

Monte Carlo simulations of neutron

based in-vivo range verification in

proton therapy – optimization of

detector dimensions and positioning

Janne Therese Syltøy

Supervisors: Kristian Smeland Ytre-Hauge and Ilker Meric

Master thesis in medical physics and technology

Department of Physics and Technology

University of Bergen

November 2019

II

III

Acknowledgements

First of all, I would like to thank my supervisors Dr. Kristian Ytre-Hauge and Dr. Ilker Meric

for your help and guidance during this project, it has been invaluable.

Thank you, Kristian, for presenting me with the interesting topic of my project, and the

excellent guidance and feedback I have received throughout the project. Thank you Ilker, for

giving me thorough feedback to improve my reflections and decisions during the processing

of my results. I would also like to thank Ph.D. candidate Lars Fredrik Fjæra for assisting me

with installation of necessary software and other technical issues I have encountered during

the past year.

A special thanks to my fellow classmate, Eidi, for the good companionship and teamwork

during the past five and a half years of studies. You have made these years fun and exciting

and helped me become a better student.

Thanks to my family, for all your support and encouragement during this project. Finally, I

would like to thank Daniel for the love and positivity you have shown me during this project,

it has meant a lot to me.

Bergen, November 2019

Janne Therese Syltøy

IV

V

Abstract

Proton therapy is a cancer treatment modality expanding in clinical applications around the

world. Due to the finite range of a monoenergetic proton beam, it is possible to spare more of

the healthy tissue surrounding the tumour compared with using traditional radiation therapy

with photons. However, this finite range will also make the treatment plan more susceptible

to density changes, which will affect the dose delivered to the tumour. To reduce the need for

large safety margins in particle therapy and enable proton therapy treatments of patient groups

where motion is an issue, there is a substantial ongoing research effort in so-called range

verification techniques. Range estimates can be performed in-vivo through the detection of

secondary radiation species emitted in nuclear interactions between the incident protons and

the nuclei in the patient, such as β+ emitters, prompt gamma-rays, charged fragments and

secondary fast neutrons.

The objective of this project was to optimize detector dimensions and positioning of an

existing detector concept for neutron-based range verifications using Monte Carlo simulations.

The MC simulation package FLUKA was used for simulation of four monoenergetic proton

beams of typical clinical energies, 100, 160, 200 and 230 MeV, entering a water phantom, and

subsequent tracking of the secondary fast neutrons produced in the phantom. In addition, a

patient treatment plan for prostate cancer was equivalently evaluated where the primary beam

energy ranges from 93 to 197 MeV. The results were processed using python, and the python

libraries Matplotlib and NumPy. In order to characterize the position and size of the detector,

the neutron detection rate was evaluated for a range of detector sizes and positions.

The results showed that the neutron detection rate differed considerably with varying detector

position and size, both for the water phantom and the patient treatment plan simulation. As a

function of the position of the detector, the rate increased gradually until a peak was reached,

followed by an almost symmetric decrease. In relation to the proton beam Bragg peak, the

neutron rate peak was generally located close to or distal to the Bragg peak. When the size of

the detector was considered, the neutron detection rate increased almost linearly with

increasing detector area.

VI

The results in this thesis show that the optimal placement of the detector will depend on the

specific treatment plan that is to be delivered and should therefore be evaluated for the

particular case. With a detector size of 20x20 cm2, using a single position for a broad range of

proton energies would lead to a clear reduction in neutron detection rate compared to using

multiple positions. The feasibility of moving the detector during treatment should therefore be

evaluated for treatment plans with large tumours and target volumes. Alternatively, a larger

detector could be applied in order to achieve sufficient neutron detection rate for the energy

levels included in the treatment plan.

VII

Contents
ACKNOWLEDGEMENTS ... III

ABSTRACT ... V

1. INTRODUCTION .. 1

1.1 RADIOTHERAPY – PAST AND PRESENT ... 1

1.2 PROTON THERAPY .. 2

1.3 RANGE UNCERTAINTIES AND VERIFICATION .. 3

1.4 PROJECT OBJECTIVES .. 4

2. PHYSICS OF PROTON THERAPY ... 6

2.1 PROTON INTERACTIONS .. 6

2.1.1 Stopping power .. 7

2.1.2 Deflection and nuclear interaction ... 8

2.1.3 Linear energy transfer ... 9

2.2 INTERACTIONS OF SECONDARY PARTICLES .. 10

2.2.1 Neutron interactions .. 10

2.2.2 Photon interactions .. 12

2.3 DOSIMETRY AND DEPTH DOSE CURVES .. 13

2.3.1 Absorbed dose ... 13

2.3.2 Dose deposition and the Spread-out Bragg peak .. 13

3. IN-VIVO RANGE VERIFICATION IN PROTON THERAPY .. 15

3.1 RANGE UNCERTAINTY .. 16

3.2 IN-VIVO RANGE VERIFICATION IN PROTON THERAPY.. 19

3.2.1 Direct techniqes ... 19

3.2.2 Indirect tecnique .. 19

3.3 NEUTRON DETECTION FOR VERIFICATION OF PROTON BEAM RANGE 22

4. MATERIALS AND METHODS .. 24

4.1 NEUTRON DETECTOR CONCEPT ... 24

VIII

4.1.1 Irradiation setup for water phantom simulations .. 25

4.1.2 Irradiation setup for patient treatment plan simulations .. 25

4.2 MONTE CARLO SIMULATIONS AND DATA ANALYSIS ... 26

4.2.1 Water phantom simulations .. 27

4.2.2 Patient treatment plan simulations ... 29

4.2.3 Processing of simulation results.. 31

5. RESULTS .. 33

5.1 WATER PHANTOM SIMULATIONS ... 33

5.1.1 Neutron production rates and detection characteristics .. 33

5.1.2 Neutron detection rates as function of detector position ... 38

5.1.3 Neutron detection rates as function of detector size .. 42

5.2 PATIENT TREATMENT PLAN SIMULATIONS ... 43

5.2.1 Neutron production rates and detection characteristics .. 43

5.2.2 Neutron detection rates as function of detector position ... 45

5.2.3 Neutron detection rates as function of detector size .. 46

6. DISCUSSION AND CONCLUSION ... 47

BIBLIOGRAPH .. 52

APPENDIX A .. 55

APPENDIX B .. 66

APPENDIX C .. 118

APPENDIX D .. 126

APPENDIX E .. 128

IX

List of abbreviations

BP Bragg Peak

CPU Central Processing Unit

CTV Clinical Target Volume

CT Computed Tomography

DDF Distal Dose Fall-off

DICOM Digital Imaging and Communications in Medicine

FLUKA FLUktuierende KAskade (fluctuating cascade)

HU Hounsfield Unit

IMPT Intensity-Modulated Particle Therapy

LET Linear Energy Transfer

LINAC LINear ACcelerator

MCS Multiple Coulomb Scattering

MC Monte Carlo

NIST National Institute of Standards and Technology

NOVO NeutrOn detection for real-time range VerificatiOn

OAR Organ At Risk

PBS Pencil Beam Scanning

PET Positron Emission Tomography

PGI Prompt Gamma Imaging

PTV Planning Target Volume

RBE Relative Biological Effectiveness

RT Radiation Therapy

SOBP Spread-Out Bragg Peak

TPS Treatment Planning System

X

1

1. Introduction

Cancer is the term for a large group of diseases characterized by abnormal cell growth with

the possibility of spreading to other tissues or organs. This is one of the main causes of death

worldwide and is estimated to reach 10.6 million deaths per year by 2020 [1]. But as the

technology and methods used for cancer treatment develops, the survival rates increase. This

results in a higher number of people living with cancer. In 2017 about 273 000 Norwegians

lived with a cancer diagnosis. This represent more than 5% of our population [2].

The method used for cancer treatment varies e.g. depending on the type of cancer. The

different modalities are chemotherapy, surgery, immunotherapy and radiotherapy, and these

are often combined to constitute an ideal treatment plan. Radiotherapy is a treatment modality

where the treatment dose delivered to the tumour is given by ionizing radiation. The overall

aim of radiotherapy is to reduce the dose to the surrounding tissue while maintaining the

prescribed dose in the tumour volume.

1.1 Radiotherapy – past and present

Radiotherapy has been used to treat cancer patients for more than a century. Before the use of

ionizing radiation, there were few options in curing oncologic patients. This changed when

Wilhelm Conrad Röntgen discovered X-rays in 1895 [3]. The following year Emil Herman

Grubbe used the discovery to treat a breast cancer patient. This happened at the same time

Antoine Henri Bequerel began researching radioactivity and different natural sources of

radiation. Only a few years later, in 1898, Marie Sklodowska-Curie and Pierre Curie

discovered radium as a natural source of radiation [3].

In the 1950s and 1960s there was a development in machinery with higher energies, in addition

to an increase in popularity of using Cobalt-60 for treatment. This led to a reduced use of the

conventional kilovoltage machines where the generated voltage was below 300 kVp [4]. The

new high-energy megavoltage machines are e.g. the Van de Graaff generator and linear

accelerator. Today, the most used particle accelerator for radiotherapy is the linear accelerator,

also known as the LINAC.

2

Another important discovery was when Godfrey Newbold Hounsfield invented Computed

Tomography (CT) scans in 1971, which in the 1980s was introduced to the clinics. This led to

a shift from 2D to 3D treatment planning in radiation delivery. Performing treatment planning

based on CT images resulted in better radiation dose distributions, and as new inventions such

as multileaf collimators appeared, radiotherapy was rapidly revolutionized [5].

1.2 Proton therapy

In 1946, Dr. Robert Wilson stated the advantages of using proton beam therapy for cancer

treatment, because of their improved depth-dose distribution as seen in Figure 1 [6]. He

explained how the protons emit a low dose in the beginning of their trajectory, with an

increasing dose towards the end of the particle range. This endpoint is called the Bragg peak,

and this can be estimated and used to maximise the damage in the tumour and minimise the

damage to surrounding tissue. In order to provide dose coverage to the entire tumour, multiple

proton beam energies are used to create a so-called spread-out Bragg peak (SOBP). The

advantages of using proton therapy compared to traditional radiation therapy with photons, is

the possibility to reduce the dose delivered to healthy tissue surrounding the tumour and reduce

the side effects of radiation.

Figure 1: Simple illustration showing the depth dose curves for photons and protons of two different

energies [7].

The first proton facilities were primarily used for research, and even though the first clinical

use of proton beams is dated 1954, it wasn’t until the late seventies computer-assisted proton

3

accelerators were successfully used to treat various kinds of tumours [3]. Proton therapy is

now used to treat several different cancer types, such as prostate, lung, paediatric and more.

There are 86 particle therapy facilities worldwide currently in operation, where six of them

use carbon, five use both carbon and protons, and the rest use protons [8].

1.3 Range uncertainties and verification

Since protons have a finite range in tissue, it is possible to spare more of the healthy tissue

surrounding the tumour using proton therapy than using traditional radiation therapy with

photons. However, this finite range will also make the treatment more susceptible to density

changes, which will affect the dose delivered to the tumour. As seen in Figure 2, this could

result in underdosage of the tumour and a large dose being deposited in healthy tissue either

before or after the tumour. Due to sensitivity of charged particle ranges to even the smallest

density changes along the radiological path in the patient, it is challenging to treat cancer in

certain areas with a lot of motion and irregular density, e.g. in the lungs [9].

Figure 2: The spread-out Bragg peak illustrated with the planned depth, and with 5 mm undershoot as

a result of patient motion or differences in anatomy [10].

Another factor that increases the uncertainty in proton beam range is the fact that the range is

calculated based on attenuation of X-rays in the patient CT-scan. The stopping power ratios

of the protons are then derived from the CT-scans through the use of calibration curves, but

4

this recalculation is flawed and leads to additional errors. Other uncertainties related to CT-

scans could be image noise, calibration, beam hardening and spatial resolution [10].

Traditionally, motion and variable density uncertainties are handled via margins. The clinical

target volume (CTV) that contains cancerous cells, is expanded to a planning target volume

(PTV) in order to ensure full dose delivery to the tumour. But in cases of heterogeneous tissue

it is not always enough to use conventional PTV planning to get a robust plan, especially for

particle therapy planning. Therefore, other robust optimization methods have been developed

that account for the range and setup errors that could lead to dose degradation and

misalignment of dose contributions from different beams during proton therapy [11].

The problem with using robust treatment plans, is that the radiation dose to healthy tissue

increases, which potentially degrades the benefits of using protons compared to photons.

Instead of using enlarged safety margins, one could use in-vivo range verification during

treatment to provide an accurate dose delivery with smaller treatment margins and minimize

dose to healthy tissue.

1.4 Project objectives

To reduce the need for large safety margins in proton therapy and enable proton therapy

treatments of patient groups where e.g. motion is an issue, there is a substantial ongoing

research effort in so-called range verification techniques. Range estimates can be performed

in-vivo through the detection of secondary radiation species emitted in nuclear interactions

between the incident protons and the nuclei in the patient, such as β+ emitters, prompt gamma-

rays and charged fragments [12].

During pencil beam scanning (PBS) proton therapy, another type of secondary radiation is

also produced, i.e. secondary fast neutrons. Until recently, this has been an unexplored option

for in-vivo range verification. There is a correlation between the neutron production and the

range of protons in the patient. This means that these secondary neutrons can, in principle, be

used to verify the range of the particle beam in the patient [13].

5

The objective of this project was to optimize detector dimensions and positioning of an

existing detector concept for neutron-based range verifications using MC (Monte Carlo)

simulations. The detector has a converter made of a hydrogen-rich material, where secondary

neutrons from the patient undergo elastic and inelastic interactions and produce protons. These

protons are then detected in two tracking detectors, and the depth distribution of the neutron

production is calculated with a reconstruction algorithm. The resulting neutron production

distribution then contains information on the primary proton beam range.

The positioning of the detector relative to the patient may have a great impact on the detected

signal and the precision of the final proton range estimate. Additionally, the size of the detector

may impact the detection rates and achievable statistics. The objectives of this work were

therefore (1) to use MC simulations to investigate the optimal placement of the detector and

(2) to investigate the impact of different detector sizes on the achievable neutron detection

rates.

6

2. Physics of proton therapy

Since it was first proposed in 1946, the technology of proton therapy has progressed

significantly. The basic physics that makes it possible to use protons for radiation therapy, can

be explained by how the protons interact when they traverse a medium.

2.1 Proton interactions

Charged particles, such as protons, can interact with an atom or nucleus in four ways: inelastic

coulomb scattering with atomic electrons, elastic coulomb scattering with atomic nucleus,

nuclear reactions and Bremsstrahlung [14]. The relevant types of interactions are displayed in

Figure 3.

Figure 3: Illustration displaying the different proton interaction mechanisms relevant for proton

therapy: (a) energy loss via inelastic Coulomb scattering with atomic electrons, (b) alteration of

proton trajectory as a result of the repulsive Coulomb force (elastic scattering) with atomic nucleus,

(c) formation of secondary particles by non-elastic nuclear interaction (p: proton, e: electron, n:

neutron, γ: gamma-rays [14].

7

2.1.1 Stopping power

Protons traversing a material will interact with the atomic electrons by electrical (Coulomb)

forces, and the proton continuously loses energy by ionizing and exciting the material [12].

This interaction is what determines the range of the proton in matter.

A particle with charge number Zp and velocity β relative to the speed of light, moves in a

material with atomic number Zt and density ρ. The mean ionization loss, also known as

stopping power, can be described by the Bethe-Bloch equation [12]:

 𝑑𝐸

𝑑𝑥
= 𝐾𝜌

𝑍𝑝
2

𝛽2

𝑍𝑡

𝐴𝑡
 [

1

2
 𝑙𝑛 (

2𝑚𝑒𝑐2𝛽2𝛾2𝑇𝑚𝑎𝑥

𝐼𝑒
2

) − 𝛽2 −
𝛿

2
−

𝐶

𝑍𝑡
]

 (2.1)

Where 𝐾 = 4𝜋𝑁𝐴𝑟𝑒
2𝑚𝑒𝑐2, NA is Avogadro’s number, re and me are the radius and mass of the

electron, At is the material molar mass, 𝛾 =
1

√1− 1
𝛽2⁄

 , Ie is the mean ionization energy for the

material, 𝛿 is the density correction factor and C is the shell correction factor [12].

As shown in (2.1, the stopping power is inversely proportional to the particle velocity squared.

This implies that as the proton speed decreases, the stopping power and energy loss increases

towards the end-of-range for the proton, giving rise to the so-called Bragg peak. The stopping

power is also proportional to the ion charge squared, hence a greater ion charge (e.g. carbon

compared to proton) gives a larger energy loss. This equation also implies that the material of

the absorber has a strong impact on the stopping power, since the stopping power is

proportional to the density of the traversed material. This density can vary significantly

considering a patient, with three orders of magnitude difference from air in the lungs to cortical

bone [14].

Figure 4 shows a sample graph of mass collision stopping power of water against proton

kinetic energy obtained from National Institute of Standards and Technology (NIST).

8

Figure 4: Stopping power of a proton in water as a function of proton energy [15].

2.1.2 Deflection and nuclear interaction

Because of the big difference in rest mass of a proton compared to an electron, the interactions

with the atomic electrons will not affect the direction of the protons. However, when the

protons approach a nucleus, a repulsive Coulomb force causes the proton to change direction

from its straight-line path. This is called Multiple Coulomb Scattering (MCS), and this

determines the lateral penumbral sharpness of the dose distribution.

Non-elastic nuclear reactions are less common but have a bigger impact once it happens

regarding the outcome for an individual proton. Here, the nucleus will emit secondary

particles, such as a proton, deuteron, triton, or heavier ion, or neutrons [14]. The effects of

these nuclear reactions in proton therapy is a reduced fluence and dose due to the primary

protons that are absorbed in the nucleus during these reactions. However, this is also somewhat

compensated by the creation of secondary protons and other heavier ions that contribute to the

delivered dose.

When the incident proton interacts with a nucleus in a non-elastic nuclear reaction, the nucleus

may be permanently transformed as the proton is absorbed and a neutron is ejected

(symbolized by (p,n)). With a 250 MeV proton beam about 20% of incident protons undergo

non-elastic interactions with nuclei in the target material and create secondary particles [16].

9

The charged secondary particles have limited range and are absorbed locally, while non-

charged particles such as neutrons and gamma-rays may travel further without being absorbed.

A great number of neutrons are produced when protons undergo nuclear interactions, and since

they are very penetrating, they can increase the risk of late effects. Therefore, the potential

effects of secondary neutrons should be considered during planning and performing of proton

therapy. This large particle range also enables detection of these secondary neutrons outside

the patient.

Bremsstrahlung is also a possibility for a proton approaching a nucleus, but with the energies

used in proton therapy, this is a negligible interaction.

2.1.3 Linear energy transfer

Linear energy transfer is a term that is similar to stopping power, but instead of considering

how much energy that is lost by the radiation, the focus is on the absorbing media and how

much energy it absorbs. Linear energy transfer is the linear rate of energy absorption in the

medium as the incident particles ionize it along their path, and is defined by the following

equation [17]:

𝐿𝐸𝑇 =

𝑑𝐸𝐿

𝑑𝑙

(2.2)

Where dEL is the energy transferred to the material due to a charged particle travelling a

distance dl. This value is also known as unrestricted linear energy transfer, LET∞, and equals

the stopping power in the medium. In order to focus solely on the energy deposited locally,

which is deposited close to the particle’s track, a new term called restricted linear energy

transfer, LET∆, is introduced.

𝐿𝐸𝑇∆ =

𝑑𝐸∆

𝑑𝑙

 (2.3)

Here dE∆ is the energy loss caused by electronic collisions except the loss due to delta electrons

with kinetic energy larger than ∆, and dl is the travel distance for the ionizing particle [18].

LET is usually expressed in units of keV/µm [17].

10

2.2 Interactions of secondary particles

In nuclear collisions of proton with tissue, various secondary particles are produced. Some of

these with sufficient energy to penetrate larger depths can be of relevance for range

verification studies. These are neutrons, photons, positron emitters and secondary ions

including protons. In the following, a very brief account of neutron and photon interaction

mechanisms will be given.

2.2.1 Neutron interactions

The probability for different neutron interactions depends strongly on the neutron’s energy.

Neutrons with high energy (larger than 1 MeV) are so-called fast neutrons, while low energy

neutrons (lower than 100 MeV) are called thermal neutrons [17] . Since neutrons are neutral

particles, they will not be affected by Coulomb repulsive or attractive forces. However, when

a neutron is close to a target nucleus the short range attractive nuclear potential can cause a

nuclear reaction [19]. Neutrons can interact with the nuclei in five different ways: elastic

scattering, inelastic scattering, neutron capture, nuclear spallation and nuclear fission. The

cross section, or probability, of each process depends on the kinetic energy of the neutron as

well as the physical properties of the nuclei in the target material.

Elastic scattering

As fast neutrons traverse a material, they lose their energy primarily by elastic interactions

with the nuclei of the material [20]. The struck nucleus recoils as some of the neutron energy

is transferred to the nucleus. This energy is then dissipated by ionization, excitation and elastic

collisions with other atoms in the material. In an elastic interaction, the kinetic energy and

momentum are conserved, meaning the energy lost by the neutron equals the energy of the

recoil nucleus.

Elastic scattering is the collision mechanism used for moderating fast neutrons to lower,

thermal energies. Materials with low Z value (atomic number), such as water, are ideal

moderators.

11

Inelastic scattering

Inelastic scattering can occur for neutrons with energies above a few MeV, but is not

particularly relevant for energies below 10 MeV [20]. Inelastic scattering is a specific type of

non-elastic collision, meaning that the kinetic energy is not conserved. Here the final nucleus

is the same as the initial nucleus struck by the incoming neutron.

The nucleus captures the neutron and re-emits it with lower energy and a new direction. Then

the nucleus will be left in an excited state and de-excites by emitting γ-ray with high energy.

Thermal neutron capture

Neutron capture is defined as a nuclear reaction where a thermal neutron is absorbed by a

nucleus, and secondary radiation is emitted in the form of a proton or γ-ray [19]. This is the

most relevant reaction for low energy neutrons, and product nuclei from this reaction will

usually be radioactive β- and γ-emitters [21].

Spallation

Spallation is a term describing when a target nucleus breaks apart into several smaller

fragments because of a collision or stress applied to the target. Hence, when neutrons (or also

an ion beam) are sent towards a target nucleus it could separate into different smaller

components, such as α particles and nucleons. The heavier fragments produced in such a

reaction will carry most of the excess energy, and deposit this in close approximation to the

location of impact. This contrasts with smaller fragments (e.g. neutrons) and de-excitation γ

rays, where the energy is carried further away before its deposited [19].

Fission

Lastly, fission is when neutrons are sent towards target nuclei of high atomic number (Z ≥ 92)

which separate into two lighter daughter nuclei. In addition to these two fragments, there are

also some fast neutrons produced in the process.

In proton therapy spallation and fission are not relevant, and the most important neutron

processes are inelastic and elastic scattering, leading to neutron capture [17].

12

2.2.2 Photon interactions

Photons traversing a material have no finite range, and the intensity is attenuated through the

medium. In order to characterize the ray of photons penetrating an absorbing material, the

linear attenuation coefficient µ [cm-1] is used. µ is defined as the probability per unit path

length that the photon will interact with the absorber, and this depends on the photon energy

(hν) and the absorber atomic number (Z) [22]. This can also be seen in correlation with the

thickness (x) of the absorber and intensity (I) of the attenuated photon beam, according to the

Beer-Lambert attenuation law [22].

 𝐼(𝑥) = 𝐼0𝑒−𝜇𝑥 (2.4)

Where I0 is the initial beam intensity before hitting the absorber.

The three main interactions for photons are the photoelectric effect, Compton scattering and

pair production. Photoelectric effect is when the photon interacts with a tightly bound orbital

electron and is completely absorbed in the process. Its energy is transferred to the electron

which is then ejected from the atom. Compton scattering is an interaction between a photon

and a loosely bound orbital electron. When this happens, a scattered photon with energy lower

than the incident photon is produced, and the electron is ejected from the atom and receives

the rest of the energy from the incoming photon. When the energy of the incident photon

exceeds 1.022 MeV, which equals the combined rest mass of the electron-positron pair, so-

called pair production is possible. The incident photon is absorbed and an electron-positron

pair is created. Further, the created positron will promptly disappear by reconversion into

photons during annihilation with an adjacent electron [22].

13

2.3 Dosimetry and depth dose curves

2.3.1 Absorbed dose

Absorbed dose is a measure of the physical dose delivered by ionizing radiation. [4]. It is

defined as

𝐷 =

𝑑 ⋶

𝑑𝑚

(2.5)

Where d⋶ is the mean energy transferred to a material with mass dm as a result of ionizing

radiation. Absorbed dose in the international system of units (SI system) uses Gray (Gy),

where 1 Gy = 1 J/kg.

Relative biological effectiveness (RBE) is a term used for describing the ratio of the doses

needed by two different types of ionizing radiation to cause the same damage. It is defined as:

𝑅𝐵𝐸 =

𝐷𝑋

𝐷𝑅

 (2.6)

Where DX is the reference value for an absorbed dose of type X radiation (often X-rays), and

DR is the absorbed dose of the radiation type considered (here protons) that causes the same

biological effect. In clinical proton beam therapy, a generic RBE value of 1.1 is normally

applied [23]. The biological dose for proton therapy is called RBE-weighted dose (D×RBE,

unit [Gy(RBE)]), which is considered the most important measure for determining dose

prescription in particle therapy [24].

2.3.2 Dose deposition and the spread-out Bragg peak

As shown in Figure 5, there is a significant difference in the way the dose is deposited for

photons compared to protons. For photons the largest dose deposition is near the surface of

the tissue they are traversing and decreases exponentially according to the Beer-Lambert

exponential attenuation law ((2.4). For protons on the other hand, the dose deposited starts out

lower and increases until the Bragg peak is reached, followed by a sharp decrease. Beyond the

Bragg peak, there is essentially no dose deposition from incident protons. Because of this

14

narrow Bragg peak, it is not suitable to use a monoenergetic proton beam for treatment. The

Bragg peak is instead “spread out” (SOBP) to cover the whole depth of the target volume and

provide a uniform dose over the entire target volume [25].

Figure 5: Illustration of depth-dose curves for proton and photon beams [26].

15

3. In-vivo range verification in proton therapy

Because of small variations in the energy loss for the individual particles (called range

straggling), the range of a monoenergetic proton beam is often defined as the depth in a

medium where half of the traversing protons have been absorbed and stopped by the medium,

which is illustrated in Figure 6 [14]. This implies that the range is an average quantity, defined

for the whole beam and not for individual protons.

Figure 6: Range-number curve. Illustrates the relative fraction of the proton fluence Φ remaining as a

function of depth z in water. Nuclear reactions in the medium causes the gradual reduction in number

of protons. Near the end of range, the protons have lost all their energy and are absorbed by the

medium. Because of range straggling and stochastic variations in how the protons lose energy, the

distal falloff has a sigmoid shape [14].

For the range of a clinical beam (i.e. a SOBP) other definitions of range could be applied, often

at a distal dose percentage of 90 (d90) as shown in Figure 7. This is located at the distal depth

where the dose delivered is 90% of the prescribed dose.

16

Figure 7: Illustration of the parameters used to describe a spread-out Bragg peak (SOBP). d refers to

distal while p is proximal. d80–d20 is called the distal margin (or DDF - distal dose fall-off), ranging

from a dose percentage of 80 to 20 of the prescribed dose. Here the range is defined as d90, but

sometimes d80 is referred to as Mean projected range. Modulation width is the distance between

p90/80 and d90 [27].

3.1 Range uncertainty

The Bragg peak and the general shape of the depth-dose curve of protons indicate that protons

are well suited for cancer treatment, since protons could deliver a high dose to the tumour

while minimizing the deposited dose to the surrounding healthy tissue [10]. On the other hand,

there is an uncertainty regarding the range of the protons that is important to consider while

preparing a proton treatment plan. If not considered, this will lead to a risk for underdosage of

the tumour and overdosage of the distal healthy tissue, as illustrated in Figure 8.

17

Figure 8: Photon and proton depth dose curves. (a) Reduced distal dose deposition for proton therapy

compared to photon (dotted line is photon curve, dashed line is mono-energetic proton curve, and

solid line is the proton spread-out Bragg peak curve (SOBP)). (b) The figures illustrate that

uncertainties in the proton treatment plan have greater effects on the received dose in the target and

the distal dose to the healthy tissue, compared with photons [28].

Range uncertainties have several different origins, where many of them are related to the fact

that the proton range in tissue is estimated from attenuation of X-rays in the patient CT scan.

Deriving the stopping power ratio of the protons from CT scans is not an exact method, so

certain assumptions about the tissue composition and the ionization potential are needed [10].

Also, a certain X-ray attenuation value in a given image voxel could correlate to various

stopping power values. There could also be uncertainties related to image noise, calibration

and the spatial resolution of the patient CT scan, however these factors will have smaller effect

on the derived stopping power ratios [10].

Another possible source of uncertainty is the algorithm used for calculating the proton range.

This will have a greater impact for inhomogeneous tissue, such as the interface between

different tissues in the patient [10]. There is also a possible uncertainty in the treatment plan

if there is a difference between the patient anatomy at the time of planning and treatment, such

as a change in weight or tumour size. Organ motion is also an important factor to consider,

especially if the tumour is located near or inside a moving organ such as a lung.

18

Uncertainties in proton beam range are accounted for by making the treatment plan robust

against these uncertainties. For treatment plans with uniform dose delivery from each field, a

robust plan is in general obtained by including margins around the tumour, creating a larger

target called planning target volume (PTV). In this way, it is made sure that the clinical target

volume (CTV) will receive the planned dose if the proton beam range is within the margin. In

addition, there are mathematical optimization techniques used to optimize the planned

treatment. This mathematical optimization is based on a function f(d), of the dose distribution

d. For a good treatment plan, this function is minimal, which implies that the algorithms used

try to find the beam intensities that minimize f(d) [29].

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥 𝑓(𝑑)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑑𝑖 = ∑𝑗 𝐷𝑗𝑖𝑥𝑗

𝑥𝑗 ≥ 0

 (3.1)

Where di is the dose in voxel i, xj is the pencil beam j fluence and Dij is the dose contribution

of pencil beam j to voxel i.

If the treatment plan is based on intensity modulated beams (IMPT) this traditional method is

not accurate enough, since the range of the protons is different within the beam. Therefore,

robust mathematical optimization methods have been developed where the uncertainties are

directly incorporated in the matrix Dij. This is done by assuming multiple possible dose

matrices, e.g. by viewing an undershoot and overshoot scenario [29].

Regardless of the exact characterization of patient position, anatomy, and tissue stopping

power properties before treatment, there will still be uncertainties in the actual application of

the treatment dose. Additional methods such as in-vivo assessment of the proton beam range

or, ideally, dose delivery before, during, or shortly after treatment will help further reduce

these uncertainties. This will also allow for more ideal arrangements of irradiation fields where

organs at risk (OAR) are in close proximity to the target.

19

3.2 In-vivo Range verification in proton therapy

The different methods used for range verification can be separated into two categories; direct

and indirect techniques [28]. The direct techniques imply that the range is found by measuring

the dose or fluence of the proton beam itself, while indirect techniques measure the different

secondary products from the protons interactions to determine the range of the initial beam.

3.2.1 Direct techniqes

Proton transmission imaging: radiography and tomography

Radiographic (i.e., from one direction) or tomographic (i.e., from multiple directions)

transmission of proton beams though a patient makes it possible to create images in treatment

position with the same radiation quality as for treatment [30]. The study of proton radiography

started in the late 1960s. Here a high energy proton beam is sent through the patient and

detected on the other side, and the residual range is measured directly. One of the main

attributes of proton radiography early on was the high contrast [28]. It was also determined in

the 1990s that the imaging dose was considerably reduced with protons compared to

conventional imaging using X-rays [28]. In addition, if proton radiography is used the

stopping power is directly measured, and the uncertainties from the derivation of stopping

power ratios from X-ray attenuation is no longer an issue. So, if proton radiography is used it

is possible to do in-vivo measurements of the range of the proton beams.

Proton transmission imaging is also used in a 3D tomography mode. This means that it is

possible to perform range verification in 3D as well, although the main focus at the time in

proton tomography is related to accurate measurements of stopping power for both range and

dose calculations during treatment planning [28].

3.2.2 Indirect tecnique

Prompt gamma imaging (PGI)

Protons sent through a patient will experience nuclear interactions with the tissue, and some

of these interactions will lead to excitations of nuclei. In the immediate decay to its ground

state, the nuclei may emit a γ-ray (photon), also referred to as prompt γ-rays. These inelastic

20

interactions between proton and nuclei occur along the entire path of the proton beam up to 2-

3 mm proximal to the Bragg peak. Here the interaction cross section drops and the energy of

products from the nuclear reactions decreases [28]. Since there is a correlation between the

range of the protons and the emission of prompt gamma-rays as shown in Figure 9, these can

be used to determine the range of proton beams in patients during treatment.

Figure 9: Illustration showing the correlation between prompt gamma emission and proton range.

Photon and neutron detection profiles obtained from simulation with a perfect scintillator and

collimator, i.e. with infinite density. The grey-shaded curve illustrates the depth dose curve and is

given as a reference for the proton beam range depth. The coordinates along the beam and detector

axes are set based on the expected beam range in the target: 15.2 cm in PMMA (para-Methoxy-N-

methylamphetamine) at 160 MeV [31].

The PGI technique was first introduced in clinical proton therapy in 2015 at OncoRay in

Dresden Germany, using a knife-edge slit camera, illustrated in Figure 10 [32].

21

Figure 10: Design of knife-edge slit camera. a: Grey tungsten collimators and a photon detector

consisting of LYSO (lutetium-yttrium oxyorthosilicate) scintillation crystals, red out by silicon

photomultipliers. It consists of 40 crystals in total, organized in two rows with 20 crystals each. b:

Illustration of the readout from the crystals [33].

PET imaging

In 1969, Maccabee et al was the first to suggest using PET imaging for verification of hadron

beam therapy [34]. Coincident gamma-rays produced by the annihilation process resulting

from positron emission from β+ decay of radioactive isotopes are exploited. During an ion

beam irradiation, some of the ions propagating through the patient will, in the nuclear

interactions, create positron emitting isotopes that can later be detected by a PET camera.

When the isotopes undergo β+-decay, a positron is emitted, and this positron will annihilate

with a nearby electron. The annihilation process results in two coincident gamma photons

emitted back-to-back, each with energy of 511 keV.

For heavier ion such as 12C and 16O beams, the fragmentation can happen both for the

projectile and target, but for a proton beam the only possible outcome is target fragmentation.

The isotopes most relevant for soft tissues are 11C, 13N and 15O. Since tissue usually has a

high density of oxygen, and 15O have a short half-life and consequently high decay constant,

15O usually dominates as contributor in the beginning of these PET measurements. But

because of its short half-life, 11C takes over as dominant nuclide after a while. In Figure 11

the contributions from these three isotopes as a function of time are displayed. The differences

in decay time for the radionuclides used in PET imaging, makes the verification process very

sensitive to the time course of data acquisition, and is considered a disadvantage for range

22

verification. Diffusion causes a lack of accuracy in the correlation between the location of the

gamma-ray emission and the nuclear reaction. Depending on the tumour location, this will

reduce the precision of range verification [35].

Figure 11: Radionuclide relative contributions in activity as a function of time [34].

3.3 Neutron detection for verification of proton beam range

Another possible solution for verifying the range of the proton beam in real-time, is to measure

the secondary fast neutrons produced by nuclear interactions along the proton beam path.

Marafini et. al. recently explored the possibility of detecting these neutrons for estimations of

the additional dose due to neutrons in the patient [36]. Neutron-based range verification has

later been studied in the NOVO (NeutrOn detection for real-time range VerificatiOn) project,

with the use of FLUKA Monte Carlo simulations with monoenergetic proton beams impinging

on regular a water phantom [13]. The current MSc thesis is also a part of the ongoing NOVO

project.

Neutron production as a function of depth in the water phantom was found to be stable in the

entrance region and decreasing until just proximal to the Bragg peak, as seen in Figure 12a.

As expected, the neutron production rates increased with increasing primary proton beam

energies. Figure 12b shows that the dominating neutron energies were in the order of 10 - 100

MeV for all three initial energies, and that the maximum energy for the neutrons increased as

the proton beam energy increased. In Figure 12c it is shown that the neutrons were mainly

23

emitted in the forward direction, i.e. along the direction of the primary proton beam, and that

the angular distributions of the neutrons were symmetric across the primary proton beam.

Figure 12: Illustrations of the neutron production in a water phantom for three different proton beam

energies. a: Neutron production as a function of depth in the water phantom, shown with relative

depth doses (dashed lines). b: Initial energy distribution for the neutrons produced. c: Angular

distribution of the neutrons produced [13].

24

4. Materials and methods

4.1 Neutron detector concept

The conceptual detector design explored in this thesis was first introduced in the NOVO

project [13]. The principle behind the detection system is seen in Figure 13. It consists of a

converter made of a hydrogen-rich organic scintillator material called EJ309, with atomic ratio

of 1.25 for hydrogen/carbon. Here, the neutrons produced in the patient may undergo elastic

and inelastic interactions and produce secondary protons. These protons are then detected in

two position sensitive detectors, and the depth distribution of the neutron production can be

calculated with an ad-hoc reconstruction algorithm. This result can finally be used to estimate

the primary proton beam range.

Figure 13: The detector concept. a: The detector design used in Monte Carlo simulations, not to

scale. Neutrons produced in the water phantom are converted to protons in the converter. b:

Secondary protons produced in the converter material traverse two position sensitive detectors and

the positional information is used for reconstruction of the track and production coordinates of the

initial neutron [13].

In this thesis, the dimensions and position of the converter and detectors have been evaluated

first with the use of a water phantom, and later with a clinical proton treatment plan for prostate

cancer. In simulation ideal detectors have been used, i.e. an abstract detection layer used for

scoring of the parameters of the protons created in the converter.

25

4.1.1 Irradiation set-up for water phantom simulations

In the present study a 190x200 cm2 converter and two equally large tracking detectors were

defined in simulation, located parallel to a 35x10x10 cm3 water phantom (see Figure 14). The

unrealistically large size of the detectors and converter made it possible to explore many

different detector positions and dimensions along this plane using a single Monte Carlo

simulation.

Figure 14: Illustration showing the scale of the converter and detectors relative to the water phantom

used in the FLUKA simulations. a: Two-dimensional illustration from the side b: Two-dimensional

illustration from above.

Monte Carlo simulations were performed at four different proton energies: 100 MeV, 160

MeV, 200 MeV and 230 MeV, covering typical ranges of therapeutic proton beams. The

primary proton beams had spatial Gaussian profiles of 10 mm full width at half maximum.

4.1.2 Irradiation set-up for patient treatment plan simulations

The patient treatment plan is designed with proton beam energies ranging from 93 MeV to

197 MeV. The plan is developed at Haukeland university hospital for a prostate cancer patient,

and it consists of two opposing lateral fields. Both fields contribute to the prostate PTV

prescribed 67.5 Gy(RBE), while each of the fields separately irradiates lymph nodes on their

respective sides (55 Gy(RBE) prescribed). One of the fields were simulated in this thesis, as

seen in Figure 15. Also here, a large converter with equally large tracking detectors, based on

the detector concept shown in Figure 12, was used. The detection system was placed next to

the patient to detect the neutrons produced in the patient during treatment.

26

Figure 15: FLUKA geometry for patient treatment plan simulations. The beam enters from x-

direction, and neutrons produced in the patient are detected in the adjacent tracking detectors.

4.2 Monte Carlo simulations and data analysis

In order to determine the ideal detector position and area in this thesis, the neutron detection

rate was evaluated using Monte Carlo simulations.

Monte Carlo simulation is a technique used to model the probability of different outcomes in

processes when these are difficult to predict analytically, due to the stochastic nature of these

processes [37]. This makes MC simulations a good method for solving problems related to

particle physics, such as in this thesis. FLUKA (FLUktuierende Kaskade or Fluctuating

Cascade) [38], [39], is a Monte Carlo simulation package for particle physics. It can be used

for calculations of particle transport and interactions with matter, including a great variety of

applications such as accelerator shielding, calorimetry, dosimetry, detector design,

radiotherapy etc. [40].

In this study FLUKA is used to simulate monoenergetic proton beams entering a water

phantom, and the production, and subsequent tracking of secondary fast neutrons. FLUKA is

also used to simulate a realistic patient treatment plan with protons, as well as to track the

secondary fast neutrons produced in the patient. Even though the particles of interest in this

thesis are neutrons and protons, other particles (e.g. electrons and alpha particles) will also be

created during simulation. Various settings in FLUKA can be implemented to exclude some

of these irrelevant particles, in order to reduce simulation time.

27

4.2.1 Water phantom simulations

24 parallel simulations, each with 5.0x107 primaries, were performed in order to simulate a

total of 1.2x109 primary protons per energy. The total CPU time for the simulations were

2.7x104 s (7.5 hours), 3x104 s (8.3 hours), 1.2x105 s (33.3 hours) and 1.36x105 s (37.8 hours)

for 100, 160, 200 and 230 MeV, respectively.

Prior to performing the simulations, the simulation settings in FLUKA were evaluated. The

main goal was to perform simulations with good statistics and enable production and tracking

of secondary particles. The FLUKA input card called DEFAULT can be used to set various

default choices, reducing the number of cards needed in the input file. The default was set to

PRECISIOn, which is a default suitable for simulations requiring high accuracy and tracking

of secondary particles. This setting includes several effects, but most relevant in this thesis is

that low energy neutron transport is turned on down to thermal energies, and that the

particle transport threshold is set at 100 keV for all particle types, except neutrons (10-5 eV).

The physics cards in FLUKA which allow overriding the defaults for physics processes, were

set to COALESCEnce and EVAPORATion. COALESCEnce is used to activate coalescence

mechanism in the simulations, while EVAPORATion is used for evaporation, to use a new

evaporation model with heavy fragment evaporation. Both these cards are recommended for

precise particle production calculations [41].

Transport of ions was activated in the simulations with the card IONTRANS, which was set

to HEAVYION. This implies that transport of all light and heavy ions is activated.

The USRBIN option, which is the standard card for volume scoring in FLUKA, was used for

scoring of the primary proton beam dose delivery. This was further utilized for creation of

depth dose plots used for determining the Bragg peak depth of the different primary proton

beams. This was defined as the depth of maximum dose.

Two FLUKA user routines (tracking codes) were implemented to gather relevant neutron and

proton information at the water phantom, converter and tracking detectors, in addition to

extracting information on the trajectory of the particles. These two codes, and a table

presenting the information these extract during the simulations, can be found in Appendix A.

28

The first code, called BXDRAW, is used to check whether a proton crossing the first tracking

detector was created in the converter. Further, it is controlled whether the same proton crosses

the second tracking detector. If so, the kinetic energy of the detected proton, the primary

particle number, the position, energy and direction of the neutron at production point, and

information describing the position and direction of the secondary proton crossing both tracker

planes, is stored. The second code, STUPRF, is used to check if the detected neutron was

created in the water phantom, and if so, determine which reaction happened in the converter.

Possible interactions were either inelastic, elastic or low energy neutron scattering (E < 20

MeV). All detected neutrons were included in the analysis, also low energy neutrons.

Information is gathered from the water phantom as well, independently of the interactions that

take place in the detection planes. This includes the position, direction and energy of each

secondary neutron produced in the water phantom.

Simulation parameters for the water phantom simulations are gathered in Table 4-1.

Table 4-1: Simulation parameters from FLUKA, for simulations with water phantom.

PARAMETERS DESCRIPTION

Proton beam energy 100 MeV, 160 MeV, 200 MeV and 230 MeV

Defaults PRECISIOn (defaults for precision simulations)

Physics processes COALESCEnce on (activates coalescence

mechanism), EVAPORATion New Evap with heavy

frag (new evaporation model, with heavy

fragmentation)

Transport IONTRANS heavyion (Transport of all light and

heavy ions)

Scoring USERDUMP complete, all (activates calls to the user

routine BXDRAW), USRBIN dose (needed for depth

dose plotting)

29

4.2.2 Patient treatment plan simulations

24 parallel simulations, each with 5.0x107 primaries, were performed in order to simulate a

total of 1.2x109 primary protons. The total CPU time for the simulation of 24 independent jobs

was 2.1x105 seconds, which equals 59.5 hours, about 2,5 days.

Before running simulations with FLUKA, the patient data needed to be transformed to a format

that could be implemented in FLUKA. This process is illustrated in Figure 16 and is based on

a method developed by Fjæra [42]. From the treatment planning system, the DICOM (Digital

Imaging and Communications in Medicine, the standard used for storing and managing

medical imaging data) files were exported and sorted using the script dicomSort.py, providing

the necessary input for the FLUKA simulation, both beam characteristics and CT images. The

script set_HU.py was run in order to set the Hounsfield Units outside the patient to vacuum,

and further import the CT images to the FLUKA simulation.

Figure 16: Illustration of the workflow for implementing patient treatment plans in FLUKA

simulations. The DICOM files contain the important information regarding dose deposition and

anatomy, which is transformed to a format readable in FLUKA (green boxes). The scripts (yellow

boxes) are custom made by Fjæra [42].

30

The default in FLUKA was set to HADROTHErapy, which is a default created for hadron

therapy calculations, including proton therapy. This default was set in the process described

in Figure 16, and differs from the water phantom default setting in some ways. However, the

most important settings decided by the default card are the same for both HADROTHErapy

and PRECISIOn, i.e., that low energy neutron transport is turned on down to thermal energies,

and that the particle transport threshold is set at 100 keV for all particle

types, except neutrons (10-5 eV). It is therefore assumed that the differences in default setting

will not affect the results in this thesis.

The physics cards in FLUKA were the same as for the water phantom, but the transport setting

was different. In addition to the card IONTRANS which determines the transport of ions,

another card implemented for transport was EMFCUT. This card can be used to set the energy

thresholds for electron and photon production and transport cut-offs in the selected

materials/regions. All regions were included in the cut, and it was set to 6 MeV. EMFCUT

was also applied as a production cut, to set an energy limit for the electrons and photons created

in the materials in simulation (6 MeV). All materials were included in the cut-off. This was

utilized to reduce the CPU time for the simulations and could have been implemented for water

phantom simulations as well, without affecting the results.

Three different user routines were applied in the simulations. The two tracking codes used for

water phantom simulations, BXDRAW and STUPRF, were altered to record the neutron

production in the patient. The last user routine is found in Appendix C, and is the source.f file

as described in Figure 16. This is used for incorporation of beam information (energy, position,

direction and beam spots) for the different primary proton beams used in the treatment field.

The upper and lower energy limits for the spread-out Bragg peak (SOBP) was found by

running two separate simulations for the upper and lower beam energy, 93 and 197 MeV. Each

simulation consisted of four parallel simulations with 1x105 primary protons each. The depth

dose curve in the patient was created for each energy, enabling localisation of the Bragg peaks

defined at maximum dose deposition. These plots can be found in Appendix D.

Simulation parameters in FLUKA for the patient treatment plan simulations are given in Table

4-2.

31

Table 4-2: Simulation parameters from FLUKA, for simulations with patient treatment plan.

PARAMETERS DESCRIPTION

Proton beam energy 26 different energies ranging from 93 MeV - 197 MeV.

Number of beams per energy varies from 4 - 288.

Defaults HADROTHErapy (defaults for hadron therapy

calculations)

Physics processes COALESCEnce on (activates coalescence mechanism),

EVAPORATion New Evap with heavy frag (new

evaporation model, with heavy fragmentation)

Transport cut IONTRANS heavyion (full transport of heavy ions),

EMFCUT all regions

Production cut EMFCUT all materials

Scoring USERDUMP complete, all (activates calls to the user

routine BXDRAW), USRBIN dose/all parts (used for 2d

dose plot)

4.2.3 Processing of simulation results

Python scripts were written to organize and process the information gathered from FLUKA.

All scripts can be found in Appendix B. Matplotlib1, a python 2D/3D plotting library, and

NumPy2, a python scientific computing library were used.

In order to obtain the optimal placement for the detector based on the neutron detection rate,

a 20x20 cm2 detector was defined in the data analysis and moved stepwise 1 cm along the

1 https://matplotlib.org

2 https://numpy.org

32

depth direction exploiting information from the large detection plane. Neutrons produced

closer to the Bragg peak could be considered more useful in order to perform in-vivo range

verification, since they hold more information about the end of range for the initial proton

beam. Therefore, two additional analyses were implemented, considering the optimal detector

position for the water phantom simulations. Here, only the neutrons produced in the last half

and last quarter of the proton beam range were included in the neutron detection rate estimates.

The optimal detector position was defined as the point where the neutron detection rate was

highest. The statistical uncertainty in neutron detection rate was calculated as √𝑁, where N is

the number of detected neutrons.

For the water phantom simulation, a common location for 160 and 200 MeV was explored,

considering that clinical applications of proton therapy include a range of energies and that

moving the detector during treatment may be challenging. The neutron detection rate for 160

and 200 MeV were summed up and a new peak was located. The uncertainties in the peaks

for 160 and 200 MeV were also compared individually to see if the uncertainty range for each

energy had an overlap.

The area of the detector was considered by increasing the detector dimensions quadratically

while placed in the optimal position (for each energy), obtained in this thesis. The thickness

of the converter was, however, kept constant at 5 mm in all cases.

33

5. Results

5.1 Water phantom simulations

5.1.1 Neutron production rates and detection characteristics

The neutron production and detection rate, predicted by MC simulations at different primary

proton energies, are displayed in Table 5-1. Both rates increased with increasing primary

proton energy, and the difference is greater for increasing energies. The neutron detection rate

was larger by a factor of 12 for 230 MeV protons compared to the lowest energy of 100 MeV

protons, and by a factor of 1.4 for 230 MeV protons compared with 200 MeV protons.

Table 5-1: Total neutron production and detection rates per primary proton for the 190x200 cm2

detector, for the four simulated energies. The uncertainties are calculated as the standard deviation of

the 24 spawns used in simulation.

Proton beam energy

[MeV]

Neutron production

rate [produced

neutrons/primary

proton]

Neutron detection rate

[detected neutrons/primary

proton]

100 0.03 ± 0.1 % 2.4 x 10-5 ± 2.2 %

160 0.08 ± 0.05 % 1.1 x 10-4 ± 1.0%

200 0.13 ± 0.04 % 2.1 x 10-4 ± 1.0 %

230 0.18 ± 0.03 % 2.9 x 10-4 ± 0.7 %

The relative dose delivered in the water phantom is illustrated in Figure 17, as a function of

the depth in water. The Bragg peak depths are located at 7.6 cm, 17.5 cm, 25.7 cm and 32.6

cm for a primary proton beam energy of 100, 160, 200 and 230 MeV, respectively.

Considering the small bin sizes used in simulation (1 mm step) the uncertainty in Bragg peak

position is negligible.

34

Figure 17: Relative dose delivered in the water phantom by the primary proton beam as a function of

the depth in water, for each simulated energy.

The secondary neutron production distribution in the water phantom is illustrated in Figure

18a, and as seen neutron production is high in the entrance of the water phantom and gradually

falls-off towards the primary proton Bragg peak. The secondary neutron production

distribution for only the detected neutrons is illustrated in Figure 18b. Compared to Figure 18a

showing all neutrons produced, the falloff towards the Bragg peak is gentler and starts earlier.

Figure 18: a: The neutron production as a function of depth in the water phantom. b: Production

depth distribution for the detected neutrons from the set-up with water phantom.

Figure 19a shows the initial energy distribution for the neutrons produced in the water

phantom. Neutrons with energies above 1 MeV dominated, and the magnitude of the

maximum neutron energy increased with increasing primary beam energy. The initial energy

35

distribution for detected neutrons is illustrated in Figure 19b, and as seen, exceedingly few

neutrons with initial energies below 10 MeV were detected compared with the higher energy

neutrons. The general shape of the distributions was similar for the different energies, mainly

increasing in magnitude.

Figure 19: a: Distribution of initial kinetic energy for the neutrons produced in the water phantom. b:

Distribution of initial kinetic energy for detected neutrons. The neutron spectrum is shown with

logarithmic bins and with linear ordinate axis.

The energy and production positions inside the water phantom for 1000 detected neutrons are

illustrated in Figure 20. We can see that, as expected, the neutrons were primarily produced

along the axis of the primary proton beam. It is also observed that the average neutron energy

at shallow depths was higher than for neutrons produced closer to the end of range for the

primary proton beam.

36

Figure 20: Neutron production shown as a function of distance from the beam axis (y-axis) and depth

in water phantom (x-axis) for four proton energies. The kinetic energies of the neutrons at the time of

production are indicated by the color bar.

The production positions inside the water phantom can also be displayed with a two-

dimensional histogram as shown in Figure 21. While Figure 20 shows the discrete neutron

positions, Figure 21 shows the distribution of neutrons in the water phantom.

Figure 21: Two-dimensional histogram illustrating the production of all neutrons inside the water

phantom, from 1.2x109 primary protons.

37

The distribution of the detected secondary protons from (n,p) reactions on the two tracking

detectors rapidly increased at the entrance point of the water phantom (at x=0) until it reached

a peak, with a following gradual decrease as the depth increased, as shown in Figure 22. The

histograms for the four different energies look similar but are shifted deeper into the water

phantom as the energy increases. In addition, a greater number of neutrons were detected for

higher energies, which corresponds to the increased neutron production rate as shown in the

previous figures.

Figure 22: Neutron detection distribution illustrating the correlation between Bragg peak position and

neutron detection rate on the two large tracking detectors. The statistical uncertainties are indicated

by the error bars for each bin (about 1-2%).

There is also a correlation between the location of the Bragg peak in the water phantom and

the location where the neutron detection rate is highest. For all energies, the location with the

most detected neutrons was located around Bragg peak depth. Distal for all energies, but

gradually closer for increasing energy. The maximum neutron detection rates from Figure 22

are given in Table 5-2.

38

Table 5-2: Positions of maximum neutron detection rate on the two detection planes. The number in

the parentheses gives the location relative to the Bragg peak position (positive number indicate peak

distal to Bragg peak), with Bragg peaks located at 7.6 cm, 17.5 cm, 25.7 cm and 32.6 cm for protons

of 100, 160, 200 and 230 MeV energy, respectively.

Energy [MeV] Tracking plane nr. Location [cm]

100 1 15.0 ± 3.0 (7.4 ± 3.0)

100 2 18.0 ± 6.0 (10.4 ± 6.0)

160 1 21.0 ± 3.0 (3.5 ± 3.0)

160 2 22.5 ± 1.5 (5.0 ± 1.5)

200 1 27.0 ± 3.0 (1.3 ± 3.0)

200 2 28.5 ± 4.5 (2.8 ± 4.5)

230 1 33.0 ± 3.0 (0.4 ± 3.0)

230 2 33.0 ± 3.0 (0.4 ± 3.0)

5.1.2 Neutron detection rates as function of detector position

In Figure 23 the total number of detected neutrons is displayed for different positions of a

20x20 cm2 detector within the large detection plane used in the simulation. The neutron

detection rate is illustrated as a function of the centre point of the various detector positions.

The reference point was set at 0 cm at the entrance of the water phantom. In general, we see

that the positioning of the detector strongly impacts the detection rates which increases as the

detector was moved in depth direction, to a certain point where a peak was reached, followed

by an almost symmetric decrease. The detector position that provides maximal detection rate

for a 20x20 cm2 detector is centred in 15 ± 2 cm, 20.5 ± 1.5 cm, 24.5 ± 1.5 cm and 28 ± 2 cm,

for 100, 160, 200 and 230 MeV, respectively. For 100 MeV this results in a maximum

sensitivity position of 7.4 ± 2 cm distal to the Bragg peak position, while for 230 MeV it is at

4.6 ± 2 cm proximal to the Bragg peak. This shows that there is a shift in the ideal detector

39

position relative to the Bragg peak depth, depending on the initial energy of the primary proton

beam.

Figure 23: Neutron detection rate as a function of the center position of the different 20x20 cm2

detectors. x = 0 cm at the entrance point of the water phantom.

Analyses were also performed only for those neutrons that were produced in depths

corresponding to the last half and last quarter part of the range of the primary proton beams.

The difference in neutron detection rate is significant when comparing the different analyses,

and a change can be seen in the optimal detector placement (Figure 24). Compared to the

analysis for all neutrons, the peaks are still almost symmetric, and the shift is still energy

dependent, but the distance relative to the Bragg peak is greater. The difference is greater for

greater energies, and all peaks are here located distal to the Bragg peak positions.

40

Figure 24: Neutron detection rate as a function of the center position of the different 20x20 cm2

detectors. The detection rate is illustrated for each energy, and for each analysis with produced

neutrons from all, half and last quarter part of range for the primary proton beam.

The positions of maximum neutron detection rate found in Figure 24, including Bragg peak

positions and error bars, are illustrated in Figure 25. The exact numbers can be found in

Appendix E.

Figure 25: Position of maximum neutron detection rate (including error bars) for the four different

energies used in simulation, and for each analysis with produced neutrons from all, half and last

quarter part of range for the primary proton beam. Bragg peak positions are included for comparison.

41

The neutron detection rates for the 20x20 cm2 detectors in the position of maximum detection

rate in Figure 24, are gathered in Table 5-3.

Table 5-3: Total neutron detection rates per primary proton for the 20x20 cm2 detector, for the four

simulated energies. The statistical uncertainties are calculated as √𝑁/P where N is the number of

detected neutrons and P is the number of primary protons.

Proton

beam energy

[MeV]

Neutron detection rate in ideal position [detected neutrons/primary proton]

All neutrons Neutrons detected last

half prior to Bragg peak

Neutrons detected last

quarter prior to Bragg peak

100 5.0 x 10-6 ± 1.3 % 1.3 x 10-6 ± 2.5 % 2.9 x 10-7 ± 5.3 %

160 1.9 x 10-5 ± 0.7 % 6.2 x 10-6 ± 1.2 % 1.7 x 10-6 ± 2.2 %

200 3.0 x 10-5 ± 0.5 % 1.1 x 10-5 ± 0.9 % 3.3 x 10-6 ± 1.6 %

230 3.9 x 10-5 ± 0.5 % 1.5 x 10-5 ± 0.7 % 5.0 x 10-6 ± 1.3 %

In clinical proton treatments the energies are changed rapidly, and it is not always expedient

to move the detector when delivering the different energies. Therefore, a common location for

a 160 and 200 MeV proton beam has been evaluated. In Figure 26 all neutrons produced are

included, and the combination of 160 and 200 MeV gave a peak neutron detection rate at a

position of 23 ± 1 cm. When compared to the results of 160 and 200 MeV, 20.5 ± 1.5 cm and

24.5 ± 1.5 cm, we see that the uncertainty limits of the individual peaks do not overlap, but

the magnitude of the difference is only 1 cm. However, both peaks are within the limits of the

uncertainties for the summed histogram.

42

Figure 26: Neutron detection rate for primary proton beams of 160 and 200 MeV, including a rate for

the combined results. All neutrons were included in this analysis. The statistical uncertainties are

indicated by the error bars for each bin.

5.1.3 Neutron detection rates as function of detector size

In Figure 27 the neutron detection rates are displayed for different detector sizes placed in the

ideal position at each primary proton beam energy (see Appendix E). Linear fits were included

in order to evaluate the slope of the histograms. In general, we see that the rate increases as

the detector size increases, and that the rate strongly depends on energy. For all energies the

detection rate increases continuously as the area increases, but with higher energies it rises

faster. In conclusion, the neutron detection rate increases almost linearly with increasing

detector size.

43

Figure 27: Neutron detection rate as a function of the side length of the quadratic detector, for the

different proton beam energies and analyses done in this thesis.

5.2 Patient treatment plan simulations

5.2.1 Neutron production rates and detection characteristics

The total neutron production and detection rate for the large detection plane, predicted by MC

simulations were 0.09 ± 0.05% neutrons produced/primary proton and 7.0x10-5 ± 1.1% neutron

detected/primary proton. Compared to the water phantom simulation this result is, on average,

approximately three times bigger than for the primary proton beam of 100 MeV, and almost

identical as the result from the 160 MeV proton beam. This corresponds well with the energy

range for the patient treatment plan (93-197 MeV).

The neutron production and detection distribution in the patient is illustrated in Figure 28a,

and as seen neutron production rate rapidly increases as the beam enters the patient, remains

stable, and starts to gradually decrease at the lower energy limit of the SOBP. This contrasts

with results for single energies but can be explained by the large energy interval and resulting

SOBP. The neutron detection distribution appears analogous as the distribution for the

produced neutrons except that it drops earlier. In Figure 28b, the initial kinetic energy of the

44

neutrons produced and detected in the patient is illustrated. As seen, the dominating energies

for produced neutrons were between 1 and 100 MeV, similar to the results from the water

phantom simulation. The energy distribution for detected neutrons shows that exceedingly few

neutrons with energies below 10 MeV were detected compared with the higher energy

neutrons. The general shape of the distributions also corresponds well with the results from

the water phantom simulation.

Figure 28: Comparison of characteristic for produced and detected neutrons. Only 1 of 1000

produced neutrons are illustrated. a: Neutron production and detection distribution as a function of

depth in the patient. The Bragg peak positions are estimated at x = 11.6 cm for the lower energy

limit, and x = 23.8 cm for the upper energy limit. b: Distribution of initial kinetic energy for neutrons

produced and detected in the patient.

The relative dose deposited in the patient is illustrated in Figure 29. This gives a good depiction

of where the tumour is located, and the dose delivered to surrounding tissue.

Figure 29: Two-dimensional dose deposition delivered in the patient, presented as the relative dose.

45

The detection rate for secondary protons on the two tracking detectors rapidly increases at the

detector surfaces located parallel to the entrance of the patient (x=0) until a peak is reached,

with a following gradual decrease further distal to the SOBP, as seen in Figure 30. The neutron

detection rate peak is located in 36 ± 6 cm for the first tracking detector, and 36 ± 9 cm for the

second tracking detector. This gives a distance of 12.2 ± 6 cm and 12.2 ± 9 cm distal to the

SOBP for the first and second tracking plane, respectively. This result corresponds well with

the results from the water phantom, with the peak being located distal to the primary proton

beam Bragg peak.

Figure 30: Neutron detection distribution on the two tracking detectors. x = 0 at the entrance of the

patient. The statistical uncertainty is indicated by the error bars for each bin.

5.2.2 Neutron detection rates as function of detector position

In Figure 31 the total number of detected neutrons is displayed for different positions of a

20x20 cm2 detector, within the large detection plane used in the simulation. The neutron

detection rate is illustrated as a function of the centre position of the various detector

placements. In general, we see that the rate increases as the detector is moved along the depth

direction, to a certain point distal to the SOBP where a peak is reached, followed by a gradual

decrease. Compared to the results from the water phantom simulations, the general shape and

location of the peak is very similar, considering the peak is, also here, located distal to the

Bragg peak. The maximum detection rate is found at 31 ± 5 cm, which corresponds to a

location 7.2 ± 5 cm distal to the SOBP. The neutron detection rate in the bin with maximum

detection rate is 4.6 x 10-6 ± 1.4 %.

46

Figure 31: Neutron detection rate as a function of the center point of a 20x20 cm2 detector. x = 0 cm

at the entrance of the patient. The minimum and maximum values for the SOBP are 11.6 and 23.8

cm. The statistical uncertainty is indicated by the error bars for each bin.

5.2.3 Neutron detection rates as function of detector size

The total number of detected neutrons are displayed for different detector sizes, placed in the

ideal position (as found in Figure 31), within the large detection plane used in the simulation.

The neutron detection rate is illustrated as a function of the area of the detector (see Figure

32). A linear fit was included in order to evaluate the rise of the histogram. In general, we see

that the rate increases continuously as the detector size increases. In conclusion, the neutron

detection rate increases almost linearly with increasing detector size.

Figure 32: Neutron detection rate as a function of the side length of the quadratic detector, for the

position of maximum neutron detection rate.

47

6. Discussion and conclusion

The objective of this project was to optimize detector dimensions and positioning of an

existing detector concept developed for neutron-based real-time range verifications in proton

therapy. The results of this work indicate that the positioning of the detector relative to the

patient may have a great impact on the detected signal and the precision of the final proton

range estimate. Additionally, the size of the detector may impact the detection rates and

achievable counting statistics. The objective of this project was pursued using FLUKA Monte

Carlo simulations. An unrealistically large detector was applied in simulations in order to

evaluate the neutron detection rate for various smaller areas within the large detection plane.

Simulations were performed both for a water phantom and a realistic patient treatment plan.

Water phantom simulations included four different primary proton energies: 100, 160, 200

and 230 MeV, covering typical ranges of therapeutic proton beams. Further, a 20x20 cm2

detector was defined in the analysis and moved stepwise 1 cm along the primary beam

direction, in order to locate the position with the maximum neutron detection rate. Analyses

separating the neutrons by production location in the water phantom were also implemented,

in order to evaluate the neutrons produced closer to the primary proton beam Bragg peak.

The performance of the detector was seen to vary significantly depending on the detector size

and positioning, both for the water phantom and patient treatment plan simulations. This shows

that the detector placement and dimensions are important for achieving an acceptable neutron

detection rate. Neutrons produced in the entrance region where the primary proton beam

energy is still high had, on average, higher initial energy than neutrons produced later in the

primary proton beam trajectory. Secondary neutrons were mostly produced close to the

primary beam axis.

For the water phantom simulations (Figure 23), it is seen that for almost all energies and

setups, the neutron detection rate peak is located distal to the Bragg peak. If only the neutrons

produced just proximal to the Bragg peak are considered, these peaks shift further distal to the

Bragg peak, as seen in Figure 24. However, which neutrons one should focus on is debatable.

Even though the neutrons created adjacent the proton beam end of range could give a closer

indication of the Bragg peak location, these neutrons have a lower average energy than

neutrons produced earlier in the proton beam trajectory. This could make them more difficult

48

to detect in clinical application, because a low energy neutron will produce a secondary proton

in the converter with even lower energy, and the particle energy affects the particle range.

There are also fewer neutrons produced closer to the end of range for the proton beam (as seen

in Figure 20) which gives inferior statistics for the neutron detection rate.

In principle, it would be best to use all available neutrons for the range estimates, however it

might be possible to weight information from neutrons created in the Bragg peak region more

in the range reconstruction if these are considered to be better correlated to the primary beam

range. As seen in Appendix E the uncertainty in neutron detection rate is not particularly

affected by the reduced number of neutrons, except for the 100 MeV proton beam where the

uncertainty increases by ± 1 cm. However, low uncertainty in neutron detection rate does not

necessarily mean that the uncertainty in range estimates will be low as well. Furthermore, in

a clinical situation, the number of protons in a particular beam spot may be significantly lower

than in the MC simulations considered in this thesis and therefore statistical uncertainties may

be higher and more relevant in clinical scenarios.

Another observation from Figure 23 is that the neutron detection rates depend strongly on the

primary proton beam energy. Further, when the beam energy increases, the detection rate peak

is shifted deeper into the water phantom. For a 20x20 cm2 detector, maximum detection rate

is achieved when centred in 15 ± 2 cm, 20.5 ± 1.5 cm, 24.5 ± 1.5 cm and 28 ± 2 cm, for 100,

160, 200 and 230 MeV, respectively. The Bragg peak positions for the different beam energies

have a greater shift than the neutron detection rate peak. This is seen e.g. for 100 MeV where

the maximum sensitivity position is 7.4 ± 2 cm distal to the Bragg peak position, while for 230

MeV it is at 4.6 ± 2 cm proximal to the Bragg peak. This means that the beam energy must be

considered when determining the detector placement.

In clinical applications, the delivery of the prescribed dose to the planning target volume will

be based upon using multiple proton beams covering a range of energies and intensities,

resulting in a SOBP. It could be considered impractical and challenging to change the location

of the detector during clinical application of proton therapy, due to the rapid energy

modulation when delivering beams at different energy layers. Therefore, as a work around, a

possible common position for 160 and 200 MeV beams was investigated. These two energies

were chosen since they are within a common energy range for therapeutic proton beams, and

49

the energy gap is relatively small. A small energy gap is common for clinical proton therapy

treatment plans, although this depends strongly on the target volume size. This resulted in a

new peak between the two original peaks for 160 and 200 MeV (20.5 ± 1.5 cm, 24.5 ± 1.5

cm), located at 23 ± 1 cm. When the uncertainty limits were considered, this peak was located

within the peaks for the two individual beams. Since the results from both 160 and 200 MeV

were included, the overall counting statistics were good, and the statistical uncertainty in

neutron detection rate was reduced compared with the individual results. Nevertheless, a

separate evaluation of the placement should be done considering the energy range for the

specific case, since not all proton beam patient treatment plans range from 160 to 200 MeV.

For the patient treatment plan the results regarding the detector position correspond well with

the results from the water phantom simulation. The peak for the neutron detection rate is also

here located slightly (7.2 ± 5 cm) distal to the (spread-out) Bragg peak, and the neutron

detection rate varies greatly with different detector positions. The energy range for the patient

treatment plan is large which makes it difficult to compare the details of the results, but since

the range for the patient treatment plan is from 93 to 197 MeV, the results could be compared

with the water phantom beams of 100 and 160 MeV.

When comparing the results from the water phantom simulations in Figure 23 with the patient

treatment plan simulations in Figure 31, it is clear that the statistics are poorer for the patient

plan, resulting in lower detection rate and a larger statistical uncertainty. A possible

explanation is the large energy range and SOBP in the patient treatment plan. It is also worth

mentioning that the distance from the water phantom/patient to the converter is 14 cm for the

patient plan simulations and 5 cm for the water phantom simulations. The distance for the

patient treatment plan simulations is more realistic for clinical applications but may partially

explain why the patient plan results are inferior.

The neutron detection rates accomplished in this thesis, when a 20x20 cm2 detector is placed

in the ideal position, were 5.0 x 10-6 ± 1.3 %, 1.9 x 10-5 ± 0.7 %, 3.0 x 10-5 ± 0.5 %, 3.9 x 10-5

± 0.5 % for 100, 160, 200, 230 MeV, respectively. The corresponding value for the results in

the patient treatment plan simulations, was 4.6 x 10-6 ± 1.4 %. This is comparable to detection

rates achieved with existing prompt-gamma imaging techniques, i.e. 10-5 – 5.6x10-5 gamma

counts per primary proton, reported by Krimmer et. al. [43]. These neutron detection rates are

50

also comparable with previous studies in neutron-based range verifications, such as the results

from Ytre-Hauge et. al. [13]. However, it is noticeable that the neutron detection rate from the

patient treatment plan is considerably low compared to the water phantom simulations: four

times smaller than for 160 MeV and almost identical as for the 100 MeV primary proton beam.

This contrasts with the neutron detection rate for the entire 190x200 cm2 detector, where the

result was, on average, approximately three times bigger than for the primary proton beam of

100 MeV, and almost identical as the result from the 160 MeV proton beam. This shows that

the neutrons created in the patient are spread over a larger area than for the water phantom

simulations, which can be explained by the large energy range of the patient plan and the

difference in distance to the converter. Consequently, the results show that moving the detector

during treatment is beneficial in order to obtain an acceptable neutron detection rate when a

large energy range is applied in the treatment plan.

An ideal size of the detector is a trade-off between the need for good statistics and the cost and

inconvenience of a larger detector. Based on the neutron detection rate, we can draw the

conclusion that the rate increases almost linearly with increasing detector area. A bulky

detector is impractical in clinical applications, thus the distance between the converter surface

and patient should be considered. Shorter distance enables a reduced detector area, since it

leads to a greater solid angle for a given detector size. This could enable the use of a smaller

detector area without reducing its performance. To further quantify the required size of the

detector to achieve acceptable low uncertainties in the range estimates, a full reconstruction

of the neutron production distribution must be performed, using e.g. the reconstruction

algorithm presented in [13]. Furthermore, range estimates as well as corresponding

uncertainties must be obtained from the reconstructed neutron production distributions.

Regarding the possible detector alternatives for clinical application of in-vivo neutron range

verification, several charged particle tracking detectors could be applicable. These are detector

types such as silicon strip detectors, pixelated Si-based position sensitive sensors or gas filled

multiwire proportional chambers, all suggestions from research by Ytre-Hauge et. al. [13].

It is also important to state that the results from simulations in FLUKA and other MC codes

are based on models and cross-section data with considerable uncertainties. A different

simulation software could have given different neutron production and detection rates, and

51

experimental measurements are needed to draw firm conclusions regarding achievable

detector rates as also detector limitations such as efficiency, also plays a role in clinical

application of the detector system.

Further work

In this thesis, the neutron detection rate was evaluated in order to determine the ideal position

and size of the detector. These are basic properties of the proposed detector system which are

important to systematically review before development of a first detector prototype. There are

also other aspects that would be important to investigate, such as the uncertainty in range

landmark in the reconstruction process for the different positions and sizes of the detector.

This would be particularly interesting considering the dimensions of the detector, since

analysis of the neutron detection rate did not provide a helpful conclusion in the matter. The

position and size determined by uncertainty in range landmark could also be interesting to

compare with the results in this thesis, to see if the location with maximum neutron detection

rate could be considered the ideal location for the detector.

Conclusion

The results in this thesis show that the neutron detection rates for both water phantom and

patient treatment plan simulation depends strongly on the detector position and dimensions.

Based on the water phantom simulations, the energy also plays a big role in determining the

position. In general, we see that the neutron detection rate peaks close to or distal to the Bragg

peak. For a 20x20 cm2 detector, using a single position for a broad range of proton energies

would lead to a clear reduction in neutron detection rate compared to using multiple positions.

The feasibility of moving the detector during treatment should therefore be evaluated. For

small tumours and target volumes one static detector position would however be sufficient.

Another alternative might be to increase the size of the detector, but this should be investigated

further.

52

Bibliograph

1. WHO Global action against cancer. 2005.

2. Cancer in Norway 2017 - Cancer incidence, mortality, survival and prevalence in

Norway. Cancer Registry of Norway, 2018.

3. Gianfaldoni, S., et al., An Overview on Radiotherapy: From Its History to Its Current

Applications in Dermatology. Open access Macedonian journal of medical sciences,

2017. 5(4): p. 521-525.

4. Khan, F.M., The physics of radiation therapy. 2nd edition ed. 1994: Lippincott

Williams & Wilkins.

5. Thariat, J., et al., Past, present, and future of radiotherapy for the benefit of patients

Juliette Thariat, Jean-Michel Hannoun-Levi, Arthur Sun Myint, Te Vuong and

Jean‑Pierre Gérard. Vol. 10. 2012.

6. Wilson, R.R., Radiological Use of Fast Protons. 1946. 47(5): p. 487-491.

7. Wang, D., A critical appraisal of the clinical utility of proton therapy in oncology.

Medical Devices: Evidence and research, 2015.

8. Facilities in operation. 2019 [cited 2019 25.03]; Available from:

https://www.ptcog.ch/index.php/facilities-in-operation.

9. St James, S., C. Grassberger, and H.-M. Lu, Considerations when treating lung

cancer with passive scatter or active scanning proton therapy. Translational lung

cancer research, 2018. 7(2): p. 210-215.

10. Verburg, J.M. Reducing range uncertainty in proton therapy. 2015.

11. Unkelbach, J., et al., Robust radiotherapy planning. Physics in Medicine & Biology,

2018. 63(22): p. 22TR02.

12. Kraan, A.C., Range Verification Methods in Particle Therapy: Underlying Physics

and Monte Carlo Modeling. 2015. 5(150).

13. Ytre-Hauge, K.S., Skjerdal, K., Mattingly, J., & Meric, I., A Monte Carlo feasibility

study for neutron based real-time range verification in proton therapy. Scientific

reports, 2011 (2019).

14. Newhauser, W.D. and R. Zhang, The physics of proton therapy. Phys Med Biol,

2015. 60(8): p. R155-209.

15. M.J. Berger, J.S.C., M.A. Zucker and J. Chang. Stopping-Power & Range Tables for

Electrons, Protons, and Helium Ions. 1998 2017; Available from:

https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html.

16. Park, S.H. and J.O. Kang, Basics of particle therapy I: physics. Radiation oncology

journal, 2011. 29(3): p. 135-146.

17. Cember, H., Introduction to health physics. 4 ed. 2009: The McGraw-Hill

Companies.

18. Grzanka, L., Modelling beam transport and biological effectiveness to develop

treatment planning for ion beam radiotherapy. 2014.

19. Podgoršak, E.B., Interactions of Neutrons with Matter, in Radiation Physics for

Medical Physicists, E.B. Podgorsak, Editor. 2010, Springer Berlin Heidelberg:

Berlin, Heidelberg. p. 429-449.

20. Snyder, W.S., et al., Calculated depth dose curves in tissue for broad beams of fast

neutrons. At head of title:Health Physics Division. 1955, Oak Ridge, Tenn.: Oak

Ridge National Laboratory. 35 p.

https://www.ptcog.ch/index.php/facilities-in-operation
https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html

53

21. Furutaka, K., H. Harada, and S. Raman, Prompt Gamma Rays Emitted in Thermal-

neutron Capture Reaction by 99Tc and Its Reaction Cross Section. Journal of

Nuclear Science and Technology, 2004. 41(11): p. 1033-1046.

22. Podgoršak, E.B., Interactions of Photons with Matter, in Radiation Physics for

Medical Physicists, E.B. Podgorsak, Editor. 2010, Springer Berlin Heidelberg:

Berlin, Heidelberg. p. 277-375.

23. Paganetti, H., et al., Relative biological effectiveness (RBE) values for proton beam

therapy. Int J Radiat Oncol Biol Phys, 2002. 53(2): p. 407-21.

24. Takada, K., et al., Validation of the physical and RBE-weighted dose estimator based

on PHITS coupled with a microdosimetric kinetic model for proton therapy. Journal

of radiation research, 2018. 59(1): p. 91-99.

25. Jette, D. and W. Chen, Creating a spread-out Bragg peak in proton beams. Phys

Med Biol, 2011. 56(11): p. N131-8.

26. Leeman, J.E., et al., Proton therapy for head and neck cancer: expanding the

therapeutic window. The Lancet Oncology, 2017. 18(5): p. e254-e265.

27. Ytre-Hauge, K., Proton therapy, in Proton dosimetric concepts. 2018, University of

Bergen: PHYS213.

28. Knopf, A.C. and A. Lomax, In vivo proton range verification: a review. Phys Med

Biol, 2013. 58(15): p. R131-60.

29. Unkelbach, J. and H. Paganetti, Robust Proton Treatment Planning: Physical and

Biological Optimization. Seminars in radiation oncology, 2018. 28(2): p. 88-96.

30. Parodi, K. and J.C. Polf, In vivo range verification in particle therapy. Medical

Physics, 2018. 45(11): p. e1036-e1050.

31. Smeets, J., et al., Prompt gamma imaging with a slit camera for real-time range

control in proton therapy. Phys Med Biol, 2012. 57(11): p. 3371-405.

32. Richter, C., et al., First clinical application of a prompt gamma based in vivo proton

range verification system. Radiother Oncol, 2016. 118(2): p. 232-7.

33. Johannes Petzoldt, G.J. and L.N. , Christian Richter, Julien Smeets Correction of

Geometrical Effects of a Knife-Edge Slit Camera for Prompt Gamma-Based Range

Verification in Proton Therapy. 2018.

34. Zhu, X. and G. El Fakhri, Proton therapy verification with PET imaging.

Theranostics, 2013. 3(10): p. 731-40.

35. Verburg, J.M. and J. Seco, Proton range verification through prompt gamma-ray

spectroscopy. Physics in Medicine and Biology, 2014. 59(23): p. 7089-7106.

36. Marafini, M., et al., MONDO: A neutron tracker for particle therapy secondary

emission fluxes measurements. Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 2016. 824: p. 210-211.

37. Kenton, W. Monte Carlo simulation. 2018 [cited 2019 14.02]; Available from:

https://www.investopedia.com/terms/m/montecarlosimulation.asp.

38. Ferrari, A., et al., FLUKA: A multi-particle transport code, in CERN-2005-10 (2005),

INFN/TC_05/11, SLAC-R-773. 2005.

39. Bohlen, T.T., et al., The FLUKA Code: Developments and Challenges for High

Energy and Medical Applications. Nuclear Data Sheets, 2014. 120: p. 211-214.

40. FLUKA about. 2008 [cited 2019 14.02]; Available from:

http://www.fluka.org/fluka.php?id=about&mm2=1.

https://www.investopedia.com/terms/m/montecarlosimulation.asp
http://www.fluka.org/fluka.php?id=about&mm2=1

54

41. Release notes for Fluka2011.2x -. 2019 [cited 2019 12.11]; Available from:

www.fluka.org/fluka.php?id=release_notes&mm2=3.

42. Fjæra, L.F., Development of a Monte Carlo Based Treatment Planning Verification

Tool for Particle Therapy, in Department of physics and technology. 2016,

University of Bergen: Bergen open reaserch archive - uib.

43. Krimmer, J., et al., Prompt-gamma monitoring in hadrontherapy: A review. Nuclear

Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, 2018. 878: p. 58-73.

file:///C:/Users/janne/Documents/Master/Masteroppgave/www.fluka.org/fluka.php%3fid=release_notes&mm2=3

55

Appendix A

Because the geometry of the detector has been changed in this thesis, the region numbers

identifying the different regions have been altered in these scripts to correspond with the new

geometry.

Bxdraw_rangeveri.f

FLUKA user routine used for both water phantom and patient treatment plan simulations. This

is used to store information about direction, energy and location of the neutrons produced in

the phantom/patient, as well as proton information from the converter and tracking detectors.

*$ CREATE MGDRAW.FOR

*COPY MGDRAW

* *

=== mgdraw ===

* *

 SUBROUTINE MGDRAW (ICODE, MREG)

 INCLUDE '(DBLPRC)'

 INCLUDE '(DIMPAR)'

 INCLUDE '(IOUNIT)'

*

--

* *

* Copyright (C) 1990-2013 by Alfredo Ferrari *

* All Rights Reserved. *

* *

* *

* MaGnetic field trajectory DRAWing: actually this entry manages *

* all trajectory dumping for *

* drawing *

* *

* Created on 01 March 1990 by Alfredo Ferrari *

* INFN - Milan *

* Last change 12-Nov-13 by Alfredo Ferrari *

* INFN - Milan *

* *

--

*

 INCLUDE '(CASLIM)'

 INCLUDE '(COMPUT)'

 INCLUDE '(SOURCM)'

 INCLUDE '(FHEAVY)'

 INCLUDE '(FLKSTK)'

 INCLUDE '(GENSTK)'

 INCLUDE '(MGDDCM)'

 INCLUDE '(PAPROP)'

 INCLUDE '(QUEMGD)'

 INCLUDE '(SUMCOU)'

 INCLUDE '(TRACKR)'

56

*

 DIMENSION DTQUEN (MXTRCK, MAXQMG)

*

 CHARACTER*20 FILNAM

 LOGICAL LFCOPE

 SAVE LFCOPE

 DATA LFCOPE / .FALSE. /

*

--

* *

* Icode = 1: call from Kaskad *

* Icode = 2: call from Emfsco *

* Icode = 3: call from Kasneu *

* Icode = 4: call from Kashea *

* Icode = 5: call from Kasoph *

* *

--

* *

 IF (.NOT. LFCOPE) THEN

 LFCOPE = .TRUE.

 IF (KOMPUT .EQ. 2) THEN

 FILNAM = '/'//CFDRAW(1:8)//' DUMP A'

 ELSE

 FILNAM = CFDRAW

 END IF

 OPEN (UNIT = IODRAW, FILE = FILNAM, STATUS = 'NEW', FORM =

 & 'UNFORMATTED')

 END IF

* +---*

* | Quenching is activated

 IF (LQEMGD) THEN

 IF (MTRACK .GT. 0) THEN

 RULLL = ZERZER

 CALL QUENMG (ICODE, MREG, RULLL, DTQUEN)

* WRITE (IODRAW) ((SNGL (DTQUEN (I,JBK)), I = 1, MTRACK),

* & JBK = 1, NQEMGD)

 END IF

 END IF

* | End of quenching

* +---

*

 RETURN

*

==

* *

* Boundary-(X)crossing DRAWing: *

* *

* Icode = 1x: call from Kaskad *

* 19: boundary crossing *

* Icode = 2x: call from Emfsco *

* 29: boundary crossing *

* Icode = 3x: call from Kasneu *

* 39: boundary crossing *

* Icode = 4x: call from Kashea *

* 49: boundary crossing *

* Icode = 5x: call from Kasoph *

* 59: boundary crossing *

* *

57

==

*

***************************Code by Kristian*****************************

*mreg:region before crossing

*nreg:region after crossing

*write crossing coords. to file(41) in pairs:

*Add ncase (history number) to make sure it is the same particle

*crossing both planes

*Jtrack=1 means particle is proton (neutrons = 8)

 ENTRY BXDRAW (ICODE, MREG, NEWREG, XSCO, YSCO, ZSCO)

*plane 1: crossing regions 5 to 6

 IF(MREG .EQ. 5 .AND. NEWREG .EQ. 6) THEN

 IF (JTRACK .EQ. 1) THEN

 EKPART=ETRACK-AM(JTRACK)

* If proton is from converter:

 IF(ISPUSR(1) .EQ. 8) THEN

* Ek-proton calculated as totalE - Emass (0.938272...)

 NCASE1=NCASE

 X1=XSCO

 Y1=YSCO

 Z1=ZSCO

 EK1=EKPART

 ox=SPAUSR(1)

 oy=SPAUSR(2)

 oz=SPAUSR(3)

 ocx=SPAUSR(4)

 ocy=SPAUSR(5)

 ocz=SPAUSR(6)

 EKo=SPAUSR(7)

 id=SPAUSR(8)

*dir cos from TRACKR Cx,y,ztrck

 Pcos1x=CXTRCK

 Pcos1y=CYTRCK

 Pcos1z=CZTRCK

* next step: write to files only if NCASE1=NCASE2

 ENDIF

 ENDIF

 ENDIF

*Plane 2: crossing regions 6 to 4

 IF(MREG .EQ. 6 .AND. NEWREG .EQ. 4) THEN

 IF (JTRACK .EQ. 1 .AND. ISPUSR(1) .EQ. 8) THEN

 EKPART=ETRACK-AM(JTRACK)

* Write new file with all info if Ncase matches for plane

* one and two

 IF(NCASE .EQ. NCASE1) THEN

 WRITE(46,*) X1,Y1,Z1,EK1,NCASE1,

 & ox,oy,oz,ocx,ocy,ocz,EKo,

 & Pcos1x,Pcos1y,Pcos1z,ISPUSR(2),id

 WRITE(46,*) XSCO,YSCO,ZSCO,EKPART,NCASE,

 & SPAUSR(1), SPAUSR(2), SPAUSR(3),

 & SPAUSR(4), SPAUSR(5), SPAUSR(6), SPAUSR(7),

 & CXTRCK,CYTRCK,CZTRCK,ISPUSR(2),SPAUSR(8)

 ENDIF

58

 ENDIF

 ENDIF

 RETURN

*

****************END OF CODE MODIFIED BY KRISTIAN************************

*

==

* *

* Event End DRAWing: *

* *

==

* *

 ENTRY EEDRAW (ICODE)

 RETURN

*

==

* *

* ENergy deposition DRAWing: *

* *

* Icode = 1x: call from Kaskad *

* 10: elastic interaction recoil *

* 11: inelastic interaction recoil *

* 12: stopping particle *

* 13: pseudo-neutron deposition *

* 14: escape *

* 15: time kill *

* Icode = 2x: call from Emfsco *

* 20: local energy deposition (i.e. photoelectric) *

* 21: below threshold, iarg=1 *

* 22: below threshold, iarg=2 *

* 23: escape *

* 24: time kill *

* Icode = 3x: call from Kasneu *

* 30: target recoil *

* 31: below threshold *

* 32: escape *

* 33: time kill *

* Icode = 4x: call from Kashea *

* 40: escape *

* 41: time kill *

* 42: delta ray stack overflow *

* Icode = 5x: call from Kasoph *

* 50: optical photon absorption *

* 51: escape *

* 52: time kill *

* *

==

* *

 ENTRY ENDRAW (ICODE, MREG, RULL, XSCO, YSCO, ZSCO)

 IF (.NOT. LFCOPE) THEN

 LFCOPE = .TRUE.

 IF (KOMPUT .EQ. 2) THEN

 FILNAM = '/'//CFDRAW(1:8)//' DUMP A'

 ELSE

 FILNAM = CFDRAW

 END IF

 OPEN (UNIT = IODRAW, FILE = FILNAM, STATUS = 'NEW', FORM =

 & 'UNFORMATTED')

59

 END IF

* WRITE (IODRAW) 0, ICODE, JTRACK, SNGL (ETRACK), SNGL (WTRACK)

* WRITE (IODRAW) SNGL (XSCO), SNGL (YSCO), SNGL (ZSCO), SNGL (RULL)

* +---*

* | Quenching is activated : calculate quenching factor

* | and store quenched energy in DTQUEN(1, jbk)

 IF (LQEMGD) THEN

 RULLL = RULL

 CALL QUENMG (ICODE, MREG, RULLL, DTQUEN)

* WRITE (IODRAW) (SNGL (DTQUEN(1, JBK)), JBK = 1, NQEMGD)

 END IF

* | end quenching

* +---*

 RETURN

*

==

* *

* SOurce particle DRAWing: *

* *

==

*

 ENTRY SODRAW

 IF (.NOT. LFCOPE) THEN

 END IF

* WRITE (IODRAW) -NCASE, NPFLKA, NSTMAX, SNGL (TKESUM),

* & SNGL (WEIPRI)

* +---*

* | (Radioactive) isotope: it works only for 1 source particle on

* | the stack for the time being

 IF (ILOFLK (NPFLKA) .GE. 100000 .AND. LRADDC (NPFLKA)) THEN

 IARES = MOD (ILOFLK (NPFLKA), 100000) / 100

 IZRES = MOD (ILOFLK (NPFLKA), 10000000) / 100000

 IISRES = ILOFLK (NPFLKA) / 10000000

 IONID = ILOFLK (NPFLKA)

* WRITE (IODRAW) (IONID,SNGL(-TKEFLK(I)),

* & SNGL (WTFLK(I)), SNGL (XFLK (I)),

* & SNGL (YFLK (I)), SNGL (ZFLK (I)),

* & SNGL (TXFLK(I)), SNGL (TYFLK(I)),

* & SNGL (TZFLK(I)), I = 1, NPFLKA)

* |

* +---*

* | Patch for heavy ions: it works only for 1 source particle on

* | the stack for the time being

 ELSE IF (ABS (ILOFLK (NPFLKA)) .GE. 10000) THEN

 IONID = ILOFLK (NPFLKA)

 CALL DCDION (IONID)

* |

* +---*

* | Patch for heavy ions: ???

 ELSE IF (ILOFLK (NPFLKA) .LT. -6) THEN

* WRITE (IODRAW) (IONID,SNGL(TKEFLK(I)+AMNHEA(-ILOFLK(NPFLKA))),

* & SNGL (WTFLK(I)), SNGL (XFLK (I)),

* & SNGL (YFLK (I)), SNGL (ZFLK (I)),

* & SNGL (TXFLK(I)), SNGL (TYFLK(I)),

* & SNGL (TZFLK(I)), I = 1, NPFLKA)

* |

* +---*

60

* |

 ELSE

* WRITE (IODRAW) (ILOFLK(I), SNGL (TKEFLK(I)+AM(ILOFLK(I))),

* & SNGL (WTFLK(I)), SNGL (XFLK (I)),

* & SNGL (YFLK (I)), SNGL (ZFLK (I)),

* & SNGL (TXFLK(I)), SNGL (TYFLK(I)),

* & SNGL (TZFLK(I)), I = 1, NPFLKA)

 END IF

* |

* +---*

 RETURN

*

==

* *

* USer dependent DRAWing: *

* *

* Icode = 10x: call from Kaskad *

* 100: elastic interaction secondaries *

* 101: inelastic interaction secondaries *

* 102: particle decay secondaries *

* 103: delta ray generation secondaries *

* 104: pair production secondaries *

* 105: bremsstrahlung secondaries *

* 110: decay products *

* Icode = 20x: call from Emfsco *

* 208: bremsstrahlung secondaries *

* 210: Moller secondaries *

* 212: Bhabha secondaries *

* 214: in-flight annihilation secondaries *

* 215: annihilation at rest secondaries *

* 217: pair production secondaries *

* 219: Compton scattering secondaries *

* 221: photoelectric secondaries *

* 225: Rayleigh scattering secondaries *

* 237: mu pair production secondaries *

* Icode = 30x: call from Kasneu *

* 300: interaction secondaries *

* Icode = 40x: call from Kashea *

* 400: delta ray generation secondaries *

* For all interactions secondaries are put on GENSTK common (kp=1,np) *

* but for KASHEA delta ray generation where only the secondary elec- *

* tron is present and stacked on FLKSTK common for kp=npflka *

* *

==

*

 ENTRY USDRAW (ICODE, MREG, XSCO, YSCO, ZSCO)

***** START ADDED BY KRISTIAN IN USDRAW*****************************

*input to mgdraw to write all positions for created neutrons in

*water (currently region no. 7)

** WRITE(60,*) XSCO, YSCO, ZSCO, CXR (IP), CYR(IP),KPART(IP)

*

*

 IF(ICODE .EQ. 101 .AND. MREG .EQ. 7) THEN

 DO IP = 1, NP

 IF(KPART(IP) .EQ. 8) THEN

* Store origin of neutron (x,y,z)

* Loop to write 1 of 1000 hits to a file

61

 i =i+1

 IF (i .GT. 1000) THEN

 WRITE(60,*) XSCO,YSCO,ZSCO,Tki(IP)

 & ,Cxr(IP),Cyr(IP),Czr(IP)

* WRITE(61,*) XSCO, Tki(IP)

 i = 1

 ENDIF

 ENDIF

 END DO

 END IF

*

* Np = total number of secondaries *

* Kpart (ip) = (Paprop) id of the ip_th secondary *

* Cxr (ip) = x-axis direction cosine of the ip_th secondary *

* Tki (ip) = laboratory kinetic energy of ip_th secondary (GeV)*

* Wei (ip) = statistical weight of the ip_th secondary *

* etc. (look up the full list in $FLUPRO/flukapro/(GENSTK)

***** END ADDED BY KRISTIAN IN USDRAW*****************************

 IF (.NOT. LFCOPE) THEN

 LFCOPE = .TRUE.

 IF (KOMPUT .EQ. 2) THEN

 FILNAM = '/'//CFDRAW(1:8)//' DUMP A'

 ELSE

 FILNAM = CFDRAW

 END IF

 OPEN (UNIT = IODRAW, FILE = FILNAM, STATUS = 'NEW', FORM =

 & 'UNFORMATTED')

 END IF

* No output by default:

 RETURN

=== End of subrutine Mgdraw ==

 END

62

Stuprf_v02.f

FLUKA user routine used for both water phantom and patient treatment plan simulations. This

is used to check which reactions happened in the converter when the secondary protons were

created: 1) Inelastic interaction, 2) Elastic interaction and 3) Low energy neutron scattering

(En < 20 MeV).

*$ CREATE STUPRF.FOR

*COPY STUPRF

*

=== stuprf ===

*

 SUBROUTINE STUPRF (IJ, MREG, XX, YY, ZZ, NPSECN, NPPRMR)

 INCLUDE '(DBLPRC)'

 INCLUDE '(DIMPAR)'

 INCLUDE '(IOUNIT)'

*

--

* *

* Copyright (C) 1997-2005 by Alfredo Ferrari & Paola Sala *

* All Rights Reserved. *

* *

* *

* SeT User PRoperties for Fluka particles: *

* *

* Created on 09 october 1997 by Alfredo Ferrari & Paola Sala *

* Infn - Milan *

* *

* Last change on 14-jul-05 by Alfredo Ferrari *

* *

* *

--

*

 INCLUDE '(EVTFLG)'

 INCLUDE '(FLKSTK)'

 INCLUDE '(TRACKR)'

 INCLUDE '(GENSTK)'

*

 LOUSE (NPFLKA) = LLOUSE

 DO 100 ISPR = 1, MKBMX1

 SPAREK (ISPR,NPFLKA) = SPAUSR (ISPR)

 100 CONTINUE

 DO 200 ISPR = 1, MKBMX2

 ISPARK (ISPR,NPFLKA) = ISPUSR (ISPR)

 200 CONTINUE

* Increment the track number and put it into the last flag:

 IF (NPSECN .GT. NPPRMR) THEN

 IF (NTRCKS .EQ. 2000000000) NTRCKS = -2000000000

 NTRCKS = NTRCKS + 1

 ISPARK (MKBMX2,NPFLKA) = NTRCKS

 END IF

63

* Code by Kristian START tracking part 1 - in water phantom

 IF (LINEVT) THEN

* WRITE(LUNOUT,*)'W,:',NPSECN,KPART(NPSECN), NP

 IF(KPART(NPSECN) .EQ. 8) THEN

* WRITE(LUNOUT,*)' kpartnpsecn:',Tki(NPSECN)

 SPAREK(1,NPFLKA)=XX

 SPAREK(2,NPFLKA)=YY

 SPAREK(3,NPFLKA)=ZZ

 SPAREK(4,NPFLKA)=Cxr(NPSECN)

 SPAREK(5,NPFLKA)=Cyr(NPSECN)

 SPAREK(6,NPFLKA)=Czr(NPSECN)

 SPAREK(7,NPFLKA)=Tki(NPSECN)

 SPAREK(8,NPFLKA)=MREG !identifies region of origin wat.phan.10

 END IF

 END IF

*LELEVT = Elastic interactio

*LINEVT = Inelastic interaction

*LLENSC = Low energy neutron scattering

* 310518 - could add requirement to save

* flags only for the protons

 IF (LINEVT) THEN

 IF (MREG .EQ. 8) THEN

*Save in ISPARK(1) the father ID (IJ = 8 for neutron)

*(ISPARK goes to ISPUSR-variable in mgdraw)

 ISPARK(1,NPFLKA)= IJ

*set ispark 2 =1 for LINEVT

 ISPARK(2,NPFLKA)= 1

 ENDIF

 ENDIF

 IF (LELEVT) THEN

*Check if we are in converter region (8)

 IF (MREG .EQ. 8) THEN

* WRITE(LUNOUT,*)' detect el in conv'

 ISPARK(1,NPFLKA)= IJ

*set ispark 2 =2 for LELEVT

 ISPARK(2,NPFLKA)= 2

 ENDIF

 ENDIF

 IF (LLENSC) THEN

*Check if we are in converter region (8)

 IF (MREG .EQ. 8) THEN

* WRITE(LUNOUT,*)' detect low en scatt'

 ISPARK(1,NPFLKA)= IJ

*set ispark 2 =3 for LLENSC

 ISPARK(2,NPFLKA)= 3

 ENDIF

 ENDIF

*next variable of interest (int) can be stored is ISPARK(2)

* ISPARK(2,NPFLKA)=.....

64

*SPAREK can be used for storing non-int values (double prec?)

*SPAREK goes to SPAUSR in mgdraw

* Code by Kristian START tracking part 1 - in water phantom

 RETURN

=== End of subroutine Stuprf ===

 END

65

Table A-1: Format for file output from tracking code. Subscript “1” and “2” indicates information from

the two tracker planes. Ek is the kinetic energy of the detected proton, Ncase is the primary particle

number. O, origin, gives the position and direction of the neutron produced. X, Y and Z is the position

where the proton crosses the tracker planes. Eko is the neutron initial energy. P1 and P2 cos gives the

direction of the proton on the tracker planes. Event types are 1: inelastic (LINEVT), 2: Elastic

(LELEVT), 3: Low-energy neutron (LLENSC).

Nr. File 46 (line 1) File 46 (line 2) File 60

0 X_1 X_2 Ox

1 Y_1 Y_2 Oy

2 Z_1 Z_2 Oz

3 Ek_1 Ek_2 Ek

4 Ncase_1 Ncase_2 Ocos_X

5 Ox_1 Ox_2 Ocos_Y

6 Oy_1 Oy_2 Ocos_Z

7 Oz_1 Oz_2

8 OcosX_1 OcosX_2

9 OcosY_1 Ocosy_2

10 OcosZ_1 OcosZ_2

11 Eko Eko

12 P1_CosX P2_CosX

13 P1_CosY P2_CosY

14 P1_CosZ P2_CosZ

15 Event type Event type

66

Appendix B

depthdoseplot.py

simple 1D plot for dose vs depth for different energies

import numpy as np

import matplotlib.pyplot as plt

import os, string

from matplotlib.pyplot import *

#set font size and tick size

plt.rc('xtick',labelsize=12)

plt.rc('ytick',labelsize=12)

plt.rcParams.update({'font.size': 12})

#depth dose lists

dx100 = []

dy100 = []

dx160 = []

dy160 = []

dx200 = []

dy200 = []

dx230 = []

dy230 = []

Read the depth dose data files

a = ["/home/ift-pt4/flukaProjects/1d100.dat"]

fopen = open (os.path.join(*a), 'r')

count = 0

for line in fopen:

if line.startswith("#"):

 if '#' in line or not line.strip():

 continue

 temp = line.split()

 dx100.append(((float(temp[0]))+(float(temp[1])))/2)

 dy100.append(float(temp[2]))

fopen.close()

Read the depth dose data file

a = ["/home/ift-pt4/flukaProjects/1d160.dat"]

67

fopen = open (os.path.join(*a), 'r')

count = 0

for line in fopen:

if line.startswith("#"):

 if '#' in line or not line.strip():

 continue

 temp = line.split()

 dx160.append(((float(temp[0]))+(float(temp[1])))/2)

 dy160.append(float(temp[2]))

fopen.close()

Read the depth dose data file

a = ["/home/ift-pt4/flukaProjects/1d200.dat"]

fopen = open (os.path.join(*a), 'r')

count = 0

for line in fopen:

 if '#' in line or not line.strip():

 continue

 temp = line.split()

 dx200.append(((float(temp[0]))+(float(temp[1])))/2)

 dy200.append(float(temp[2]))

fopen.close()

Read the depth dose data file

a = ["/home/ift-pt4/flukaProjects/1d230.dat"]

fopen = open (os.path.join(*a), 'r')

count = 0

for line in fopen:

 if '#' in line or not line.strip():

 continue

 temp = line.split()

 dx230.append(((float(temp[0]))+(float(temp[1])))/2)

 dy230.append(float(temp[2]))

fopen.close()

#normalize to 100%

68

dy100 = [i*(100/max(dy100)) for i in dy100]

dy160 = [i*(100/max(dy160)) for i in dy160]

dy200 = [i*(100/max(dy200)) for i in dy200]

dy230 = [i*(100/max(dy230)) for i in dy230]

#depth doses plotting

d100= plt.plot(dx100,dy100,'-',alpha=1 ,color ='k',linewidth=0.5, label = '100 MeV')

d160= plt.plot(dx160,dy160,'-',alpha=1 ,color ='r',linewidth=0.5, label = '160 MeV')

d200= plt.plot(dx200,dy200,'-',alpha=1 ,color ='b',linewidth=0.5, label = '200 MeV')

d230= plt.plot(dx230,dy230,'-',alpha=1 ,color ='g',linewidth=0.5, label = '230 MeV')

plt.xlabel('Depth in water [cm]')

plt.ylabel('Relative dose [%]')

plt.legend(loc = 'upper right')

#set y and x range

plt.xlim(0,35)

plt.ylim(0,140)

plt.show()

69

Waterphantom.py

All water phantom plots created from file 46 and 60 (as seen in Appendix A).

Information from 46 and 60 file from FLUKA organised and plotted

#Import python libraries

import numpy as np

import matplotlib.pyplot as plt

Set font size and tick size for all plots

plt.rcParams.update({'font.size': 14})

plt.rc('xtick',labelsize=12)

plt.rc('ytick',labelsize=12)

#Generate empty lists for the simulated data(detected neutrons)

#100 MeV

X_1_100 = []

Y_1_100 = []

Z_1_100 = []

Ek_1_100 = []

Ncase_1_100 = []

Ox_1_100 = []

Oy_1_100 = []

Oz_1_100 = []

Ocosx_1_100 = []

Ocosy_1_100 = []

Ocosz_1_100 = []

Eko_1_100 = []

P1cosx_1_100 = []

P1cosy_1_100 = []

P1cosz_1_100 = []

Evt_type_1_100 = []

X_2_100 = []

Y_2_100 = []

Z_2_100 = []

Ek_2_100 = []

Ncase_2_100 = []

Ox_2_100 = []

Oy_2_100 = []

Oz_2_100 = []

Ocosx_2_100 = []

70

Ocosy_2_100 = []

Ocosz_2_100 = []

Eko_2_100 = []

P1cosx_2_100 = []

P1cosy_2_100 = []

P1cosz_2_100 = []

Evt_type_2_100 = []

#160 MeV

X_1_160 = []

Y_1_160 = []

Z_1_160 = []

Ek_1_160 = []

Ncase_1_160 = []

Ox_1_160 = []

Oy_1_160 = []

Oz_1_160 = []

Ocosx_1_160 = []

Ocosy_1_160 = []

Ocosz_1_160 = []

Eko_1_160 = []

P1cosx_1_160 = []

P1cosy_1_160 = []

P1cosz_1_160 = []

Evt_type_1_160 = []

X_2_160 = []

Y_2_160 = []

Z_2_160 = []

Ek_2_160 = []

Ncase_2_160 = []

Ox_2_160 = []

Oy_2_160 = []

Oz_2_160 = []

Ocosx_2_160 = []

Ocosy_2_160 = []

Ocosz_2_160 = []

Eko_2_160 = []

P1cosx_2_160 = []

P1cosy_2_160 = []

P1cosz_2_160 = []

Evt_type_2_160 = []

71

#200 MeV

X_1_200 = []

Y_1_200 = []

Z_1_200 = []

Ek_1_200 = []

Ncase_1_200 = []

Ox_1_200 = []

Oy_1_200 = []

Oz_1_200 = []

Ocosx_1_200 = []

Ocosy_1_200 = []

Ocosz_1_200 = []

Eko_1_200 = []

P1cosx_1_200 = []

P1cosy_1_200 = []

P1cosz_1_200 = []

Evt_type_1_200 = []

X_2_200 = []

Y_2_200 = []

Z_2_200 = []

Ek_2_200 = []

Ncase_2_200 = []

Ox_2_200 = []

Oy_2_200 = []

Oz_2_200 = []

Ocosx_2_200 = []

Ocosy_2_200 = []

Ocosz_2_200 = []

Eko_2_200 = []

P1cosx_2_200 = []

P1cosy_2_200 = []

P1cosz_2_200 = []

Evt_type_2_200 = []

#230 MeV

X_1_230 = []

Y_1_230 = []

Z_1_230 = []

Ek_1_230 = []

Ncase_1_230 = []

Ox_1_230 = []

Oy_1_230 = []

72

Oz_1_230 = []

Ocosx_1_230 = []

Ocosy_1_230 = []

Ocosz_1_230 = []

Eko_1_230 = []

P1cosx_1_230 = []

P1cosy_1_230 = []

P1cosz_1_230 = []

Evt_type_1_230 = []

X_2_230 = []

Y_2_230 = []

Z_2_230 = []

Ek_2_230 = []

Ncase_2_230 = []

Ox_2_230 = []

Oy_2_230 = []

Oz_2_230 = []

Ocosx_2_230 = []

Ocosy_2_230 = []

Ocosz_2_230 = []

Eko_2_230 = []

P1cosx_2_230 = []

P1cosy_2_230 = []

P1cosz_2_230 = []

Evt_type_2_230 = []

Read the data files and append to the empty lists

import csv

with open('100MeV_001_all46_p_coordinates_and_parent_n_origin_xyz.csv', 'r') as

csvFile:

 reader = csv.reader(csvFile)

 k = 0

 for row in reader:

 temp = row[0].split()

 if (k % 2) == 0:

 X_1_100.append(float(temp[0]))

 Y_1_100.append(float(temp[1]))

 Z_1_100.append(float(temp[2]))

 Ek_1_100.append(float(temp[3])*1000)

 Ncase_1_100.append(float(temp[4]))

73

 Ox_1_100.append(float(temp[5]))

 Oy_1_100.append(float(temp[6]))

 Oz_1_100.append(float(temp[7]))

 Ocosx_1_100.append(float(temp[8]))

 Ocosy_1_100.append(float(temp[9]))

 Ocosz_1_100.append(float(temp[10]))

 Eko_1_100.append(float(temp[11])*1000)

 P1cosx_1_100.append(float(temp[12]))

 P1cosy_1_100.append(float(temp[13]))

 P1cosz_1_100.append(float(temp[14]))

 Evt_type_1_100.append(float(temp[15]))

 else:

 X_2_100.append(float(temp[0]))

 Y_2_100.append(float(temp[1]))

 Z_2_100.append(float(temp[2]))

 Ek_2_100.append(float(temp[3])*1000)

 Ncase_2_100.append(float(temp[4]))

 Ox_2_100.append(float(temp[5]))

 Oy_2_100.append(float(temp[6]))

 Oz_2_100.append(float(temp[7]))

 Ocosx_2_100.append(float(temp[8]))

 Ocosy_2_100.append(float(temp[9]))

 Ocosz_2_100.append(float(temp[10]))

 Eko_2_100.append(float(temp[11])*1000)

 P1cosx_2_100.append(float(temp[12]))

 P1cosy_2_100.append(float(temp[13]))

 P1cosz_2_100.append(float(temp[14]))

 Evt_type_2_100.append(float(temp[15]))

 k = k + 1

csvFile.close()

with open('160MeV_001_all46_p_coordinates_and_parent_n_origin_xyz.csv', 'r') as

csvFile:

 reader = csv.reader(csvFile)

 a = 0

 for row in reader:

 temp = row[0].split()

 if (a % 2) == 0:

 X_1_160.append(float(temp[0]))

 Y_1_160.append(float(temp[1]))

74

 Z_1_160.append(float(temp[2]))

 Ek_1_160.append(float(temp[3])*1000)

 Ncase_1_160.append(float(temp[4]))

 Ox_1_160.append(float(temp[5]))

 Oy_1_160.append(float(temp[6]))

 Oz_1_160.append(float(temp[7]))

 Ocosx_1_160.append(float(temp[8]))

 Ocosy_1_160.append(float(temp[9]))

 Ocosz_1_160.append(float(temp[10]))

 Eko_1_160.append(float(temp[11])*1000)

 P1cosx_1_160.append(float(temp[12]))

 P1cosy_1_160.append(float(temp[13]))

 P1cosz_1_160.append(float(temp[14]))

 Evt_type_1_160.append(float(temp[15]))

 else:

 X_2_160.append(float(temp[0]))

 Y_2_160.append(float(temp[1]))

 Z_2_160.append(float(temp[2]))

 Ek_2_160.append(float(temp[3])*1000)

 Ncase_2_160.append(float(temp[4]))

 Ox_2_160.append(float(temp[5]))

 Oy_2_160.append(float(temp[6]))

 Oz_2_160.append(float(temp[7]))

 Ocosx_2_160.append(float(temp[8]))

 Ocosy_2_160.append(float(temp[9]))

 Ocosz_2_160.append(float(temp[10]))

 Eko_2_160.append(float(temp[11])*1000)

 P1cosx_2_160.append(float(temp[12]))

 P1cosy_2_160.append(float(temp[13]))

 P1cosz_2_160.append(float(temp[14]))

 Evt_type_2_160.append(float(temp[15]))

 a = a + 1

csvFile.close()

with open('200MeV_001_all46_p_coordinates_and_parent_n_origin_xyz.csv', 'r') as

csvFile:

 reader = csv.reader(csvFile)

 b = 0

 for row in reader:

75

 temp = row[0].split()

 if (b % 2) == 0:

 X_1_200.append(float(temp[0]))

 Y_1_200.append(float(temp[1]))

 Z_1_200.append(float(temp[2]))

 Ek_1_200.append(float(temp[3])*1000)

 Ncase_1_200.append(float(temp[4]))

 Ox_1_200.append(float(temp[5]))

 Oy_1_200.append(float(temp[6]))

 Oz_1_200.append(float(temp[7]))

 Ocosx_1_200.append(float(temp[8]))

 Ocosy_1_200.append(float(temp[9]))

 Ocosz_1_200.append(float(temp[10]))

 Eko_1_200.append(float(temp[11])*1000)

 P1cosx_1_200.append(float(temp[12]))

 P1cosy_1_200.append(float(temp[13]))

 P1cosz_1_200.append(float(temp[14]))

 Evt_type_1_200.append(float(temp[15]))

 else:

 X_2_200.append(float(temp[0]))

 Y_2_200.append(float(temp[1]))

 Z_2_200.append(float(temp[2]))

 Ek_2_200.append(float(temp[3])*1000)

 Ncase_2_200.append(float(temp[4]))

 Ox_2_200.append(float(temp[5]))

 Oy_2_200.append(float(temp[6]))

 Oz_2_200.append(float(temp[7]))

 Ocosx_2_200.append(float(temp[8]))

 Ocosy_2_200.append(float(temp[9]))

 Ocosz_2_200.append(float(temp[10]))

 Eko_2_200.append(float(temp[11])*1000)

 P1cosx_2_200.append(float(temp[12]))

 P1cosy_2_200.append(float(temp[13]))

 P1cosz_2_200.append(float(temp[14]))

 Evt_type_2_200.append(float(temp[15]))

 b = b + 1

csvFile.close()

with open('230MeV_001_all46_p_coordinates_and_parent_n_origin_xyz.csv', 'r') as

76

csvFile:

 reader = csv.reader(csvFile)

 c = 0

 for row in reader:

 temp = row[0].split()

 if (c % 2) == 0:

 X_1_230.append(float(temp[0]))

 Y_1_230.append(float(temp[1]))

 Z_1_230.append(float(temp[2]))

 Ek_1_230.append(float(temp[3])*1000)

 Ncase_1_230.append(float(temp[4]))

 Ox_1_230.append(float(temp[5]))

 Oy_1_230.append(float(temp[6]))

 Oz_1_230.append(float(temp[7]))

 Ocosx_1_230.append(float(temp[8]))

 Ocosy_1_230.append(float(temp[9]))

 Ocosz_1_230.append(float(temp[10]))

 Eko_1_230.append(float(temp[11])*1000)

 P1cosx_1_230.append(float(temp[12]))

 P1cosy_1_230.append(float(temp[13]))

 P1cosz_1_230.append(float(temp[14]))

 Evt_type_1_230.append(float(temp[15]))

 else:

 X_2_230.append(float(temp[0]))

 Y_2_230.append(float(temp[1]))

 Z_2_230.append(float(temp[2]))

 Ek_2_230.append(float(temp[3])*1000)

 Ncase_2_230.append(float(temp[4]))

 Ox_2_230.append(float(temp[5]))

 Oy_2_230.append(float(temp[6]))

 Oz_2_230.append(float(temp[7]))

 Ocosx_2_230.append(float(temp[8]))

 Ocosy_2_230.append(float(temp[9]))

 Ocosz_2_230.append(float(temp[10]))

 Eko_2_230.append(float(temp[11])*1000)

 P1cosx_2_230.append(float(temp[12]))

 P1cosy_2_230.append(float(temp[13]))

 P1cosz_2_230.append(float(temp[14]))

 Evt_type_2_230.append(float(temp[15]))

 c = c + 1

csvFile.close()

77

primaries = '1.2x109'

bp100 = 7.6

bp160 = 17.5

bp200 = 25.7

bp230 = 32.6

#Information on produced neutrons

#create data lists

Ox_100 = []

Oy_100 = []

Oz_100 = []

Eko_100 = []

Ocosx_100 = []

Ocosy_100 = []

Ocosz_100 = []

Ox_160 = []

Oy_160 = []

Oz_160 = []

Eko_160 = []

Ocosx_160 = []

Ocosy_160 = []

Ocosz_160 = []

Ox_200 = []

Oy_200 = []

Oz_200 = []

Eko_200 = []

Ocosx_200 = []

Ocosy_200 = []

Ocosz_200 = []

Ox_230 = []

Oy_230 = []

Oz_230 = []

Eko_230 = []

Ocosx_230 = []

78

Ocosy_230 = []

Ocosz_230 = []

Read the data file and append to the empty lists

import csv

with open('100MeV_001_all60_xyz_origin_all_neutrons.csv', 'r') as csvFile:

 reader = csv.reader(csvFile)

 k = 0

 for row in reader:

 temp = row[0].split()

 Ox_100.append(float(temp[0]))

 Oy_100.append(float(temp[1]))

 Oz_100.append(float(temp[2]))

 Eko_100.append(float(temp[3])*1000)

 Ocosx_100.append(float(temp[4]))

 Ocosy_100.append(float(temp[5]))

 Ocosz_100.append(float(temp[6]))

 k = k + 1

csvFile.close()

with open('160MeV_001_all60_xyz_origin_all_neutrons.csv', 'r') as csvFile:

 reader = csv.reader(csvFile)

 a = 0

 for row in reader:

 temp = row[0].split()

 Ox_160.append(float(temp[0]))

 Oy_160.append(float(temp[1]))

 Oz_160.append(float(temp[2]))

 Eko_160.append(float(temp[3])*1000)

 Ocosx_160.append(float(temp[4]))

 Ocosy_160.append(float(temp[5]))

 Ocosz_160.append(float(temp[6]))

 a = a + 1

csvFile.close()

79

with open('200MeV_001_all60_xyz_origin_all_neutrons.csv', 'r') as csvFile:

 reader = csv.reader(csvFile)

 b = 0

 for row in reader:

 temp = row[0].split()

 Ox_200.append(float(temp[0]))

 Oy_200.append(float(temp[1]))

 Oz_200.append(float(temp[2]))

 Eko_200.append(float(temp[3])*1000)

 Ocosx_200.append(float(temp[4]))

 Ocosy_200.append(float(temp[5]))

 Ocosz_200.append(float(temp[6]))

 b = b + 1

csvFile.close()

with open('230MeV_001_all60_xyz_origin_all_neutrons.csv', 'r') as csvFile:

 reader = csv.reader(csvFile)

 c = 0

 for row in reader:

 temp = row[0].split()

 Ox_230.append(float(temp[0]))

 Oy_230.append(float(temp[1]))

 Oz_230.append(float(temp[2]))

 Eko_230.append(float(temp[3])*1000)

 Ocosx_230.append(float(temp[4]))

 Ocosy_230.append(float(temp[5]))

 Ocosz_230.append(float(temp[6]))

 c = c + 1

csvFile.close()

#PLOT ENERGIES OF PRODUCED AND DETECTED NEUTRONS

#energy of the neutrons produced

fig, axes = plt.subplots(nrows = 1, ncols = 2, figsize = (15,6))

MIN, MAX = 0.01, 1000

80

(counts1, bins1) = np.histogram(Eko_100,bins = np.logspace(np.log10(MIN),

np.log10(MAX), 200))

(counts2, bins2) = np.histogram(Eko_160, bins = np.logspace(np.log10(MIN),

np.log10(MAX), 200))

(counts3, bins3) = np.histogram(Eko_200, bins = np.logspace(np.log10(MIN),

np.log10(MAX), 200))

(counts4, bins4) = np.histogram(Eko_230, bins = np.logspace(np.log10(MIN),

np.log10(MAX), 200))

#multiply by a factor of 1000 since only 1 of 1000 neutrons were stored in the 60-

file

f = 1000

axes[0].hist(bins1[:-1],bins1,weights = f*counts1, ec='black', fc='none', lw=0.5,

histtype='step', label = '100 MeV')

axes[0].hist(bins2[:-1], bins2, weights = f*counts2, ec='red', fc='none', lw=0.5,

histtype='step', label = '160 MeV')

axes[0].hist(bins3[:-1], bins3, weights = f*counts3, ec='blue', fc='none', lw=0.5,

histtype='step', label = '200 MeV')

axes[0].hist(bins4[:-1], bins4, weights = f*counts4,ec='green', fc='none', lw=0.5,

histtype='step', label = '230 MeV')

axes[0].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0))

axes[0].yaxis.major.formatter._useMathText = True

axes[0].set_xscale('log')

#energy of neutrons detected

MIN, MAX = 0.01, 1000

axes[1].hist(Eko_1_100,bins = np.logspace(np.log10(MIN), np.log10(MAX), 200),

ec='black', fc='none', lw=0.5, histtype='step')

axes[1].hist(Eko_1_160, bins = np.logspace(np.log10(MIN), np.log10(MAX), 200),

ec='red', fc='none', lw=0.5, histtype='step')

axes[1].hist(Eko_1_200, bins = np.logspace(np.log10(MIN), np.log10(MAX), 200),

ec='blue', fc='none', lw=0.5, histtype='step')

axes[1].hist(Eko_1_230, bins = np.logspace(np.log10(MIN), np.log10(MAX), 200),

ec='green', fc='none', lw=0.5, histtype='step')

axes[1].set_xscale('log')

axes[1].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0))

axes[1].yaxis.major.formatter._useMathText = True

fig.text(0.08, 0.88, 'a', fontsize = 20)

fig.text(0.52, 0.88, 'b', fontsize = 20)

fig.text(0.5, 0.04, 'Kinetic energy [MeV]', ha='center', va='center')

81

fig.text(0.06, 0.5, 'Neutrons from ' + str(primaries) + ' primary protons',

ha='center', va='center', rotation='vertical')

fig.legend(loc = 'upper right')

plt.show()

#HISTOGRAM SHOWING PRODUCTION POSITIONS OF PRODUCED AND DETECTED NEUTRONS

histogram: where the neutrons are produced

primaries = '1.2x109'

fig, axes = plt.subplots(nrows = 1, ncols = 2, figsize = (15,6))

(counts1, bins1) = np.histogram(Ox_100, 100)

(counts2, bins2) = np.histogram(Ox_160, 100)

(counts3, bins3) = np.histogram(Ox_200, 100)

(counts4, bins4) = np.histogram(Ox_230, 100)

#multiply by 1000

f = 1000

axes[0].hist(bins1[:-1],bins1,weights = f*counts1, ec='black', fc='none', lw=0.5,

histtype='step')

axes[0].hist(bins2[:-1], bins2, weights = f*counts2, ec='red', fc='none', lw=0.5,

histtype='step')

axes[0].hist(bins3[:-1], bins3, weights = f*counts3, ec='blue', fc='none', lw=0.5,

histtype='step')

axes[0].hist(bins4[:-1], bins4, weights = f*counts4, ec='green', fc='none', lw=0.5,

histtype='step')

axes[0].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0))

axes[0].yaxis.major.formatter._useMathText = True

#Add line indicating Bragg peak location

axes[0].axvline(x=bp100, color = 'k', linestyle = '--', lw=0.5, alpha = 0.5, label

= 'Bragg peak position')

axes[0].axvline(x=bp160, color= 'r', linestyle = '--', lw=0.5, alpha=0.5)

axes[0].axvline(x=bp200, color= 'b', linestyle = '--', lw=0.5, alpha=0.5)

axes[0].axvline(x=bp230, color= 'g', linestyle = '--', lw=0.5, alpha=0.5)

axes[0].set_xlim(0,40)

#Create histogram, depth in water

axes[1].hist(Ox_1_100, 500, ec='black', fc='none', lw=0.5, histtype='step', label =

82

'100 MeV')

axes[1].hist(Ox_1_160, 500, ec='red', fc='none', lw=0.5, histtype='step', label =

'160 MeV')

axes[1].hist(Ox_1_200, 500, ec='blue', fc='none', lw=0.5, histtype='step', label =

'200 MeV')

axes[1].hist(Ox_1_230, 500, ec='green', fc='none', lw=0.5, histtype='step', label =

'230 MeV')

axes[1].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0))

axes[1].yaxis.major.formatter._useMathText = True

axes[1].set_xlim(0,40)

axes[1].axvline(x=bp100, color = 'k', linestyle = '--', lw=0.5, alpha=0.5)

axes[1].axvline(x=bp160, color= 'r', linestyle = '--', lw=0.5, alpha=0.5)

axes[1].axvline(x=bp200, color= 'b', linestyle = '--', lw=0.5, alpha=0.5)

axes[1].axvline(x=bp230, color= 'g', linestyle = '--', lw=0.5, alpha=0.5)

fig.text(0.08, 0.85, 'a', fontsize = 20)

fig.text(0.52, 0.85, 'b', fontsize = 20)

fig.text(0.5, 0.04, 'Depth in water [cm]', ha='center', va='center')

fig.text(0.06, 0.5, 'Neutrons from ' + str(primaries) + ' primary protons',

ha='center', va='center', rotation='vertical')

fig.legend(loc='upper right')

plt.show()

fig, axes = plt.subplots(nrows = 2, ncols = 2)

Neutron detection as function of detector size: increasing height & width

nbneutron100 = []

nbneutron160 = []

nbneutron200 = []

nbneutron230 = []

wh100 = 2.5

for m in range(46):

 for a, b, c, d in zip(X_1_100, Y_1_100, X_2_100, Y_2_100):

 if (15 - wh100) < a < (15 + wh100) and (15 - wh100) < c < (15 + wh100) and

-wh100 < b < wh100 and -wh100 < d < wh100:

 nbneutron100.append(wh100*2)

 wh100 = wh100 + 0.5

wh160 = 2.5

for m in range(46):

83

 for e, f, g, h in zip(X_1_160, Y_1_160, X_2_160, Y_2_160):

 if (21 - wh160) < e < (21 + wh160) and (21 - wh160) < g < (21 + wh160) and

-wh160 < f < wh160 and -wh160 < h < wh160:

 nbneutron160.append(wh160*2)

 wh160 = wh160 + 0.5

wh200 = 2.5

for m in range(46):

 for i, j, k, l in zip(X_1_200, Y_1_200, X_2_200, Y_2_200):

 if (24 - wh200) < i < (24 + wh200) and (24 - wh200) < k < (24 + wh200) and

-wh200 < j < wh200 and -wh200 < l < wh200:

 nbneutron200.append(wh200*2)

 wh200 = wh200 + 0.5

wh230 = 2.5

for m in range(46):

 for n, o, p, q in zip(X_1_230, Y_1_230, X_2_230, Y_2_230):

 if (28 - wh230) < n < (28 + wh230) and (28 - wh230) < p < (28 + wh230) and

-wh230 < o < wh230 and -wh230 < q < wh230:

 nbneutron230.append(wh230*2)

 wh230 = wh230 + 0.5

n1, bins1, _ =axes[0,0].hist(nbneutron100, bins = np.arange(min(nbneutron100)-0.5,

max(nbneutron100)+0.5, 1), ec = 'red', fc='none', lw=0.5, histtype='step', align =

'left', label = 'All neutrons')

n2, bins2, _ =axes[0,1].hist(nbneutron160, bins = np.arange(min(nbneutron160)-0.5,

max(nbneutron160)+0.5, 1), ec = 'red', fc='none', lw=0.5, histtype='step', align =

'left')

n3, bins3, _ =axes[1,0].hist(nbneutron200, bins = np.arange(min(nbneutron200)-0.5,

max(nbneutron200)+0.5, 1), ec = 'red', fc='none', lw=0.5, histtype='step', align =

'left')

n4, bins4, _ =axes[1,1].hist(nbneutron230, bins = np.arange(min(nbneutron230)-0.5,

max(nbneutron230)+0.5, 1), ec = 'red', fc='none', lw=0.5, histtype='step', align =

'left')

#linear fit

bincenters1 = 0.5*(bins1[1:]+bins1[:-1])

bincenters2 = 0.5*(bins2[1:]+bins2[:-1])

bincenters3 = 0.5*(bins3[1:]+bins3[:-1])

bincenters4 = 0.5*(bins4[1:]+bins4[:-1])

84

coef1 = np.polyfit(bincenters1, n1,1)

coef2 = np.polyfit(bincenters2, n2,1)

coef3 = np.polyfit(bincenters3, n3,1)

coef4 = np.polyfit(bincenters4, n4,1)

poly1d_fn1 = np.poly1d(coef1)

poly1d_fn2 = np.poly1d(coef2)

poly1d_fn3 = np.poly1d(coef3)

poly1d_fn4 = np.poly1d(coef4)

axes[0,0].plot(bincenters1, poly1d_fn1(bincenters1), '--r', lw=1.0,

color='black',alpha = 0.5, label = 'Linear fit')

axes[0,1].plot(bincenters2, poly1d_fn2(bincenters2), '--r', lw=1.0,

color='black',alpha = 0.5)

axes[1,0].plot(bincenters3, poly1d_fn3(bincenters3), '--r', lw=1.0,

color='black',alpha = 0.5)

axes[1,1].plot(bincenters4, poly1d_fn4(bincenters4), '--r', lw=1.0,

color='black',alpha = 0.5)

axes[0,0].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0))

axes[0,0].yaxis.major.formatter._useMathText = True

Neutron detection as function of detector size: increasing height & width, only

last half before bragg peak

nbneutronbragg100 = []

nbneutronbragg160 = []

nbneutronbragg200 = []

nbneutronbragg230 = []

whb100 = 2.5

for m in range(46):

 for a, b, c, d, v in zip(X_1_100, Y_1_100, X_2_100, Y_2_100, Ox_1_100):

 if (16 - whb100) < a < (16 + whb100) and (16 - whb100) < c < (16 + whb100)

and -whb100 < b < whb100 and -whb100 < d < whb100 and 3.8 < v < 7.6:

 nbneutronbragg100.append(whb100*2)

 whb100 = whb100 + 0.5

whb160 = 2.5

for m in range(46):

 for e, f, g, h, z in zip(X_1_160, Y_1_160, X_2_160, Y_2_160, Ox_1_160):

 if (24 - whb160) < e < (24 + whb160) and (24 - whb160) < g < (24 + whb160)

and -whb160 < f < whb160 and -whb160 < h < whb160 and 8.8 < z < 17.6:

85

 nbneutronbragg160.append(whb160*2)

 whb160 = whb160 + 0.5

whb200 = 2.5

for m in range(46):

 for i, j, k, l, u in zip(X_1_200, Y_1_200, X_2_200, Y_2_200, Ox_1_200):

 if (31 - whb200) < i < (31 + whb200) and (31 - whb200) < k < (31 + whb200)

and -whb200 < j < whb200 and -whb200 < l < whb200 and 12.95 < u < 25.9:

 nbneutronbragg200.append(whb200*2)

 whb200 = whb200 + 0.5

whb230 = 2.5

for m in range(46):

 for n, o, p, q, y in zip(X_1_230, Y_1_230, X_2_230, Y_2_230, Ox_1_230):

 if (36 - whb230) < n < (36 + whb230) and (36 - whb230) < p < (36 + whb230)

and -whb230 < o < whb230 and -whb230 < q < whb230 and 16.45 < y < 32.9:

 nbneutronbragg230.append(whb230*2)

 whb230 = whb230 + 0.5

n1, bins1, _ =axes[0,0].hist(nbneutronbragg100, bins =

np.arange(min(nbneutronbragg100)-0.5, max(nbneutronbragg100)+0.5, 1), ec = 'blue',

fc='none', lw=0.5, histtype='step', align = 'left', label ='Last half')

n2, bins2, _ =axes[0,1].hist(nbneutronbragg160, bins =

np.arange(min(nbneutronbragg160)-0.5, max(nbneutronbragg160)+0.5, 1), ec='blue',

fc='none', lw=0.5, histtype='step', align = 'left')

n3, bins3, _ =axes[1,0].hist(nbneutronbragg200, bins =

np.arange(min(nbneutronbragg200)-0.5, max(nbneutronbragg200)+0.5, 1), ec='blue',

fc='none', lw=0.5, histtype='step', align = 'left')

n4, bins4, _ =axes[1,1].hist(nbneutronbragg230, bins =

np.arange(min(nbneutronbragg230)-0.5, max(nbneutronbragg230)+0.5, 1), ec='blue',

fc='none', lw=0.5, histtype='step', align = 'left')

#linear fit

bincenters1 = 0.5*(bins1[1:]+bins1[:-1])

bincenters2 = 0.5*(bins2[1:]+bins2[:-1])

bincenters3 = 0.5*(bins3[1:]+bins3[:-1])

bincenters4 = 0.5*(bins4[1:]+bins4[:-1])

coef1 = np.polyfit(bincenters1, n1,1)

coef2 = np.polyfit(bincenters2, n2,1)

86

coef3 = np.polyfit(bincenters3, n3,1)

coef4 = np.polyfit(bincenters4, n4,1)

poly1d_fn1 = np.poly1d(coef1)

poly1d_fn2 = np.poly1d(coef2)

poly1d_fn3 = np.poly1d(coef3)

poly1d_fn4 = np.poly1d(coef4)

axes[0,0].plot(bincenters1, poly1d_fn1(bincenters1), '--r', lw=1.0, color =

'black',alpha = 0.5)

axes[0,1].plot(bincenters2, poly1d_fn2(bincenters2), '--r', lw=1.0, color =

'black',alpha = 0.5)

axes[1,0].plot(bincenters3, poly1d_fn3(bincenters3), '--r', lw=1.0, color =

'black',alpha = 0.5)

axes[1,1].plot(bincenters4, poly1d_fn4(bincenters4), '--r', lw=1.0, color =

'black',alpha = 0.5)

axes[0,1].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0))

axes[0,1].yaxis.major.formatter._useMathText = True

Neutron detection as function of detector size: increasing height & width, only

last quarter before bragg peak

nbneutronbragg100 = []

nbneutronbragg160 = []

nbneutronbragg200 = []

nbneutronbragg230 = []

whb100 = 2.5

for m in range(46):

 for a, b, c, d, v in zip(X_1_100, Y_1_100, X_2_100, Y_2_100, Ox_1_100):

 if (16 - whb100) < a < (16 + whb100) and (16 - whb100) < c < (16 + whb100)

and -whb100 < b < whb100 and -whb100 < d < whb100 and 5.7 < v < 7.6:

 nbneutronbragg100.append(whb100*2)

 whb100 = whb100 + 0.5

whb160 = 2.5

for m in range(46):

 for e, f, g, h, z in zip(X_1_160, Y_1_160, X_2_160, Y_2_160, Ox_1_160):

 if (24 - whb160) < e < (24 + whb160) and (24 - whb160) < g < (24 + whb160)

and -whb160 < f < whb160 and -whb160 < h < whb160 and 12.6 < z < 17.6:

87

 nbneutronbragg160.append(whb160*2)

 whb160 = whb160 + 0.5

whb200 = 2.5

for m in range(46):

 for i, j, k, l, u in zip(X_1_200, Y_1_200, X_2_200, Y_2_200, Ox_1_200):

 if (31 - whb200) < i < (31 + whb200) and (31 - whb200) < k < (31 + whb200)

and -whb200 < j < whb200 and -whb200 < l < whb200 and 19.425 < u < 25.9:

 nbneutronbragg200.append(whb200*2)

 whb200 = whb200 + 0.5

whb230 = 2.5

for m in range(46):

 for n, o, p, q, y in zip(X_1_230, Y_1_230, X_2_230, Y_2_230, Ox_1_230):

 if (36 - whb230) < n < (36 + whb230) and (36 - whb230) < p < (36 + whb230)

and -whb230 < o < whb230 and -whb230 < q < whb230 and 24.675 < y < 32.9:

 nbneutronbragg230.append(whb230*2)

 whb230 = whb230 + 0.5

n1, bins1, _ =axes[0,0].hist(nbneutronbragg100, bins =

np.arange(min(nbneutronbragg100)-0.5, max(nbneutronbragg100)+0.5, 1), ec = 'green',

fc='none', lw=0.5, histtype='step', align = 'left', label = 'Last quarter')

n2, bins2, _ =axes[0,1].hist(nbneutronbragg160, bins =

np.arange(min(nbneutronbragg160)-0.5, max(nbneutronbragg160)+0.5, 1), ec='green',

fc='none', lw=0.5, histtype='step', align = 'left')

n3, bins3, _ =axes[1,0].hist(nbneutronbragg200, bins =

np.arange(min(nbneutronbragg200)-0.5, max(nbneutronbragg200)+0.5, 1), ec='green',

fc='none', lw=0.5, histtype='step', align = 'left')

n4, bins4, _ =axes[1,1].hist(nbneutronbragg230, bins =

np.arange(min(nbneutronbragg230)-0.5, max(nbneutronbragg230)+0.5, 1), ec='green',

fc='none', lw=0.5, histtype='step', align = 'left')

#linear fit

bincenters1 = 0.5*(bins1[1:]+bins1[:-1])

bincenters2 = 0.5*(bins2[1:]+bins2[:-1])

bincenters3 = 0.5*(bins3[1:]+bins3[:-1])

bincenters4 = 0.5*(bins4[1:]+bins4[:-1])

coef1 = np.polyfit(bincenters1, n1,1)

coef2 = np.polyfit(bincenters2, n2,1)

coef3 = np.polyfit(bincenters3, n3,1)

88

coef4 = np.polyfit(bincenters4, n4,1)

poly1d_fn1 = np.poly1d(coef1)

poly1d_fn2 = np.poly1d(coef2)

poly1d_fn3 = np.poly1d(coef3)

poly1d_fn4 = np.poly1d(coef4)

axes[0,0].plot(bincenters1, poly1d_fn1(bincenters1), '--r', lw=1.0, color =

'black',alpha = 0.5)

axes[0,1].plot(bincenters2, poly1d_fn2(bincenters2), '--r', lw=1.0, color =

'black',alpha = 0.5)

axes[1,0].plot(bincenters3, poly1d_fn3(bincenters3), '--r', lw=1.0, color =

'black',alpha = 0.5)

axes[1,1].plot(bincenters4, poly1d_fn4(bincenters4), '--r', lw=1.0, color =

'black',alpha = 0.5)

axes[1,0].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0))

axes[1,0].yaxis.major.formatter._useMathText = True

axes[1,1].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0))

axes[1,1].yaxis.major.formatter._useMathText = True

#subplot titles

axes[0,0].set_title('100 MeV', fontsize = '14')

axes[0,1].set_title('160 MeV', fontsize = '14')

axes[1,0].set_title('200 MeV', fontsize = '14')

axes[1,1].set_title('230 MeV', fontsize = '14')

#y limits

axes[0,0].set_ylim(0,16000)

axes[0,1].set_ylim(0,63000)

axes[1,0].set_ylim(0,120000)

axes[1,1].set_ylim(0,160000)

fig.text(0.5, 0.04, 'Side length of the detector [cm]', ha='center', va='center')

fig.text(0.06, 0.5, 'Neutrons from ' + str(primaries) + ' primary protons',

ha='center', va='center', rotation='vertical')

fig.subplots_adjust(right=0.8)

fig.legend(loc = 'upper right')

plt.show()

89

Set font size and tick size for all plots

plt.rcParams.update({'font.size': 20})

plt.rc('xtick',labelsize=20)

plt.rc('ytick',labelsize=20)

#Create histogram, location on detector planes x-direction

fig, axes = plt.subplots(nrows = 2, ncols = 2)

n1, bins1, _ =axes[0,0].hist(X_1_100, bins = range(-30,163, 3), ec='blue', fc='none',

lw=1.0, histtype='step', label='First tracking detector')

n11, bins11, _ =axes[0,0].hist(X_2_100, bins = range(-30,163, 3), ec='red',

fc='none', lw=1.0, histtype='step', label='Second tracking detector')

n2, bins2, _ =axes[0,1].hist(X_1_160, bins = range(-30,163, 3), ec='blue', fc='none',

lw=1.0, histtype='step')

n22, bins22, _ =axes[0,1].hist(X_2_160, bins = range(-30,163, 3), ec='red',

fc='none', lw=1.0, histtype='step')

n3, bins3, _ =axes[1,0].hist(X_1_200, bins = range(-30,163, 3), ec='blue', fc='none',

lw=1.0, histtype='step')

n33, bins33, _ =axes[1,0].hist(X_2_200, bins = range(-30,163, 3), ec='red',

fc='none', lw=1.0, histtype='step')

n4, bins4, _ =axes[1,1].hist(X_1_230, bins = range(-30,163, 3), ec='blue', fc='none',

lw=1.0, histtype='step')

n44, bins44, _ =axes[1,1].hist(X_2_230,bins = range(-30,163, 3), ec='red',

fc='none', lw=1.0, histtype='step')

#Magnitude of statistical uncertainty

menStd1 = np.sqrt(n1)

menStd2 = np.sqrt(n2)

menStd3 = np.sqrt(n3)

menStd4 = np.sqrt(n4)

menStd11 = np.sqrt(n11)

menStd22 = np.sqrt(n22)

menStd33 = np.sqrt(n33)

menStd44 = np.sqrt(n44)

#Center of bins

bincenters1 = 0.5*(bins1[1:]+bins1[:-1])

90

bincenters2 = 0.5*(bins2[1:]+bins2[:-1])

bincenters3 = 0.5*(bins3[1:]+bins3[:-1])

bincenters4 = 0.5*(bins4[1:]+bins4[:-1])

bincenters11 = 0.5*(bins11[1:]+bins11[:-1])

bincenters22 = 0.5*(bins22[1:]+bins22[:-1])

bincenters33 = 0.5*(bins33[1:]+bins33[:-1])

bincenters44 = 0.5*(bins44[1:]+bins44[:-1])

#Plot error bars

axes[0,0].errorbar(bincenters1, n1, yerr = menStd1, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[0,1].errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[1,0].errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[1,1].errorbar(bincenters4, n4, yerr = menStd4, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[0,0].errorbar(bincenters11, n11, yerr = menStd11, fmt = 'none', ecolor =

'black', elinewidth = 1.0)

axes[0,1].errorbar(bincenters22, n22, yerr = menStd22, fmt = 'none', ecolor =

'black', elinewidth = 1.0)

axes[1,0].errorbar(bincenters33, n33, yerr = menStd33, fmt = 'none', ecolor =

'black', elinewidth = 1.0)

axes[1,1].errorbar(bincenters44, n44, yerr = menStd44, fmt = 'none', ecolor =

'black', elinewidth = 1.0)

#Set subplot title and Bragg peak location

axes[0,0].set_title('100 MeV')

axes[0,0].axvline(x=bp100, color = 'k', linestyle = '--', alpha=0.5, label = 'Bragg

peak position')

axes[0,1].set_title('160 MeV')

axes[0,1].axvline(x=bp160, color= 'k', linestyle = '--', alpha=0.5)

axes[1,0].set_title('200 MeV')

axes[1,0].axvline(x=bp200, color= 'k', linestyle = '--', alpha=0.5)

axes[1,1].set_title('230 MeV')

axes[1,1].axvline(x=bp230, color= 'k', linestyle = '--', alpha=0.5)

fig.text(0.5, 0.04,'Location on tracking detector in x-direction [cm]', ha='center',

va='center')

fig.text(0.06, 0.5,'Neutrons from ' + str(primaries) + ' primary protons' ,

ha='center', va='center', rotation='vertical')

fig.legend(loc='upper right')

91

fig.subplots_adjust(right=0.8)

plt.show()

#Create scatter plot

Ox_1000_100 = []

Oy_1000_100 = []

Eko_1000_100 = []

#Gather 1000 neutrons for plotting

ind = 0

for u, o, j in zip(Ox_1_100,Oy_1_100, Eko_1_100):

 if ind < 1000:

 if u < 40 and o < 5:

 Ox_1000_100.append(u)

 Oy_1000_100.append(o)

 Eko_1000_100.append(j)

 ind = ind + 1

 else:

 break

Ox_1000_160 = []

Oy_1000_160 = []

Eko_1000_160 = []

ind = 0

for u, o, j in zip(Ox_1_160,Oy_1_160, Eko_1_160):

 if ind < 1000:

 if u < 40 and o < 5:

 Ox_1000_160.append(u)

 Oy_1000_160.append(o)

 Eko_1000_160.append(j)

 ind = ind + 1

 else:

 break

Ox_1000_200 = []

Oy_1000_200 = []

Eko_1000_200 = []

ind = 0

92

for u, o, j in zip(Ox_1_200,Oy_1_200, Eko_1_200):

 if ind < 1000:

 if u < 40 and o < 5:

 Ox_1000_200.append(u)

 Oy_1000_200.append(o)

 Eko_1000_200.append(j)

 ind = ind + 1

 else:

 break

Ox_1000_230 = []

Oy_1000_230 = []

Eko_1000_230 = []

ind = 0

for u, o, j in zip(Ox_1_230,Oy_1_230, Eko_1_230):

 if ind < 1000:

 if u < 40 and o < 5:

 Ox_1000_230.append(u)

 Oy_1000_230.append(o)

 Eko_1000_230.append(j)

 ind = ind + 1

 else:

 break

fig, axes = plt.subplots(nrows = 2, ncols = 2)

colors100 = Eko_1000_100

axes[0,0].scatter(Ox_1000_100, Oy_1000_100, c=colors100, s = 7, alpha=0.5)

axes[0,0].set_title('100 MeV')

axes[0,0].set_ylim(-4,4)

colors160 = Eko_1000_160

axes[0,1].scatter(Ox_1000_160, Oy_1000_160, c=colors160, s = 7, alpha=0.5)

axes[0,1].set_title('160 MeV')

axes[0,1].set_ylim(-4,4)

colors200 = Eko_1000_200

axes[1,0].scatter(Ox_1000_200, Oy_1000_200, c=colors200, s = 7, alpha=0.5)

axes[1,0].set_title('200 MeV')

axes[1,0].set_ylim(-4,4)

93

colors230 = Eko_1000_230

img = axes[1,1].scatter(Ox_1000_230, Oy_1000_230, c=colors230, s = 7, alpha=0.5)

axes[1,1].set_title('230 MeV')

axes[1,1].set_ylim(-4,4)

fig.text(0.5, 0.04, 'Depth in water [cm]', ha='center', va='center')

fig.text(0.06, 0.5, 'Distance from primary beam axis [cm]', ha='center', va='center',

rotation='vertical')

fig.subplots_adjust(right=0.8)

cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])

cbar = fig.colorbar(img, cax=cbar_ax)

cbar.set_label('Neutron energy [MeV]')

plt.show()

Create 2D histogram, scatter plot

fig, axes = plt.subplots(nrows = 2, ncols = 2, sharey=True)

img1 = axes[0,0].hist2d(Ox_1_100, Oy_1_100, bins=(1000, 1500), cmap=plt.cm.jet)

axes[0,0].set_title('100 MeV')

axes[0,0].set_ylim(-4,4)

axes[0,0].set_xlim(0,30)

img2 = axes[0,1].hist2d(Ox_1_160, Oy_1_160, bins=(1000, 1500), cmap=plt.cm.jet)

axes[0,1].set_title('160 MeV')

axes[0,1].set_ylim(-3,3)

axes[0,1].set_xlim(0,30)

img3 = axes[1,0].hist2d(Ox_1_200, Oy_1_200, bins=(1000, 1500), cmap=plt.cm.jet)

axes[1,0].set_title('200 MeV')

axes[1,0].set_ylim(-3,3)

axes[1,0].set_xlim(0,30)

img1 = axes[1,1].hist2d(Ox_1_230, Oy_1_230, bins=(1000, 1500), cmap=plt.cm.jet)

axes[1,1].set_title('230 MeV')

axes[1,1].set_ylim(-3,3)

axes[1,1].set_xlim(0,30)

fig.text(0.5, 0.04, 'Depth in water [cm]', ha='center', va='center')

fig.text(0.06, 0.5, 'Distance from primary beam axis [cm]', ha='center', va='center',

rotation='vertical')

94

fig.subplots_adjust(right=0.8)

cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])

cbar = fig.colorbar(img1[3], cax=cbar_ax)

cbar.set_label('Number of neutrons')

plt.show()

Neutron detection as a function of detector position: all neutrons

nbneu100 = []

nbneu160 = []

nbneu200 = []

nbneu230 = []

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a in zip(X_1_100 ,X_2_100 , Y_1_100 ,Y_2_100):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10:

 nbneu100.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a in zip(X_1_160 ,X_2_160 , Y_1_160 ,Y_2_160):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10:

 nbneu160.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

95

for h in range(160):

 for b, n, k, a in zip(X_1_200 ,X_2_200 , Y_1_200 ,Y_2_200):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10:

 nbneu200.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a in zip(X_1_230 ,X_2_230 , Y_1_230 ,Y_2_230):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10:

 nbneu230.append(x)

 low = low + 1

 high = high + 1

 x = x+1

fig, ax = plt.subplots()

n1, bins1, _ = plt.hist(nbneu100, bins = np.arange(min(nbneu100)-0.5,

max(nbneu100)+0.5, 1), ec='black', fc='none', lw=1.0, histtype='step', label = '100

MeV')

n2, bins2, _ = plt.hist(nbneu160, bins = np.arange(min(nbneu160)-0.5,

max(nbneu160)+0.5, 1), ec='red', fc='none', lw=1.0, histtype='step', label = '160

MeV')

n3, bins3, _ = plt.hist(nbneu200, bins = np.arange(min(nbneu200)-0.5,

max(nbneu200)+0.5, 1), ec='blue', fc='none', lw=1.0, histtype='step', label = '200

MeV')

n4, bins4, _ = plt.hist(nbneu230, bins = np.arange(min(nbneu230)-0.5,

max(nbneu230)+0.5, 1), ec='green', fc='none', lw=1.0, histtype='step', label = '230

MeV')

menStd1 = np.sqrt(n1)

menStd2 = np.sqrt(n2)

96

menStd3 = np.sqrt(n3)

menStd4 = np.sqrt(n4)

bincenters1 = 0.5*(bins1[1:]+bins1[:-1])

bincenters2 = 0.5*(bins2[1:]+bins2[:-1])

bincenters3 = 0.5*(bins3[1:]+bins3[:-1])

bincenters4 = 0.5*(bins4[1:]+bins4[:-1])

plt.errorbar(bincenters1, n1, yerr = menStd1, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

plt.errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

plt.errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

plt.errorbar(bincenters4, n4, yerr = menStd4, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

plt.xlabel('Center point of detector in x-direction [cm]')

plt.ylabel('Number of neutrons from ' + str(primaries) + ' primary protons')

plt.axvline(x=bp100, color = 'k', linestyle = '--', alpha=0.5, label = 'Bragg peak

position')

plt.axvline(x=bp160, color= 'r', linestyle = '--', alpha=0.5)

plt.axvline(x=bp200, color= 'b', linestyle = '--', alpha=0.5)

plt.axvline(x=bp230, color= 'g', linestyle = '--', alpha=0.5)

plt.legend(loc='upper right')

plt.show()

Histogram, sum of 160 and 200 MeV

nbneu160 = []

nbneu200 = []

x = -10

97

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a in zip(X_1_160 ,X_2_160 , Y_1_160 ,Y_2_160):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10:

 nbneu160.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a in zip(X_1_200 ,X_2_200 , Y_1_200 ,Y_2_200):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10:

 nbneu200.append(x)

 low = low + 1

 high = high + 1

 x = x+1

fig, ax = plt.subplots()

n2, bins2, _ = plt.hist(nbneu160, bins = np.arange(min(nbneu160)-0.5,

max(nbneu160)+0.5, 1), ec='black', fc='none', lw=1.0, histtype='step', label = '160

MeV')

n3, bins3, _ = plt.hist(nbneu200, bins = np.arange(min(nbneu200)-0.5,

max(nbneu200)+0.5, 1), ec='red', fc='none', lw=1.0, histtype='step', label = '200

MeV')

tot = nbneu160

tot.extend(nbneu200)

n5, bins5, _ = plt.hist(tot, bins = np.arange(min(tot)-0.5, max(tot)+0.5, 1),

ec='blue', fc='none', lw=1.0, histtype='step', label = 'Sum of 160 & 200 MeV')

98

menStd2 = np.sqrt(n2)

menStd3 = np.sqrt(n3)

menStd5 = np.sqrt(n5)

bincenters2 = 0.5*(bins2[1:]+bins2[:-1])

bincenters3 = 0.5*(bins3[1:]+bins3[:-1])

bincenters5 = 0.5*(bins5[1:]+bins5[:-1])

plt.errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

plt.errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

plt.errorbar(bincenters5, n5, yerr = menStd5, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

plt.xlabel('Center point of detector in x-direction [cm]')

plt.ylabel('Number of neutrons from ' + str(primaries) + ' primary protons')

plt.axvline(x=bp160, color= 'k', linestyle = '--', alpha=0.5, label = 'Bragg peak

position')

plt.axvline(x=bp200, color= 'r', linestyle = '--', alpha=0.5)

plt.legend(loc='upper right')

plt.show()

#MULTIPLOT WITH THE DIFFERENT ANALYSES OF NEUTRON DETECTION RATE

Neutron detection as a function of detector position: all neutrons

nbneu100 = []

nbneu160 = []

nbneu200 = []

nbneu230 = []

x = -10

low = -20

high = 0

h = 0

for h in range(160):

99

 for b, n, k, a in zip(X_1_100 ,X_2_100 , Y_1_100 ,Y_2_100):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10:

 nbneu100.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a in zip(X_1_160 ,X_2_160 , Y_1_160 ,Y_2_160):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10:

 nbneu160.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a in zip(X_1_200 ,X_2_200 , Y_1_200 ,Y_2_200):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10:

 nbneu200.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a in zip(X_1_230 ,X_2_230 , Y_1_230 ,Y_2_230):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10:

 nbneu230.append(x)

 low = low + 1

 high = high + 1

100

 x = x+1

fig, axes = plt.subplots(nrows = 2, ncols = 2)

n1, bins1, _ = axes[0,0].hist(nbneu100, bins = np.arange(min(nbneu100)-0.5,

max(nbneu100)+0.5, 1), ec='red', fc='none', lw=1.0, histtype='step', label = 'All

neutrons')

n2, bins2, _ = axes[0,1].hist(nbneu160, bins = np.arange(min(nbneu160)-0.5,

max(nbneu160)+0.5, 1), ec='red', fc='none', lw=1.0, histtype='step')

n3, bins3, _ = axes[1,0].hist(nbneu200, bins = np.arange(min(nbneu200)-0.5,

max(nbneu200)+0.5, 1), ec='red', fc='none', lw=1.0, histtype='step')

n4, bins4, _ = axes[1,1].hist(nbneu230, bins = np.arange(min(nbneu230)-0.5,

max(nbneu230)+0.5, 1), ec='red', fc='none', lw=1.0, histtype='step')

axes[0,0].set_title('100 MeV')

axes[0,1].set_title('160 MeV')

axes[1,0].set_title('200 MeV')

axes[1,1].set_title('230 MeV')

menStd1 = np.sqrt(n1)

menStd2 = np.sqrt(n2)

menStd3 = np.sqrt(n3)

menStd4 = np.sqrt(n4)

bincenters1 = 0.5*(bins1[1:]+bins1[:-1])

bincenters2 = 0.5*(bins2[1:]+bins2[:-1])

bincenters3 = 0.5*(bins3[1:]+bins3[:-1])

bincenters4 = 0.5*(bins4[1:]+bins4[:-1])

axes[0,0].errorbar(bincenters1, n1, yerr = menStd1, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[0,1].errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[1,0].errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

101

axes[1,1].errorbar(bincenters4, n4, yerr = menStd4, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[0,0].axvline(x=bp100, color = 'k', linestyle = '--', alpha=0.5, label = 'Bragg

peak position')

axes[0,1].axvline(x=bp160, color= 'k', linestyle = '--', alpha=0.5)

axes[1,0].axvline(x=bp200, color= 'k', linestyle = '--', alpha=0.5)

axes[1,1].axvline(x=bp230, color= 'k', linestyle = '--', alpha=0.5)

fig.text(0.5, 0.04,'Center point of detector in x-direction [cm]', ha='center',

va='center')

fig.text(0.06, 0.5,'Neutrons from ' + str(primaries) + ' primary protons' ,

ha='center', va='center', rotation='vertical')

Neutron detection as a function of detector position: only neutrons from last half

before bragg peak

nbneubragg100 = []

nbneubragg160 = []

nbneubragg200 = []

nbneubragg230 = []

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a, u in zip(X_1_100 ,X_2_100 , Y_1_100 ,Y_2_100, Ox_1_100):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and

3.8 < u < 7.6:

 nbneubragg100.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

102

high = 0

h = 0

for h in range(160):

 for b, n, k, a, u in zip(X_1_160 ,X_2_160 , Y_1_160 ,Y_2_160, Ox_1_160):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and

8.8 < u < 17.6:

 nbneubragg160.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a, u in zip(X_1_200 ,X_2_200 , Y_1_200 ,Y_2_200, Ox_1_200):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and

12.95 < u < 25.9:

 nbneubragg200.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a, u in zip(X_1_230 ,X_2_230 , Y_1_230 ,Y_2_230, Ox_1_230):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and

16.45 < u < 32.9:

 nbneubragg230.append(x)

 low = low + 1

 high = high + 1

 x = x+1

n1, bins1, _ = axes[0,0].hist(nbneubragg100, bins = np.arange(min(nbneubragg100)-

0.5, max(nbneubragg100)+0.5, 1), ec='blue', fc='none', lw=1.0, histtype='step',

label = 'Last half')

103

n2, bins2, _ = axes[0,1].hist(nbneubragg160, bins = np.arange(min(nbneubragg160)-

0.5, max(nbneubragg160)+0.5, 1), ec='blue', fc='none', lw=1.0, histtype='step')

n3, bins3, _ = axes[1,0].hist(nbneubragg200, bins = np.arange(min(nbneubragg200)-

0.5, max(nbneubragg200)+0.5, 1), ec='blue', fc='none', lw=1.0, histtype='step')

n4, bins4, _ = axes[1,1].hist(nbneubragg230, bins = np.arange(min(nbneubragg230)-

0.5, max(nbneubragg230)+0.5, 1), ec='blue', fc='none', lw=1.0, histtype='step')

menStd1 = np.sqrt(n1)

menStd2 = np.sqrt(n2)

menStd3 = np.sqrt(n3)

menStd4 = np.sqrt(n4)

bincenters1 = 0.5*(bins1[1:]+bins1[:-1])

bincenters2 = 0.5*(bins2[1:]+bins2[:-1])

bincenters3 = 0.5*(bins3[1:]+bins3[:-1])

bincenters4 = 0.5*(bins4[1:]+bins4[:-1])

axes[0,0].errorbar(bincenters1, n1, yerr = menStd1, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[0,1].errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[1,0].errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[1,1].errorbar(bincenters4, n4, yerr = menStd4, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

Neutron detection as a function of detector position: only neutrons from last

quarter before bragg peak

nbneubragg100 = []

nbneubragg160 = []

nbneubragg200 = []

nbneubragg230 = []

x = -10

low = -20

104

high = 0

h = 0

for h in range(160):

 for b, n, k, a, u in zip(X_1_100 ,X_2_100 , Y_1_100 ,Y_2_100, Ox_1_100):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and

5.7 < u < 7.6:

 nbneubragg100.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a, u in zip(X_1_160 ,X_2_160 , Y_1_160 ,Y_2_160, Ox_1_160):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and

13.2 < u < 17.6:

 nbneubragg160.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

for h in range(160):

 for b, n, k, a, u in zip(X_1_200 ,X_2_200 , Y_1_200 ,Y_2_200, Ox_1_200):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and

19.425 < u < 25.9:

 nbneubragg200.append(x)

 low = low + 1

 high = high + 1

 x = x+1

x = -10

low = -20

high = 0

h = 0

105

for h in range(160):

 for b, n, k, a, u in zip(X_1_230 ,X_2_230 , Y_1_230 ,Y_2_230, Ox_1_230):

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and

24.675 < u < 32.9:

 nbneubragg230.append(x)

 low = low + 1

 high = high + 1

 x = x+1

n1, bins1, _ = axes[0,0].hist(nbneubragg100, bins = np.arange(min(nbneubragg100)-

0.5, max(nbneubragg100)+0.5, 1), ec='green', fc='none', lw=1.0, histtype='step',

label = 'Last quarter')

n2, bins2, _ = axes[0,1].hist(nbneubragg160, bins = np.arange(min(nbneubragg160)-

0.5, max(nbneubragg160)+0.5, 1), ec='green', fc='none', lw=1.0, histtype='step')

n3, bins3, _ = axes[1,0].hist(nbneubragg200, bins = np.arange(min(nbneubragg200)-

0.5, max(nbneubragg200)+0.5, 1), ec='green', fc='none', lw=1.0, histtype='step')

n4, bins4, _ = axes[1,1].hist(nbneubragg230, bins = np.arange(min(nbneubragg230)-

0.5, max(nbneubragg230)+0.5, 1), ec='green', fc='none', lw=1.0, histtype='step')

menStd1 = np.sqrt(n1)

menStd2 = np.sqrt(n2)

menStd3 = np.sqrt(n3)

menStd4 = np.sqrt(n4)

bincenters1 = 0.5*(bins1[1:]+bins1[:-1])

bincenters2 = 0.5*(bins2[1:]+bins2[:-1])

bincenters3 = 0.5*(bins3[1:]+bins3[:-1])

bincenters4 = 0.5*(bins4[1:]+bins4[:-1])

axes[0,0].errorbar(bincenters1, n1, yerr = menStd1, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[0,1].errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[1,0].errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

axes[1,1].errorbar(bincenters4, n4, yerr = menStd4, fmt = 'none', ecolor = 'black',

elinewidth = 1.0)

106

fig.legend(loc='upper right')

plt.show()

107

Maxdetrate.py

Script used for creating Figure 25, showing the maximum neutron detection rate for the three

analyses done in this thesis.

#Create plot summarizing the positions of maximum detection rate

import numpy as np

import matplotlib.pyplot as plt

#lists containing positions of maximum detection rate

energies = [100, 160, 200, 230]

All = [15, 20.5, 24.5, 28]

half = [16, 24, 31, 35.5]

quarter = [17, 25.5, 33, 39]

bragg = [7.6, 17.6, 25.7, 32.6]

#Create a linear fit

coef = np.polyfit(energies,All,1)

coef2 = np.polyfit(energies,half,1)

coef3 = np.polyfit(energies,quarter,1)

coef4 = np.polyfit(energies,bragg,1)

poly1d_fn = np.poly1d(coef)

poly1d_fn2 = np.poly1d(coef2)

poly1d_fn3 = np.poly1d(coef3)

poly1d_fn4 = np.poly1d(coef4)

#ad errorbars

errorAll = [2, 1.5, 1.5, 2]

errorHalf = [3, 2, 2, 1.5]

errorQuarter = [4, 1.5, 2, 2]

plt.errorbar(energies, All, yerr = errorAll, fmt = 'none', ecolor = 'red', elinewidth

= 0.5)

plt.errorbar(energies, half, yerr = errorHalf, fmt = 'none', ecolor = 'blue',

elinewidth = 0.5)

plt.errorbar(energies, quarter, yerr = errorQuarter, fmt = 'none', ecolor = 'green',

elinewidth = 0.5)

#plot points of maximum detection rate and corresponding linear fit

108

plt.plot(energies, All, 'ro', label = 'All neutrons')

plt.plot(energies, poly1d_fn(energies), '--r', lw=1.0, alpha = 0.5)

plt.plot(energies, half, 'bs', label = 'Last half')

plt.plot(energies, poly1d_fn2(energies), '--b', lw=1.0, alpha = 0.5)

plt.plot(energies, quarter, 'g^', label = 'Last quarter')

plt.plot(energies, poly1d_fn3(energies), '--g', lw=1.0, alpha = 0.5)

plt.plot(energies, bragg, 'kH', label = 'Bragg peak')

plt.plot(energies, poly1d_fn4(energies), '--k', lw=1.0, alpha = 0.5)

#labels and legend

plt.xlabel('Energy [MeV]')

plt.ylabel('Position in depth direction [cm]')

plt.legend(loc = 'upper left')

plt.show()

109

Patientplan.py

Script used for creating all patient plan plots in this thesis.

#PATIENT TREATMENT PLAN PLOTS

import numpy as np

import matplotlib.pyplot as plt

plt.rcParams.update({'font.size': 12})

plt.rc('xtick',labelsize=12)

plt.rc('ytick',labelsize=12)

#IMPORT DATA, PRODUCED NEUTRONS

#create data lists

Ox = []

Oy = []

Oz = []

Ocosx = []

Ocosy = []

Ocosz = []

Eko = []

import csv

with open('zzProstHUH37_all60_xyz_origin_all_neutrons.csv', 'r') as csvFile:

 reader = csv.reader(csvFile)

 k = 0

 for row in reader:

 temp = row[0].split()

 Ox.append(float(temp[0]))

 Oy.append(float(temp[1]))

 Oz.append(float(temp[2]))

 Eko.append(float(temp[3])*1000)

 Ocosx.append(float(temp[4]))

 Ocosy.append(float(temp[5]))

 Ocosz.append(float(temp[6]))

 k = k + 1

csvFile.close()

110

#IMPORT DATA, DETECTED NEUTRONS

#data lists

X_1 = []

Y_1 = []

Z_1 = []

Ek_1 = []

Ncase_1 = []

Ox_1 = []

Oy_1 = []

Oz_1 = []

Ocosx_1 = []

Ocosy_1 = []

Ocosz_1 = []

Eko_1 = []

P1cosx_1 = []

P1cosy_1 = []

P1cosz_1 = []

Evt_type_1 = []

X_2 = []

Y_2 = []

Z_2 = []

Ek_2 = []

Ncase_2 = []

Ox_2 = []

Oy_2 = []

Oz_2 = []

Ocosx_2 = []

Ocosy_2 = []

Ocosz_2 = []

Eko_2 = []

P1cosx_2 = []

P1cosy_2 = []

P1cosz_2 = []

Evt_type_2 = []

Read the data files and append to the empty lists

111

import csv

with open('zzProstHUH37_all46_p_coordinates_and_parent_n_origin_xyz.csv', 'r') as

csvFile:

 reader = csv.reader(csvFile)

 k = 0

 for row in reader:

 temp = row[0].split()

 if (k % 2) == 0:

 X_1.append(float(temp[0]))

 Y_1.append(float(temp[1]))

 Z_1.append(float(temp[2]))

 Ek_1.append(float(temp[3])*1000)

 Ncase_1.append(float(temp[4]))

 Ox_1.append(float(temp[5]))

 Oy_1.append(float(temp[6]))

 Oz_1.append(float(temp[7]))

 Ocosx_1.append(float(temp[8]))

 Ocosy_1.append(float(temp[9]))

 Ocosz_1.append(float(temp[10]))

 Eko_1.append(float(temp[11])*1000)

 P1cosx_1.append(float(temp[12]))

 P1cosy_1.append(float(temp[13]))

 P1cosz_1.append(float(temp[14]))

 Evt_type_1.append(float(temp[15]))

 else:

 X_2.append(float(temp[0]))

 Y_2.append(float(temp[1]))

 Z_2.append(float(temp[2]))

 Ek_2.append(float(temp[3])*1000)

 Ncase_2.append(float(temp[4]))

 Ox_2.append(float(temp[5]))

 Oy_2.append(float(temp[6]))

 Oz_2.append(float(temp[7]))

 Ocosx_2.append(float(temp[8]))

 Ocosy_2.append(float(temp[9]))

 Ocosz_2.append(float(temp[10]))

 Eko_2.append(float(temp[11])*1000)

 P1cosx_2.append(float(temp[12]))

 P1cosy_2.append(float(temp[13]))

 P1cosz_2.append(float(temp[14]))

 Evt_type_2.append(float(temp[15]))

 k = k + 1

112

csvFile.close()

#Change the size of the detector to 190x200 cm (SAME AS WATER PHANTOM):

xs = 0

dX_1 = []

dY_1 = []

dZ_1 = []

dEk_1 = []

dNcase_1 = []

dOx_1 = []

dOy_1 = []

dOz_1 = []

dOcosx_1 = []

dOcosy_1 = []

dOcosz_1 = []

dEko_1 = []

dP1cosx_1 = []

dP1cosy_1 = []

dP1cosz_1 = []

dEvt_type_1 = []

dX_2 = []

dY_2 = []

dZ_2 = []

dEk_2 = []

dNcase_2 = []

dOx_2 = []

dOy_2 = []

dOz_2 = []

dOcosx_2 = []

dOcosy_2 = []

dOcosz_2 = []

dEko_2 = []

dP1cosx_2 = []

dP1cosy_2 = []

dP1cosz_2 = []

dEvt_type_2 = []

for a, b, c, d, e, f, g in zip(X_1, Z_1, X_2, Z_2, Ox_1, Eko_1, Oz_1):

113

 if 50 > a > -140 and 50 > c > -140 and -100 < b < 100 and -100 < d < 100:

 dX_1.append(a)

 dZ_1.append(b)

 dOx_1.append(e)

 dOz_1.append(g)

 dEko_1.append(f)

 dX_2.append(c)

 dZ_2.append(d)

 xs = xs + 1

#Number of primary particles

primaries = '1.2x109'

#CREATE PLOTS

#MULTIPLOT, PRODUCTION POSITIONS AND ENERGIES

#Create histogram, depth in water

fig, axes = plt.subplots(nrows = 1, ncols = 2, figsize = (15,6))

#produced

newOx = []

for i in Ox:

 i = i - 20

 newOx.append(abs(i))

axes[0].set_xlim(0,40)

axes[0].hist(newOx, bins = np.arange(min(newOx)-0.5, max(newOx)+0.5, 0.3), ec='red',

fc='none', lw=0.5, histtype='step', label = 'Produced neutrons')

#detected

newOx2 = []

for i in dOx_1:

 i = i - 20

 newOx2.append(abs(i))

axes[0].set_xlim(0,40)

114

axes[0].hist(newOx2, bins = np.arange(min(newOx2)-0.5, max(newOx2)+0.5, 0.3),

ec='blue', fc='none', lw=0.5, histtype='step', label = 'Detected neutrons')

#SOBP

axes[0].axvspan(11.6,23.8,alpha = 0.2, color = 'black', label = 'SOBP')

axes[0].set_xlabel('Depth in patient [cm]')

axes[0].legend(loc='upper right')

#energy

MIN, MAX = 0.01, 1000

#produced

axes[1].hist(Eko,bins = np.logspace(np.log10(MIN), np.log10(MAX), 200), ec='red',

fc='none', lw=0.5, histtype='step', label = 'Produced neutrons')

#detected

axes[1].hist(dEko_1,bins = np.logspace(np.log10(MIN), np.log10(MAX), 200),

ec='blue', fc='none', lw=0.5, histtype='step', label = 'Detected neutrons')

axes[1].set_xscale('log')

axes[1].set_xlabel('Kinetic energy [MeV]')

axes[1].legend(loc = 'upper left')

fig.text(0.06, 0.5, 'Neutrons from ' + str(primaries) + ' primary protons',

ha='center', va='center', rotation='vertical')

fig.text(0.08, 0.88, 'a', fontsize = 20)

fig.text(0.52, 0.88, 'b', fontsize = 20)

plt.show()

#change the x-axis of the patient

newX_1 = []

for i in dX_1:

 if i <= 20:

 i = i - 20

 newX_1.append(abs(i))

 else:

 i = i - 20

 newX_1.append(-(i))

newX_2 = []

for i in dX_2:

115

 if i <= 20:

 i = i - 20

 newX_2.append(abs(i))

 else:

 i = i - 20

 newX_2.append(-(i))

#NEUTRON DETECTION AS A FUNCTION OF DETECTOR SIZE

nbneutron100 = []

wh100 = 2.5

#Create list holding the neutron detection rate for different detector sizes

for m in range(50):

 for a, b, c, d in zip(newX_1, dZ_1, newX_2, dZ_2):

 if (32 - wh100) < a < (32 + wh100) and (32 - wh100) < c < (32 + wh100) and

-wh100 < b < wh100 and -wh100 < d < wh100:

 nbneutron100.append(wh100*2)

 wh100 = wh100 + 0.5

n, bins, _ = plt.hist(nbneutron100, bins = np.arange(min(nbneutron100)-0.5,

max(nbneutron100)+0.5, 1), ec = 'darkblue', fc='none', lw=0.5, histtype='step',

align = 'left')

#linear fit

bincenters = 0.5*(bins[1:]+bins[:-1])

coef = np.polyfit(bincenters, n,1)

poly1d_fn = np.poly1d(coef)

plt.plot(bincenters, poly1d_fn(bincenters), '--r', lw=1.0, alpha = 0.5, label =

'Linear fit')

#labels

plt.xlabel('Side length of the detector [cm]')

plt.ylabel('Neutrons from ' + str(primaries) + ' primary protons')

plt.ylim(0,30000)

plt.legend(loc= 'upper left')

plt.show()

#CHANGE FONT SIZE FOR THE REST OF THE PLOTS

plt.rcParams.update({'font.size': 20})

plt.rc('xtick',labelsize=20)

116

plt.rc('ytick',labelsize=20)

#CREATE HISTOGRAM, LOCATION ON DETECTOR PLANES X-DIRECTION

#histogram

n, bins, _ = plt.hist(newX_1, bins = np.arange(min(newX_1), max(newX_1)+3, 3),

ec='blue', fc='none', lw=1.0, histtype='step', label='First tracking detector')

n2, bins2, _ = plt.hist(newX_2, bins = np.arange(min(newX_2), max(newX_2)+3, 3),

ec='red', fc='none', lw=1.0, histtype='step', label='Second tracking detector')

#errorbars

menStd = np.sqrt(n)

menStd2 = np.sqrt(n2)

bincenters = 0.5*(bins[1:]+bins[:-1])

bincenters2 = 0.5*(bins2[1:]+bins2[:-1])

plt.errorbar(bincenters, n, yerr = menStd, fmt = 'none', ecolor = 'black')

plt.errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black')

#SOBP

plt.axvspan(11.6,23.8,alpha = 0.2, color = 'black', label = 'SOBP')

#legend and labels

plt.legend(loc='upper right')

plt.xlim(-35,170)

plt.xlabel('Location on tracking detector in x-direction [cm]')

plt.ylabel('Neutrons from ' + str(primaries) + ' primary protons')

plt.show()

Neutron detection as a function of detector position

#create new list holding the center positions of 20x20cm detectors moved 1 cm step

nbneu = []

x = -20

low = -30

high = -10

h = 0

for h in range(170):

 for b, n, k, a in zip(newX_1 ,newX_2, dZ_1, dZ_2):

117

 if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10:

 nbneu.append(x)

 low = low + 1

 high = high + 1

 x = x+1

n, bins, _ = plt.hist(nbneu, bins = np.arange(min(nbneu)-0.5, max(nbneu)+0.5, 1),

ec='darkblue', fc='none', lw=1.0, histtype='step')

#errorbar

menStd = np.sqrt(n)

bincenters = 0.5*(bins[1:]+bins[:-1])

plt.errorbar(bincenters, n, yerr = menStd, fmt = 'none', lw=1.0, ecolor = 'black')

#SOBP

plt.axvspan(11.6,23.8,alpha = 0.2, color = 'black', label = 'SOBP')

#labels and legend

plt.xlim(-25,150)

plt.xlabel('Center point of detector in x-direction [cm]')

plt.ylabel('Neutrons from ' + str(primaries) + ' primary protons')

plt.legend(loc='upper right')

plt.show()

118

Appendix C

Field_1_source.f

FLUKA user routine for patient treatment plan simulation, used for incorporation of the

different directions and positions for the various beam energies in the treatment field.

*$ CREATE SOURCE.FOR

*COPY SOURCE

*

=== source ===

*

 SUBROUTINE SOURCE (NOMORE)

 INCLUDE '(DBLPRC)'

 INCLUDE '(DIMPAR)'

 INCLUDE '(IOUNIT)'

*

--

* *

* Copyright (C) 1990-2006 by Alfredo Ferrari & Paola Sala *

* All Rights Reserved. *

* *

* *

* New source for FLUKA9x-FLUKA200x: *

* *

* Created on 07 january 1990 by Alfredo Ferrari & Paola Sala *

* Infn - Milan *

* *

* Last change on 03-mar-06 by Alfredo Ferrari *

* *

* This is just an example of a possible user written source routine. *

* note that the beam card still has some meaning - in the scoring the *

* maximum momentum used in deciding the binning is taken from the *

* beam momentum. Other beam card parameters are obsolete. *

* *

--

*

 INCLUDE '(BEAMCM)'

 INCLUDE '(FHEAVY)'

 INCLUDE '(FLKSTK)'

 INCLUDE '(IOIOCM)'

119

 INCLUDE '(LTCLCM)'

 INCLUDE '(PAPROP)'

 INCLUDE '(SOURCM)'

 INCLUDE '(SUMCOU)'

*

 INCLUDE '(CASLIM)'

*

c $FLUPRO/flutil/ldpm3qmd source_SAM.f -o flukadpm3_sam

 DOUBLE PRECISION ENERGY(65000), XYPOS(65000), YXPOS(65000)

 DOUBLE PRECISION ZPOS(65000), FWHMX(65000), FWHMY(65000)

 DOUBLE PRECISION FWHMZ(65000), PART(65000), PSPREAD

 INTEGER NWEIGHT

 DOUBLE PRECISION COSX(65000), COSY(65000), COSZ(65000)

 DOUBLE PRECISION ROOT, DELTAP, SPOTRAND, SPOTSUM

 DOUBLE PRECISION KOEFF1, KOEFF2, KOEFF3, KOEFF4

 SAVE ENERGY, XYPOS, YXPOS

 SAVE ZPOS, FWHMX, FWHMY

 SAVE FWHMZ, PART, PSPREAD

 SAVE NWEIGHT

 SAVE COSX, COSY, COSZ

 SAVE ROOT, DELTAP

 SAVE KOEFF1, KOEFF2, KOEFF3, KOEFF4

 LOGICAL LFIRST

*

 SAVE LFIRST

 DATA LFIRST / .TRUE. /

==

* *

* BASIC VERSION *

* *

==

 NOMORE = 0

* +---*

* | First call initializations:

 IF (LFIRST) THEN

* | *** The following 3 cards are mandatory ***

 WRITE(LUNOUT,*) ' NB SOURCE_SAM4 INVOKED'

 TKESUM = ZERZER

 LFIRST = .FALSE.

 LUSSRC = .TRUE.

120

c treatment field .dat file

 OPEN(44, FILE = '../Field_1.dat',

 $ STATUS = 'OLD')

* Skip first three lines

 READ(44, *)

 READ(44, *)

 READ(44, *)

 NWEIGHT = 0

 WSUM = ZERZER

 DO

 NWEIGHT = NWEIGHT + 1

 IF (NWEIGHT .GT. 65000) THEN

 WRITE(LUNOUT,*) 'NB SOURCE ERROR: too many beamlets'

 ENDIF

 READ (44, 3, END=10) ENERGY(NWEIGHT),

 $ XYPOS(NWEIGHT), YXPOS(NWEIGHT), ZPOS(NWEIGHT),

 $ FWHMX(NWEIGHT), FWHMY(NWEIGHT), FWHMZ(NWEIGHT),

 $ PART(NWEIGHT), COSX(NWEIGHT), COSY(NWEIGHT),

 $ COSZ(NWEIGHT)

 3 FORMAT(F12.4,F12.4,F12.4,F12.4,F12.4,F12.4,F12.4,E12.4,

 $ F12.6,F12.6,F12.6)

 WSUM = WSUM + PART(NWEIGHT)

 ENDDO

 10 CONTINUE

 WRITE(LUNOUT,*) 'NB SOURCE beamlets found:', NWEIGHT-1

 WRITE(LUNOUT,*) 'NB SOURCE Particle sum (float) :', WSUM

 WRITE(LUNOUT,*) 'NB SOURCE TODO: particle sum is not exact.'

 END IF

*** Sample a beamlet ****************************

* Choose randomly which spot to sample. It takes into account that each

* spot/line has a different different weight

 RAND = FLRNDM(DOUBLEDUMMY) ! Returns double precision between [0,1)

 SPOTRAND = WSUM * RAND

 SPOTSUM = ZERZER

121

 DO I = 1, NWEIGHT ! Loop through lines until SPOTRAND is reached

 SPOTSUM = SPOTSUM + PART(I)

 IF (SPOTSUM .GT. SPOTRAND) THEN

 NRAN = I ! Select the spot

 EXIT

 END IF

 END DO

 ENK = ENERGY(NRAN)

 XBEAM = XYPOS(NRAN)

 YBEAM = YXPOS(NRAN)

 ZBEAM = ZPOS(NRAN)

 XSPOT = FWHMX(NRAN)/2.35482

 YSPOT = FWHMY(NRAN)/2.35482

 ZSPOT = FWHMZ(NRAN)/2.35482

 COSIX = COSX(NRAN)

 COSIY = COSY(NRAN)

 COSIZ = COSZ(NRAN)

*** End of beamlet sample **

* +---*

* Push one source particle to the stack. Note that you could as well

* push many but this way we reserve a maximum amount of space in the

* stack for the secondaries to be generated

* Npflka is the stack counter: of course any time source is called it

* must be =0

 NPFLKA = NPFLKA + 1

* Wt is the weight of the particle

 WTFLK (NPFLKA) = ONEONE ! Set weight = 1

c Sets the weight of the particle

 WEIPRI = WEIPRI + WTFLK (NPFLKA)

c WEIPRI updates the total weight of the primaries

* Particle type (1=proton.....). Ijbeam is the type set by the BEAM

* card

* +---*

* | (Radioactive) isotope:

 IF (IJBEAM .EQ. -2 .AND. LRDBEA) THEN

 IARES = IPROA

 IZRES = IPROZ

 IISRES = IPROM

122

 CALL STISBM (IARES, IZRES, IISRES)

 IJHION = IPROZ * 1000 + IPROA

 IJHION = IJHION * 100 + KXHEAV

 IONID = IJHION

 CALL DCDION (IONID)

 CALL SETION (IONID)

* |

* +---*

* | Heavy ion:

 ELSE IF (IJBEAM .EQ. -2) THEN

 IJHION = IPROZ * 1000 + IPROA

 IJHION = IJHION * 100 + KXHEAV

 IONID = IJHION

 CALL DCDION (IONID)

 CALL SETION (IONID)

 ILOFLK (NPFLKA) = IJHION

* | Flag this is prompt radiation

 LRADDC (NPFLKA) = .FALSE.

* |

* +---*

* | Normal hadron:

 ELSE

 IONID = IJBEAM

 ILOFLK (NPFLKA) = IJBEAM

* | Flag this is prompt radiation

 LRADDC (NPFLKA) = .FALSE.

 END IF

* |

* +---*

* From this point

* Particle generation (1 for primaries)

 LOFLK (NPFLKA) = 1

* User dependent flag:

 LOUSE (NPFLKA) = 0

* User dependent spare variables:

 DO 100 ISPR = 1, MKBMX1

 SPAREK (ISPR,NPFLKA) = ZERZER

 100 CONTINUE

* User dependent spare flags:

 DO 200 ISPR = 1, MKBMX2

 ISPARK (ISPR,NPFLKA) = 0

 200 CONTINUE

* Save the track number of the stack particle:

123

 ISPARK (MKBMX2,NPFLKA) = NPFLKA

 NPARMA = NPARMA + 1

 NUMPAR (NPFLKA) = NPARMA

 NEVENT (NPFLKA) = 0

 DFNEAR (NPFLKA) = +ZERZER

* ... to this point: don't change anything

* Particle age (s)

 AGESTK (NPFLKA) = +ZERZER

 AKNSHR (NPFLKA) = -TWOTWO

* Group number for "low" energy neutrons, set to 0 anyway

 IGROUP (NPFLKA) = 0

**

*sample a gaussian position

* IF (Ldygss) THEN

 CALL FLNRR2 (RGAUS1, RGAUS2)

 XFLK (NPFLKA) = XBEAM + XSPOT * RGAUS1

 YFLK (NPFLKA) = YBEAM + YSPOT * RGAUS2

 CALL FLNRRN (RGAUSS)

 ZFLK (NPFLKA) = ZBEAM + ZSPOT * RGAUSS

* WRITE(LUNOUT,*) 'NB SOURCE gaussian sampled'

* Cosines (tx,ty,tz)

 ROOT = SQRT(COSIX**2+COSIY**2+COSIZ**2)

 TXFLK (NPFLKA) = COSIX/ROOT

 TYFLK (NPFLKA) = COSIY/ROOT

 TZFLK (NPFLKA) = COSIZ/ROOT

* TZFLK (NPFLKA) = SQRT (ONEONE - TXFLK (NPFLKA)**2

* & - TYFLK (NPFLKA)**2)

* WRITE(LUNOUT,*) 'NB SOURCE cosines set'

* Particle momentum

* PMOFLK (NPFLKA) = PBEAM

* WRITE(LUNOUT,*) 'NB SOURCE mark',AM (IONID)

 CALL FLNRRN(RGAUSS)

 PMOFLK (NPFLKA) = SQRT (ENK* (ENK

 & + TWOTWO * AM (IONID)))

* Calculate momentum spread using third polynomial fit

 KOEFF1 = 4.6234

 KOEFF2 = 1.7547

124

 KOEFF3 = 0.2159

 KOEFF4 = 0.0163

 DELTAP = -KOEFF1*ENK**3 + KOEFF2*ENK**2

 & - KOEFF3*ENK + KOEFF4

 PSPREAD = PMOFLK (NPFLKA) * DELTAP / 2.35482 * RGAUSS

 PMOFLK (NPFLKA) = PMOFLK (NPFLKA) + PSPREAD

* Kinetic energy of the particle (GeV)

* set energy

 TKEFLK (NPFLKA) = SQRT(PMOFLK(NPFLKA)**2 + AM(IONID)**2)

 & -AM(IONID)

* WRITE(LUNOUT,*) 'NB SOURCE set ekin'

* Polarization cosines:

 TXPOL (NPFLKA) = -TWOTWO

 TYPOL (NPFLKA) = +ZERZER

 TZPOL (NPFLKA) = +ZERZER

* WRITE(LUNOUT,*) 'NB SOURCE pol set'

*++

*++

* Calculate the total kinetic energy of the primaries: don't change

 IF (ILOFLK (NPFLKA) .EQ. -2 .OR. ILOFLK (NPFLKA) .GT. 100000)

 & THEN

 TKESUM = TKESUM + TKEFLK (NPFLKA) * WTFLK (NPFLKA)

 ELSE IF (ILOFLK (NPFLKA) .NE. 0) THEN

 TKESUM = TKESUM + (TKEFLK (NPFLKA) + AMDISC (ILOFLK(NPFLKA)))

 & * WTFLK (NPFLKA)

 ELSE

 TKESUM = TKESUM + TKEFLK (NPFLKA) * WTFLK (NPFLKA)

 END IF

 RADDLY (NPFLKA) = ZERZER

* WRITE(LUNOUT,*) 'NB SOURCE mark'

* Here we ask for the region number of the hitting point.

* NREG (NPFLKA) = ...

* The following line makes the starting region search much more

* robust if particles are starting very close to a boundary:

125

 CALL GEOCRS (TXFLK (NPFLKA), TYFLK (NPFLKA), TZFLK (NPFLKA))

 CALL GEOREG (XFLK (NPFLKA), YFLK (NPFLKA), ZFLK (NPFLKA),

 & NRGFLK(NPFLKA), IDISC)

* WRITE(LUNOUT,*) 'NB SOURCE mark2'

* Do not change these cards:

 CALL GEOHSM (NHSPNT (NPFLKA), 1, -11, MLATTC)

 NLATTC (NPFLKA) = MLATTC

 CMPATH (NPFLKA) = ZERZER

 CALL SOEVSV

* WRITE(LUNOUT,*) 'NB SOURCE END'

 CLOSE(44)

 RETURN

=== End of subroutine Source ===

 END

126

Appendix D

Depth dose curves used for quantifying the lower and upper limit for the Spread-Out Bragg

peak in the patient treatment plan.

Figure A-33: Depth dose curve for the lower energy limit of the SOBP. Here the beam enters from

positive x-direction at x = 20 cm, and the center of the patient is in x = 0 cm. The Bragg peak is located

in x = 8.4 cm.

127

Figure A-34: Depth dose curve for the upper energy limit of the SOBP. Here the beam enters from

positive x-direction at x = 20 cm, and the center of the patient is located in x = 0 cm. The Bragg peak

is located in x = -3.8 cm.

128

Appendix E

Table A-2: The results for position of maximum neutron detection rate from the water phantom

simulation. Numbers in parentheses indicate position relative to Bragg peak (positive number signify

position distal to the Bragg peak).

Proton

beam energy

[MeV]

Position with maximal neutron detection rate [cm]:

All neutrons Neutrons detected last

half prior to Bragg peak

Neutrons detected last

quarter prior to Bragg peak

100 15 ± 2 (7.4 ± 2) 16 ± 3 (8.4 ± 3) 17 ± 4 (9.4 ± 4)

160 20.5 ± 1.5 (3 ± 1.5) 24 ± 2 (6.5 ± 2) 25.5 ± 1.5 (8 ± 1.5)

200 24.5 ± 1.5 (-1.2 ± 1.5) 31 ± 2 (5.3 ± 2) 33 ± 2 (7.3 ± 2)

230 28 ± 2 (-4.6 ± 2) 35.5 ± 1.5 (2.9 ± 1.5) 39 ± 2 (6.4 ± 2)

