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Abstract 

Proton therapy is a cancer treatment modality expanding in clinical applications around the 

world. Due to the finite range of a monoenergetic proton beam, it is possible to spare more of 

the healthy tissue surrounding the tumour compared with using traditional radiation therapy 

with photons. However, this finite range will also make the treatment plan more susceptible 

to density changes, which will affect the dose delivered to the tumour.  To reduce the need for 

large safety margins in particle therapy and enable proton therapy treatments of patient groups 

where motion is an issue, there is a substantial ongoing research effort in so-called range 

verification techniques. Range estimates can be performed in-vivo through the detection of 

secondary radiation species emitted in nuclear interactions between the incident protons and 

the nuclei in the patient, such as β+ emitters, prompt gamma-rays, charged fragments and 

secondary fast neutrons.  

The objective of this project was to optimize detector dimensions and positioning of an 

existing detector concept for neutron-based range verifications using Monte Carlo simulations. 

The MC simulation package FLUKA was used for simulation of four monoenergetic proton 

beams of typical clinical energies, 100, 160, 200 and 230 MeV, entering a water phantom, and 

subsequent tracking of the secondary fast neutrons produced in the phantom. In addition, a 

patient treatment plan for prostate cancer was equivalently evaluated where the primary beam 

energy ranges from 93 to 197 MeV. The results were processed using python, and the python 

libraries Matplotlib and NumPy. In order to characterize the position and size of the detector, 

the neutron detection rate was evaluated for a range of detector sizes and positions. 

The results showed that the neutron detection rate differed considerably with varying detector 

position and size, both for the water phantom and the patient treatment plan simulation. As a 

function of the position of the detector, the rate increased gradually until a peak was reached, 

followed by an almost symmetric decrease. In relation to the proton beam Bragg peak, the 

neutron rate peak was generally located close to or distal to the Bragg peak. When the size of 

the detector was considered, the neutron detection rate increased almost linearly with 

increasing detector area.  



VI 

 

The results in this thesis show that the optimal placement of the detector will depend on the 

specific treatment plan that is to be delivered and should therefore be evaluated for the 

particular case. With a detector size of 20x20 cm2, using a single position for a broad range of 

proton energies would lead to a clear reduction in neutron detection rate compared to using 

multiple positions. The feasibility of moving the detector during treatment should therefore be 

evaluated for treatment plans with large tumours and target volumes. Alternatively, a larger 

detector could be applied in order to achieve sufficient neutron detection rate for the energy 

levels included in the treatment plan.  
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1. Introduction 

Cancer is the term for a large group of diseases characterized by abnormal cell growth with 

the possibility of spreading to other tissues or organs. This is one of the main causes of death 

worldwide and is estimated to reach 10.6 million deaths per year by 2020 [1]. But as the 

technology and methods used for cancer treatment develops, the survival rates increase. This 

results in a higher number of people living with cancer. In 2017 about 273 000 Norwegians 

lived with a cancer diagnosis. This represent more than 5% of our population [2]. 

The method used for cancer treatment varies e.g. depending on the type of cancer. The 

different modalities are chemotherapy, surgery, immunotherapy and radiotherapy, and these 

are often combined to constitute an ideal treatment plan. Radiotherapy is a treatment modality 

where the treatment dose delivered to the tumour is given by ionizing radiation. The overall 

aim of radiotherapy is to reduce the dose to the surrounding tissue while maintaining the 

prescribed dose in the tumour volume.   

1.1 Radiotherapy – past and present 

Radiotherapy has been used to treat cancer patients for more than a century. Before the use of 

ionizing radiation, there were few options in curing oncologic patients. This changed when 

Wilhelm Conrad Röntgen discovered X-rays in 1895 [3]. The following year Emil Herman 

Grubbe used the discovery to treat a breast cancer patient. This happened at the same time 

Antoine Henri Bequerel began researching radioactivity and different natural sources of 

radiation. Only a few years later, in 1898, Marie Sklodowska-Curie and Pierre Curie 

discovered radium as a natural source of radiation [3]. 

In the 1950s and 1960s there was a development in machinery with higher energies, in addition 

to an increase in popularity of using Cobalt-60 for treatment. This led to a reduced use of the 

conventional kilovoltage machines where the generated voltage was below 300 kVp [4]. The 

new high-energy megavoltage machines are e.g. the Van de Graaff generator and linear 

accelerator. Today, the most used particle accelerator for radiotherapy is the linear accelerator, 

also known as the LINAC.  
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Another important discovery was when Godfrey Newbold Hounsfield invented Computed 

Tomography (CT) scans in 1971, which in the 1980s was introduced to the clinics. This led to 

a shift from 2D to 3D treatment planning in radiation delivery. Performing treatment planning 

based on CT images resulted in better radiation dose distributions, and as new inventions such 

as multileaf collimators appeared, radiotherapy was rapidly revolutionized [5].   

1.2 Proton therapy 

In 1946, Dr. Robert Wilson stated the advantages of using proton beam therapy for cancer 

treatment, because of their improved depth-dose distribution as seen in Figure 1 [6]. He 

explained how the protons emit a low dose in the beginning of their trajectory, with an 

increasing dose towards the end of the particle range. This endpoint is called the Bragg peak, 

and this can be estimated and used to maximise the damage in the tumour and minimise the 

damage to surrounding tissue. In order to provide dose coverage to the entire tumour, multiple 

proton beam energies are used to create a so-called spread-out Bragg peak (SOBP). The 

advantages of using proton therapy compared to traditional radiation therapy with photons, is 

the possibility to reduce the dose delivered to healthy tissue surrounding the tumour and reduce 

the side effects of radiation.  

 

Figure 1: Simple illustration showing the depth dose curves for photons and protons of two different 

energies [7].  

The first proton facilities were primarily used for research, and even though the first clinical 

use of proton beams is dated 1954, it wasn’t until the late seventies computer-assisted proton 
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accelerators were successfully used to treat various kinds of tumours [3]. Proton therapy is 

now used to treat several different cancer types, such as prostate, lung, paediatric and more. 

There are 86 particle therapy facilities worldwide currently in operation, where six of them 

use carbon, five use both carbon and protons, and the rest use protons [8].  

1.3 Range uncertainties and verification 

Since protons have a finite range in tissue, it is possible to spare more of the healthy tissue 

surrounding the tumour using proton therapy than using traditional radiation therapy with 

photons. However, this finite range will also make the treatment more susceptible to density 

changes, which will affect the dose delivered to the tumour. As seen in Figure 2, this could 

result in underdosage of the tumour and a large dose being deposited in healthy tissue either 

before or after the tumour. Due to sensitivity of charged particle ranges to even the smallest 

density changes along the radiological path in the patient, it is challenging to treat cancer in 

certain areas with a lot of motion and irregular density, e.g. in the lungs [9]. 

 

Figure 2: The spread-out Bragg peak illustrated with the planned depth, and with 5 mm undershoot as 

a result of patient motion or differences in anatomy [10]. 

Another factor that increases the uncertainty in proton beam range is the fact that the range is 

calculated based on attenuation of X-rays in the patient CT-scan. The stopping power ratios 

of the protons are then derived from the CT-scans through the use of calibration curves, but 



4 

 

this recalculation is flawed and leads to additional errors. Other uncertainties related to CT-

scans could be image noise, calibration, beam hardening and spatial resolution [10].  

Traditionally, motion and variable density uncertainties are handled via margins. The clinical 

target volume (CTV) that contains cancerous cells, is expanded to a planning target volume 

(PTV) in order to ensure full dose delivery to the tumour. But in cases of heterogeneous tissue 

it is not always enough to use conventional PTV planning to get a robust plan, especially for 

particle therapy planning. Therefore, other robust optimization methods have been developed 

that account for the range and setup errors that could lead to dose degradation and 

misalignment of dose contributions from different beams during proton therapy [11].  

The problem with using robust treatment plans, is that the radiation dose to healthy tissue 

increases, which potentially degrades the benefits of using protons compared to photons. 

Instead of using enlarged safety margins, one could use in-vivo range verification during 

treatment to provide an accurate dose delivery with smaller treatment margins and minimize 

dose to healthy tissue.  

1.4 Project objectives 

To reduce the need for large safety margins in proton therapy and enable proton therapy 

treatments of patient groups where e.g. motion is an issue, there is a substantial ongoing 

research effort in so-called range verification techniques. Range estimates can be performed 

in-vivo through the detection of secondary radiation species emitted in nuclear interactions 

between the incident protons and the nuclei in the patient, such as β+ emitters, prompt gamma-

rays and charged fragments [12].   

During pencil beam scanning (PBS) proton therapy, another type of secondary radiation is 

also produced, i.e. secondary fast neutrons. Until recently, this has been an unexplored option 

for in-vivo range verification. There is a correlation between the neutron production and the 

range of protons in the patient. This means that these secondary neutrons can, in principle, be 

used to verify the range of the particle beam in the patient [13].  
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The objective of this project was to optimize detector dimensions and positioning of an 

existing detector concept for neutron-based range verifications using MC (Monte Carlo) 

simulations. The detector has a converter made of a hydrogen-rich material, where secondary 

neutrons from the patient undergo elastic and inelastic interactions and produce protons. These 

protons are then detected in two tracking detectors, and the depth distribution of the neutron 

production is calculated with a reconstruction algorithm. The resulting neutron production 

distribution then contains information on the primary proton beam range.   

The positioning of the detector relative to the patient may have a great impact on the detected 

signal and the precision of the final proton range estimate. Additionally, the size of the detector 

may impact the detection rates and achievable statistics. The objectives of this work were 

therefore (1) to use MC simulations to investigate the optimal placement of the detector and 

(2) to investigate the impact of different detector sizes on the achievable neutron detection 

rates.      
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2. Physics of proton therapy 

Since it was first proposed in 1946, the technology of proton therapy has progressed 

significantly. The basic physics that makes it possible to use protons for radiation therapy, can 

be explained by how the protons interact when they traverse a medium.  

2.1 Proton interactions 

Charged particles, such as protons, can interact with an atom or nucleus in four ways: inelastic 

coulomb scattering with atomic electrons, elastic coulomb scattering with atomic nucleus, 

nuclear reactions and Bremsstrahlung [14]. The relevant types of interactions are displayed in 

Figure 3.  

 

Figure 3: Illustration displaying the different proton interaction mechanisms relevant for proton 

therapy: (a) energy loss via inelastic Coulomb scattering with atomic electrons, (b) alteration of 

proton trajectory as a result of the repulsive Coulomb force (elastic scattering) with atomic nucleus, 

(c) formation of secondary particles by non-elastic nuclear interaction (p: proton, e: electron, n: 

neutron, γ: gamma-rays [14]. 
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2.1.1 Stopping power 

Protons traversing a material will interact with the atomic electrons by electrical (Coulomb) 

forces, and the proton continuously loses energy by ionizing and exciting the material [12]. 

This interaction is what determines the range of the proton in matter.  

A particle with charge number Zp and velocity β relative to the speed of light, moves in a 

material with atomic number Zt and density ρ. The mean ionization loss, also known as 

stopping power, can be described by the Bethe-Bloch equation [12]: 

 𝑑𝐸

𝑑𝑥
= 𝐾𝜌

𝑍𝑝
2

𝛽2
 
𝑍𝑡

𝐴𝑡
 [

1

2
 𝑙𝑛 (

2𝑚𝑒𝑐2𝛽2𝛾2𝑇𝑚𝑎𝑥

𝐼𝑒
2

) − 𝛽2 − 
𝛿

2
− 

𝐶

𝑍𝑡
] 

  (2.1) 

  

Where 𝐾 = 4𝜋𝑁𝐴𝑟𝑒
2𝑚𝑒𝑐2, NA is Avogadro’s number, re and me are the radius and mass of the 

electron, At is the material molar mass, 𝛾 =  
1

√1− 1
𝛽2⁄

 , Ie is the mean ionization energy for the 

material, 𝛿 is the density correction factor and C is the shell correction factor [12].  

As shown in (2.1, the stopping power is inversely proportional to the particle velocity squared. 

This implies that as the proton speed decreases, the stopping power and energy loss increases 

towards the end-of-range for the proton, giving rise to the so-called Bragg peak. The stopping 

power is also proportional to the ion charge squared, hence a greater ion charge (e.g. carbon 

compared to proton) gives a larger energy loss. This equation also implies that the material of 

the absorber has a strong impact on the stopping power, since the stopping power is 

proportional to the density of the traversed material. This density can vary significantly 

considering a patient, with three orders of magnitude difference from air in the lungs to cortical 

bone [14].  

Figure 4 shows a sample graph of mass collision stopping power of water against proton 

kinetic energy obtained from National Institute of Standards and Technology (NIST). 
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Figure 4: Stopping power of a proton in water as a function of proton energy [15]. 

2.1.2 Deflection and nuclear interaction 

Because of the big difference in rest mass of a proton compared to an electron, the interactions 

with the atomic electrons will not affect the direction of the protons. However, when the 

protons approach a nucleus, a repulsive Coulomb force causes the proton to change direction 

from its straight-line path. This is called Multiple Coulomb Scattering (MCS), and this 

determines the lateral penumbral sharpness of the dose distribution. 

Non-elastic nuclear reactions are less common but have a bigger impact once it happens 

regarding the outcome for an individual proton. Here, the nucleus will emit secondary 

particles, such as a proton, deuteron, triton, or heavier ion, or neutrons [14]. The effects of 

these nuclear reactions in proton therapy is a reduced fluence and dose due to the primary 

protons that are absorbed in the nucleus during these reactions. However, this is also somewhat 

compensated by the creation of secondary protons and other heavier ions that contribute to the 

delivered dose.  

When the incident proton interacts with a nucleus in a non-elastic nuclear reaction, the nucleus 

may be permanently transformed as the proton is absorbed and a neutron is ejected 

(symbolized by (p,n)). With a 250 MeV proton beam about 20% of incident protons undergo 

non-elastic interactions with nuclei in the target material and create secondary particles [16]. 
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The charged secondary particles have limited range and are absorbed locally, while non-

charged particles such as neutrons and gamma-rays may travel further without being absorbed. 

A great number of neutrons are produced when protons undergo nuclear interactions, and since 

they are very penetrating, they can increase the risk of late effects. Therefore, the potential 

effects of secondary neutrons should be considered during planning and performing of proton 

therapy. This large particle range also enables detection of these secondary neutrons outside 

the patient.  

Bremsstrahlung is also a possibility for a proton approaching a nucleus, but with the energies 

used in proton therapy, this is a negligible interaction. 

2.1.3 Linear energy transfer 

Linear energy transfer is a term that is similar to stopping power, but instead of considering 

how much energy that is lost by the radiation, the focus is on the absorbing media and how 

much energy it absorbs. Linear energy transfer is the linear rate of energy absorption in the 

medium as the incident particles ionize it along their path, and is defined by the following 

equation [17]: 

 
𝐿𝐸𝑇 =  

𝑑𝐸𝐿

𝑑𝑙
 

(2.2) 

 

Where dEL is the energy transferred to the material due to a charged particle travelling a 

distance dl. This value is also known as unrestricted linear energy transfer, LET∞, and equals 

the stopping power in the medium. In order to focus solely on the energy deposited locally, 

which is deposited close to the particle’s track, a new term called restricted linear energy 

transfer, LET∆, is introduced.  

 
𝐿𝐸𝑇∆ =  

𝑑𝐸∆

𝑑𝑙
 

 (2.3) 

 

Here dE∆ is the energy loss caused by electronic collisions except the loss due to delta electrons 

with kinetic energy larger than ∆, and dl is the travel distance for the ionizing particle [18].  

LET is usually expressed in units of keV/µm [17].  
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2.2 Interactions of secondary particles 

In nuclear collisions of proton with tissue, various secondary particles are produced. Some of 

these with sufficient energy to penetrate larger depths can be of relevance for range 

verification studies. These are neutrons, photons, positron emitters and secondary ions 

including protons. In the following, a very brief account of neutron and photon interaction 

mechanisms will be given.   

2.2.1 Neutron interactions 

The probability for different neutron interactions depends strongly on the neutron’s energy. 

Neutrons with high energy (larger than 1 MeV) are so-called fast neutrons, while low energy 

neutrons (lower than 100 MeV) are called thermal neutrons [17] . Since neutrons are neutral 

particles, they will not be affected by Coulomb repulsive or attractive forces. However, when 

a neutron is close to a target nucleus the short range attractive nuclear potential can cause a 

nuclear reaction [19]. Neutrons can interact with the nuclei in five different ways: elastic 

scattering, inelastic scattering, neutron capture, nuclear spallation and nuclear fission. The 

cross section, or probability, of each process depends on the kinetic energy of the neutron as 

well as the physical properties of the nuclei in the target material.  

Elastic scattering 

As fast neutrons traverse a material, they lose their energy primarily by elastic interactions 

with the nuclei of the material [20]. The struck nucleus recoils as some of the neutron energy 

is transferred to the nucleus. This energy is then dissipated by ionization, excitation and elastic 

collisions with other atoms in the material. In an elastic interaction, the kinetic energy and 

momentum are conserved, meaning the energy lost by the neutron equals the energy of the 

recoil nucleus.  

Elastic scattering is the collision mechanism used for moderating fast neutrons to lower, 

thermal energies. Materials with low Z value (atomic number), such as water, are ideal 

moderators.  
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Inelastic scattering 

Inelastic scattering can occur for neutrons with energies above a few MeV, but is not 

particularly relevant for energies below 10 MeV [20]. Inelastic scattering is a specific type of 

non-elastic collision, meaning that the kinetic energy is not conserved. Here the final nucleus 

is the same as the initial nucleus struck by the incoming neutron. 

The nucleus captures the neutron and re-emits it with lower energy and a new direction. Then 

the nucleus will be left in an excited state and de-excites by emitting γ-ray with high energy.  

Thermal neutron capture 

Neutron capture is defined as a nuclear reaction where a thermal neutron is absorbed by a 

nucleus, and secondary radiation is emitted in the form of a proton or γ-ray [19]. This is the 

most relevant reaction for low energy neutrons, and product nuclei from this reaction will 

usually be radioactive β- and γ-emitters [21].  

Spallation 

Spallation is a term describing when a target nucleus breaks apart into several smaller 

fragments because of a collision or stress applied to the target. Hence, when neutrons (or also 

an ion beam) are sent towards a target nucleus it could separate into different smaller 

components, such as α particles and nucleons. The heavier fragments produced in such a 

reaction will carry most of the excess energy, and deposit this in close approximation to the 

location of impact. This contrasts with smaller fragments (e.g. neutrons) and de-excitation γ 

rays, where the energy is carried further away before its deposited [19].  

Fission 

Lastly, fission is when neutrons are sent towards target nuclei of high atomic number (Z ≥ 92) 

which separate into two lighter daughter nuclei. In addition to these two fragments, there are 

also some fast neutrons produced in the process.   

In proton therapy spallation and fission are not relevant, and the most important neutron 

processes are inelastic and elastic scattering, leading to neutron capture [17].  
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2.2.2 Photon interactions 

Photons traversing a material have no finite range, and the intensity is attenuated through the 

medium. In order to characterize the ray of photons penetrating an absorbing material, the 

linear attenuation coefficient µ [cm-1] is used. µ is defined as the probability per unit path 

length that the photon will interact with the absorber, and this depends on the photon energy 

(hν) and the absorber atomic number (Z) [22]. This can also be seen in correlation with the 

thickness (x) of the absorber and intensity (I) of the attenuated photon beam, according to the 

Beer-Lambert attenuation law [22]. 

 𝐼(𝑥) =  𝐼0𝑒−𝜇𝑥  (2.4) 

 

Where I0 is the initial beam intensity before hitting the absorber.  

The three main interactions for photons are the photoelectric effect, Compton scattering and 

pair production. Photoelectric effect is when the photon interacts with a tightly bound orbital 

electron and is completely absorbed in the process. Its energy is transferred to the electron 

which is then ejected from the atom. Compton scattering is an interaction between a photon 

and a loosely bound orbital electron. When this happens, a scattered photon with energy lower 

than the incident photon is produced, and the electron is ejected from the atom and receives 

the rest of the energy from the incoming photon. When the energy of the incident photon 

exceeds 1.022 MeV, which equals the combined rest mass of the electron-positron pair, so-

called pair production is possible. The incident photon is absorbed and an electron-positron 

pair is created. Further, the created positron will promptly disappear by reconversion into 

photons during annihilation with an adjacent electron [22].  
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2.3 Dosimetry and depth dose curves 

2.3.1 Absorbed dose 

Absorbed dose is a measure of the physical dose delivered by ionizing radiation. [4]. It is 

defined as 

 
𝐷 =  

𝑑 ⋶

𝑑𝑚
 

(2.5) 

 

Where d⋶ is the mean energy transferred to a material with mass dm as a result of ionizing 

radiation. Absorbed dose in the international system of units (SI system) uses Gray (Gy), 

where 1 Gy = 1 J/kg. 

Relative biological effectiveness (RBE) is a term used for describing the ratio of the doses 

needed by two different types of ionizing radiation to cause the same damage. It is defined as: 

 
𝑅𝐵𝐸 =  

𝐷𝑋

𝐷𝑅
 

 (2.6) 

 

Where DX is the reference value for an absorbed dose of type X radiation (often X-rays), and 

DR is the absorbed dose of the radiation type considered (here protons) that causes the same 

biological effect. In clinical proton beam therapy, a generic RBE value of 1.1 is normally 

applied [23]. The biological dose for proton therapy is called RBE-weighted dose (D×RBE, 

unit [Gy(RBE)]), which is considered the most important measure for determining dose 

prescription in particle therapy [24].   

2.3.2 Dose deposition and the spread-out Bragg peak 

As shown in Figure 5, there is a significant difference in the way the dose is deposited for 

photons compared to protons. For photons the largest dose deposition is near the surface of 

the tissue they are traversing and decreases exponentially according to the Beer-Lambert 

exponential attenuation law ((2.4). For protons on the other hand, the dose deposited starts out 

lower and increases until the Bragg peak is reached, followed by a sharp decrease. Beyond the 

Bragg peak, there is essentially no dose deposition from incident protons. Because of this 
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narrow Bragg peak, it is not suitable to use a monoenergetic proton beam for treatment. The 

Bragg peak is instead “spread out” (SOBP) to cover the whole depth of the target volume and 

provide a uniform dose over the entire target volume [25].  

 

Figure 5: Illustration of depth-dose curves for proton and photon beams [26]. 
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3. In-vivo range verification in proton therapy 

Because of small variations in the energy loss for the individual particles (called range 

straggling), the range of a monoenergetic proton beam is often defined as the depth in a 

medium where half of the traversing protons have been absorbed and stopped by the medium, 

which is illustrated in Figure 6 [14]. This implies that the range is an average quantity, defined 

for the whole beam and not for individual protons.  

 

Figure 6: Range-number curve. Illustrates the relative fraction of the proton fluence Φ remaining as a 

function of depth z in water. Nuclear reactions in the medium causes the gradual reduction in number 

of protons. Near the end of range, the protons have lost all their energy and are absorbed by the 

medium. Because of range straggling and stochastic variations in how the protons lose energy, the 

distal falloff has a sigmoid shape [14]. 

For the range of a clinical beam (i.e. a SOBP) other definitions of range could be applied, often 

at a distal dose percentage of 90 (d90) as shown in Figure 7. This is located at the distal depth 

where the dose delivered is 90% of the prescribed dose.  
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Figure 7: Illustration of the parameters used to describe a spread-out Bragg peak (SOBP). d refers to 

distal while p is proximal. d80–d20 is called the distal margin (or DDF - distal dose fall-off), ranging 

from a dose percentage of 80 to 20 of the prescribed dose. Here the range is defined as d90, but 

sometimes d80 is referred to as Mean projected range. Modulation width is the distance between 

p90/80 and d90 [27].  

3.1 Range uncertainty 

The Bragg peak and the general shape of the depth-dose curve of protons indicate that protons 

are well suited for cancer treatment, since protons could deliver a high dose to the tumour 

while minimizing the deposited dose to the surrounding healthy tissue [10]. On the other hand, 

there is an uncertainty regarding the range of the protons that is important to consider while 

preparing a proton treatment plan. If not considered, this will lead to a risk for underdosage of 

the tumour and overdosage of the distal healthy tissue, as illustrated in Figure 8.  
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Figure 8: Photon and proton depth dose curves. (a) Reduced distal dose deposition for proton therapy 

compared to photon (dotted line is photon curve, dashed line is mono-energetic proton curve, and 

solid line is the proton spread-out Bragg peak curve (SOBP)). (b) The figures illustrate that 

uncertainties in the proton treatment plan have greater effects on the received dose in the target and 

the distal dose to the healthy tissue, compared with photons [28].  

Range uncertainties have several different origins, where many of them are related to the fact 

that the proton range in tissue is estimated from attenuation of X-rays in the patient CT scan. 

Deriving the stopping power ratio of the protons from CT scans is not an exact method, so 

certain assumptions about the tissue composition and the ionization potential are needed [10]. 

Also, a certain X-ray attenuation value in a given image voxel could correlate to various 

stopping power values. There could also be uncertainties related to image noise, calibration 

and the spatial resolution of the patient CT scan, however these factors will have smaller effect 

on the derived stopping power ratios [10].  

Another possible source of uncertainty is the algorithm used for calculating the proton range. 

This will have a greater impact for inhomogeneous tissue, such as the interface between 

different tissues in the patient [10]. There is also a possible uncertainty in the treatment plan 

if there is a difference between the patient anatomy at the time of planning and treatment, such 

as a change in weight or tumour size. Organ motion is also an important factor to consider, 

especially if the tumour is located near or inside a moving organ such as a lung.   
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Uncertainties in proton beam range are accounted for by making the treatment plan robust 

against these uncertainties. For treatment plans with uniform dose delivery from each field, a 

robust plan is in general obtained by including margins around the tumour, creating a larger 

target called planning target volume (PTV). In this way, it is made sure that the clinical target 

volume (CTV) will receive the planned dose if the proton beam range is within the margin. In 

addition, there are mathematical optimization techniques used to optimize the planned 

treatment. This mathematical optimization is based on a function f(d), of the dose distribution 

d. For a good treatment plan, this function is minimal, which implies that the algorithms used 

try to find the beam intensities that minimize f(d) [29].  

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑥  𝑓(𝑑) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑑𝑖  =  ∑𝑗 𝐷𝑗𝑖𝑥𝑗 

𝑥𝑗 ≥ 0 

                                
                                          (3.1) 

 

Where di is the dose in voxel i, xj is the pencil beam j fluence and Dij is the dose contribution 

of pencil beam j to voxel i. 

If the treatment plan is based on intensity modulated beams (IMPT) this traditional method is 

not accurate enough, since the range of the protons is different within the beam. Therefore, 

robust mathematical optimization methods have been developed where the uncertainties are 

directly incorporated in the matrix Dij. This is done by assuming multiple possible dose 

matrices, e.g. by viewing an undershoot and overshoot scenario [29].  

Regardless of the exact characterization of patient position, anatomy, and tissue stopping 

power properties before treatment, there will still be uncertainties in the actual application of 

the treatment dose. Additional methods such as in-vivo assessment of the proton beam range 

or, ideally, dose delivery before, during, or shortly after treatment will help further reduce 

these uncertainties. This will also allow for more ideal arrangements of irradiation fields where 

organs at risk (OAR) are in close proximity to the target.  
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3.2 In-vivo Range verification in proton therapy  

The different methods used for range verification can be separated into two categories; direct 

and indirect techniques [28]. The direct techniques imply that the range is found by measuring 

the dose or fluence of the proton beam itself, while indirect techniques measure the different 

secondary products from the protons interactions to determine the range of the initial beam.  

3.2.1 Direct techniqes 

Proton transmission imaging: radiography and tomography 

Radiographic (i.e., from one direction) or tomographic (i.e., from multiple directions) 

transmission of proton beams though a patient makes it possible to create images in treatment 

position with the same radiation quality as for treatment [30]. The study of proton radiography 

started in the late 1960s. Here a high energy proton beam is sent through the patient and 

detected on the other side, and the residual range is measured directly. One of the main 

attributes of proton radiography early on was the high contrast [28]. It was also determined in 

the 1990s that the imaging dose was considerably reduced with protons compared to 

conventional imaging using X-rays [28]. In addition, if proton radiography is used the 

stopping power is directly measured, and the uncertainties from the derivation of stopping 

power ratios from X-ray attenuation is no longer an issue. So, if proton radiography is used it 

is possible to do in-vivo measurements of the range of the proton beams.  

Proton transmission imaging is also used in a 3D tomography mode. This means that it is 

possible to perform range verification in 3D as well, although the main focus at the time in 

proton tomography is related to accurate measurements of stopping power for both range and 

dose calculations during treatment planning [28].  

3.2.2 Indirect tecnique 

Prompt gamma imaging (PGI) 

Protons sent through a patient will experience nuclear interactions with the tissue, and some 

of these interactions will lead to excitations of nuclei. In the immediate decay to its ground 

state, the nuclei may emit a γ-ray (photon), also referred to as prompt γ-rays. These inelastic 
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interactions between proton and nuclei occur along the entire path of the proton beam up to 2-

3 mm proximal to the Bragg peak. Here the interaction cross section drops and the energy of 

products from the nuclear reactions decreases [28]. Since there is a correlation between the 

range of the protons and the emission of prompt gamma-rays as shown in Figure 9, these can 

be used to determine the range of proton beams in patients during treatment.  

 

Figure 9: Illustration showing the correlation between prompt gamma emission and proton range. 

Photon and neutron detection profiles obtained from simulation with a perfect scintillator and 

collimator, i.e. with infinite density. The grey-shaded curve illustrates the depth dose curve and is 

given as a reference for the proton beam range depth. The coordinates along the beam and detector 

axes are set based on the expected beam range in the target: 15.2 cm in PMMA (para-Methoxy-N-

methylamphetamine) at 160 MeV [31]. 

The PGI technique was first introduced in clinical proton therapy in 2015 at OncoRay in 

Dresden Germany, using a knife-edge slit camera, illustrated in Figure 10 [32].  
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Figure 10: Design of knife-edge slit camera. a: Grey tungsten collimators and a photon detector 

consisting of LYSO (lutetium-yttrium oxyorthosilicate) scintillation crystals, red out by silicon 

photomultipliers. It consists of 40 crystals in total, organized in two rows with 20 crystals each. b: 

Illustration of the readout from the crystals [33].   

PET imaging 

In 1969, Maccabee et al was the first to suggest using PET imaging for verification of hadron 

beam therapy [34]. Coincident gamma-rays produced by the annihilation process resulting 

from positron emission from β+ decay of radioactive isotopes are exploited. During an ion 

beam irradiation, some of the ions propagating through the patient will, in the nuclear 

interactions, create positron emitting isotopes that can later be detected by a PET camera. 

When the isotopes undergo β+-decay, a positron is emitted, and this positron will annihilate 

with a nearby electron. The annihilation process results in two coincident gamma photons 

emitted back-to-back, each with energy of 511 keV.   

For heavier ion such as 12C and 16O beams, the fragmentation can happen both for the 

projectile and target, but for a proton beam the only possible outcome is target fragmentation. 

The isotopes most relevant for soft tissues are 11C, 13N and 15O. Since tissue usually has a 

high density of oxygen, and 15O have a short half-life and consequently high decay constant, 

15O usually dominates as contributor in the beginning of these PET measurements. But 

because of its short half-life, 11C takes over as dominant nuclide after a while. In Figure 11 

the contributions from these three isotopes as a function of time are displayed. The differences 

in decay time for the radionuclides used in PET imaging, makes the verification process very 

sensitive to the time course of data acquisition, and is considered a disadvantage for range 
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verification. Diffusion causes a lack of accuracy in the correlation between the location of the 

gamma-ray emission and the nuclear reaction. Depending on the tumour location, this will 

reduce the precision of range verification [35].    

 

Figure 11: Radionuclide relative contributions in activity as a function of time [34]. 

3.3 Neutron detection for verification of proton beam range 

Another possible solution for verifying the range of the proton beam in real-time, is to measure 

the secondary fast neutrons produced by nuclear interactions along the proton beam path. 

Marafini et. al. recently explored the possibility of detecting these neutrons for estimations of 

the additional dose due to neutrons in the patient [36]. Neutron-based range verification has 

later been studied in the NOVO (NeutrOn detection for real-time range VerificatiOn) project, 

with the use of FLUKA Monte Carlo simulations with monoenergetic proton beams impinging 

on regular a water phantom [13]. The current MSc thesis is also a part of the ongoing NOVO 

project.  

Neutron production as a function of depth in the water phantom was found to be stable in the 

entrance region and decreasing until just proximal to the Bragg peak, as seen in Figure 12a. 

As expected, the neutron production rates increased with increasing primary proton beam 

energies. Figure 12b shows that the dominating neutron energies were in the order of 10 - 100 

MeV for all three initial energies, and that the maximum energy for the neutrons increased as 

the proton beam energy increased. In Figure 12c it is shown that the neutrons were mainly 
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emitted in the forward direction, i.e. along the direction of the primary proton beam, and that 

the angular distributions of the neutrons were symmetric across the primary proton beam.   

 

Figure 12: Illustrations of the neutron production in a water phantom for three different proton beam 

energies. a: Neutron production as a function of depth in the water phantom, shown with relative 

depth doses (dashed lines). b: Initial energy distribution for the neutrons produced. c: Angular 

distribution of the neutrons produced [13]. 
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4. Materials and methods 

4.1 Neutron detector concept 

The conceptual detector design explored in this thesis was first introduced in the NOVO 

project [13]. The principle behind the detection system is seen in Figure 13. It consists of a 

converter made of a hydrogen-rich organic scintillator material called EJ309, with atomic ratio 

of 1.25 for hydrogen/carbon. Here, the neutrons produced in the patient may undergo elastic 

and inelastic interactions and produce secondary protons. These protons are then detected in 

two position sensitive detectors, and the depth distribution of the neutron production can be 

calculated with an ad-hoc reconstruction algorithm. This result can finally be used to estimate 

the primary proton beam range.   

 

Figure 13: The detector concept. a: The detector design used in Monte Carlo simulations, not to 

scale. Neutrons produced in the water phantom are converted to protons in the converter. b: 

Secondary protons produced in the converter material traverse two position sensitive detectors and 

the positional information is used for reconstruction of the track and production coordinates of the 

initial neutron [13].  

In this thesis, the dimensions and position of the converter and detectors have been evaluated 

first with the use of a water phantom, and later with a clinical proton treatment plan for prostate 

cancer. In simulation ideal detectors have been used, i.e. an abstract detection layer used for 

scoring of the parameters of the protons created in the converter.    
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4.1.1 Irradiation set-up for water phantom simulations  

In the present study a 190x200 cm2 converter and two equally large tracking detectors were 

defined in simulation, located parallel to a 35x10x10 cm3 water phantom (see Figure 14). The 

unrealistically large size of the detectors and converter made it possible to explore many 

different detector positions and dimensions along this plane using a single Monte Carlo 

simulation. 

 

Figure 14: Illustration showing the scale of the converter and detectors relative to the water phantom 

used in the FLUKA simulations. a: Two-dimensional illustration from the side b: Two-dimensional 

illustration from above. 

Monte Carlo simulations were performed at four different proton energies: 100 MeV, 160 

MeV, 200 MeV and 230 MeV, covering typical ranges of therapeutic proton beams. The 

primary proton beams had spatial Gaussian profiles of 10 mm full width at half maximum. 

4.1.2 Irradiation set-up for patient treatment plan simulations 

The patient treatment plan is designed with proton beam energies ranging from 93 MeV to 

197 MeV. The plan is developed at Haukeland university hospital for a prostate cancer patient, 

and it consists of two opposing lateral fields. Both fields contribute to the prostate PTV 

prescribed 67.5 Gy(RBE), while each of the fields separately irradiates lymph nodes on their 

respective sides (55 Gy(RBE) prescribed). One of the fields were simulated in this thesis, as 

seen in Figure 15. Also here, a large converter with equally large tracking detectors, based on 

the detector concept shown in Figure 12, was used. The detection system was placed next to 

the patient to detect the neutrons produced in the patient during treatment.  
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Figure 15: FLUKA geometry for patient treatment plan simulations. The beam enters from x-

direction, and neutrons produced in the patient are detected in the adjacent tracking detectors.  

4.2 Monte Carlo simulations and data analysis 

In order to determine the ideal detector position and area in this thesis, the neutron detection 

rate was evaluated using Monte Carlo simulations.  

Monte Carlo simulation is a technique used to model the probability of different outcomes in 

processes when these are difficult to predict analytically, due to the stochastic nature of these 

processes [37]. This makes MC simulations a good method for solving problems related to 

particle physics, such as in this thesis. FLUKA (FLUktuierende Kaskade or Fluctuating 

Cascade) [38], [39], is a Monte Carlo simulation package for particle physics. It can be used 

for calculations of particle transport and interactions with matter, including a great variety of 

applications such as accelerator shielding, calorimetry, dosimetry, detector design, 

radiotherapy etc. [40].  

In this study FLUKA is used to simulate monoenergetic proton beams entering a water 

phantom, and the production, and subsequent tracking of secondary fast neutrons. FLUKA is 

also used to simulate a realistic patient treatment plan with protons, as well as to track the 

secondary fast neutrons produced in the patient. Even though the particles of interest in this 

thesis are neutrons and protons, other particles (e.g. electrons and alpha particles) will also be 

created during simulation. Various settings in FLUKA can be implemented to exclude some 

of these irrelevant particles, in order to reduce simulation time.  
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4.2.1 Water phantom simulations 

24 parallel simulations, each with 5.0x107 primaries, were performed in order to simulate a 

total of 1.2x109 primary protons per energy. The total CPU time for the simulations were 

2.7x104 s (7.5 hours), 3x104 s (8.3 hours), 1.2x105 s (33.3 hours) and 1.36x105 s (37.8 hours) 

for 100, 160, 200 and 230 MeV, respectively.  

Prior to performing the simulations, the simulation settings in FLUKA were evaluated. The 

main goal was to perform simulations with good statistics and enable production and tracking 

of secondary particles. The FLUKA input card called DEFAULT can be used to set various 

default choices, reducing the number of cards needed in the input file. The default was set to 

PRECISIOn, which is a default suitable for simulations requiring high accuracy and tracking 

of secondary particles. This setting includes several effects, but most relevant in this thesis is 

that low energy neutron transport is turned on down to thermal energies, and that the 

particle transport threshold is set at 100 keV for all particle types, except neutrons (10-5 eV). 

The physics cards in FLUKA which allow overriding the defaults for physics processes, were 

set to COALESCEnce and EVAPORATion. COALESCEnce is used to activate coalescence 

mechanism in the simulations, while EVAPORATion is used for evaporation, to use a new 

evaporation model with heavy fragment evaporation. Both these cards are recommended for 

precise particle production calculations [41].  

Transport of ions was activated in the simulations with the card IONTRANS, which was set 

to HEAVYION. This implies that transport of all light and heavy ions is activated.  

The USRBIN option, which is the standard card for volume scoring in FLUKA, was used for 

scoring of the primary proton beam dose delivery. This was further utilized for creation of 

depth dose plots used for determining the Bragg peak depth of the different primary proton 

beams. This was defined as the depth of maximum dose.  

Two FLUKA user routines (tracking codes) were implemented to gather relevant neutron and 

proton information at the water phantom, converter and tracking detectors, in addition to 

extracting information on the trajectory of the particles. These two codes, and a table 

presenting the information these extract during the simulations, can be found in Appendix A. 
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The first code, called BXDRAW, is used to check whether a proton crossing the first tracking 

detector was created in the converter. Further, it is controlled whether the same proton crosses 

the second tracking detector. If so, the kinetic energy of the detected proton, the primary 

particle number, the position, energy and direction of the neutron at production point, and 

information describing the position and direction of the secondary proton crossing both tracker 

planes, is stored.  The second code, STUPRF, is used to check if the detected neutron was 

created in the water phantom, and if so, determine which reaction happened in the converter. 

Possible interactions were either inelastic, elastic or low energy neutron scattering (E < 20 

MeV). All detected neutrons were included in the analysis, also low energy neutrons.  

Information is gathered from the water phantom as well, independently of the interactions that 

take place in the detection planes. This includes the position, direction and energy of each 

secondary neutron produced in the water phantom.  

Simulation parameters for the water phantom simulations are gathered in Table 4-1. 

Table 4-1: Simulation parameters from FLUKA, for simulations with water phantom. 

PARAMETERS DESCRIPTION 

Proton beam energy 100 MeV, 160 MeV, 200 MeV and 230 MeV 

Defaults PRECISIOn (defaults for precision simulations) 

Physics processes COALESCEnce on (activates coalescence 

mechanism), EVAPORATion New Evap with heavy 

frag (new evaporation model, with heavy 

fragmentation) 

Transport  IONTRANS heavyion (Transport of all light and 

heavy ions) 

Scoring USERDUMP complete, all (activates calls to the user 

routine BXDRAW), USRBIN dose (needed for depth 

dose plotting) 
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4.2.2 Patient treatment plan simulations 

24 parallel simulations, each with 5.0x107 primaries, were performed in order to simulate a 

total of 1.2x109 primary protons. The total CPU time for the simulation of 24 independent jobs 

was 2.1x105 seconds, which equals 59.5 hours, about 2,5 days.  

Before running simulations with FLUKA, the patient data needed to be transformed to a format 

that could be implemented in FLUKA. This process is illustrated in Figure 16 and is based on 

a method developed by Fjæra [42]. From the treatment planning system, the DICOM (Digital 

Imaging and Communications in Medicine, the standard used for storing and managing 

medical imaging data) files were exported and sorted using the script dicomSort.py, providing 

the necessary input for the FLUKA simulation, both beam characteristics and CT images. The 

script set_HU.py was run in order to set the Hounsfield Units outside the patient to vacuum, 

and further import the CT images to the FLUKA simulation.   

 

Figure 16: Illustration of the workflow for implementing patient treatment plans in FLUKA 

simulations. The DICOM files contain the important information regarding dose deposition and 

anatomy, which is transformed to a format readable in FLUKA (green boxes). The scripts (yellow 

boxes) are custom made by Fjæra [42]. 
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The default in FLUKA was set to HADROTHErapy, which is a default created for hadron 

therapy calculations, including proton therapy. This default was set in the process described 

in Figure 16, and differs from the water phantom default setting in some ways. However, the 

most important settings decided by the default card are the same for both HADROTHErapy 

and PRECISIOn, i.e., that low energy neutron transport is turned on down to thermal energies, 

and that the particle transport threshold is set at 100 keV for all particle 

types, except neutrons (10-5 eV). It is therefore assumed that the differences in default setting 

will not affect the results in this thesis. 

The physics cards in FLUKA were the same as for the water phantom, but the transport setting 

was different. In addition to the card IONTRANS which determines the transport of ions, 

another card implemented for transport was EMFCUT. This card can be used to set the energy 

thresholds for electron and photon production and transport cut-offs in the selected 

materials/regions. All regions were included in the cut, and it was set to 6 MeV. EMFCUT 

was also applied as a production cut, to set an energy limit for the electrons and photons created 

in the materials in simulation (6 MeV). All materials were included in the cut-off. This was 

utilized to reduce the CPU time for the simulations and could have been implemented for water 

phantom simulations as well, without affecting the results.  

Three different user routines were applied in the simulations. The two tracking codes used for 

water phantom simulations, BXDRAW and STUPRF, were altered to record the neutron 

production in the patient. The last user routine is found in Appendix C, and is the source.f file 

as described in Figure 16. This is used for incorporation of beam information (energy, position, 

direction and beam spots) for the different primary proton beams used in the treatment field.   

The upper and lower energy limits for the spread-out Bragg peak (SOBP) was found by 

running two separate simulations for the upper and lower beam energy, 93 and 197 MeV. Each 

simulation consisted of four parallel simulations with 1x105 primary protons each. The depth 

dose curve in the patient was created for each energy, enabling localisation of the Bragg peaks 

defined at maximum dose deposition. These plots can be found in Appendix D.  

Simulation parameters in FLUKA for the patient treatment plan simulations are given in Table 

4-2. 
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Table 4-2: Simulation parameters from FLUKA, for simulations with patient treatment plan. 

PARAMETERS DESCRIPTION 

Proton beam energy 26 different energies ranging from 93 MeV - 197 MeV. 

Number of beams per energy varies from 4 - 288. 

Defaults HADROTHErapy (defaults for hadron therapy 

calculations) 

Physics processes COALESCEnce on (activates coalescence mechanism), 

EVAPORATion New Evap with heavy frag (new 

evaporation model, with heavy fragmentation) 

Transport cut IONTRANS heavyion (full transport of heavy ions), 

EMFCUT all regions  

Production cut EMFCUT all materials 

Scoring USERDUMP complete, all (activates calls to the user 

routine BXDRAW), USRBIN dose/all parts (used for 2d 

dose plot) 

 

4.2.3 Processing of simulation results 

Python scripts were written to organize and process the information gathered from FLUKA. 

All scripts can be found in Appendix B. Matplotlib1, a python 2D/3D plotting library, and 

NumPy2, a python scientific computing library were used.  

In order to obtain the optimal placement for the detector based on the neutron detection rate, 

a 20x20 cm2 detector was defined in the data analysis and moved stepwise 1 cm along the 

 

1 https://matplotlib.org 

2 https://numpy.org 
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depth direction exploiting information from the large detection plane. Neutrons produced 

closer to the Bragg peak could be considered more useful in order to perform in-vivo range 

verification, since they hold more information about the end of range for the initial proton 

beam. Therefore, two additional analyses were implemented, considering the optimal detector 

position for the water phantom simulations. Here, only the neutrons produced in the last half 

and last quarter of the proton beam range were included in the neutron detection rate estimates. 

The optimal detector position was defined as the point where the neutron detection rate was 

highest. The statistical uncertainty in neutron detection rate was calculated as √𝑁, where N is 

the number of detected neutrons.  

For the water phantom simulation, a common location for 160 and 200 MeV was explored, 

considering that clinical applications of proton therapy include a range of energies and that 

moving the detector during treatment may be challenging. The neutron detection rate for 160 

and 200 MeV were summed up and a new peak was located. The uncertainties in the peaks 

for 160 and 200 MeV were also compared individually to see if the uncertainty range for each 

energy had an overlap.   

The area of the detector was considered by increasing the detector dimensions quadratically 

while placed in the optimal position (for each energy), obtained in this thesis. The thickness 

of the converter was, however, kept constant at 5 mm in all cases.  
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5. Results 

5.1 Water phantom simulations 

5.1.1 Neutron production rates and detection characteristics 

The neutron production and detection rate, predicted by MC simulations at different primary 

proton energies, are displayed in Table 5-1. Both rates increased with increasing primary 

proton energy, and the difference is greater for increasing energies. The neutron detection rate 

was larger by a factor of 12 for 230 MeV protons compared to the lowest energy of 100 MeV 

protons, and by a factor of 1.4 for 230 MeV protons compared with 200 MeV protons.   

Table 5-1: Total neutron production and detection rates per primary proton for the 190x200 cm2 

detector, for the four simulated energies. The uncertainties are calculated as the standard deviation of 

the 24 spawns used in simulation.  

Proton beam energy 

[MeV] 

Neutron production 

rate [produced 

neutrons/primary 

proton] 

Neutron detection rate 

[detected neutrons/primary 

proton] 

100 0.03 ± 0.1 % 2.4 x 10-5 ± 2.2 % 

160 0.08 ± 0.05 % 1.1 x 10-4 ± 1.0% 

200 0.13 ± 0.04 % 2.1 x 10-4 ± 1.0 % 

230 0.18 ± 0.03 % 2.9 x 10-4 ± 0.7 % 

 

The relative dose delivered in the water phantom is illustrated in Figure 17, as a function of 

the depth in water. The Bragg peak depths are located at 7.6 cm, 17.5 cm, 25.7 cm and 32.6 

cm for a primary proton beam energy of 100, 160, 200 and 230 MeV, respectively. 

Considering the small bin sizes used in simulation (1 mm step) the uncertainty in Bragg peak 

position is negligible.  



34 

 

 

Figure 17: Relative dose delivered in the water phantom by the primary proton beam as a function of 

the depth in water, for each simulated energy. 

The secondary neutron production distribution in the water phantom is illustrated in Figure 

18a, and as seen neutron production is high in the entrance of the water phantom and gradually 

falls-off towards the primary proton Bragg peak. The secondary neutron production 

distribution for only the detected neutrons is illustrated in Figure 18b. Compared to Figure 18a 

showing all neutrons produced, the falloff towards the Bragg peak is gentler and starts earlier.   

 

Figure 18: a: The neutron production as a function of depth in the water phantom. b: Production 

depth distribution for the detected neutrons from the set-up with water phantom.  

Figure 19a shows the initial energy distribution for the neutrons produced in the water 

phantom. Neutrons with energies above 1 MeV dominated, and the magnitude of the 

maximum neutron energy increased with increasing primary beam energy. The initial energy 
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distribution for detected neutrons is illustrated in Figure 19b, and as seen, exceedingly few 

neutrons with initial energies below 10 MeV were detected compared with the higher energy 

neutrons.  The general shape of the distributions was similar for the different energies, mainly 

increasing in magnitude. 

 

Figure 19: a: Distribution of initial kinetic energy for the neutrons produced in the water phantom. b: 

Distribution of initial kinetic energy for detected neutrons. The neutron spectrum is shown with 

logarithmic bins and with linear ordinate axis. 

The energy and production positions inside the water phantom for 1000 detected neutrons are 

illustrated in Figure 20. We can see that, as expected, the neutrons were primarily produced 

along the axis of the primary proton beam. It is also observed that the average neutron energy 

at shallow depths was higher than for neutrons produced closer to the end of range for the 

primary proton beam.  
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Figure 20: Neutron production shown as a function of distance from the beam axis (y-axis) and depth 

in water phantom (x-axis) for four proton energies. The kinetic energies of the neutrons at the time of 

production are indicated by the color bar. 

The production positions inside the water phantom can also be displayed with a two-

dimensional histogram as shown in Figure 21. While Figure 20 shows the discrete neutron 

positions, Figure 21 shows the distribution of neutrons in the water phantom.  

 

Figure 21: Two-dimensional histogram illustrating the production of all neutrons inside the water 

phantom, from 1.2x109 primary protons.  
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The distribution of the detected secondary protons from (n,p) reactions on the two tracking 

detectors rapidly increased at the entrance point of the water phantom (at x=0) until it reached 

a peak, with a following gradual decrease as the depth increased, as shown in Figure 22. The 

histograms for the four different energies look similar but are shifted deeper into the water 

phantom as the energy increases. In addition, a greater number of neutrons were detected for 

higher energies, which corresponds to the increased neutron production rate as shown in the 

previous figures. 

 

Figure 22: Neutron detection distribution illustrating the correlation between Bragg peak position and 

neutron detection rate on the two large tracking detectors. The statistical uncertainties are indicated 

by the error bars for each bin (about 1-2%).  

There is also a correlation between the location of the Bragg peak in the water phantom and 

the location where the neutron detection rate is highest. For all energies, the location with the 

most detected neutrons was located around Bragg peak depth. Distal for all energies, but 

gradually closer for increasing energy. The maximum neutron detection rates from Figure 22 

are given in Table 5-2.  
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Table 5-2: Positions of maximum neutron detection rate on the two detection planes. The number in 

the parentheses gives the location relative to the Bragg peak position (positive number indicate peak 

distal to Bragg peak), with Bragg peaks located at 7.6 cm, 17.5 cm, 25.7 cm and 32.6 cm for protons 

of 100, 160, 200 and 230 MeV energy, respectively. 

Energy [MeV] Tracking plane nr. Location [cm] 

100 1 15.0 ± 3.0 (7.4 ± 3.0) 

100 2  18.0 ± 6.0 (10.4 ± 6.0) 

160 1 21.0 ± 3.0 (3.5 ± 3.0) 

160 2 22.5 ± 1.5 (5.0 ± 1.5) 

200 1 27.0 ± 3.0 (1.3 ± 3.0) 

200 2 28.5 ± 4.5 (2.8 ± 4.5) 

230 1 33.0 ± 3.0 (0.4 ± 3.0) 

230 2 33.0 ± 3.0 (0.4 ± 3.0) 

 

5.1.2 Neutron detection rates as function of detector position 

In Figure 23 the total number of detected neutrons is displayed for different positions of a 

20x20 cm2 detector within the large detection plane used in the simulation. The neutron 

detection rate is illustrated as a function of the centre point of the various detector positions. 

The reference point was set at 0 cm at the entrance of the water phantom. In general, we see 

that the positioning of the detector strongly impacts the detection rates which increases as the 

detector was moved in depth direction, to a certain point where a peak was reached, followed 

by an almost symmetric decrease. The detector position that provides maximal detection rate 

for a 20x20 cm2 detector is centred in 15 ± 2 cm, 20.5 ± 1.5 cm, 24.5 ± 1.5 cm and 28 ± 2 cm, 

for 100, 160, 200 and 230 MeV, respectively. For 100 MeV this results in a maximum 

sensitivity position of 7.4 ± 2 cm distal to the Bragg peak position, while for 230 MeV it is at 

4.6 ± 2 cm proximal to the Bragg peak. This shows that there is a shift in the ideal detector 
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position relative to the Bragg peak depth, depending on the initial energy of the primary proton 

beam.  

 

Figure 23: Neutron detection rate as a function of the center position of the different 20x20 cm2 

detectors. x = 0 cm at the entrance point of the water phantom. 

Analyses were also performed only for those neutrons that were produced in depths 

corresponding to the last half and last quarter part of the range of the primary proton beams. 

The difference in neutron detection rate is significant when comparing the different analyses, 

and a change can be seen in the optimal detector placement (Figure 24). Compared to the 

analysis for all neutrons, the peaks are still almost symmetric, and the shift is still energy 

dependent, but the distance relative to the Bragg peak is greater. The difference is greater for 

greater energies, and all peaks are here located distal to the Bragg peak positions.   
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Figure 24: Neutron detection rate as a function of the center position of the different 20x20 cm2 

detectors. The detection rate is illustrated for each energy, and for each analysis with produced 

neutrons from all, half and last quarter part of range for the primary proton beam. 

The positions of maximum neutron detection rate found in Figure 24, including Bragg peak 

positions and error bars, are illustrated in Figure 25. The exact numbers can be found in 

Appendix E. 

 

Figure 25: Position of maximum neutron detection rate (including error bars) for the four different 

energies used in simulation, and for each analysis with produced neutrons from all, half and last 

quarter part of range for the primary proton beam. Bragg peak positions are included for comparison. 
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The neutron detection rates for the 20x20 cm2 detectors in the position of maximum detection 

rate in Figure 24, are gathered in Table 5-3. 

Table 5-3: Total neutron detection rates per primary proton for the 20x20 cm2 detector, for the four 

simulated energies. The statistical uncertainties are calculated as √𝑁/P where N is the number of 

detected neutrons and P is the number of primary protons. 

Proton 

beam energy 

[MeV] 

Neutron detection rate in ideal position [detected neutrons/primary proton] 

All neutrons  Neutrons detected last 

half prior to Bragg peak  

Neutrons detected last 

quarter prior to Bragg peak  

100  5.0 x 10-6 ± 1.3 % 1.3 x 10-6 ± 2.5 % 2.9 x 10-7 ± 5.3 % 

160 1.9 x 10-5 ± 0.7 % 6.2 x 10-6 ± 1.2 %  1.7 x 10-6 ± 2.2 % 

200 3.0 x 10-5 ± 0.5 % 1.1 x 10-5 ± 0.9 % 3.3 x 10-6 ± 1.6 % 

230 3.9 x 10-5 ± 0.5 % 1.5 x 10-5 ± 0.7 % 5.0 x 10-6 ± 1.3 % 

 

In clinical proton treatments the energies are changed rapidly, and it is not always expedient 

to move the detector when delivering the different energies. Therefore, a common location for 

a 160 and 200 MeV proton beam has been evaluated. In Figure 26 all neutrons produced are 

included, and the combination of 160 and 200 MeV gave a peak neutron detection rate at a 

position of 23 ± 1 cm. When compared to the results of 160 and 200 MeV, 20.5 ± 1.5 cm and 

24.5 ± 1.5 cm, we see that the uncertainty limits of the individual peaks do not overlap, but 

the magnitude of the difference is only 1 cm. However, both peaks are within the limits of the 

uncertainties for the summed histogram. 
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Figure 26: Neutron detection rate for primary proton beams of 160 and 200 MeV, including a rate for 

the combined results. All neutrons were included in this analysis. The statistical uncertainties are 

indicated by the error bars for each bin. 

 

5.1.3 Neutron detection rates as function of detector size 

In Figure 27 the neutron detection rates are displayed for different detector sizes placed in the 

ideal position at each primary proton beam energy (see Appendix E). Linear fits were included 

in order to evaluate the slope of the histograms. In general, we see that the rate increases as 

the detector size increases, and that the rate strongly depends on energy. For all energies the 

detection rate increases continuously as the area increases, but with higher energies it rises 

faster. In conclusion, the neutron detection rate increases almost linearly with increasing 

detector size. 
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Figure 27: Neutron detection rate as a function of the side length of the quadratic detector, for the 

different proton beam energies and analyses done in this thesis.   

5.2 Patient treatment plan simulations 

5.2.1 Neutron production rates and detection characteristics 

The total neutron production and detection rate for the large detection plane, predicted by MC 

simulations were 0.09 ± 0.05% neutrons produced/primary proton and 7.0x10-5 ± 1.1% neutron 

detected/primary proton. Compared to the water phantom simulation this result is, on average, 

approximately three times bigger than for the primary proton beam of 100 MeV, and almost 

identical as the result from the 160 MeV proton beam. This corresponds well with the energy 

range for the patient treatment plan (93-197 MeV). 

The neutron production and detection distribution in the patient is illustrated in Figure 28a, 

and as seen neutron production rate rapidly increases as the beam enters the patient, remains 

stable, and starts to gradually decrease at the lower energy limit of the SOBP. This contrasts 

with results for single energies but can be explained by the large energy interval and resulting 

SOBP. The neutron detection distribution appears analogous as the distribution for the 

produced neutrons except that it drops earlier. In Figure 28b, the initial kinetic energy of the 
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neutrons produced and detected in the patient is illustrated. As seen, the dominating energies 

for produced neutrons were between 1 and 100 MeV, similar to the results from the water 

phantom simulation. The energy distribution for detected neutrons shows that exceedingly few 

neutrons with energies below 10 MeV were detected compared with the higher energy 

neutrons. The general shape of the distributions also corresponds well with the results from 

the water phantom simulation.  

 

Figure 28: Comparison of characteristic for produced and detected neutrons. Only 1 of 1000 

produced neutrons are illustrated. a: Neutron production and detection distribution as a function of 

depth in the patient. The Bragg peak positions are estimated at x = 11.6 cm for the lower energy 

limit, and x = 23.8 cm for the upper energy limit. b: Distribution of initial kinetic energy for neutrons 

produced and detected in the patient.  

The relative dose deposited in the patient is illustrated in Figure 29. This gives a good depiction 

of where the tumour is located, and the dose delivered to surrounding tissue.  

 

Figure 29: Two-dimensional dose deposition delivered in the patient, presented as the relative dose. 
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The detection rate for secondary protons on the two tracking detectors rapidly increases at the 

detector surfaces located parallel to the entrance of the patient (x=0) until a peak is reached, 

with a following gradual decrease further distal to the SOBP, as seen in Figure 30. The neutron 

detection rate peak is located in 36 ± 6 cm for the first tracking detector, and 36 ± 9 cm for the 

second tracking detector. This gives a distance of 12.2 ± 6 cm and 12.2 ± 9 cm distal to the 

SOBP for the first and second tracking plane, respectively. This result corresponds well with 

the results from the water phantom, with the peak being located distal to the primary proton 

beam Bragg peak.  

 

Figure 30: Neutron detection distribution on the two tracking detectors. x = 0 at the entrance of the 

patient. The statistical uncertainty is indicated by the error bars for each bin. 

5.2.2 Neutron detection rates as function of detector position 

In Figure 31 the total number of detected neutrons is displayed for different positions of a 

20x20 cm2 detector, within the large detection plane used in the simulation. The neutron 

detection rate is illustrated as a function of the centre position of the various detector 

placements. In general, we see that the rate increases as the detector is moved along the depth 

direction, to a certain point distal to the SOBP where a peak is reached, followed by a gradual 

decrease. Compared to the results from the water phantom simulations, the general shape and 

location of the peak is very similar, considering the peak is, also here, located distal to the 

Bragg peak. The maximum detection rate is found at 31 ± 5 cm, which corresponds to a 

location 7.2 ± 5 cm distal to the SOBP. The neutron detection rate in the bin with maximum 

detection rate is 4.6 x 10-6 ± 1.4 %.   
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Figure 31: Neutron detection rate as a function of the center point of a 20x20 cm2 detector. x = 0 cm 

at the entrance of the patient. The minimum and maximum values for the SOBP are 11.6 and 23.8 

cm. The statistical uncertainty is indicated by the error bars for each bin.  

5.2.3 Neutron detection rates as function of detector size 

The total number of detected neutrons are displayed for different detector sizes, placed in the 

ideal position (as found in Figure 31), within the large detection plane used in the simulation. 

The neutron detection rate is illustrated as a function of the area of the detector (see Figure 

32). A linear fit was included in order to evaluate the rise of the histogram. In general, we see 

that the rate increases continuously as the detector size increases. In conclusion, the neutron 

detection rate increases almost linearly with increasing detector size.   

 

Figure 32: Neutron detection rate as a function of the side length of the quadratic detector, for the 

position of maximum neutron detection rate. 
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6. Discussion and conclusion 

The objective of this project was to optimize detector dimensions and positioning of an 

existing detector concept developed for neutron-based real-time range verifications in proton 

therapy. The results of this work indicate that the positioning of the detector relative to the 

patient may have a great impact on the detected signal and the precision of the final proton 

range estimate. Additionally, the size of the detector may impact the detection rates and 

achievable counting statistics. The objective of this project was pursued using FLUKA Monte 

Carlo simulations. An unrealistically large detector was applied in simulations in order to 

evaluate the neutron detection rate for various smaller areas within the large detection plane. 

Simulations were performed both for a water phantom and a realistic patient treatment plan. 

Water phantom simulations included four different primary proton energies: 100, 160, 200 

and 230 MeV, covering typical ranges of therapeutic proton beams. Further, a 20x20 cm2 

detector was defined in the analysis and moved stepwise 1 cm along the primary beam 

direction, in order to locate the position with the maximum neutron detection rate. Analyses 

separating the neutrons by production location in the water phantom were also implemented, 

in order to evaluate the neutrons produced closer to the primary proton beam Bragg peak.   

The performance of the detector was seen to vary significantly depending on the detector size 

and positioning, both for the water phantom and patient treatment plan simulations. This shows 

that the detector placement and dimensions are important for achieving an acceptable neutron 

detection rate. Neutrons produced in the entrance region where the primary proton beam 

energy is still high had, on average, higher initial energy than neutrons produced later in the 

primary proton beam trajectory. Secondary neutrons were mostly produced close to the 

primary beam axis.  

For the water phantom simulations (Figure 23), it is seen that for almost all energies and 

setups, the neutron detection rate peak is located distal to the Bragg peak. If only the neutrons 

produced just proximal to the Bragg peak are considered, these peaks shift further distal to the 

Bragg peak, as seen in Figure 24. However, which neutrons one should focus on is debatable. 

Even though the neutrons created adjacent the proton beam end of range could give a closer 

indication of the Bragg peak location, these neutrons have a lower average energy than 

neutrons produced earlier in the proton beam trajectory. This could make them more difficult 
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to detect in clinical application, because a low energy neutron will produce a secondary proton 

in the converter with even lower energy, and the particle energy affects the particle range. 

There are also fewer neutrons produced closer to the end of range for the proton beam (as seen 

in Figure 20) which gives inferior statistics for the neutron detection rate.  

In principle, it would be best to use all available neutrons for the range estimates, however it 

might be possible to weight information from neutrons created in the Bragg peak region more 

in the range reconstruction if these are considered to be better correlated to the primary beam 

range. As seen in Appendix E the uncertainty in neutron detection rate is not particularly 

affected by the reduced number of neutrons, except for the 100 MeV proton beam where the 

uncertainty increases by ± 1 cm. However, low uncertainty in neutron detection rate does not 

necessarily mean that the uncertainty in range estimates will be low as well. Furthermore, in 

a clinical situation, the number of protons in a particular beam spot may be significantly lower 

than in the MC simulations considered in this thesis and therefore statistical uncertainties may 

be higher and more relevant in clinical scenarios. 

Another observation from Figure 23 is that the neutron detection rates depend strongly on the 

primary proton beam energy. Further, when the beam energy increases, the detection rate peak 

is shifted deeper into the water phantom. For a 20x20 cm2 detector, maximum detection rate 

is achieved when centred in 15 ± 2 cm, 20.5 ± 1.5 cm, 24.5 ± 1.5 cm and 28 ± 2 cm, for 100, 

160, 200 and 230 MeV, respectively. The Bragg peak positions for the different beam energies 

have a greater shift than the neutron detection rate peak. This is seen e.g. for 100 MeV where 

the maximum sensitivity position is 7.4 ± 2 cm distal to the Bragg peak position, while for 230 

MeV it is at 4.6 ± 2 cm proximal to the Bragg peak. This means that the beam energy must be 

considered when determining the detector placement. 

In clinical applications, the delivery of the prescribed dose to the planning target volume will 

be based upon using multiple proton beams covering a range of energies and intensities, 

resulting in a SOBP. It could be considered impractical and challenging to change the location 

of the detector during clinical application of proton therapy, due to the rapid energy 

modulation when delivering beams at different energy layers. Therefore, as a work around, a 

possible common position for 160 and 200 MeV beams was investigated. These two energies 

were chosen since they are within a common energy range for therapeutic proton beams, and 
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the energy gap is relatively small. A small energy gap is common for clinical proton therapy 

treatment plans, although this depends strongly on the target volume size. This resulted in a 

new peak between the two original peaks for 160 and 200 MeV (20.5 ± 1.5 cm, 24.5 ± 1.5 

cm), located at 23 ± 1 cm. When the uncertainty limits were considered, this peak was located 

within the peaks for the two individual beams. Since the results from both 160 and 200 MeV 

were included, the overall counting statistics were good, and the statistical uncertainty in 

neutron detection rate was reduced compared with the individual results. Nevertheless, a 

separate evaluation of the placement should be done considering the energy range for the 

specific case, since not all proton beam patient treatment plans range from 160 to 200 MeV.   

For the patient treatment plan the results regarding the detector position correspond well with 

the results from the water phantom simulation. The peak for the neutron detection rate is also 

here located slightly (7.2 ± 5 cm) distal to the (spread-out) Bragg peak, and the neutron 

detection rate varies greatly with different detector positions. The energy range for the patient 

treatment plan is large which makes it difficult to compare the details of the results, but since 

the range for the patient treatment plan is from 93 to 197 MeV, the results could be compared 

with the water phantom beams of 100 and 160 MeV.  

When comparing the results from the water phantom simulations in Figure 23 with the patient 

treatment plan simulations in Figure 31, it is clear that the statistics are poorer for the patient 

plan, resulting in lower detection rate and a larger statistical uncertainty. A possible 

explanation is the large energy range and SOBP in the patient treatment plan. It is also worth 

mentioning that the distance from the water phantom/patient to the converter is 14 cm for the 

patient plan simulations and 5 cm for the water phantom simulations. The distance for the 

patient treatment plan simulations is more realistic for clinical applications but may partially 

explain why the patient plan results are inferior.  

The neutron detection rates accomplished in this thesis, when a 20x20 cm2 detector is placed 

in the ideal position, were 5.0 x 10-6 ± 1.3 %, 1.9 x 10-5 ± 0.7 %, 3.0 x 10-5 ± 0.5 %, 3.9 x 10-5 

± 0.5 % for 100, 160, 200, 230 MeV, respectively. The corresponding value for the results in 

the patient treatment plan simulations, was 4.6 x 10-6 ± 1.4 %. This is comparable to detection 

rates achieved with existing prompt-gamma imaging techniques, i.e. 10-5 – 5.6x10-5 gamma 

counts per primary proton, reported by Krimmer et. al. [43]. These neutron detection rates are 
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also comparable with previous studies in neutron-based range verifications, such as the results 

from Ytre-Hauge et. al. [13]. However, it is noticeable that the neutron detection rate from the 

patient treatment plan is considerably low compared to the water phantom simulations: four 

times smaller than for 160 MeV and almost identical as for the 100 MeV primary proton beam. 

This contrasts with the neutron detection rate for the entire 190x200 cm2 detector, where the 

result was, on average, approximately three times bigger than for the primary proton beam of 

100 MeV, and almost identical as the result from the 160 MeV proton beam. This shows that 

the neutrons created in the patient are spread over a larger area than for the water phantom 

simulations, which can be explained by the large energy range of the patient plan and the 

difference in distance to the converter. Consequently, the results show that moving the detector 

during treatment is beneficial in order to obtain an acceptable neutron detection rate when a 

large energy range is applied in the treatment plan.  

An ideal size of the detector is a trade-off between the need for good statistics and the cost and 

inconvenience of a larger detector. Based on the neutron detection rate, we can draw the 

conclusion that the rate increases almost linearly with increasing detector area. A bulky 

detector is impractical in clinical applications, thus the distance between the converter surface 

and patient should be considered. Shorter distance enables a reduced detector area, since it 

leads to a greater solid angle for a given detector size. This could enable the use of a smaller 

detector area without reducing its performance. To further quantify the required size of the 

detector to achieve acceptable low uncertainties in the range estimates, a full reconstruction 

of the neutron production distribution must be performed, using e.g. the reconstruction 

algorithm presented in [13]. Furthermore, range estimates as well as corresponding 

uncertainties must be obtained from the reconstructed neutron production distributions.  

Regarding the possible detector alternatives for clinical application of in-vivo neutron range 

verification, several charged particle tracking detectors could be applicable. These are detector 

types such as silicon strip detectors, pixelated Si-based position sensitive sensors or gas filled 

multiwire proportional chambers, all suggestions from research by Ytre-Hauge et. al. [13]. 

It is also important to state that the results from simulations in FLUKA and other MC codes 

are based on models and cross-section data with considerable uncertainties. A different 

simulation software could have given different neutron production and detection rates, and 
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experimental measurements are needed to draw firm conclusions regarding achievable 

detector rates as also detector limitations such as efficiency, also plays a role in clinical 

application of the detector system. 

Further work 

In this thesis, the neutron detection rate was evaluated in order to determine the ideal position 

and size of the detector. These are basic properties of the proposed detector system which are 

important to systematically review before development of a first detector prototype. There are 

also other aspects that would be important to investigate, such as the uncertainty in range 

landmark in the reconstruction process for the different positions and sizes of the detector. 

This would be particularly interesting considering the dimensions of the detector, since 

analysis of the neutron detection rate did not provide a helpful conclusion in the matter. The 

position and size determined by uncertainty in range landmark could also be interesting to 

compare with the results in this thesis, to see if the location with maximum neutron detection 

rate could be considered the ideal location for the detector.  

Conclusion 

The results in this thesis show that the neutron detection rates for both water phantom and 

patient treatment plan simulation depends strongly on the detector position and dimensions. 

Based on the water phantom simulations, the energy also plays a big role in determining the 

position. In general, we see that the neutron detection rate peaks close to or distal to the Bragg 

peak. For a 20x20 cm2 detector, using a single position for a broad range of proton energies 

would lead to a clear reduction in neutron detection rate compared to using multiple positions. 

The feasibility of moving the detector during treatment should therefore be evaluated. For 

small tumours and target volumes one static detector position would however be sufficient. 

Another alternative might be to increase the size of the detector, but this should be investigated 

further.  
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Appendix A  

Because the geometry of the detector has been changed in this thesis, the region numbers 

identifying the different regions have been altered in these scripts to correspond with the new 

geometry. 

Bxdraw_rangeveri.f 

FLUKA user routine used for both water phantom and patient treatment plan simulations. This 

is used to store information about direction, energy and location of the neutrons produced in 

the phantom/patient, as well as proton information from the converter and tracking detectors.  

*$ CREATE MGDRAW.FOR 

*COPY MGDRAW 

*                                                                      * 

*=== mgdraw ===========================================================* 

*                                                                      * 

      SUBROUTINE MGDRAW ( ICODE, MREG ) 

 

      INCLUDE '(DBLPRC)' 

      INCLUDE '(DIMPAR)' 

      INCLUDE '(IOUNIT)' 

* 

*----------------------------------------------------------------------* 

*                                                                      * 

*     Copyright (C) 1990-2013      by        Alfredo Ferrari           * 

*     All Rights Reserved.                                             * 

*                                                                      * 

*                                                                      * 

*     MaGnetic field trajectory DRAWing: actually this entry manages   * 

*                                        all trajectory dumping for    * 

*                                        drawing                       * 

*                                                                      * 

*     Created on   01 March 1990   by        Alfredo Ferrari           * 

*                                              INFN - Milan            * 

*     Last change   12-Nov-13      by        Alfredo Ferrari           * 

*                                              INFN - Milan            * 

*                                                                      * 

*----------------------------------------------------------------------* 

* 

      INCLUDE '(CASLIM)' 

      INCLUDE '(COMPUT)' 

      INCLUDE '(SOURCM)' 

      INCLUDE '(FHEAVY)' 

      INCLUDE '(FLKSTK)' 

      INCLUDE '(GENSTK)' 

      INCLUDE '(MGDDCM)' 

      INCLUDE '(PAPROP)' 

      INCLUDE '(QUEMGD)' 

      INCLUDE '(SUMCOU)' 

      INCLUDE '(TRACKR)' 
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* 

      DIMENSION DTQUEN ( MXTRCK, MAXQMG ) 

* 

      CHARACTER*20 FILNAM 

      LOGICAL LFCOPE 

      SAVE LFCOPE 

      DATA LFCOPE / .FALSE. / 

* 

*----------------------------------------------------------------------* 

*                                                                      * 

*     Icode = 1: call from Kaskad                                      * 

*     Icode = 2: call from Emfsco                                      * 

*     Icode = 3: call from Kasneu                                      * 

*     Icode = 4: call from Kashea                                      * 

*     Icode = 5: call from Kasoph                                      * 

*                                                                      * 

*----------------------------------------------------------------------* 

*                                                                      * 

      IF ( .NOT. LFCOPE ) THEN 

         LFCOPE = .TRUE. 

         IF ( KOMPUT .EQ. 2 ) THEN 

            FILNAM = '/'//CFDRAW(1:8)//' DUMP A' 

         ELSE 

            FILNAM = CFDRAW 

         END IF 

         OPEN ( UNIT = IODRAW, FILE = FILNAM, STATUS = 'NEW', FORM = 

     &          'UNFORMATTED' ) 

      END IF 

*  +-------------------------------------------------------------------* 

*  |  Quenching is activated 

      IF ( LQEMGD ) THEN 

         IF ( MTRACK .GT. 0 ) THEN 

            RULLL  = ZERZER 

            CALL QUENMG ( ICODE, MREG, RULLL, DTQUEN ) 

*            WRITE (IODRAW) ( ( SNGL (DTQUEN (I,JBK)), I = 1, MTRACK ), 

*     &                         JBK = 1, NQEMGD ) 

         END IF 

      END IF 

*  |  End of quenching 

*     +-------------------------------------------------------------------

* 

      RETURN 

* 

*======================================================================* 

*                                                                      * 

*     Boundary-(X)crossing DRAWing:                                    * 

*                                                                      * 

*     Icode = 1x: call from Kaskad                                     * 

*             19: boundary crossing                                    * 

*     Icode = 2x: call from Emfsco                                     * 

*             29: boundary crossing                                    * 

*     Icode = 3x: call from Kasneu                                     * 

*             39: boundary crossing                                    * 

*     Icode = 4x: call from Kashea                                     * 

*             49: boundary crossing                                    * 

*     Icode = 5x: call from Kasoph                                     * 

*             59: boundary crossing                                    * 

*                                                                      * 
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*======================================================================* 

* 

***************************Code by Kristian***************************** 

*mreg:region before crossing 

*nreg:region after crossing 

*write crossing coords. to file(41) in pairs: 

*Add ncase (history number) to make sure it is the same particle 

*crossing both planes 

*Jtrack=1 means particle is proton (neutrons = 8) 

 

      ENTRY BXDRAW ( ICODE, MREG, NEWREG, XSCO, YSCO, ZSCO ) 

 

*plane 1: crossing regions 5 to 6 

      IF(MREG .EQ. 5 .AND. NEWREG .EQ. 6) THEN 

         IF (JTRACK .EQ. 1) THEN 

            EKPART=ETRACK-AM(JTRACK) 

 

*     If proton is from converter:             

            IF(ISPUSR(1) .EQ. 8) THEN 

*     Ek-proton calculated as totalE - Emass (0.938272...)              

               NCASE1=NCASE 

               X1=XSCO 

               Y1=YSCO 

               Z1=ZSCO 

               EK1=EKPART 

               ox=SPAUSR(1) 

               oy=SPAUSR(2) 

               oz=SPAUSR(3) 

               ocx=SPAUSR(4) 

               ocy=SPAUSR(5) 

               ocz=SPAUSR(6) 

               EKo=SPAUSR(7) 

               id=SPAUSR(8) 

*dir cos from TRACKR Cx,y,ztrck 

               Pcos1x=CXTRCK 

               Pcos1y=CYTRCK 

               Pcos1z=CZTRCK 

*     next step: write to files only if NCASE1=NCASE2 

 

            ENDIF 

         ENDIF 

      ENDIF 

*Plane 2: crossing regions 6 to 4 

      IF(MREG .EQ. 6 .AND. NEWREG .EQ. 4) THEN 

        IF (JTRACK .EQ. 1 .AND. ISPUSR(1) .EQ. 8) THEN 

           EKPART=ETRACK-AM(JTRACK) 

 

* Write new file with all info if Ncase matches for plane 

*     one and two 

            IF(NCASE .EQ. NCASE1) THEN 

               WRITE(46,*) X1,Y1,Z1,EK1,NCASE1, 

     &              ox,oy,oz,ocx,ocy,ocz,EKo, 

     &              Pcos1x,Pcos1y,Pcos1z,ISPUSR(2),id 

               WRITE(46,*) XSCO,YSCO,ZSCO,EKPART,NCASE, 

     &              SPAUSR(1), SPAUSR(2), SPAUSR(3), 

     &              SPAUSR(4), SPAUSR(5), SPAUSR(6), SPAUSR(7), 

     &              CXTRCK,CYTRCK,CZTRCK,ISPUSR(2),SPAUSR(8) 

            ENDIF 
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        ENDIF 

      ENDIF 

      RETURN 

* 

****************END OF CODE MODIFIED BY KRISTIAN************************ 

* 

*======================================================================* 

*                                                                      * 

*     Event End DRAWing:                                               * 

*                                                                      * 

*======================================================================* 

*                                                                      * 

      ENTRY EEDRAW ( ICODE ) 

      RETURN 

* 

*======================================================================* 

*                                                                      * 

*     ENergy deposition DRAWing:                                       * 

*                                                                      * 

*     Icode = 1x: call from Kaskad                                     * 

*             10: elastic interaction recoil                           * 

*             11: inelastic interaction recoil                         * 

*             12: stopping particle                                    * 

*             13: pseudo-neutron deposition                            * 

*             14: escape                                               * 

*             15: time kill                                            * 

*     Icode = 2x: call from Emfsco                                     * 

*             20: local energy deposition (i.e. photoelectric)         * 

*             21: below threshold, iarg=1                              * 

*             22: below threshold, iarg=2                              * 

*             23: escape                                               * 

*             24: time kill                                            * 

*     Icode = 3x: call from Kasneu                                     * 

*             30: target recoil                                        * 

*             31: below threshold                                      * 

*             32: escape                                               * 

*             33: time kill                                            * 

*     Icode = 4x: call from Kashea                                     * 

*             40: escape                                               * 

*             41: time kill                                            * 

*             42: delta ray stack overflow                             * 

*     Icode = 5x: call from Kasoph                                     * 

*             50: optical photon absorption                            * 

*             51: escape                                               * 

*             52: time kill                                            * 

*                                                                      * 

*======================================================================* 

*                                                                      * 

      ENTRY ENDRAW ( ICODE, MREG, RULL, XSCO, YSCO, ZSCO ) 

      IF ( .NOT. LFCOPE ) THEN 

         LFCOPE = .TRUE. 

         IF ( KOMPUT .EQ. 2 ) THEN 

            FILNAM = '/'//CFDRAW(1:8)//' DUMP A' 

         ELSE 

            FILNAM = CFDRAW 

         END IF 

         OPEN ( UNIT = IODRAW, FILE = FILNAM, STATUS = 'NEW', FORM = 

     &          'UNFORMATTED' ) 
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      END IF 

*      WRITE (IODRAW)  0, ICODE, JTRACK, SNGL (ETRACK), SNGL (WTRACK) 

*      WRITE (IODRAW)  SNGL (XSCO), SNGL (YSCO), SNGL (ZSCO), SNGL (RULL) 

*  +-------------------------------------------------------------------* 

*  |  Quenching is activated : calculate quenching factor 

*  |  and store quenched energy in DTQUEN(1, jbk) 

      IF ( LQEMGD ) THEN 

         RULLL = RULL 

         CALL QUENMG ( ICODE, MREG, RULLL, DTQUEN ) 

*         WRITE (IODRAW) ( SNGL (DTQUEN(1, JBK)), JBK = 1, NQEMGD ) 

      END IF 

*  |  end quenching 

*  +-------------------------------------------------------------------* 

      RETURN 

* 

*======================================================================* 

*                                                                      * 

*     SOurce particle DRAWing:                                         * 

*                                                                      * 

*======================================================================* 

* 

      ENTRY SODRAW 

      IF ( .NOT. LFCOPE ) THEN 

 

      END IF 

*      WRITE (IODRAW) -NCASE, NPFLKA, NSTMAX, SNGL (TKESUM), 

*     &                SNGL (WEIPRI) 

*  +-------------------------------------------------------------------* 

*  |  (Radioactive) isotope: it works only for 1 source particle on 

*  |  the stack for the time being 

      IF ( ILOFLK (NPFLKA) .GE. 100000 .AND. LRADDC (NPFLKA) ) THEN 

         IARES  = MOD ( ILOFLK (NPFLKA), 100000  )  / 100 

         IZRES  = MOD ( ILOFLK (NPFLKA), 10000000 ) / 100000 

         IISRES = ILOFLK (NPFLKA) / 10000000 

         IONID  = ILOFLK (NPFLKA) 

*         WRITE (IODRAW) ( IONID,SNGL(-TKEFLK(I)), 

*     &                    SNGL (WTFLK(I)), SNGL (XFLK (I)), 

*     &                    SNGL (YFLK (I)), SNGL (ZFLK (I)), 

*     &                    SNGL (TXFLK(I)), SNGL (TYFLK(I)), 

*     &                    SNGL (TZFLK(I)), I = 1, NPFLKA ) 

*  | 

*  +-------------------------------------------------------------------* 

*  |  Patch for heavy ions: it works only for 1 source particle on 

*  |  the stack for the time being 

      ELSE IF ( ABS (ILOFLK (NPFLKA)) .GE. 10000 ) THEN 

         IONID = ILOFLK (NPFLKA) 

         CALL DCDION ( IONID ) 

*  | 

*  +-------------------------------------------------------------------* 

*  |  Patch for heavy ions: ??? 

      ELSE IF ( ILOFLK (NPFLKA) .LT. -6 ) THEN 

*         WRITE (IODRAW) ( IONID,SNGL(TKEFLK(I)+AMNHEA(-ILOFLK(NPFLKA))), 

*     &                    SNGL (WTFLK(I)), SNGL (XFLK (I)), 

*     &                    SNGL (YFLK (I)), SNGL (ZFLK (I)), 

*     &                    SNGL (TXFLK(I)), SNGL (TYFLK(I)), 

*     &                    SNGL (TZFLK(I)), I = 1, NPFLKA ) 

*  | 

*  +-------------------------------------------------------------------* 
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*  | 

      ELSE 

*         WRITE (IODRAW) ( ILOFLK(I), SNGL (TKEFLK(I)+AM(ILOFLK(I))), 

*     &                    SNGL (WTFLK(I)), SNGL (XFLK (I)), 

*     &                    SNGL (YFLK (I)), SNGL (ZFLK (I)), 

*     &                    SNGL (TXFLK(I)), SNGL (TYFLK(I)), 

*     &                    SNGL (TZFLK(I)), I = 1, NPFLKA ) 

      END IF 

*  | 

*  +-------------------------------------------------------------------* 

      RETURN 

* 

*======================================================================* 

*                                                                      * 

*     USer dependent DRAWing:                                          * 

*                                                                      * 

*     Icode = 10x: call from Kaskad                                    * 

*             100: elastic   interaction secondaries                   * 

*             101: inelastic interaction secondaries                   * 

*             102: particle decay  secondaries                         * 

*             103: delta ray  generation secondaries                   * 

*             104: pair production secondaries                         * 

*             105: bremsstrahlung  secondaries                         * 

*             110: decay products                                      * 

*     Icode = 20x: call from Emfsco                                    * 

*             208: bremsstrahlung secondaries                          * 

*             210: Moller secondaries                                  * 

*             212: Bhabha secondaries                                  * 

*             214: in-flight annihilation secondaries                  * 

*             215: annihilation at rest   secondaries                  * 

*             217: pair production        secondaries                  * 

*             219: Compton scattering     secondaries                  * 

*             221: photoelectric          secondaries                  * 

*             225: Rayleigh scattering    secondaries                  * 

*             237: mu pair     production secondaries                  * 

*     Icode = 30x: call from Kasneu                                    * 

*             300: interaction secondaries                             * 

*     Icode = 40x: call from Kashea                                    * 

*             400: delta ray  generation secondaries                   * 

*  For all interactions secondaries are put on GENSTK common (kp=1,np) * 

*  but for KASHEA delta ray generation where only the secondary elec-  * 

*  tron is present and stacked on FLKSTK common for kp=npflka          * 

*                                                                      * 

*======================================================================* 

* 

      ENTRY USDRAW ( ICODE, MREG, XSCO, YSCO, ZSCO ) 

***** START ADDED BY KRISTIAN IN USDRAW***************************** 

*input to mgdraw to write all positions for created neutrons in 

*water (currently region no. 7) 

**     WRITE(60,*) XSCO, YSCO, ZSCO, CXR (IP), CYR(IP),KPART(IP) 

* 

* 

      IF(ICODE .EQ. 101 .AND. MREG .EQ. 7) THEN  

         DO IP = 1, NP  

            IF(KPART(IP) .EQ. 8) THEN 

*     Store origin of neutron (x,y,z) 

 

*     Loop to write 1 of 1000 hits to a file 
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               i =i+1 

               IF (i .GT. 1000) THEN 

                  WRITE(60,*) XSCO,YSCO,ZSCO,Tki(IP)  

     &            ,Cxr(IP),Cyr(IP),Czr(IP) 

*                  WRITE(61,*) XSCO, Tki(IP) 

                  i = 1 

               ENDIF 

            ENDIF    

         END DO 

      END IF 

*  

* Np = total number of secondaries * 

* Kpart (ip) = (Paprop) id of the ip_th secondary * 

* Cxr (ip) = x-axis direction cosine of the ip_th secondary * 

* Tki (ip) = laboratory kinetic energy of ip_th secondary (GeV)* 

* Wei (ip) = statistical weight of the ip_th secondary * 

* etc. (look up the full list in $FLUPRO/flukapro/(GENSTK)  

***** END ADDED BY KRISTIAN IN USDRAW***************************** 

      IF ( .NOT. LFCOPE ) THEN 

         LFCOPE = .TRUE. 

         IF ( KOMPUT .EQ. 2 ) THEN 

            FILNAM = '/'//CFDRAW(1:8)//' DUMP A' 

         ELSE 

            FILNAM = CFDRAW 

         END IF 

         OPEN ( UNIT = IODRAW, FILE = FILNAM, STATUS = 'NEW', FORM = 

     &          'UNFORMATTED' ) 

      END IF 

* No output by default: 

      RETURN 

*=== End of subrutine Mgdraw ==========================================* 

      END 
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Stuprf_v02.f 

FLUKA user routine used for both water phantom and patient treatment plan simulations. This 

is used to check which reactions happened in the converter when the secondary protons were 

created: 1) Inelastic interaction, 2) Elastic interaction and 3) Low energy neutron scattering 

(En < 20 MeV). 

*$ CREATE STUPRF.FOR 

*COPY STUPRF 

* 

*=== stuprf ===========================================================* 

* 

      SUBROUTINE STUPRF ( IJ, MREG, XX, YY, ZZ, NPSECN, NPPRMR ) 

 

      INCLUDE '(DBLPRC)' 

      INCLUDE '(DIMPAR)' 

      INCLUDE '(IOUNIT)' 

* 

*----------------------------------------------------------------------* 

*                                                                      * 

*     Copyright (C) 1997-2005      by    Alfredo Ferrari & Paola Sala  * 

*     All Rights Reserved.                                             * 

*                                                                      * 

*                                                                      * 

*     SeT User PRoperties for Fluka particles:                         * 

*                                                                      * 

*     Created on  09 october 1997  by    Alfredo Ferrari & Paola Sala  * 

*                                                   Infn - Milan       * 

*                                                                      * 

*     Last change on  14-jul-05    by    Alfredo Ferrari               * 

*                                                                      * 

*                                                                      * 

*----------------------------------------------------------------------* 

* 

      INCLUDE '(EVTFLG)' 

      INCLUDE '(FLKSTK)' 

      INCLUDE '(TRACKR)' 

      INCLUDE '(GENSTK)' 

* 

      LOUSE   (NPFLKA)  = LLOUSE 

      DO 100 ISPR = 1, MKBMX1 

         SPAREK (ISPR,NPFLKA) = SPAUSR (ISPR) 

  100 CONTINUE 

      DO 200 ISPR = 1, MKBMX2 

         ISPARK (ISPR,NPFLKA) = ISPUSR (ISPR) 

  200 CONTINUE 

*  Increment the track number and put it into the last flag: 

      IF ( NPSECN .GT. NPPRMR ) THEN 

         IF ( NTRCKS .EQ. 2000000000 ) NTRCKS = -2000000000 

         NTRCKS = NTRCKS + 1 

         ISPARK (MKBMX2,NPFLKA) = NTRCKS 

      END IF 

 

****************** 
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****************** 

 

************************************************************************* 

* Code by Kristian START tracking part 1 - in water phantom 

************************************************************************* 

      IF (LINEVT) THEN 

*         WRITE(LUNOUT,*)'W,:',NPSECN,KPART(NPSECN), NP 

         IF(KPART(NPSECN) .EQ. 8 ) THEN 

*            WRITE(LUNOUT,*)' kpartnpsecn:',Tki(NPSECN) 

            SPAREK(1,NPFLKA)=XX 

            SPAREK(2,NPFLKA)=YY 

            SPAREK(3,NPFLKA)=ZZ 

            SPAREK(4,NPFLKA)=Cxr(NPSECN) 

            SPAREK(5,NPFLKA)=Cyr(NPSECN) 

            SPAREK(6,NPFLKA)=Czr(NPSECN) 

            SPAREK(7,NPFLKA)=Tki(NPSECN) 

            SPAREK(8,NPFLKA)=MREG !identifies region of origin wat.phan.10 

         END IF    

      END IF       

 

 

 

*LELEVT = Elastic interactio 

*LINEVT = Inelastic interaction 

*LLENSC = Low energy neutron scattering 

*     310518 - could add requirement to save 

* flags only for the protons 

      IF (LINEVT) THEN 

         IF (MREG .EQ. 8) THEN 

*Save in ISPARK(1) the father ID (IJ = 8 for neutron) 

*(ISPARK goes to ISPUSR-variable in mgdraw) 

            ISPARK(1,NPFLKA)= IJ 

*set ispark 2 =1 for LINEVT                

            ISPARK(2,NPFLKA)= 1 

         ENDIF 

      ENDIF 

 

      IF (LELEVT) THEN 

*Check if we are in converter region (8) 

         IF (MREG .EQ. 8) THEN 

*               WRITE(LUNOUT,*)' detect el in conv' 

            ISPARK(1,NPFLKA)= IJ 

*set ispark 2 =2 for LELEVT   

            ISPARK(2,NPFLKA)= 2 

         ENDIF 

      ENDIF 

 

      IF (LLENSC) THEN 

*Check if we are in converter region (8) 

         IF (MREG .EQ. 8) THEN 

*               WRITE(LUNOUT,*)' detect low en scatt' 

            ISPARK(1,NPFLKA)= IJ 

*set ispark 2 =3 for LLENSC   

            ISPARK(2,NPFLKA)= 3 

         ENDIF 

      ENDIF    

*next variable of interest (int) can be stored is ISPARK(2) 

*         ISPARK(2,NPFLKA)=..... 
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*SPAREK can be used for storing non-int values (double prec?) 

*SPAREK goes to SPAUSR in mgdraw 

 

************************************************************************* 

* Code by Kristian START tracking part 1 - in water phantom 

************************************************************************* 

************************* 

************************* 

 

 

 

 

      RETURN 

*=== End of subroutine Stuprf =========================================* 

      END 
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Table A-1: Format for file output from tracking code. Subscript “1” and “2” indicates information from 

the two tracker planes. Ek is the kinetic energy of the detected proton, Ncase is the primary particle 

number. O, origin, gives the position and direction of the neutron produced. X, Y and Z is the position 

where the proton crosses the tracker planes. Eko is the neutron initial energy. P1 and P2 cos gives the 

direction of the proton on the tracker planes. Event types are 1: inelastic (LINEVT), 2: Elastic 

(LELEVT), 3: Low-energy neutron (LLENSC).     

Nr. File 46 (line 1) File 46 (line 2) File 60 

0 X_1 X_2 Ox 

1 Y_1 Y_2 Oy 

2 Z_1 Z_2 Oz 

3 Ek_1 Ek_2 Ek 

4 Ncase_1 Ncase_2 Ocos_X 

5 Ox_1 Ox_2 Ocos_Y 

6 Oy_1 Oy_2 Ocos_Z 

7 Oz_1 Oz_2  

8 OcosX_1 OcosX_2  

9 OcosY_1 Ocosy_2  

10 OcosZ_1 OcosZ_2  

11 Eko Eko  

12 P1_CosX P2_CosX  

13 P1_CosY P2_CosY  

14 P1_CosZ P2_CosZ  

15 Event type Event type  
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Appendix B  

depthdoseplot.py 

# simple 1D plot for dose vs depth for different energies 

 

import numpy as np 

import matplotlib.pyplot as plt 

import os, string 

from matplotlib.pyplot import * 

 

 

#set font size and tick size 

plt.rc('xtick',labelsize=12) 

plt.rc('ytick',labelsize=12) 

plt.rcParams.update({'font.size': 12}) 

 

#depth dose lists 

dx100 = [] 

dy100 = [] 

dx160 = [] 

dy160 = [] 

dx200 = [] 

dy200 = [] 

dx230 = [] 

dy230 = [] 

 

# Read the depth dose data files 

a = ["/home/ift-pt4/flukaProjects/1d100.dat"] 

fopen = open (os.path.join(*a), 'r') 

count = 0 

for line in fopen: 

#    if line.startswith("#"): 

    if '#' in line or not line.strip(): 

        continue 

    temp = line.split() 

    dx100.append(((float(temp[0]))+(float(temp[1])))/2) 

    dy100.append(float(temp[2])) 

 

fopen.close() 

 

# Read the depth dose data file 

a = ["/home/ift-pt4/flukaProjects/1d160.dat"] 
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fopen = open (os.path.join(*a), 'r') 

count = 0 

for line in fopen: 

#    if line.startswith("#"): 

    if '#' in line or not line.strip(): 

        continue 

    temp = line.split() 

    dx160.append(((float(temp[0]))+(float(temp[1])))/2) 

    dy160.append(float(temp[2])) 

 

fopen.close() 

 

 

 

# Read the depth dose data file 

a = ["/home/ift-pt4/flukaProjects/1d200.dat"] 

fopen = open (os.path.join(*a), 'r') 

count = 0 

for line in fopen: 

    if '#' in line or not line.strip(): 

        continue 

    temp = line.split() 

    dx200.append(((float(temp[0]))+(float(temp[1])))/2) 

    dy200.append(float(temp[2])) 

 

fopen.close() 

 

 

# Read the depth dose data file 

a = ["/home/ift-pt4/flukaProjects/1d230.dat"] 

fopen = open (os.path.join(*a), 'r') 

count = 0 

for line in fopen: 

    if '#' in line or not line.strip(): 

        continue 

    temp = line.split() 

    dx230.append(((float(temp[0]))+(float(temp[1])))/2) 

    dy230.append(float(temp[2])) 

 

fopen.close() 

 

 

#normalize to 100% 
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dy100 = [i*(100/max(dy100)) for i in dy100] 

dy160 = [i*(100/max(dy160)) for i in dy160] 

dy200 = [i*(100/max(dy200)) for i in dy200] 

dy230 = [i*(100/max(dy230)) for i in dy230] 

 

 

#depth doses plotting 

d100= plt.plot(dx100,dy100,'-',alpha=1 ,color ='k',linewidth=0.5, label = '100 MeV') 

d160= plt.plot(dx160,dy160,'-',alpha=1 ,color ='r',linewidth=0.5, label = '160 MeV') 

d200= plt.plot(dx200,dy200,'-',alpha=1 ,color ='b',linewidth=0.5, label = '200 MeV') 

d230= plt.plot(dx230,dy230,'-',alpha=1 ,color ='g',linewidth=0.5, label = '230 MeV') 

 

plt.xlabel('Depth in water [cm]') 

plt.ylabel('Relative dose [%]') 

plt.legend(loc = 'upper right') 

 

#set y and x range 

plt.xlim(0,35) 

plt.ylim(0,140) 

 

plt.show() 
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Waterphantom.py 

All water phantom plots created from file 46 and 60 (as seen in Appendix A).  

# Information from 46 and 60 file from FLUKA organised and plotted 

 

#Import python libraries 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Set font size and tick size for all plots 

plt.rcParams.update({'font.size': 14}) 

plt.rc('xtick',labelsize=12) 

plt.rc('ytick',labelsize=12) 

 

#Generate empty lists for the simulated data(detected neutrons) 

#100 MeV 

X_1_100 = [] 

Y_1_100 = [] 

Z_1_100 = [] 

Ek_1_100 = [] 

Ncase_1_100 = [] 

Ox_1_100 = [] 

Oy_1_100 = [] 

Oz_1_100 = [] 

Ocosx_1_100 = [] 

Ocosy_1_100 = [] 

Ocosz_1_100 = [] 

Eko_1_100 = [] 

P1cosx_1_100 = [] 

P1cosy_1_100 = [] 

P1cosz_1_100 = [] 

Evt_type_1_100 = [] 

 

X_2_100 = [] 

Y_2_100 = [] 

Z_2_100 = [] 

Ek_2_100 = [] 

Ncase_2_100 = [] 

Ox_2_100 = [] 

Oy_2_100 = [] 

Oz_2_100 = [] 

Ocosx_2_100 = [] 
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Ocosy_2_100 = [] 

Ocosz_2_100 = [] 

Eko_2_100 = [] 

P1cosx_2_100 = [] 

P1cosy_2_100 = [] 

P1cosz_2_100 = [] 

Evt_type_2_100 = [] 

 

#160 MeV 

X_1_160 = [] 

Y_1_160 = [] 

Z_1_160 = [] 

Ek_1_160 = [] 

Ncase_1_160 = [] 

Ox_1_160 = [] 

Oy_1_160 = [] 

Oz_1_160 = [] 

Ocosx_1_160 = [] 

Ocosy_1_160 = [] 

Ocosz_1_160 = [] 

Eko_1_160 = [] 

P1cosx_1_160 = [] 

P1cosy_1_160 = [] 

P1cosz_1_160 = [] 

Evt_type_1_160 = [] 

 

X_2_160 = [] 

Y_2_160 = [] 

Z_2_160 = [] 

Ek_2_160 = [] 

Ncase_2_160 = [] 

Ox_2_160 = [] 

Oy_2_160 = [] 

Oz_2_160 = [] 

Ocosx_2_160 = [] 

Ocosy_2_160 = [] 

Ocosz_2_160 = [] 

Eko_2_160 = [] 

P1cosx_2_160 = [] 

P1cosy_2_160 = [] 

P1cosz_2_160 = [] 

Evt_type_2_160 = [] 
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#200 MeV 

X_1_200 = [] 

Y_1_200 = [] 

Z_1_200 = [] 

Ek_1_200 = [] 

Ncase_1_200 = [] 

Ox_1_200 = [] 

Oy_1_200 = [] 

Oz_1_200 = [] 

Ocosx_1_200 = [] 

Ocosy_1_200 = [] 

Ocosz_1_200 = [] 

Eko_1_200 = [] 

P1cosx_1_200 = [] 

P1cosy_1_200 = [] 

P1cosz_1_200 = [] 

Evt_type_1_200 = [] 

 

X_2_200 = [] 

Y_2_200 = [] 

Z_2_200 = [] 

Ek_2_200 = [] 

Ncase_2_200 = [] 

Ox_2_200 = [] 

Oy_2_200 = [] 

Oz_2_200 = [] 

Ocosx_2_200 = [] 

Ocosy_2_200 = [] 

Ocosz_2_200 = [] 

Eko_2_200 = [] 

P1cosx_2_200 = [] 

P1cosy_2_200 = [] 

P1cosz_2_200 = [] 

Evt_type_2_200 = [] 

 

#230 MeV 

X_1_230 = [] 

Y_1_230 = [] 

Z_1_230 = [] 

Ek_1_230 = [] 

Ncase_1_230 = [] 

Ox_1_230 = [] 

Oy_1_230 = [] 
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Oz_1_230 = [] 

Ocosx_1_230 = [] 

Ocosy_1_230 = [] 

Ocosz_1_230 = [] 

Eko_1_230 = [] 

P1cosx_1_230 = [] 

P1cosy_1_230 = [] 

P1cosz_1_230 = [] 

Evt_type_1_230 = [] 

 

X_2_230 = [] 

Y_2_230 = [] 

Z_2_230 = [] 

Ek_2_230 = [] 

Ncase_2_230 = [] 

Ox_2_230 = [] 

Oy_2_230 = [] 

Oz_2_230 = [] 

Ocosx_2_230 = [] 

Ocosy_2_230 = [] 

Ocosz_2_230 = [] 

Eko_2_230 = [] 

P1cosx_2_230 = [] 

P1cosy_2_230 = [] 

P1cosz_2_230 = [] 

Evt_type_2_230 = [] 

 

 

# Read the data files and append to the empty lists 

import csv 

 

with open('100MeV_001_all46_p_coordinates_and_parent_n_origin_xyz.csv', 'r') as 

csvFile: 

    reader = csv.reader(csvFile) 

    k = 0 

    for row in reader: 

    temp = row[0].split() 

    if (k % 2) == 0: 

            X_1_100.append(float(temp[0])) 

            Y_1_100.append(float(temp[1])) 

            Z_1_100.append(float(temp[2])) 

            Ek_1_100.append(float(temp[3])*1000) 

            Ncase_1_100.append(float(temp[4])) 
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           Ox_1_100.append(float(temp[5])) 

            Oy_1_100.append(float(temp[6])) 

            Oz_1_100.append(float(temp[7])) 

            Ocosx_1_100.append(float(temp[8])) 

            Ocosy_1_100.append(float(temp[9])) 

            Ocosz_1_100.append(float(temp[10])) 

            Eko_1_100.append(float(temp[11])*1000) 

            P1cosx_1_100.append(float(temp[12])) 

            P1cosy_1_100.append(float(temp[13])) 

            P1cosz_1_100.append(float(temp[14])) 

            Evt_type_1_100.append(float(temp[15])) 

 

    else: 

            X_2_100.append(float(temp[0])) 

            Y_2_100.append(float(temp[1])) 

            Z_2_100.append(float(temp[2])) 

            Ek_2_100.append(float(temp[3])*1000) 

            Ncase_2_100.append(float(temp[4])) 

            Ox_2_100.append(float(temp[5])) 

            Oy_2_100.append(float(temp[6])) 

            Oz_2_100.append(float(temp[7])) 

            Ocosx_2_100.append(float(temp[8])) 

            Ocosy_2_100.append(float(temp[9])) 

            Ocosz_2_100.append(float(temp[10])) 

            Eko_2_100.append(float(temp[11])*1000) 

            P1cosx_2_100.append(float(temp[12])) 

            P1cosy_2_100.append(float(temp[13])) 

            P1cosz_2_100.append(float(temp[14])) 

            Evt_type_2_100.append(float(temp[15])) 

    k = k + 1 

 

csvFile.close() 

 

 

with open('160MeV_001_all46_p_coordinates_and_parent_n_origin_xyz.csv', 'r') as 

csvFile: 

    reader = csv.reader(csvFile) 

    a = 0 

    for row in reader: 

    temp = row[0].split() 

    if (a % 2) == 0: 

            X_1_160.append(float(temp[0])) 

            Y_1_160.append(float(temp[1])) 



 

74 

 

            Z_1_160.append(float(temp[2])) 

            Ek_1_160.append(float(temp[3])*1000) 

            Ncase_1_160.append(float(temp[4])) 

           Ox_1_160.append(float(temp[5])) 

            Oy_1_160.append(float(temp[6])) 

            Oz_1_160.append(float(temp[7])) 

            Ocosx_1_160.append(float(temp[8])) 

            Ocosy_1_160.append(float(temp[9])) 

            Ocosz_1_160.append(float(temp[10])) 

            Eko_1_160.append(float(temp[11])*1000) 

            P1cosx_1_160.append(float(temp[12])) 

            P1cosy_1_160.append(float(temp[13])) 

            P1cosz_1_160.append(float(temp[14])) 

            Evt_type_1_160.append(float(temp[15])) 

 

    else: 

            X_2_160.append(float(temp[0])) 

            Y_2_160.append(float(temp[1])) 

            Z_2_160.append(float(temp[2])) 

            Ek_2_160.append(float(temp[3])*1000) 

            Ncase_2_160.append(float(temp[4])) 

            Ox_2_160.append(float(temp[5])) 

            Oy_2_160.append(float(temp[6])) 

            Oz_2_160.append(float(temp[7])) 

            Ocosx_2_160.append(float(temp[8])) 

            Ocosy_2_160.append(float(temp[9])) 

            Ocosz_2_160.append(float(temp[10])) 

            Eko_2_160.append(float(temp[11])*1000) 

            P1cosx_2_160.append(float(temp[12])) 

            P1cosy_2_160.append(float(temp[13])) 

            P1cosz_2_160.append(float(temp[14])) 

            Evt_type_2_160.append(float(temp[15])) 

    a = a + 1 

 

csvFile.close() 

 

 

 

with open('200MeV_001_all46_p_coordinates_and_parent_n_origin_xyz.csv', 'r') as 

csvFile: 

    reader = csv.reader(csvFile) 

    b = 0 

    for row in reader: 
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    temp = row[0].split() 

    if (b % 2) == 0: 

            X_1_200.append(float(temp[0])) 

            Y_1_200.append(float(temp[1])) 

            Z_1_200.append(float(temp[2])) 

            Ek_1_200.append(float(temp[3])*1000) 

            Ncase_1_200.append(float(temp[4])) 

           Ox_1_200.append(float(temp[5])) 

            Oy_1_200.append(float(temp[6])) 

            Oz_1_200.append(float(temp[7])) 

            Ocosx_1_200.append(float(temp[8])) 

            Ocosy_1_200.append(float(temp[9])) 

            Ocosz_1_200.append(float(temp[10])) 

            Eko_1_200.append(float(temp[11])*1000) 

            P1cosx_1_200.append(float(temp[12])) 

            P1cosy_1_200.append(float(temp[13])) 

            P1cosz_1_200.append(float(temp[14])) 

            Evt_type_1_200.append(float(temp[15])) 

 

    else: 

            X_2_200.append(float(temp[0])) 

            Y_2_200.append(float(temp[1])) 

            Z_2_200.append(float(temp[2])) 

            Ek_2_200.append(float(temp[3])*1000) 

            Ncase_2_200.append(float(temp[4])) 

            Ox_2_200.append(float(temp[5])) 

            Oy_2_200.append(float(temp[6])) 

            Oz_2_200.append(float(temp[7])) 

            Ocosx_2_200.append(float(temp[8])) 

            Ocosy_2_200.append(float(temp[9])) 

            Ocosz_2_200.append(float(temp[10])) 

            Eko_2_200.append(float(temp[11])*1000) 

            P1cosx_2_200.append(float(temp[12])) 

            P1cosy_2_200.append(float(temp[13])) 

            P1cosz_2_200.append(float(temp[14])) 

            Evt_type_2_200.append(float(temp[15])) 

    b = b + 1 

 

csvFile.close() 

 

 

 

with open('230MeV_001_all46_p_coordinates_and_parent_n_origin_xyz.csv', 'r') as 



 

76 

 

csvFile: 

    reader = csv.reader(csvFile) 

    c = 0 

    for row in reader: 

    temp = row[0].split() 

    if (c % 2) == 0: 

            X_1_230.append(float(temp[0])) 

            Y_1_230.append(float(temp[1])) 

            Z_1_230.append(float(temp[2])) 

            Ek_1_230.append(float(temp[3])*1000) 

            Ncase_1_230.append(float(temp[4])) 

           Ox_1_230.append(float(temp[5])) 

            Oy_1_230.append(float(temp[6])) 

            Oz_1_230.append(float(temp[7])) 

            Ocosx_1_230.append(float(temp[8])) 

            Ocosy_1_230.append(float(temp[9])) 

            Ocosz_1_230.append(float(temp[10])) 

            Eko_1_230.append(float(temp[11])*1000) 

            P1cosx_1_230.append(float(temp[12])) 

            P1cosy_1_230.append(float(temp[13])) 

            P1cosz_1_230.append(float(temp[14])) 

            Evt_type_1_230.append(float(temp[15])) 

 

    else: 

            X_2_230.append(float(temp[0])) 

            Y_2_230.append(float(temp[1])) 

            Z_2_230.append(float(temp[2])) 

            Ek_2_230.append(float(temp[3])*1000) 

            Ncase_2_230.append(float(temp[4])) 

            Ox_2_230.append(float(temp[5])) 

            Oy_2_230.append(float(temp[6])) 

            Oz_2_230.append(float(temp[7])) 

            Ocosx_2_230.append(float(temp[8])) 

            Ocosy_2_230.append(float(temp[9])) 

            Ocosz_2_230.append(float(temp[10])) 

            Eko_2_230.append(float(temp[11])*1000) 

            P1cosx_2_230.append(float(temp[12])) 

            P1cosy_2_230.append(float(temp[13])) 

            P1cosz_2_230.append(float(temp[14])) 

            Evt_type_2_230.append(float(temp[15])) 

    c = c + 1 

 

csvFile.close() 
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primaries = '1.2x10$^{9}$' 

 

bp100 = 7.6 

bp160 = 17.5 

bp200 = 25.7 

bp230 = 32.6 

 

 

#Information on produced neutrons 

 

#create data lists 

Ox_100 = [] 

Oy_100 = [] 

Oz_100 = [] 

Eko_100 = [] 

Ocosx_100 = [] 

Ocosy_100 = [] 

Ocosz_100 = [] 

 

Ox_160 = [] 

Oy_160 = [] 

Oz_160 = [] 

Eko_160 = [] 

Ocosx_160 = [] 

Ocosy_160 = [] 

Ocosz_160 = [] 

 

Ox_200 = [] 

Oy_200 = [] 

Oz_200 = [] 

Eko_200 = [] 

Ocosx_200 = [] 

Ocosy_200 = [] 

Ocosz_200 = [] 

 

Ox_230 = [] 

Oy_230 = [] 

Oz_230 = [] 

Eko_230 = [] 

Ocosx_230 = [] 
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Ocosy_230 = [] 

Ocosz_230 = [] 

 

 

# Read the data file and append to the empty lists 

 

import csv 

 

with open('100MeV_001_all60_xyz_origin_all_neutrons.csv', 'r') as csvFile: 

    reader = csv.reader(csvFile) 

    k = 0 

    for row in reader: 

    temp = row[0].split() 

       Ox_100.append(float(temp[0])) 

        Oy_100.append(float(temp[1])) 

        Oz_100.append(float(temp[2])) 

        Eko_100.append(float(temp[3])*1000) 

        Ocosx_100.append(float(temp[4])) 

        Ocosy_100.append(float(temp[5])) 

        Ocosz_100.append(float(temp[6])) 

 

    k = k + 1 

 

csvFile.close() 

 

 

with open('160MeV_001_all60_xyz_origin_all_neutrons.csv', 'r') as csvFile: 

    reader = csv.reader(csvFile) 

    a = 0 

    for row in reader: 

    temp = row[0].split() 

       Ox_160.append(float(temp[0])) 

        Oy_160.append(float(temp[1])) 

        Oz_160.append(float(temp[2])) 

        Eko_160.append(float(temp[3])*1000) 

        Ocosx_160.append(float(temp[4])) 

        Ocosy_160.append(float(temp[5])) 

        Ocosz_160.append(float(temp[6])) 

 

    a = a + 1 

 

csvFile.close() 
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with open('200MeV_001_all60_xyz_origin_all_neutrons.csv', 'r') as csvFile: 

    reader = csv.reader(csvFile) 

    b = 0 

    for row in reader: 

    temp = row[0].split() 

       Ox_200.append(float(temp[0])) 

        Oy_200.append(float(temp[1])) 

        Oz_200.append(float(temp[2])) 

        Eko_200.append(float(temp[3])*1000) 

        Ocosx_200.append(float(temp[4])) 

        Ocosy_200.append(float(temp[5])) 

        Ocosz_200.append(float(temp[6])) 

 

    b = b + 1 

 

csvFile.close() 

 

 

with open('230MeV_001_all60_xyz_origin_all_neutrons.csv', 'r') as csvFile: 

    reader = csv.reader(csvFile) 

    c = 0 

    for row in reader: 

    temp = row[0].split() 

       Ox_230.append(float(temp[0])) 

        Oy_230.append(float(temp[1])) 

        Oz_230.append(float(temp[2])) 

        Eko_230.append(float(temp[3])*1000) 

        Ocosx_230.append(float(temp[4])) 

        Ocosy_230.append(float(temp[5])) 

        Ocosz_230.append(float(temp[6])) 

 

    c = c + 1 

 

csvFile.close() 

 

 

 

#PLOT ENERGIES OF PRODUCED AND DETECTED NEUTRONS 

#energy of the neutrons produced 

fig, axes = plt.subplots(nrows = 1, ncols = 2, figsize = (15,6)) 

 

MIN, MAX = 0.01, 1000 
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(counts1, bins1) = np.histogram(Eko_100,bins = np.logspace(np.log10(MIN), 

np.log10(MAX), 200)) 

(counts2, bins2) = np.histogram(Eko_160, bins = np.logspace(np.log10(MIN), 

np.log10(MAX), 200)) 

(counts3, bins3) = np.histogram(Eko_200, bins = np.logspace(np.log10(MIN), 

np.log10(MAX), 200)) 

(counts4, bins4) = np.histogram(Eko_230, bins = np.logspace(np.log10(MIN), 

np.log10(MAX), 200)) 

 

#multiply by a factor of 1000 since only 1 of 1000 neutrons were stored in the 60-

file 

f = 1000 

axes[0].hist(bins1[:-1],bins1,weights = f*counts1,  ec='black', fc='none', lw=0.5, 

histtype='step', label = '100 MeV') 

axes[0].hist(bins2[:-1], bins2, weights = f*counts2, ec='red', fc='none', lw=0.5, 

histtype='step', label = '160 MeV') 

axes[0].hist(bins3[:-1], bins3, weights = f*counts3, ec='blue', fc='none', lw=0.5, 

histtype='step', label = '200 MeV') 

axes[0].hist(bins4[:-1], bins4, weights = f*counts4,ec='green', fc='none', lw=0.5, 

histtype='step', label = '230 MeV') 

axes[0].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0)) 

axes[0].yaxis.major.formatter._useMathText = True 

axes[0].set_xscale('log') 

 

 

#energy of neutrons detected 

MIN, MAX = 0.01, 1000 

 

axes[1].hist(Eko_1_100,bins = np.logspace(np.log10(MIN), np.log10(MAX), 200), 

ec='black', fc='none', lw=0.5, histtype='step') 

axes[1].hist(Eko_1_160, bins = np.logspace(np.log10(MIN), np.log10(MAX), 200), 

ec='red', fc='none', lw=0.5, histtype='step') 

axes[1].hist(Eko_1_200, bins = np.logspace(np.log10(MIN), np.log10(MAX), 200), 

ec='blue', fc='none', lw=0.5, histtype='step') 

axes[1].hist(Eko_1_230, bins = np.logspace(np.log10(MIN), np.log10(MAX), 200), 

ec='green', fc='none', lw=0.5, histtype='step') 

axes[1].set_xscale('log') 

axes[1].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0)) 

axes[1].yaxis.major.formatter._useMathText = True 

fig.text(0.08, 0.88, 'a', fontsize = 20) 

fig.text(0.52, 0.88, 'b', fontsize = 20) 

fig.text(0.5, 0.04, 'Kinetic energy [MeV]', ha='center', va='center') 
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fig.text(0.06, 0.5, 'Neutrons from ' + str(primaries) + ' primary protons', 

ha='center', va='center', rotation='vertical') 

fig.legend(loc = 'upper right') 

plt.show() 

 

 

 

 

#HISTOGRAM SHOWING PRODUCTION POSITIONS OF PRODUCED AND DETECTED NEUTRONS 

# histogram: where the neutrons are produced 

primaries = '1.2x10$^{9}$' 

 

fig, axes = plt.subplots(nrows = 1, ncols = 2, figsize = (15,6)) 

 

(counts1, bins1) = np.histogram(Ox_100, 100) 

(counts2, bins2) = np.histogram(Ox_160, 100) 

(counts3, bins3) = np.histogram(Ox_200, 100) 

(counts4, bins4) = np.histogram(Ox_230, 100) 

#multiply by 1000 

f = 1000 

axes[0].hist(bins1[:-1],bins1,weights = f*counts1, ec='black', fc='none', lw=0.5, 

histtype='step') 

axes[0].hist(bins2[:-1], bins2, weights = f*counts2, ec='red', fc='none', lw=0.5, 

histtype='step') 

axes[0].hist(bins3[:-1], bins3, weights = f*counts3, ec='blue', fc='none', lw=0.5, 

histtype='step') 

axes[0].hist(bins4[:-1], bins4, weights = f*counts4, ec='green', fc='none', lw=0.5, 

histtype='step') 

axes[0].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0)) 

axes[0].yaxis.major.formatter._useMathText = True 

 

 

#Add line indicating Bragg peak location 

axes[0].axvline(x=bp100, color = 'k', linestyle = '--', lw=0.5, alpha = 0.5, label 

= 'Bragg peak position') 

axes[0].axvline(x=bp160, color= 'r', linestyle = '--', lw=0.5, alpha=0.5) 

axes[0].axvline(x=bp200, color= 'b', linestyle = '--', lw=0.5, alpha=0.5) 

axes[0].axvline(x=bp230, color= 'g', linestyle = '--', lw=0.5, alpha=0.5) 

axes[0].set_xlim(0,40) 

 

 

#Create histogram, depth in water 

axes[1].hist(Ox_1_100, 500, ec='black', fc='none', lw=0.5, histtype='step', label = 
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'100 MeV') 

axes[1].hist(Ox_1_160, 500, ec='red', fc='none', lw=0.5, histtype='step', label = 

'160 MeV') 

axes[1].hist(Ox_1_200, 500, ec='blue', fc='none', lw=0.5, histtype='step', label = 

'200 MeV') 

axes[1].hist(Ox_1_230, 500, ec='green', fc='none', lw=0.5, histtype='step', label = 

'230 MeV') 

axes[1].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0)) 

axes[1].yaxis.major.formatter._useMathText = True 

axes[1].set_xlim(0,40) 

 

axes[1].axvline(x=bp100, color = 'k', linestyle = '--', lw=0.5, alpha=0.5) 

axes[1].axvline(x=bp160, color= 'r', linestyle = '--', lw=0.5, alpha=0.5) 

axes[1].axvline(x=bp200, color= 'b', linestyle = '--', lw=0.5, alpha=0.5) 

axes[1].axvline(x=bp230, color= 'g', linestyle = '--', lw=0.5, alpha=0.5) 

 

fig.text(0.08, 0.85, 'a', fontsize = 20) 

fig.text(0.52, 0.85, 'b', fontsize = 20) 

fig.text(0.5, 0.04, 'Depth in water [cm]', ha='center', va='center') 

fig.text(0.06, 0.5, 'Neutrons from ' + str(primaries) + ' primary protons', 

ha='center', va='center', rotation='vertical') 

fig.legend(loc='upper right') 

plt.show() 

 

 

 

fig, axes = plt.subplots(nrows = 2, ncols = 2) 

# Neutron detection as function of detector size: increasing height & width 

nbneutron100 = [] 

nbneutron160 = [] 

nbneutron200 = [] 

nbneutron230 = [] 

wh100 = 2.5 

 

for m in range(46): 

    for a, b, c, d in zip(X_1_100, Y_1_100, X_2_100, Y_2_100): 

        if (15 - wh100) < a < (15 + wh100) and (15 - wh100) < c < (15 + wh100) and 

-wh100 < b < wh100 and -wh100 < d < wh100: 

            nbneutron100.append(wh100*2) 

    wh100 = wh100 + 0.5 

 

wh160 = 2.5 

for m in range(46): 
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    for e, f, g, h in zip(X_1_160, Y_1_160, X_2_160, Y_2_160): 

        if (21 - wh160) < e < (21 + wh160) and (21 - wh160) < g < (21 + wh160) and 

-wh160 < f < wh160 and -wh160 < h < wh160: 

            nbneutron160.append(wh160*2) 

    wh160 = wh160 + 0.5 

 

wh200 = 2.5 

for m in range(46): 

    for i, j, k, l in zip(X_1_200, Y_1_200, X_2_200, Y_2_200): 

        if (24 - wh200) < i < (24 + wh200) and (24 - wh200) < k < (24 + wh200) and 

-wh200 < j < wh200 and -wh200 < l < wh200: 

            nbneutron200.append(wh200*2) 

    wh200 = wh200 + 0.5 

 

wh230 = 2.5 

for m in range(46): 

    for n, o, p, q in zip(X_1_230, Y_1_230, X_2_230, Y_2_230): 

        if (28 - wh230) < n < (28 + wh230) and (28 - wh230) < p < (28 + wh230) and 

-wh230 < o < wh230 and -wh230 < q < wh230: 

            nbneutron230.append(wh230*2) 

    wh230 = wh230 + 0.5 

 

 

 

n1, bins1, _ =axes[0,0].hist(nbneutron100, bins = np.arange(min(nbneutron100)-0.5, 

max(nbneutron100)+0.5, 1), ec = 'red', fc='none', lw=0.5, histtype='step', align = 

'left', label = 'All neutrons') 

n2, bins2, _ =axes[0,1].hist(nbneutron160, bins = np.arange(min(nbneutron160)-0.5, 

max(nbneutron160)+0.5, 1), ec = 'red', fc='none', lw=0.5, histtype='step', align = 

'left') 

n3, bins3, _ =axes[1,0].hist(nbneutron200, bins = np.arange(min(nbneutron200)-0.5, 

max(nbneutron200)+0.5, 1), ec = 'red', fc='none', lw=0.5, histtype='step', align = 

'left') 

n4, bins4, _ =axes[1,1].hist(nbneutron230, bins = np.arange(min(nbneutron230)-0.5, 

max(nbneutron230)+0.5, 1), ec = 'red', fc='none', lw=0.5, histtype='step', align = 

'left') 

 

#linear fit 

bincenters1 = 0.5*(bins1[1:]+bins1[:-1]) 

bincenters2 = 0.5*(bins2[1:]+bins2[:-1]) 

bincenters3 = 0.5*(bins3[1:]+bins3[:-1]) 

bincenters4 = 0.5*(bins4[1:]+bins4[:-1]) 
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coef1 = np.polyfit(bincenters1, n1,1) 

coef2 = np.polyfit(bincenters2, n2,1) 

coef3 = np.polyfit(bincenters3, n3,1) 

coef4 = np.polyfit(bincenters4, n4,1) 

 

poly1d_fn1 = np.poly1d(coef1) 

poly1d_fn2 = np.poly1d(coef2) 

poly1d_fn3 = np.poly1d(coef3) 

poly1d_fn4 = np.poly1d(coef4) 

 

axes[0,0].plot(bincenters1, poly1d_fn1(bincenters1), '--r', lw=1.0, 

color='black',alpha = 0.5, label = 'Linear fit') 

axes[0,1].plot(bincenters2, poly1d_fn2(bincenters2), '--r', lw=1.0, 

color='black',alpha = 0.5) 

axes[1,0].plot(bincenters3, poly1d_fn3(bincenters3), '--r', lw=1.0, 

color='black',alpha = 0.5) 

axes[1,1].plot(bincenters4, poly1d_fn4(bincenters4), '--r', lw=1.0, 

color='black',alpha = 0.5) 

 

axes[0,0].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0)) 

axes[0,0].yaxis.major.formatter._useMathText = True 

 

 

# Neutron detection as function of detector size: increasing height & width, only 

last half before bragg peak 

nbneutronbragg100 = [] 

nbneutronbragg160 = [] 

nbneutronbragg200 = [] 

nbneutronbragg230 = [] 

whb100 = 2.5 

 

for m in range(46): 

    for a, b, c, d, v in zip(X_1_100, Y_1_100, X_2_100, Y_2_100, Ox_1_100): 

        if (16 - whb100) < a < (16 + whb100) and (16 - whb100) < c < (16 + whb100) 

and -whb100 < b < whb100 and -whb100 < d < whb100 and 3.8 < v < 7.6: 

            nbneutronbragg100.append(whb100*2) 

    whb100 = whb100 + 0.5 

 

whb160 = 2.5 

for m in range(46): 

    for e, f, g, h, z in zip(X_1_160, Y_1_160, X_2_160, Y_2_160, Ox_1_160): 

        if (24 - whb160) < e < (24 + whb160) and (24 - whb160) < g < (24 + whb160) 

and -whb160 < f < whb160 and -whb160 < h < whb160 and 8.8 < z < 17.6: 
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            nbneutronbragg160.append(whb160*2) 

    whb160 = whb160 + 0.5 

 

whb200 = 2.5 

for m in range(46): 

    for i, j, k, l, u in zip(X_1_200, Y_1_200, X_2_200, Y_2_200, Ox_1_200): 

        if (31 - whb200) < i < (31 + whb200) and (31 - whb200) < k < (31 + whb200) 

and -whb200 < j < whb200 and -whb200 < l < whb200 and 12.95 < u < 25.9: 

            nbneutronbragg200.append(whb200*2) 

    whb200 = whb200 + 0.5 

 

whb230 = 2.5 

for m in range(46): 

    for n, o, p, q, y in zip(X_1_230, Y_1_230, X_2_230, Y_2_230, Ox_1_230): 

        if (36 - whb230) < n < (36 + whb230) and (36 - whb230) < p < (36 + whb230) 

and -whb230 < o < whb230 and -whb230 < q < whb230 and 16.45 < y < 32.9: 

            nbneutronbragg230.append(whb230*2) 

    whb230 = whb230 + 0.5 

 

 

 

n1, bins1, _ =axes[0,0].hist(nbneutronbragg100, bins = 

np.arange(min(nbneutronbragg100)-0.5, max(nbneutronbragg100)+0.5, 1), ec = 'blue', 

fc='none', lw=0.5, histtype='step', align = 'left', label ='Last half') 

n2, bins2, _ =axes[0,1].hist(nbneutronbragg160, bins = 

np.arange(min(nbneutronbragg160)-0.5, max(nbneutronbragg160)+0.5, 1), ec='blue', 

fc='none', lw=0.5, histtype='step', align = 'left') 

n3, bins3, _ =axes[1,0].hist(nbneutronbragg200, bins = 

np.arange(min(nbneutronbragg200)-0.5, max(nbneutronbragg200)+0.5, 1), ec='blue', 

fc='none', lw=0.5, histtype='step', align = 'left') 

n4, bins4, _ =axes[1,1].hist(nbneutronbragg230, bins = 

np.arange(min(nbneutronbragg230)-0.5, max(nbneutronbragg230)+0.5, 1), ec='blue', 

fc='none', lw=0.5, histtype='step', align = 'left') 

 

 

#linear fit 

bincenters1 = 0.5*(bins1[1:]+bins1[:-1]) 

bincenters2 = 0.5*(bins2[1:]+bins2[:-1]) 

bincenters3 = 0.5*(bins3[1:]+bins3[:-1]) 

bincenters4 = 0.5*(bins4[1:]+bins4[:-1]) 

 

coef1 = np.polyfit(bincenters1, n1,1) 

coef2 = np.polyfit(bincenters2, n2,1) 
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coef3 = np.polyfit(bincenters3, n3,1) 

coef4 = np.polyfit(bincenters4, n4,1) 

 

poly1d_fn1 = np.poly1d(coef1) 

poly1d_fn2 = np.poly1d(coef2) 

poly1d_fn3 = np.poly1d(coef3) 

poly1d_fn4 = np.poly1d(coef4) 

 

axes[0,0].plot(bincenters1, poly1d_fn1(bincenters1), '--r', lw=1.0, color = 

'black',alpha = 0.5) 

axes[0,1].plot(bincenters2, poly1d_fn2(bincenters2), '--r', lw=1.0, color = 

'black',alpha = 0.5) 

axes[1,0].plot(bincenters3, poly1d_fn3(bincenters3), '--r', lw=1.0, color = 

'black',alpha = 0.5) 

axes[1,1].plot(bincenters4, poly1d_fn4(bincenters4), '--r', lw=1.0, color = 

'black',alpha = 0.5) 

 

axes[0,1].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0)) 

axes[0,1].yaxis.major.formatter._useMathText = True 

 

 

# Neutron detection as function of detector size: increasing height & width, only 

last quarter before bragg peak 

 

 

nbneutronbragg100 = [] 

nbneutronbragg160 = [] 

nbneutronbragg200 = [] 

nbneutronbragg230 = [] 

whb100 = 2.5 

 

for m in range(46): 

    for a, b, c, d, v in zip(X_1_100, Y_1_100, X_2_100, Y_2_100, Ox_1_100): 

        if (16 - whb100) < a < (16 + whb100) and (16 - whb100) < c < (16 + whb100) 

and -whb100 < b < whb100 and -whb100 < d < whb100 and 5.7 < v < 7.6: 

            nbneutronbragg100.append(whb100*2) 

    whb100 = whb100 + 0.5 

 

whb160 = 2.5 

for m in range(46): 

    for e, f, g, h, z in zip(X_1_160, Y_1_160, X_2_160, Y_2_160, Ox_1_160): 

        if (24 - whb160) < e < (24 + whb160) and (24 - whb160) < g < (24 + whb160) 

and -whb160 < f < whb160 and -whb160 < h < whb160 and 12.6 < z < 17.6: 
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            nbneutronbragg160.append(whb160*2) 

    whb160 = whb160 + 0.5 

 

whb200 = 2.5 

for m in range(46): 

    for i, j, k, l, u in zip(X_1_200, Y_1_200, X_2_200, Y_2_200, Ox_1_200): 

        if (31 - whb200) < i < (31 + whb200) and (31 - whb200) < k < (31 + whb200) 

and -whb200 < j < whb200 and -whb200 < l < whb200 and 19.425 < u < 25.9: 

            nbneutronbragg200.append(whb200*2) 

    whb200 = whb200 + 0.5 

 

whb230 = 2.5 

for m in range(46): 

    for n, o, p, q, y in zip(X_1_230, Y_1_230, X_2_230, Y_2_230, Ox_1_230): 

        if (36 - whb230) < n < (36 + whb230) and (36 - whb230) < p < (36 + whb230) 

and -whb230 < o < whb230 and -whb230 < q < whb230 and 24.675 < y < 32.9: 

            nbneutronbragg230.append(whb230*2) 

    whb230 = whb230 + 0.5 

 

 

 

n1, bins1, _ =axes[0,0].hist(nbneutronbragg100, bins = 

np.arange(min(nbneutronbragg100)-0.5, max(nbneutronbragg100)+0.5, 1), ec = 'green', 

fc='none', lw=0.5, histtype='step', align = 'left', label = 'Last quarter') 

n2, bins2, _ =axes[0,1].hist(nbneutronbragg160, bins = 

np.arange(min(nbneutronbragg160)-0.5, max(nbneutronbragg160)+0.5, 1), ec='green', 

fc='none', lw=0.5, histtype='step', align = 'left') 

n3, bins3, _ =axes[1,0].hist(nbneutronbragg200, bins = 

np.arange(min(nbneutronbragg200)-0.5, max(nbneutronbragg200)+0.5, 1), ec='green', 

fc='none', lw=0.5, histtype='step', align = 'left') 

n4, bins4, _ =axes[1,1].hist(nbneutronbragg230, bins = 

np.arange(min(nbneutronbragg230)-0.5, max(nbneutronbragg230)+0.5, 1), ec='green', 

fc='none', lw=0.5, histtype='step', align = 'left') 

 

#linear fit 

bincenters1 = 0.5*(bins1[1:]+bins1[:-1]) 

bincenters2 = 0.5*(bins2[1:]+bins2[:-1]) 

bincenters3 = 0.5*(bins3[1:]+bins3[:-1]) 

bincenters4 = 0.5*(bins4[1:]+bins4[:-1]) 

 

coef1 = np.polyfit(bincenters1, n1,1) 

coef2 = np.polyfit(bincenters2, n2,1) 

coef3 = np.polyfit(bincenters3, n3,1) 
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coef4 = np.polyfit(bincenters4, n4,1) 

 

poly1d_fn1 = np.poly1d(coef1) 

poly1d_fn2 = np.poly1d(coef2) 

poly1d_fn3 = np.poly1d(coef3) 

poly1d_fn4 = np.poly1d(coef4) 

 

axes[0,0].plot(bincenters1, poly1d_fn1(bincenters1), '--r', lw=1.0, color = 

'black',alpha = 0.5) 

axes[0,1].plot(bincenters2, poly1d_fn2(bincenters2), '--r', lw=1.0, color = 

'black',alpha = 0.5) 

axes[1,0].plot(bincenters3, poly1d_fn3(bincenters3), '--r', lw=1.0, color = 

'black',alpha = 0.5) 

axes[1,1].plot(bincenters4, poly1d_fn4(bincenters4), '--r', lw=1.0, color = 

'black',alpha = 0.5) 

 

axes[1,0].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0)) 

axes[1,0].yaxis.major.formatter._useMathText = True 

axes[1,1].ticklabel_format(style = 'sci', axis = 'y', scilimits = (0,0)) 

axes[1,1].yaxis.major.formatter._useMathText = True 

 

#subplot titles 

axes[0,0].set_title('100 MeV', fontsize = '14') 

axes[0,1].set_title('160 MeV', fontsize = '14') 

axes[1,0].set_title('200 MeV', fontsize = '14') 

axes[1,1].set_title('230 MeV', fontsize = '14') 

 

#y limits 

axes[0,0].set_ylim(0,16000) 

axes[0,1].set_ylim(0,63000) 

axes[1,0].set_ylim(0,120000) 

axes[1,1].set_ylim(0,160000) 

 

 

fig.text(0.5, 0.04, 'Side length of the detector [cm]', ha='center', va='center') 

fig.text(0.06, 0.5, 'Neutrons from ' + str(primaries) + ' primary protons', 

ha='center', va='center', rotation='vertical') 

fig.subplots_adjust(right=0.8) 

fig.legend(loc = 'upper right') 

plt.show() 
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# Set font size and tick size for all plots 

plt.rcParams.update({'font.size': 20}) 

plt.rc('xtick',labelsize=20) 

plt.rc('ytick',labelsize=20) 

 

 

#Create histogram, location on detector planes x-direction 

fig, axes = plt.subplots(nrows = 2, ncols = 2) 

 

 

n1, bins1, _ =axes[0,0].hist(X_1_100, bins = range(-30,163, 3), ec='blue', fc='none', 

lw=1.0, histtype='step', label='First tracking detector') 

n11, bins11, _ =axes[0,0].hist(X_2_100, bins = range(-30,163, 3), ec='red', 

fc='none', lw=1.0, histtype='step', label='Second tracking detector') 

 

n2, bins2, _ =axes[0,1].hist(X_1_160, bins = range(-30,163, 3), ec='blue', fc='none', 

lw=1.0, histtype='step') 

n22, bins22, _ =axes[0,1].hist(X_2_160, bins = range(-30,163, 3), ec='red', 

fc='none', lw=1.0, histtype='step') 

 

n3, bins3, _ =axes[1,0].hist(X_1_200, bins = range(-30,163, 3), ec='blue', fc='none', 

lw=1.0, histtype='step') 

n33, bins33, _ =axes[1,0].hist(X_2_200, bins = range(-30,163, 3), ec='red', 

fc='none', lw=1.0, histtype='step') 

 

n4, bins4, _ =axes[1,1].hist(X_1_230, bins = range(-30,163, 3), ec='blue', fc='none', 

lw=1.0, histtype='step') 

n44, bins44, _ =axes[1,1].hist(X_2_230,bins = range(-30,163, 3), ec='red', 

fc='none', lw=1.0, histtype='step') 

 

#Magnitude of statistical uncertainty 

menStd1 = np.sqrt(n1) 

menStd2 = np.sqrt(n2) 

menStd3 = np.sqrt(n3) 

menStd4 = np.sqrt(n4) 

menStd11 = np.sqrt(n11) 

menStd22 = np.sqrt(n22) 

menStd33 = np.sqrt(n33) 

menStd44 = np.sqrt(n44) 

 

#Center of bins 

bincenters1 = 0.5*(bins1[1:]+bins1[:-1]) 
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bincenters2 = 0.5*(bins2[1:]+bins2[:-1]) 

bincenters3 = 0.5*(bins3[1:]+bins3[:-1]) 

bincenters4 = 0.5*(bins4[1:]+bins4[:-1]) 

bincenters11 = 0.5*(bins11[1:]+bins11[:-1]) 

bincenters22 = 0.5*(bins22[1:]+bins22[:-1]) 

bincenters33 = 0.5*(bins33[1:]+bins33[:-1]) 

bincenters44 = 0.5*(bins44[1:]+bins44[:-1]) 

 

 

#Plot error bars 

axes[0,0].errorbar(bincenters1, n1, yerr = menStd1, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[0,1].errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[1,0].errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[1,1].errorbar(bincenters4, n4, yerr = menStd4, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[0,0].errorbar(bincenters11, n11, yerr = menStd11, fmt = 'none', ecolor = 

'black', elinewidth = 1.0) 

axes[0,1].errorbar(bincenters22, n22, yerr = menStd22, fmt = 'none', ecolor = 

'black', elinewidth = 1.0) 

axes[1,0].errorbar(bincenters33, n33, yerr = menStd33, fmt = 'none', ecolor = 

'black', elinewidth = 1.0) 

axes[1,1].errorbar(bincenters44, n44, yerr = menStd44, fmt = 'none', ecolor = 

'black', elinewidth = 1.0) 

 

#Set subplot title and Bragg peak location 

axes[0,0].set_title('100 MeV') 

axes[0,0].axvline(x=bp100, color = 'k', linestyle = '--', alpha=0.5, label = 'Bragg 

peak position') 

axes[0,1].set_title('160 MeV') 

axes[0,1].axvline(x=bp160, color= 'k', linestyle = '--', alpha=0.5) 

axes[1,0].set_title('200 MeV') 

axes[1,0].axvline(x=bp200, color= 'k', linestyle = '--', alpha=0.5) 

axes[1,1].set_title('230 MeV') 

axes[1,1].axvline(x=bp230, color= 'k', linestyle = '--', alpha=0.5) 

 

fig.text(0.5, 0.04,'Location on tracking detector in x-direction [cm]', ha='center', 

va='center') 

fig.text(0.06, 0.5,'Neutrons from ' + str(primaries) + ' primary protons' , 

ha='center', va='center', rotation='vertical') 

fig.legend(loc='upper right') 
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fig.subplots_adjust(right=0.8) 

plt.show() 

 

 

 

#Create scatter plot 

Ox_1000_100 = [] 

Oy_1000_100 = [] 

Eko_1000_100 = [] 

 

#Gather 1000 neutrons for plotting 

ind = 0 

for u, o, j in zip(Ox_1_100,Oy_1_100, Eko_1_100): 

    if ind < 1000: 

        if u < 40 and o < 5: 

            Ox_1000_100.append(u) 

            Oy_1000_100.append(o) 

            Eko_1000_100.append(j) 

            ind = ind + 1 

    else: 

        break 

 

 

Ox_1000_160 = [] 

Oy_1000_160 = [] 

Eko_1000_160 = [] 

 

ind = 0 

for u, o, j in zip(Ox_1_160,Oy_1_160, Eko_1_160): 

    if ind < 1000: 

        if u < 40 and o < 5: 

            Ox_1000_160.append(u) 

            Oy_1000_160.append(o) 

            Eko_1000_160.append(j) 

            ind = ind + 1 

    else: 

        break 

 

Ox_1000_200 = [] 

Oy_1000_200 = [] 

Eko_1000_200 = [] 

 

ind = 0 
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for u, o, j in zip(Ox_1_200,Oy_1_200, Eko_1_200): 

    if ind < 1000: 

        if u < 40 and o < 5: 

            Ox_1000_200.append(u) 

            Oy_1000_200.append(o) 

            Eko_1000_200.append(j) 

            ind = ind + 1 

    else: 

        break 

 

 

Ox_1000_230 = [] 

Oy_1000_230 = [] 

Eko_1000_230 = [] 

 

ind = 0 

for u, o, j in zip(Ox_1_230,Oy_1_230, Eko_1_230): 

    if ind < 1000: 

        if u < 40 and o < 5: 

            Ox_1000_230.append(u) 

            Oy_1000_230.append(o) 

            Eko_1000_230.append(j) 

            ind = ind + 1 

    else: 

        break 

 

 

fig, axes = plt.subplots(nrows = 2, ncols = 2) 

colors100 = Eko_1000_100 

axes[0,0].scatter(Ox_1000_100, Oy_1000_100, c=colors100, s = 7, alpha=0.5) 

axes[0,0].set_title('100 MeV') 

axes[0,0].set_ylim(-4,4) 

 

colors160 = Eko_1000_160 

axes[0,1].scatter(Ox_1000_160, Oy_1000_160, c=colors160, s = 7, alpha=0.5) 

axes[0,1].set_title('160 MeV') 

axes[0,1].set_ylim(-4,4) 

 

colors200 = Eko_1000_200 

axes[1,0].scatter(Ox_1000_200, Oy_1000_200, c=colors200, s = 7, alpha=0.5) 

axes[1,0].set_title('200 MeV') 

axes[1,0].set_ylim(-4,4) 
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colors230 = Eko_1000_230 

img = axes[1,1].scatter(Ox_1000_230, Oy_1000_230, c=colors230, s = 7, alpha=0.5) 

axes[1,1].set_title('230 MeV') 

axes[1,1].set_ylim(-4,4) 

 

fig.text(0.5, 0.04, 'Depth in water [cm]', ha='center', va='center') 

fig.text(0.06, 0.5, 'Distance from primary beam axis [cm]', ha='center', va='center', 

rotation='vertical') 

fig.subplots_adjust(right=0.8) 

cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) 

cbar = fig.colorbar(img, cax=cbar_ax) 

cbar.set_label('Neutron energy [MeV]') 

plt.show() 

 

 

 

 

# Create 2D histogram, scatter plot 

fig, axes = plt.subplots(nrows = 2, ncols = 2, sharey=True) 

 

img1 = axes[0,0].hist2d(Ox_1_100, Oy_1_100, bins=(1000, 1500), cmap=plt.cm.jet) 

axes[0,0].set_title('100 MeV') 

axes[0,0].set_ylim(-4,4) 

axes[0,0].set_xlim(0,30) 

 

img2 = axes[0,1].hist2d(Ox_1_160, Oy_1_160, bins=(1000, 1500), cmap=plt.cm.jet) 

axes[0,1].set_title('160 MeV') 

axes[0,1].set_ylim(-3,3) 

axes[0,1].set_xlim(0,30) 

 

img3 = axes[1,0].hist2d(Ox_1_200, Oy_1_200, bins=(1000, 1500), cmap=plt.cm.jet) 

axes[1,0].set_title('200 MeV') 

axes[1,0].set_ylim(-3,3) 

axes[1,0].set_xlim(0,30) 

 

img1 = axes[1,1].hist2d(Ox_1_230, Oy_1_230, bins=(1000, 1500), cmap=plt.cm.jet) 

axes[1,1].set_title('230 MeV') 

axes[1,1].set_ylim(-3,3) 

axes[1,1].set_xlim(0,30) 

 

fig.text(0.5, 0.04, 'Depth in water [cm]', ha='center', va='center') 

fig.text(0.06, 0.5, 'Distance from primary beam axis [cm]', ha='center', va='center', 

rotation='vertical') 
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fig.subplots_adjust(right=0.8) 

cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) 

cbar = fig.colorbar(img1[3], cax=cbar_ax) 

cbar.set_label('Number of neutrons') 

plt.show() 

 

 

 

 

# Neutron detection as a function of detector position: all neutrons 

nbneu100 = [] 

nbneu160 = [] 

nbneu200 = [] 

nbneu230 = [] 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a in zip(X_1_100 ,X_2_100 , Y_1_100 ,Y_2_100): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10: 

            nbneu100.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a in zip(X_1_160 ,X_2_160 , Y_1_160 ,Y_2_160): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10: 

            nbneu160.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

x = -10 

low = -20 

high = 0 

h = 0 
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for h in range(160): 

    for b, n, k, a in zip(X_1_200 ,X_2_200 , Y_1_200 ,Y_2_200): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10: 

            nbneu200.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a in zip(X_1_230 ,X_2_230 , Y_1_230 ,Y_2_230): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10: 

            nbneu230.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

fig, ax = plt.subplots() 

 

 

n1, bins1, _ = plt.hist(nbneu100, bins = np.arange(min(nbneu100)-0.5, 

max(nbneu100)+0.5, 1),  ec='black', fc='none', lw=1.0, histtype='step', label = '100 

MeV') 

 

n2, bins2, _ = plt.hist(nbneu160, bins = np.arange(min(nbneu160)-0.5, 

max(nbneu160)+0.5, 1),  ec='red', fc='none', lw=1.0, histtype='step',  label = '160 

MeV') 

 

n3, bins3, _ = plt.hist(nbneu200, bins = np.arange(min(nbneu200)-0.5, 

max(nbneu200)+0.5, 1),  ec='blue', fc='none', lw=1.0, histtype='step', label = '200 

MeV') 

 

n4, bins4, _ = plt.hist(nbneu230, bins = np.arange(min(nbneu230)-0.5, 

max(nbneu230)+0.5, 1),  ec='green', fc='none', lw=1.0, histtype='step', label = '230 

MeV') 

 

 

menStd1 = np.sqrt(n1) 

menStd2 = np.sqrt(n2) 
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menStd3 = np.sqrt(n3) 

menStd4 = np.sqrt(n4) 

 

 

bincenters1 = 0.5*(bins1[1:]+bins1[:-1]) 

bincenters2 = 0.5*(bins2[1:]+bins2[:-1]) 

bincenters3 = 0.5*(bins3[1:]+bins3[:-1]) 

bincenters4 = 0.5*(bins4[1:]+bins4[:-1]) 

 

 

 

 

plt.errorbar(bincenters1, n1, yerr = menStd1, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

plt.errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

plt.errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

plt.errorbar(bincenters4, n4, yerr = menStd4, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

 

 

plt.xlabel('Center point of detector in x-direction [cm]') 

plt.ylabel('Number of neutrons from ' + str(primaries) + ' primary protons') 

plt.axvline(x=bp100, color = 'k', linestyle = '--', alpha=0.5, label = 'Bragg peak 

position') 

plt.axvline(x=bp160, color= 'r', linestyle = '--', alpha=0.5) 

plt.axvline(x=bp200, color= 'b', linestyle = '--', alpha=0.5) 

plt.axvline(x=bp230, color= 'g', linestyle = '--', alpha=0.5) 

plt.legend(loc='upper right') 

plt.show() 

 

 

 

 

 

# Histogram, sum of 160 and 200 MeV 

 

nbneu160 = [] 

nbneu200 = [] 

 

 

x = -10 
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low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a in zip(X_1_160 ,X_2_160 , Y_1_160 ,Y_2_160): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10: 

            nbneu160.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a in zip(X_1_200 ,X_2_200 , Y_1_200 ,Y_2_200): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10: 

            nbneu200.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

fig, ax = plt.subplots() 

 

 

 

n2, bins2, _ = plt.hist(nbneu160, bins = np.arange(min(nbneu160)-0.5, 

max(nbneu160)+0.5, 1),  ec='black', fc='none', lw=1.0, histtype='step', label = '160 

MeV') 

 

n3, bins3, _ = plt.hist(nbneu200, bins = np.arange(min(nbneu200)-0.5, 

max(nbneu200)+0.5, 1),  ec='red', fc='none', lw=1.0, histtype='step', label = '200 

MeV') 

 

 

tot = nbneu160 

tot.extend(nbneu200) 

n5, bins5, _ = plt.hist(tot, bins = np.arange(min(tot)-0.5, max(tot)+0.5, 1), 

ec='blue', fc='none', lw=1.0, histtype='step', label = 'Sum of 160 & 200 MeV') 
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menStd2 = np.sqrt(n2) 

menStd3 = np.sqrt(n3) 

menStd5 = np.sqrt(n5) 

 

 

bincenters2 = 0.5*(bins2[1:]+bins2[:-1]) 

bincenters3 = 0.5*(bins3[1:]+bins3[:-1]) 

bincenters5 = 0.5*(bins5[1:]+bins5[:-1]) 

 

 

plt.errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

plt.errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

plt.errorbar(bincenters5, n5, yerr = menStd5, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

 

plt.xlabel('Center point of detector in x-direction [cm]') 

plt.ylabel('Number of neutrons from ' + str(primaries) + ' primary protons') 

 

plt.axvline(x=bp160, color= 'k', linestyle = '--', alpha=0.5, label = 'Bragg peak 

position') 

plt.axvline(x=bp200, color= 'r', linestyle = '--', alpha=0.5) 

 

plt.legend(loc='upper right') 

plt.show() 

 

 

 

 

#MULTIPLOT WITH THE DIFFERENT ANALYSES OF NEUTRON DETECTION RATE 

# Neutron detection as a function of detector position: all neutrons 

nbneu100 = [] 

nbneu160 = [] 

nbneu200 = [] 

nbneu230 = [] 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 
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    for b, n, k, a in zip(X_1_100 ,X_2_100 , Y_1_100 ,Y_2_100): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10: 

            nbneu100.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a in zip(X_1_160 ,X_2_160 , Y_1_160 ,Y_2_160): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10: 

            nbneu160.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a in zip(X_1_200 ,X_2_200 , Y_1_200 ,Y_2_200): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10: 

            nbneu200.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a in zip(X_1_230 ,X_2_230 , Y_1_230 ,Y_2_230): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10: 

            nbneu230.append(x) 

    low = low + 1 

    high = high + 1 
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    x = x+1 

 

 

fig, axes = plt.subplots(nrows = 2, ncols = 2) 

 

n1, bins1, _ = axes[0,0].hist(nbneu100, bins = np.arange(min(nbneu100)-0.5, 

max(nbneu100)+0.5, 1),  ec='red', fc='none', lw=1.0, histtype='step', label = 'All 

neutrons') 

 

n2, bins2, _ = axes[0,1].hist(nbneu160, bins = np.arange(min(nbneu160)-0.5, 

max(nbneu160)+0.5, 1),  ec='red', fc='none', lw=1.0, histtype='step') 

 

n3, bins3, _ = axes[1,0].hist(nbneu200, bins = np.arange(min(nbneu200)-0.5, 

max(nbneu200)+0.5, 1),  ec='red', fc='none', lw=1.0, histtype='step') 

 

n4, bins4, _ = axes[1,1].hist(nbneu230, bins = np.arange(min(nbneu230)-0.5, 

max(nbneu230)+0.5, 1),  ec='red', fc='none', lw=1.0, histtype='step') 

 

 

 

axes[0,0].set_title('100 MeV') 

axes[0,1].set_title('160 MeV') 

axes[1,0].set_title('200 MeV') 

axes[1,1].set_title('230 MeV') 

 

 

menStd1 = np.sqrt(n1) 

menStd2 = np.sqrt(n2) 

menStd3 = np.sqrt(n3) 

menStd4 = np.sqrt(n4) 

 

bincenters1 = 0.5*(bins1[1:]+bins1[:-1]) 

bincenters2 = 0.5*(bins2[1:]+bins2[:-1]) 

bincenters3 = 0.5*(bins3[1:]+bins3[:-1]) 

bincenters4 = 0.5*(bins4[1:]+bins4[:-1]) 

 

 

axes[0,0].errorbar(bincenters1, n1, yerr = menStd1, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[0,1].errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[1,0].errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 
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axes[1,1].errorbar(bincenters4, n4, yerr = menStd4, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

 

axes[0,0].axvline(x=bp100, color = 'k', linestyle = '--', alpha=0.5, label = 'Bragg 

peak position') 

axes[0,1].axvline(x=bp160, color= 'k', linestyle = '--', alpha=0.5) 

axes[1,0].axvline(x=bp200, color= 'k', linestyle = '--', alpha=0.5) 

axes[1,1].axvline(x=bp230, color= 'k', linestyle = '--', alpha=0.5) 

 

 

fig.text(0.5, 0.04,'Center point of detector in x-direction [cm]', ha='center', 

va='center') 

fig.text(0.06, 0.5,'Neutrons from ' + str(primaries) + ' primary protons' , 

ha='center', va='center', rotation='vertical') 

 

 

 

 

 

 

 

 

# Neutron detection as a function of detector position: only neutrons from last half 

before bragg peak 

nbneubragg100 = [] 

nbneubragg160 = [] 

nbneubragg200 = [] 

nbneubragg230 = [] 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a, u in zip(X_1_100 ,X_2_100 , Y_1_100 ,Y_2_100, Ox_1_100): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and 

3.8 < u < 7.6: 

            nbneubragg100.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

x = -10 

low = -20 
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high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a, u in zip(X_1_160 ,X_2_160 , Y_1_160 ,Y_2_160, Ox_1_160): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and 

8.8 < u < 17.6: 

            nbneubragg160.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a, u in zip(X_1_200 ,X_2_200 , Y_1_200 ,Y_2_200, Ox_1_200): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and 

12.95 < u < 25.9: 

            nbneubragg200.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a, u in zip(X_1_230 ,X_2_230 , Y_1_230 ,Y_2_230, Ox_1_230): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and 

16.45 < u < 32.9: 

            nbneubragg230.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

n1, bins1, _ = axes[0,0].hist(nbneubragg100, bins = np.arange(min(nbneubragg100)-

0.5, max(nbneubragg100)+0.5, 1),  ec='blue', fc='none', lw=1.0, histtype='step', 

label = 'Last half') 
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n2, bins2, _ = axes[0,1].hist(nbneubragg160, bins = np.arange(min(nbneubragg160)-

0.5, max(nbneubragg160)+0.5, 1),  ec='blue', fc='none', lw=1.0, histtype='step') 

 

n3, bins3, _ = axes[1,0].hist(nbneubragg200, bins = np.arange(min(nbneubragg200)-

0.5, max(nbneubragg200)+0.5, 1),  ec='blue', fc='none', lw=1.0, histtype='step') 

 

n4, bins4, _ = axes[1,1].hist(nbneubragg230, bins = np.arange(min(nbneubragg230)-

0.5, max(nbneubragg230)+0.5, 1),  ec='blue', fc='none', lw=1.0, histtype='step') 

 

 

menStd1 = np.sqrt(n1) 

menStd2 = np.sqrt(n2) 

menStd3 = np.sqrt(n3) 

menStd4 = np.sqrt(n4) 

 

 

bincenters1 = 0.5*(bins1[1:]+bins1[:-1]) 

bincenters2 = 0.5*(bins2[1:]+bins2[:-1]) 

bincenters3 = 0.5*(bins3[1:]+bins3[:-1]) 

bincenters4 = 0.5*(bins4[1:]+bins4[:-1]) 

 

 

axes[0,0].errorbar(bincenters1, n1, yerr = menStd1, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[0,1].errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[1,0].errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[1,1].errorbar(bincenters4, n4, yerr = menStd4, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

 

 

 

 

 

# Neutron detection as a function of detector position: only neutrons from last 

quarter before bragg peak 

nbneubragg100 = [] 

nbneubragg160 = [] 

nbneubragg200 = [] 

nbneubragg230 = [] 

x = -10 

low = -20 
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high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a, u in zip(X_1_100 ,X_2_100 , Y_1_100 ,Y_2_100, Ox_1_100): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and 

5.7 < u < 7.6: 

            nbneubragg100.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a, u in zip(X_1_160 ,X_2_160 , Y_1_160 ,Y_2_160, Ox_1_160): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and 

13.2 < u < 17.6: 

            nbneubragg160.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

x = -10 

low = -20 

high = 0 

h = 0 

for h in range(160): 

    for b, n, k, a, u in zip(X_1_200 ,X_2_200 , Y_1_200 ,Y_2_200, Ox_1_200): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and 

19.425 < u < 25.9: 

            nbneubragg200.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

x = -10 

low = -20 

high = 0 

h = 0 
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for h in range(160): 

    for b, n, k, a, u in zip(X_1_230 ,X_2_230 , Y_1_230 ,Y_2_230, Ox_1_230): 

        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10 and 

24.675 < u < 32.9: 

            nbneubragg230.append(x) 

 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

n1, bins1, _ = axes[0,0].hist(nbneubragg100, bins = np.arange(min(nbneubragg100)-

0.5, max(nbneubragg100)+0.5, 1),  ec='green', fc='none', lw=1.0, histtype='step', 

label = 'Last quarter') 

 

n2, bins2, _ = axes[0,1].hist(nbneubragg160, bins = np.arange(min(nbneubragg160)-

0.5, max(nbneubragg160)+0.5, 1),  ec='green', fc='none', lw=1.0, histtype='step') 

 

n3, bins3, _ = axes[1,0].hist(nbneubragg200, bins = np.arange(min(nbneubragg200)-

0.5, max(nbneubragg200)+0.5, 1),  ec='green', fc='none', lw=1.0, histtype='step') 

 

n4, bins4, _ = axes[1,1].hist(nbneubragg230, bins = np.arange(min(nbneubragg230)-

0.5, max(nbneubragg230)+0.5, 1),  ec='green', fc='none', lw=1.0, histtype='step') 

 

 

menStd1 = np.sqrt(n1) 

menStd2 = np.sqrt(n2) 

menStd3 = np.sqrt(n3) 

menStd4 = np.sqrt(n4) 

 

bincenters1 = 0.5*(bins1[1:]+bins1[:-1]) 

bincenters2 = 0.5*(bins2[1:]+bins2[:-1]) 

bincenters3 = 0.5*(bins3[1:]+bins3[:-1]) 

bincenters4 = 0.5*(bins4[1:]+bins4[:-1]) 

 

axes[0,0].errorbar(bincenters1, n1, yerr = menStd1, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[0,1].errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[1,0].errorbar(bincenters3, n3, yerr = menStd3, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 

axes[1,1].errorbar(bincenters4, n4, yerr = menStd4, fmt = 'none', ecolor = 'black', 

elinewidth = 1.0) 
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fig.legend(loc='upper right') 

plt.show() 
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Maxdetrate.py 

Script used for creating Figure 25, showing the maximum neutron detection rate for the three 

analyses done in this thesis. 

#Create plot summarizing the positions of maximum detection rate 

import numpy as np 

import matplotlib.pyplot as plt 

 

#lists containing positions of maximum detection rate 

energies = [100, 160, 200, 230] 

All = [15, 20.5, 24.5, 28] 

half = [16, 24, 31, 35.5] 

quarter = [17, 25.5, 33, 39] 

bragg = [7.6, 17.6, 25.7, 32.6] 

 

 

#Create a linear fit 

coef = np.polyfit(energies,All,1) 

coef2 = np.polyfit(energies,half,1) 

coef3 = np.polyfit(energies,quarter,1) 

coef4 = np.polyfit(energies,bragg,1) 

 

poly1d_fn = np.poly1d(coef) 

poly1d_fn2 = np.poly1d(coef2) 

poly1d_fn3 = np.poly1d(coef3) 

poly1d_fn4 = np.poly1d(coef4) 

 

 

#ad errorbars 

errorAll = [2, 1.5, 1.5, 2] 

errorHalf = [3, 2, 2, 1.5] 

errorQuarter = [4, 1.5, 2, 2] 

 

plt.errorbar(energies, All, yerr = errorAll, fmt = 'none', ecolor = 'red', elinewidth 

= 0.5) 

plt.errorbar(energies, half, yerr = errorHalf, fmt = 'none', ecolor = 'blue', 

elinewidth = 0.5) 

plt.errorbar(energies, quarter, yerr = errorQuarter, fmt = 'none', ecolor = 'green', 

elinewidth = 0.5) 

 

 

#plot points of maximum detection rate and corresponding linear fit 
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plt.plot(energies, All, 'ro', label = 'All neutrons') 

plt.plot(energies, poly1d_fn(energies), '--r', lw=1.0, alpha = 0.5) 

 

plt.plot(energies, half, 'bs', label = 'Last half') 

plt.plot(energies, poly1d_fn2(energies), '--b', lw=1.0, alpha = 0.5) 

 

plt.plot(energies, quarter, 'g^', label = 'Last quarter') 

plt.plot(energies, poly1d_fn3(energies), '--g', lw=1.0, alpha = 0.5) 

 

plt.plot(energies, bragg, 'kH', label = 'Bragg peak') 

plt.plot(energies, poly1d_fn4(energies), '--k', lw=1.0, alpha = 0.5) 

 

 

#labels and legend 

plt.xlabel('Energy [MeV]') 

plt.ylabel('Position in depth direction [cm]') 

plt.legend(loc = 'upper left') 

plt.show() 
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Patientplan.py 

Script used for creating all patient plan plots in this thesis.  

#PATIENT TREATMENT PLAN PLOTS 

 

import numpy as np 

import matplotlib.pyplot as plt 

 

 

plt.rcParams.update({'font.size': 12}) 

plt.rc('xtick',labelsize=12) 

plt.rc('ytick',labelsize=12) 

 

 

#IMPORT DATA, PRODUCED NEUTRONS 

#create data lists 

Ox = [] 

Oy = [] 

Oz = [] 

Ocosx = [] 

Ocosy = [] 

Ocosz = [] 

Eko = [] 

 

import csv 

 

with open('zzProstHUH37_all60_xyz_origin_all_neutrons.csv', 'r') as csvFile: 

    reader = csv.reader(csvFile) 

    k = 0 

    for row in reader: 

    temp = row[0].split() 

       Ox.append(float(temp[0])) 

        Oy.append(float(temp[1])) 

        Oz.append(float(temp[2])) 

        Eko.append(float(temp[3])*1000) 

        Ocosx.append(float(temp[4])) 

        Ocosy.append(float(temp[5])) 

        Ocosz.append(float(temp[6])) 

 

    k = k + 1 

 

csvFile.close() 
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#IMPORT DATA, DETECTED NEUTRONS 

#data lists 

X_1 = [] 

Y_1 = [] 

Z_1 = [] 

Ek_1 = [] 

Ncase_1 = [] 

Ox_1 = [] 

Oy_1 = [] 

Oz_1 = [] 

Ocosx_1 = [] 

Ocosy_1 = [] 

Ocosz_1 = [] 

Eko_1 = [] 

P1cosx_1 = [] 

P1cosy_1 = [] 

P1cosz_1 = [] 

Evt_type_1 = [] 

 

X_2 = [] 

Y_2 = [] 

Z_2 = [] 

Ek_2 = [] 

Ncase_2 = [] 

Ox_2 = [] 

Oy_2 = [] 

Oz_2 = [] 

Ocosx_2 = [] 

Ocosy_2 = [] 

Ocosz_2 = [] 

Eko_2 = [] 

P1cosx_2 = [] 

P1cosy_2 = [] 

P1cosz_2 = [] 

Evt_type_2 = [] 

 

 

# Read the data files and append to the empty lists 
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import csv 

with open('zzProstHUH37_all46_p_coordinates_and_parent_n_origin_xyz.csv', 'r') as 

csvFile: 

    reader = csv.reader(csvFile) 

    k = 0 

    for row in reader: 

    temp = row[0].split() 

    if (k % 2) == 0: 

            X_1.append(float(temp[0])) 

            Y_1.append(float(temp[1])) 

            Z_1.append(float(temp[2])) 

            Ek_1.append(float(temp[3])*1000) 

            Ncase_1.append(float(temp[4])) 

           Ox_1.append(float(temp[5])) 

            Oy_1.append(float(temp[6])) 

            Oz_1.append(float(temp[7])) 

            Ocosx_1.append(float(temp[8])) 

            Ocosy_1.append(float(temp[9])) 

            Ocosz_1.append(float(temp[10])) 

            Eko_1.append(float(temp[11])*1000) 

            P1cosx_1.append(float(temp[12])) 

            P1cosy_1.append(float(temp[13])) 

            P1cosz_1.append(float(temp[14])) 

            Evt_type_1.append(float(temp[15])) 

 

    else: 

            X_2.append(float(temp[0])) 

            Y_2.append(float(temp[1])) 

            Z_2.append(float(temp[2])) 

            Ek_2.append(float(temp[3])*1000) 

            Ncase_2.append(float(temp[4])) 

            Ox_2.append(float(temp[5])) 

            Oy_2.append(float(temp[6])) 

            Oz_2.append(float(temp[7])) 

            Ocosx_2.append(float(temp[8])) 

            Ocosy_2.append(float(temp[9])) 

            Ocosz_2.append(float(temp[10])) 

            Eko_2.append(float(temp[11])*1000) 

            P1cosx_2.append(float(temp[12])) 

            P1cosy_2.append(float(temp[13])) 

            P1cosz_2.append(float(temp[14])) 

            Evt_type_2.append(float(temp[15])) 

    k = k + 1 
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csvFile.close() 

 

 

#Change the size of the detector to 190x200 cm (SAME AS WATER PHANTOM): 

xs = 0 

 

dX_1 = [] 

dY_1 = [] 

dZ_1 = [] 

dEk_1 = [] 

dNcase_1 = [] 

dOx_1 = [] 

dOy_1 = [] 

dOz_1 = [] 

dOcosx_1 = [] 

dOcosy_1 = [] 

dOcosz_1 = [] 

dEko_1 = [] 

dP1cosx_1 = [] 

dP1cosy_1 = [] 

dP1cosz_1 = [] 

dEvt_type_1 = [] 

 

dX_2 = [] 

dY_2 = [] 

dZ_2 = [] 

dEk_2 = [] 

dNcase_2 = [] 

dOx_2 = [] 

dOy_2 = [] 

dOz_2 = [] 

dOcosx_2 = [] 

dOcosy_2 = [] 

dOcosz_2 = [] 

dEko_2 = [] 

dP1cosx_2 = [] 

dP1cosy_2 = [] 

dP1cosz_2 = [] 

dEvt_type_2 = [] 

 

 

for a, b, c, d, e, f, g in zip(X_1, Z_1, X_2, Z_2, Ox_1, Eko_1, Oz_1): 
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    if 50 > a > -140 and 50 > c > -140 and -100 < b < 100 and -100 < d < 100: 

            dX_1.append(a) 

            dZ_1.append(b) 

           dOx_1.append(e) 

            dOz_1.append(g) 

            dEko_1.append(f) 

            dX_2.append(c) 

            dZ_2.append(d) 

        xs = xs + 1 

 

 

 

#Number of primary particles 

primaries = '1.2x10$^{9}$' 

 

 

 

 

#CREATE PLOTS 

 

 

#MULTIPLOT, PRODUCTION POSITIONS AND ENERGIES 

#Create histogram, depth in water 

fig, axes = plt.subplots(nrows = 1, ncols = 2, figsize = (15,6)) 

 

#produced 

newOx = [] 

for i in Ox: 

    i = i - 20 

    newOx.append(abs(i)) 

 

axes[0].set_xlim(0,40) 

axes[0].hist(newOx, bins = np.arange(min(newOx)-0.5, max(newOx)+0.5, 0.3), ec='red', 

fc='none', lw=0.5, histtype='step', label = 'Produced neutrons') 

 

#detected 

newOx2 = [] 

for i in dOx_1: 

    i = i - 20 

    newOx2.append(abs(i)) 

 

axes[0].set_xlim(0,40) 
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axes[0].hist(newOx2, bins = np.arange(min(newOx2)-0.5, max(newOx2)+0.5, 0.3), 

ec='blue', fc='none', lw=0.5, histtype='step', label = 'Detected neutrons') 

 

#SOBP 

axes[0].axvspan(11.6,23.8,alpha = 0.2, color = 'black', label = 'SOBP') 

 

axes[0].set_xlabel('Depth in patient [cm]') 

axes[0].legend(loc='upper right') 

 

 

#energy 

MIN, MAX = 0.01, 1000 

#produced 

axes[1].hist(Eko,bins = np.logspace(np.log10(MIN), np.log10(MAX), 200), ec='red', 

fc='none', lw=0.5, histtype='step', label = 'Produced neutrons') 

#detected 

axes[1].hist(dEko_1,bins = np.logspace(np.log10(MIN), np.log10(MAX), 200), 

ec='blue', fc='none', lw=0.5, histtype='step', label = 'Detected neutrons') 

axes[1].set_xscale('log') 

axes[1].set_xlabel('Kinetic energy [MeV]') 

axes[1].legend(loc = 'upper left') 

 

fig.text(0.06, 0.5, 'Neutrons from ' + str(primaries) + ' primary protons', 

ha='center', va='center', rotation='vertical') 

fig.text(0.08, 0.88, 'a', fontsize = 20) 

fig.text(0.52, 0.88, 'b', fontsize = 20) 

 

 

plt.show() 

 

 

#change the x-axis of the patient 

newX_1 = [] 

for i in dX_1: 

    if i <= 20: 

        i = i - 20 

        newX_1.append(abs(i)) 

    else: 

        i = i - 20 

        newX_1.append(-(i)) 

 

newX_2 = [] 

for i in dX_2: 
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    if i <= 20: 

        i = i - 20 

        newX_2.append(abs(i)) 

    else: 

        i = i - 20 

        newX_2.append(-(i)) 

 

 

 

#NEUTRON DETECTION AS A FUNCTION OF DETECTOR SIZE 

nbneutron100 = [] 

 

wh100 = 2.5 

#Create list holding the neutron detection rate for different detector sizes 

for m in range(50): 

    for a, b, c, d in zip(newX_1, dZ_1, newX_2, dZ_2): 

        if (32 - wh100) < a < (32 + wh100) and (32 - wh100) < c < (32 + wh100) and 

-wh100 < b < wh100 and -wh100 < d < wh100: 

            nbneutron100.append(wh100*2) 

    wh100 = wh100 + 0.5 

 

n, bins, _ = plt.hist(nbneutron100, bins = np.arange(min(nbneutron100)-0.5, 

max(nbneutron100)+0.5, 1), ec = 'darkblue', fc='none', lw=0.5, histtype='step', 

align = 'left') 

 

#linear fit 

bincenters = 0.5*(bins[1:]+bins[:-1]) 

coef = np.polyfit(bincenters, n,1) 

poly1d_fn = np.poly1d(coef) 

plt.plot(bincenters, poly1d_fn(bincenters), '--r', lw=1.0, alpha = 0.5, label = 

'Linear fit') 

 

#labels 

plt.xlabel('Side length of the detector [cm]') 

plt.ylabel('Neutrons from ' + str(primaries) + ' primary protons') 

plt.ylim(0,30000) 

plt.legend(loc= 'upper left') 

plt.show() 

 

 

#CHANGE FONT SIZE FOR THE REST OF THE PLOTS 

plt.rcParams.update({'font.size': 20}) 

plt.rc('xtick',labelsize=20) 
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plt.rc('ytick',labelsize=20) 

 

 

 

#CREATE HISTOGRAM, LOCATION ON DETECTOR PLANES X-DIRECTION 

#histogram 

n, bins, _ = plt.hist(newX_1, bins = np.arange(min(newX_1), max(newX_1)+3, 3), 

ec='blue', fc='none', lw=1.0, histtype='step', label='First tracking detector') 

n2, bins2, _ = plt.hist(newX_2, bins = np.arange(min(newX_2), max(newX_2)+3, 3), 

ec='red', fc='none', lw=1.0, histtype='step', label='Second tracking detector') 

 

 

#errorbars 

menStd = np.sqrt(n) 

menStd2 = np.sqrt(n2) 

bincenters = 0.5*(bins[1:]+bins[:-1]) 

bincenters2 = 0.5*(bins2[1:]+bins2[:-1]) 

plt.errorbar(bincenters, n, yerr = menStd, fmt = 'none', ecolor = 'black') 

plt.errorbar(bincenters2, n2, yerr = menStd2, fmt = 'none', ecolor = 'black') 

 

 

#SOBP 

plt.axvspan(11.6,23.8,alpha = 0.2, color = 'black', label = 'SOBP') 

#legend and labels 

plt.legend(loc='upper right') 

plt.xlim(-35,170) 

plt.xlabel('Location on tracking detector in x-direction [cm]') 

plt.ylabel('Neutrons from ' + str(primaries) + ' primary protons') 

plt.show() 

 

 

 

 

# Neutron detection as a function of detector position 

 

#create new list holding the center positions of 20x20cm detectors moved 1 cm step 

nbneu = [] 

x = -20 

low = -30 

high = -10 

h = 0 

for h in range(170): 

    for b, n, k, a in zip(newX_1 ,newX_2, dZ_1, dZ_2): 
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        if low < b < high and low < n < high and -10 < k < 10 and -10 < a < 10: 

            nbneu.append(x) 

    low = low + 1 

    high = high + 1 

    x = x+1 

 

 

n, bins, _ = plt.hist(nbneu, bins = np.arange(min(nbneu)-0.5, max(nbneu)+0.5, 1), 

ec='darkblue', fc='none', lw=1.0, histtype='step') 

 

#errorbar 

menStd = np.sqrt(n) 

bincenters = 0.5*(bins[1:]+bins[:-1]) 

plt.errorbar(bincenters, n, yerr = menStd, fmt = 'none',  lw=1.0, ecolor = 'black') 

 

#SOBP 

plt.axvspan(11.6,23.8,alpha = 0.2, color = 'black', label = 'SOBP') 

 

#labels and legend 

plt.xlim(-25,150) 

plt.xlabel('Center point of detector in x-direction [cm]') 

plt.ylabel('Neutrons from ' + str(primaries) + ' primary protons') 

plt.legend(loc='upper right') 

plt.show() 
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Appendix C  

Field_1_source.f 

FLUKA user routine for patient treatment plan simulation, used for incorporation of the 

different directions and positions for the various beam energies in the treatment field.    

 

*$ CREATE SOURCE.FOR 

*COPY SOURCE 

* 

*=== source ===========================================================* 

* 

      SUBROUTINE SOURCE ( NOMORE ) 

 

      INCLUDE '(DBLPRC)' 

      INCLUDE '(DIMPAR)' 

      INCLUDE '(IOUNIT)' 

* 

*----------------------------------------------------------------------* 

*                                                                      * 

*     Copyright (C) 1990-2006      by    Alfredo Ferrari & Paola Sala  * 

*     All Rights Reserved.                                             * 

*                                                                      * 

*                                                                      * 

*     New source for FLUKA9x-FLUKA200x:                                * 

*                                                                      * 

*     Created on 07 january 1990   by    Alfredo Ferrari & Paola Sala  * 

*                                                   Infn - Milan       * 

*                                                                      * 

*     Last change on 03-mar-06     by    Alfredo Ferrari               * 

*                                                                      * 

*  This is just an example of a possible user written source routine.  * 

*  note that the beam card still has some meaning - in the scoring the * 

*  maximum momentum used in deciding the binning is taken from the     * 

*  beam momentum.  Other beam card parameters are obsolete.            * 

*                                                                      * 

*----------------------------------------------------------------------* 

* 

      INCLUDE '(BEAMCM)' 

      INCLUDE '(FHEAVY)' 

      INCLUDE '(FLKSTK)' 

      INCLUDE '(IOIOCM)' 
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      INCLUDE '(LTCLCM)' 

      INCLUDE '(PAPROP)' 

      INCLUDE '(SOURCM)' 

      INCLUDE '(SUMCOU)' 

* 

      INCLUDE '(CASLIM)' 

* 

c $FLUPRO/flutil/ldpm3qmd source_SAM.f -o flukadpm3_sam 

      DOUBLE PRECISION ENERGY(65000), XYPOS(65000), YXPOS(65000) 

      DOUBLE PRECISION ZPOS(65000), FWHMX(65000), FWHMY(65000) 

      DOUBLE PRECISION FWHMZ(65000), PART(65000), PSPREAD 

      INTEGER NWEIGHT 

      DOUBLE PRECISION COSX(65000), COSY(65000), COSZ(65000) 

      DOUBLE PRECISION ROOT, DELTAP, SPOTRAND, SPOTSUM 

      DOUBLE PRECISION KOEFF1, KOEFF2, KOEFF3, KOEFF4 

 

      SAVE ENERGY, XYPOS, YXPOS 

      SAVE ZPOS, FWHMX, FWHMY 

      SAVE FWHMZ, PART, PSPREAD 

      SAVE NWEIGHT 

      SAVE COSX, COSY, COSZ 

      SAVE ROOT, DELTAP 

      SAVE KOEFF1, KOEFF2, KOEFF3, KOEFF4 

 

      LOGICAL LFIRST 

* 

      SAVE LFIRST 

      DATA LFIRST / .TRUE. / 

*======================================================================* 

*                                                                      * 

*                 BASIC VERSION                                        * 

*                                                                      * 

*======================================================================* 

      NOMORE = 0 

*  +-------------------------------------------------------------------* 

*  |  First call initializations: 

      IF ( LFIRST ) THEN 

*  |  *** The following 3 cards are mandatory *** 

         WRITE(LUNOUT,*) ' NB SOURCE_SAM4 INVOKED' 

         TKESUM = ZERZER 

         LFIRST = .FALSE. 

         LUSSRC = .TRUE. 
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c        treatment field .dat file 

         OPEN(44, FILE = '../Field_1.dat', 

     $        STATUS = 'OLD') 

*        Skip first three lines 

         READ(44, *) 

         READ(44, *) 

         READ(44, *) 

 

         NWEIGHT = 0 

         WSUM = ZERZER 

         DO 

            NWEIGHT = NWEIGHT + 1 

            IF (NWEIGHT .GT. 65000) THEN 

               WRITE(LUNOUT,*) 'NB SOURCE ERROR: too many beamlets' 

            ENDIF 

 

            READ (44, 3, END=10 ) ENERGY(NWEIGHT), 

     $           XYPOS(NWEIGHT), YXPOS(NWEIGHT), ZPOS(NWEIGHT), 

     $           FWHMX(NWEIGHT), FWHMY(NWEIGHT), FWHMZ(NWEIGHT), 

     $           PART(NWEIGHT), COSX(NWEIGHT), COSY(NWEIGHT), 

     $           COSZ(NWEIGHT) 

 3          FORMAT(F12.4,F12.4,F12.4,F12.4,F12.4,F12.4,F12.4,E12.4, 

     $                F12.6,F12.6,F12.6) 

            WSUM = WSUM + PART(NWEIGHT) 

 

         ENDDO 

 10      CONTINUE 

 

         WRITE(LUNOUT,*) 'NB SOURCE beamlets found:', NWEIGHT-1 

         WRITE(LUNOUT,*) 'NB SOURCE Particle sum (float) :', WSUM 

         WRITE(LUNOUT,*) 'NB SOURCE TODO: particle sum is not exact.' 

 

      END IF 

 

*** Sample a beamlet **************************** 

 

 

*     Choose randomly which spot to sample. It takes into account that each 

*     spot/line has a different different weight 

      RAND = FLRNDM(DOUBLEDUMMY) ! Returns double precision between [0,1) 

      SPOTRAND = WSUM * RAND 

      SPOTSUM = ZERZER 
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      DO I = 1, NWEIGHT ! Loop through lines until SPOTRAND is reached 

        SPOTSUM = SPOTSUM + PART(I) 

        IF (SPOTSUM .GT. SPOTRAND) THEN 

           NRAN = I ! Select the spot 

           EXIT 

        END IF 

      END DO 

 

      ENK = ENERGY(NRAN) 

      XBEAM = XYPOS(NRAN) 

      YBEAM = YXPOS(NRAN) 

      ZBEAM = ZPOS(NRAN) 

      XSPOT = FWHMX(NRAN)/2.35482 

      YSPOT = FWHMY(NRAN)/2.35482 

      ZSPOT = FWHMZ(NRAN)/2.35482 

      COSIX = COSX(NRAN) 

      COSIY = COSY(NRAN) 

      COSIZ = COSZ(NRAN) 

 

 

*** End of beamlet sample ******************************************** 

 

 

*  +-------------------------------------------------------------------* 

*  Push one source particle to the stack. Note that you could as well 

*  push many but this way we reserve a maximum amount of space in the 

*  stack for the secondaries to be generated 

* Npflka is the stack counter: of course any time source is called it 

* must be =0 

      NPFLKA = NPFLKA + 1 

* Wt is the weight of the particle 

      WTFLK  (NPFLKA) = ONEONE ! Set weight = 1 

c     Sets the weight of the particle 

      WEIPRI = WEIPRI + WTFLK (NPFLKA) 

c     WEIPRI updates the total weight of the primaries 

* Particle type (1=proton.....). Ijbeam is the type set by the BEAM 

* card 

*  +-------------------------------------------------------------------* 

*  |  (Radioactive) isotope: 

      IF ( IJBEAM .EQ. -2 .AND. LRDBEA ) THEN 

         IARES  = IPROA 

         IZRES  = IPROZ 

         IISRES = IPROM 
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         CALL STISBM ( IARES, IZRES, IISRES ) 

         IJHION = IPROZ  * 1000 + IPROA 

         IJHION = IJHION * 100 + KXHEAV 

         IONID  = IJHION 

         CALL DCDION ( IONID ) 

         CALL SETION ( IONID ) 

*  | 

*  +-------------------------------------------------------------------* 

*  |  Heavy ion: 

      ELSE IF ( IJBEAM .EQ. -2 ) THEN 

         IJHION = IPROZ  * 1000 + IPROA 

         IJHION = IJHION * 100 + KXHEAV 

         IONID  = IJHION 

         CALL DCDION ( IONID ) 

         CALL SETION ( IONID ) 

         ILOFLK (NPFLKA) = IJHION 

*  |  Flag this is prompt radiation 

         LRADDC (NPFLKA) = .FALSE. 

*  | 

*  +-------------------------------------------------------------------* 

*  |  Normal hadron: 

      ELSE 

         IONID = IJBEAM 

         ILOFLK (NPFLKA) = IJBEAM 

*  |  Flag this is prompt radiation 

         LRADDC (NPFLKA) = .FALSE. 

      END IF 

*  | 

*  +-------------------------------------------------------------------* 

* From this point ..... 

* Particle generation (1 for primaries) 

      LOFLK  (NPFLKA) = 1 

* User dependent flag: 

      LOUSE  (NPFLKA) = 0 

* User dependent spare variables: 

      DO 100 ISPR = 1, MKBMX1 

         SPAREK (ISPR,NPFLKA) = ZERZER 

 100  CONTINUE 

* User dependent spare flags: 

      DO 200 ISPR = 1, MKBMX2 

         ISPARK (ISPR,NPFLKA) = 0 

 200  CONTINUE 

* Save the track number of the stack particle: 
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      ISPARK (MKBMX2,NPFLKA) = NPFLKA 

      NPARMA = NPARMA + 1 

      NUMPAR (NPFLKA) = NPARMA 

      NEVENT (NPFLKA) = 0 

      DFNEAR (NPFLKA) = +ZERZER 

* ... to this point: don't change anything 

* Particle age (s) 

      AGESTK (NPFLKA) = +ZERZER 

      AKNSHR (NPFLKA) = -TWOTWO 

* Group number for "low" energy neutrons, set to 0 anyway 

      IGROUP (NPFLKA) = 0 

**************************************************************** 

 

*sample a gaussian position 

*      IF (Ldygss) THEN 

      CALL FLNRR2 (RGAUS1, RGAUS2) 

      XFLK   (NPFLKA) = XBEAM + XSPOT * RGAUS1 

      YFLK   (NPFLKA) = YBEAM + YSPOT * RGAUS2 

      CALL FLNRRN (RGAUSS) 

      ZFLK   (NPFLKA) = ZBEAM + ZSPOT * RGAUSS 

 

 

*      WRITE(LUNOUT,*) 'NB SOURCE gaussian sampled' 

 

* Cosines (tx,ty,tz) 

      ROOT = SQRT(COSIX**2+COSIY**2+COSIZ**2) 

      TXFLK  (NPFLKA) = COSIX/ROOT 

      TYFLK  (NPFLKA) = COSIY/ROOT 

      TZFLK  (NPFLKA) = COSIZ/ROOT 

*     TZFLK  (NPFLKA) = SQRT ( ONEONE - TXFLK (NPFLKA)**2 

*    &                       - TYFLK (NPFLKA)**2 ) 

*      WRITE(LUNOUT,*) 'NB SOURCE cosines set' 

********************************************************************* 

* Particle momentum 

*      PMOFLK (NPFLKA) = PBEAM 

*      WRITE(LUNOUT,*) 'NB SOURCE mark',AM (IONID) 

       CALL FLNRRN(RGAUSS) 

       PMOFLK (NPFLKA) = SQRT ( ENK* ( ENK 

     &     + TWOTWO * AM (IONID) )) 

 

* Calculate momentum spread using third polynomial fit 

       KOEFF1 = 4.6234 

       KOEFF2 = 1.7547 
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       KOEFF3 = 0.2159 

       KOEFF4 = 0.0163 

 

       DELTAP = -KOEFF1*ENK**3 + KOEFF2*ENK**2 

     &          - KOEFF3*ENK + KOEFF4 

 

       PSPREAD = PMOFLK (NPFLKA) * DELTAP / 2.35482 * RGAUSS 

 

       PMOFLK (NPFLKA) = PMOFLK (NPFLKA) + PSPREAD 

 

* Kinetic energy of the particle (GeV) 

* set energy 

      TKEFLK (NPFLKA) = SQRT(PMOFLK(NPFLKA)**2 + AM(IONID)**2) 

     &      -AM(IONID) 

 

*      WRITE(LUNOUT,*) 'NB SOURCE set ekin' 

 

 

* Polarization cosines: 

      TXPOL  (NPFLKA) = -TWOTWO 

      TYPOL  (NPFLKA) = +ZERZER 

      TZPOL  (NPFLKA) = +ZERZER 

*      WRITE(LUNOUT,*) 'NB SOURCE pol set' 

*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

*  Calculate the total kinetic energy of the primaries: don't change 

      IF ( ILOFLK (NPFLKA) .EQ. -2 .OR. ILOFLK (NPFLKA) .GT. 100000 ) 

     &   THEN 

         TKESUM = TKESUM + TKEFLK (NPFLKA) * WTFLK (NPFLKA) 

      ELSE IF ( ILOFLK (NPFLKA) .NE. 0 ) THEN 

         TKESUM = TKESUM + ( TKEFLK (NPFLKA) + AMDISC (ILOFLK(NPFLKA)) ) 

     &          * WTFLK (NPFLKA) 

      ELSE 

         TKESUM = TKESUM + TKEFLK (NPFLKA) * WTFLK (NPFLKA) 

      END IF 

      RADDLY (NPFLKA) = ZERZER 

 

*      WRITE(LUNOUT,*) 'NB SOURCE mark' 

 

*  Here we ask for the region number of the hitting point. 

*     NREG (NPFLKA) = ... 

*  The following line makes the starting region search much more 

*  robust if particles are starting very close to a boundary: 
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      CALL GEOCRS ( TXFLK (NPFLKA), TYFLK (NPFLKA), TZFLK (NPFLKA) ) 

      CALL GEOREG ( XFLK  (NPFLKA), YFLK  (NPFLKA), ZFLK  (NPFLKA), 

     &              NRGFLK(NPFLKA), IDISC ) 

*      WRITE(LUNOUT,*) 'NB SOURCE mark2' 

*  Do not change these cards: 

      CALL GEOHSM ( NHSPNT (NPFLKA), 1, -11, MLATTC ) 

      NLATTC (NPFLKA) = MLATTC 

      CMPATH (NPFLKA) = ZERZER 

      CALL SOEVSV 

 

 

*      WRITE(LUNOUT,*) 'NB SOURCE END' 

      CLOSE(44) 

      RETURN 

*=== End of subroutine Source =========================================* 

      END 
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Appendix D  

Depth dose curves used for quantifying the lower and upper limit for the Spread-Out Bragg 

peak in the patient treatment plan.   

 

Figure A-33: Depth dose curve for the lower energy limit of the SOBP. Here the beam enters from 

positive x-direction at x = 20 cm, and the center of the patient is in x = 0 cm. The Bragg peak is located 

in x = 8.4 cm.  
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Figure A-34: Depth dose curve for the upper energy limit of the SOBP. Here the beam enters from 

positive x-direction at x = 20 cm, and the center of the patient is located in x = 0 cm. The Bragg peak 

is located in x = -3.8 cm.  
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Appendix E  

Table A-2: The results for position of maximum neutron detection rate from the water phantom 

simulation. Numbers in parentheses indicate position relative to Bragg peak (positive number signify 

position distal to the Bragg peak).  

Proton 

beam energy 

[MeV] 

Position with maximal neutron detection rate [cm]: 

All neutrons  Neutrons detected last 

half prior to Bragg peak  

Neutrons detected last 

quarter prior to Bragg peak  

100  15 ± 2 (7.4 ± 2) 16 ± 3 (8.4 ± 3) 17 ± 4 (9.4 ± 4) 

160 20.5 ± 1.5 (3 ± 1.5) 24 ± 2 (6.5 ± 2) 25.5 ± 1.5 (8 ± 1.5) 

200 24.5 ± 1.5 (-1.2 ± 1.5) 31 ± 2 (5.3 ± 2) 33 ± 2 (7.3 ± 2) 

230 28 ± 2 (-4.6 ± 2) 35.5 ± 1.5 (2.9 ± 1.5) 39 ± 2 (6.4 ± 2) 

 

 

 


