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Preface

This thesis contains work that has been carried out as part of a Ph.D. program
at the Department of Mathematics, University of Bergen, Norway. The studies
started in July 2003, and I have conducted most of my work while in Bergen,
except for an extended visit to Cornell University, Ithaca, USA, from September
to December 2005.

My supervisors have been Prof. Kristian Dysthe at the Department of Math-
ematics, University of Bergen, and Prof. Geir Pedersen at the Department of
Mathematics, University of Oslo. Funding has been provided by the Norwegian
research council (NFR) within the program Modeling of currents and waves for
sea structures (NFR 146526/420).

The main objective of this thesis has been to study wash from high speed
vessels in shallow water, and the mathematical equations which describe this phe-
nomenon. Several adverse effects can be related to wash from high speed vessels,
and it is therefore important to understand the origin of these waves and how to
avoid generation of large amplitude wash in sensitive areas.
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Paper A: Influence of Variable Froude Number on Waves Generated by Ships
in Shallow Water. T. Torsvik, K. Dysthe, and G. Pedersen. In Physics of
Fluids, volume 18(6), 2006.

Paper B: Waves generated by a pressure disturbance moving in a channel with a
variable cross section topography. T. Torsvik, K. Dysthe, and G. Pedersen.
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Paper C: An Efficient Method for the Numerical Calculation of Viscous Effects
on Transient Long-Waves. T. Torsvik and P. L.-F. Liu. Accepted for publi-
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Paper D: Stability Analysis of Geostrophic Adjustment on Hexagonal Grids for
Regions with Variable Depth. T. Torsvik, Ø. Thiem, and J. Berntsen. In
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As all the papers have been written in collaboration with other researchers, some
remarks about my contributions are necessary.

Paper A explores the effect of a slowly changing Froude number, either caused
by acceleration of the pressure disturbance or by depth variation. All the authors
were involved in developing the basic concept for this paper. My contribution



included reviewing the existing literature on effects due to a variable Froude num-
ber, and implementing a finite difference scheme for solving the equations. I have
had the main responsibility for writing the paper, with helpful comments and sug-
gestions from my supervisors. Paper B explores the effect of cross channel depth
variation, where a ship travels along a trench which runs along the center line of
the channel, and shallow banks are located near the channel walls. For this paper
we applied the COULWAVE model for the simulations. The paper was created
in a manner similar to paper A, where all the authors were involved in develop-
ing the basic concept for the paper, and I, as principle author, was responsible for
writing the paper. My contribution also included modifying some aspects of the
COULWAVE model, thereby making it suitable to use for the problem at hand,
and also involved calculating solutions for the channel width averaged model ap-
plied for comparison. Paper C presents an efficient method for calculating the
viscous effects due to bottom friction, by estimating the value of a time dependent
convolution integral. My contribution included method development, in collab-
oration with Prof. Philip L.-F. Liu, and implementation for this estimate for the
COULWAVE model. I have written the paper, while Prof. Liu has contributed
with useful suggestions and comments. Paper D presents a method for analyz-
ing the stability of a numerical finite difference scheme for the linearized shallow
water equations, formulated on a hexagonal grid. My contribution consisted of
developing model equations on the hexagonal grid, and analyzing some of the
idealized test cases (three-cell and nine-cell computational domains). All of the
authors contributed in the writing of this paper.
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4 Wash from high speed vessels: Basic properties and potential risks

During the last few decades, several ferry operators have replaced conven-
tional ships with High Speed Crafts (HSCs) for transporting passengers and vehi-
cles, and the number of these crafts in operation is steadily increasing. Replacing
conventional ferries with HSCs often requires new regulations from harbor au-
thorities to ensure safe passage in near-shore regions. Among the issue which
must be addressed, is how to manage the increased wave load due to wash waves
from a HSC compared to wash from conventional ships. While the wash waves
from conventional ships transport energy on scales similar to typical wind waves,
HSCs often generate highly energetic long period waves which differ significantly
from the typical waves found in confined bodies of water.

1.1 High speed vessels and wash waves

The wash waves generated by a particular vessel in a particular body of water are
characterized in terms of the length-based Froude number FL = U/

√
gLw, and the

depth-based Froude number Fh = U/
√

gh, where U is the speed of the ship, Lw
is the length of the ship at the water line, g is the acceleration of gravity and h
is the depth. Although the Froude numbers provide a convenient method for the
purpose of classification, other factors such as the shape of the hull, the type of
propulsion system, and the variation in bathymetry will also influence the wash.

There is no precise definition for classifying a vessel as a HSC. According to
Faltinsen[1], a common demarcation for a HSC is vessel capable of operating at
speeds higher than 30 knots or with a length-based Froude number FL above 0.4.
Vessels operating at FL < 0.4 are called displacement vessels, because they are
mainly supported by the buoyancy force which is proportional to the submerged
volume of the ship. At FL = 1.0−1.2, most of the weight of the ship is carried by
the hydrodynamic pressure, and the vessel is said to be planing. If a vessel has its
maximum operational speed in the intermediate range 0.4−0.5 < FL < 1.0−1.2,
it is classified as a semi-displacement vessel.

Several different designs are used for HSCs, of which there are three main cat-
egories; submerged hull-supported vessels, Hydrofoil-supported vessels and air
cushion-supported vessels. Some designs may apply a combination of these tech-
nologies, such as the Surface Effect Ship (SES) which combines a catamaran de-
sign with an air cushion enclosed between the two hulls. An overview of common
designs can be found in Faltinsen[1]. Large HSCs, which are semi-displacement
vessels, are usually designed as catamarans or monohulls.

The wake of a ship consists of a transverse wave group directed along the
ship’s track, and a divergent wave group propagating at an angle to the track, as
sketched in figure 1.1. Waves generated by a ship traveling in deep water or at
low speeds in shallow water, form a Kelvin ship-wave pattern. The angle between
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Figure 1.1: Wave crests for the Kelvin ship-wave pattern.

the boundary of the wave system and the ship’s track, which is called the Kelvin
angle, is 19◦28

′
for the deep water wave pattern. Because the wake waves are

stationary in a coordinate system following the vessel (moving along a straight
line with constant speed), the wavelength is expressed by

λ =
U2

g
2πcos2

θ ,

where θ is the direction of the wave propagation relative to the course of the ship.
For the transverse waves we have

λT

L
= 2πFL

2 .

When the length-based Froude number is 0.4− 0.5 (often called the ”hump-
speed”), waves originating at the bow and stern of the ship may interact to cause
wave amplification or cancellation in the wake. This will in turn contribute to
humps and hollows in the wave resistance when plotted as a function of FL. When
FL becomes larger than 0.6−0.7, the divergent waves tend to dominate the wave
pattern, and the humps and hollows in the wave resistance disappear. From a
coastal management perspective, the primary interest with respect to the wash
waves concerns the impact of these waves on shore lines or in relation to other
users of the coastal region. Hence the sites of interest may be located a consider-
able distance from the track of the HSC generating the wash, and the wash waves
may decay significantly as they propagate over this distance. The problem of wave
decay has been analyzed by Stoker[2] for a ship moving along a straight line in
a water basin of constant depth. Stoker[2] showed by use of linear analysis, that
the waves in the interior of the wedge created by the Kelvin wake pattern, decay
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as |y|−1/2, where y is the direction perpendicular to the track of the ship, whereas
the rate of decay for the waves on the boundary of the wedge is |y|−1/3.

Figure 1.2: Wave crests for wash generated near the critical depth-based Froude
number Fh ≈ 1.

The wave pattern generated in the wake of the ship changes in intermediate
or shallow water, where the value of the depth Froude number Fh may become
large. The deep water description of the wash is valid up to Fh . 0.5−0.6. As Fh
approaches 1, the Kelvin angle increases and becomes 90◦ in the limit Fh = 1.0.
A sketch of the near critical wash waves is shown in figure 1.2. At Fh ≈ 1.0, the
ship is continually contributing energy to a wave group which is moving at the
same speed as the vessel, resulting in the generation of large amplitude waves,
which in turn contributes to an increase in the wave resistance against the forward
movement of the ship. Due to nonlinear effects, one or more waves originating at
the bow of the ship may propagate some distance upstream of the vessel. If the
water basin is enclosed by lateral walls, such as in a channel, the upstream waves
may evolve into a train of solitary waves which becomes separated from the wave-
system of the ship. When the depth Froude number is supercritical (Fh > 1.0), the
Kelvin angle becomes smaller than 90◦, and the wake of the ship consists only of
divergent waves. Because the ship travels at a higher speed than the maximum
(linear) wave speed, there can be no transverse waves in the wake once this has
reached a steady state.

The decay of the wash waves in intermediate and shallow water is discussed in
Doyle et al.[3]. Wash wave amplitudes decay at different rates depending on the
depth Froude number Fh and the water depth-to-ship length ratio h/Lw, ranging
from |y|−0.2 to |y|−0.5. The decay rate is larger for wash generated in the near
critical range Fh ≈ 1, than in the supercritical range Fh � 1, and decrease with
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decreasing values of h/Lw. It has however been shown that the decay rate of the
leading wave system at Fh ≈ 1 decreases with time. In the critical case, most of the
wave energy is contained in a wave group which is moving with the vessel. Since
the amplitude of these waves can not grow indefinitely, an increasing amount of
energy will have to be transferred in the lateral direction along the crest. It is
reasonable to expect that a state of equilibrium will be attained after a long time,
where the input of energy is equal to the energy transferred along the crest, but
this has so far not been confirmed in experiments.

The forward motion of the vessel is influenced by the wave resistance due to
wash wave generation. The wave resistance depends primarily on the velocity of
the vessel and the shape of the submerged part of the ship, but is also influenced by
the depth of the water basin (the basic theory is covered in Newman[4]). Yang[5]
computed the ratio of the wave resistance in shallow water Rh with the wave resis-
tance in deep water R∞, using linear theory. Near the critical depth Froude number
Fh ≈ 1, it was found that Rh/R∞ > 3 for h/Lw ≈ 0.2, and even larger values for
Rh/R∞ were recorded for smaller values of h/Lw. It is however questionable if the
linear theory is applicable in the limit h/Lw → 0, because the shallow water waves
are influenced by nonlinear effects when Fh ≈ 1. It was also found that Rh/R∞ ≈ 1
for h/Lw & 0.4 (and Fh ≈ 1.0), which corresponds to FL > 0.6. A similar result
was found by Stumbo et al.[6] through full-scale measurements, although in their
study, wave amplitudes were reduced for FL > 0.9. In the supercritical region, the
ratio Rh/R∞ diminish and is approximately 1 for all values of h/Lw when Fh > 1.8.

1.2 Problems and responses

When HSCs first started replacing conventional ships on ferry routes, coastal au-
thorities were concerned mainly with ensuring safe navigation in order to pre-
vent collisions and grounding accidents, while possible problems due to the wake
waves were largely ignored. The wash from conventional ferries are not usu-
ally considered a hazard, and thus there had been no incentive for regulating ship
wash prior to the commencement of HSC ferry operations. In several cases, some
of which are listed in [7], the commencement of HSC ferry traffic was followed
by an increase in wash related incidents with damage on people or property, es-
pecially in cases where the HSC traveled in or near coastal waters not exposed to
ocean swell. Coastal authorities would often respond by setting speed limits for
HSC operation in regions which were particularly vulnerable to wash waves. Be-
cause the nature of the problem was not well understood, the speed limits would
often be lower than necessary, reducing the profitability of the HSC ferry opera-
tion. In some cases the speed limit would make the HSC move in an unfavorable
speed regime, thus aggravating the problem which the speed limit was intended
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to solve, as seen in the case of Stavns Fjord, Samsø in Denmark[7]. In this case
the fast ferry was allowed to operate at a service speed of approximately 35 knots
(18 m/s), but was restricted to a maximum speed of 25 knots (13 m/s) during the
summer months. As the length of the vessel was about 78 m and the typical depth
was 15 meters, the speed reduction caused the vessel to move at Froude numbers
FL ≈ 0.47 and Fh ≈ 1.06. When it became apparent that the speed reduction did
not reduce the height of the wash waves, the speed was reduced once again to 18
knots. It is now widely recognized that regulations related to wash waves must set
limits to actual wave heights and periods.

Ship wash may constitute a safety hazard or have an adverse effect on the
coastal environment. Safety issues include the possible risk to people at the shore
or in small boats, who are exposed to wash waves. The amplitude of the waves
increase as they propagate into shallow water, and large amplitude waves may
therefor occur unexpectedly at the shore or near shallow banks. A well docu-
mented case occurred in 1999, when the angling boat ”Purdy” was swamped by
wash from a HSC at Shipwash Bank off Harwich, UK[8]. In this case, wave
focusing due to maneuvers from the HSC may have contributed to the accident.
Other safety issues include damage to structures near the shore, or breaking of
mooring lines. Environmental issues include the alteration of the shore line due
to increased erosion, alteration of the near-shore bathymetry, suspension of sedi-
ments for long periods of time, and the impact of wash waves on marine wildlife
habitats. These problems may occur even in regions which are not sheltered from
wind driven waves, as discussed by Soomere[9], because the long periods of the
wash waves induces stronger bottom currents than the shorter period wind driven
waves.

In order to minimize the adverse effects of wash waves, detailed planning of
ship routs and speed regulations must be conducted prior to commencement of
HSC operation. This involves testing the particular HSC design for wash charac-
teristics at different speeds and depths, and constructing new vessels which emit
low wash. It also involves predicting how the waves evolve when subject to speed
changes and maneuvers by the ship, and depth variation as the waves propagates
away from the ship lane. Stumbo et al.[10] reports that the Washington State
Ferries operate with a ”no harm” level of wake wash which is established by ex-
amining the wash generated by the HSC in deep water, based on the requirement
that the energy associated with the wash should not exceed levels associated with
other sources. Sweden and Denmark have implemented a criteria based on the
wave height close to shore[7]. While this my be more difficult to assess than the
offshore wave height, it has the advantage of being weighted toward the shoreline
where the adverse effects are most likely to occur. Even if the HSC generates
waves within an acceptable range of wave height, wave interactions may create
dangerous wash in regions some distance away from the ship lane. Wave mod-
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els can be useful tool for identifying mechanisms which may create large wash
in general cases, and can also be used to predict likely wash effects in particular
water basins without conducting potentially harmful field tests. The two first pa-
pers in this thesis, A and B, contribute to this field of research. In paper A we
consider how the wash is influenced when the Froude number changes with time,
which is caused either by acceleration of the HSC or a slow variation in the ba-
thymetry. Paper B treats the problem of wash generated by a vessel moving in
a channel with shallow banks near the channel walls. Although both these stud-
ies are based on idealized benchmark tests, the cases studied resemble some of
the practical problems which must be considered when predicting HSC wash in
coastal regions.





Chapter 2

Equations for ship generated long
waves
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In this chapter we will consider equations which can be used to describe the
wash from a HSC in intermediate to shallow water. As mentioned in chapter 1,
the dominating waves in the ship wake pattern often have wave lengths compa-
rable to or exceeding the length of the ship. In regions of shallow water, where
the longest wave length in the wash may be considerably larger than the depth,
these waves can be described accurately by long wave equations. In long wave
theory, the vertical distribution of the flow field is approximated by a polynomial
expression. By using this approximation, we can eliminate the vertical coordinate
z in the partial differential equations, effectively reducing the three dimensional
flow problem to a two dimensional flow problem.

Based on the different length scales which occur in the problem, it is possible
to construct two non-dimensional parameters. The ratio of depth to wave length,
µ, governs linear dispersion, and nonlinear effects are governed by the ratio of
wave amplitude to depth, ε. Very long waves are non-dispersive, and disregarding
terms of O(µ) gives us the shallow water equations, which can be used if the water
depth is less than 7% of the wavelength (see e.g. Kundu[11]). Less restrictive
equations, such as the standard Boussinesq equations and the Korteweg-de Vries
equation, can be derived if we assume that the waves are weakly dispersive and
weakly nonlinear, i.e. that O(ε) = O(µ2)� 1. These equations are practical for
use in large scale computations of processes in the coastal region, but they are
still limited to describing fairly long waves with small amplitudes. Much effort
has gone into improving the dispersive and nonlinear properties of the Boussinesq
equations, with the intention of applying these formulations to processes such as
wave shoaling and run-up, refraction and diffraction near a step in the bottom
topography, etc. With improved formulations, it is possible to describe accurately
waves with wave numbers up to k′h′ ≈ 6. These formulations provides accurate
results for linear shoaling characteristics over a wide range of depths. Highly
nonlinear processes, such as wave breaking, are not represented accurately, but
can be accounted for with the aid of empirical remedies (see e.g. Kennedy et
al.[12]).

2.1 Primitive equations

The fluid in the physical domain is described by the fluid velocity u′ = (u′,v′,w′),
the free surface displacement z′ = ζ′(x′,y′, t ′), and the bottom z′ = −h′(x′,y′). In
order to distinguish between variables with and without dimensions, primes are
used on dimensional variables whenever there is a possibility of confusion. The
fluid is assumed to be incompressible, with constant density ρ, and irrational in
the core region away from solid boundaries. Forces acting on the fluid are pressure
p′ and gravity with acceleration g. With these assumptions, waves propagation on
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the air-sea interface can be described by the continuity and Euler equations

∇o ·u′ = 0 , (2.1)

∂u′

∂t
+(u′ ·∇o)u′+

∇o p′

ρ
+g∇oz′ = 0 , (2.2)

with the boundary conditions

w′ =
∂ζ′

∂t ′
+u′

∂ζ′

∂x′
+ v′

∂ζ′

∂y′
, at z′ = ζ

′(x′,y′, t ′) , (2.3)

p′ = pa(x′,y′, t ′) , at z′ = ζ
′(x′,y′, t ′) , (2.4)

w′+u′
∂h′

∂x′
+ v′

∂h′

∂y′
= 0 , at z′ =−h′(x′,y′) , (2.5)

for the free surface and the bottom, where

∇o =
(

∂

∂x′
,

∂

∂y′
,

∂

∂z′

)
is the gradient operator in three dimensions.

When we consider long waves propagating in shallow water, we can use the
differences in length scales given by a typical wave amplitude a0, the typical water
depth h0, and a typical horizontal length scale h0, to derive equations which are
easier to solve than the original set (2.1) to (2.5). These length scales define the
parameters

ε =
a0

h0
, and µ =

h0

l0
, (2.6)

which govern nonlinear and dispersive effects, respectively. When deriving the
Boussinesq equations, it is customary to use non-dimensional variables which are
scaled according to

(x,y) =
(x′,y′)

l0
, z =

z′

h0
, h =

h′

h0
, t =

√
gh0

l0
t ′ ,

(u,v) =
(u′,v′)
ε
√

gh0
, w =

µw′

ε
√

gh0
, ζ =

ζ′

a0
, p =

p′

ρga0
.

(2.7)

Although this is convenient when discussing the equations, using different length
scales for different variables obscures output from numerical simulations. For
numerical studies it is therefore customary to formulate the equations using only
the typical depth h0 as the reference length scale.

Boussinesq equations can be formulated in several different ways, depending
on the choice of dependent variables and the order of the equations. The equations
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are usually derived by depth-integrating the continuity and Euler equations (see
e.g. Peregrine[13], Nwogu[14]), or by formulating the equations in terms of the
velocity potential, and use the Laplace equation in combination with the boundary
conditions (see e.g. Mei[15]). An outline of the derivation following Madsen and
Schäffer[16] is given in appendix A.1.

2.2 Boussinesq equations

The fully nonlinear Boussinesq equations of order O(µ2), can be written as

∂ζ

∂t
=−∇ ·

[
(h+ εζ)(u+µ2M

]
+O(µ4) , (2.8)

∂u
∂t

+
ε

2
∇(u2) =−∇ζ−∇p−µ2

[
1
2

z2
α∇∇ · ∂u

∂t
+ zα∇∇ ·

(
h

∂u
∂t

)]
+ εµ2

∇(D1 + εD2 + ε
2D3)+O(µ4) , (2.9)

where

M =
[

1
2

z2
α−

1
6
(h2− εhζ+ ε

2
ζ

2)
]

∇∇ ·u+
[

zα +
1
2
(h− εζ)

]
∇∇ · (hu) ,

D1 = ζ∇ ·
(

h
∂u
∂t

)
− 1

2
z2

αu ·∇∇ ·u− zαu ·∇∇ · (hu)− 1
2
(∇ · (hu))2 ,

D2 =
1
2

ζ
2
∇ · ∂u

∂t
+ζu∇∇ · (hu)−ζ∇ · (hu)∇ ·u ,

D3 =
1
2

ζ
2 [

u ·∇∇ ·u− (∇ ·u)2] .

In these equations ∇ = (∂/∂x,∂/∂y) is the gradient operator in two dimensions,
and the velocity u is evaluated at the depth z = zα. We have retained the ambient
surface pressure in the momentum equation (2.9), which will serve as a forcing
term in the model for ship generated waves. The equations (2.8) and (2.9) corre-
spond to the equations used in paper B.

The so-called classical or standard Boussinesq equations is often formulated
in terms of the averaged horizontal velocity ū, which can be defined in terms of
the integrated, horizontal volume flux density Q by

Q = (h+ εζ)ū .

From the requirement of volume conservation, which can be formulated by inte-
grating the continuity equation over the depth, we find

∂ζ

∂t
=−∇ ·Q ,
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which, formulated in terms of the averaged horizontal velocity, gives us

∂ζ

∂t
+∇ · [(h+ εζ)ū] = 0 . (2.10)

This equation is consistent with (2.8) if we define ū = u + µ2M, and retain only
terms up to O(µ2,ε). Substituting this into the momentum equation (2.9), we find

∂ū
∂t

+ ε(ū ·∇)ū =−∇ζ−∇p

−µ2
[

1
6

h2
∇∇ · ∂ū

∂t
− 1

2
h∇∇ ·

(
h

∂ū
∂t

)]
+O(µ4,µ2

ε) . (2.11)

Equations (2.10) and (2.11) constitute the standard Boussinesq equations.
The formulations for the Boussinesq equations stated above are valid for ro-

tational flow. If the flow can be assumed irrotational, it is possible to reduce the
number of unknowns by introducing the velocity potential Φ, and formulate the
equations in terms of the depth averaged velocity potential

φ =
1

h+ εζ

Z
εζ

−h
Φdz .

The relation between the averaged horizontal velocity and the depth averaged ve-
locity potential is given by (see e.g. Wu[17], Pedersen[18])

ū = ∇φ+µ2
(

1
6

∂ζ

∂t
− 1

3
∇h ·∇φ

)
∇h+O(µ4,µ2,ε) ,

which can be substituted into (2.10) and (2.11), to give us the the standard Boussi-
nesq equations on the form

∂ζ

∂t
+∇ ·

[
(h+ εζ)∇φ+µ2h

(
1
6

∂ζ

∂t
− 1

3
∇h ·∇φ

)
∇h

]
= 0 , (2.12)

∂φ

∂t
+

1
2

ε(∇φ)2 =−ζ− p

−µ2
[

1
6

h2
∇∇ · ∂φ

∂t
− 1

2
h∇ ·

(
h∇

∂φ

∂t

)]
+O(µ4,µ2

ε) . (2.13)

Equations (2.12) and (2.13) are equivalent to the equations used in Paper A.
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2.2.1 The Korteweg-de Vries equation

The Korteweg-de Vries (KdV) equation

∂ζ

∂t
−

(
1+

3
2

εζ

)
∂ζ

∂x
− 1

6
µ2 ∂3ζ

∂x3 =
1
2

∂p
∂x

, (2.14)

can be derived from the standard Boussinesq equations by restricting the flow to
one horizontal dimension (1HD) and imposing that the flow moves in one direc-
tion only (see e.g. Lee et a.[19]). In equation (2.14) we have assumed that the
depth is constant, which we may choose as h = 1 without loss of generality. Al-
though this equations has a smaller range of validity than the Boussinesq equations
in terms of wave lengths and amplitudes, it is nevertheless quite popular because it
can be solved analytically by applying the so-called inverse scattering transform
(see e.g. Drazin and Johnson[20]).

2.2.2 Analysis of Boussinesq type equations

In order to classify the accuracy of the different formulations of the Boussinesq
equations, it is common to examine the equations in relation to the linear disper-
sion characteristics of the primitive equations, and to apply a Stokes-type pertur-
bation analysis to examine nonlinear properties. In this section we examine the
dispersion relation for the equations presented in the previous section. Nonlinear
properties are not examined here, but properties for equivalent formulations of the
equations can be found in the review paper by Madsen and Schäffer[16].

In order to improve the performance of the Boussinesq equations for interme-
diate wave lengths and depths, it is customary to examine the evolution of a linear
wave solution, using linearized versions of the Boussinesq equations. The aim is
to approximate the exact dispersion relation for the linear waves, given by

c2 =
ω2

k2 =
tanh(kh)

kh
, (2.15)

as accurately as possible. This equation gives us the Taylor expansion approxima-
tion

c2 = 1− 1
3
(kh)2 +

2
15

(kh)4 +O((kh)6) . (2.16)

The corresponding Padé [2,2] approximation is

c2 =
1+ 1

15(kh)2

1+ 2
5(kh)2

+O((kh)6) . (2.17)
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Figure 2.1: Dispersion relation for different formulations of the Boussinesq equa-
tions.

The dispersion properties of the equations can be studied by assuming wave
solutions on the form

ζ = a0ei(kx−ωt) , u = u0ei(kx−ωt) , φ = φ0ei(kx−ωt) ,

and substituting these expressions into the linearized Boussinesq and KdV equa-
tions. The dispersion relations for the linearized KdV equation (from (2.14)) and
the linearized standard Boussinesq equations (from (2.10) and (2.11)) are

c2 = 1− 1
3(hk)2 , and c2 =

1
1+ 1

3(hk)2
,

respectively. The dispersion relation for the KdV equation is equal to the first
terms of the Taylor expansion in equation (2.16). The fully nonlinear Boussinesq
equations ((2.8) and (2.9)) reduces to Nwogu’s equations[14] when linearized,
with the dispersion relation

c2 =
1− (α+ 1

3)(hk)2

1−α(hk)2 ,

where α depends on the reference depth zα

α =
1
2

z2
α

h2 +
zα

h
.

The Padé [2,2] approximation (2.17) is recovered by choosing α =−0.4. We can
now compare the dispersive properties for the different equations by comparing
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the above results to the dispersion relation for the linear wave 2.15 with phase
speed cs, as shown in figure 2.1. As seen in the figure, α = −0.390 gives an
approximation which is good up to kh≈ 3. This value of α corresponds to zα/h =
−0.531.

The techniques discussed so far in this section are used to determine gen-
eral properties of the Boussinesq equations. It may also be useful to analyze the
equations for more specific problems. Perturbation techniques can be used to
analyze linear shoaling characteristics and dispersion characteristics for waves in-
fluenced by an ambient current, as shown by Madsen and Schäffer[16]. Løvholt
and Pedersen[21] have examined the stability of Boussinesq models for regions of
non-uniform depth by analyzing the eigenmodes of the equations given a specific
depth profile, using a combination of analytical and numerical methods. While
the standard Boussinesq equations (2.10) and (2.11) were found to have only sta-
ble eigenmodes, other formulations would sometimes have unstable modes, espe-
cially for small spatial grid increments and steep bottom gradients.

2.3 Channel width integrated model equations

For wave analysis purposes it is sometimes convenient to examine a simplified
set of model equations. One such simplification is to consider only one spatial
dimension, as in paper A, but this may be too restrictive for many purposes. A
less restrictive option is to use cross-channel averaged model equations, which
are derived under the assumption that the waves are long compared to the channel
width. Such models were first studied by Peters[22] and Peregrine[23, 24], and
has later been used by Teng and Wu[25, 26, 27]. The equations, which may be of
Boussinesq or KdV type, resemble the standard formulations, but include a shape
factor κ2 which is determined by the channel geometry. The channel Boussinesq
equations (cB) for a channel of width 2b at z = 0, and a channel cross section area
A0, is given by

2b
∂ζ̃

∂t
+

∂

∂x

[
2b(h̃+ ζ̃)ū

]
= 0 ,

∂ū
∂t

+ ū
∂ū
∂x

+
∂ζ̃

∂x
− 1

3
κ

2h̃2 ∂3ū
∂x2∂t

=−∂p̃a

∂x
,

where the tildes and bars signify width averages and cross section averages, given
by

(·̃) =
1
2b

Z b

−b
(·)dy , and (·̄) =

1
A0

Z Z
A0

(·)dydz ,
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respectively. Analytical solutions based on cB equations are used for comparison
in paper B, and the procedure for determining κ2 is briefly outlined in the ap-
pendix in that paper. The cross channel profile of the wave can be obtained as a
perturbation of the cross-channel averaged surface elevation[25, 27].

2.3.1 Solitary waves propagating in a channel with a dredged
trench along the center line

In paper B we compare a wave generated by a pressure disturbance to a solution
of the cB equations. This section presents a comparison of the solitary wave sim-
ulated with the COULWAVE model, and the corresponding solitary wave solution
for the cB equations. The cross section configuration is similar to the configura-
tion used in paper B, with a trench extending from y = 0 to y = 4 and shallow
banks extending from y = 6 to y = 10. For each test case, a suitable value for
the depth variation was chosen while the mean depth was maintained at h = 1,
and the depths in the trench and at the shallow bank was adjusted accordingly.
The figures show two results for ∆h = 0.2, with wave amplitudes a = 0.0951 and
a = 0.1850, and a result for ∆h = 1.0 and a = 0.0818. The figures clearly show
good agreement between the results for the long waves, even when the depth vari-
ation is quite severe, while larger discrepancies are seen between the results for
the large amplitude wave.

2.4 Ships in numerical models

In our models, we have used a disturbance in the ambient surface pressure to rep-
resent the ship. This is a convenient choice when using the Boussinesq equations,
because it does not involve any additional model for dealing with the ship motion.
Representing the ship by a pressure disturbance is acceptable for general case
studies, such as the test cases in Papers A, B and C. While a ship hull may easily
be ascribed to a particular pressure disturbance by letting the hull be determined
by the surface depression (provided the wave pattern has attained a steady state),
the inverse problem of ascribing a pressure disturbance to a particular hull shape
is difficult (see e.g. Tuck et al.[28]). Accurate models for ship wash are avail-
able, but are often computationally demanding, making them unsuitable for stud-
ies which requires large computational domains. This has lead some researchers
to consider combining accurate near ship models with an efficient shallow water
wave model for waves far from the ship.

The thin ship theory by Michell[29] is often used to predict the wash gener-
ated by a ship. The ship is represented by point sources distributed on the center
plane of the ship, where the sources are proportional to the longitudinal change in
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Surface plot of solitary waves propagating in a channel with a deep
trench along the center line. The plots (a), (c), and (e) are from simulations with
the COULWAVE model, whereas plots (b), (d), and (f) are the corresponding
results using the cB model.
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thickness of the hull. Thin ship theory has been applied to calculate HSC wash
(see Tuck et al.[28]), but can only be used in cases where the wave field is steady
and the wave amplitudes are small compared to the depth. Unsteady wave patterns
and large wave amplitudes are often found in near critical cases, hence thin ship
theory may not be applicable for Fh ≈ 1. Tuck[30] examined the shallow water
flow around a slender body, by matching asymptotic approximations for the flow
near and far from the body. The expansions are written in terms of the slender-
ness parameter δ = R/L, where R is the maximum lateral dimension and L is the
length of the ship, and the depth is assumed to be h = O(δ). In the outer region, far
from the ship, equations for shallow water waves are recovered, while equations
for the inner region are derived under the assumptions that the flow varies much
faster across the boundary layer than along the layer, i.e. ∂/∂x � ∂/∂y,∂/∂z (see
Tuck[30], Newman[4] for a complete description of the method). From the inner
problem we get a matching condition by taking the limit y/δ → ∞, which must
be satisfied by the outer flow in a matching region. This matching region can be
ascribed to a rigid wall boundary condition in a shallow water model, as shown
by Jiang[31] and Yang[5]. Such a method can be used whenever the flow is sym-
metric across the track of the ship, as when a vessel travels along a straight line
in open waters or in the middle of a channel, but can not be used for asymmetric
problems, such as a ship traveling near one side wall in a channel.

2.4.1 Pressure disturbance

The problem of ascribing a certain hull shape to a particular pressure disturbance
is made more complicated if a steady state is not attained, as is the case with near
critical speed or if the velocity of the pressure disturbance changes with time. The
surface displacement near the pressure disturbance depends on both the shape and
the speed of the disturbance. In the near critical regime, nonlinear effects may
also be important.

One effect which may seem counter-intuitive occurs in models with one hori-
zontal dimension (1HD) when a pressure disturbance is moving at large supercrit-
ical speeds. in such a case the free surface displacement forms a hump of positive
amplitude at the location of the pressure disturbance. An example is shown in
figure 2.3 for Froude number Fh = 1.4, where the blue line is the surface displace-
ment and the red line is the pressure disturbance.

In order to explain this phenomenon, we consider Bernoulli’s equation,

1
2

∣∣∣∣∂Φ′

∂x′

∣∣∣∣2

+gz′+
p′

ρ
= constant along a streamline ,

which is valid for an inviscid, steady, barotropic flow. The flow is steady in a
coordinate system that follows the pressure disturbance, which moves with the
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Figure 2.3: Example of a 1HD supercritical wave pattern

speed u′0 = ∂Φ′
0/∂x′. The free surface is a streamline for the flow, and we may

equate conditions near the pressure disturbance with conditions far upstream or
downstream from the disturbance

1
2

∣∣∣∣∂Φ′

∂x′

∣∣∣∣2

+gh′+
p′

ρ
=

1
2

∣∣∣∣∂Φ′
0

∂x′

∣∣∣∣2

+gh0 , (2.18)

where h0 is the equilibrium depth and h′ = h0 + ζ. Because of the continuity
equation, we also have

∂Φ′

∂x′
h′ =

∂Φ′
0

∂x′
h0 = u′0h0 . (2.19)

By combining equations (2.18) and (2.19), and recognizing that F2
h = u′20 /gh0, we

find
F2

h
2

(
1+h

h2

)
(1−h)− (1−h) =−p . (2.20)

For small amplitude waves we have (1 + h)/h2 ≈ 2, which gives us an approxi-
mation for equation (2.20) on the form

F2
h (1−h)− (1−h) =−p ,

which can be re-written as

(1−h) =
p

1−F2
h

. (2.21)

From equation 2.21 we see that the sign of 1− h changes depending on whether
Fh is subcritical (Fh < 1) or supercritical (Fh > 1). We must emphasize that this
result is valid for the 1HD case, which corresponds to a 2HD case of a pressure
disturbance of infinite width propagating in an unbounded fluid.



Chapter 3

Numerical models
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3.1 Grids for numerical models

While the mathematical model consists of partial differential equations which are
defined for variables that are continuous in space and time, the numerical model
must be solved for a finite number of points in space, and be integrated forward in
time by discrete time steps. For numerical models based on finite differences, it
is often convenient to apply computational grids with grid points distributed in a
uniform pattern, with a constant distance between neighboring grid points. Since
we are solving equations with only two spatial dimensions, we will only consider
grids for surfaces in this section.

Most finite difference models which are discretized on regular grids, use rec-
tangles (or hexahedrals in 3D) as the basic geometrical form. In the COULWAVE
model, all the dependent variables are made available on a common set of grid
points, located in the corners of the rectangles. This configuration corresponds to
the so-called ”Arakawa A-grid” (or just the A-grid), shown in figure 3.1(a), where
u and v are the velocity components in the i and j direction, respectively, and h is
some physical condition (water depth, density, temperature) we wish to describe.

(a) (b)

Figure 3.1: Arakawa A-grid and C-grid configurations.

Staggered grids can be constructed by specifying the dependent variables in
different points, as in the C-grid shown in figure 3.1(b). Whenever we approxi-
mate the solution of a set of differential equations with a set of finite difference
equations discretized on a grid, we are likely to find spurious effects which depend
on the grid and not on the physical problem we are trying to solve. Different grid
configurations tend to enhance or suppress different types of numerical errors,
which must be taken into account when researchers develop numerical methods
for a particular problem.

A general problem with rectangular grids is that they are anisotropic, and this
can often cause a signal to propagate at a different speed along the grid axes than
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along a diagonal axis. This problem can usually be mitigated by reducing the size
of the grid, but there may be cases where this is not a practical solution. An alter-
native solution is to use hexagons instead of rectangles when constructing the grid.
Because regular hexagons are less anisotropic than rectangles, hexagonal grids
tend to induce less systematic errors then rectangular grids of similar size. Hexag-
onal grids have been applied by Sadourny et al.[32] and Williamson[33], and has
since enjoyed some popularity in models for global atmospheric processes, be-
cause the sphere of the globe can be covered by a so-called icosahedral-hexagonal
grid with nearly uniform hexagons.

Figure 3.2: The HC-grid.

One type of hexagonal grid is the HC-grid (Hexagonal C-grid), shown in fig-
ure 3.2. This particular grid is formulated in terms of three horizontal axes, which
means that one of the spatial variables can be written in terms of the other two.
Details about the grid constructions can be found in appendix A.2. Not all hexago-
nal grids are formulated in terms of three spatial variables (see Ničković et al.[34]
for an overview of different formulations), but this formulation preserves the sym-
metry of the problem as it is written with respect to a Cartesian coordinate system.

The Lax-Richtmeyer equivalence theorem guarantees that the numerical ap-
proximation to a set of linear differential equations with constant coefficient con-
verges to the true solution if the approximate equations are consistent, i.e. ap-
proaches the partial differential equations as ∆x,∆t → 0, and the numerical scheme
is stable, i.e. there is an upper limit to the errors introduced by roundoff. In paper
D we examine the stability of numerical schemes for the shallow water equations
discretized on a hexagonal grid. The growth of the numerical errors are related
to an improper handling of depth variation in the water basin, and we show that a
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stable numerical scheme can be constructed by choosing suitable weights on the
Coriolis terms.

Although it is possible to discretize the Boussinesq equations on a hexagonal
grid, we have not implemented such a model. This is partly because we have used
an existing model, COULWAVE, for simulations in 2HD. As seen in section 2.2.2,
the Boussinesq equations with improved dispersive properties perform well when
compared to the linear solution, and further improvement is possible if higher
order terms are retained in the equations. This reduces the incentive for using
hexagonal grids with these equations, although there will still be significant errors
in propagation speed for waves with short wave lengths.

3.2 Finite difference schemes for Boussinesq equa-
tions

The numerical models which have been employed in the papers are all based on
finite difference schemes. As the basic theory of finite difference schemes for
partial differential equations is textbook material (see e.g. Thomas[35]), this is
not treated here. Because of the wide range of formulations used for the Boussi-
nesq equations, several different numerical schemes have been proposed (see e.g.
Peregrine[13, 13], Pedersen[36], Nwogu[14], Wei et al.[37]).

The numerical scheme used in paper A is similar to the scheme proposed by
Pedersen[36]. The spatial differences are calculated using central differences of
second-order accuracy. By discretizing the equations on a grid which is staggered
both in space and time, updating of the velocity potential and surface elevation
requires solving two tridiagonal matrices for each time step.

As mentioned earlier, the COULWAVE model which is used in papers B and
C, is discretized using the unstaggered A-grid lattice. The spatial derivatives
which occurs in the first-order terms are discretized to fourth-order accuracy by
using standard five-point finite differencing, while the spatial derivatives occur-
ring in the dispersive terms are differenced only to second-order accuracy. For the
time stepping procedure, the fourth-order Adams-Bashforth-Moulton predictor-
corrector scheme is employed. The corrector step is iterated until the error be-
tween two successive results for each of the three dependent variables u, v, and ζ

reaches a required limit, which is typically fixed at 1.0 ·10−4. By using methods
with high order of accuracy for the first-order spatial derivatives and the temporal
derivatives, we ensure that the truncation error terms are of a higher order than the
dispersive terms in the equations.
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3.3 Boundary conditions

Boundary conditions must be specified in order to have a well posed problem. For
the papers presented in this thesis, we assume either that the lateral boundary is a
solid wall that reflects the wave, or that the wave is absorbed at the boundary.

The solid boundary condition requires that the velocity component normal to
the boundary is zero, i.e. that ū · n̄ = 0 on the boundary, where n̄ is the normal
vector to the boundary. This condition does not place any restrictions on the tan-
gential velocity component, which must be determined by a separate boundary
condition. In reality, fluid particles located on a solid boundary are stationary,
which is expressed by the no-slip condition ū = 0 on the boundary. As fluid in
the core region of the flow usually have non-zero velocity, a strong shear flow
develops close to the boundary, which is often difficult to handle in numerical
models. In order to avoid this problem, many models use the free-slip condition
∂ū/∂n̄ = 0, which restricts only the shear of the tangential velocity. The free-slip
condition for solid boundaries is used in the COULWAVE model.

The absorbing boundary condition is constructed by introducing sponge lay-
ers extending over a certain width, starting from the boundary of the computa-
tional domain, where the solid boundary condition is applied. Inside the sponge
layer, the flow is gradually relaxed toward the desired boundary condition by a
smooth function. In the COULWAVE model, the sponge layer is used to damp
waves propagating towards the boundary. In other models sponge layers may be
used to relax the flow towards some external conditions, as seen for instance in
ocean models where relaxation towards climatological values is often used for
open boundaries.

3.3.1 The bottom boundary layer

The drag induced on the flow due to interaction with solid boundaries may be
important for many applications. The effect of a no-slip boundary condition may
be analyzed by assuming viscous effects are significant only within a boundary
layer close to the solid surface, as outlined in appendix A.3. Matching the bot-
tom boundary lay solution to the flow in the core region can be accomplished by
modifying the bottom boundary conditions in the derivation of the Boussinesq
equations. This introduces into the equations a term which contains a convolution
integral in time (see Liu and Orfila[38]). Although it is not difficult to calculate
the value of this integral in principle, it is very computationally demanding for
practical applications. Computing the value of this integral in a straight forward
manner requires that we know the entire history of the flow in each of the grid
points. Not only do we have to store all these value, but for each time step we
have to integrate over all spatial nodes and all time steps. If we are to use the
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boundary layer approach for large scale simulations, there is clearly a need for
finding a good estimate of the convolution integral by a less computationally de-
manding method. A procedure for finding such an estimate is presented paper
C.



Chapter 4

Summary and future work
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Papers A and B explore the generation of waves under some specific condi-
tions which may be of importance for HSC operations in shallow waters. This
line of investigation may be extended further. For instance, in the accident report
following the swamping of the angling vessel ”Purdy”[8] it was suggested that
wave focusing due to a change in the course of the HSC could have contributed to
the accident. The modeling tools discussed in this thesis could be used to explore
a similar scenario by having the wave generating disturbance move along a curved
path.

When working with numerical models, one must always question whether the
end result corresponds to a true solution of the physical problem, or if the re-
sult is an artifact created by conditions inherent in the mathematical or numerical
model itself. The result could be checked against data from experiments or field
measurements if these are available, or against the result from a mathematical or
numerical model which is considered to be more accurate or reliable. For the test
cases discussed in papers A and B we have not had any data available for compari-
son. It would be of interest to compare the results in these papers with results from
a more accurate model which is not based on the shallow water approximation.

If we want to use Boussinesq equations to study wave generation due to a
particular hull shape, we need a more accurate description of the near ship flow.
One possibility would be to apply the slender body theory mentioned in section
2.4, which has been used successfully by other researchers.

Paper C explores the viscous effects due to a transient long wave. This theory
can be used for waves generated by a vessel in shallow water, as was demonstrated
in one of the examples in the paper, but could also be used when modeling other
transient phenomena, such as dam break problems or gravity plumes. The theory
can be extended to include flow near sidewall boundaries in a channel, but has
so far only been implemented in a width averaged model formulation (see Liu et
al.[39]).

Paper D use hexagonal grids for shallow water equations, and explores issues
related to stability by examining the propagation matrix. As mentioned in section
3.1, it is possible to formulate the Boussinesq equations it terms of the hexago-
nal coordinate system, and it would be interesting to examine if this formulation
improved results for waves of intermediate wave length. The stability analysis
method used in paper D can be applied to other grids and model equations (see
discussion in Espelid et al.[40]).
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Appendix

A.1 Derivation of the Boussinesq equations

In this section, we briefly outline how we can derive the Boussinesq equations
from the primitive equations (2.1) to (2.5), following the procedure used by Mad-
sen and Schäffer[16]. This procedure is based on the velocity potential, which is
defined by

u′ =
∂Φ′

∂x′
, v′ =

∂Φ′

∂y′
, w′ =

∂Φ′

∂z′
.

The non-dimensional variables are defined as

(x,y) =
(x′,y′)

l′0
, z =

z′

h′0
, h =

h′

h′0
, t =

√
gh′0
l′0

t ′ ,

Φ =
h′0

a′0l′0
√

gh′0
Φ
′

ζ =
ζ′

a′0
, p =

p′

ρga′0
,

and this gives us the governing equations on the form

Φzz +µ2
∇

2
Φ = 0 , −h < z < εζ , (A.1)

1
µ2 Φz +∇h ·∇Φ = 0 , z =−h , (A.2)

Φt +ζ+ p+
1
2

ε(∇Φ)2 +
ε

2µ2 (Φz)2 = 0 , z = εζ , (A.3)

− 1
µ2 Φz +ζt + ε∇ζ ·∇Φ = 0 , z = εζ . (A.4)
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Power series expansion

We now assume that the solution can be expressed as a power series in z, according
to

Φ(x,y,z, t) =
∞

∑
n=0

zn
Φ

(n)(x,y, t) . (A.5)

Using this expansion in the Laplace equation (A.1), we find

Φ
(n+2) =−µ2 ∇2Φ(n)

(n+1)(n+2)
, n = 1,2,3, . . . ,

and the power series solution (A.5) can now be expressed as

Φ(x,y,z, t) =
∞

∑
n=0

(−1)nµ2n
(

z2n

(2n)!
∇

2n
Φ

(0) +
z2n+1

(2n+1)!
∇

2n
Φ

(1)
)

. (A.6)

We may regain the formulation in terms of velocities by

u(x,y,z, t) =
∞

∑
n=0

(−1)n
(

z2n

(2n)!
µ2n

∇(∇2n−2(∇ · û))+
z2n+1

(2n+1)!
µ2n+2

∇(∇2nŵ)
)

,

w(x,y,z, t) =
∞

∑
n=0

(−1)n
(
− z2n+1

(2n+1)!
µ2n+2

∇
2n(∇ · û)+

z2n

(2n)!
µ2n+2

∇
2nŵ

)
,

where we have defined

û≡ ∇Φ
(0) , ŵ≡ 1

µ2 Φ
(1) .

It is easy to verify that

u(x,y,0, t) = û , w(x,y,0, t) = µ2ŵ ,

by setting z = 0 in the above equations.

The kinematic bottom boundary condition

Replacing Φ with the series expression (A.6), we find that the kinematic bottom
boundary condition (A.2) becomes

∞

∑
n=0

(−1)n
(

µ2n h2n+1

(2n+1)!
∇

2n(∇ · û)+µ2n h2n

(2n)!
∇

2nŵ
)

+∇h ·
∞

∑
n=0

(−1)n
(

µ2n h2n

(2n)!
∇(∇2n−2(∇ · û))−µ2n+2 h2n+1

(2n+1)!
∇(∇2nŵ)

)
= 0 .
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Using the identity

ŵ =
∞

∑
n=0

(−1)nµ2n
(

h2n

(2n)!
∇

2nŵ+µ2 h2n+2

(2n+2)!
∇

2(∇2nŵ)
)

,

we write the above equation on the equivalent form

ŵ+
∞

∑
n=0

(−1)nµ2n
∇ ·

(
h2n+1

(2n+1)!
∇(∇2n−2(∇ · û))

−µ2 h2n+2

(2n+2)!
∇(∇2nŵ)

)
= 0 .

So far we have proceeded without making any assumptions concerning the mag-
nitude of the parameters µ and ε. Hereafter we assume that µ � 1, and introduce
the series expansion for ŵ as

ŵ(x,y, t) =
∞

∑
m=0

µ2mw(m)(x,y, t) .

Replacing the series expansion for ŵ in the above equation gives us two single
summation series and one double summation series. We replace m and n with p in
the single summation series and replace m with p−n−1 in the double summation
series. Having assumed µ� 1, all elements of equal power in µ must sum to zero,
which gives us

w(p) =
(−1)p+1

(2p+1)!
∇ · [h2p+1

∇(∇2p−2(∇ · û))]

+
p−1

∑
n=0

(−1)n

(2n+2)!
∇ · [h2n+2

∇(∇2nw(p−n−1))] .

We are now in a position where we can express ŵ in terms of û to any order of µ.
The explicit expression including the first three terms in p, is

ŵ(x,y, t) =−∇ · (hû)+µ2
∇ · [1

6h3
∇(∇ · û)− 1

2h2
∇(∇ · (hû))]

+µ4
∇ · [ 1

24h4
∇(∇2(∇ · (hû)))− 1

120h5
∇(∇2(∇ · û))

+ 1
2h2

∇(∇ · (1
6h3

∇(∇ · û)− 1
2h2

∇(∇ · (hû))))]+O(µ6)

The kinematic boundary condition at the free surface

We define velocities at the free surface by

ũ≡ (∇Φ)z=εζ , w̃≡ 1
µ2 (Φz)z=εζ ,
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and write the kinematic free boundary condition (A.4) as

ζt − w̃+ ε∇ζ · ũ = 0 .

Using the series expansion of Φ, we find series expansions for ũ and w̃ in terms
of û and ŵ,

ũ =
∞

∑
n=0

(−1)nµ2n
ε

2n
(

ζ2n

(2n)!
∇(∇2n−2(∇ · û))+µ2

ε
ζ2n+1

(2n+1)!
∇(∇2nŵ)

)
,

w̃ = ŵ−
∞

∑
n=0

(−1)nµ2n
ε

2n+1
(

ζ2n+1

(2n)!
∇

2n(∇ · û)+µ2
ε

ζ2n+2

(2n+2)!
∇ · (∇(∇2nŵ))

)
.

This gives us the kinematic free boundary condition

ζt − ŵ+
∞

∑
n=0

(−1)nµ2n
ε

2n+1
∇ ·

(
ζ2n+1

(2n+1)!
∇(∇2n−2(∇ · û))

µ2
ε

ζ2n+2

(2n+2)!
∇(∇2nŵ)

)
= 0 ,

which is valid for arbitrary values of ζ and µ. Using the polynomial expression
for ŵ in terms of û (assuming µ� 1), we find

ζt +∇ · {(εζ+h)û−µ2[1
2(ε2

ζ
2−h2)∇(∇ · (hû))+ 1

6(ε3
ζ

3 +h3)∇(∇ · û)]

+µ4[1
2(ε2

ζ
2−h2)∇(∇ · (1

6h3
∇(∇ · û)− 1

2h2
∇(∇ · (hû))))

+ 1
24(ε4

ζ
4−h4)∇(∇2(∇ · (hû)))+ 1

120(ε5
ζ

5 +h5)∇(∇2(∇ · û))]}
= O(µ6)

The dynamic boundary condition

The dynamic free surface boundary condition (A.3) may be treated in different
ways. When deriving the Boussinesq equations, it is customary to apply a proce-
dure which requires spatial and temporal derivatives of Φ to be calculated before
z is replaced by εζ in the series expansions. This ensures that the equation de-
rived from the dynamic boundary condition does not include temporal derivatives
of ζ. Formulations have been constructed where temporal derivatives of ζ are in-
cluded in both Boussinesq equations, but in this case we will follow the traditional
procedure.

We start by defining

Φ
∗
t ≡ (Φt)z=εζ , V∗

t ≡ ∇(Φ∗
t ) ,
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and write the dynamic boundary condition as

Φ
∗
t +ζ+ p+ ε

ũ · ũ
2

+ εµ2 w̃2

2
= 0 .

Differentiating with respect to horizontal spatial dimensions, we find

V∗
t +∇ζ+∇p+∇

(
ε

ũ · ũ
2

+ εµ2 w̃2

2

)
= 0 .

We have already obtained series expansions for ũ and w̃, and the series expansion
for V∗

t is given as

V∗
t =

∞

∑
n=0

(−1)nµ2n
ε

2n
∇

(
ζ2n

(2n)!
∇

2n−2(∇ · ût)+µ2
ε

ζ2n+1

(2n+1)!
∇

2nŵt

)
.

This establishes the Boussinesq equations in terms of the velocity at still water
level. Other formulations may use the depth-averaged velocity or the velocity at
an arbitrary z-level. Any such formulation may be derived by using the above
formulations, and replace the wanted velocity component for û by successive re-
placements in the series expansion of u(x,y,z, t).
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A.2 Properties of the hexagonal coordinate system

Equations formulated in a Cartesian coordinate system (x,y) can be formulated in
the HC-coordinate system (x1,x2,x3) by the transformation

x1 = x , x2 =−1
2

x+
√

3
2

y , x3 =−1
2

x−
√

3
2

y .

This system is over-determined, so one component can be written in terms of
the other two. If for instance the velocity u = (u1,u2,u3), is defined in the point
p = (p1, p2, p3), we have the relation

u1(p)+u2(p)+u3(p) = 0 ,

between the velocity components. Furthermore, the length of a vector in the HC-
coordinate system can be related to the length of the corresponding vector in the
Cartesian coordinate system through the relation

u2
1(p)+u2

2(p)+u2
3(p) =

3
2
(u2(p)+ v2(p))

Further details about the construction and basic properties of this grid can be found
in articles by Sadourny and Morel[41], Ničković[42], and Ničković et al.[34].

The linearized shallow water equations with Coriolis forcing, is written in
component form in a Cartesian coordinate system as

∂u
∂t
− f v+g

∂h
∂x

= 0 ,

∂v
∂t

+ f u+g
∂h
∂y

= 0 ,

∂h
∂t

+H0

(
∂u
∂x

+
∂v
∂y

)
= 0 ,

where the depth H is written as H(x,y, t) = H0(x,y)+h(x,y, t). Transforming this
equation on the HC-coordinate system, we formulate the equations

∂u1

∂t
− f√

3
(u2−u3)+g

∂h
∂x1

= 0 ,

∂u2

∂t
− f√

3
(u3−u1)+g

∂h
∂x2

= 0 ,

∂u3

∂t
− f√

3
(u1−u2)+g

∂h
∂x3

= 0 ,

∂h
∂t

+
2
3

H0

(
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3

)
= 0 .
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The improvement with respect to isotropic properties can be seen in figure
A.1, where the phase speed of the shallow water wave is plotted relative to the
analytical phase speed c =

√
gh. The phase speed for the numerical solution is

found by discretizing the equations in space only, and inserting a wave solution
on the form φ = φ0 exp(i(αm∆x + βnδy−νt)). The phase speeds for the wave in
the C-grid is

cC =
νC√

α2 +β2
=

2
√

gh

d
√

α2 +β2

[
sin2

(
αd
2

)
+ sin2

(
βd
2

)] 1
2

,

and the phase speed for the HC-grid is

cHC =
νHC√
α2 +β2

=
[(

8gh
3d2(α2 +β2)

)(
sin2(2a)+ sin2(a−b)+ sin2(a+b)

)] 1
2

,

where a = αd/4, and b =
√

3βd/4.

(a) (b)

Figure A.1: Relative phase speed for the C-grid and HC-grid.

The frequency of the gravity-inertia waves is(
ω

f

)2

= 1+R2
D(k2 + l2) ,

where RD =
√

gH0/ f is the Rossby radius. Results for the C-grid and HC-grid are(
νC

f

)2

= cos2
(

αd
2

)
cos2

(
βd
2

)
+

4R2
D

d2

(
sin2

(
αd
2

)
+ sin2

(
βd
2

))
,
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and (
νHC

f

)4

+B
(

νHC

f

)2

+C = 0 ,

B =
4R2

D
3d2 [cos(4a)+ cos(2a−2b)+ cos(2a+2b)−3]

− 1
6

[cos(4a)+ cos(2a−2b)+ cos(2a+2b)+3] ,

C =
8R2

D
9d2 [cos(2a)− cos(2b)]2 sin2(2a) .

The expression for B is slightly different from the expression presented in [34],
due to a misprint in that paper (confirmed by Ničković in private communication).
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(a)

(b) (c)

Figure A.2: Relative wave frequency for inertia-gravity waves.
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A.3 Diffusion in the Bottom Boundary Layer

Diffusion on a semi-infinite rod is governed by the PDE

∂u
∂t

= k
∂2u
∂x2 , 0 < x < ∞ ,

with boundary conditions

u(0, t) = g(t) and u(∞, t) = 0 , t > 0 ,

and the initial condition

u(x,0) = h(x) .

The solution to this type of problems can be found in text-books on PDEs (see e.g.
Mei[43]). We use the Fourier sine transform

û(ξ, t) =
Z

∞

0
u(x, t)sin(ξx)dx ,

which transforms the above PDE to the ordinary differential equation

dû
dt

+ kξ
2û = kξg(t) , t > 0 ,

with the initial condition

û(ξ,0) = ĥ(ξ) =
Z

∞

0
h(x)sin(ξx)dx .

The ODE for the transformed problem has the general solution

û(ξ, t) = ĥe−kξ2t + kξ

Z t

0
g(τ)e−kξ2(t−τ) dτ .

Assuming zero initial condition h = ĥ = 0, the solution in physical space is found
by using the inverse Fourier sine transform, giving

u(x, t) =
2k
π

Z
∞

0
ξsin(ξx)

Z t

0
g(τ)e−kξ2(t−τ) dτdξ

=
2k
π

Z t

0
g(τ)

Z
∞

0
ξsin(ξx)e−kξ2(t−τ) dξdτ

=
2k
π

Z t

0
g(τ)

(
− ∂

∂x

Z
∞

0
cos(ξx)e−kξ2(t−τ) dξ

)
dτ

=
2k
π

Z t

0

g(τ)√
k(t− τ)

(
− ∂

∂x

Z
∞

0
cos(µz)e−z2

dz
)

dτ
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where z2 = kξ2(t− τ) and µ = x/
√

k(t− τ).
We solve the inner integral

I(µ) =
Z

∞

0
cos(µz)e−z2

dz

by first taking the derivative

dI
dµ

=−
Z

∞

0
zsin(µz)e−z2

dz =
1
2

Z
∞

0
sin(µz)d(e−z2

)

=
[

1
2

e−z2
sin(µz)

]∞

0
− 1

2
µ

Z
∞

0
cos(µz)e−z2

dz

=−1
2

µI(µ) .

This ODE in I(µ) has initial condition

I(0) =
Z

∞

0
e−z2

dz =
√

π

2
,

which determines the solution

I(µ) = I(0)e−
µ2
4 =

√
π

2
e−

µ2
4 .

Returning to the original problem, we find

u(x, t) = 2k
Z t

0

g(τ)√
4πk(t− τ)

(
− ∂

∂x
e−

x2
4k(t−τ)

)
dτ

=
x√
4πk

Z t

0

g(τ)

(t− τ)
3
2

e−
x2

4k(t−τ) dτ
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