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Abstract

Previous studies have shown that the Boussinesq equations can be used to calcu-
late the instantaneous bottom shear stress induced by transient or periodic waves.
The bottom friction term occurs as a convolution integral in time in the continuity
equation. The exact numerical integration of a convolution integral demands large
computational resources, which makes the method less useful for large scale com-
putations. In this paper we explore how the value of the convolution integral can
be estimated if we only use the values of the variables in a limited number of time
steps, and discuss the accuracy and computational cost of this method.
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1 Introduction

A correct estimate of the bottom friction effect is important when calculat-
ing the propagation of long waves in shallow water over large distances. The
bottom friction effect contributes to the dissipation of wave energy, but also
influences the shape and speed of the waves. The shear stress at the bottom
induced by waves is important when modelling sediment transport and, in a
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longer time perspective, the morphology of the coast line and the bathymetry.
Examples where transient waves are important for sediment transport include
tsunamis (Kobayashi and Lawrence (2004)) and long waves from high-speed
vessels in confined waters (Soomere (2005)).

Traditional methods for modeling the bottom shear stress take the form of
Cfρ|ub|ub, which captures the long term average energy dissipation, and can
give good results for the damping rate of periodic wave trains. This formulation
does not reproduce the correct phase of the bottom shear stress, nor does it
take into account the historic development of the velocity field. Because of
these deficiencies, the traditional formulation is not well suited for studies of
transient wave phenomena.

Recently Liu and Orfila (2004) (LO) suggested a new formulation for the
bottom shear stress, and showed how this could be included in the Boussinesq
equations. The performance of the model was discussed for idealized cases in
LO and later in Liu et al. (2006) where a numerical model was compared with
data from laboratory experiments for solitary wave damping and shoaling.
These studies have shown that the new formulation is well suited for modelling
the correct strength and time variation of the bottom friction effect.

The formulation of the bottom friction found by LO includes a convolution
integral in time, which makes it difficult to implement efficiently in a numerical
code. In order to calculate the integral directly, we need to store the entire
time history of the velocity everywhere in the computational domain, and, for
each time step, integrate from start to present over all spatial nodes. As the
numerical model is integrated forward in time, we find that more and more
effort is needed to calculate the bottom friction term, and it soon becomes
the dominating load in terms of CPU time and memory for the computation.
In order to use this formulation of the bottom friction term for large scale
simulations, we need a method for finding an approximate value for the bottom
friction term which can be calculated without retaining the entire time history
of the velocity. The development of such a method is the purpose of this paper.

2 Numerical calculation of the bottom friction term

As shown in Liu et al. (2006), the Boussinesq equations can be expressed
in terms of the free surface displacement, η, and the horizontal velocity, uα,
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evaluated at z = zα, as

∂η

∂t
+∇ · ((h + ǫη)uα) + µ2∇ ·

((

3z2
αh + 6zαh2 + 2h3

6

)

∇(∇ · uα)

)

−

− α

µ
√

π

∫ t

0

∇ · uα√
t− τ

dτ = O(µ4) ,

(1)

∂uα

∂t
+ ǫ(uα · ∇)uα +∇η +∇p + µ2 z2

α + 2zαh

2
∇
(

∇ · ∂uα

∂t

)

= O(µ4) . (2)

The dimensionless depth h is assumed constant, ∇ = (∂/∂x, ∂/∂y) is the two-
dimensional gradient operator, and p is the pressure at the free surface. The
parameters which occur in equations (1) and (2), are defined as

µ =
h′0
l′0

, ǫ =
a′0
h′0

, and α2 =
ν ′

l′0
√

g′h′0
,

where h′0 is the characteristic depth, a′0 is a typical wave amplitude, l′0 is a
characteristic length scale and ν ′ is the viscosity of water. As stated in LO,
the relation O(α) ≈ O(µ4) ≈ O(ǫ2) is required for the relative magnitude of
the parameters. The convolution integral in the continuity equation (1) is due
to the vertical component of the rotational velocity in the bottom boundary
layer. The bottom shear stress

τb(x, t) =
uα(x, 0)√

πt
+

1√
π

∫ t

0

uα,τ (x, τ)√
t− τ

dτ +O(µ2) (3)

is defined as the vertical gradient of the horizontal rotational velocity compo-
nent.

The value of the convolution integral

A =
∫ t

0

∇ · uα√
t− τ

dτ

can in principle be calculated numerically by storing the values of ∇ · uα

for all time steps, and, for each time step, to integrate A over time for all
spatial nodes. It is readily seen that this approach is costly in terms of storage
and computation time, which in practice prohibits the use of this method for
simulations with a large number of spatial nodes and for integration over long
times. In order to use this method for large scale simulations, it is necessary
to estimate the value of A based on values of ∇ · uα for a truncated number
of time steps.

For convenience of discussion we shall focus our discussion on one-dimensional
problems. Let’s assume that we have obtained the values of∇·uα for the last N
time steps. On an equidistant grid, discretized by ∆x in space and ∆t in time,
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an estimate for the convolution integral can be calculated by the weighted
sum

˜A
(k)
i =

N−1
∑

j=0

Cj δu
(k−j)
i , (4)

where δu
(k)
i = ∇ · uα(i ∆x, k ∆t), and ˜A

(k)
i ≈ A(i ∆x, k ∆t). The weights Cj

are determined by

C0 =
∫ t

t− 1

2
∆t

1√
t− τ

dτ = 2
√

1
2
∆t , j = 0 ,

Cj =
∫ t−(j− 1

2
)∆t

t−(j+ 1

2
)∆t

1√
t− τ

dτ = 2
√

(j + 1
2
)∆t− 2

√

(j − 1
2
)∆t , j ≥ 1 .

When we integrate forward in time, the first N − 1 values of δu
(k)
i in the sum

(4) are retained in memory and used to calculate ˜A
(k+1)
i . We may retain the

discarded part of (4) in a residual term

R
(k)
i = ˜A

(k)
i −

N−2
∑

j=0

Cj δu
(k−j)
i ,

and use this value to improve our estimate of ˜A
(k+1)
i by including a correction

term

˜A
(k+1)
i =

N−1
∑

j=0

Cj δu
(k+1−j)
i + CR R

(k)
i , (5)

where the value of the residual coefficient CR is as yet undetermined.

The discarded values of ˜A accumulate in the residual term R as we integrate
forward in time. Starting from time step k, the accumulated residual term
after k + m time steps is

R
(k+m)
i =

m
∑

j=0

Cj
R CN−1 δu

(k+m−(N−1)−j)
i , (6)

which is a power series in CR. By choosing a suitable value for the residual
coefficient CR, we can to some extent compensate for the loss in memory
caused by replacing A with the truncated sum ˜A. The value of CR should be
within the range

CN

CN−1

=

√

N + 1
2
−
√

N − 1
2

√

N − 1
2
−
√

N − 3
2

≤ CR < 1 . (7)

We note that the lower bound on CR depends only on N , and is independent
of the time discretization ∆t. If we use

CR =
CN

CN−1

,
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and substitute the power series (6) for R in (5), we see that the first term in
the power series will have the correct weight CN , while the weights on any
subsequent terms will be smaller than the correct value since

(

CN

CN−1

)m

CN−1 < C(N−1)+m

for all m ≥ 2. We may want to use a larger value for CR, but we must always
ensure that the accumulated residual terms diminish faster than the exact
solution for large times. It can be shown that

lim
m→∞

Cm
R CN−1

C(N−1)+m

= lim
m→∞

Cm
R

√

N − 1
2
−
√

N − 3
2

√

m + N − 1
2
−
√

m + N − 3
2

= 0 , CR < 1 ,

but in practice we do not integrate over infinite times, so values of CR close
to 1 should be avoided. Instead of choosing an arbitrary value of CR within
the appropriate range, we may determine this value based on the average
reduction of the weights over a given number of time steps, according to

C
(s)
R =

s
∑

j=1

1

s

CN−1+j

CN−2+j

. (8)

The value of C
(s)
R increases with increasing values of s, but the sum always

remains within the valid range.

m C
(1)
R C

(5)
R C

(10)
R C

(20)
R

0.8647 0.9064 0.9295 0.9507

0 0.0000 0.0482 0.0749 0.0994

10 0.2709 0.1041 0.1057 0.2287

20 0.4519 0.2659 0.1538 0.2088

30 0.5497 0.3823 0.2525 0.2045

Table 1
Error of the weights, Ew, for N = 4, and for different residual coefficients CR and
time steps m.

Errors of the weights may be calculated from

E(s)
w =

(

∑m
j=0(Cm+N − C

(s) m

R CN−1)
2
)

1

2

(

∑m
j=0 Cm+N

2
)

1

2

.

Results for N = 4 and for different values of CR and m are shown in Table 1
and Figure 1. As expected, C

(1)
R = 0.8647 provides the best estimate for small

m, but the error E(1)
w increases rapidly with increasing m. With the residual
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Fig. 1. Weights used to calculate the value of the convolution integral, comparing
weights for the exact formulation A with weights for the truncated sum ˜A, for
N = 4, with different values of CR.

coefficient C
(20)
R = 0.9507, we get a large error for small values of m, but

the error decreases from a maximum value of E(20)
w = 0.2287 as m increases

beyond m = 10. The error introduced by replacing A with ˜A involves not only
the error of the weights, but also the history of δu. Hence we can not expect
to find an optimal value of CR independently of the problem at hand. In the
next section we use results from simulations to determine optimal values of
CR for two test cases.

3 Performance of the algorithm on test cases

The governing equations (1) and (2) have been implemented in the high order,
depth integrated COULWAVE model (Lynett (2002), Lynett et al. (2002)).
This model utilizes a predictor-corrector time-stepping scheme which is ac-
curate to O(∆t4), and which stores values for the physical variables for the
4 most recent time steps. In the COULWAVE model it is natural to choose
N = 4, and this value is used in the following examples unless a different value
is specified.

Since the value of CR mainly influence the memory of the history of the velocity
field, it is natural to let the assignment of a value to the residual coefficient
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be based on a typical time scale for the waves, such as the wave period T .
We use the same averaging procedure introduced in eq. (8), but instead of
specifying the number of time steps directly, we specify the time for averaging
as a fraction of T , and let the program decide how many time steps to include
based on the time discretization ∆t.

3.1 Idealized cases

Soliton solution

The soliton solution has been tested for five test cases (see Table 2). The
soliton does not have a well defined wave length or period. A length scale L0

was defined as the distance between points where η = 0.01 a0, upstream and

downstream of the wave crest. The speed of the wave is c =
√

g(h + a0), and
this provides a time scale

T =
L0

c
.

For each of the test cases we calculated the propagating wave using both the
full convolution integral formulation and estimates C

(0.10T )
R , C

(0.15T )
R , C

(0.20T )
R ,

and C
(0.25T )
R . The results for the best estimates are shown in Table 3. The error

in the amplitude relative to the true value is ofO(10−3). The optimal time over
which to average in order to determine CR is within the range 0.15T − 0.20T ,
depending on the value of the parameter a0/h0.

h0 a0 L0 c T

A1 1.00 m 0.0995 m 22.2923 m 3.2842 m/s 6.7877 s

A2 1.00 m 0.0499 m 32.2137 m 3.2093 m/s 10.0377 s

A3 0.15 m 0.0404 m 2.1978 m 1.3667 m/s 1.6081 s

A4 0.15 m 0.0136 m 3.6261 m 1.2670 m/s 2.8619 s

A5 0.15 m 0.0070 m 4.9101 m 1.2410 m/s 3.9565 s

Table 2
Parameters used in the test cases for a solitary wave.

Figure 2 shows a solitary (A4 in Table 3) wave after it has propagated a dis-
tance ∆x ≈ 420h0. The estimate for CR = 0.9566 is close to the exact solution
at the location of maximum wave amplitude, whereas the wave amplitude
is overestimated for smaller CR and slightly underestimated for larger CR.
All estimates fail to reproduce the correct surface displacement immediately
downstream of the solitary wave. Figure 3 shows the bottom friction term
from (1), but with dimensional variables. The bottom friction term computed
with the truncated sum (5) overestimates extremal values, for the minimum
because the residual coefficient is larger than for the exact computation, and
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Fig. 2. Free surface displacement for the solitary wave simulation at t = 50.0 s.
Numbers on the x-axis indicates the distance relative to the position of the soliton
crest at t = 0.0s.

390 400 410 420 430 440
−1.5

−1

−0.5

0

0.5

1
x 10

−4

(x−x
0
)/h

(ν
 /π

)0.
5  A

 

 

C
R
=0.9354

C
R
=0.9477

C
R
=0.9566

C
R
=0.9619

exact

Fig. 3. Bottom friction induced by the solitary wave.

for the maximum because of the loss of memory. The best result in Figure 2
is obtained for CR = 0.9566, and we see in Figure 3 that for this value the
estimate reproduces the phase of the bottom friction correctly.
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a0/h0 CR TR error (amp)

A1 0.0955 0.9545 1.3575 s −1.64 · 10−3

A2 0.0499 0.9647 1.5056 s 1.40 · 10−3

A3 0.2693 0.9379 0.3216 s 4.94 · 10−4

A4 0.0907 0.9566 0.5724 s −7.79 · 10−3

A5 0.0467 0.9533 0.5935 s 9.02 · 10−3

Table 3
Best estimates for the solitary wave.

h0 a0 λ c T

B1 1.00 m 0.0200 m 32.21 m 3.1321 m/s 10.3487 s

B2 1.00 m 0.0100 m 32.21 m 3.1321 m/s 10.3487 s

B3 1.00 m 0.0100 m 20.00 m 3.1321 m/s 6.4889 s

B4 0.15 m 0.0020 m 5.00 m 1.2131 m/s 4.1461 s

Table 4
Parameters used in the test cases for periodic waves.

Periodic waves

Four test cases with periodic waves have been examined (see Table 4). A
periodic wave train with period T is generated by a wave maker at a particular
location, and propagate into a region where the initial surface displacement
is zero. Simulations of the same test cases were performed using both the full
convolution integral and estimates C

(0.05T )
R , C

(0.10T )
R , and C

(0.15T )
R . The results

for the best estimates are shown in Table 5. In all these test cases the parameter
a0/h0 is less than for the soliton test cases, and the optimal time average is
near 0.10T .

Figure 4 shows a periodic wave train (B1 in Table 5) in the region 350h0−450h0

downstream of the wave maker, and Figure 5 shows details of the crest at
∆x = 440h0. All results are within a reasonable range of the exact solution
when we use the truncated sum (5) to calculate the bottom friction term. The
bottom friction term is shown in Figure 6. Again we see that the truncated
sum overestimates the extremal values, but the phase of the wave train is
reproduced correctly.

Increasing N for improved estimate ˜A

The accuracy of the estimate ˜A can be improved by increasing the value of N ,
at the cost of storing the velocity field for more time steps. In order to quantify

9



350 400 450
−0.01

−0.005

0

0.005

0.01

0.015

(x−x
0
)/h

η/
h

 

 

C
R
=0.9124

C
R
=0.9354

C
R
=0.9477

exact

Fig. 4. Free surface displacement for a periodic wave train at t = 149.1 s. Numbers
on the x-axis indicates the distance relative to the position of the wave maker.
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Fig. 5. Periodic waves. Detail near the crest of a wave.

the improvement, we repeat the simulations for the solitary wave and periodic
wave test cases, using N = 8 and N = 16. The lower bound for CR increases
with N according to (7). For N = 4 the lower bound is C

(1)
R = 0.8647, whereas

for N = 8 and N = 16, the lower bounds are C
(1)
R = 0.9353 and C

(1)
R = 0.9682,

respectively. In each of the simulations, CR is decided according to the optimal
time average found in the in the previous sections. The parameters for the
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a0/h0 CR TR error (amp)

B1 0.0200 0.9354 1.0349 s 1.48 · 10−3

B2 0.0100 0.9354 1.0349 s 1.10 · 10−3

B3 0.0100 0.9354 0.6489 s 1.10 · 10−3

B4 0.0133 0.9295 0.4146 s −1.16 · 10−3

Table 5
Best estimates for periodic waves.
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Fig. 6. Bottom friction induced by the periodic wave train.

simulations, and the deviation in L2 norm relative to the exact solution, are
tabulated in Table 6.

Results for both test cases are improved by increasing N , but the rate of con-
vergence is larger for the periodic wave simulation than for the solitary wave
simulation. Figures 7 and 8 show the surface displacement and bottom friction
for the solitary wave. Increasing the value of N clearly improves the estimate
˜A, but the error in the trailing wave diminish only slightly. These results sug-
gest that the method provides accurate results for the bottom friction in the
vicinity of the largest amplitude waves, but a high value of N is required for
the accurate computation of waves with smaller amplitudes.

Optimal choice of CR

The optimal choice of CR, for a given value of N , depends on the wave celerity,
amplitude, and period. In practical applications waves of different amplitudes
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solitary wave periodic wave

N CR Error (L2) CR Error (L2)

4 0.9566 1.6924 · 10−2 0.9354 2.2784 · 10−2

8 0.9701 1.1100 · 10−2 0.9593 1.3392 · 10−2

16 0.9806 8.1246 · 10−3 0.9758 5.9794 · 10−3

Table 6
Parameters and errors for the test cases, using different values for the number of
time steps N retained for the velocity field.
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Fig. 7. Free surface displacement for the solitary wave simulation at t = 50.0 s.
Numbers on the x-axis indicates the distance relative to the position of the soliton
crest at t = 0.0s. Results for N = 4, 8 and 16.

and periods may occur simultaneously at the same location, and the optimal
choice of CR may not be equal for all wave groups. One strategy for deciding
CR would be to determine a time scale T for the largest amplitude wave group,
and calculate CR according to (8) with s as the number of time steps required
to cover a certain fraction of T . In the examples above, this fraction is 0.10T
for the periodic waves and 0.15T − 0.20T for the solitary wave.

The value of CR does not have to be a single constant value throughout the
computation. The accumulated residual term (6) at a given point is indepen-
dent of the accumulated residual term in neighbouring points, which allows us
to specify CR independently for all computational points. This may be useful
for computations including a variable bathymetry, where the wave amplitude
and celerity is often altered due to depth variation.

12



390 400 410 420 430 440
−1.5

−1

−0.5

0

0.5

1
x 10

−4

(x−x
0
)/h

(ν
 /π

)0.
5  A

 

 

N=4
N=8
N=16
exact

Fig. 8. Bottom friction induced by the solitary wave. Results for N = 4, 8 and 16.

Analysis of profile for different simulations

Profiling of the simulations showed that the average time spent calculating
the bottom friction amounted to 89% of the total execution time, for both
the soliton and sinusoidal waves, when the complete convolution integral was
computed for each time step. Compared to simulations without bottom fric-
tion, the (wall-clock) execution time increased by 1105% and 970% for the
soliton and sinusoidal simulations, respectively. Using the estimated value of
the convolution integral increased the execution time by about 20%, when
compared with simulations without bottom friction.

3.2 Pressure disturbance propagating in a narrow channel

The estimate for the bottom friction term can be used in large scale simu-
lations. As an example, we have reproduced one of the test cases examined
by Ertekin et al. (1986). The implementation of the pressure disturbance in
the COULWAVE model follows Liu and Wu (2004). A pressure disturbance
is moving to the left at constant speed in a rectangular channel with depth
h0 = 1.0m and width 2b = 8h0. The side walls at y = ±4h0 are closed, and
lateral boundaries at x0 +50h0 and x0−250h0, where x0 is the initial position
of the disturbance, have sponge layers which damp waves as they approach the
boundary. A wave gauge is included at the position (x0− 200h0, 0). The pres-
sure disturbance p(x + Ft, y) is defined inside a rectangle 0 ≤ x + Ft ≤ L/2,
0 ≤ y ≤ B/2, by

p(x + Ft, y) = Pmf(x + Ft)q(y)
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with

f(x + Ft) =



















1 ,0 ≤ x + Ft <
1

2
αL ,
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[
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,
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2
L .
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1 ,0 ≤ y <
1

2
βB ,

cos2

[
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(1− β)B

]
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2
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2
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using parameters

B
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1

2
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L
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Fig. 9. Wave pattern due to a moving pressure disturbance, located with centre at
(x, y) = (0, 0). Contour lines are drawn at vertical increments of ∆z = 0.05 h.

Two simulations were performed for Froude number F = 1.0, using the bottom
friction term with CR = 0.9827 in one simulation. The resulting wave pattern,
with bottom friction, is shown in Fig.9. The bottom shear stress calculated
according to eq. (3), are shown in Figs. 10 and 11 for the lateral (τbi) and
transverse (τbj) component, respectively. The bottom friction clearly has an
effect on the wave pattern, as seen for the comparison in Fig. 12.
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Fig. 10. Bottom shear stress (x-component). Contour lines are drawn at vertical
increments of ∆τ = 0.05.
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Fig. 11. Bottom shear stress (y-component). Contour lines are drawn at vertical
increments of ∆τ = 0.005.

4 Concluding remarks

In this article we have demonstrated how the convolution integral which oc-
curs in the bottom friction term, can be estimated based on a limited number
of time steps. The method is accurate in the vicinity of large amplitude waves,
provided some care is taken when deciding on a value for the residual coeffi-
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Fig. 12. Comparison of results with bottom friction (dash) and without bottom
friction (solid).

cient CR. Errors occurring in the vicinity of smaller amplitude waves can be
reduced by storing the velocity field for a large number of time steps. The com-
putational effort required to calculate the estimate of the integral is a fraction
of the effort required for calculating the convolution integral directly. Using
this method, it is possible to run large scale simulations with an accurate
model for the bottom shear stress.
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