
Paper A

Influence of Variable Froude Number
on Waves Generated by Ships in
Shallow Water.





Influence of variable Froude number on waves generated by ships

in shallow water

Tomas Torsvik and Kristian Dysthe
Department of Mathematics, University of Bergen,

Johannes Brunsgate 12, NO-5008 Bergen, Norway

Geir Pedersen
Department of Mathematics, University of Oslo,

PO Box 1053, Blindern, NO-0316 Oslo, Norway

Abstract
Passage through the transcritical speed region of a moving disturbance in a shallow channel, is

examined using numerical simulations based on a set of forced Boussinesq equations. The transition

is accomplished either by accelerating the wave generating disturbance in a region of constant depth

or by moving the disturbance with constant speed over a sloping bottom topography. A series of test

cases are examined where the transcritical region is traversed both from subcritical to supercritical

speed and vice versa. Results show that the generation of upstream solitary waves depends on the

time required for the transition, with large waves being generated for long transition times. It is

also apparent that the shape of the wave pattern, and the maximum amplitude of the waves, differ

significantly depending on whether the Froude number increase or decrease during the transition

of the transcritical region. However, the wave pattern is not determined simply in terms of the

Froude number. The strength of the forcing term as well as the underlying process which cause

the Froude number to vary, i.e. acceleration and depth variation, influence the wave pattern in

different ways. The Froude number is none the less a useful indicator for the problem, since all

cases with similar Froude number variation share some common characteristic features.
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I. INTRODUCTION

It is well known that large, high-speed vessels moving at near-critical speeds in shallow
water, can generate long, finite amplitude waves. These waves differ from the wake waves
generated by conventional ships, and may constitute an environmental and safety hazard in
confined waters. Field studies have been carried out on several locations where problems
of this nature have occurred (for an overview, see Parnell and Kofoed-Hansen1 and the
references therein). A characteristic feature in the wave pattern is the occurrence of one or
more solitary waves which are generated upstream of the vessel, and are often seen leading
the wave packet as the waves approach the shore (see Miles2 for a general review on solitary
waves). The evolution of the waves in the far-field is often examined numerically using long
wave models based on the forced Boussinesq (fB) equations or the forced Korteweg-deVries
(fKdV) equation, where a localized pressure disturbance is included to represent the ship
(see Li and Sclavounos3 and the references therein). Most of these studies include only cases
where the depth h, and the speed of the ship U , are maintained at constant values, and
hence the depth Froude number F = U/

√
gh, is also constant. There are however a few

articles which considers effects due to a variable Froude number.
Kevorkian and Yu4 studied the transition through the critical speed region using a method

based on asymptotic expansions and subsequent matching of the solutions in the sub-, trans-
and supercritical flow regions .The expansion for the transcritical region was valid for a time
interval which depended on the magnitude of the forcing term, which limited the study
to fairly short transition times. The authors presented analytical and numerical results
for flows in the non-dispersive limit. Redekopp and You5 studied a problem involving a
variable Froude number using the fKdV equation. The disturbance travelled at supercritical
speed at the start and end of the simulations, but entered the transcritical region during
some intermediate time interval. Grimshaw et al.6 constructed an asymptotic model based
on the fKdV equation, and applied this to examine the interaction of solitary waves with
an external forcing moving with constant acceleration. The article included an elaborate
account of the trapping of solitary waves by the forcing, where the solitary wave was localized
close to the forcing and is influenced by the forcing over a long time interval. While the
wave propagation in the above mentioned articles was restricted to one horizontal dimension,
Jiang et al.7 investigated waves on a 2D free surface, generated by a ship moving on a fairway
of varying topography. The numerical model used in the article combined a slender-body
representation of the ship with Boussinesq equations for waves propagating in the far-field.

Although the effect of a variable Froude number is examined in these articles, none
of the articles give a comprehensive description of the wave pattern generated during the
transition through the transcritical speed region for a wide range of parameters. In the
present paper we examine the transition problem, restricted to waves propagating in one
horizontal dimension, but allow for a wide range of parameters. This way we hope to
provide a more complete account of the processes which influence the wave pattern when a
ship accelerates or decelerates while it is close to the critical speed region.

The equations are presented in §II, along with the numerical method which has been
applied for the simulations. Results for numerical simulations with a variable Froude number
are presented in §III, and concluding remarks are given in §IV.
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II. EQUATIONS AND NUMERICAL METHOD

The equations are formulated in a coordinate system with one horizontal axis x∗ and the
vertical axis z∗ with zero at the equilibrium free surface. The asterisk indicates dimensional
quantities. The fluid is confined to the region −h∗ < z∗ < η∗, where h∗(x∗) is the depth
of fluid at equilibrium, and η∗(x∗, t∗) is the position of the free surface. We assume that
the fluid is irrotational and incompressible, and that vertical processes evolve on a slow
time scale, which allows us to formulate the equations in terms of the depth integrated
velocity potential φ∗(x∗, t∗). Waves are generated by allowing an external pressure p∗(x∗, t∗)
of constant form and magnitude, to act on the free surface. All functions and variables in
the equations are made dimensionless by the transformation

z∗ = h0z x∗ = lx t∗ = l(gh0)
−

1

2 t h∗ = h0h(x)

η∗ = αh0η(x, t) φ∗ = αl(gh0)
1

2 φ(x, t) p∗ = αρgh0p(x, t)
(1)

where h0 is a typical depth, l is a typical wavelength, g is the acceleration of gravity, ρ is
the fluid density and α is a small parameter.

The derivation of the Boussinesq equations from the primitive equations is well docu-
mented, see e.g. Wu8, and we have used the forced Boussinesq equations of the form

ηt +

[

(h + αη)φx + ǫhhx

(

1

6
ηt −

1

3
hxφx

)]

x

= 0 ,

φt + η + p +
1

2
α (φx)

2 − ǫ

(

1

2
h [hφxt]x −

1

6
h2φxxt

)

= 0 ,

(2)

which allows for a sloping bottom topography, as demonstrated by Pedersen9. The parame-
ters

α =
a∗

h0

, ǫ =
h2

0

l2
,

where a∗ is a typical wave amplitude, are measures of nonlinearity and dispersion, respec-
tively, and they are both required to be small in order for the equations to be accurate.

The ship is represented by a localized perturbation of the pressure at the free surface.
Since the model is not suited to study the detailed flow near the hull of the ship, we have
not attempted to include a realistic representation of a ship in the model, and have instead
used a simple function to determine the pressure disturbance, which is given by

p(x, t) =

{

P0(t) cos2
(

π
L

(x− xp(t))
)

−L
2
≤ (x− xp(t)) ≤ L

2
0 elsewere

, (3)

where P0(t) is the amplitude, L is the length and xp(t) is at the centre of the pressure
disturbance.

The moving disturbance will experience a resistance to the motion due to wave generation
and radiation. A measure of this resistance is expressed by the wave drag

DW = −
∫

∞

−∞

p(x, t) ηxdx .
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Both upstream and downstream waves contribute to the wave drag, but the major time
variation is contributed by the generation of upstream waves, as shown by Lee et a.10.

A. Numerical method

The scaling introduced above is convenient when discussing the equations, but can obscure
the readability of the numerical results. We therefore introduce new dimensionless variables
where all lengths are scaled with the reference depth h0 and the time unit is the time required
to travel the distance of the depth with the linear shallow water speed. This amounts to
replacing l with h0 and removing the scaling parameter α when defining the dimensionless
variables (1). The fB equations formulated in terms of the new dimensionless variables have
the same form as equations 2, except the parameters α and ǫ no longer appears explicitly
in the formulation. Naturally, the content and performance of the equations are not altered
by this re-scaling.

The equations are solved numerically using a finite difference method. The solution of
the Boussinesq equations follows Pedersen9, and only the main features are presented here.
A quantity f is approximated at grid points with coordinates (β∆x, κ∆t), where ∆x and

∆t are grid increments, and is denoted f
(κ)
β in the difference equations. The equations are

solved on a grid which is staggered in both space and time, where η is evaluated at grid
points and φ is evaluated at staggered points, i.e.

η(β∆x, κ∆t) ≈ η
(κ)
β , φ

(

(β + 1
2
)∆x, (κ + 1

2
)∆t

)

≈ φ
(κ+ 1

2
)

β+ 1

2

.

Derivatives are approximated by central differences in both space and time, resulting in
implicit formulations for the time evolution of both η and φ. Each time step involves solving
two tri-diagonal propagation matrices.

The solution is calculated on a large spatial domain in order to avoid interference of noise
from lateral boundaries with the main part of the wave pattern. This does not involve an
extensive computational cost, since the equations only have one spatial dimension. Our
only concern has been to avoid blow up of noise at the boundaries, and we have therefore
implemented simple boundary conditions which reflect incoming waves.

It is not a straight forward task to analyze a nonlinear model for stability. Our choice
of time stepping in the simulations, ∆t = 0.8 ∆x, is based on the analysis of the linearized
model equations, which is outlined in Pedersen9. We have not experienced numerical in-
stabilities in any of the simulations with this model, provided the value of ∆x was within
a reasonable range. The numerical scheme has been tested for convergence by grid refine-
ment. The same simulation was executed on spatial grids with increments ∆x of 0.5, 0.25
and 0.125, and the error, in L2 norm, of η at the end of each simulation was calculated, using
the fine grid result as the true solution. The current numerical scheme is formally of 2nd
order, and the grid refinement test gave an order of convergence of 1.8961. Based on this
result, we conclude that the numerical solution converges when we use a spatial resolution
of ∆x = 0.125, and this value has been used in all the simulations hereafter.
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III. RESULTS FOR VARIABLE FROUDE NUMBER

Variations in the speed U of the ship and the water depth h influence the value of the
Froude number, but changes in these two variables does not induce the same variation,
neither in the Froude number nor in the problem as a whole. We wish to examine the effect
of variation in both these variables in separate test cases; one where the ship accelerates at
the constant acceleration G in a region of constant depth, and one where the ship moves at
constant speed in a region where the bottom has a slope of constant inclination S.

Simulations for the two test cases have been set up to be as similar as possible. A spin up
period for the pressure amplitude of 50 time units is used, while U and h are kept constant.
The initial values of U and h correspond to either sub- or supercritical cases, but close to
being in the transcritical region. Variation of the Froude number is initiated at t = t1 = 100.
In the case of a sloping bottom topography, this is achieved by carefully choosing the initial
position of the pressure disturbance relative to the position of the slope. The ship proceeds
through the transcritical flow region, and the Froude number continues to change until it
reaches a specific value at some time t = t2. Thereafter both the speed U and the depth h
are maintained at constant values.

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

P
0

F

FIG. 1: Limits for bore and soliton generation. Results are shown for the NLSW model (solid line)

and the Boussinesq model (dotted line with circles).

The approach described above requires some knowledge about the extent of the trans-
critical region. This problem has been studied by Houghton and Kasahara11 for flow over
a disturbance at the bottom, within the context of the nonlinear shallow water (NLSW)
equations (without dispersion). Although the NLSW model give qualitatively incorrect re-
sults for the flow over a bump, as demonstrated by Nadiga et al.12, it nevertheless provides
a reasonable estimate for deciding the boundaries for the transcritical flow. Figure 1 show
the limits for bore generation predicted by the NLSW model together with limits found for
the generation of an undular bore or a solitary waves using the fB model with a pressure
disturbance. The results for the Boussinesq equation is based on visual inspection of results
from simulations with constant Froude numbers, and has a margin of error of approximately
F = ±0.02. The limits found for the fB equations determine what is considered to be the
transcritical region in the rest of this article.
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A. Constant acceleration

In the first test case the speed of the ship accelerates with a constant acceleration
G = dU/dt, while the depth remains constant. In terms of dimensional variables the ac-
celeration is determined by G = g−1 dU∗/dt∗, i.e. as the ratio of the ship’s acceleration to
the acceleration of gravity. By choosing the constant depth h = 1, and imposing constant
acceleration, the time dependence of the Froude number during acceleration is determined
by

F (t) = G(t− t1) + U(t1) , t1 < t < t2 .

Figure 2 shows the time development of the wave pattern and wave drag for a pressure
disturbance of amplitude P0 = 0.05 and length L = 10.0, which accelerates from F = 0.7 to
F = 1.7. The pressure disturbance is moving towards the left, and the coordinate system
follows the pressure disturbance, which is located at −5 ≤ x ≤ 5. The fluid is moving to
the right in the reference frame of the ship. In the last two cases the simulation is stopped
once the amplitude of the largest upstream wave has grown to a = 1, since this is well
above the stability limit of solitary waves (a = 0.78), within full potential theory as given
by Tanaka13. This stopping criteria is also generous in the sense that waves are allowed to
develop which are not well represented by weakly nonlinear wave theory. According to Miles2,
weakly nonlinear Boussinesq theory have been shown to fit wave profiles from experiments
for waves with amplitudes up to a ≤ 0.5, but should not be expected to provide correct
results for waves with significantly higher amplitudes. In our simulations we demonstrate
how large amplitude waves may be generated when the Froude number is allowed to vary,
but we do not study how these waves evolve once they are generated. All contour plots have
contour lines within the range [−0.475, 0.475], plotted at increments of 0.05. In some cases
the waves have amplitudes larger than 0.475, but we do not include contour lines beyond
this value because they would be inseparable in the plots.

The magnitude of the acceleration has significant influence on the amplitude of the up-
stream wave which is generated in the transcritical region. It should be noted that once a
wave is generated in the transcritical region, it remains trapped close to the pressure dis-
turbance for Froude numbers which are normally considered to be outside the transcritical
region (F > 1.25 for P0 = 0.05). When the acceleration is fast, as in Fig. 2(a), a small
amplitude wave develops upstream of the pressure disturbance in the transcritical region,
and is left behind by the pressure disturbance in the supercritical region. This process is
also represented in the wave drag, Fig. 2(b), which is positive in the transcritical region,
and turns negative once the pressure disturbance pass the crest of the solitary wave. The
negative value in the wave drag corresponds to a situation where the pressure disturbance
is located on the upstream slope of the solitary wave, and hence acts as an obstacle for
the wave propagation. For smaller values of G, as in Fig. 2(c), the large upstream wave
remains confined close to the pressure disturbance until the amplitude grows to O(1). When
G = 0.002, Fig. 2(e), the upstream bore which is generated at small transcritical Froude
numbers is allowed to develop, and eventually breaks up into three separate solitary waves
when F ≈ 1.1. The wave drag increases rapidly when the pressure disturbance enters the
transcritical region, and then increase slowly during the initial phase of the upstream wave
generation. Once a wave has been developed, and is trapped upstream of the pressure
disturbance, the wave drag almost doubles in magnitude, as seen in Fig. 2(d).

Figure 3 shows the wave pattern generated by a deceleration from F = 1.25 to F = 0.7,
for acceleration G of -0.05, -0.01 and -0.002. An upstream wave of moderate amplitude
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Fig. 2, Torsvik, Physics of Fluids
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FIG. 2: Time development of wave pattern and wave drag for constant positive acceleration.

Results are shown for G = 0.01, Figures (a) and (b), G = 0.005, Figures (c) and (d), and G = 0.002,

Figures (e) and (f). Contour lines range from -0.457 to 0.457 by increments of 0.05.
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Fig. 3, Torsvik, Physics of Fluids
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FIG. 3: Time development of wave pattern and wave drag for constant negative acceleration.

Results are shown for G = −0.05, Figures (a) and (b), G = −0.01, Figures (c) and (d), and

G = −0.002, Figures (e) and (f). Contour lines range from -0.457 to 0.457 by increments of 0.05.
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is always generated in the transition from super- to subcritical speed. This is due to the
localized and steady elevation on the free surface, which is associated with the pressure
disturbance in the supercritical region (see e.g. Cao et al.14). In the transcritical region,
this elevation will evolve into a solitary wave which eventually propagates upstream of the
pressure disturbance. As G → 0, both the amplitude and number of upstream solitary waves
increase. The generation of solitary waves is associated with distinct peaks in the wave drag.

Fig. 4, Torsvik, Physics of Fluids
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FIG. 4: Amplitude (a) and speed (b) of the largest solitary wave generated at different accelerations.

The stapled line in Figure (b) indicate the speed of the pressure disturbance at the time of zero

wave drag.

The amplitude of the largest solitary wave as function of acceleration is shown in Fig.
4(a). We see that a fast acceleration results in a solitary wave with small amplitude, and
that the amplitude increases as the the value of G approaches zero. Most of the behaviour
evident from this figure can be explained if we consider results from studies of constant
Froude number test cases (see e.g. Lee et al.10). Since the upstream solitary wave attains its
maximum amplitude, for a given Froude number, only after it has travelled with the pressure
disturbance for a distance of several depths, a fast acceleration will cause the pressure
disturbance to leave the transcritical region before the solitary wave is fully developed.
These previous studies also demonstrate that the amplitude of the solitary waves increase
with increasing Froude numbers, which explains the increase in amplitude for G → 0−, since
in this case the first solitary wave will be generated while the Froude number is still in the
upper part of the transcritical region. The asymmetry in amplitude for the fast acceleration
and fast deceleration cases can be attributed to the difference in starting conditions, where in
the latter case a steady elevation on the free surface is present near the pressure disturbance.

The increase in amplitude for small, positive values of acceleration is attributed to captur-
ing of the solitary wave by the pressure disturbance. This phenomenon has been described
by Grimshaw et al.6. If the pressure disturbance is moving with constant speed, then a
fully developed solitary wave will propagate upstream of the pressure disturbance. When
the pressure disturbance accelerates, it will catch up with the solitary wave. The amplitude
and speed of the wave continues to grow, causing the wave to remain in front of the pressure
disturbance. Figure 4(b) provides us with an indication for when the trapping of the solitary
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FIG. 5: The ratio of the amplitude of the largest solitary wave to the amplitude of the pressure

disturbance for different values of P0.

wave occurs. In this figure we compare the speed of the largest solitary wave when it has
escaped the influence of the pressure disturbance (solid line) with the speed of the pressure
disturbance at the time when it stops contributing to the growth of the wave (dashed line).
This latter time is determined by the first time of zero wave drag for t > t1, which occurs in
all cases where the wave is passed by the pressure disturbance (see Fig. 2(b)). The speed
of the pressure disturbance at zero wave drag has a minimum at G ≈ 0.01, and increase
as G → 0+, indicating that when the acceleration is sufficiently small, the wave is able to
follow the pressure disturbance for higher Froude numbers.

Grimshaw et al.6 found a condition which determines when the trapping of the wave may
occur. In terms of variables used in this article, the condition is given by

GL

αP0

≤ 2π .

For the test cases shown in Fig. 2, with P0 = 0.05, L = 10.0 and α = 1, the condition found
by Grimshaw et al. predicts trapping for G ≤ 0.0314, and the simulations show that waves
are trapped for G ≈ 0.01. These results are not necessarily in contradiction, since trapping
will only occur at the limit G = 0.0314 under highly idealized conditions. Furthermore, the
model derived by Grimshaw et al. requires that the wave maintains a perfect soliton shape,
and that the wave is long compared to the wave generating disturbance. These conditions
are not satisfied in our model.

The constant acceleration case has been studied for pressure disturbances with ampli-
tudes P0 = 0.025, 0.05 and 0.1. Figure 5 shows the amplitude of the largest solitary wave
scaled with the amplitude of the pressure disturbance for these three cases. As before, the
simulations were stopped once the amplitude of the solitary wave grew to O(1). All three test
cases show similar trends, with large amplitude waves being generated at accelerations close
to zero. The time required to generate a solitary wave decreases with increasing values of P0,
and hence the trapping mechanism for positive accelerations occurs at larger accelerations
for large values of P0.

The number of solitary waves generated during the transition increases as the acceleration
approaches zero, as seen in Fig. 6. The number of waves is generally higher for negative
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FIG. 6: The number of solitary waves generated at different accelerations.

accelerations than for positive accelerations, and is also influenced by the strength of the
pressure disturbance. Redekopp and You5 attempted to predict the number of waves being
generated when passing through the transcritical region. They defined a parameter based on
time integration of the Froude numbers for the transition time, but found that this measure
was not uniquely correlated to the number of solitary waves. Our results demonstrate that
any such measure must take into account the differences in the wave generating process for
positive and negative accelerations.

B. Linear depth variation
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FIG. 7: Sketch of the variable depth problem, including the relevant variables.

For the simulations where a pressure disturbance moves over a sloping bottom topography,
we keep the speed of the pressure disturbance constant at U = 1, and hence the depth h = 1
corresponds to the critical Froude number F = 1. The depth at the initial position of the
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pressure disturbance, h1, is constant, and the pressure disturbance reaches the start of the
slope at t = t1 = 100. At some later time t2 the pressure disturbance once again enters a
region of constant depth h2. The slope of the bottom topography is denoted by S = ∆h/∆x,
see Fig. 7, with the convention that a positive value of S corresponds to decreasing depth.
The pressure disturbance experiences that the local depth hp(t) varies with time, and the
time dependence is determined by

dhp

dt
= S ,

since U = 1. As a result, the Froude number is determined by

F (t) = [h1 − S(t− t1)]
−

1

2 , t1 < t < t2 ,

on the slope. The pressure disturbance has amplitude P0 = 0.05 and length L = 10.0.
Figure 8 shows results for simulations where the depth decreases from h1 = 2.04 (F = 0.7)

to h2 = 0.346 (F = 1.7). Several features in the wave pattern and wave drag are similar
to results for constant acceleration shown in Fig. 2. When the slope is steep, Fig. 8(a),
the pressure disturbance is able to pass the upstream bore generated in the transcritical
region, which subsequently propagates as a solitary wave downstream. In our simulations we
found that the solitary wave was detached from the pressure disturbance after the pressure
disturbance had entered the region of constant depth h2. The amplitude of the solitary
wave increases as the inclination of the slope decreases, until it is trapped by the pressure
disturbance at about S = 3.0 · 10−2. Trapping of the solitary wave does not cause any
significant increase in the wave drag, as seen in Fig. 8(d). The amplitude of the solitary
wave at the end of the simulation is a = 0.454, which is of the same magnitude as the local
depth, but still only moderate in view of the amplitude of the pressure disturbance. Multiple
solitary waves may be generated if the inclination of the slope is sufficiently small, as seen
in Fig. 8(e).

Figure 9 shows results for simulations where the depth increases from h1 = 0.574 (F =
1.32) to h2 = 1.778 (F = 0.75). The range of the transcritical region is slightly shifted
compared to the deceleration case because the impact of a pressure disturbance changes due
to the variation in depth, even though the amplitude P0 remains constant. Once again we
see that the wave pattern and wave drag have similar features when compared to results
for constant deceleration, Fig. 3. During the transition through the transcritical region, a
depression of the free surface is formed downstream of the pressure disturbance. When the
pressure disturbance reaches the region of constant depth h2, a slight depression is formed
upstream, which persists until the trailing waves catch up with the pressure disturbance.
At this point, the interaction between the pressure disturbance and the trailing waves may
result in further generation of upstream waves, as seen in Fig. 9(e).

We wish to compare the upstream waves generated by the disturbance for different slope
inclinations. Since the waves are constantly changing while moving over the sloping bottom
topography, we need a criterion to determine the time for which the wave is no longer
influenced by the forcing disturbance. This is achieved by comparing the result from the
simulation, for each time step, with a simplified case where the upstream wave is replaced by
an exact soliton solution with equal amplitude a, and determine the time of detachment from
the distance between the soliton and the forcing disturbance, see Fig. 10. We consider the
solitary wave to be independent of the forcing disturbance when the exact soliton solution is
reduced to 0.01a at the location of the forcing disturbance. This method has been applied
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Fig. 8, Torsvik, Physics of Fluids
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FIG. 8: Time development of wave pattern and wave drag for linear decreasing depth. Results

are shown for S = 4.23 · 10−2, Figures (a) and (b), S = 1.69 · 10−2, Figures (c) and (d), and

S = 5.65 · 10−3, Figures (e) and (f). Contour lines range from -0.457 to 0.457 by increments of

0.05.
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Fig. 9, Torsvik, Physics of Fluids
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FIG. 9: Time development of wave pattern and wave drag for linear increasing depth. Results

are shown for S = −2.41 · 10−2, Figures (a) and (b), S = −1.00 · 10−2, Figures (c) and (d), and

S = −4.01 · 10−3, Figures (e) and (f). Contour lines range from -0.457 to 0.457 by increments of

0.05.
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FIG. 10: Leading wave detachment determined by comparison with soliton solution. The figure

shows the free surface (solid line), the soliton (dash-dot line), and the pressure disturbance (dashed

line).

to the cases of increasing depth, and a graph of the amplitude of the waves for different
sloping inclinations is shown in in Fig. 11. We see that the amplitude increases as the slope
inclination becomes smaller, which is in agreement with similar results for a decelerating
pressure disturbance. When the inclination of the slope is small, the leading solitary wave
is detached from the pressure disturbance while it is still on the slope, but for steep slopes
the upstream wave is only generated after the pressure disturbance has reached the region
of constant depth h2. The transition between these two regimes occurs at approximately
S = −0.01, and is reflected in the kink seen in Fig. 11 for this value.
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FIG. 11: Amplitude of solitary waves for a forcing disturbance moving over a sloping bottom of

increasing depth.
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IV. CONCLUDING REMARKS

In this article we have studied waves generated by a moving pressure disturbance in
shallow waters, with focus on variable Froude number effects. The study shows features
which are not present when the Froude number is constant. We also find that it is important
to distinguish between the cases of increasing and decreasing Froude number.

Moving from super- to subcritical speed always generates a solitary wave with significant
amplitude. When the transition is fast, the generation of the solitary wave is largely due to
the supercritical solution attained at the start of the simulation, where a steady elevation
on the surface is located at the position of the forcing disturbance. A slow transition allows
the solitary wave to fully develop and propagate upstream while the forcing disturbance is
still in the transcritical region. The leading solitary wave becomes larger as the transition
time increases, because the large transition time allows the solitary wave to fully develop
while in the upper part of the transcritical region, where a larger wave celerity, and hence
larger wave amplitude, is needed in order for the wave to escape the influence of the forcing
disturbance.

The amplitude of the solitary wave generated during a transition from sub- to supercritical
speed is highly dependent on the transition time. Since the free surface is not elevated near
the forcing disturbance in the initial state of subcritical speed, the generation of solitary
waves depends entirely on the transition process. While in the transcritical region, the
forcing disturbance creates a net mass flux from the downstream to the upstream region. A
fast transition prevents this process from being sustained over a long time interval, in which
case no solitary wave of appreciable amplitude evolves close to the pressure disturbance.
Increasing transition times results in the generation of an upstream bore. For intermediate
transition times the forcing disturbance is able to overtake the bore, which is subsequently
reduced in amplitude and transformed into a solitary wave downstream. When the transition
time is long, the amplitude of the upstream bore grows until it is of the same magnitude as
the depth, which is beyond the maximum amplitude acceptable for the model.
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