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Abstract

The present work is a numerical investigation on waves generated by a pres-
sure disturbance moving at constant speed in a channel with a variable cross-
channel depth profile. The channel profile, which is uniform in the along-
channel direction, has a deep trench located in the vicinity of the center
line of the channel, and shallow banks near the channel walls. Wave fields
generated upstream and downstream of the moving pressure disturbance are
described, and the characteristic features present in the wave patterns are
related to the parameters governing the speed of the pressure disturbance
and the shape of the cross-channel profile. Our numerical investigation is
based on the COULWAVE long wave model, which solves a set of Boussinesq
type equations in two horizontal dimensions.

1 Introduction

In coastal waters, ships are often required to navigate in natural or dredged
trenches. Long waves are known to be generated by high speed vessels trav-
eling at speeds close to the critical depth Froude number F = U/

√
gh, where

U is the speed of the vessel, g is the acceleration of gravity and h is the
depth. In order to examine how ship waves behave under these conditions,
we consider the idealized case where waves, generated by a moving pressure
disturbance, propagate in a channel with a deep trench at the centre line
and shallow banks along the channel walls. We are particularily interested in
cases where the speed of the pressure disturbance is subcritical with respect
to the Froude number in the trench, but near critical or supercritical with
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respect to the shallow banks. Because the ship wave pattern changes sub-
stantially in the transition between the subcritical and supercritical regime,
these test may provide us with a better understanding on how the different
features in the bathymetry influences the wave pattern.

Several researchers have studied waves propagating in channels with ar-
bitrary cross-section profiles[15, 14] and the wave patterns, in two horizon-
tal dimensions (2HD), generated by a disturbance moving at speeds close
to the critical Froude number in channels with a rectangular cross-section
profile[1, 3, 13]. Mathew and Akylas[10] brought these elements together in
their study of waves propagating in channels with a trapezoidal cross-section
profile. Recently, Teng and Wu[19], Jiang et al.[2], and Liu and Wu[5] have
made contributions to this field of research. Most of these studies deal with
channels with trapezoidal cross-section profiles, but Jiang et al.[2] also in-
clude results for a channel with a deep trench along the center line, which is
similar to the cases that will be discussed in this paper.

In our study, we simulate the wave generation and propagation using
COULWAVE, a computer model for long waves, developed at Cornell Uni-
versity by Lynett, Wu and Liu[7, 8, 6]. The model is based on a set of
weakly dispersive, fully nonlinear Boussinesq equations, first developed by
Liu[4] and Wei et al.[20]. The horizontal velocity components are evaluated
at a reference depth zα = 0.531h, resulting in an improvement of the dis-
persive properties of the equations relative to the standard depth integrated
formulation, as shown by Nwogu[12]. A version of the model which includes
a pressure disturbance has been implemented by Liu and Wu[5].

2 Mathematical model equations

The numerical model is based on a set of fully nonlinear and weakly disper-
sive Boussinesq equations, which are nondimensionalized by introducing the
characteristic depth h0, as the length scale,

√
g/h0 as the time scale, and the

hydrostatic pressure ρgh0, as the pressure scale. In dimensionless form, the
Boussinesq equations consist of the continuity equation
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and the momentum equation
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where ζ(x, y, t) is the surface displacement, uα(x, y, t) = (uα(x, y, t), vα(x, y, t))
is the velocity at the depth z = zα, ∇ = (∂/∂x, ∂/∂y) is the horizontal gradi-
ent operator, ρ is the density of water and p(x, y, t) is the pressure disturbance
of magnitude pa at the free surface. The reference depth zα = −0.531h is
applied, following the recommendation by Nwogu[12]. This optimizes the
dispersive properties of the equations by matching the Padé[2,2] approxima-
tion of the linear dispersion relation of Stokes. With the model equations
formulated as above, wave propagation in terms of phase velocity and group
velocity is accurately described for waves with dimensionless wave number
in the range 0 < kh ≤ π, as shown by Madsen and Schäffer[9].

When deriving (1) and (2), it is assumed that the characteristic water
depth h0, is small relative to the horizontal length scale λ, i.e. µ = h0/λ � 1.
The characteristic wave amplitude a may be of the same order of magnitude
as h0, and the nonlinear effects, related to the parameter ε = a/h0 = O(1)
are not required to be weak. The model equations (1) and (2) are accurate
up to O(µ2).

Numerical method

The COULWAVE model applies an algorithm which is similar to the method
of Wei et al.[20]. The algorithm is formally accurate to ∆t4 in time. The
first-order spatial derivatives in the equations are discretized to fourth or-
der, whereas the spatial derivatives in the dispersive terms are discretized
to second order. This ensures that the numerical dispersion related to the
spatial derivatives of first order is of higher order than the physical dis-
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persive terms. The algorithm is marched forward in time using the Adams-
Bashforth-Moulton predictor-corrector scheme to update the dependent vari-
ables.

Although the algorithm is formally of second order in space, this conver-
gence rate has not been achieved in the simulations. The numerical results
converge when the grid resolution is increased, but the convergence is slow
for the steep, large amplitude waves often found immediately downstream of
the pressure disturbance. A five point filter has been applied to avoid saw-
tooth noise which tends to emerge in the cross-channel direction. A small
damping is also inherent in the time stepping scheme. No other dissipative
terms have been added to smooth the variable fields. The model has been
tested by running the same simulation with spatial grid resolutions of 0.1 h0,
0.2 h0, and 0.4 h0. Using the finest resolution as reference, we calculated the
relative errors Eu and Ed, for the amplitudes of the leading upstream wave
and the first downstream wave, respectively. For ∆x = ∆y = 0.4 h0, the
errors Eu = 2.0 · 10−2 and Ed = 2.5 · 10−1 were found, while increasing the
grid resolution to ∆x = ∆y = 0.2 h0, reduced the errors to Eu = 4.5 · 10−3

and Ed = 7.1 · 10−2. A spatial grid resolution of ∆x = ∆y = 0.2 h0 has been
used for all subsequent simulations in this paper.

The pressure disturbance is often required to travel a length of order
O(103h0) for the wave pattern to fully develop. In order to speed up the
computation, the wave field is only computed in a window including the
parts of the channel immediately upstream and downstream of the pressure
disturbance. This window is shifted upstream when the free surface dis-
placement grows to δ = 0.05 pa somewhere along a cross-channel line located
30 h0 downstream of the upstream boundary. A potential problem with this
method is contamination from waves generated at the downstream boundary,
which is of particular concern for simulations where the Froude number is
subcritical. By running the same simulation with different sizes of compu-
tational windows, we found that by the end of the simulation, the error was
O(10−8) at 50 h0 downstream of the pressure disturbance, and O(10−3) near
the downstream boundary of the smallest computational window, located
88.5 h0 downstream of the pressure disturbance. We also tested for the sen-
sitivity to the shifting criteria by running the model with δ = 0.01 pa. The
errors were found to be O(10−5) everywhere, except near the downstream
boundary.
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(a) (b)

Figure 1: Channel cross-sectional profile

3 Results

In this section we present results based on numerical simulations where waves
are generated by a moving pressure disturbance in a channel with a variable
cross-channel topography. The channel has a deep section along the center
line and shallow banks near the solid boundaries. The parameters for the
cross-channel variation are defined according to Fig. 1. This cross-channel
profile is similar to one of the examples discussed by Jiang et al.[2]. A direct
comparison between our results and the result presented in Jiang et al.[2] has
not been attempted, because Jiang et al. does not quantify the free surface
displacement attained in their simulation. Results will generally be shown
for the half plane 0 ≤ y ≤ W only, since the wave pattern will be symmetrical
across the line y = 0.

The forcing pressure disturbance is defined according to

p(x + Ft, y) = paf(x + Ft)q(y) ,

f(x + Ft) = cos2

[
π(x + Ft)

2L

]
, −L ≤ x + Ft ≤ L ,

q(y) = cos2
( πy

2R

)
, −R ≤ y ≤ R ,

on −L ≤ x + Ft ≤ L, −R ≤ y ≤ R, and is zero outside this rectangle.
Typical values for the pressure disturbance is pa = 0.1, L = 4.0h0, and
R = 2.0h0. In the following figures, the pressure disturbance moves towards
decreasing values of x, and the along-channel coordinate is redefined as

ξ = x + Ft ,

in which the location of the pressure disturbance remains fixed at all times.
In this frame of reference, upstream waves are located to the left of the
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pressure disturbance. At the start of the simulation, the pressure disturbance
is abruptly set in motion at a particular speed, which is maintained constant
thereafter.

3.1 Influence of the Froude number on the wave pat-
tern

In this part we examine how the wave pattern is influenced by changing the
velocity of the advancing pressure disturbance. The channel is defined by
W1 = 3.0, W2 = 2.0, W3 = 5.0, h1 = 1.0 and h2 = 0.6, and the velocities used
in the simulations corresponds to Froude numbers at the trench of F1 = 0.7,
0.8, 0.9 and 1.0, which give Froude numbers F2 = 0.9037, 1.0328, 1.1619
and 1.2910, respectively, at the shallow banks. Figure 2 shows contour plots
of the generated waves at t = 1253, figure 3 shows the leading downstream
waves in greater detail, and figure 4 shows along-channel wave profiles at
y = 0, 5 and 10.

For F1 = 0.7 and F2 = 0.9037, the upstream wave generation, shown
if Figs. 2(a) and 4(a), seems to be transient in nature, and depends on
the startup of the simulation (see discussion in section 3.5). In the region
immediately upstream of the pressure disturbance, both the wave amplitude
and the mean surface elevation tend to zero with time. A steady state is
attained downstream of the pressure disturbance, shown in figure 3(a), where
the wave pattern consists of small amplitude waves with wave lengths of
λ ≈ 3. Since hk ≈ 2 is within the range where the wave dispersion is
accurately described, we can expect the results to be reasonable even for
these short waves. This is a case which clearly demonstrates the advantage
of using Boussinesq models with improved dispersion properties instead of
the standard form of the Boussinesq equations.

The leading part of the upstream wave in figure 4(a) resembles the Airy
function Ai(ξ), which is the traveling wave solution for the linearized equa-
tions. These waves display only a slight cross-channel variation in amplitude
and no cross-channel variation in phase speed despite the significant cross-
channel variation in depth. It may seem strange that an essentially linear
waves should not be influenced by the depth variation. In this case the lead-
ing waves are long not only with respect to the depth, but also with respect to
the width of the channel, and is therefore only influenced by the mean depth
in the channel. This is also consistent with the fact that the cross-channel
variation increases as the wave length decreases in the wave train.

When the Froude number is increased to F1 = 0.8 and F2 = 1.0328, an
undular bore is generated upstream of the moving pressure disturbance, as
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(a)

(b)

(c)

Figure 2: Contour plot of waves generated at different Froude numbers.
Contour levels given by ∆H for each plot.

seen in Figs. 2(b) and 4(b). We note that the wave crests of the upstream
waves span the channel at an angle which is nearly perpendicular to the
channel wall, and that the amplitude, although higher at the wall than at
the center of the channel, varies only slightly in the cross-channel direction.
Waves with large amplitudes are generated downstream of the pressure field
for F1 = 0.8. These high amplitudes occur near the channel wall (y = 10)
due to wave reflection at the solid boundary, but also in the shallow part of
the channel (5 < y < 8) due to wave-wave interaction.

While the waves generated for F1 = 0.7 and F1 = 0.8 clearly conforms to
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(a)

(b)

(c)

(d)

Figure 3: Details of the downstream wave pattern.
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(a) (b)

(c) (d)

Figure 4: Wave cuts along the channel.

subcritical wave patterns, the wave pattern generated at F1 = 0.9 and F2 =
1.1619, seen in Figs. 2(c) and 4(c), shows what appears to be a persistent
generation of upstream waves which is chracteristic for the near critical wave
pattern. It is notable that this wave pattern occurs when the local Froude
number at the trench is still subcritical. The leading upstream wave attains
the bell-shaped form often associated with solitary waves, but is trailed by
small amplitude disturbances which interact with the following upstream
waves. A similar phenomenon was found by Mathew and Akylas[10] for an
undular bore propagating in a trapezoidal channel. The wave diffraction due
to depth variation is more prominent in the middle of the channel than at
the channel walls, as seen in Fig. 4(c). Even though wave diffraction occurs,
causing significant variation in amplitude and wave profiles in the cross-
channel direction, each of the upstream waves can be clearly identified as
distinct waves with wave crests oriented nearly perpendicular to the channel
wall. The amplitudes of the downstream waves for F1 = 0.9, seen in Fig.
3(c), are of the same order of magnitude as for F1 = 0.8, and the largest
peaks are located near the center line of the channel and near the channel
walls.
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(a) (b)

(c) (d)

Figure 5: Leading upstream wave. F = 0.8.

Waves do not propagate upstream of the pressure field for F1 = 1.0 and
F2 = 1.2910, so the wave pattern consists only of the downstream waves, as
seen in Figs. 3(d) and 4(d). The leading wave is reflected at the wall, but
this does not cause the wave to propagate upstream. Large amplitude waves
are found downstream of the pressure field. These waves are amplified near
the solid boundary (y = 10) and the center line of the channel.

3.2 Waves radiated upstream of the pressure field

For F1 = 0.8, the upstream waves propagate as an undular bore. The position
of the leading wave crest ξw(y, t) is plotted in figure 5(a), for y = 0, 5, and 10.
Early in the simulation, the position of the leading wave is located further
upstream at the center of the channel than at the channel walls. While the
wave crest at the center line initially remains nearly stationary compared to
the position of the pressure disturbance, with ξw(0, t) = −3.3±0.1, the wave
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(a) (b)

(c) (d)

Figure 6: Leading upstream wave. F = 0.9.

crest at the channel wall is seen to propagate upstream. The straightening
of the wave crest at the channel wall and the upstream propagation is clearly
a feature of Mach reflection, which was previously found by Pedersen[13]
to occur for waves generated in channels with a rectangular cross-channel
profile.

The wave propagation at the wall slows down at t ≈ 75, when the wave
creast has become nearly a straight line, as seen in figure 5(b), where the
position of the wave crest ξw(y, t) is plotted relative to ξw(0, t). This coincides
with a temporary slump in the wave amplitude at the wall, as seen in figure
5(c). Once the wave amplitude at the wall increases, the waves crest over
the shallow bank propagate a considerable distance upstream of the crest at
the center line, before an abrupt adjustment occurs at t ≈ 135, which brings
the wave crest at the center line into alignment with the wave crest near
the channel wall. From figure 5(a) it is apparent that the adjustment shifts
the central part of the upstream wave forward to the position of the wave
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near the channel wall. After the adjustment, the leading wave propagate
with a constant speed cw of approximately cw/U = 1.12, which is subcritical
(cw/

√
h1 = 0.89) at y = 0 and supercritical (cw/

√
h2 = 1.15) at y = 10. The

cross-channel amplitude increases from the center line to the channel wall,
as shown by the stapled line in figure 5(d), and the mean wave amplitude
is increasing slowly with time, as seen in figure 5(c). This may however be
a transient phenomenon, because the upstream waves form an undular bore
which is not fully developed within the time shown, which means that wave
energy is still transfered to the leading wave from the rear. The wave crest is
located slightly further upstream near the channel wall than the center line,
as seen by the solid line in figure 5(d).

The generation of the leading upstream wave for F1 = 0.9 follow much the
same pattern as for F1 = 0.8. At the start of the simulation, the upstream
crest at y = 0 is stationary at ξw(0, t) = −3.2± 0.3, but adjusts to the wave
crest in the far field at t ≈ 280, as seen in Fig. 6(a). The wave crest is located
nearly the same distance upstream near the center line and near the channel
wall, but lags behind by 0.4h0 at y = 4, as seen in figure 6(d). The wave
amplitude decreases with time, as seen in figure 6(c), which is to be expected
because the wave is subject to wave diffraction. The wave propagates at
approximately cw/U = 1.07, which is subcritical (cw/

√
h1 = 0.96) at y = 0

and supercritical (cw/
√

h2 = 1.25) at y = 10.

3.2.1 Comparison with cross-channel averaged theory

For the channel configurations used in the examples above, we often find
that the leading upstream wave is long compared to the width of the chan-
nel. These results may therefor be comparable to results using cross-channel
averaged models, which were first developed by Peters[15] and Peregrine[14],
and have more recently been applied by Teng and Wu[17]. The models are
based on weakly nonlinear and dispersive equations, such as KdV and stan-
dard Boussinesq equations, and are developed under the assumption that the
cross-channel variation of the velocity and wave amplitude is small compared
to the along-channel variation. Under these conditions, it is possible to de-
termine the solitary wave solution analytically, given a mean wave amplitude
and a specific cross-channel depth profile. The procedure is briefly outlined
in the appendix.

Figure 7 shows a comparison between the leading upstream wave at
ζ = ξ − ξw, found in the simulations with the COULWAVE model, and
wave solutions from the Teng-Wu (TW) cross-channel averaged model. For
F1 = 0.7, it is appropriate to compare the simulated result in figure 7(a) with
the Airy function, which is the solution in the linearized TW model. In the
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Comparison between TW and COULWAVE models.

simulated result, the leading wave has a steeper wave front and the trailing
waves are smaller than for the TW model result based on the Airy function.
This may be due to nonlinear effects, which are small but not negligible for
these waves. There is however a good agreement between the models on the
cross-channel amplitude variation, which deviates by approximately ±1.2%
at the centre line and at the channel wall. The results for F1 = 0.8 and
F1 = 0.9 are compared to the corresponding solitary wave solution of TW
with the same mean amplitude. Results for F1 = 0.8, shown in figures 7(c)
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and 7(d), are in reasonable agreement. The cross-channel variation in am-
plitude is smaller than for the COULWAVE model, resulting in a deviation
between the amplitudes of approximately ±2.5% at the center line and at the
channel wall. The wave crest of the TW solitary wave is also broader than
the wave crest in the COULWAVE model. For F1 = 0.9, the TW solitary
wave solution is not in agreement with the COULWAVE result. The leading
wave in the COULWAVE simulation has a wave length that is comparable
with the channel width, and is therefor influenced by the cross-channel depth
variation. Because of the short wave length, it may also be influenced by the
waves following in the wave train. These results show that cross-channel
averaged theory may be applicable for small amplitude solitary waves prop-
agating in channels with a variable cross-section topography, but only if the
wave length is large compared to the channel width.

Figure 7 shows the comparison between the solitary wave solution from
the Teng-Wu (TW) cross-channel averaged model and the leading upstream
wave at ζ = ξ − ξw, found in the simulations with the COULWAVE model.
The best match is achieved for F1 = 0.8, shown in figures 7(c) and 7(d). The
cross-channel variation in amplitude is smaller than for the COULWAVE
model, resulting in a deviation between the amplitudes of approximately
±2.5% at the center line and at the channel wall. The wave crest of the
TW solitary wave is also broader than the wave crest in the COULWAVE
model. For F1 = 0.7, the amplitude deviation is approximately ±2.1% at the
center line and channel wall, but now the wave length of the TW solitary
wave is significantly longer than the leading wave in the COULWAVE model.
This result is consistent with our previous assertion that the upstream wave
behaves like an Airy function, and does not develop independent solitary
waves. For F1 = 0.9, the TW solitary wave solution is not in agreement with
the COULWAVE result. The leading wave in the COULWAVE simulation
has a wave length that is comparable with the channel width, and is therefor
influenced by the cross-channel depth variation. Because of the short wave
length, it may also be influenced by the waves following in the wave train.
These results show that cross-channel averaged theory may be applicable
for small amplitude solitary waves propagating in channels with a variable
cross-section topography, but only if the wave length is large compared to
the channel width.

3.3 Amplification in the wake wave pattern

Wave amplification due to wave-wave interaction can sometimes occur in the
downstream wave pattern, as seen in figure 3(b). The strongest amplification
is located at approximately ξ = 10 and y = 7, where the first reflected wave
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(a) (b)

(c) (d)

Figure 8: Wave amplification due to wave-wave interaction

in the downstream wave packet interacts with the second downstream wave.
A similar feature is present at approximately ξ = 35. A time sequence of the
downstream wave pattern is shown in figure 8, and the temporal development
of the amplitude of the leading downstream wave at y = 7 and the two leading
waves at y = 10 is shown in figure 9. At first, the wave amplification grows
with increasing amplitude of the reflected leading wave, as seen in figure 8(a).
The amplitude of the leading wave peaks at approximately t = 340, attaining
an amplitude of η = 0.157 at the channel wall, and steadily declines after
this time. The amplitude of the wave at y = 7 continues to increase as the
second downstream wave grows large. Due to the decreasing amplitude of the
leading wave, the amplified wave at y = 7 can not be sustained indefinitely,
and the amplitude decreases significantly after t = 1500.

Amplification due to wave-wave interaction has been found in test cases
with a slightly different depth profile (W1 = 4, W2 = 2, and W3 = 4), and
with different velocity of the pressure disturbance (F1 = 0.9, W1 = 6, W2 = 2,
and W3 = 2), as seen in figure 10. It is not clear at this point whether these
amplified waves will always be transient, or if they can occur in the wave
pattern after a steady state has been attained. Wave amplification due to
wave-wave interaction has also been observed in channels with a rectangular
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Figure 9: Time development of wave amplification

(a)

(b)

Figure 10: Wave amplification due to wave-wave interaction

cross-section profile, where the waves were generated by two pressure patches
of equal size in a configuration resembling the hull of a catamaran, indicating
that a cross-channel depth variation is not a necessary condition for this phe-
nomenon. A similar phenomenon has been discussed by Peterson et al.[16],
who studied extreme waves occuring in the intersection of two solitary wave
groups. In that paper, it is suggested that such a phenomenon may occur
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(a)

(b) (c)

(d) (e)

Figure 11: Wave cuts along the channel.

when two high speed vessels meet, or as a result of navigation.

3.4 Results for different channel parameters

We now consider how changes in the channel width parameters W = (W1, W2, W3),
and channel depth parameter h2 (keeping h1 = 1), influences the wave pat-
tern. In this section the Froude number at the trench is maintained at
F1 = 0.8. Figure 11 show wave cuts along the channel for five test cases.
Figure 11(a) corresponds to the case described earlier, with W = (3, 2, 5),
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Figure 12: Influence of the width and height of the shallow banks near the
channel wall on the leading upstream wave amplitude.

and h2 = 0.6. In figures 11(b) and 11(d) the depth h2 is changed to 0.5 and
0.8, respectively, while maintaining the same values for W1, W2 and W3 as in
figure 11(a). In figure 11(c) the widths are W = (1, 2, 7), and in figure 11(e)
the widths are W = (6, 2, 2), and the depths h1 and h2 are the same as in
figure 11(a).

The variation in the wave pattern displayed in these results clearly depend
both on the width mean Froude number

F =
1

W

∫ W

0

F (y) dy ,

and on the channel configuration. Table 1 shows the width mean Froude
number and the width mean wave amplitude of the leading upstream wave
for the five plots in figure 11. Although the increase in wave amplitude near

(a) (b) (c) (d) (e)
F 0.9368 0.9932 0.9833 0.8561 0.8669

ηmax 0.0400 0.0648 0.1002 0.0170 0.0136

Table 1: Width-mean Froude number

critical F resemble the results from similar tests for channels with rectangular
cross-channel profiles, the magnitude of the wave amplitude and the wave
period is influenced by the depth variation, as seen in figures 11(b) and 11(c).
The influence of the channel configuration is seen more clearly in figure 12,
where the amplitude of the leading upstream wave is plotted as a function of
the width mean Froude number. These results suggest that at a given value
of F , the largest upstream waves will be generated in the channel whith the
most narrow trench.
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3.5 Effect of an initial acceleration

(a) (b)

(c) (d)

(e) (f)

Figure 13: Comparison between results with and without acceleration from
rest at the start of the simulation.

Jiang et al. discuss the sensitivity of the results to the starting condition,
and conclude that different initial accelerations yield different results. In our
simulations the pressure disturbance accelerates from rest to the designated
speed over a single time step. In figure 13 we compare results for the abruptly
started pressure propagation with results where the pressure disturbance
accelerates from rest over a time T . Results are shown for a later time in the
acceleration case than in the abrupt start case, to compensate for the delay
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in the generation of upstream waves in the former case.
Differences between the results are clearly visible for F1 = 0.7, where

the upstream wave generation is transient in nature. A slight deviation is
also visible in the upstream waves for F1 = 0.8, but the deviations clearly
diminish with increasing F1. We therefore conclude that the deviations due
to the starting condition mainly influences the transient wave phenomena,
and to lesser extent the wave pattern attained after long times.

4 Concluding remarks

In section 3 we have presented results for wave generation and propagation in
a channel with a variable cross-channel topography. A case study for a similar
channel configuration have previously been presented by Jiang et al.[2] for
F1 = 1.0. In figure 3(c) in Jiang et al. we clearly see a wave propagating
upstream of the wave-generating disturbance. Our result for F1 = 1.0 and
pa = 0.1, seen in figure 3(d), does not indicate upstream wave propagation.
We do however find waves propagating upstream of the pressure disturbance
if we increase the value of pa, as seen in figure 14.

(a)

(b)

Figure 14: Wave pattern generated for pa = 0.15
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A word of caution is in order here. The Boussinesq equations tend to allow
waves of unreasonably large amplitudes and wave speeds, when in reality
instabilities will cause these waves to undergo wave breaking. The upstream
wave in figure 14 propagates at a speed of cw/

√
h2 = 1.32 relative to the local

shallow water wave speed near the channel wall, which exceeds the largest
possible wave speed for the solitary wave solution, given by Miles[11] as
cw/c0 = 1.294. It is therefore questionable if the simulated result corresponds
to a physically reasonable solution.

In this paper we have studied the wave generation and propagation in a
channel with a variable cross-channel topography. We have found that waves
may propagate upstream of the wave generating disturbance, and that the
crest of these waves will span across the channel in a nearly straight line
despite the variation in depth across the channel. The wave amplitude and
generation time varies with the width-averaged Froude number F , but is
not governed by this parameter alone, as different configurations of widths
and depths may result in different wave patterns for the same value of F .
We have also found that wave amplification may occur due to wave-wave
interaction in the downstream wave packet,and can be maintained over long
times. Although the variation in cross-channel topography seems to facilitate
wave amplification, this does not seem to be a necessary condition for the
occurrence of this phenomenon.
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Appendix

In the TW model, the along channel wave propagation is computed by using
a width averaged long wave model, such as the channel-Boussinesq model

2b
∂ζ̃

∂t
+

∂

∂x

[
2b(h̃ + ζ̃)ū

]
= 0 ,

∂ū

∂t
+ ū

∂ū

∂x
+

∂ζ̃

∂x
− 1

3
κ2h̃2 ∂3ū

∂x2∂t
= −∂p̃a

∂x
,
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or the channel-KdV model

1

c0

∂ζ̃

∂t
+

(
1 +

3ζ̃

2h̃

)
∂ζ̃

∂x
+

1

6
κ2h̃2 ∂3ζ̃

∂x3
+

(
1

4h̃

∂h̃

∂x
+

1

2b

∂b

∂x

)
= −1

2

∂p̃a

∂x
,

where c0 = (gh̃)
1
2 is a chracteristic speed, and the shape factor κ2 is deter-

mined by the channel geometry (see e.g. Teng and Wu[17, 18, 19]). Width
averages and cross section averages are computed by

(̃·) =
1

2b

∫ b

−b

(·) dy ,

(̄·) =
1

A0

∫∫
A0

(·) dy dz ,

where 2b is the channel width at z = 0 and A0 is the equilibrium area of the
cross section. The general formulation allows b to vary in the along-channel
direction, but we have only used a constan value for b in our applications.
The cross channel perturbation is found by solving the Poisson equation with
boundary conditions

Ψyy + Ψzz = 1 ,

Ψz|z=0 = h̃ , (at the frees surface) ,

Ψn = 0 , (at channel walls below the

unperturbed water surface) ,

where n is the unit normal vector at the solid boundaries. This determines
the shape factor

κ2 =
3

h̃
(Ψ̃− Ψ̄) .

The width averaged solitary wave solution with amplitude α is

ζ̃ = α sech2

√
3α

4κ2
(x− ct) ,

and the width averaged solution to the linearized problem can be written in
terms of the Airy function Ai as

ζ̃ = β
(

1
2
κ2h̃2t

)− 1
3
Ai

[
−x
(

1
2
κ2h̃2t

)− 1
3

]
,

where β determines the wave amplitude. The wave profile including cross
channel effects is

ζ(x, y, t) = ζ̃(x, t)− (Ψ|z=0 − Ψ̃)ζ̃xx

The problem outlined above has been solved using the Poisson solver included
in MATLAB.
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