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Chapter 1

Introduction to the thesis

Ever since man settled in the polar regions of our planet, we have been aware of the

auroras. In a multitude of primitive mythologies and religions, from China to Finland,

Greece and ancient Rome and to the native Americans, the auroras are a metaphysical

phenomenon with varying degrees of significance. To the Chinese it was believed to be

signs of mythical wars raging across the night-sky. In Finland it was believed to be the

trail of a fox running so fast across the sky its tail would make sparks that left a blazing

trail [1]. The Cree Indians believed it to be the ghosts and spirits of their ancestors danc-

ing in the heavens [2]. For thousands of years these strange lights would go unexplained.

When the age of enlightenment began and the first footholds of modern scientific theory

was established, work began to understand the auroras. Initially the auroras was believed

to influence the weather, and British astronomer Edmond Halley believed it to be caused

by a magnetic fluid leaking from the Earth [3]. By the end of the 19th century, we knew

the auroras was not a reflection, but rather originated from the atmosphere. We knew

that it was most common in a circle roughly 2500 kilometers from the pole, at a height

that was variously estimated to be as high as 1000 kilometers and as low as ground level.

In 1896 Norwegian physicist Kristian Birkeland succeeded in creating light that resembled

the auroras in the vicinity of a magnet when attracting cathode rays [4]. From this he

would formulate his hypothesis that the auroras must be created by cathode rays, with the

sun as the likely source [5]. On November 1. 1899 he began his observations of the auro-

ras from Haldenposten outside Alta, Norway. Here he would correctly measure the aurora

height to approximately 100 kilometers above ground, and found that auroras was always

accompanied by geomagnetic disturbances [6]. After these observations he returned to

Christiania to create the terella experiment which recreated auroras around a magnetized

metal sphere. It was not until the 1960’s, when mankind launched satellites beyond the

Earth’s magnetosphere that his was research confirmed, when American and Soviet probes

detected what would later be recognized as the solar wind [7].
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Extensive work has been done since then to piece together a complete understanding of

the coupling between the sun, the magnetosphere and the ionosphere of the Earth. The

launch of multiple satellites and the construction of radars and observatories, have con-

firmed the existence of currents flowing in and out of the ionosphere, that are now known

as Birkeland currents. In 1961 James Wynne Dungey proposed that reconnection between

the interplanetary magnetic field (IMF) and the magnetic field of Earth drove the plasma

convection within the Earth’s magnetosphere [8]. Before then Hannes Alfvén’s model of

magnetichydrodynamics (MHD) had been proposed [9], for which he received the Nobel

prize in physics in 1970. The study of MHD would allow modeling of plasma behaviour in

the solar wind and within the magnetosphere. These models continue to be studied today

in greater detail, but the entirety of the system is yet to be completely understood.

One field of interest in magnetosphere-ionosphere coupling is how changes in conditions

of one system might affect the other. The ionosphere allows magnetospheric currents to

close, thereby allowing magnetospheric convection to occur. The transport of plasma in the

ionosphere is expected to change the ion and electron profiles. In 1972 Knight established

mathematically that a relationship between the upward field aligned current regions and

the energy of precipitating electrons exist [10]. In 1991 the relationship between precipitat-

ing electrons and local height integrated conductance was empirically shown (Robinson et

al [11] , Lumerzheim et al 1991 [12]). The logical path of these relationships would then be-

come the relationship between the field-aligned currents(FAC) and local height integrated

conductance (Ridley at al 2002 [13]) which was later shown empirically (Robinson 2019

[14]). Robinson found that there is a correlation between strong field aligned currents and

conductance for both upward and downward currents, but mainly on the night-side. The

Poker Flat Incoherent scatter radar (PFSIR) was used in these experiments to find the

local conductance, while the Active Magnetosphere and Planetary Electrodynamics Re-

sponse Experiment (AMPERE) communications satellite constellation was used to derive

the FACs. In Robinson, 2019 other research institutes are encouraged do similar studies

from other high-latitude incoherent scatter radar sites such as Svalbard and Tromsø to

study the geomagnetic dependencies in the statistical relation between FAC and conduc-

tances. In this thesis the same study is conducted using the European Incoherent SCATter

Radar (EISCAT) at Svalbard (Norway).

An incoherent scatter radar functions by shooting rapid radar pulses which are then scat-

tered by the electrons and ions in the ionosphere. This incoherent scatter return allows

for measurements of the electron density, ion and electron temperature as well as ion com-

position. These measurements in turn allow for estimation of the conductivity, which is

integrated over height to get the conductance [15]. The field aligned currents are derived
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by applying Ampére’s law to the magnetic perturbations caused by the magnetic field

disturbances [17].

In Chapter 2 of this thesis, an introduction to the principles behind MHD is given and how

this is applied to the magnetosphere to explain the transport of plasma and generation of

associated currents. The basic properties of the ionosphere and the conductance is also

provided. In Chapter 3 the data derived from the EISCAT and AMPERE experiments

is laid out in detail. How these data are processed and used in our study is provided in

detail. Chapter 4 presents the results of the data comparison and analysis, with further

comments and conclusion in Chapter 5. Chapter 6 summarizes the conclusions of the

thesis and gives an outlook for future work.
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Chapter 2

Theory

In this chapter a short introduction to the magnetosphere-ionosphere system is given.

The basics of magnetohydrodynamics (MHD) is presented [18], and it is shown how these

equations explain how convection in the magneto-tail achieves currents and convection in

the ionosphere through field-aligned currents. The principles of plasma conductivity are

stated, and the Hall and Pedersen conductivities presented.

2.1 Magnetohydrodynamics.

In order to get a comprehensive picture of how the magnetosphere-ionosphere system

behaves, an introduction into MHD is given.

MHD is a model in which plasma is described as an in-compressible fluid rather than

individually moving particles. This model allows for large scale modelling that would

ordinarily be to complex to solve. MHD works primarily for large plasma systems. A short

description of how one arrives at the governing equations for MHD is given here.

2.1.1 Single particle physics

Assume that there exist some large collection of charged particles. If one is to describe

this collection the state of the system must be known, and equations for its evolution are

required. Assuming that some function F exist that would describe the particle collection

exactly, dF
dt would be its natural time evolution.

To describe F exactly, phase space is introduced for convenience. Phase space is an imagi-

nary six-dimensional space where all Eulerian coordinates for a given particles position and
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velocity are represented uniquely. To guarantee exact coordinates in both position space

and velocity space, each particle is defined by a delta-Dirac function. To get the entirety

of the population, F will sum up over all the particles producing the equation:

Fm(x,v, t) =
N∑
i=1

δ[x− xi(t)]δ[v− vi(t)] (2.1)

Where x = (x, y, z) and v = (vx, vy, vz). This is the equation of state for exact particle

location and particle velocity. If F is integrated over both velocity space dv and position

space dx, the total number of particles N would be found. If F is integrated only over

velocity space the number density n(x, t) is produced.∫
Fm(x,v, t)dv = nm(x, t) (2.2)

Now that the equation of state is given, its evolution can be explored.

If the total derivative dF
dt is taken, its partial derivatives will need to be presented. This can

be written as dF
dt = ∂F

∂t + ∂F
∂x

∂x
∂t + ∂F

∂v
∂v
∂t . The evolution of each particle will be determined

by the forces acting on it by the following equations.

∂xi
∂t

= vi(t) (2.3)

∂vi
∂t

=
qi
mi

(Em(xi(t), t) + vi ×Bm(xi(t), t)) (2.4)

Equation (2.4) describes the Coloumb force and the Lorentz force acting on a particle.

Here, Em and Bm are the electric and the magnetic fields described by the microscopic

Maxwell’s equations.

∇ ·Em =
ρc
εo

(2.5a)

∇ ·Bm = 0 (2.5b)

∇×Em = −∂Bm

∂t
(2.5c)

∇×Bm = µ0Jm + µ0ε0
∂Em
∂t

(2.5d)

Within the Maxwell’s equations are charge density and current, given respectively as:

ρm(x, t) =
∑
s

qs

∫
Fs(x,v, t)dv (2.6a)

Jm(x, t) =
∑
s

qs

∫
Fs(x,v, t)vdv (2.6b)
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Figure 2.1: Graphic representation of how some given particles evolve in phase space.

If the total derivative is now written out in its completeness, it is as follows:

∂Fi
∂t

+ vi∇xFi +
qi
mi

(Em(xi(t), t) + vi ×Bm(xi(t), t))∇vFi (2.7)

Equation (2.7) is the Klimantovich-Dupreè equation, which describes a microscopic set

of particles exactly and self-consistently. Within these equations are all the information

required to know the evolution of all particles within any stated system.

2.1.2 Distribution function.

Although the Klimantovich-Dupreè equation contains all the exact quantities of the mi-

croscopic fields, solving it for any large system becomes difficult. It is therefore prudent

to seek a simpler way, by averaging over a large number of particles. This averaging as-

sumes that the particles are statistically correlated in time, space and velocity by their

interactions.

One can define the ensemble average phase space density as f(x,v, t) = 〈F 〉(x,v, t) such

that the exact phase space density is the sum of this ensemble average plus some micro-

scopic fluctuations, which accounts for any deviations from the exact to the average. This
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can be written as:

F (x,v, t) = f(x,v, t) + δF (x,v, t) (2.8)

The average fluctuations 〈δF 〉 would then be 0. Inserting this ensemble average for both

the phase space density and the microscopic fields into equation (2.8) and then solving it,

yields:
∂f

∂t
+ v∇xf +

q

m
(E + v×B)∇vf = − q

m
〈δE + v× δB) · ∇vδF 〉 (2.9)

This is the kinetic equation of a plasma. The phase space density f(x,v, t) is now a coarse

grained probability distribution function, and equation (2.9) describes how it evolves under

the influence of the average fields. The term on the r.h.s contains all the correlations

between the particles and the fields, and solving it is difficult. One way to simplify it is

to account for only the correlations between the particles through collisions. This would

produce Boltzmann’s equation. Since most space plasma however is collision-less, it is far

easier to neglect the collision terms entirely.

∂f

∂t
+ v∇xf +

q

m
(E + v×B)∇vf = 0 (2.10)

The above equation is the Vlasov equation, and is the simplest solution to the kinetic

equation.

2.1.3 Multi-fluid theory

Since the principles governing equation (2.2) is still valid, it is possible to get the ensemble

average number density by solving the velocity integral of the distribution function. This

yields the macroscopic levels of quantities depending on location and time. If one solves

the for the different fluid moments, one gets the following equations:

n(x, t) =

∫
f(x,v, t)dv (2.11a)

vb(x, t) =
1

n

∫
vf(x,v, t)dv (2.11b)

Π(x, t) = m

∫
vvf(x,v, t)dv (2.11c)

These equations yield the number density, bulk flow velocity and the momentum flux

density tensor. These quantities are now completely in the macroscopic realm, and any

information about individual particles and their behavior is averaged into these quantities.

When solving the different orders of the Vlasov equation, one will find the conservation

laws of multi-fluid plasma. The formal solutions to each moment of Vlasov and the sub-
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sequent summation of the conservation equations can be found in numerous introduction

plasma physics text books. Rather than solving these here, the solutions will simply be

shown.
∂ns
∂t

+∇ · (nsvs) = 0 (2.12)

∂(nsvs)

∂t
+∇ · (nsvsvs) +

1

ms
∇ ·Ps −

qs
ms

ns(E + vs ×B) = 0 (2.13)

Equation (2.13) is the equation of motion for the given species fluid component. This

equation of motion however is not closed, as there is no given expression of the pressure

tensor P. To solve this one must calculate the next order of Vlasov, which would result

in the Energy equation. This will however produce another higher order quantity, the

temperature. This requires solving yet another order of Vlasov and so forth. This is the

closure problem. The simplest solution to the closure problem is to make an assumption

of the equation of state for the pressure. This renders the Energy equation obsolete,

and therefore avoids taking into account the transportation of heat. The most simple

equation of state is to assume that the pressure P behaves like an ideal gas with constant

temperature. Ps = nskBTs0. This makes the pressure proportional to the density of the

species.

To get to the single-fluid MHD, one will have to sum up the different conservation equations

for each species, and multiply with each species-mass respectively. This eliminates all the

species dependencies so that only the single fluid terms is present in the MHD equations.

Finally, the governing equations for MHD can be given.

∂ρ

∂t
+∇ · (nv) = 0 (2.14)

∂(ρv)

∂t
+∇ · (ρvv) = −∇ ·P + J×B (2.15)

Note that ρ is now our mass density, not to be confused with the charge density ρc. Equa-

tion (2.14) and (2.15) are the continuity equation and momentum conservation equation

for a single fluid plasma respectively. Equation (2.15) contains the macroscopic current

density term J. To close the set of equation its evolution must be defined. This is found by

subtracting the momentum equations for each species from one another, and multiplying

each part with its respective species mass. Solving this equation and reducing it to its

single fluid terms yields the generalized Ohm’s law for single fluid plasma.

E + v×B = ηJ +
J

ne
×B− 1

ne
∇ ·Pe +

me

ne2
∂J

∂t
(2.16)
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Here, η is the plasma resistivity, and Pe is the electron pressure. In the solar wind

there is negligible electron pressure gradients, near infinite conductivity due to it being

collision-less, and weak currents. This also applies to plasma inside the magnetosphere.

Applying this to equation (2.16) reduces it to the ideal plasma frozen-in condition E =

−v × B. Additional equations to supplement this is Ampére’s law and the induction

equation (Faraday’s law).

∇×E = −∂B
∂t

(2.17a)

∇×B = µ0J + µ0ε0
∂E

∂t
(2.17b)

The only thing remaining to discuss about MHD is how energy is transferred within the

plasma. For that the energy equations for a plasma is given.

∂

∂t
(
B

2µ0
) +∇ · S = −J ·E (2.18)

∂

∂t
(
ρv2

2
+

P

γ − 1
) +∇ · (ρv

2

2
+

γP

γ − 1
)v = J ·E (2.19)

Equation (2.18) describes the magnetic energy stored in the field, while (2.19) describes

the kinetic and thermal energy of the plasma. Not that neither of these are a conservation

law equalling 0, but rather both equal to the term J · E. This is because energy is

not conserved within each equation, but rather within the system itself. This allows for

transport of magnetic energy to kinetic, and vice versa. The vector S is the Poynting

Vector, S = E×B
µ0

. This vector describes the transport of the magnetic field lines, and

is an important vector when looking at how the magnetic field lines are behaving in the

Dungey Cycle.

This completes the introduction to MHD. A lot of the equations that are listed here are

not properly derived, but rather just stated as is. Their complete and formal definitions

are found in the multiple sources of this thesis. Being armed with the defining equations

of MHD, the Dungey cycle can now be explored. For the rest of this section, the above

equations will be utilized to describe the motion of the magnetic field lines within Earth’s

magnetosphere, and the subsequent currents this gives rise to.
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2.2 The Magnetosphere-Ionosphere system.

2.2.1 The Solar wind and the Earth’s magnetic field

Sunlight is not the only thing radiating from the sun. It is also casting off a constant stream

of plasma called the solar wind. This plasma is released from the suns upper atmosphere,

the corona. The solar wind consists primarily of electrons, protons and a small fraction

of heavier ions. When it reaches Earth it has a velocity somewhere between 200 km/s

and 800km/s, with a calm average of 400km/s. The particle density varies from 1 particle

per cubic centimeter to 20 particles per cubic centimeter. During extraordinary events

such as Coronal Mass Ejections (CME) both density and velocity can reach much larger

values. Embedded into the solar wind is also the Interplanetary Magnetic Field(IMF).

The solar wind behaves like an ideal plasma, where the magnetic field is “frozen in” to

the moving plasma. Frozen in means that the plasma and magnetic field lines move in

unison, with very low levels of diffusion even over great distances. Upon reaching the

Earth, the IMF will connect to the magnetic field of the Earth, and a complex process

of plasma transport and magnetic field line deformation will begin. This process is called

the Dungey Cycle.

2.2.2 Magnetic re-connection

Originally suggested by J. W. Dungey in 1961, the Dungey cycle describes the process of

how the IMF interacts with the Earth’s magnetic field. When the solar wind carrying the

IMF collides with the magnetic field of Earth if will be either parallel or anti-parallel in

the north/south orientation to that of the Earth. If it is parallel the IMF will apply a

pressure to the geomagnetic field before being deflected around the Earth. If it is anti-

parallel however the magnetic field lines will break coherency, and instead the sun and

Earth field lines will connect to one another. This will create long elongated magnetic

field lines origination from the Earth and stretching into space and all the way back to

the sun. The open field lines will still be anchored to the Earth. Since the solar wind

plasma north and south of the Earth’s magnetic field is still in motion and the frozen-in

condition is not violated the field lines will still be moving outside the magnetos-pause.

The solar wind motion will drag the field lines from the day-side and onto the night-side.

This dragging of the field lines then give rise to a whole system of magnetic perturbations,

electrical currents and additional re-connections on the night-side.
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2.2.3 The details of the Dungey cycle

In Figure 2.2, the different magnetic field lines are numbered. Although each field line can

look like this at some instant of time, it is better to think of it as the time evolution of

the first line. It is also important to note that although it is convenient to think of this

system as a step by step process, the entire cycle is running continually. For there to be

a cycle an equal number of day-side and night-side re-connections must take place. As a

result, for line 2 to move to position 3, the previous line 3 must have moved to position 4

etc. For this example, the focus will be kept on the evolution of a single line starting at

position 1, but keep in mind that this is very much a moving system.

Figure 2.2: Illustration of the Dungey cycle

Initially, there is a very strong curl in the magnetic field in the immediate area where

the magnetic re-connection has just happened. Following the induction equation (2.17b),

a current J will arise pointing out of the figure plane. This will set up the J × B force

described in the momentum equation (2.15) which will attempt to ”smooth” the field line

and straighten it out. This moves the field line from position 1 to position 2, and finally
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to position 3. Here the field line have become straight, but the solar wind outside the

magneto-pause is still moving away from the sun. Since the magnetic field is still frozen-in

to the plasma, the field lines are now stretch toward the night-side. Since the plasma is

moving with a magnetic field, the simplified ohm’s law (2.16 for ideal plasma) gives rise to

an electric field. The solar wind is moving to the right, and the magnetic field is pointing

down, but at an angle. The resulting E ×B Poynting vector is then pointing down and

to the right, and push the magnetic field lines into the magnetopause. This is visible for

line 4 in the Figure.

As the field line is dragged further back, a curl in the magnetic field will happen at the

magnetopause, and give rise to another J × B force pushing toward the day-side. This

force will decelerate the plasma entering the magnetopause, and straighten the field lines

as they are pushed downwards. When looking at line 5, the plasma is now inside the

magnetosphere and is moving downwards. The magnetic field is pointing to the left and

the Electric field will still point out of the plane, and the Poynting vector will continue to

push the magnetic field line towards the equatorial plane.

As the magnetic field lines are pushed closer and closer together, they form a thin plasma

sheet with a strong current. In this narrow region, the magnetic field lines are anti-parallel

and the night-side re-connection occurs to become closed field lines. This is what happens

at line 6 on the figure. Since the newly reconnected field line has a strong magnetic curl

it gives rise to another Lorentz force. This time the magnetic field line is pushed inwards

to the Earth. As more and more field lines are re-connected and pushed inwards, the

magnetic pressure builds, and the field lines will drift back towards the day-side (line 7,

8 and 9). This completes the Dungey Cycle, and describes how magnetic field lines are

transported from the day-side to the night-side, and then back to the day-side again.

2.2.4 Ionospheric currents

The previous section dealt with how the magnetic field at large behaves during the opening

and closing of magnetic field lines. This section shows the part the ionosphere plays in

this cycle, and how the Dungey cycle gives rise to currents, electric fields and magnetic

perturbations.

When the solar wind drags the field lines towards the night-side, they are not moved

immediately in the ionosphere. In the ionosphere there is a much greater particle density

than in the magnetosphere, and the plasma will become collisional. Looking back at

equation (2.15), there is a term P. This collisional pressure term will resist the attempted
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motion of the magnetic field line and anchor them in place. Because the field line is still

moving outside the ionosphere, there will be a kink in the field line. Although the term in

the equation is called the pressure term, physically it is caused by the collision of plasma

as it attempts to move through the ionosphere, together with the magnetic field lines.

As can be seen in Figure 2.3, this kink will now add a curl to the magnetic field line.

Following Ampére’s law (2.17a), this will set up a current. It is important to note that

while Ampére’s law does describe the origin of such a current, this is not an isolated

phenomena. Simultaneously there will be currents flowing along the field lines up to the

magnetopause where the same event transpires in the opposite direction, thereby closing

the loop. The current in the ionosphere now creates a J × B Lorentz force. As the

kink becomes greater, the current will be stronger. When the current becomes sufficiently

strong, the force will be greater than that of the collision pressure friction, and the magnetic

field line will be accelerated. The same process repeats when the magnetic field lines are

moving back towards the day-side. Although the presence of neutral particles breaks

the ideal plasma conditions this phenomenon still occurs, albeit with some diffusion of

the magnetic field lines. There is now a current along the magnetopause, and a current

along the ionosphere. The FAC are then generated by the need for convection matching.

The kink in the magnetic field just above the ionosphere is, if viewed from above, a

perturbation in the magnetic field. Because only the open field lines are bent, there will

be a perturbation relative to the unperturbed neighbours. This local perturbation causes

a curl, which is where the current flows along the magnetic field lines.

Figure 2.3: Simplified 2 dimensional drawing of how the pressure stops the magnetic field

line from moving, and how the increasing JxB term eventually overcomes it

Figure 2.4 show the collected system of how all these currents acts combined. The Pederson
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currents is set up by the kinks in magnetic field lines and the field aligned currents by the

perturbed field lines.

Figure 2.4: Figure from American Geophysical Union, Washington, DC, USA, showing

the complete system of currents above the Earth [19]

2.3 Conductivity in the ionosphere

2.3.1 Plasma conductivity in the presence of neutral particles

In section 2.1.3 we introduced the plasma resistivity η. For the solar wind and most

of the plasma within the Earth’s magnetosphere this was set to 0, since this plasma is

collision-less. With the plasma conductivity being the inverse of resistivity, one could say

that conductivity is infinite in space plasma. In the ionosphere however, there are neutral

particles that cause collisions and conductivity cannot simply be set to infinity.

Returning to equation (2.4), the equation of motion for a charged particle. This equation

assumes that the particle will be exclusively governed by the electric and magnetic fields

present, and any near collision with another charged particle can be described through

changes in these microscopic fields. In the neutral atmosphere there will be an additional
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term, which is the momentum change due to collisions with neutral atoms.

m
∂v

∂t
= q(E + v×B)−mνc(v− u) (2.20)

u is here the velocity of the neutral collision partner, and νc is the collision frequency.

This term is sometimes called the friction term, since it impedes motion. Neglecting the

magnetic field, assuming a steady state and collision partners at rest, the electric field can

be described as:

E = −meνc
e

ve (2.21)

Since the electrons are moving with respect to the ions, they carry the current J = −eneve.
Substituting into equation (2.21) yields.

E =
meνc
nee2

J (2.22)

This is familiar to Ohm’s law, which states that J = σ0E, where σ0 = η−1 and η and σ0

are defined as.

η =
meνc
nee2

(2.23a)

σ0 =
nee

2

meνc
(2.23b)

In the lower parts of the ionosphere the magnetic field will have a strong influence, and

must therefore be included. Starting from equation (2.20) with the magnetic field present,

a steady state and collision partners at rest yields:

E + ve ×B = −meνc
e

ve (2.24)

If substituting for the definition for σ0 from equation (2.23b) and applying the current

density definition J = −eneve, equation (2.24) becomes:

J = σ0E−
σ0
nee

J×B (2.25)

One can then assume that the magnetic field is aligned with the z axis, so that B = Bêz.

Any charged particle in motion will do some gyration around some line where the gyro-

frequency is given as:

ωg =
qB

m
(2.26)
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Inserting equation (2.26) into (2.25) and solving for each component of J, they can be

found as:

Jx = σ0Ex +
ωge
νc
Jy (2.27a)

Jy = σ0Ey −
ωge
νc
Jx (2.27b)

Jz = σ0Ez (2.27c)

Combining (2.27a) and (2.27b) to first eliminate Jy from (2.27a) and then eliminate Jx

from (2.27b) gives the final result:

Jx =
ν2c

ν2c + ω2
ge

σ0Ex +
ωgeνc

ν2c + ω2
ge

σ0Ey (2.28a)

Jy =
ν2c

ν2c + ω2
ge

σ0Ey −
ωgeνc

ν2c + ω2
ge

σ0Ex (2.28b)

Jz = σ0Ez (2.28c)

This set of components can be written in dyadic notation J = σE. Each tensor will then

read:

σ =


σP −σH 0

σH σP 0

0 0 σ||

 (2.29)

Where the tensor elements are defined as.

σP =
ν2c

ν2c + ω2
ge

σ0 (2.30a)

σH =
ωgeνc

ν2c + ω2
ge

σ0 (2.30b)

σ|| = σ0 =
nee

2

meνc
(2.30c)

These tensor elements are the Hall Conductivity σH and the Pedersen conductivity σP .

The Pedersen conductivity governs the currents along the electric field that is transverse

to the magnetic field. The Hall conductivity determines the current that is perpendicular

to both the magnetic field and the electric field, in the −E×B direction. σ|| is the parallel

conductivity and governs any current parallel to the magnetic field.

2.3.2 The solar contribution

One of the main contributors to ionization on the day-side is the sun. Ultraviolet radiation

from the sun will ionize neutral atoms and increase the electron density during the day.
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After sunset the ions and electrons recombine and resets the balance [20]. Since the plasma

conductivity σ0 has an electron density ne dependency, the Hall and Pedersen conductivity

will increase when the sun is above the horizon. Figure 2.5 show an example of how a

typical ionosphere profile for day and night looks.

Figure 2.5: Typical electron density profile for day and night. Notice that the greatest

difference is in the D and E regions between 100km and 200km. This is the area which

will be surveyed later [21]

2.4 Conductivity and ionospheric currents

If the FACs transport electrons and ions into and out of the ionosphere and since the

plasma conductivity is dependent on electron density, temperature and collision frequency,

a relationship between the two might be assumed. The Knight relation (Knight, 1972)

established a mathematical relation between upward field-aligned current and the energy

of downward precipitation electrons. The relationship between precipitating particles and

the local height integrated conductivity was empirically shown later (e.g. Robinson et

al., Lumerzheim et al., 1991). The relationship between field aligned currents was then
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proposed (Ridley et al,. 2002) and empirically shown (Robinson et al., 2019). This

relationship is what this thesis will investigate.
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Chapter 3

Data observation

In this chapter the experiments used in this study are introduced. The Svalbard European

Incoherent SCATter(EISCAT) radar provided the Hall and Pedersen conductivities in the

lower ionosphere. The Active Magnetosphere and Planetary Electrodynamics Response

Experiment(AMPERE) database was accessed to provide the upper ionospheric FACs,

and a complete review of the total amount of data and the yearly spread of these is be

given.

3.1 The EISCAT Svalbard radar

In the use of this thesis the period of 2010-2017 was selected for use. Throughout this

period the EISCAT radar is not running constantly. For that reason the up-time dates

are scattered throughout the years. For each experiment, the radar is not always running

full days either, and sometimes multiple experiments are run in interval during the same

day. For the data acquired, we chose the IPY(International Polar Year) experiments since

they provided sufficient accuracy for the relevant height-profile and a high quantity of

experiments. A duration of at least 6 hours for each experiments was also demanded

before being used.

3.1.1 The unprocessed EISCAT readings

EISCAT Svalbard is an incoherent scatter radar located on the Island of Spitsbergen on

Svalbard Norway. It consists of two separate radar dishes, one movable and one fixed

pointing along the magnetic field line. For this thesis measurements derived from the

fixed radar-dish are used. The EISCAT radar fires a series of short radio bursts into

the sky and measures the radio signal from the electron resonance that is scattered back.
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From this resonance the electron density and temperature is estimated for different layers

of height in the atmosphere. The height resolution is roughly 4 kilometers between each

separate data point depending on the mode used, and varies slightly between measure-

ments. The radar can measure electrons up to an altitude of 500km. As the radar collects

measurements, these measurements are sampled and some average is then derived. The

time between each sampling varies depending on the experiment, but often it is as low

as one minute and rarely any longer than 10 minutes. This gives an excellent resolution

that is on par with the readings collected from the AMPERE array. All the data gathered

from these experiments are then stored in the Madrigal database for public use [22]

From these radar readings and the NRLMSISE-00 model, height profiles of the Pedersen

conductivity and the Hall conductivity are derived. These are collected from the Madri-

gal database. Based on the radar readings the conductivity is calculated using equations

(2.30a) and (2.30b), with (2.30c) being the basis for σ0. The collision frequency is esti-

mated based on the electron temperature and the amount of neutral collision partners,

and are also stored in the Madrigal database.

What is most often used to estimate the total activity in the lower ionosphere, are the

height integrated conductivities between heights of 80 and 200 kilometers. Above these

altitudes the neutral-ion collision frequency is so small that the conductivity becomes neg-

ligible. Below 80 kilometers altitude there are hardly any ions, since most of the ionizing

sunlight have already been absorbed by the higher atmosphere, and space plasma does

not exist below such altitudes. In the event of ionization, the recombination rate at this

lower altitude will neutralize it rapidly. Plasma conductivity is therefore negligible in this

region.
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Figure 3.1: Conductivity derived by madrigal for each height layer between 80km and

250km, as measured by the EISCAT radar.

Figure 3.1 shows the height-dependent conductivity. As previously stated we are interested

in getting the time-dependent conductance. This is found by integrating the area of the

height-dependent conductivity over the total height.

ΣH =

∫ 200

80
σHdh (3.1a)

ΣP =

∫ 200

80
σPdh (3.1b)

Equation (3.1a) and (3.1b) will provide the conductance for each time the height profiles

are derived from the radar. The variance in conductivity in each height-layer does not

correspond to any simple equation, and it is therefore difficult to approximate some curve

that would fit the data. Instead we chose to draw the conductivity as a multi sided

object and measure the area inside. Figure 3.2 shows an example of the time dependent

conductance. To finalize the data we compress it so each point of data is the average of

a 10 minute interval. This allows simpler methods of comparison. Figure 3.3 shows an

example of this.
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Figure 3.2: Height integrated conductance obtained from integration of Madrigal profiles

as a function of time.

Figure 3.3: Hall and Pedersen conductance averaged over 10 minute intervals.
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3.1.2 Errors in the measured data

There are of course uncertainties in the data provided by Madrigal. In Figure 3.1 the

horizontal error-bars show these uncertainties as provided by Madrigal. Since we will be

using large sets of data we assume that the uncertainties of each individual data point

becomes less relevant. There are still some sources of errors that must be ruled out. The

main source of errors in the EISCAT data are spikes. Although one can assume that most

data will be good and that some exaggerations or minor errors will be smoothed out when

averaged over 10 minutes, spikes will result in bad data. Figure 3.4 shows a spike of several

hundred times the previous values. This is physically impossible, and it must therefore be

removed.

A way of getting rid of data spikes is to ignore such outlying values in the data-set. For

this thesis a maximum accepted value of 60 mhos was selected for the exclusion. This does

create some uncertainty as there might be times of sustained activity that produce values

higher than this anticipated maximum. After manual inspection of the entire data-set

used this was found not to be the case in any of the selected experiments.

Figure 3.4: Data spike showing in an unadjusted file from Madrigal.

Additionally there are errors that are not registered as spikes in the conductance itself.

Spikes in the conductivity can result in false conductance readings that is within the

expected levels. An example of this is shown in Figure 3.5. Here the conductivity is
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spiking for every other data-point, resulting in conductances that are within the activity

levels we expect, yet the data is very likely wrong. This date and other with similar errors

are subsequently removed from the data-set used.

Figure 3.5: Spikes in conductivity resulting in conductances within the expected levels

that nonetheless are incorrect.

3.1.3 Removing the Solar contribution

As mentioned in section 2.3.2, the sun affects the ion and electron density in the ionosphere,

and these will consequently affect the Hall and Pedersen conductance. To accurately study

any relationship between conductance and FACs, the solar contribution must be removed.

One way to see the contribution from the sun is to look at all the data as a function
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of solar zenith angle. The smooth increase in minimum conductance as the solar zenith

angle decreases can be assumed to the the solar contribution. This can be seen in Figure

3.6

Figure 3.6: Hall conductance. With the exception of 2 points, the minimum conductance

increase noticeably when χ becomes smaller than 90 degrees.

Multiple studies have been conducted in an attempt to model this dependency empirically.

Brekke and Moen (1993)[23] made adjustments to previous studies and found that the solar

flux and solar zenith angle dependence of Hall and Pedersen conductances could be well

represented by:

ΣH = S0.53
α (0.81cosχ+ 0.54cos0.5χ) (3.2a)

ΣP = S0.49
α (0.34cosχ+ 0.93cos0.5χ) (3.2b)

Where Sα is the 10.7cm solar flux, and χ is the solar zenith angle. Lilensten et al.,

(1996)[24] found that the solar contribution could be found with the following equa-

tion:

ΣH,P = (a1f10.7 + a2)cos(χ) + (b1f10.7 + b2)cos(χ)0.5 + (c1f10.7 + c2) (3.3)

Where the coefficients a, b and c were fitted empirically. There has also been multiple

later studies as-well, some attempting to neglect the solar flux and have only a solar

zenith dependency. (Ieda et al, 2014)[25] Applying these different methods we now show
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the results of the EISCAT Svalbard data.

Figure 3.7 shows the Brekke and Moen fit for the Hall conductance for the time covered

by our data set. The proposed solar contribution does not match the minimum line of

the derived data. The Brekke and Moen equation produces multiple green lines. This is

because the data is taken from multiple different years, resulting in different f10.7 values.

The fit for Pedersen conductance was about the same. Figure 3.7 also shows that the

solar contribution predicted by Brekke and Moen is larger than the conductance derived

from the EISCAT Svalbard radar in some places. This could be because Brekke and

Moen used the Tromsø EISCAT radar, and typical ionospheric conditions at Svalbard are

different.

Figure 3.7: Hall conductance in blue, and the Brekke and Moen solar contribution in

green.

Next, Figure 3.8 shows the same comparison for the Lilensten equations for the Pedersen

conductance. Using the coefficients provided in Lilensten’s paper, the Hall conductance

had a better fit than the Brekke and Moen equations. The Pedersen conductance fit was

however inaccurate. The Lilensten solar contribution also creates several smooth lines,

since several different years are used, each with a different f10.7 value.
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Figure 3.8: Pedersen conductance in orange, and the Lilensten solar contribution in purple.

Using Ieda’s method also provided no accurate estimates for the solar contribution. All

the above methods do admit that the coefficients will likely have to be adjusted to use

with different sets of data. For the purpose of this thesis however, it is not necessary

to perfect the method of accurately modeling the solar contribution. In Figure 3.6, all

we are need is for the minimum values when the sun is above the horizon to match the

minimum values of the rest of the data. This will result in some loss of accuracy, but

summer and spring measurements are a small percentage of our total data. This result

for the Hall conductance is shown in Figure 3.9. The result for Pedersen conductance was

similar.
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Figure 3.9: Adjusted Hall conductance based on minimum value bin subtraction. This

crude method provided better results than the line fits.

3.2 The AMPERE experiment

3.2.1 The unprocessed AMPERE data

To find the FACs in the polar cap region AMPERE is used. This is an experiment that

collects data from the Iridium communications satellites. This constellation of satellites

orbit the Earth in an altitude of 780 kilometers in near circular polar orbits. The fleet of

66 satellites gives a decent continual coverage as there will be multiple satellites within

the polar cap region at any given time. Although the presence of multiple satellites does

provide good coverage, it does not provide homogeneous coverage of the entire polar cap.

To fill in the blanks data is therefore interpolated between each satellite.

Each satellite is equipped with a magnetometer. When measured against the expected

background magnetic field, the magnetic perturbations can be derived [16]. As explained

in section 2.2.4, it is then possible to calculate the FACs. AMPERE provides the FAC

measured in micro ampere per square meter µA/m2 and its direction (up/down) for each

grid point for a 24 hour period. Every 2 minutes a result is derived from the satellite

measurements. The constellation follows a few discrete orbits with a 10 minute travel
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time distance between each satellite. As a consequence the entire orbital path of each

discrete orbit is mapped every 10 minutes.

The derived magnetometer measurements are provided on a grid in Altitude Adjusted

Corrected Geomagnetic coordinates. This grid is organized into 24 longitudes spaced 15

degrees apart each representing an hour in Magnetic Local Time (MLT), with 50 points of

latitude running north-south with one degree separation. This gives us far better resolution

near the poles as the MLT longitudes are far closer in geographic separation here than they

are further south. This grid is centered with respect to the position of the geomagnetic

pole. As a consequence the Earth will rotate beneath a static grid. In Figure 3.10 the

magnetic perturbations for each grid point are seen on the left side, with the appropriate

FAC on the right side.

Figure 3.10: Example AMPERE data for April 5. 2010 at 08:30 UTC. The perturbations

are fitted magnetometer variation vectors after spiraling harmonic fitting to raw satellite

data.

For this study we have used the official ncdf files provided by the AMPERE database

are used [17]. In the ncdf format each value is stored in a 720x1200 matrix. Each of the

1200 points provide the time-dependent FAC for a single coordinate. This gives a picture

of the field-aligned current for the entire northern hemisphere at a 2 minute resolution.

For this research only the immediate surroundings of the EISCAT Svalbard radar are

needed. A method of selecting and estimating the FAC at the relevant location is therefore

applied.
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3.2.2 Spacial alignment of measurements

The EISCAT Svalbard radar beam cone has a width of 1.5 kilometers at 100 kilometers

altitude. In contrast the AMPERE grid is spaced 109 kilometers latitudinal and 200 kilo-

meters longitudinal in the vicinity of the radar coordinates. Exact conjunctions between

Iridium satellites and the radar measured points are therefore unlikely to occur. To match

up the radar measurements with the AMPERE grid we use the 4 closest grid points and

weight them accordingly.

The magnetic invariant latitude of EISCAT is fixed at 75.18◦for the entire rotational period

of the Earth. The MLT for the radar can also be calculated from EISCAT’s position since

the time and geographic coordinates are known. Using these two provides an accurate

geomagnetic position for every radar measurement. For each point we then identify and

weight points from the AMPERE grid appropriately. Figure 3.11 shows an illustration of

the radar position between four fictional AMPERE grid point.

Figure 3.11: Illustration of distances from EISCAT to four AMPERE grid points.

To weight the points the appropriate length from the radar position to each AMPERE grid-

point is required. Since the position of each grid point and the radar in terms of magnetic

latitudes and longitudes are known, the haversine formula can be used to calculate the

distances in a spherical geometry.

A = sin2
(∆ψ

2

)
+ cos(ψ1) cos(ψ2) sin

(∆λ

2

)
(3.3a)

D = 2r arctan
( √

A√
1−A

)
(3.3b)

Here, D is the distance between two points, r is the radius of Earth plus the measurement

height, ψ1 and ψ2 are the latitudes of the two points being compared, with ∆ψ being
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the latitudinal difference and ∆λ being the longitudinal difference. Here, we assume that

the invariant latitude and MLT coordinates are a proper spherical coordinate system.

In reality this is not the case, but the method is deemed sufficient since we are using

coordinates in close proximity with one another. Using this method each point can be

attributed the appropriate weight based on their distance to the radar using the standard

weight for multiple distances.

ω1 =
d2d3d4

d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4
(3.4a)

ω2 =
d1d3d4

d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4
(3.4b)

ω3 =
d1d2d4

d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4
(3.4c)

ω4 =
d1d2d3

d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4
(3.4d)

Multiplying each weight with their respective AMPERE point and adding them yields the

results for the approximation of the FAC value at each radar position. Having done this

for each point in time, the varying currents above the radar position can then be obtained

for a full day. Figure 3.12 shows an example of this.

Figure 3.12: Variation of the FACs of the higher ionosphere as they would be measured

above the EISCAT radar. This plot follows the radar as it rotates beneath the AMPERE

data-grid.

In using the AMPERE data one must assume that the interpolation done is sufficiently
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accurate to use without consideration of where the satellites are actually taking measure-

ments in real time. One must also assume that the current strength is behaving roughly

linearly between each grid point, and that any local peaks or dips between are insignifi-

cant. Discussions on these limitations in the AMPERE data can be found here[26][27].

Having extracted the necessary data a comparison between the Hall and Pedersen con-

ductance provided by EISCAT, and FAC provided by AMPERE can be done. To make

the comparisons accurate both experiments must be integrated over the same intervals of

time. Since the cadence of the AMPERE experiment is 10 minutes, this is chosen as the

standard time interval. The timing chosen for both experiments is so that each point of

data encompasses the periods 00:00-00:10 UTC, 00:10-00:20 UTC and so forth.

3.3 Review of the selected data

In this section a brief overview of the total amount of data selected is provided.

Like the EISCAT radar, the AMPERE database does not have 100% up-time. As such,

some EISCAT experiments had to be discarded. When all the EISCAT experiments with

satisfying lengths and proper AMPERE up-time was accounted for, a total of 80 exper-

iments over an equal number of days were collected. The total amount of unique data

points is 7670 which corresponds to 1286,2 Radar hours.

Month/Year 2010 2011 2012 2013 2014 2015 2016 2017 Total

January 129.5 174.8 85.0 79.3 165.3 633.9

February 175.5 34.0 209.5

Mars

April 61.7 61.7

May

June

July 24.5 24.5

August 30.7 30.7

September 62.2 62.2

October 85.3 85.3

November 39.0 44.0 7.0 90.0

December 28.2 52.3 80.5

Total 223.7 72.2 237.0 85.0 141.0 7.0 313.1 199.3 1286.2

Table 3.1: Total hours of experiments for each month and year for the 2010-2017 period.

Table 3.1 shows the distribution of experiments for each month and year. There is much

better coverage during the winter than during the summer. This leaves a total of 1021.8
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hours of experiments where the sun is either completely absent versus only 264.4 hours

where it is partially present. Any inaccuracies resulting from the method applied to re-

move the solar contribution will therefore be of less significance.

Since the radar usually does not operate for full days at a time there is some distribution

for time of day as well. This distribution is shown in Figure 3.13. There is better coverage

during midday and afternoon than during the early morning. This is due to some experi-

ments not starting before 08:00 UTC. In Chapter 4 it will be shown how both the average

current and conductivity varies by time of day. Going forward we will replace UTC with

MLT. This is done since MLT is far more relevant to the expected variances than what

UTC is.

Figure 3.13: Each bracket contains the total amount of data points collected within each

hour.
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Chapter 4

Results

In this chapter the results of our research is presented. The relation between field aligned

currents strength and conductance is investigated to determine any possible correlation.

The results are shown separately for different MLT, to survey the difference in the relation

as a function of time and day, especially to identify any day/night differences. The results

are discussed in detail in Chapter 5.

4.1 Field-aligned currents and conductance

4.1.1 Single day comparisons

Having prepared both the conductances and FACs as described in the previous section,

two example days of measurements are presented. Figure 4.1 and Figure 4.2 show the Hall

and Pedersen conductances for one full day each, together with the FAC in the bottom

panels.

Figure 4.1 shows negative FAC activity (i.e. current flowing into the ionosphere) that

occurs simultaneously with an increase in both Hall and Pedersen conductance at roughly

0200 UTC. Figure 4.2 shows a similar kind of activity between 2000 UTC and 2300 UTC.

This is the kind of relationship that we anticipate based on the work by Robinson et al.

Although a good correlation might be visible in these results, these are only two carefully

selected days. To study this correlation in a statistical fashion all of the data must be

examined simultaneously.
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Figure 4.1: The Hall and Pedersen conductance above and field-aligned current below for

8.2.2016

Figure 4.2: The Hall and Pedersen conductance above and field-aligned current below for

27.10.2016
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4.1.2 Exception days

Section 4.1.1 showed two case studies where local values for conductance and FAC are well

correlated. Here it is shown that this is not always the case, hence the necessity of doing

a large statistical analysis. This section showcases a few days where an extreme event

appears in one of the experiments with no correlating activity appearing in the other.

Plausible explanations for these events are presented in Chapter 5, and although this is

not the main focus of this thesis their inclusion is still deemed relevant as it points to

interesting effects and limitations in our methodology. Figure 4.3 show spiking activity

in the conductance while the FAC fluctuates around 0 µA/m2. Figure 4.4 and Figure 4.5

show strong FAC activity, and no simultaneous activity in the conductance.

Figure 4.3: 3.10.2016 Spiking conductance at 1730 UTC followed by prolonged high con-

ductance, but no simultaneous FAC activity.
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Figure 4.4: 5.9.2012 Strong FAC between 08 UTC and 12 UTC first positive then negative

with only one small increase in conductance.

Figure 4.5: 22.1.2012 Small onset of FAC with simultaneous conductance increase be-

tween 06 UTC and 08 UTC, with strong and fluctuating FAC during later hours, with no

corresponding conductance.
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4.2 The total data-set

To first get an overview over the total amount of data, all of the unsorted corresponding

measurements of conductance and FAC are shown in one scatterplot. In Figure 4.6 the

FAC strength is along the x-axis and the Hall and Pedersen conductance is along the

y-axis. Each dot represents the corresponding readings for a 10 minute interval. As the

figure shows there is a large spread in the data. Most of the data is centered around weak

FAC which makes it difficult to see any clear trends.

To identify any correlations that might exist, the data is binned according to FAC values

to make the histograms shown in Figure 4.7. Each bin is 0.10µA/m2 wide. The average

conductance for each bin is shown, with the standard error of the mean presented for each

point. Most of the readings are in the range of ±0.10µA/m2, with 4403 points out of the

total 7670 falling between these values, which corresponding to 57.4%. These values are

represented by the two center-most bins in the figures. Bins with fewer than 10 points are

excluded.

To identify any potential correlations we study how the average conductance changes

as the absolute value of the FAC increases. We therefore preform a linear regression

analysis between the average conductance values for positive and negative values of FAC,

respectively. The linear results are shown as the two separate lines in each figure. Each

point is weighted to the square root of their respective size N to avoid the near 0 averages

dominating the slopes completely. The linear fit will have a coefficient that determines how

well the data matches a linear fit. A coefficient close to 1 would indicate a near perfect

linear correlation. The coefficients for each slope are marked in the figure as negative

coefficient and positive coefficient. The negative coefficient does not indicate a negative

slope value, but rather the accuracy of the fit for the points with negative FAC values.

To study the MLT-dependence of the fits, the day is then fragmented into intervals of 6

hours. The four intervals go from 0-6 MLT, 6-12, 12-18 and 18-24. Figures 4.8 through

4.11 show histograms, averages and fits for each MLT range in the same layout as Figure

4.7. This covers two periods on the night side and two periods on the day side. Greater

resolution would be preferred, but the scarcity of data with stronger FAC during night

time hours results in much greater uncertainties or even insufficient number of strong FAC

values to determine any correlations.
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Figure 4.6: The Hall and Pedersen conductance scattered against field-aligned current

strength.
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Figure 4.7: Hall and Pedersen conductance sorted into histograms where each bin is 0.1

µA/m2 wide. All data present.
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Figure 4.8: Hall and Pedersen conductance sorted into histograms where each bin is 0.1
µA/m2 wide. Selected data between 0000 MLT and 0600 MLT.
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Figure 4.9: Hall and Pedersen conductance sorted into histograms where each bin is 0.1
µA/m2 wide. Selected data between 0600 MLT and 1200 MLT.
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Figure 4.10: Hall and Pedersen conductance sorted into histograms where each bin is 0.1
µA/m2 wide. Selected data between 1200 MLT and 1800 MLT.
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Figure 4.11: Hall and Pedersen conductance sorted into histograms where each bin is 0.1
µA/m2 wide. Selected data between 1800 MLT and 2400 MLT.
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4.3 Variation of FAC with MLT.

Figures 4.8 through 4.11 show that the distribution of observed FAC varies as a function of

MLT; for example Figure 4.9 is shifted toward negative values while Figure 4.10 is shifted

towards positive values. These trends are explicitly demonstrated in Figure 4.12 which

displays the average FAC as a function of MLT.

Figure 4.12: Average field-aligned current for every hour.

Between 6 and 12 MLT, average values are negative, while from 12 to 19 MLT the average

values are positive. From 19 trough 6 MLT, the average FAC amplitudes are less than

0.05µA/m2 and display no obvious trend. This is not due to there being is no activity

during these hours, only that there is a roughly equal balance between 10 minute interval

points with upward currents and downward currents for these MLTs when using large sets

of data. Figure 4.13 shows a still of average FAC for a typical solar wind condition. The

green circle shows the approximate path of EISCAT. This image will change for some

different solar wind conditions, but the regions containing upward and downward currents

will remain similar, unless under extreme conditions. The average FAC from Figure 4.12

matches those of Figure 4.13. The variance of the currents we have derived are within

expected parameters.
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Figure 4.13: A still of average FAC for a typical solar wind condition [28]

4.4 The total night-side and single MLT resolution.

From Figures 4.8 to 4.11 it is clear that the correlations are stronger during the night-time

hours. To investigate this further we now focus only on these hours. This is shown in

Figure 4.14. This figure contains all the MLTs from Figure 4.8 and Figure 4.11.
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Figure 4.14: All the night-side hours. The average currents might be close to 0 in this

region, but as is evident in the figure this is due to an equal balance of up and down

currents.
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Ideally, we would have liked to be able to present results at greater resolution in order to

better compare with the results of Robinson, 2019. Figure 4.15 illustrates the problem in

data coverage. In this Figure the results for each MLT individually is shown in a colored

grid-chart. The grid has conductance on the y-axis and MLT on the x-axis. Each square is

0.1µA/m2 tall and 1 hour wide. When doing so the data limitation is removed, so a square

containing only a single 10 minute data-point will be visible in the results. The color-bar

indicates the average Hall conductance on the right side, and Pedersen conductance on

the left. The yellow color shows grid-points with no data. This figure shows that the

strongest conductances are found at MLTs within 3-4 hours of midnight. There is an

almost complete lack of readings for FAC greater than ±0.5 during the night-time hours.

During the daytime, conductances stay low regardless of FAC activity for all MLT.

Figure 4.15: Hall and Pedersen conductances in color grid-plot.
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Chapter 5

Discussion

In this chapter the results found in Chapter 4 are discussed. Correlations found in our

research is addressed. A comparison with the Robinson 2019 results is conducted, and an

attempt to apply his linear parameter fit equations to our data is done. Comments upon

the exception days are also made.

5.1 Correlations for different MLT

In section 4.2, Figure 4.7 shows a correlation between FAC and conductance. The correla-

tion is strongest for negative FAC, for which the regression coefficient is 0.87. For positive

and low amplitude FAC (< |0.5|µA/m2) the correlation is clear, but the trend disappears

and average conductances drop for FACs greater than |0.5|µA/m2. The Hall conductance

averages 2 mhos for weak FAC, and the highest conductance averages up to 4 mhos. The

Pedersen conductance is roughly half of the Hall conductance for negative FAC and weak

FAC. While the increase in Hall and Pedersen conductances as a function of FAC are sim-

ilar for negative FACs, the increase in Pedersen conductance is greater than the increase

in Hall conductance for positive FAC. When viewing all data simultaneously a correlation

can be identified, and we will move on to study the day-side figures and night-side figures

separately.

5.1.1 Day-side correlation

When reviewing the results shown in Figure 4.9 and Figure 4.10, no clear correlation can

be seen between FAC and conductance. The average conductance for the lowest FAC is

also higher during the day than the average conductance at the lowest FAC during night

time. As seen in Figure 4.15 the most extreme FAC values are between 1000 MLT and 1500
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MLT, yet the conductance values for both Hall and Pedersen are not affected. In Robinson

2019 the FAC values on the day-side are low and not correlated with conductance. The

result in his case was expected due to Poker Flat, Alaska being south of the auroral oval

during the day. During these hours Svalbard is within the auroral oval, so one could expect

greater activity in this region. The average FAC for each MLT shown in Figure 4.12 is

consistent with the expected values before and after passing through the day-side cusp.

Figure 4.13 shows the average FAC for the northern hemisphere during certain solar wind

conditions, and we see that our values matches this well.

One reason for the lack of day-side correlation could be inaccuracy in removing the solar

contribution, but as mentioned in section 3.3 only a small percentage of the EISCAT

Svalbard measurements that we used occurred during sunlit conditions. It is therefore

unlikely that our method of removing the solar contribution would have eliminated an

otherwise clear correlation.

The more likely reason for lack of clear correlation on the day-side has to do with the

Knight relation not being valid there. The FAC are not associated with persistent field-

aligned potential drops.

5.1.2 Night-side correlation

In contrast to the results for the day-side, the results in Figure 4.14 show a clear correlation

between stronger FAC and higher Hall and Pedersen conductance. Both for positive FAC

and negative FAC the conductance is correlated. When looking at the night-side in pre

midnight and post midnight (Figures 4.8, 4.11) we see that the majority of positive FAC

values are found before midnight, and the majority of negative FAC values are found after

midnight. In the pre-midnight hours we see only a correlation for negative FAC, but this

is due to the lack of strong positive FAC in the relevant hours. Looking back at Figure

4.15 showing the conductance for every MLT, we see that the strongest FAC to occur on

the night-side have values around ±0.5µA/m2. A possible explanation for the absence of

stronger FAC is the high latitude of Svalbard. During the night Svalbard is pole-ward of

the active auroral zone so any strong FAC during these hours would be a rarity, since FACs

mainly occurs at the borders of open and closed magnetic field lines. For stronger FAC to

occur at Svalbard, conditions have to be unusual. We conclude that there is not enough

data in this region of time to properly discuss how conductance behaves statistically for

stronger FAC.
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5.2 Comparisons with the Robinson 2019 model

In Statistical relations between auroral electrical condutances and field-aligned currents at

high latitudes [2019 Robinson et al], Robinson proposes the following equations describing

linear fits between FAC and conductance.

Σu
P = Σu

P0 +Mu
P j

u
|| ; Σd

P = Σd
P0 +Md

P j
d
|| (5.1a)

Σu
H = Σu

H0 +Mu
P j

u
|| ; Σd

H = Σd
H0 +Md

P j
d
|| (5.1b)

Here ΣP and ΣH are the Pedersen and Hall conductance respectively. ’u’ and ’d’ denote

fits to upward and downward currents. Σu,d
P0 and Σu,d

H0 are the y-intercepts of the linear fits

while Mu,d
P and Mu,d

H are the corresponding slopes for the Pedersen and Hall conductance

respectively. Robinson 2019 find these fits for each MLT based on the data acquired by the

Poker Flat Radar and presents a table. The fitting parameters (y-intercepts and slopes)

obtained for night-time MLTs are shown in table 5.1. We will use this table and compare

to the data derived from the EISCAT Svalbard radar. The comparison is only done for

the night-side, as both our results and those of Robinson 2019 do not show statistically

significant correlations for the day-side.

MLT Σd
P0 Md

P Σu
P0 Mu

P Σd
H0 Md

H Σu
H0 Mu

H

0 4.80 -8.38 5.50 11.23 8.89 -11.36 11.37 20.57
1 4.66 -8.85 5.57 11.67 8.61 -12.63 11.85 23.27
2 4.51 -9.05 5.62 11.85 8.21 -13.73 12.11 25.54
3 4.36 -8.95 5.63 11.71 7.80 -14.54 12.14 27.25
4 4.25 -8.52 5.60 11.21 7.44 -14.97 11.91 28.30
5 4.19 -7.75 5.51 10.32 7.23 -14.92 11.43 28.57

19 4.73 -4.33 5.07 7.56 6.76 -5.39 7.47 5.23
20 4.85 -5.13 5.14 8.28 7.66 -6.35 8.27 8.05
21 4.92 -6.01 5.22 9.06 8.37 -7.45 9.12 11.15
22 4.94 -6.88 5.31 9.85 8.81 -8.69 9.96 14.36
23 4.90 -7.70 5.40 10.59 8.97 -10.01 10.73 17.55

Table 5.1: Total hours of experiments for each month and year for the 2010-2017 period.

Ideally we would have liked to produce a similar table to find the y-intercepts and slopes

at Svalbard for each MLT. However as illustrated in Figure 4.15 the low number of strong

FAC events does not allow a meaningful regression analysis comparison for individual

MLTs. We will therefore compare the results of Robinson 2019 to the y-intercept and

slopes of our total night-side analysis. Table 5.1 shows that the y-intercepts and slopes

at poker flat change in relation to being pre midnight or post midnight. For this reason
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slopes and y-intercepts for 6 hour periods prior to and post midnight are also provided.

The parameters being compared are therefore the linear regression lines from Figures 4.8,

4.11 and 4.14.

EISCAT Svalbard measurements

MLT Σd
P0 Md

P Σu
P0 Mu

P Σd
H0 Md

H Σu
H0 Mu

H P0 H0

00-06 0.36 -7.95 0.76 -0.36 0.35 -14.44 1.26 -0.76 0.80 1.30
18-24 0.77 -2.20 0.49 6.89 1.35 -4.88 1.02 8.64 0.91 1.60
18-06 0.30 -8.13 0.51 5.74 0.47 -14.78 0.97 7.06 0.88 1.49

Poker Flat measurements

MLT Σd
P0 Md

P Σu
P0 Mu

P Σd
H0 Md

H Σu
H0 Mu

H - -

00-06 4.46 -8.53 5.57 11.33 8.03 -13.69 11.80 25.58 - -
18-24 4.82 -5.82 5.19 8.71 7.73 -7.01 8.82 9.86 - -
18-06 4.64 -7.10 5.38 10.02 7.88 -10.39 10.26 17.72 - -

Table 5.2: Slopes and y-intercepts for figures 4.8, 4.11 and 4.14 above. Averaged Poker
Flat slopes and y-intercepts below.

Table 5.2 shows the slopes derived from the Svalbard data together with the averaged

slopes and y-intercepts from the Poker Flat data. Some of the Mu,d
P,H values create Σu,d

P,H

values that are far below the measured values of conductance at ±0.05µA/m2. P0 and

H0 is therefore included. which represent the measured values. This does highlight a

weakness with the linear approach. Mu for 00-06 MLT and Md for 18-24MLT is marked

with red. These values are calculated using only 3 points of data. The linear coefficient

might still be large and indicate that the slope is accurate, but these results are based of

values with few strong FAC readings. Note that while the EISCAT Svalbard numbers are

derived directly from the radar measurements, the Poker Flat numbers are averaged from

Table 5.1. The most striking difference is that the y-intercepts are at much lower values

at Svalbard than at Poker Flat. The measurements derived from the EISCAT Svalbard

have the y-intercepts in the range of 1.3-1.6 mhos for Hall conductance and 0.8-0.9 mhos

for Pedersen conductance, while the y-intercepts derived from Poker Flat has these values

are ranging from 7.7-11.8 mhos and 4.4-5.6 mhos respectively. In the EISCAT Svalbard

data P0 is slightly greater from 18-24 MLT than from 0-06 MLT. This is also the case in

the Poker Flat data. For Hall conductance EISCAT stronger P0 from 18-24 MLT than

from 00-06 MLT. For Poker flat the y-intercepts for Hall conductance are stronger from

00-06 MLT for both up and down currents.

The lower y-intercepts are likely due to overall lower levels of conductance at Svalbard

and in the northern polar cap in general. The slopes are therefore of greater interest since

they would compare our correlation results to those of Robinson 2019 regardless of the

calmer averages. The Mu
P,H from 00-06 MLT and Md

P,H from 18-24 MLT at Svalbard are
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unfortunately highly uncertain due to the lack of sufficient relevant data for these hours.

The rest of the slope values can still be meaningfully compared though. Md
P for 00-06

MLT are very similar, with EISCAT being 7% larger than Poker Flat. The Md
H show a

similar situation. The Mu
P,H from 18-24 MLT are also comparable, with Poker Flat giving

20% higher values than EISCAT. When looking at the whole night-side (18-06 MLT) Md
P,H

remain relatively close in values, but for Mu
P,H the Poker Flat values are more than twice

of those from EISCAT.

5.3 The significance of the geomagnetic location of Sval-

bard

Figures 4.9 and 4.10 in section 4.2 show that there is no correlation between FAC and

conductance during day-time at Svalbard. The Knight-relation [1973] predicts a relation-

ship between FAC and electric potential in the ionosphere, and Robinson [2002] proposed

a relationship between particle precipitation and conductance. As mentioned previously

the Knight relations is not valid on the day-side. Our results show no correlation between

conductance and FAC for the MLT during which particle precipitation is most likely at

Svalbard.

Particle precipitation during night-time does occur at Svalbard. It is however infrequent,

since it requires quite unusual conditions to be met. For particle precipitation to occur

at night, the polar cap must first be contracted from low activity levels, and then expand

across Svalbard as activity increases. Svalbard also must be in the correct MLT position

when such an event occurs. This will cause the auroral oval to move equator-ward over

Svalbard, with related particle precipitation. It is rare for the auroral oval to be this far

north on the night-side, and this explains the lack of many strong FAC events during these

MLTs in the EISCAT data. Whenever magnetospheric activity occurs on the night-side,

it is likely that Svalbard is too far north to measure it. Thus both EISCAT and AMPERE

will mostly record background readings of no particular significance. To get a more ac-

curate picture of the correlation between strong FAC and high ionospheric conductance

more data would have to be acquired.

5.4 Case studies

In section 4.1.2 three days were presented where there is great activity in either the FAC

or the conductance, yet no simultaneous activity in the other parameter. In this section

a case by case study of these days will be presented. Figure 4.4 and Figure 4.5 both
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have strong FAC activity during the daytime hours. The statistical analysis show no clear

correlations for these hours. Given the extremity of the events and potential future studies

they warrant closer examination.

Figure 4.3 shows great activity in conductance from 1800 UTC to 2000 UTC, with only

weak FAC occurring simultaneously. Reviewing this specific time-frame in a broader

perspective shows that there is indeed FAC activity in the neighbouring regions. At the

time of the highest conductance, EISCAT Svalbard is located in the center of an upward

FAC and a downward FAC structure. It is therefore well possible that this conductance is

indeed associated with strong FAC, but the method of averaging to estimate the FAC in the

immediate area of the RADAR is insufficient to account for the total activity in the region.

A plot of the AMPERE interpolated data is shown in Figure 5.1. A downward current is

visible south-east of Svalbard, and an upward current north-west of Svalbard. Examining

the relation of conductance with strong FAC activity in a larger region surrounding the

radar measurement volume would be an interesting subject for a future study.

Figure 5.1: AMPERE data showing up and down FAC for 3.10.2016 at 1930 UTC, close

to the peak shown in Figure 4.3. Svalbard in encircled in green.

Figure 4.4 shows the Pedersen and Hall conductance together with the AMPERE derived
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FAC for 5.9.2012. Svalbard is below a strong downward FAC, but there is no simultaneous

increase in conductance. Whether this event produced day-side auroras in the relevant

period is unknown, since no relevant all-sky data could be acquired. This event happened

in September, during hours where the sun would be present on the sky. All the strong FAC

activity happens between 10-13 UTC ( 12-15 MLT). In these hours the statistical analysis

showed no correlation between conductance and MLT, so this one day measurement shows

that even for short extreme events this remains the case.

The case study of 22 January 2012 (Figure 4.5) does produce some interesting results. In

the FAC curve a downward onset is visible close to 0600 UTC that has a simultaneous

jump in both Hall and Pedersen conductance. The FAC is then reduced, with the conduc-

tance dropping in accordance. At 0900 strong geomagnetic activity begins, with the FAC

exhibiting strong changes between −0.7µA/m2 and +1.1µA/m2. The conductance how-

ever remains at background levels. The oscillations last until roughly 1300 UTC, where the

FAC also returns to low values. Figure 5.2 shows the All-sky aurora camera data parallel

to the AMPERE and EISCAT derived data, and there is strong auroras present during

the high activity hours. Figure 5.4 shows the FAC map produced by AMPERE for 1700

UTC and it is clear that the storm is still active, but the activity is now equator-ward

of Svalbard. Looking at the Dst-Index for the January 2012, the onset and the storm

development is clear (Figure 5.3). This case is interesting because it does show an initial

correlation between conductance, aurora and FAC during the early morning hours, but

during midday the conductance is unaffected even though strong auroras are detected.

This suggests that the correlation between conductance and FAC is entirely restricted to

the night-side, and might be independent of auroras in general, or that the auroras on the

day-side are different from the night-side aurora. (maybe references to studies being done

about this) This behaviour is reflected in the larger data set, which shows that that strong

FAC during midday hours is more common at Svalbard, but it does not produce strong

Hall and Pedersen conductances.
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Figure 5.2: Aurora all-sky camera data [29] for 22.01.2012 synchronized with the AMPERE
derived FAC and EISCAT Svalbard measured conductance.
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Figure 5.3: Dst-index for January 2012. The sub-storm begins at 22.01, with the recovery
period lasting several days.

Figure 5.4: AMPERE plot for 22.01.2012 at 1700 UTC. Svalbard in the middle of the
green circle.
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Chapter 6

Conclusion and outlook

In this thesis the relationship between FACs in the high altitude ionosphere and the Hall

and Pedersen conductance in the lower ionosphere above Svalbard, Norway was investi-

gated. This is an extension of work presented in Robinson, 2019 which studied this same

relationship over Alaska USA. It also follows work that has studied the correlation between

FAC and other ionospheric properties over several decades [Knight, etc]. The examination

of a relationship between conductance and the present FAC during the night-time hours

has been the main interest in this study. The present work is based on an analytical ap-

proach which compares the FAC and conductance derived from two separate experiments.

The FAC are derived from the AMPERE experiment, which is magnetic field variations

measured by the iridium communications satellite constellation. The Hall and Pedersen

conductances are derived from the measurements done with the EISCAT Svalbard inco-

herent scatter radar.

The results obtained in this work is presented in Chapter 4 and discussed in detail in

Chapter 5. For the night-side encompassing 6 hours before and after midnight, a corre-

lation between FAC and Hall and Pedersen conductance was found. The amount of data

present in our study was insufficient to provide a credible estimate of how this correlation

depends on MLT. For the 12 hours encompassing the day-side, no clear correlation was

found. When comparing to the results of Robinson, 2019 we found that conditions on

Svalbard are in general much calmer, with the y-intercept conductance values in general

being 4-7 times weaker than those found at Poker Flat for both Hall and Pedersen con-

ductances. The fit slopes derived from Svalbard are closer to those derived from PFISR

compared to the y-intercepts, and ranged from 1.1-3 times smaller. At PFISR, Robinson

found that the correlation between FAC and conductance was stronger for positive values

of FAC. At Svalbard we found that the correlation was stronger for negative values of

FAC. This may be due to insufficient data containing positive FAC, but may also be a
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product of different ionospheric conditions at Svalbard. A case study of 22.01.2012 showed

no day-side correlation between FAC and conductance despite the presence of auroras for

the relevant hours. The model described in Robinson 2019 is based on the assumption

that FAC are correlated with aurorally-produced ionospheric conductance. Our results

have indicated that this may no be universally true for day-side auroras. Understanding

the relation between FAC, particle precipitation and conductances in the day-side cusp

area is an active area of research[30][31].

This thesis presents results that provide information about the relationship between FAC

and Hall/Pedersen conductance in the immediate surroundings of Svalbard Norway. The

geomagnetic position of Svalbard provided us an opportunity to study this relationship

on the day-side and in the presence of strong day-side auroras. The scarcity of data for

strong FAC on the night-side does put some limit on our ability to study the night-side

relationship completely. There are several different approaches that could be taken to

further increase our understanding of this relationship. Our study encompass the period

of 2010-2017. In the future more data will be available from the EISCAT Svalbard radar

that can be used in a similar study, so the repetition of this study in the future would pro-

vide a better understanding of the relationship we studied. Alternatively using a different

radar for the ionospheric profile can be done. PFISR has an invariant latitude of approx-

imately 65.9◦north and sees almost exclusively heavy night-side activity, while EISCAT

Svalbard is at 75.18◦and sees far less extreme FAC on the night-side, but did provide the

opportunity to study the day-side activity. Using a radar somewhere in between these

invariant latitudes might provide the same opportunity to study day-side activity, but be

more inclined towards stronger night-side activity levels. Conducting a similar study for

the southern hemisphere would also be an interesting addition to our understanding the

global ionospheric profile.
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