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I INTRODUCTION 

1 PARKINSON’S DISEASE 

1.1 Historical perspective and nomenclature 

The first clinical description of the disease was published in 1817 by James Parkinson 

in his “an essay on the shaking palsy” [1]. But it took over 50 years until Jean-Martin 

Charcot in his teaching at the Salpêtrière Hospital described the four cardinal features 

of the disease: tremor, rigidity, bradykinesia and postural instability [2]. 

Pathomorphologial changes like selective cell loss, depigmentation and degeneration 

of the substantia nigra were described in 1953 [3] while the biochemical and 

pharmacological discoveries like the dopaminergic deficit were discovered in the 

1960s [4-6]. Effective neurotransmitter replacement therapy with levodopa was 

attained in the 1970s. Beside pharmacological therapy surgical interventions have 

been established as treating potentialities [7-9]. Recently progress in the 

understanding of the pathogenesis and aetiology of the disease has been achieved 

highlighting genetic aspects of disease and the protein degradation over the ubiquitin-

proteasome system [10]. In therapeutical aspects research is focussing on 

neuroprotective and neuroregenerative approaches [11].  
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1.2 Clinical manifestations: diagnosis, motor signs, neuropsychiatric 
symptoms, other non-motor problems 

1.2.1 Diagnosis 

Parkinson’s disease (PD) is characterized through the cardinal features resting tremor, 

bradykinesia, rigidity and loss of postural reflexes [12]. Discrimination between 

idiopathic PD and other parkinsonian syndromes is difficult and neuropathological 

studies have shown that about 20% of the patients diagnosed as idiopathic PD had 

alternative causes to their parkinsonian syndrome [13-15] reflecting a variety of 

etiological causes (table 1). Idiopathic PD shows characteristic pathomorphological 

changes in the brain like cell loss and depigmentation in pigmented brain stem nuclei. 

Furthermore in most cases eosinophilic, intracytoplasmatic inclusion bodies, termed 

Lewy bodies are found in the brain. As biological markers of PD do not yet exist and 

pathomorphological diagnosis is only possible post-mortem clinical features have to 

be guidelines for exact diagnosis and discrimination of the entities. Beside the 

cardinal features additional clinical signs help to distinguish PD from other 

parkinsonian syndromes: asymmetry of parkinsonian signs, marked rest tremor and 

clinically significant response to levodopa are more likely to be seen in idiopathic PD 

as well as balance problems in the first years of the disease are uncommon [16, 17]. 

Clinically idiopathic PD is divided in distinct subgroups concerning clinical 

unambiguousness [18]. According to clinical manifestations differentiation is done in 

tremor-dominant versus akinetic/rigid-predominant variants and in young-onset (21-

40 years) versus late-onset (>40 years) forms [19]. 
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Accuracy in diagnosis is important and has substantial impact both on prognosis and 

treatment capabilities. 

Table 1: Differential diagnosis in parkinsonian syndromes: 

I: Idiopathic (primary) PD  

 Sporadic PD 

 Hereditary forms of PD 

II: Symptomatic (secondary) PD 

 Postencephalitic, e.g. encephalitis lethargica, AIDS encephalitis 

 Vascular 

Toxic induced, e.g. manganese, carbon monoxide, MPTP 

Drug induced, e.g. neuroleptics, antiemetics 

Traumatic 

Metabolic, e.g. Wilson’s disease 

Neoplastic 

Normal pressure hydrocephalus 

III: Other neurodegenerative diseases 

 Multi system atrophy (MSA) 

 Progressive supranuclear palsy (PSP) 

 Corticobasal degeneration (CBD) 

 Dementia with Lewy-bodies (DLB) 
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Pallidonigral degeneration, e.g. Hallevorden-Spatz disease 

 Huntington disease (Westphal variant) 

Fragile x-syndrome 

1.2.2 Motor features 

The typical parkinsonian tremor is a rest-tremor with a frequency of 4-6 Hz. The 

tremor diminishes during activity and disappears during sleep. Relaxation improves 

and mental or physical stress deteriorates the symptomatology. Only half of the 

patients present with tremor and 15% do not develop tremor in the course of their 

disease. Typically it starts in one extremity and spreads to both ipsi- and contralateral 

body parts. Beside the tremor PD-patients develop an increasing resistance against 

passive muscle stretch, the so called rigidity. In the clinical investigation the 

increased muscle tone and the underlying tremor leads to the typical “cogwheel 

phenomenon”. Rigidity deteriorates during mental stress and might be accreted by 

active or passive movement of the contralteral limb. Accompanying slowness of 

movement (and amplitude) is called bradykinesia or sometimes synonymously 

hypokinesia and akinesia. Clinically bradykinesia might manifestate as delay in 

arresting movement (prepulsion), delay in acceleration of movement (festination), 

and inability to initiate movement (start hesitation) or sudden transient freezing. As 

last cardinal sign postural instability describes the loss of reflexes causing 

propulsion or retropulsion leading to frequent falling. Postural abnormality is leading 

to a flexed posture of body and limbs.  
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At the beginning of the disease parkinsonian signs may be subtle and comprise 

slowness and problems with hand-writing. In moderate and advanced state patients 

develop increasing gait difficulty, bradykinesia, and tremor. In later stage risk of 

falling with secondarily violation becomes an urgent clinical issue [20]. After five 

years of treatment motor and non-motor fluctuations, dyskinesias, and behavioural 

changes become increasingly frequent [21]. Motor fluctuations comprise decline in 

motor performance near the end of each medication dose (wearing off), fluctuations 

from good motor to poor motor performance with partially immobilization over 

seconds (on-off periods, sudden on-off), involuntary movements at peak dose 

concentration and at the end of the dose (peak-dose and end of dose dyskinesias) 

[22]. Other motor features explained by the cardinal signs are hypomimia, 

hypophonia, micrographia, and difficulty turning in bed. 

1.2.3 Neuropsychiatric symptoms 

Behavioural and cognitive changes occur often in the course of the disease. 

Depression is seen in approximately one third of the patients [23-26] and does not 

correlate with motor symptoms [27]. Psychotic behaviour and hallucinations occur as 

well in about one third of the patients and hallucinations prevalently as visual 

experiences [28]. Dementia is 6 times more abundant in PD patients as compared to 

the general population [29] and the results from several recent studies strongly 

indicate that limbic and cortical Lewy bodies are the main cause of dementia in PD 

[30, 31]. Dementia is a key symptom for PD patients as it increases the risk of 

nursing home admission [32], mortality [33] and has a substantial impact on quality 
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of life for patients and caregivers. Non-specific fatigue occurs in about 50% of the 

patients [34] and is an important issue in treatment [35]. Sleep disorders comprise 

insomnia, daytime sleepiness and REM sleep behaviour disorder [36-39] and are 

frequently encountered. 

1.2.4 Other non-motor symptoms 

Olfactory loss is seen even early in the course of the disease and is related to cell loss 

in the cortical nuclei of the amygdale complex [40, 41]. Other non-motor features 

include urological problems such as urgency, nocturia, and sexual dysfunction [42, 

43]. Other relevant autonomic signs encompass orthostatic hypotension and 

progressive cardiac sympathetic denervation [44, 45]. Constipation is caused by slow 

colonic transit and decreased rectal contractions [46]. Skin problems might develop 

due to increased sebum excretion and seborrheic dermatitis [47]. Last but not least a 

variety of pain syndromes have been described [48]. 

 

1.3 Epidemiology 

1.3.1 Prevalence 

Besides essential tremor PD is the most common movement disorder with a 

prevalence of 100-150 patients per 100 000 inhabitants. Prevalence is increasing with 

increasing age as 1% of the population > 60 years and 3% of the population >80 

years is affected by the disease [49-51]. There is a modest male predominance (1.5:1) 
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whereas the gender prevalence differences are not yet explained [52]. There is no 

substantial difference in prevalence across European countries [53].  

1.3.2 Incidence 

The incidence rates in different cultures are varying partly related to different 

diagnostic criteria [54, 55]. Most conducted studies found an annual incidence rate 

between 10 and 20 per 100 000 inhabitants [56, 57].  

1.3.3 Epidemiological risk factors 

Epidemiological studies elaborated that PD is more common in highly industrialized 

countries and more frequent in Europe and North America than in the Far East [58-

60]. As risk factors for developing PD rural living, pesticide or herbicide exposure, 

and well water drinking are discussed whereas cigarette smoking, coffee, and alcohol 

consumption are negatively associated [61-64]. 

 

1.4 Pathology  

1.4.1 Neuronal death 

Neuropathological changes in PD are on the one hand characterised by preceding 

depigmentation and progressive death of dopaminergic neurons of the pars compacta 

of the substantia nigra. Within the pars compacta neuronal loss tends to be greatest in 

the ventrolateral layer followed by the medial ventral and the dorsal layer [65]. 
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Clinically a pakinsonian syndrome becomes evident when 50% of the dopaminergic 

neurons in the substantia nigra have died, respectively an abatement of the dopamine 

concentration in the striatum for about 70-80% [66]. The loss of striatal dopamine is 

believed to result in the cardinal features bradykinesia and rigidity [67]. Beside the 

loss of dopaminergic neurons in the substantia nigra also a selected but 

heterogeneous neuron population is dying including catecholaminergic and 

serotoninergic neurons in the brain-stem nuclei, the cholinergic nucleus basalis of 

Meynert, hypothalamic neurons, small cortical neurons, neurons of the olfactoric 

bulb, sympathetic ganglia, and parasympathetic ganglia in the intestine. 

1.4.2 Lewy bodies 

On the other hand Lewy bodies, intracytoplasmic, eosinophilic inclusion bodies are 

characteristic depositions in surviving neurons [68]. Lewy bodies are typically in 

brains of PD patients but they are not specific for the diagnosis. Within Lewy bodies 

there is a dense accumulation of misfolded and aggregated alpha-synuclein, ubiquitin 

and TorsinA [69-71]. Lewy bodies can also be found diffusely in cerebral cortices in 

DLB [72] and recently it could be shown that the rate of cognitive decline in PD is 

significantly correlated with the amount of Lewy body pathology [31]. However 

cases with clinical typical PD sometimes do not have Lewy body accumulations. 

Particularly patients with Parkin mutations (PARK2) have in most cases an absence 

of Lewy bodies [73]. Even if substantial progress is made in understanding the 

molecular structure of Lewy bodies and a cellular model exists that generates 

inclusion bodies responding to antibody testing as Lewy bodies [74, 75] the 
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importance of Lewy bodies and their role in the pathogenesis of PD still has to be 

determined. 

 

1.5 Pathogenesis 

Although the pathogenesis of PD remains elusive evidence from environmental risk 

studies and genetic approaches suggest a convergence between energy metabolism 

and the disposal of damaged proteins in the pathogenesis of PD. The active turnover 

of damaged proteins is of major importance. Abnormal and misfolded proteins are 

primarily degraded by the ubiquitin-proteasome-pathway (UPS) [10]. Different 

conditions can lead to an impaired UPS activity. 

1.5.1 Mitochondrial dysfunction and oxidative stress 

Mitochondria are ubiquitous and pivotal in cellular metabolism. Neurons have a high 

mitochondrial mass and disruption of mitochondrial complex activity is known to 

cause PD-like symptoms [76]. Administration of environmental toxins such as N-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, a derivate of a synthetic opiate) 

and rotenone (a pesticide) disrupt mitochondrial complex I activity causing energy 

failure and cell death. In animal models administration of rotenone and proteasomal 

inhibitors induce PD like symptoms and a selective loss of dopaminergic neurons 

with accumulation of Lewy bodies in brain areas typically affected in PD patients 

[77]. These findings demonstrate that mitochondrial and protaseome dysfunction 

takes a center stage in the pathogenesis of PD and recent genetic evidence 
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emphasizes the importance of mitochondrial performance [78, 79] (see genetic 

findings). 

 

Oxidants in neural metabolism are under normal circumstances in a tight regulation 

as they can cause severe damage. Several oxidants (e.g. hydrogene peroxide, radicals) 

arise in neural metabolism and react with other molecules (proteins, lipids, nuclide 

acids) inducing conformational changes und functional disturbances [80]. Even 

mitochondrial damage as complex I deficiency in PD could be secondary to oxidative 

stress in the substantia nigra [81, 82]. 

1.5.2 Exotoxins 

The role of the exotoxins MPTP and rotenone are discussed in chapter 1.5.1. 

Impaired energy metabolism due to a mitochondrial deficit in PD raises the 

possibility that exotoxicity may contribute to neuronal degeneration. Intracellular 

calcium levels are known to predict exotoxic cell death by activation of the 

glutaminergic N-methyl-D-aspartat (NMDA) receptor [83]. Increased calcium levels 

are buffered by mitochondria and accumulation of calcium in mitochondria followed 

by mitochondrial depolarization is a critical feature of exotoxic cell death [84, 85] 

and associated with free radical production [86] and activation of nitric oxide (NO) 

synthase. NO radicals release iron from ferritin, impair mitochondrial functions 

through induction of lipid peroxidation and leads to the production of peroxynitrite 

[87] which appears to be a critical mediator of cell death. 
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1.5.3 Neurotrophic factors 

Neurotrophic factors are responsible for growth and survival of neurons during 

development, and for maintaining adult neurons. Furthermore, they are capable of 

regenerating damaged neurons in the brain in animal models [88, 89]. The 

neurotrophin members include glial-derived neurotrophic factor (GDNF), brain-

derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotropin-3 

(NT3), and neurotrophin 4/5 (NT4/5). Neurotrophins bind to specific tyrosine protein 

kinase (trk) receptors inducing receptor dimerization at the cell surface followed by 

phosphorylation of receptor kinase residues. Hereby intracellular proteins are 

recruited to be involved in signal transduction. These factors initiate survival, 

proliferation and differentiation in their target cells [90]. The trophic properties of 

neurotrophins demonstrate their potential for treatment of neurodegenerative diseases 

like PD. On the other hand, if supply of these neurotrophins is limited or signalling 

pathways are dysfunctional, this may cause cell death of dopaminergic neurons and 

contribute in the pathogenesis. Analysis of brain tissue of a PD patient treated with 

neurotrophins showed induction of neuronal sprouting in human brain underlining 

the importance of neurotrophins in the pathogenesis of PD and their exciting 

possibilities for reversing devastating brain disorders [91].  

1.5.4 Immune factors 

The initial association between central inflammation and pathogenesis of PD was 

derived from post-mortem studies showing a large population of human leukocyte 

antigen (HLA)-positive reactive microglia cells in midbrains of PD patients [92]. 
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Further studies reported of significantly elevated levels of a variety of 

proinflammatory factors including complement proteins [93] and cytokines [94-96].  

 

Furthermore, infectious agents have been suspected to be risk factors in PD. A variety 

of case reports tend to relate viral infections to the development of acute 

parkinsonism [97, 98] and experimental exposure to Japanese encephalitis virus can 

induce degeneration of the substantia nigra in animal models [99]. Besides viruses 

bacterial infections have been proposed to play a crucial role in the pathogenesis of 

PD. Infections by helicobacter pylori has been associated with the disease [100-103] 

and infection with a Norcardia strain resulted in apoptotic death of dopaminergic 

neurons in the substantia nigra [104] supporting a role of inflammatory and infectious 

mechanisms in the pathogenesis. 

1.5.5 Traumatic head injury 

A possible role of traumatic head injury has been discussed and is controversial. 

Epidemiologic studies, case reports, and case control studies point to an association 

between head injuries and development of PD [105-107]. This correlation is 

strengthened by analysis of a large group of World War II veterans [108]. In contrast 

several other studies failed to elaborate a correlation between head injuries and 

development of PD [109, 110]. The underlying mechanisms in trauma-related 

damage to the dopaminergic neurons remain elusive. Inflammatory processes might 
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be involved as it could be shown in animal models that head injury is leading to 

activation of glial cells and an upregulation of various cytokines [111]. 

 

1.6 Physiology of the basal ganglia 

The basal ganglia are a group of anatomically closely related subcortical nuclei 

associated with modulation of motor function and non-motor-domains. However, 

despite intensive research there is no single definitive function that can be assigned to 

the basal ganglia. The basal ganglia are divided in the striatum (putamen, caudate 

nucleus (NC) , and nucleus accumbens), the external segment of the globus pallidus 

(GPe), the internal segment of the globus pallidus (GPi), the subthalamic nucleus 

(STN) and the substantia nigra [pars compacta (SNc) and pars reticulate (SNr)] [112, 

113]. The principle circuit of the basal ganglia are cortico-basalganglionic-thalamo-

cortical loops. Over this circuit information is collected from cortex areas and routed 

through the basal ganglia and returned to cortex areas [114, 115].  

 

The striatum is the primary (but not exclusive) input zone to the basal ganglia. The 

striatum receives input from the entire cortical mantle with a majority of projections 

from the motor, sensorimotor and prefrontal cortices. Main inputs to the striatum are 

excitatory and glutaminergic. From the striatum two pathways can be followed 

further on: on the one hand inhibitory GABAergic connections from the striatum to 

the SNr and to GPi. These two nuclei are the main output nuclei of the basal ganglia 
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and connect to the thalamus, a primary target of the basal ganglia. On the other hand 

connections from the striatum to the GPe exist. From there information is conducted 

to the STN and finally to the basal ganglia output nuclei (GPi and SNr). Recent 

evidence suggests that the individual nuclei are more highly interconnected and it is 

likely that not all loops of connectivity have been determined [115]. 

Projection from the striatum to the GPi and SNr appears to predominating D1 

dopamine receptors whereas in the GPe D2 receptors are the predominating 

dopamine receptors. Dopamine has different effects on neurons carrying D1 and D2 

dopamine receptors, exciting those with D1 receptors and inhibiting those with D2 

receptors. 

 

By molecular cloning five different dopamine receptors could be elaborated [116, 

117] grouped in 2 classes of dopamine receptors: the D1-like family composed of D1 

and D5 and the D2-like family consisting of D2, D3, and D4. Regionally different 

expression of the dopamine receptors exists: D1 and D2 receptors are expressed 

abundantly in all regions of the striatum whereas D3 receptors are expressed mainly 

in the ventral striatum and D4 and D5 receptors are expressed at much lower levels.  

 

1.7 Pathophysiology 

Lack of striatal dopamine leads to enhanced activity of cholinergic interneurons and 

consequently to an increased release of acetylcholine. Acetylcholine acts in the 
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striatum predominantly over central muscarinic receptors and has complex effects to 

GABAergic striatal projection neurons [118]. Lack of striatal dopamine leads to 

increased tonic activity in striatal projection neurons to GPe, STN, GPi and SNr. 

Dysbalances between inhibiting GABAergic and exciting glutaminergic 

neurotransmission are causative for this change in activity. Besides tonic activity 

abnormal activity emerges in STN, GPi, and SNr [119-122] leading to enhanced 

GABergic inhibition and consequently to oscillatory activity in thalamic areas.  

 

1.8 Treatment of patients with Parkinson’s disease 

To date none of the established therapies are capable to cure the disease. Several 

agents with neuroprotective potential are being developed or are under study [123]. 

Thus symptomatic treatment has to be used while waiting for the results of 

neuroprotective approaches. 

1.8.1 Levodopa 

Unlike the missing neurotransmitter dopamine, its precursor levodopa can cross the 

blood brain barrier and is converted to receptor accessible dopamine by dopa 

decarboxylase. Thus exogenous levodopa can replenish the reduced levels of 

dopamine in the striatum and repair suppressed nigrostriatal dopaminergic 

neurotransmission. Efficacy of levodopa can be improved by co-administration of 

inhibitors of peripheral dopa decarboxylase, monoamine oxidase (MAO) and 

catechyl-o-methyltransferase (COMT) inhibitors. Major problems related to levodopa 
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therapy are loss of efficacy over time and development of adverse reactions. Orally 

given levodopa reaches the entire brain and not only the basal ganglia. Besides the 

dopamine it generates it is handled differently from the endogenous dopamine formed 

from tyrosine hydroxylation [124]. In contrast to endogenous dopamine the synthesis 

and release of dopamine from exogenous levodopa is dissociated from neuronal 

activity. The generated dopamine is not stored in vesicles but spilt out as soon as it is 

generated leading to a non physiological receptor stimulation and rapid metabolism. 

This may explain the common adverse side effects including motor fluctuations, 

dyskinesias, psychosis, nausea, and hypotension [125]. Despite the potential toxicity 

of levodopa to dopaminergic and non dopaminergic neurons [126] it is still the most 

effective treatment for PD. 

1.8.2 Dopamine agonists 

Dopamine agonists provide anti-parkinsonian benefits by directly stimulating 

dopamine receptors [127] and have been shown to protect against the development of 

levodopa-related motor complications [128-130]. They are about as effective as 

levodopa in symptomatic treatment of mild-to-moderate PD. In addition, there is a 

lower tendency to develop motor fluctuations and dyskinesias with agonist treatment 

than after initiation of therapy with levodopa [131]. Adverse effects of dopamine 

agonists are similar to those experienced with levodopa including nausea, postural 

hypotension, and psychiatric symptoms. Furthermore ergot agents are associated with 

a small risk of tissue fibrosis not noted with the non-ergot dopamine agonists [132, 

133]. Transdermal application of the nonergolinic dopamine D3/D2/D1 receptor 
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agonist rotigotine is leading to stable plasma levels of the agonist and therewith 

diminishing adverse side effects of therapy [134, 135]. 

1.8.3 COMT-inhibitors 

Levodopa is metabolized by different enzymes, including most importantly dopa 

decarboxylase and COMT. COMT catalyzes the transfer of a methyl group from S-

adenosyl-L-methionine to the hydroxyl group of catecholamines and is widely 

distributed including central nervous system neurons and glia, but not nigrostriatal 

dopamine neurons. When levodopa is administered with a peripheral dopa 

decarboxylase inhibitor such as carbidopa or benserazide, COMT metabolism of 

levodopa predominates and levodopa is metabolized to 3-O-methyldopa. Entacapone 

is mainly acting in the gut and periphery and results in more stable levels in the 

plasma and thus makes more levodopa available for transport across the blood-brain 

barrier. Tolcapone also inhibits COMT centrally but can have liver toxic side effects 

[136]. When COMT inhibitors are added to levodopa therapy, striatal dopamine 

concentrations increase and efficacy of medication enhances [137, 138]. 

1.8.4 MAO B-inhibitors 

MAO is an enzyme that breaks down monoamines and dopamine. Two isoenzymes 

exist: MAO-A and MAO-B. Isoenzyme B accounts for about 80% of the total MAO 

activity in the human brain and is responsible for the degradation of dopamine in the 

striatum [139, 140]. Since this enzyme breaks down dopamine, inhibiting it prolongs 

the action of dopamine in the brain, and may improve the symptoms of PD. It has 
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also a mild antidepressant effect.  Selegiline is an irreversible MAO-B inhibitor and 

offers mild symptomatic benefit. Selegiline was the subject of a major 

neuroprotective trial in PD, the DATATOP trial: initial analysis of the results 

appeared to indicate that selegiline slowed disease progression but more detailed 

study pointed as well towards symptomatic effects. Thus, the results of this trial were 

inconclusive [141, 142]. Rasagiline is a recently developed selective and potent 

irreversible MAO-B inhibitor. Rasagiline is structurally related to selegiline, but it is 

more potent and does not have the amphetamine metabolite that selegiline possesses 

[143]. Clinical trial results suggest that early initiation of rasagiline may slow the 

progression of impairment associated with PD. However most of its neuroprotective 

properties have been shown to be distinct from MAO inhibition: rasagiline has direct 

antioxidant, anti-apoptotic and anti-excitatory effects which are all dose related [144-

147]. 

1.8.5 Anticholinergic agents 

Anticholinergic medications block cholinergic nerve impulses that help control the 

muscles of the arms, legs, and body. Furthermore they restrict the action of 

acetylcholine that helps regulate muscle movement, sweat gland function, and 

intestinal function. Physiologically effects of acetylcholine and dopamine need to be 

carefully balanced for normal motor control. In PD the lack of dopamine leads to a 

chemical imbalance causing symptoms such as tremor and rigidity. Anticholinergics 

decrease concentration of acetylcholine in order to achieve a closer balance with 

dopamine concentration. In elderly people with cognitive impairment anticholinergics 
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should not be used as they can deteriorate symptoms [148]. Thus anticholinergics 

may be useful in treatment of a carefully selected group of younger people whose 

main symptom is tremor. 

1.8.6 Amantadine 

Amantadine is an antiviral medication that is also effective in treating some 

symptoms of PD. Although the mode of action is still not clear it may cause greater 

amounts of dopamine to be released in the brain, and it may block receptors for 

acetylcholine [149, 150]. In early stages of the disease amantadine might be more 

effective than anticholinergic agents at improving bradykinesia and rigidity but less 

effective at improving tremor. In later stages it may be used to reduce the levodopa 

dose. Beneficial effect of amantadine has been documented as well in patients with 

levodopa-induced dyskinesias [151]. 

1.8.7 Surgical approaches 

Brain surgery may be considered when medication fails to control symptoms or 

causes severe adverse events [152].  

Deep brain stimulation (DBS) is a recently developed technique for treating PD 

[153, 154]. DBS surgery involves placing a thin metal electrode into one of several 

possible brain targets and attaching it to a computerized pulse generator, which is 

implanted under the skin of the chest. Electrical impulses generated affect movement. 

The theory behind the constant stimulation is that the loss of dopamine producing 

neurons in PD leads to an abnormal activity in brain nuclei [119-122] offering the 
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possibility that constant stimulation of these nuclei with a steady-frequency electrical 

pulse corrects this excessive and abnormal activity. Thus DBS does not affect brain 

dopamine levels. DBS surgery does not destroy brain tissue and has fewer risks than 

destructive surgical methods causing this technique to become the preferred surgical 

method for treating advanced PD. The stimulation of GPi and STN leads usually to 

improvement in all the symptoms of advanced Parkinson disease; stimulation in vim 

nucleus of thalamus can effectively treat all types of tremor. 

Pallidotomy is an older surgical approach based on the hyperactivity of the globus 

pallidus in PD causing an inhibition of areas in the brain that control movement. 

Technically in pallidotomy a tiny part of the globus pallidus is destroyed creating a 

scar. Consequently this reduces brain activity in this area improving movement 

symptoms as tremor and rigidity. 

Thalamotomy is rarely done today. Indication is surgical treatment of severe tremor 

on one side of the body that does not respond to other treatment. No effect is seen on 

other features like bradykinesia, speech problems, or walking difficulties [16, 17, 

155]. 

Neurotransplantation is considered an experimental treatment for Parkinson's 

disease and not a realistic option at this time [156, 157]. Theoretically fetal brain 

tissue implanted to the brain is obligated to produce dopamine. Hereby the use of 

fetal tissue is controversial and future approaches may include transplantation of 

nerves from other areas in the affected person's own body or from genetically altered 

cells.  
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Other approaches include supply of neurotrophic factors [158] and gene therapy 

models [159]. 
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2 GENETIC FINDINGS IN PARKINSON’S DISEASE 

2.1 Heritability of PD 

During the last decade great progress has been made in understanding the genetic 

basis and mechanisms of neurological diseases. Particular in the understanding of PD 

recent discovery of genes associated with rare monogenic forms of the disease has 

provided substantial and novel insight into the molecular disease mechanisms 

involved. However in the 1980s preferred opinion favoured environmental toxins 

accountable for the disease. This opinion was strengthened by occurrence of PD in 

people exposed to MPTP, the protective effect of smoking, and the difference 

between the prevalence of PD in rural and urban areas [58, 64, 160, 161]. Early twin 

studies demonstrated a low rate of concordance in monozygotic and dizygotic twins 

further emphasizing an assumed lack of genetic susceptibility [162]. First in 1999 in 

an assessment of genetic inheritance in PD by studying the concordance rates of the 

World War II Veteran Twin Registry it could be concluded that genetic factors are 

important when the disease starts at or before the age of 50 years [163]. Further 

discovery of familial forms of PD and elaboration of the genes involved showed 

clearly that there is a significant genetic component to the disease [164-166]. 

Molecular evidence from monogenetic forms of PD promoted substantial insight in 

the understanding of specific molecular pathways in PD because monogenic and 

sporadic forms of parkinsonism share many overlapping features [167, 168] implying 

that common pathogenic mechanism may underlie disease development. 
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2.2 Genetic factors in PD 

2.2.1 alpha-synuclein (PARK1, PARK4) 

The first gene coding for familial PD was identified studying a large kindred from 

southern Italy (Contursi kindred) with an autosomal dominant transmission of PD. 

The gene could be linked to chromosome 4q21-q23 [169] and in 1997 an A53T 

missense mutation in the alpha-synuclein gene (SNCA) was identified as the 

causative mutation.  The mutation consists in the transversion at the nucleotide 

position 209 from guadenine to adenine, leading to the change of alanine to threonine 

in the mutant protein [170]. Affected individuals had typically Levodopa-responsive 

PD with the same clinical features as seen in sporadic disease forms. Some affected 

individuals developed additionally marked dementia, orthostatic hypotension, bladder 

incontinence and myoclonus [171, 172]. Since then two other point mutations in 

SNCA have been elaborated as causative mutations for austosomal dominant disease 

transmission: the A30P mutation was found in a German family and involves the 

substitution of guanine to cytosine at position 88 resulting in the change of alanine to 

proline [173]. Affected individuals display the typical features of Levodopa-

responsive Parkinsonism except of early onset dementia. The E46K mutation was 

found in a Spanish family [174] and affected carriers usually display cognitive 

decline at an early stage of the disease and show extensive cortical Lewy-body 

pathology. Recent genetic evidence is indicating a direct correlation between SNCA 

dosage and disease progression [175, 176] and there is some indication that 

variability in the promoter region of SNCA can predispose to PD [177]. 
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Alpha-synuclein protein consists of 140 amino acids and is concentrated in synaptic 

terminals [178]. The physiological function of alpha-synuclein is still unknown. 

Structurally the amino-terminus contains an amphipathic repeat region which can 

bind to lipid membranes and associates with presynaptic vesicles [179]. This 

interaction may play a role in regulating synaptic vesicle size, dopamine storage and 

neurotransmission. The A30P mutation causes a loss of liposome binding leading to a 

loss of function [180], the E46K mutation causes an increased liposome binding 

[181] and all three mutations lead to an increased self-aggregation and formation of 

Lewy-body-like fibrils [182-185]. One proposed mechanism to how alpha-synuclein 

exerts its neurotoxic effect is through direct impairment of protein degradation over 

the ubiquitin-proteasome system (UPS) [10]. Other mechanism have been described 

as proteasomal inhibition [77], and inhibition of protein degradation over the 

lysosome/autophagy pathway [186]. Furthermore, overexpression of alpha-synuclein 

has been linked to mitochondrial dysfunction [187], apoptosis [188], defective 

cellular trafficking [189] chaperone mediated autophagy [190], increased sensitivity 

to oxidative stress [191], and dopamine-mediated toxicity [192]. 

2.2.2 Parkin (PARK2) 

Parkin mutations have been first linked to a rare form of autosomal resessive 

juvenile-onset form of PD in Japanese families [193, 194]. Affected patients display 

tremor, bradykinesia, rigidity, and have an excellent initial response to levodopa 

[195, 196]. However some unusual clinical features as dystonia at onset, 

hyperreflexia, and early treatment related complications may be present. Furthermore, 
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neuropathological findings are not consistent with idiopathic PD as a lack of Lewy 

bodies is found [195, 197]. Parkin-mutations are common in families with early-

onset of PD and are found in up to 50% of early-onset individuals with a positive 

family history of PD [70]. In 1998 the gene could be located to chromosome 6q25.2-

q27 and a homozygous deletion could be detected [194, 198].  Since then a vide 

variety of parkin mutations have been described including deletions, multiplications 

and missense mutations [199-201]. Although most described cases report an 

autosomal recessive transmission some cases exist not compatible to recessive 

inheritance and genetic evidence exists that haploinsufficiency in the parkin gene 

may be a predisposing factor [202, 203]. 

 

Physiologically parkin encodes for a protein consisting of 465 amino-acids 

containing an amino-terminal ubiquitin-like domain, a central linker region, and a 

carboxy-terminal RING domain comprising two RING finger motifs seperated by an 

in-between RING domain [204]. Consistent with the ring finger motif parkin protein 

acts as an E3 ubiquitin protein ligase [205] in the UPS. Ubiquination of proteins leads 

to proteasomal protein degradation. Consequently parkin mutations should lead to an 

incorrect ubiquination and an invalid targeting to the proteasome leading to protein 

accumulation. Surprisingly, parkin knockout animal models do not show clinical or 

pathological hallmarks of the disease [206] but proteomic analysis has instead 

revealed dysfunction in the mitochondrial oxidative phosphorylation in the ventral 

midbrain [207] and a decrease of mitochondrial respiratory capacity leading to an 
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increase of oxidative damage [208, 209]. Thus parkin may have a neuroprotective 

effect maintaining mitochondrial integrity. Congruously overexpression of parkin 

leads to resistance to mitochondrial dependent apoptosis [210], protection against 

dopamine mediated toxicity [211], protection against toxicity induced by proteasomal 

inhibition [212], and protection against loss of dopaminergic neurons [213]. 

2.2.3 Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, PARK5) 

UCH-L1 is a highly abundant neuron-specific protein involved in the regeneration of 

monomeric ubiquitin in the UPS [214] functioning as an ubiquitin protein ligase 

[215] maintaining ubiquitin homeostasis [216]. A heterozygous mutation (I93M) has 

been found in an affected German sibling pair [217]. Because the transmitting parent 

was asymptomatic the pathogenety of the mutation is still elusive or an incomplete 

transmission pattern exists. Additionally a heterozygous M124L variant was 

described in an unaffected individual [218]. The common polymorphism S18Y was 

reported as underrepresented in a European cohort [219] and thus may have a 

potential protective effect caused by a reduced ligase activity and contemporaneously 

normal hydrolase activity not leading to alpha-synuclein accumulation [215]. The 

protective effect could be affirmed in a metaanalysis of the literature [220]. However 

no other mutations have been identified to date increasing doubts in pathogenety and 

leading to the suggestion of benign polymorphism [221]. Compatibility mutant mice 

lacking functional UCH-L1 do not develop a parkinsonian phenotype [222]. Yet a 

possible pathogenic role of mutations in UCH-L1 gene might reduce availability of 

free ubiquitin monomers leading to an impaired UPS and protein accumulation [223]. 
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2.2.4 PINK1 (PARK6) 

In a large Italian family with familial occurrence of PD linkage to chromosome 1p36-

37 could be accomplished performing a homozygosity screen [224]. Subsequent 

mutations in the PTEN induced kinase 1 (PINK1) were identified [79]. Affected 

individuals display young onset but otherwise typical features of PD. Additional 

screens of early-onset families revealed various novel mutations. However PINK1 

mutations remain less common than parkin mutations [225, 226]. PINK1 is a 581 

amino acid protein containing a mitochondrial targeting motif and a kinase domain 

homologous to serine/threonine kinases of the calcium/calmodulin family [79]. 

PINK1 is considered to be a mitochondrial protein with a role in protecting against 

oxidative stress and apotptosis in in vitro models [226]. Accordingly the G309D 

mutation is located in the ADP binding site of PINK1 and impairs the protective 

effect by harming kinase activity [227]. However the kinase activity has yet to be 

demonstrated and mitochondrial substrates and interacting proteins have to be 

identified. 

2.2.5 DJ-1 (Park7) 

Performance of a homozygosity screen in a family with early-onset PD revealed a 

linkage to chromosome 1p36 [228, 229]. Mutations in the gene encoding for the 

protein DJ-1 were found including deletions, missense mutations, and splice site 

alterations [78, 230]. Affected individuals have a similar phenotype to those affected 

with parkin mutations including dystonia at onset and initial good response to 

levodopa. Some individuals might exhibit psychosis. DJ-1 is a homo-dimeric 189 
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amino-acid protein of the DJ-1/ThiJ/PfpI superfamily. The prevalence of DJ-1 

mutations is much lower accounting for 1-2% of individuals with familial young 

onset PD [231]. DJ-1 is expressed ubiquitously including the brain, where it is 

localized to both neurons and glia [232, 233]. DJ-1 does not appear in Lewy bodies 

but colocalizes with tau-positive inclusions in several neurodegenerative diseases 

suggesting a role in distinct neurodegenerative diseases [234, 235]. Interestingly DJ-1 

is depleted in brains of patients with parkin-mutations but enhanced in patients with 

sporadic PD [236]. The physiological function of DJ-1 is unclear but it may have a 

role in protecting against mitochondrial damage in response to oxidative stress [237]. 

Furthermore it may protect against endoplasmic reticulum stress, and proteasomal 

inhibition [238]. The L166P mutation that was found in an Italian kindred leads to an 

unfolding of the carboxy-terminal region and a loss of dimerization leading to 

enhanced degradation by the proteasome [233, 239]. Additionally resolution of the 

dimerization may exhibit direct instability with a consequently abatement of 

neuroprotective functions [240]. It could be demonstrated that parkin associates with 

mutant DJ-1 supporting its stability [241]. Concordantly oxidative stress enhances 

interaction linking both proteins in a common neuroprotective pathway. It is 

suggested that DJ-1 may act as a component of the UPS acting as a chaperone or 

protease to refold or promote the degradation of misfolded proteins [204, 241].  
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2.2.6 LRRK2 (PARK8) 

A linkage to chromosome 12p11.2-q13.1 in a Japanese family with autosomal 

dominant PD has been identified [242]. The findings up to date suggest that 

mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common 

genetic cause of late-onset PD. Until now frequent LRRK2 mutations (G2019S, 

I2020T, L1114L, Q930R, R793M, R1441C, R1441G, R1441H, S1096C, 

S1228T,Y1699C) have been published [243-246]. The most common mutation so far 

is the G2019S mutation accounting for 2-6.6% of the autosomal inherited cases with 

PD, depending on the population investigated [247-251] and 1-2% of the sporadic PD 

cases [243, 252, 253]. It has been suggested that penetrance of LRRK2 mutations may 

be age dependent [248, 251] explaining the reduced penetrance in some affected 

families. Furthermore as LRRK2 mutations can be seen as well in asymptomatic 

individuals as in control subjects an incomplete penetrance is presumed [203]. The 

R1441G mutation was reported to cause 8% of PD cases in a Basque cohort [243] 

and the G2019S mutation was not found in any familial PD cases but only in one out 

of 337 patients with sporadic PD in the study by Berg et al. [244] indicating different 

frequencies of specific LRRK2 mutations in different populations. Affected 

individuals exhibit a clinical phenotype compatible with idiopathic PD but show a 

vide variety of neuropathological patterns ranging from pure degeneration without 

Lewy bodies to degeneration with brainstem Lewy bodies, widespread Lewy bodies 

fitting to pattern seen in DLB, and neurofibrillary tau-positive tangles [242, 246, 

254]. However the prevalence of cognitive dysfunction and dementia among LRRK2 

mutation carriers is surprisingly low although the G2019S mutation is located on 



 39

chromosome 12q12, a genetic locus implicated in late onset Alzheimer’s disease 

[255]. 

At present it still has to be determined how mutations in the LRRK2 gene cause PD. 

The LRRK2 gene contains 51 exons and encodes a protein consisting of 2527 amino-

acids called dardain [243]. The protein comprises various highly conservated 

domains with probable functional attributes and so far it remains unclear which 

domains play a relevant role in neurodegeneration.  

2.2.7 Further loci 

PARK3 is a genetic locus for autosomal dominant PD linked to chromosome 2p13 

described in two American families descending from southern Denmark/Northern 

Germany [256, 257]. Penetrance of the mutation is reduced and gene mutations may 

be widely distributed in the population. Age at onset is similar to sporadic PD. 

 

PARK10 and PARK11 have been defined in large population samples and linked to 

chromosome 1p32 (PARK10) [166] and 2q36-q37 (PARK11) [258]. These loci 

represent susceptibility loci which may be important in the pathogenesis of sporadic 

PD. 

NURR1 (NR4A2) is a developmental gene important in development and maintenance 

of midbrain dopaminergic neurons. Two mutations have been found so far in exon 1 

and linkage could be done to chromosome 2q22-q23 [259-261]. At present linkage 
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has not been described in a single large family and findings could not be replicated. 

Pathogenic relevance has to be determined. 

 

Synphilin-1 (SNCAIP) is a substrate of the gene product of parkin and has been 

shown to interact directly with alpha-synuclein [262]. It is found in Lewy bodies 

along with parkin and alpha-synuclein. Linkage could be done to chromosome 

5q23.1-q23.3 [263]. A direct role for synphilin-1 is suggested by identification of the 

R621C mutation in two apparently sporadic PD patients of German origin. Both 

patients reported no family history of PD but genotyping suggested a common 

ancestor. Functional studies showed that mutant synphilin can form cytoplasmic 

inclusions. Furthermore transfected cells carrying the R621C mutation are more 

susceptible to apoptosis than normal control cells. 

 

Candidate genes identified on the basis of their involvement in the dopamine pathway 

have been accounted as susceptibility genes. Known genes investigated are MAO B, 

dopamine D2 receptor, CYP2D6, CYP1A1, N-acetyltransferase 2, DAT1, and 

glutathione S-transferase M1 genes [264-266]. Up to now the few studies with 

significant associations between candidate gene and PD have failed to replicate in 

other samples. Thus the pathological relevance of those candidate genes has to be 

further examined.  
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Mitochondrial dysfunction has been implicated in the pathogenesis for a long time. A 

majority of mitochondrial DNA is dedicated to the reduced nicotin-amide adenine 

dinucleotide complex I enzyme thus mitochondrial DNA variation might contribute 

to PD expression. Ten single-nucleotide polymorphisms defining European 

mitochondrial DNA haplogroups were genotyped for white PD patients and controls.  

Haplotype J or K were significantly lower associated with PD than hapolotype H 

suggesting that variation in complex I proteins may be a risk factor in PD 

susceptibility [267]. 
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II AIMS OF THE STUDY 

The primary objectives of this study were  to examine the role of genetic factors and 

the frequency of known mutations in a population of patients with PD. Further on we 

intended to examine the role of a genetic influence on disease progression, especially 

in development of dementia. To obtain this information we have: 

• examined the familial occurrence of PD in an unselected group of patients 

with PD and in two control groups (paper1).  

• studied the impact of Parkin (Park2) mutations in our study cohort and 

compared it to a German group of PD patients and to two control groups 

(paper 2). 

• studied the impact of PINK1 (Park6) mutations in our study cohort and 

compared it to a German group of PD patients and to two control groups 

(paper 3). 

• analysed the genetic contribution to the development of dementia in PD and 

investigated the molecular basis for the clinical separation of PD with 

dementia and DLB in an analysis of the literature (paper 4). 

• studied the development of dementia in PD-patients with and without 

familial occurrence of PD and dementia in their families (paper 5). 

• examined the role of fragile x premutations in the study cohort and its impact 

on the development of dementia in the study cohort and in a German group 

of PD patients (paper 6). 
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III SUBJECTS AND METHODS 

3 Patients and molecular analyses 

3.1 Patients  

The study population comprised all subjects with PD living in nine municipalities in 

the southern part of Rogaland, Western Norway on the prevalence day of January 1st 

1993. Total ascertainment of patients with PD in this geographical area was 

attempted through a detailed community study in an area of Rogaland county, 

Norway with 220 858 inhabitants [50]. Clinical information on all patients with 

suspected parkinsonism was collected from the only available neurological service in 

the study area and additionally from the general practitioners, nursing homes, 

physicians in charge of the nursing homes, district nurses, and home health care 

workers.  Information about members of the Rogaland Parkinson’s Disease Society 

was available. After a screening procedure, 400 patients were invited to participate in 

the study and examined by a neurologist. 

 

Among the 400 patients with possible PD 245 patients (120 men and 125 women) 

were diagnosed with PD according to explicit diagnostic criteria as defined in the 

next paragraph [18] (prevalence: 110.9 per 100 000 inhabitants).  
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3.2 Diagnosis and subtypes of PD 

All patients were interviewed and examined in an evaluation program consisting of 

two consecutive one-hour consultations held within one month. The examination 

program included a diagnostic evaluation of the parkinsonian syndrome evidenced by 

the patient, based on clinical information at onset of disease, disease development, 

and the response to levodopa. The patients were classified in groups of [18]: 

 

I: Clinical definite idiopathic PD: 

A diagnosis of Clinical definite idiopathic PD requires that patient must have resting 

tremor and at least two of the following signs: (1) akinesia or bradykinesia, (2) 

rigidity, or (3) postural abnormalities. The disease has unilateral onset and 

development, and the response to dopamine agonism is good to excellent. No 

significant changes on computed tomographic or magnetic resonance imaging scans 

should be present. 

 

II: Clinical probable idiopathic PD: 

For a diagnosis of Clinical probable idiopathic PD patients must fulfill at least 2 of 

the 4 clinical signs from category I. Resting tremor is not obligatory and a maximum 

of one of the following atypical clinical features is allowed: (1) dementia and/or 

clinical relevant autonomic failure at onset of the disease, (2) a symmetrical disease 

presentation, or (3) only a moderate response to dopamine agonists or (4) another 

atypical feature of idiopathic PD. 
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III Clinical possible idiopathic PD: 

For a diagnosis of Clinical possible idiopathic PD patients must fulfill two of the four 

cardinal signs. The patients were allowed to have two of the atypical features. The 

response to dopamine agonists should at least be moderate. All patients should fulfill 

conventional diagnostic criteria for PD. 

 

3.3 Controls 

Two control groups, each consisting of 100 individuals of the same age and sex 

distribution as the patients with PD were taken as clinical controls for the study 

population. The first group included patients with diabetes mellitus (DM) recruited 

randomly from the Diabetes Clinic at the Stavanger University Hospital, Stavanger. 

This group was chosen as a comparative group with another chronic disease and was 

not a population-based group of patients. The second group was intended to represent 

a healthy and well-functioning group of elderly and included individuals going to 

routine visits at their general practitioners (GP). The GPs selected these persons 

among elderly individuals that were scheduled for half year screening visits and that 

were without active disease. These patients should not have cancer, major cardiac 

disease, or any disorder causing important disability.  

 

For genetic correlation a German cohort of PD patients was recruited in Bochum 

(Germany), following the standard criteria for PD; it consisted of 95 patients 

suffering mostly from late-onset PD (median age of onset 55.2 years). A positive PD 

family history was documented in 16.5 % of the patients. Ethnically matched control 
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samples from healthy blood donors were recruited at the Haukeland University 

Hospital, Bergen (Norway) and the University Hospital of Essen (Germany). 

 

3.4 Clinical evaluation 

Information on clinical and demographic patient characteristics was obtained through 

a semi-structured interview and with rating scales. To obtain strongest possible 

certainty a caregiver with intimate knowledge of the patient and the patient’s family 

accompanied the patient during the interview. Severity of parkinsonism was 

examined by the Unified Parkinson’s Disease Rating Scale (UPDRS) [268], including 

the Hoehn and Yahr staging [49] and the Schwab and England scale [269]. 

Hallucinations were rated with the Thought disorder item of the Mental subscale of 

the UPDRS. A score of 2 and above was defined as visual hallucinations. Dementia 

was diagnosed according to the Diagnostic and Statistical Manual of Mental 

Disorders, Third Edition, Revised (DSM-III-R) [270] criteria as a guide and taking 

into consideration the physical disability that occurs in patients with PD. Cognitive 

functions were rated using the Mini-Mental State Examination (MMSE) [271], 

symptoms of depression with the Montgomery and Aasberg Depression Rating Scale 

(MADRS) [272].  

3.4.1 Assessment of familial aggregation and heredity of PD 

Patients and controls were asked to complete a questionnaire that asked for detailed 

information about the occurrence of PD and dementia in their families. The relatives 
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that should be considered by the patient and/or their caregiver were all siblings, 

parents, children, siblings of parents, and grandparents.  

 

3.5 Molecular analyses 

3.5.1 Park2 and Pink1 

The exons of the investigated genes were amplified by polymerase chain reaction 

(PCR) using newly designed as well as established primer pairs. For each PCR 

reaction, a 10 µl reaction mix was set up containing 100 ng DNA, 1x GC buffer 

(Genecraft, Münster, Germany), 1 U Taq Polymerase (Genecraft, Münster, 

Germany), 0.2 mmol of each dNTP, 0.4 mmol of each primer and varying 

concentrations of MgCl2 (1-3 mmol; Genecraft, Münster, Germany). For SSCP 

analysis, 0.06 µl of [a32P] dCTP/dATP (10mCi/ml) was added. A touch-down 

procedure in a thermocycler (Biometra, Goettingen, Germany) was applied: initial 

denaturation (3 min at 95°C), two initial cycles 6°C and 3°C above the annealing 

temperature (50°C-55°C) 25-28 cycles of 95°C (30 s), annealing temperature (30 s), 

elongation at 72°C (30 s) and a final elongation step at 72°C (3 min). In order to 

optimize mutation screening by SSCP analyses, PCR products were digested with 

different restriction enzymes depending on the lengths of their fragments. Thereafter, 

SSCP analysis was used to identify mutations and SNPs. For SSCP analysis, 3 µl of 

PCR product were mixed with 7 µl of loading puffer (95% deionised formamide, 10 

mM NaOH, 20 mM EDTA, 0.06% xylene cyanol and 0.06% bromophenol blue) and 

heated for 5 min to 95°C before cooling on ice. 3 µl of each mix was run on two sets 
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of 6% polyacrylamide gels (one set containing 10% glycerol, another containing 5% 

glycerol and 1M urea) with 1xTBE buffer at 55W for 3-5h at 4°C. Gels were dried 

and subjected to autoradiography over night. Selected samples with band shifts 

evidenced in SSCP analyses were confirmed by direct sequencing. The sequence 

reactions were run on an automated DNA sequencer (Applied Biosystems 377 XL, 

Foster City, USA) using the Big Dye Terminator kit (BDT; Perkin-Elmer, Norwalk, 

CT) and analyzed with the ABI PrismTM377XL collection and convenient 

sequencing analysis software. SNP and mutation frequencies in controls were 

determinated by using specific restriction fragment length polymorphism analysis 

(RFLP) and SSCP analyses. 

3.5.2 Fragile x 

The size of the individual CGG repeats was determined by polymerase chain reaction 

(PCR) as follows: For each PCR reaction, a 10 µl reaction mix was set up containing 

100 ng DNA, 1x GC buffer (Genecraft, Münster, Germany), 1 U Taq Polymerase 

(Genecraft, Münster, Germany), 0.2 mmol of each dNTP, 0.4 mmol of each primer 

(foreward primer 5'-Cy5-CGCTCAGCTCCGTTTCGGTTTCACTTCC GGT-3'; 

reverse primer 5'-TCCTCCATCTTCTCTTCAGCCCT-3') and varying 

concentrations of MgCl2 (1-3 mmol; Qiagen, Germany). PCR was performed with an 

initial denaturation at 95°C for 15 min, 35 cycles of 95°C for 30 sec, 58°C for 30 sec, 

72°C for 30 sec, and final extension at 72°C for 5 min. Repeat length was analyzed 

on a DNA sequencer using a 400 DNA standard (Beckmann Coulter Ceq 8000). 
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IV RESULTS 

Paper 1. The frequencies of familial occurrence of PD and dementia were compared: 

among the 245 patients with PD 30 (12.2%) reported of another first-degree relative 

with PD compared to 5% and 3% in the diabetes mellitus and the healthy elderly 

control groups (p<0.001). This difference became even stronger if taken all affected 

relatives into account: 53 (21.6%) of the patients with PD reported about occurrence 

of PD in all family compared to 7% and 5% in the control groups. The frequency of 

dementia in the families of patients with PD, diabetes mellitus and the healthy elderly 

did not differ neither in first degree relatives nor in all affected relatives. Clinical and 

demographic factors at baseline were the same in patients with and without PD in 

their families.  

 

Paper 2. The 12 coding exons of the Parkin gene were amplified: three previously 

described missense mutations (Thr240Met, Arg402Cys and Arg256Cys) were 

observed. In the German cohort three different heterozygous mutations (Thr240Met, 

Arg256Cys and Arg402Cys) were identified, corresponding to a rate of 3.2% 

mutation carriers, higher than previously described in Caucasian late-onset patients 

(2%). One healthy control subject carried the Arg402Cys mutation in heterozygous 

state (44 years at time of testing). In the Norwegian patient cohort one missense 

mutation was observed in heterozygous state (Arg256Cys), corresponding to a rate of 

0.5% mutation carriers. No mutations were detected in the Norwegian control 
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subjects. Several intronic SNPs (IVS2 + 25T<C, IVS2 + 35G>A, IVS3-20T>C, 

IVS7-35G>A and IVS8 + 48C>T) were found in both cohorts of patients. The 

frequencies of the SNPs differed significantly: the SNP IVS2 + 25T>C (p=0.015), 

IVS7-35G>A (p=0.013) and IVS8 + 48C>T (p=0.029) were more frequent in the 

German cohorts. Likewise the amino acid changes described previously as 

polymorphisms (Val380Leu, Ser167Asn and Asp394Asn) were more frequent in the 

German cohort, except for the Ala82Glu that was identified only in a Norwegian 

sample. The Val380 allele was significantly more frequent (p=0.0081) in the 

Norwegian cohort. The frequency of Val380Leu polymorphism did not differ 

between patients and controls. 

 

Paper 3. The 8 coding exons of the PINK1 gene were screened: Several SNPs were 

identified: (L63L, Q115L, Ivs4-5A>G het, Ivs6+43C>T het, N521T, c.1783A>T). 

Allelic frequencies of several SNPs differed significantly between the German and 

Norwegian cohorts confirming homogeneity of the Norwegian cohort. The screening 

did not reveal any disease relevant mutation in the two cohorts. 

 

Paper 4. In this analysis of the literature we identified occurrence of coincidental 

parkinsonism and dementia in 24 families. In 12 of the families it was reported both 

patients with DLB and with Parkinson’s disease dementia (PDD), suggesting a 

common underlying pathophysiology of the entities. Consequently the distinction 
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between DLB and PDD upon a strict separation of time of onset of parkinsonism and 

dementia does not reflect the molecular biology of the disease process. Patients 

meeting diagnostic criteria for DLB so far either display mutations in the synuclein 

gene or show positive correlations with the APOe3/4 and e4/4 allele. 

 

Paper 5. Familial occurrence of PD in first and second degree relatives was associated 

with occurrence of dementia in PD. 28 (12.8%) PD patients reported of a first degree 

relative and 23 (10.5%) of a second degree relative affected with PD. 21 (9.6%) 

reported a first-degree and 21 (9.6%) a second degree relative affected with dementia. 

The baseline characteristics of these groups did not differ. Dementia was present in 

49 patients (22.4%) at baseline, and was diagnosed in another 72 (32.9%) (incident 

dementia) during follow-up, with a total number of 121 (55.3%). 

There was a linear relationship between dementia prevalence and strength of family-

association of PD: PD in first-degree relative (75%), second degree (57%), and no 

family history (52%) (p=0.036). However, the Cox hazard analyses failed to detect a 

significant association between family history of PD and time to develop dementia in 

PD (p>0.05). No association between dementia and family history of dementia could 

be found although there was a numerical trend towards a higher proportion with 

dementia in those with dementia in a first-degree (67%) or second-degree (57%) 

relative compared to no family history of dementia (53%) (p=0.64). 
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Paper 6. No premutation alleles of the fragile X mental retardation (FMR1) gene were 

found. In the Norwegian cohort 2 PD patients (3.6%) and 2 controls (1.2%) had 41-

54 CGG repeats (p=0.63). In the German cohort 5 PD patients (6.2%) and 3 controls 

(2.2%) had 41-54 CGG repeats (p=0.125). There were no clinical differences at 

baseline between the patients with more or less than 41 CGG repeats. However the 

two patients with 41 or more CGG repeats declined 2.33 and 3.22 points in MMSE 

per year, compared to a mean (SD) decline of only 1.4 (1.3) in patients with less than 

41 repeats. Both patients with 41 or more CGG repeats developed severe dementia 

and hallucinations during the course of the disease. 
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V DISCUSSION  

5 General summary 

In our study we clearly show that there is an aggregation of PD in the families of PD 

patients and we have analysed the frequency of several known mutations. Further on 

we have investigated whether development of dementia in PD might have genetic 

determinants. These issues are discussed in detail in the different papers in this thesis. 

However some methological concerns and general aspects are of salient importance 

and will therefore be discussed in the following part of the thesis. 

5.1 Methodology 

One major methodological issue in research combining clinical and molecular 

approaches is valid clinical information and reliable molecular elaboration. It is of 

outstanding importance to have a high diagnostic accuracy of the clinical data. We 

tried to obtain this by using well defined and published diagnostic criteria [18] during 

the inclusion period and by using standardized rating scales in the follow-up 

investigations. Previous studies have shown that 20-30% of patients that were 

clinically diagnosed as PD had a different cause for their parkinsonian symptoms [13, 

14]. To obtain a high diagnostic accuracy the applied classification with subgroups of 

clinically definite, probable, and possible PD included patients with a high to medium 

high probability for the disease, whereas patients with a lower probability were 

excluded. The classification takes both specificity and sensitivity into consideration. 
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The high diagnostic accuracy in our cohort could be confirmed neuropathologically 

in a subgroup of the patients that has come to autopsy: all 22 patients had neuronal 

loss and alpha-synuclein positive Lewy bodies in the surviving neurons of the 

substantia nigra confirming the diagnosis [31].  

A given problem in assessing family history data in neurodegenerative diseases is that 

accuracy of the obtained data often remains unclear. It was reported that patients with 

PD tend to overstate PD in their relatives when compared to controls [273]. However 

a recent study showed that a family history interview can be taken as reliable 

information when a conservative diagnostic algorithm is used [274]. In order to 

prevent misclassification and bias-effects in our study cohort we used a semi-

structured interview in attendance of a caregiver with intimate knowledge of the 

patient and the patient’s family. Bias effects of the way family history data was 

collected by can yet not completely be excluded. However, misclassification may 

occur because relatives are still at risk or died before expression of disease symptoms. 

Consequently this type of bias leads more likely to an underestimation of 

associations. 

For the study of correlations between clinical progression data and molecular results a 

prospectively design over a 12-year period in a population based cohort from a cross-

sectional study are undisputable strength of the study. However, this may also 

implicate a major pitfall in interpretation of the devised results. Obtaining clinical 

data started in 1993 with 245 included patients; four years later only 143 patients 

could join the follow-up visit, further decreasing to 90 in 2001 and leaving even 
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fewer patients for the twelve year follow-up. Furthermore, with only 125 blood 

samples drawn in 2001 the clinical correlations must be even more carefully 

interpreted. A screening after known mutations is not affected by this prerequisite as 

no clinical correlation has to be done. In contrast, elaborating new clinical 

correlations with the gathered progression data remain difficult, caused by the low 

number of patient data at disposal. However, this methological problem is as well 

more likely to underestimate given associations assuring high reliability of obtained 

correlations.  

 

5.2 The role of genetics in the pathogenesis of PD 

Still in 1999 PD was largely thought as a sporadic disease caused by age-related and 

environmental factors with insignificant genetic input [163]. Ensuing epidemiological 

surveys elaborated a genetic predisposition to sporadic PD [165, 275]. Confirming 

these results we found a three- to fourfold increased frequency of PD in relatives of 

PD-patients as compared to controls. As we found an equally increased familial 

aggregation in both first-degree relatives and in more distant family members a 

shared environmental exposure represents an implausible explanation for the 

increased risk. Likewise a higher motivation in PD families for answering questions 

in the study and an increased interest in the symptoms of the disease are less likely as 

the control groups showed a good consistency and dementia, as a neurodegenerative 

symptom, was as common in control families as in PD families.  
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Further genetic evidence in the pathogenesis of PD was obtained by identification of 

genes underlying familial occurrence of PD [167]. As up to now genetic PD cases are 

likely to explain no more than 5-10% of the overall PD population, the relationship 

between pathogenic principles of familial PD and the common sporadic form remains 

a key problem in interpretation of devised results. However both familial and 

sporadic forms of the disease overlap in their clinical syndrome and their 

characteristic pathology. Hence the understanding of the molecular basis of 

genetically caused PD may contribute significantly in understanding the molecular 

biology of both familial and sporadic PD cases with a possible therapeutic potential 

for the patients. 

5.2.1 Parkin-mutations (Park2) 

In 1998 mutations in the parkin gene were discovered in autosomal-recessive early-

onset PD [194]. Parkin-mutations are frequent in patients with early-onset PD and it 

remains controversial whether parkin-mutations in a heterozygous state are 

pathogenic. Several recent studies elaborate that probands carrying single defective 

parkin alleles display reduced 18F-DOPA uptake upon positron emission scanning 

suggesting that heterozygous parkin-mutations may cause sub-clinical nigrostriatal 

dysfunction [276, 277]. In our study populations we identified four heterozygous 

mutations, one in the Norwegian cohort (0.5%) and three in the German cohort 

(1.6%). As our cohorts reflect populations of late-onset PD a low frequency of 

parkin-mutations was expected. However we found a difference in frequency 

between the study groups. In the Norwegian cohort the number of mutations is a third 
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of the frequency in the German cohort - reflecting maybe the higher age of onset in 

the Norwegian cohort (63.6 years vs 55.2 years). The differences of mutations in the 

screened cohorts may also be caused by different relevance of parkin-mutations in the 

Norwegian and the German cohorts.  

 

Our data are consistent with previously published studies of affected patients with 

only one affected allele [203, 278]. Haploinsuffiency is proposed to manifestate 

clinical symptoms by oxidative stress [279, 280] and this model complies with the 

hypothesis of synergistic influence of genetic and environmental factors in the 

pathogenesis of PD. 

5.2.2 PINK1 (Park6) 

PINK1 encodes a mitochondrial protein kinase that appears to have protective effects 

against oxidative stress. Mutations in the PINK1 gene are the second most common 

cause of autosomal-recessively inherited PD after mutations in the parkin gene and 

display an important cause in sporadic early-onset PD [79, 281]. A direct 

involvement of mitochondrial dysfunction as suggested by discovering pathogenic 

mutations in PINK1 is further supported by the fact that MPTP and rotenone can 

cause Parkinsonism by complex 1 inhibition of the respiratory chain. However a 

relationship between PINK1 mutations and late-onset PD as shown for parkin 

mutations could not been demonstrated [282]. In support to these data we could not 

detect any pathogenic mutation in the screened cohorts representing late-onset 
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cohorts. However as shown in the parkin screen, distribution of genetic frequencies 

deviated in the two populations as allelic frequencies of several SNPs differed 

significantly showing homogeneity of the Norwegian cohort. A recently described 

variation (Q115L) of the PINK1 gene [283] could be identified in both cohorts and 

control groups,  but failed to show association with PD, confirming previously 

published data [282]. 

5.3 The role of genetics in development of dementia in PD 

PD has traditionally been assumed to be mainly a motor disorder. However the 

importance of dementia in PD has recently been increasingly recognized and it could 

be shown that the cumulative frequency of dementia in PD can be as high as 78% 

[284]. The increasing frequency of dementia in PD may be due to a better 

understanding and examination of dementia in PD.  

Over the last decade important advance has been achieved in understanding the 

molecular basis of dementia and the relevance of this issue is emphasized by the 

observation that the increased mortality risk in PD is ascribed largely to the increased 

risk of becoming demented [285]. Several genes have been identified such as 

presenilin 1 and 2, Apolipoprotein e (APO e) and amyloid precursor protein involved 

in the development of Alzheimer’s disease. In parallel, the progress in the genetics of 

PD has enhanced our understanding of basic disease mechanisms highlighting the 

role of alpha-synuclein: mutations in the alpha-synuclein gene giving rise to 

autosomal dominant transmitted PD [170] and recently a direct relationship between 

gene dosage of alpha-synuclein and disease progression in PD could be shown [176].  
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5.3.1 Alpha-synuclein 

Two main entities describing dementia with parkinsonism are differentiated: 

according to current diagnostic criteria PDD is diagnosed if cognitive decline appears 

more than one year subsequent to motor symptoms of PD and DLB is diagnosed if 

dementia precedes motor symptoms or occurs within one year after onset of 

parkinsonism [286]. DLB is seen as a defined clinical entity characterized clinically 

by dementia accompanied by parkinsonism, visual hallucinations and fluctuating 

cognitive impairment.  

We analysed the available studies of familial occurrence and genetics of dementia in 

parkinsonism to elaborate genetic evidence in PDD and DLB, as well as to determine 

whether there is genetic overlap between the entities. We identified coincidental 

familial occurrence of dementia and parkinsonism in 24 families. In 12 families 

presentations of PDD and DLB co-occurred in the same family suggesting an overlap 

and a shared underlying patho-physiology of the clinical entities. This overlap 

implies that the present distinction between PDD and DLB, based on the time 

sequence of onset of parkinsonism or dementia, does not necessarily reflect the 

molecular biology of the disease process. Interestingly, patients with familial co-

occurrence of dementia and parkinsonism displayed either mutations in the synuclein 

gene or showed positive correlations with the APOε3/4 and ε4/4 alleles. A direct 

relationship between occurrence of Lewy bodies and extent of dementia in PD has be 

shown [31] strengthening the hypothesis that alpha-synuclein accumulation is also a 

key factor in development of dementia in PD as alpha-synuclein is a substantial 
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component of the Lewy bodies. Applying the findings that SNCA dosage is directly 

correlated to disease progression [175, 176], this might strongly indicate that degree 

of genetic alteration is determining clinical severity, i.e. development of dementia. 

However despite the pathogenic relevance of mutations in SNCA, these remain rare 

causes for familial forms in PD [287].  

5.3.2 Apolipoprotein e 

Another protein that is proposed to influence development of dementia in PD is 

Apolipoprotein e (Apo e). Apo e is a polymorphic protein involved in lipid transport, 

immunoregulation, and modulation of cell growth [288]. It is abundant in the brain 

and coded by the Apo e gene located on chromosome 19q13.2. The gene is 

polymorphic, with three major alleles: ε2, ε3, and ε4, yielding six possible genotypes 

and translating into three major isoforms of the protein: ApoE2, ApoE3, and ApoE4. 

These isoforms differ from each other only by single amino-acid substitutions at 

position 112 and 158 of the protein, but have far reaching physiological implications. 

The Apoe ε3 is the most common allele. About 95% in the normal Caucasian 

population carry at least one ε3 allele [289]. The ε2 allele is associated with 

hyperlipoproteinemia [290] and is considered protective in AD [288]. Congruously it 

has been demonstrated to facilitate neurite outgrowth [288] and to inhibit apoptosis 

[291]. The ε4 allele is associated with an increased risk of developing AD and a 

lower age at disease onset [292-294]. 
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Evidence for the role of Apo e in PD has been inconclusive. Contradicting studies 

have shown associations of PD with the ε2 allele [295, 296] and of the ε4 allele with 

PD [297], PDD [285, 298, 299] and hallucinations or psychosis in PD [300, 301]. 

Other studies failed to show significant associations [302, 303]. Furthermore an 

inverse association between the ε3 allele and PDD has been observed [299]. 

Interestingly analyses including larger sample sizes elaborated a significant 

association of the ε4 allele with early age of onset in PD [304-306]. However other 

studies failed to show this association [298, 307] and thus competing effects as 

sample size limitations, differing ethnicities, and publication bias (unpublished 

negative studies) must be taken into consideration. Yet as larger studies and 

metaanalyses can show a positive association between Apo ε4 allele and dementia in 

PD, influence of the ε4 allele has a high probability. However the mechanisms by 

which the Apo e allele may influence the development of Lewy bodies and dementia 

in AD and PD remain elusive. Pathologically both diseases comprise the 

accumulation of insoluble protein deposits and it is suggested that pathologic 

cascades that lead to protein accumulation may in some cases operate synergistically 

[308]. As there exists further significant associations of Apo e in other 

neurodegenerative diseases as amyotrophic lateral sclerosis [309] or macular 

degeneration [310], occurrence of common principles in different neurodegenerative 

disorders is further strengthened. 
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5.3.3 LRRK2 

Detection of mutations in LRRK2 [243, 252] has complicated interpretation further as 

affected individuals display clinical findings typical for sporadic PD without major 

development of dementia [244]; the pathomorphologic picture is however remarkably 

varying, ranging from pure degeneration without Lewy bodies to degeneration with 

brainstem Lewy bodies, widespread Lewy bodies fitting to the pattern seen in DLB, 

and neurofibrillary tau-positive tangles [246, 254]. Consequently other influences like 

neurochemical effects, as the cholinergic deficit, might have an effect on the 

pathogenesis of dementia in PD as well. 

5.3.4 Family history 

In our study we could demonstrate that a positive family history of PD may emerge 

as a risk factor for developing dementia in PD. This strengthens the hypothesis that 

genetic factors contribute in disease progression. Interestingly there was a linear 

relationship between occurrence of dementia and strength of family-association of 

PD (first-degree>second degree>no family history) appropriate to a genetic dose 

dependent effect. Yet we could not find a significant correlation to time of onset of 

dementia in the the cox-hazard model. This may be influenced by the fact that 49% of 

our patients had dementia at baseline; thus in this subgroup, the time from onset of 

PD to dementia was made retrospectively, which is subject to recall bias. 

Additionally, since the interval between assessments during the first 8 years of this 

study was 4 years, the accurate timing of onset of dementia cannot be accurate. These 

issues may have contributed to the lack of difference in time to develop dementia in 
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PD patients with or without a family history of PD. Despite the lack of significance, a 

genetic influence in development of dementia in PD is possible and further studies 

have to clarify this issue. 

A recent study showed a direct correlation between Lewy-body pathology in brain 

tissues of PD-patients and development of dementia [284]. As accumulation of Lewy 

bodies shows genetic determinants [182, 311] such factors may also influence the 

development of dementia in PD. These findings further strengthen a probable 

correlation between a positive family history of PD and the risk of developing 

dementia in PD 

5.3.5 Fragile X 

Another genetic locus linked to parkinsonism and dementia is the fragile x mental 

retardation gene (FMR1). Premutation carriers of the FMR1 gene (55-200 CGG 

repeats) display parkinsonism, cognitive decline and behavioural changes. These 

issues are also occurring in PD and may therefore represent a potential influence from 

FMR1 alleles. Evidence that repeat numbers in the intermediate-size range (41-55 

CGG repeats) or in the high normal range (35-40 CGG repeats) [312] may as well 

play a pathogenic role are strengthening a possible association between CGG repeats 

of the FMR1 gene and development of dementia in PD.  

 

We did not detect any premutation carriers showing diagnostic accuracy in our study 

cohort since carriers of CGG repeats in the premutation range exhibit a distinct 
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clinical picture preceeding mere parkinsonism [313, 314]. Interestingly, both patients 

carrying intermediate-size alleles developed marked dementia and hallucinations, 

suggesting a possible association between CGG repeats in the intermediate-size range 

and cognitive decline in PD. This observation is in line with a report suggesting a 

gradient pathogenic risk from an allele size for alleles beyond the normal range of 

~30 CGG-repeats [312]. As pathogenic model a gain-of-function model is suggested 

proposing that the degree of degeneration is related to the relative molar quantity 

according to the repeat length [315, 316]. Yet the number of intermediate-size 

carriers in our cohort is too low to find statistically significant associations. However 

the individual cases in our cohort point to a possible association and support the 

necessity of future studies with larger patient samples. 
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VI CONCLUSIONS AND DIRECTIONS FOR FUTURE 
RESEARCH 

It is not certain whether identical disease mechanisms are underlying genetic-caused 

and sporadic PD, but applying a genetic approach led to identification of common 

molecular mechanisms in PD. The evidence from genetic studies of PD point to an 

abnormal protein accumulation and led to realization of the importance of the 

ubiquitin-proteasome system, the involvement of mitochondrial dysfunction, and 

oxidatiative stress. In the near future it can be expected that additional PD causative 

genes will be identified leading to further insight in the molecular level involved. The 

emerging challenge will be the transfer of molecular insight into clinical practice. Our 

research results are based on an unselected, community based population with PD 

that was followed prospectively over a twelve year period and a German PD control 

population as well as on two healthy control populations. Thus the study design 

comprises the opportunity of long term correlations in a well-studied PD cohort. We 

have shown that genetic factors contribute in the pathogenesis in our patient cohort as 

well as in the German PD control cohort and have determined the frequency of 

known mutations. Further on, we were able to elaborate a possible genetic 

contribution in disease progression such as development of dementia. Further studies 

should involve a molecular approach of defining susceptibility markers for disease 

progression and thus lead to a better understanding of the molecular basis of the 

disease. The aim of the study of genetics in PD should be to define therapeutic 

opportunities based on the molecular pathogenesis of the disease. 
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