peptides are subjected to tandem mass spectrometry, in which the 

mass over charge ratios (m/z) of the peptides entering the mass spectrometer are first scanned, 

yielding so-called MS or MS1 spectra.  Selected peaks (typically the ones with the highest signal) 

are then isolated and fragmented in the next step, and the m/z of the obtained fragment ions is 

measured and reported in MS/MS or MS2 spectra. In addition to the fragmentation of a specific 

precursor peptide m/z, an approach called data dependent acquisition (DDA) (Mann et al., 

2001), one can also fragment a larger subset, or even all, of the eluting peptides in an approach 

called data independent acquisition (DIA) (Doerr, 2015; Kuharev et al., 2015). In the latter, the 

MS1 scan is not necessarily acquired (Gillet et al., 2012). Three fragmentation methods are 

widely used in proteomics to generate MS2 spectra,: (1) collision induced dissociation (CID) 

(Wells & McLuckey, 2005), (2) higher-energy collision induced dissociation (HCD) (Olsen et al., 

2007), and (3) electron transfer dissociation (ETD) (Syka et al., 2004), each providing distinct 

types of fragment ions. 
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As illustrated in Figure 1, the experimental data obtained from shotgun proteomic 

experiments thus mainly consist of the acquired MS1 and MS2 spectra. With the advent of high 

acquisition rate instruments, proteomics datasets have reached sizes ranging from thousands to 

millions of spectra, rendering their manual interpretation impossible. As a result, the 

interpretation heavily relies on the use of bioinformatics.  Three main strategies have been 

established for the identification of peptide-derived tandem mass spectra (McHugh & Arthur, 

2008): (1) sequence database searching, where the spectra are searched against a database of 

reference protein (or peptide) sequences, (2) spectrum sequencing, where amino acid 

sequences are directly inferred from the spectra, and (3) spectral library searching, where the 

spectra are searched against a library of spectra from known compounds.  

This review describes the principles of the database searching paradigm. After first 

presenting the main principles and introducing the various software implementations, the so-

called search engines, we detail possible pitfalls of database searching, and provide solutions 

that alleviate these where available. Finally, we introduce some of the advanced operating 

modes for improved sample characterization. 

I. A brief history of database search engines 

 

Figure 2 illustrates the concept of database searching, the matching of experimentally 

obtained MS2 spectra against a sequence database. The MS2 spectra to search first undergo 

preprocessing, which for most search engines consists in filtering out low intensity peaks to 

retain only the most intense peaks. The sequence database against which the spectra will be 

matched is also processed, by in silico digestion and fragmentation of the sequences. This 

mimics the experimental enzymatic cleavage and fragmentation of sample proteins, and 

provides theoretical MS2 spectra that can then be compared to the experimental MS2 spectra. A 

set of search parameters provided by the user tunes the specifics of this comparison. Finally, the 

quality of each comparison is evaluated using algorithm-specific scores. The result is a list of 
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peptide candidates for each spectrum, so-called peptide -spectrum matches (PSMs), along with 

their respective score.  

A standard format, called mzIdentML (Jones et al., 2012), has been developed to 

encapsulate and exchange peptide and protein identification results from search engines. The 

mzIdentML format can be directly exported by many of the search engines, and converters are 

also available (http://www.psidev.info/tools-implementing-mzidentml). 

Database searching emerged as a fast and reliable alternative to spectrum sequencing, 

and was pioneered by the SEQUEST algorithm (Eng et al., 1994). Subsequently, the commercial 

alternative Mascot (Perkins et al., 1999), was quickly adopted by the community for its server-

based infrastructure, and the simplicity of interpretation of its scores. Numerous search engines 

have since become available to the scientific community, including multiple free and open-

source alternatives. Table 1 lists all search engines (to the best of our knowledge at the time of 

writing) ordered by date of publication or availability. This table shows how the number of 

search algorithms has steadily increased since the first publication of SEQUEST, consistent with 

the growing need for better and faster algorithms that are capable of handling ever larger 

datasets. In addition, the total number of citations (from 1994 to 2016) according to Thomson 

Reuters™ Web of Science™ is provided as a rough indicator of community adoption.  

The number of citations per year for the most common algorithms, based on the original 

publication, is also displayed as a timeline in Figure 3. Despite the relative inaccuracy of this 

usage metric, it appears that search engine usage has been dominated by the original search 

engines, SEQUEST and Mascot, followed closely by the early open-source alternatives OMSSA 

(Geer et al., 2004) and X! Tandem (Fenyo & Beavis, 2003). Interestingly, the total number of 

search engine citations seems to have stagnated in the past five years. The dramatic increase in 

the share of Andromeda (Cox et al., 2011) as part of MaxQuant (Cox & Mann, 2008) shows the 

importance of search engine integration in global data interpretation pipelines. Finally, the 

increasing prevalence of other algorithms (a category that includes recent engines such as 
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MS Amanda (Dorfer et al., 2014) and MS-GF+ (Kim & Pevzner, 2014)) shows the interest of the 

community for more innovative approaches. For further details on the citations statistics please 

refer to the supplementary material. 

II. Practical use of a search engine 

 

The input for a search consists of peak lists containing the spectra to search, a sequence 

database, and the search settings used to tailor the search to the experimental setup. 

A. Peak lists 

 

The raw mass spectrometer output contains all data acquired by the mass spectrometer 

in a vendor-proprietary format (Martens et al., 2005). Before these data can be analyzed by 

external software, the output has to be converted into an open and preferably standardized 

format. The reference format for mass spectrometry files is mzML (Martens et al., 2011). 

However, due to the complexity and size of mzML files, many search engines operate on simpler 

formats that contain only the MS2 peak lists, along with the precursor ion m/z, intensity and 

charge. The most common formats are dta, pkl, ms2, and mgf as reviewed in (Deutsch, 2012). 

Note that file format conversion can be conducted easily by ProteoWizard (Chambers et al., 

2012), and also that some search engines are able to read the vendor formats directly, either 

through use of the vendor application programming interfaces (APIs) or by incorporating 

ProteoWizard as part of their software package.  

The recorded data often include peaks that are not derived from peptides, and these can 

impair the identification efficiency of a search (Du et al., 2008). To address this issue the raw 

spectra can be submitted to specialized algorithms that improve spectrum quality and that 

reduce the prevalence of non-peptide derived spectra/peaks (Ning & Leong, 2007; Barbarini & 

Magni, 2010; Sheng et al., 2015). As detailed in (Renard et al., 2009), this preprocessing can be 

divided into three categories: (1) spectral quality scoring based on spectrum features and/or 
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clusters; (2) precursor pre-processing, which can improve precursor charge and isotope 

inference, as well as mass accuracy (Hsieh et al., 2010); and (3) MS2 spectrum processing which 

includes the merging of spectra, baseline reduction, noise filtering, and deisotoping. All of these 

steps can for instance be carried out in the OpenMS open-source proteomic software 

framework (Sturm et al., 2008). Spectrum processing options were also recently implemented 

in ProteoWizard as part of the raw files conversion (French et al., 2015). However, advanced 

preprocessing has become less relevant with the advent of high-resolution mass spectrometers, 

and of instruments equipped with advanced signal processing units that provide data that is 

directly interpretable by search engines. 

Most search engines expect spectra in the form of peak lists, where a peak is 

represented as an (m/z, intensity) pair. It is thus important to verify that the spectrum files 

have been output in centroid mode (Deutsch, 2012). If the MS2 peaks take the form of the 

original, bell-shaped detector trace curve (referred to as profile mode data), a peak-picker 

should be applied, for example via OpenMS (Lange et al., 2006) or ProteoWizard.  

B. Alternative data sources 

 

In a global effort for scientific transparency, an increasing number of researchers now 

share the experimental data that support their findings. Vast amounts of proteomics data are 

thus available to the community, and can, for example, be used to provide preliminary results 

while setting up an experiment (Barsnes & Martens, 2013). However, in order to fully exploit 

such data, it can be useful to update the database, or to use different algorithms or settings. In 

this way, the original data can be reprocessed, and possibly even repurposed (Vaudel et al., 

2015). Spectra from online repositories can thus be downloaded and reprocessed as if acquired 

locally. Numerous public repositories contain data for such reanalysis (Fenyo et al., 2010; Perez-

Riverol et al., 2014), including the PRoteome IDEntifications database (PRIDE) (Martens et al., 

2005; Vizcaino et al., 2016), the Global Proteome Machine Database (GPMDB)(Craig et al., 

2004), MaxQB (Schaab et al., 2012), Massive (http://massive.ucsd.edu), and PeptideAtlas 



8 
 

(Desiere et al., 2006). PRIDE data, for example, can be reprocessed seamlessly using multiple 

search engines via PeptideShaker (Vaudel et al., 2015) in combination with SearchGUI (Vaudel 

et al., 2011). 

C. Protein sequence databases 

 

As illustrated in Figure 2, search engines rely on a database of reference sequences for 

the identification of peptides. Sequence databases can be obtained from public resources such 

as the UniProt knowledgebase (UniProt, 2015), The National Center for Biotechnology 

Information (NCBI) Reference Sequence (RefSeq) Database (Pruitt et al., 2005), or the DNA Data 

Bank of Japan (DDBJ) (Mashima et al., 2016).  

UniProt is the result of an effort to centralize the protein sequences in complete 

proteomes, along with relevant knowledge about these proteins as extracted from the available 

literature. As such, it serves a standardized hub for protein sequences and associated 

information. It is divided into two distinct subsets: (1) UniProt-KB/Swiss-Prot, which contains 

manually curated and annotated proteins with an evidence ranking based on literature review; 

and (2) UniProt/TrEMBL, which contains non-reviewed, automatically inferred sequences.  

The NCBI reference database provides a non-redundant collection of genomic, 

transcriptomic, and proteomic sequences, and DDBJ is an online repository that contains both 

human genotype and phenotype data. Alternatively, specialized databases can be found for 

specific species, diseases, or sub-proteomes (Hong et al., 2008; Reddy et al., 2009; Lamesch et 

al., 2012; McQuilton et al., 2012; Howe et al., 2013; Harris et al., 2014; Gaudet et al., 2015; Urban 

et al., 2015).  

The choice of the sequence database to use has a strong impact on the results of the 

search. Indeed, it is important to note that it is impossible for a search engine to identify 

peptides from proteins that are not present in the selected database. The search database 

should thus cover the proteins that are likely to be present in the sample as comprehensively as 
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possible. If not all proteins in the sample are represented in the database, the spectra obtained 

from such unexpected proteins can be matched incorrectly to other proteins in the database, 

which results in false positive identifications (Foster, 2011; Knudsen & Chalkley, 2011). This is 

notably the case for common contaminants, e.g. human keratin proteins in non-human samples, 

which can lead to incorrect biological conclusions if misinterpreted (Bern et al., 2009; 

Ghesquiere et al., 2011). Known contaminants should therefore be included in the database, 

alongside the protein sequences of interest. A useful list of common contaminants can be found 

in the common Repository of Adventitious Proteins (cRAP) (www.thegpm.org/crap).  

It is important to keep in mind that very large sequence databases also affect the search 

sensitivity, as further discussed below. It is thus recommended to tailor the database to the 

species under study when possible. However, complete protein sequences are not available for 

all samples. In such cases, genomic or transcriptomic data can instead be used to infer a suitable 

search database (Dove, 1999; Nesvizhskii, 2014; Menschaert & Fenyo, 2015). Closely related 

species can also be used as a substitute database, or one could be derived from elements of 

sequences that are conserved between multiple species (Penel et al., 2009). 

Note that protein sequence databases are regularly updated; for instance, an updated 

version of UniProtKB is released monthly. It is always recommended to use the latest available 

database version, and to use the same version throughout a project in order to avoid biases 

when comparing samples. The database version should be documented in-house and, for the 

sake of reproducibility, in scientific publications.  

Finally, it is important to highlight that shotgun proteomics identifies peptides and not 

proteins. The proteins are only inferred from the peptide evidence, as will be further discussed 

below. 

III. Management of the search space 
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The search space of a proteomics database search engine is defined as the collection of 

all possible peptide and fragment ions that need to be taken into account when a spectrum is 

searched. The number of possible peptides is the number of peptides that can be matched to a 

precursor m/z in the experimental data. It is influenced by the tolerance used to search the data, 

and therefore the instrument resolution, but also by all search parameters that can influence the 

number of possible peptide m/z matching measured precursor m/z. For example, adding a 

variable modification increases the concentration of possible m/z and therefore the chances to 

match a precursor m/z.   

Additionally, when a modified peptide matches a precursor mass, all possible 

localization combinations have to be tested and scored. It should also be noted that a substantial 

fraction of the spectra that end up as unidentified may arise from modified peptides (Chick et 

al., 2015; Bogdanow et al., 2016).  

To illustrate this effect, we used the example dataset of the CompOmics Proteomics 

Bioinformatics tutorials, a one hour gradient measurement of a HeLa trypsin digest on a Q 

Exactive, see (Vaudel et al., 2014) for details, and increased the search space in 14 different 

ways: (1) Isoforms, the isoforms of the canonical sequences were included in the database; (2) 

Trembl, UniProt/TrEMBL sequences were included in the database, (3) Vertebrates, a non-

species-specific database was used including all vertebrates canonical sequences from UniProt; 

(4) 4 mc, up to four missed cleavages were allowed; (5) Semispecific, semi-specific cleavage was 

allowed; (6) Variable Cmm, cysteine carbamidomethylation was considered as variable; (7) 

Phosphorylation, variable phosphorylation of S, T, and Y was included; (8) ABY, a-ions were 

included in the fragmentation of peptides; (9) ABCXYZ, all fragment ions were considered; (10) 

MS2 0.5 Da, the MS2 tolerance was changed to 0.5 Da; (11) MS1&2 0.5 Da, both MS1 and MS2 

tolerances were changed to 0.5 Da; (12) -4 to +4 Da, an isotopic shift of -4 to +4 Da was allowed 

for the precursors; (13) 1 to 4, peptides of charge 1 to 4 were included in the search; and (14) 1 

to 6, peptides of charge 1 to 6 were included in the search. Importantly, the minimal peptide 
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m/z considered was set to 500 m/z, and up to five modification sites were tested per peptide. 

For more details on the generation of these data, see 

mvaudel.github.io/onyase/review_figure/review_figure.html. 

Figure 4A shows the density of the number of peptides matching per precursor in the 

different search space enlargement cases sorted from lowest to highest median. As expected, 

the ms2 settings, fragment ions considered and tolerance do not alter the number of peptides 

per precursor distribution. Similarly, the inclusion of charge 1 peptides and isoforms, do not 

substantially alter the number of peptides per precursor. The first increase is observed when 

including higher charges, higher numbers of missed cleavages, variable cysteine 

carbamidomethylation, and TrEMBL sequences. Including larger isotope tolerance clearly 

increases the number of peptides considered.  

Similarly, adding phosphorylation as variable modification increases the median 

number of peptides per precursor by almost one order of magnitude. As visible from the density 

and inter-quartile distance, the phosphorylation site combinations increase the span of the 

distribution above all other settings, and without limitation on the number of sites considered 

the size of the search space can become challenging to manage. The semi-specific, non-species-

specific, and relaxed MS1 tolerance all increased the median number of peptides per precursor 

by over an order of magnitude. 

A direct consequence of a large search space is longer search times due to the number of 

possibilities to evaluate. Figure 4B shows the number of peptides to evaluate in every search 

space enlargement condition listed above. As expected, the total number of peptides evaluated 

follows the increase in median number of peptides per precursor.  With the notable exception of 

datasets searched with a low MS2 resolution, most peptides will however be rapidly discarded 

by the search engines because no fragment ion could be matched, as indicated by a hyperscore 

of 0 (Fenyo & Beavis, 2003).   



12 
 

Another direct consequence is the increased probability to match a spectrum incorrectly 

with a high score, and thus either a higher prevalence of false identifications, or a lower 

identification rate (Colaert et al., 2011; Muth et al., 2015). This is illustrated Figure 4C with the 

distributions of the scores of decoy matches, that are by design incorrect. One can clearly see an 

increase of the score attributed to these false hits as the search space increases, the search space 

enlargements via high mass tolerance having the most prominent effect.  

The presence of false positive matches with high scores makes it more difficult for 

search engines to distinguish the true hits from the others. Consequently, after estimation of E-

values from the hyperscore distributions, one can observe a drop in the number of identified 

PSMs at a given false discovery rate (FDR). To maximize the identification rate, the search space 

is therefore tailored to best represent the proteins present in the sample without bias using the 

search parameters. Table 2 lists the standard search parameters encountered in most search 

engines. 

The first search space confinement is achieved by adaptation to the sample under study, 

mainly by limitation of the sequence database to the sample content and thus only use 

sequences from a single species when possible (Yen et al., 2006; Borges et al., 2013; Muth et al., 

2013). Because the inclusion of all known protein isoforms as separate entries in the sequence 

database increases the search space, curated consensus sequences that present only one protein 

sequence per gene are often used. As already mentioned, the presence of potential protein 

modifications also greatly influences the search space. Protein modifications can be categorized 

into three groups: (1) in vivo modifications that carry biological or functional information, e.g. 

phosphorylation; (2) in vitro artefactual modifications that occur spontaneously in sample 

handling, e.g. methionine oxidation or the formation of amino-terminal pyroglutamate; and (3) 

in vitro intended modifications that are part of the sample preparation protocol, e.g. isobaric or 

other isotopically labeled tags.  
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Proteins that carry specific biological or functional modifications are often present at 

substoichiometric abundances and are therefore rarely detectable without enrichment (Nielsen 

et al., 2006; Millioni et al., 2011; Loroch et al., 2013; Solari et al., 2015). In order to avoid 

unnecessary enlargement of the search space, it is therefore recommended to refrain from the 

inclusion of protein modifications that fall below the limit of detection of the experimental 

setup. Artefactual or intended modifications have a much higher prevalence and therefore need 

to be accounted for in the search. However, many of the intended modifications will occur with 

a very high efficiency, typically >95%. All possible target residues can then be considered as 

modified. Such fixed, or static, modifications do not increase the search space as these simply 

replace the affected residue by the corresponding modified residue and are thus systematically 

included at all possible sites. This in contrast to variable, or dynamic, modifications, where both 

the modified and unmodified version of each affected residue has to be considered, which 

increases the search space exponentially. 

The search space is also most often adapted to the enzyme used to digest the proteins. 

This means that only peptides that abide by the enzyme cleavage rules are considered. To adapt 

to the efficiency of proteolytic cleavage, a certain number of allowed missed cleavages is 

allowed. Similarly, semi-specificity can be used to account for unanticipated cleavages. Allowed 

missed cleavages and semi-specificity both lead to a larger search space. 

Finally, the search space can be tailored to the performance of the instrument used. This 

is achieved by adaptation of the m/z tolerances. For most search engines, mass tolerances are 

set at both the precursor and fragment ion levels, and any theoretical peptide and fragment ions 

that fall outside of these tolerance ranges are excluded. Hence, less restrictive mass tolerances 

induce a large search space, while stricter tolerances reduce the search space. Search engines 

also allow the search space to be tailored to the fragmentation method used. The simplest 

setting includes the selection of the amino-terminal and carboxy-terminal fragment ions to 

consider (Roepstorff & Fohlman, 1984; Johnson et al., 1987). More advanced parameters 
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include the isotope range considered, the selection of neutral losses, or the use of expert 

fragmentation models (Skilling et al., 2004; Paizs & Suhai, 2005; Klammer et al., 2008; 

Neuhauser et al., 2012). The search space can also be tailored to the possible peptide charges 

expected from the applied ionization method. MALDI ionization yields singly charged ions, 

while higher charges (two to four) are typically considered for electrospray ionization.  

Note that many modern search engines support the selection of predefined settings, for 

example for high or low resolution instruments, or for different fragmentation models. This 

allows for a simpler setup of the search. Some settings can also be optimized by the search 

engines themselves, for example through the use of machine learning approaches (Barla et al., 

2008; Yang et al., 2012). The optimization of the search space is a complex multi-variable 

optimization procedure, and one can easily be overwhelmed by the number of settings available 

for each search engine. It is therefore recommended to start from a set of standard settings and 

then study the influence of a change in a specific setting to best model the sample, protocol and 

acquisition (Vaudel et al., 2011; Muth et al., 2015). While optimal values can vary between 

samples or instruments, the variability for a single setup is not substantial and usually does not 

require a complete optimization process for every experiment. Some quality control 

procedures, such as the verification of the efficiency of chemical labelling can however, be 

mandatory prior to publication, for a detailed example see (Aasebo et al., 2014). 

IV. Spectrum matching 

 

Different approaches have been established to match spectra to theoretical peptides. 

These can be categorized according to the approach used to infer the theoretical spectra 

(Sadygov et al., 2004): (A) descriptive, (B) interpretative, or (C) stochastic.   

A. Descriptive 
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Descriptive approaches are based on theoretical models of peptide fragmentation. A 

theoretical spectrum is generated for each peptide based on specified rules, and a similarity 

score is calculated between the theoretical and experimental spectrum. SEQUEST (Eng et al., 

1994) is one example of a search engine that uses this descriptive approach. The number of 

predicted fragments that are present in the experimental spectrum determines the quality of 

the match. Peptide fragmentation models can be very simple, with fixed, arbitrary intensity 

values for all b- and y-ions (Sadygov et al., 2004). 

B. Interpretative 

 

Interpretative approaches rely on the assumption that peptides can be identified from a 

series of fragment ions that are manually or automatically retrieved from the spectra. Each 

peptide candidate is partitioned into an amino acid sequence flanked by masses of unknown 

composition, and the algorithm then attempts to match this amino acid sequence and its masses 

to the search space. This approach was pioneered by PeptideSearch (Mann & Wilm, 1994), 

which showed that such extracted sequence “islands” could be matched to a database. Note also 

that through partial matching with sequence tags the search space can be significantly reduced, 

for example, as seen in open modification searching (Na et al., 2012). 

A more recent implementation of this strategy can be found in TagRecon (Dasari et al., 

2010) that can be used to identify mutations that occur in the masses that flank the extracted 

amino acid sequence, and in MS-GF+ (Kim & Pevzner, 2014) that is designed to cope with the 

emergence of novel mass spectrometry techniques and more accurate data. 

C. Stochastic 

In stochastic approaches, libraries of already identified spectra are used to model the 

theoretical spectrum of a given peptide. This model is thus specifically tailored to the 

instrument used and its performance. An example of such an algorithm is SCOPE (Bafna & 

Edwards, 2001). Stochastic models require large training datasets to determine the likelihoods 
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and features of tandem mass spectra. Typically, these models are devised using machine 

learning and are based on the intrinsic properties of existing data (Kelchtermans et al., 2014). 

The model is however vulnerable to fluctuations in mass spectrometer performance and 

experimental setup. 

V. Calculation of peptide to spectrum scores 

 

For all PSMs, a scoring algorithm is employed to provide a quality metric for the matches 

between a spectrum and its proposed progenitor peptides. This score is then used to rank the 

results and retain only the best peptide-to-spectrum matches (PSMs). This can be achieved by 

(A) correlation and ion scores, or (B) statistical and probabilistic approaches (Sadygov et al., 

2004). 

A. Correlation and ion scores 

 

This method was pioneered by SEQUEST (Eng et al., 1994), where scores are calculated 

in two stages: (1) a preliminary score, Sp, is calculated as the summed intensity of all peaks that 

match the predicted fragment ion masses; and (2) for the 500 top candidates, a cross-

correlation value of the experimental versus the theoretical spectra is calculated (the XCorr 

score), and normalized (the Cn score). Similarly, X! Tandem bases its scoring on the hyperscore, 

where the cross correlation is further multiplied with the factorial of the number of matched 

peaks. It is important to note that these correlation-based scores are deterministic, they will 

always be the same between a given peptide and spectrum. 

The main drawbacks of this approach are: (1) its dependence on the quality of the 

spectra, the peptide length, the considered modifications and charge states, (2) the difficulty to 

interpret the scores, and (3) the computational load of the cross correlation analysis - note 

however, that recent implementations of this scheme rely on a faster implementation (Eng et al., 

2008). 
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B. Statistical and probabilistic approaches 

 

Most search engines estimate the significance of deterministic scores in the context of 

the search. For example, X! Tandem transforms the deterministic hyperscore into an E-value 

that will depend on the search space. SEQUEST uses a relative score that represents the 

difference between the Cn of the best and second best peptide candidates for a particular 

spectrum (the ΔCn score). Statistical and probabilistic approaches hence estimate the 

probability of a match to occur randomly in the search space. This approach, pioneered by 

Mascot (Perkins et al., 1999), has become very popular for its simplicity of interpretation. 

Mascot’s algorithm is however, kept a trade secret. Open search engines such as X! Tandem 

(Fenyo & Beavis, 2003) and OMSSA (Geer et al., 2004) were later released as open-source 

alternatives that follow a similar approach, with different distributions to model the population 

of matching scores. More recently, Andromeda (Cox et al., 2011) and MS Amanda (Dorfer et al., 

2014)  have become available as additional free alternatives, based on related probabilistic 

models that perform similar to Mascot. Andromeda can either be used as a standalone search 

engine or as a part of MaxQuant (Cox & Mann, 2008). 

In contrast to ion scores, probabilistic scores depend on the experiment and search 

space. When the search space grows the distribution of scores from random matches spans a 

wider range, as illustrated Figure 4C. The difference in score between the correct matches and 

the random identifications therefore decreases, making it harder to distinguish the correct 

identifications from the others. This loss of discrimination power yields a lower search 

sensitivity, and eventually a lower identification rate as illustrated Figure 4D. 

 

VI. Advanced search strategies 
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Advanced search strategies have been developed to circumvent the limitations of 

enlarged search spaces, and thus increase the identification coverage of proteomic workflows. 

In multi-stage search strategies, spectra are searched iteratively, where the result of one 

iteration is used to select seed peptides or proteins presumably present in the sample, and then 

only these are considered in the next iteration, as illustrated with the feedback loop to the 

protein list in Figure 2.  

X! Tandem employs a second search stage called refinement where the result of the first 

search is used to establish a set of high confidence proteins. The spectra are subsequently 

searched again using relaxed settings (semi-enzymatic cleavage, higher number of missed 

cleavages, additional modifications, etc.), but only against the set of proteins detected in the first 

iteration. As a result, the search engine quickly identifies more peptides for these proteins, 

circumventing search space enlargement issues. A similar procedure is called error-tolerant 

search in Mascot (Creasy & Cottrell, 2002) and iterative search in OMSSA. However, the arbitrary 

selection of confident proteins from one stage to the other, can introduce a bias in the scores of 

matches in multiple stage strategies, which ultimately impairs the reliability of downstream 

peptide-level false discovery rate estimation strategies (Everett et al., 2010; Bern & Kil, 2011). 

The results of multiple stage searches should thus be interpreted with care (Jeong et al., 2012).  

A similar strategy to reduce the search space is to iteratively filter out spectra and 

search the remaining non-identified spectra against another database (Noble, 2015). In such 

cascaded searches, the search space is gradually shifted, starting from background peptides to 

peptides of interest, which reduces the prevalence of random false positive matches (Kertesz-

Farkas et al., 2015). However, the lack of competition between hits induced when the database 

is tailored towards a given hypothesis is known to generate false positives matches of non-

random nature (Colaert et al., 2011). Here again, the possible underestimation of error rates 

should thus be kept in mind when the results are interpreted. 
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More than 100,000 peptides elute in a typical proteomic shotgun experiment (Michalski 

et al., 2011), consequently, two different peptides may be isolated, fragmented, and recorded 

simultaneously, which results in so-called chimeric spectra (Houel et al., 2010). Almost all 

search engines are however, designed to identify only a single peptide per spectrum. 

Consequently, only one peptide is identified, generally the one that corresponds to the dominant 

peaks in the fragmentation spectrum. (It should be noted however, that if the difference in 

precursor mass between the peptides included in the chimeric spectrum is larger than the 

allowed mass tolerance, than the precursor mass will be the primary determinant for 

identification.) To alleviate this problem, some search engines implement another advanced 

procedure that consists of a removal of the signal of the identified peptide from the spectrum, 

followed by a re-search of the remaining unidentified peaks for possible co-fragmented 

peptides. This method is notably implemented in Andromeda where it was reported to provide 

up to 10 % additional hits (Cox et al., 2011).  

Finally, error-tolerant searches can be used as a strategy to identify peptides outside of 

the search space, as additional degrees of freedom are allowed, e.g. mass differences induced by 

unexpected modifications, sequence variants, or non-enzymatic cleavage sites. This strategy is 

notably available in Mascot (Creasy & Cottrell, 2002) 

(www.matrixscience.com/help/error_tolerant_help.html). A similar approach is to search with 

very high tolerances and filter matches a posteriori (Beausoleil et al., 2006). Mass tolerant 

searches can be combined with clustering of PSMs to match peptides to a wide range of 

modifications and sequence variants (Chick et al., 2015). 

VII. Conclusion and overview 

 

Database searching has become the identification method of choice in proteomics. In a 

global attempt at enhancing the performance of searches, multiple implementations have been 

made available to researchers. Each of these offers different variations on the basic principles 
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presented in Figure 2. The increasing number of available search engines (Figure 3), highlights 

the highly dynamic development of this field of research. Additional resources have also become 

available for upstream and downstream processing of the data, and search engines have been 

integrated in software environments that allow the design of complex workflows, as for 

example in the Trans Proteomic Pipeline (TPP) (Deutsch et al., 2010), OpenMS (Sturm et al., 

2008), MaxQuant (Cox & Mann, 2008), and Pladipus (Verheggen et al., 2016). Among the 

downstream procedures, several are notable for an intricate link to the search engines: (1) error 

rate estimation, (2) multiple algorithm integration, and (3) protein inference.  

Error rate estimation is generally achieved by a false discovery rate (FDR) estimation, 

which provides an estimate of the share of incorrect matches retained. This is important 

because, as detailed above, search engines provide only a list of candidate peptides along with a 

score for each peptide. The researcher must somehow establish a certain score cut-off from 

these results to control the quality of the retained set, as reviewed in (Vaudel et al., 2012). Two 

main methods are available for this control of error rates: search engine score modeling (Keller 

et al., 2002) and the use of target/decoy databases (Elias & Gygi, 2007). A third approach, which 

relies on lower ranked hits has also been proposed recently (Gonnelli et al., 2015). For a 

detailed review on error rate estimation procedures in proteomic identification results, see 

(Nesvizhskii, 2010). 

In order to benefit from the complementarity of available search engines, methods for 

the integration of multiple search engines have been established, and these can provide a 

substantial gain in identification coverage (Yen et al., 2006; Searle et al., 2008; Yu et al., 2010; 

Shteynberg et al., 2013). In addition, search engines can also be combined with alternative 

identification approaches to overcome the drawbacks of using a sequence database. The first 

useful alternative is the use of spectral libraries, where newly acquired experimental spectra 

are matched to previously identified spectra (Craig et al., 2006; Bandeira et al., 2007; Lam et al., 

2007; Frank et al., 2011). The second alternative approach that can be combined with search 
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engines is de novo sequencing (Seidler et al., 2010; Allmer, 2011; Medzihradszky & Chalkley, 

2015). In de novo sequencing, the peptide amino acid sequence is partially or completely 

inferred from the spectrum. While computationally intensive, this method presents the 

advantage of being virtually unbiased toward sequence databases. The combination of these 

approaches can, for example, be achieved using IDPicker (Ma et al., 2009). 

As detailed in the introduction, shotgun proteomics only allows the identification of 

peptides. Before drawing conclusions at the protein level, the presence of a protein must 

therefore first be inferred from the identified peptides. This task is made complex by the 

presence of peptides shared between proteins (Nesvizhskii & Aebersold, 2005). Moreover, this 

problem propagates to the downstream tasks in a proteomic bioinformatics workflow, for 

instance protein identification error rate estimation, protein quantification, and post-

translational modification studies. The inference of proteins from peptides is particularly 

complicated in the case of multiple search engine workflows, due to the inconsistencies of 

peptide-to-protein association between algorithms, and for multiple samples or fractionated 

samples, where the protein inference step must take into account the complexity of the 

experimental design (Vaudel et al., 2013). 

Such newer and more complex search strategies, along with the growth in data set size, 

make it increasingly difficult to conduct a search within a reasonable time frame. This is 

particularly problematic in the case of proteogenomics studies (Nesvizhskii, 2014) and 

metaproteomics (Muth et al., 2013). Distributed computing can help overcoming some of these 

limitations, through the use of grid or cloud computing (Verheggen et al., 2014). This way, 

extensive processing power can be made available to the community at large, notably through 

the establishment of dedicated environments, like the Galaxy project (Giardine et al., 2005; 

Boekel et al., 2015). It is also possible to distribute tasks on a local cluster of computers, making 

it possible for most labs to carry out demanding searches even with limited informatics 

resources (Verheggen et al., 2016). Moreover, cloud-based systems that run on third-party 



22 
 

hardware over the internet, have also been devised (Halligan et al., 2009; Trudgian & Mirzaei, 

2012; Muth et al., 2013; Slagel et al., 2015). 

The increase in performance offered by these new database search setups has made it 

possible to conduct global proteome analyses and provide the first maps of the human 

proteome (Kim et al., 2014; Wilhelm et al., 2014). Such large scale investigations can in turn be 

combined with other omics results that together provide an unprecedented characterization of 

a biological system (Cabezas-Wallscheid et al., 2014; Robles et al., 2014; Hein et al., 2015). A 

promising multi-omics application is the growing field of proteogenomics, where genomics, 

transcriptomics, proteomics, and epigenomics are combined to provide a fine-grained analysis 

of the gene translational and transcriptional processes (Jaffe et al., 2004).  

Proteomic search engines play a key role in these approaches (Menschaert & Fenyo, 

2015), and the control of the search space size and prevalence of false positives, especially of a 

non-random nature, is vital for their success (Nesvizhskii, 2014). The availability of increasing 

amounts of data in ever-improving quality from public repositories  is a great advantage when 

searching for low abundant compounds , and also enables big data mining of all the globally 

acquired data in order to achieve unprecedented insights into biological systems (Vaudel et al., 

2015; Volders et al., 2015; Olexiouk et al., 2016).   
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Figure legends 

 

 

 

Figure 1: In a typical shotgun proteomics workflow, proteins are extracted from biological 

samples, their tertiary and secondary structures are reduced to a linear form, and undergo 

proteolytic digestion. The obtained peptide mixture is usually fractionated to reduce its 

complexity and analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-

MS/MS). The acquired data consist of two types of mass spectra: MS1 spectra that show the 

intensity versus m/z of the different ionized analytes at a given LC retention time, and MS2 

spectra that show the intensity versus m/z of the fragmentation products of analytes called 

precursors that are isolated at a given retention time and mass range prior to dissociation, e.g. 

induced by collision with an inert gas. 
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Figure 2: Database search engines attempt to match experimentally obtained MS2 spectra to 

peptides derived from sequence databases. Their function can be summarized in four steps: (1) 

spectra are filtered to reduce the number of peaks to process, (2) theoretical spectra are derived 

from the database sequence, (3) theoretical and experimental spectra are compared and their 

match is scored, and (4) peptide-spectrum matches (PSMs) are exported for post-processing. 

The different steps are controlled by search settings, meant to tune the search engine to the 

experimental conditions. Additionally, advanced search configurations allow the identification 

of chimeric spectra, and multi-stage strategies (see main text for details). 
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Figure 3: The yearly number of citations (from 1994 - 2016) for the search engines listed in 

Table 1 according to Thomson Reuters™ Web of Science™, counting the original publication 

only. The eight most cited search engines are listed individually, while the rest are grouped in 

the Other category. The number of citations can be used as an indicator of the prevalence of a 

given search engine in the literature, albeit with caution (see main text and the supplementary 

material for details). 

 

 

  



37 
 

 

Figure 4: A) The density of the number of possible peptides per precursor is plotted as violin 

plot for every search space enlargement parameter (see main text) after logarithm base 10 

transformation. In each case, a large dash represents the median and two smaller dashes 

represent the upper and lower quartiles. The densities are colored according to the type of 

parameter changed, and ordered by increasing median. B) The number of peptides considered 

during the search is plotted for every setting of Table 1 in the same order and coloring as in 4A. 

The peptides with a hyperscore > 0 are outlined in black. C) The density of the scores of decoy 

hits is plotted as in 4A using the same order. D) The number of target PSMs in every condition is 

plotted at 1%, 5%, and 10% False Discovery Rate (FDR) in green, orange, and red, respectively. 

The FDR is estimated using the share of decoy hits retained at a given score (Elias & Gygi, 2007). 
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Tables 

Name Year Website Publication #Citations 

SEQUEST 1994 fields.scripps.edu/sequest (Eng et al., 1994)  3844 

Mascot 1999 matrixscience.com (Perkins et al., 1999)  4976 

ProbID 2002 
tools.proteomecenter.org/wiki/index.php?title=So
ftware:ProbID 

(Zhang et al., 2002)  159 

Sonar 2002 - (Field et al., 2002) 164 

PEP_Probe 2003 
bart.scripps.edu/public/search/pep_probe/search.
jsp 

(Sadygov & Yates, 2003)  147 

OLAV 2003 - (Colinge et al., 2003)  220 

VEMS 2003 portugene.com/vems.html (Matthiesen et al., 2003) 17 

Phenyx 2004 genebio.com/products/phenyx/index.html - - 

OMSSA 2004 ftp.ncbi.nlm.nih.gov/pub/lewisg/omssa (Geer et al., 2004)  821 

X! Tandem 2004 thegpm.org/TANDEM (Craig & Beavis, 2004) 1228 

ProbIDTree 2005 - (Zhang et al., 2005)  53 

DBDigger 2005 - (Tabb et al., 2005)  43 

pFind 2005 pfind.ict.ac.cn (Li et al., 2005)  57 

InSpect 2005 proteomics.ucsd.edu/Software/Inspect (Tanner et al., 2005)  383 

IdentityE 2007 - - - 

pFind2.0 2007 pfind.ict.ac.cn (Wang et al., 2007)  67 

Paragon 2007 
sciex.com/products/software/proteinpilot-
software 

(Shilov et al., 2007)  630 

MyriMatch 2007 
medschool.vanderbilt.edu/msrc-
bioinformatics/myrimatch-source 

(Tabb et al., 2007)  253 

Crux 2008 cruxtoolkit.sourceforge.net (Park et al., 2008)  73 

RAId_Dbs 2008 
ncbi.nlm.nih.gov/CBBResearch/qmbp/RAId_DbS/in
dex.html 

(Alves et al., 2008)  10 

Zcore 2009 - (Sadygov et al., 2009)  25 

MassMatrix 2009 massmatrix.net (Xu & Freitas, 2009)  95 

MacroSequest 2010 
proteomics.dartmouth.edu/k/software/macroseq
uest.kldk 

(Faherty & Gerber, 2010)  16 

MS-Tag and 
Batch-Tag 

2010 prospector2.ucsf.edu/prospector (Chu et al., 2010)  35 

Tide 2011 noble.gs.washington.edu/proj/tide (Diament & Noble, 2011)  34 

Andromeda 2011 maxquant.org (Cox et al., 2011)  1009 

SpectrumMill 2011 proteomics.broadinstitute.org - - 

MassWiz 2011 masswiz.igib.res.in (Yadav et al., 2011)  19 

SQID 2011 - (Li et al., 2011)  27 

PeaksDB 2011 bioinfor.com/peaks/features/peaksdb.html (Zhang et al., 2012)  3 

MSPolygraph 2011 compbio.eecs.wsu.edu 
(Kalyanaraman et al., 
2011) 

9 

Tempest 2012 - (Milloy et al., 2012)  9 

Byonic 2012 proteinmetrics.com (Bern et al., 2012)  0 
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Morpheus 2013 sourceforge.net/projects/morpheus-ms (Wenger & Coon, 2013)  33 

Comet 2013 comet-ms.sourceforge.net (Eng et al., 2013)  104 

ProLuCID 2013 fields.scripps.edu/prolucid - - 

MS-GF+ 2014 proteomics.ucsd.edu/software-tools/ms-gf (Kim & Pevzner, 2014)  71 

MS Amanda 2014 ms.imp.ac.at/?goto=msamanda (Dorfer et al., 2014)  40 

Greylag 2015 greylag.org - - 

 

Table 1: Search engines listed by year of publication or availability. When available, the search 
engine website is provided, along with the related original publication and its total number of 
citations according to Thomson Reuters™ Web of Science™ from 1994 to 2016.  
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Name Description Value 

Database 
A text file containing a list of amino acid 
sequences to search in the FASTA format. 

The sequences included should best cover the 
sequences present in the sample, but not contain 
a large proportion of additional sequences. 
Contaminants must be included. 

Modifications 

Mass modifications to be applied to the 
amino acids in the database. These can be 
fixed or variable, target single amino acids, 
amino acid patters, and specific locations on 
peptide or protein sequences. 

The modifications searched need to account for 
modifications introduced during sample 
processing, artefactual modifications, and 
biological modifications. 

Digestion 
The sequences in the database can be 
searched in their entirety, cleaved 
unspecifically, or cleaved using an enzyme. 

The digestion setting needs to best represent the 
method used to obtained peptides, if any. 

Enzyme 
The cleavage rule of the enzyme, e.g. “After 
K or R when not followed by P”. Some search 
engines support multiple enzyme digestion. 

If an enzyme was used to digest the proteins, the 
cleavage rule should best model what peptides 
can be expected from proteins. 

Specificity 

It is possible to search for fully specific 
peptides, with both termini abiding by the 
cleavage rule, as well as semi-specific 
peptides, where only one terminus abides by 
the cleavage rule. The semi-specificity can be 
two sided, or limited to the C- or N-terminus.  

This setting provides a degree of freedom in case 
the digestion was not complete, or if the proteins 
are not expected to be in full length in the 
sample. 

Missed Cleavages 
A certain number of missed cleavages can be 
allowed to account for partial digestion of 
peptides or the inaccuracy of cleavage rules. 

This setting is usually set to 2 for trypsin, but 
should be optimized to account for digestion 
efficiency. 

Fragment Ions 
The fragment ions to annotate in spectra 
need to be set to account for the 
fragmentation method used.  

Generally, b and y ions are used for CID and HCD 
fragmentation, c and z ions are used for ETD 
fragmentation. 

Precursor Tolerance 
The tolerance used to match a theoretic 
peptide m/z to a measured precursor m/z. 
This tolerance can be absolute or relative.  

The tolerance needs to be adapted to the 
resolution at which the MS1 spectra were 
measured. A relative tolerance in ppm is used for 
high resolution MS1 data. 

Fragment Tolerance 

The tolerance used to match a theoretic 
fragment m/z to a measured fragment ion 
m/z. As for the precursor, this tolerance can 
be absolute or relative. 

The tolerance needs to be adapted to the 
resolution at which the MS2 spectra were 
measured. A relative tolerance in ppm is used for 
high resolution MS2 data. 

Precursor Charge 
The charge of the peptide to search for can 
be set.  

The charge needs to be adapted to the charge 
targeted by the mass spectrometer for 
fragmentation, typically 1 for MALDI ionization, 2 
to 4 for electrospray ionization. 

Isotopes 
The isotopes to account for relative to the 
monoisotopic peak. 

Peptides with one 13C are usually included in the 
search to account for incorrect monoisotopic 
peak assignment by the mass spectrometer. This 
value needs to be optimized based on the 
monoisotopic peak selection settings. 

 

Table 2: The standard parameters enountered in most search engines. A description of each 
parameter is provided along with guidance on how to set and optimize the value for a given search.  
 


