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Abstract

The PhD project concerns the surface water wave theory. Liquid is presented as a three
or two dimensional layer bounded from below by a rigid horizontal bottom. Above it
can have either a free surface or an elastic layer such as an ice cover, for example. The
fluid flow is considered to be inviscid, incompressible and irrotational. The flow is de-
scribed by the Euler equations with some appropriate boundary conditions. Following
Lagrange we assume that at the bottom liquid has zero vertical velocity component and
at the free surface there is a constant atmospheric pressure. The first condition is very
natural meaning that water cannot penetrate through the bottom and is always attached
to it making no cavities. The second condition is based on the fact that the air fluctua-
tions are negligible and the pressure is defined by the weight of the atmosphere. Note
that it also assumed that the pressure is changing continuously in the air-water media.
The latter can be modified in different ways. For example, assuming a strong capillar-
ity effect one can assume that the liquid pressure at the top is proportional to the surface
curvature. However, it turns out that this effect is more important in water tanks than
in the ocean. Another more relevant modification for the real world is the modelling of
ice cover. In such situation the surface tension is caused by deformation forces in the
ice. The latter is assumed to be elastic.

Solving the Euler equations with the mentioned boundary conditions provides with
the complete description of the flow dynamics. However, in many situations it is more
important to know only the surface time evolution, whereas solving the full problem
may be too demanding. Different nonlinear dispersive wave equations, such as the
Korteweg-de Vries equation, allow to approximate the free surface dynamics without
providing with the complete description of the fluid motion below the surface. There
are several ways of testing the validity of these models. The twomost important of them
are tests on well-posedness and travelling wave existence. A relevant model should at
least reflect adequately these two properties.

In this work we are mainly concerned with the fully dispersive bi-directional exten-
sions of the mentioned KdV equation. Still being simple toy models they are believed
to be better approximations to the full Euler equations. Moreover, they allow two di-
rectional water motion for the two dimensional liquid layer, whereas the scalar KdV
equation describes the waves traveling in one direction. A recent interest in such mod-
els was caused by discovery of certain phenomena in the Whitham equation that is a
direct fully dispersive one-directional extension of the KdV equation. Among them are
solitary waves, the existence of a wave of greatest height predicted by Stokes, the ex-
istence of shocks and modulational instability of steady periodic waves. A natural step
forward is to try to find an adequate two-directional extension of the scalar Whitham
equation displaying the same phenomena or some other water wave properties.

In this project we have an overview of several such models recently put forward.



iv Abstract

We pay a special attention to one particular system introduced by the author. We anal-
yse situations demanding the use of such models, testing them with different surface
boundary conditions, as for example, putting ice cover atop. Consideration is given to
the initial value problem and solitary wave existence. We simulate periodic travelling
waves for these models and also for one exact model the so-called Babenko equation,
that is also an example of a fully dispersive model, in particular. The thesis is based on
ten papers submitted during the work on the project, with eight of them being included
in the text.
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Chapter 1

Water waves

1.1 Introduction

We start with a short reminder of the very basic concepts of Hydrodynamics [4, 56].
Fluid flow in some domain Ω is governed by the fundamental conservation laws and
boundary conditions. In our framework Ω represents a layer bounded from below by
the flat bottom z=−h. The upper boundary is called a free surface. It is described by
z= η(x,y, t). The positive finite constant h is called an undisturbed depth. This notion
needs some clarification, since the depth at each point (x,y)∈R2 at time moment t ∈R
equals h+ η(x,y, t), and so it is not definite. It will be convenient for us below to
work with L2-based Sobolev spaces Hs(M) where M = Rd or Td with d = 1,2. For
this reason we define the undisturbed depth h in a way that η → 0 at infinity for the
non-periodic domain Ω and

∫
ηdxdy = 0 over a period otherwise. Such restriction

gives us a reference length that will be convenient for approximations below. We use
standard notations for the density ρ , pressure p, velocity v= (v1,v2,v3) and the gravity
acceleration g= (0,0,−g).

The first fundamental principal is the mass conservation

∂tρ +∇ · (ρv) = 0

that in the case of incompressible fluid takes the form

∇ ·v= 0. (1.1)

The second principal is the momentum conservation (Newton’s law)

∂tv+(v ·∇)v= g− ∇p
ρ

(1.2)

x

z z = η(x, y, t)

gh

Lx

z = −h
bottom

Figure 1.1: The domain of the fluid flow: longitudinal cross-section of a rectangular channel,
η is the free surface, Lx is the wavelength, h is the undisturbed depth, g is the gravity.
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where it is assumed that the liquid is inviscid. These two equations were put forward by
Euler in 1755. Then Lagrange complemented them in 1781 by the boundary conditions

v3 = 0 at z=−h, (1.3)

∂tη = v3− v1∂xη − v2∂yη , p= p0 at z= η(x,y, t). (1.4)

Here p0 = const. Condition (1.3) reflects the fact that the bottom is impenetrable. The
second surface boundary condition (1.4) means that the pressure at the top of the liquid
coincides with atmospheric pressure assumed to be constant. The first equation of (1.4)
is in fact the velocity definition of surface particles. Indeed, the material derivative in
Euler coordinates is ∂t +(v ·∇). To find the velocity v of liquid particles at the surface
one has to apply it to the vector field (x,y,η(x,y, t)) describing the surface location. In
particular, v3 = ∂tη +(v ·∇)η that is the first equation of (1.4).

Equations (1.1)-(1.4) represent the full gravity water wave problem. In some situ-
ations it is desirable to take into account surface tension effect [56]. Then the surface
condition p= const is substituted by the more general

p= p0 = const−ρgh2κ∇ · ∇η√
1+ |∇η |2

at z= η(x,y, t), (1.5)

where it is assumed that the capillary pressure is proportional to the free surface curva-
ture. The full gravity-capillary water wave problem consists of Equations (1.1)-(1.5).
It can be significantly simplified admitting existence a velocity potential ϕ such that

v= ∇ϕ

implying the flow to be irrotational. The complete problem reduces to the Laplace’s
equation

∆ϕ = 0 in Ω, (1.6)

the Neumann boundary condition at the flat bottom

∂zϕ = 0 at z=−h, (1.7)

the kinematic condition at the free surface

∂tη = ∂zϕ −∂xϕ∂xη −∂yϕ∂yη at z= η(x,y, t), (1.8)

and the Bernoulli equation combined with the surface tension

∂tϕ +
1
2
|∇ϕ |2+gη −gh2κ∇ ·

(
∇η√

1+ |∇η |2

)
= 0 at z= η(x,y, t). (1.9)

The latter is a consequence of the momentum conservation (1.2) restricted to the free
surface. Note that we do not regard the Bernoulli equation inside of the fluid domain
Ω, since it will only give us the pressure distribution provided the rest of the problem
is solved.
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System (1.6)-(1.9) poses a conserved quantity having the meaning of the total en-
ergy

H =
∫
R2

∫ η

0
gzdzdxdy+

1
2

∫
R2

∫ η

−h
|∇ϕ |2dzdxdy+ κgh2

2

∫
R2

|∇η |2

1+
√
1+ |∇η |2

dxdy

(1.10)
that is the sum of the potential energy due to gravity, the kinetic energy and the surface
tension energy. In the periodic case the domain of integration R2 should be substituted
by T2.

Our main concern is formation and propagation of surface waves. For this reason
Equations (1.6)-(1.9) are restricted to the surface as follows. Firstly, we introduce
the trace of the potential at the free surface as Φ(x,y, t) = ϕ(x,y,η(x,y, t), t). With
the elliptic problem (1.6), (1.7) and ϕ = Φ on the surface we associate the Dirichlet-
Neumann operator G(η) by the formula

G(η)Φ =
√
1+ |∇η |2∂nϕ (1.11)

where ∂nϕ is the projection of the surface fluid velocity on the outer normal. For
the more detailed definition of G(η) taking into account the appropriate periodic or
asymptotic conditions on ϕ we refer to [2, 44]. Note that the right hand side of (1.11)
coincides with the right hand side of (1.8). The full system (1.6)-(1.9) is reduced to

∂tη = G(η)Φ, (1.12)

∂tΦ =−gη +gh2κ∇ ·

(
∇η√

1+ |∇η |2

)
− 1

2
|∇Φ|2+ (∇η ·∇Φ+G(η)Φ)2

2(1+ |∇η |2)
(1.13)

with a slight abuse of notation ∇ = (∂x,∂y). A pair (η ,Φ) solving System (1.12)-(1.13)
describes the surface waves completely. An obvious drawback of this formulation is
that the dependence of the Dirichlet-Neumann operator on the surface elevation η is
implicit. As was shown by Zakharov [59], System (1.12)-(1.13) enjoys the Hamiltonian
structure

∂tη =
δH
δΦ

, ∂tΦ =−δH
δη

(1.14)

with the total energy (1.10) serving as the Hamiltonian

H(η ,Φ) =
1
2

∫
R2

[
gη2+ΦG(η)Φ+

κgh2|∇η |2

1+
√
1+ |∇η |2

]
dxdy. (1.15)

One can simplify the water wave problem further approximating the Dirichlet-
Neumann operator by different explicit expressions.

1.2 Linear wave theory

It is a matter of common knowledge that ocean waves are small and long with respect
to the water depth h. So the simplest possible approximation of (1.12)-(1.13) is the
linearisation

∂tη = G0Φ, (1.16)
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∂tΦ =−gη +gh2κ∆η (1.17)

where G0 = G(0) is the Dirichlet-Neumann operator corresponding to the undisturbed
surface η = 0. We will provide with an exact expression for G0.

Firstly, we remind the notion of Fourier multipliers. Let S′(M) with M = Rd or Td

and d = 1,2 be the space of tempered distributions. The Fourier transform is defined
by the formula

f̂ (ξ ) = F( f )(ξ ) =
∫
M
f (x)e−iξ ·xdx

on Schwartz functions. By the Fourier multiplier operator φ(D) with symbol φ ∈
C∞(M) we mean the line F (φ(D) f ) = φ(ξ ) f̂ (ξ ) for any f ∈ S′(M). In particular,
D1 =−i∂x is the Fourier multiplier associated with the symbol φ(ξ ) = ξ1.

For any given potential trace Φ the elliptic problem (1.6) with Ω = M× (−h,0),
(1.7) and ϕ = Φ at z= 0 can easily be solved in the frequency space. Indeed, defining
ϕ̂(ξ ,z) to be the Fourier transform of ϕ with respect to the horizontal variables one
obtains 

∂ 2
z ϕ̂(ξ ,z) = |ξ |2ϕ̂(ξ ,z) for −h< z< 0,

∂zϕ̂(ξ ,−h) = 0,

ϕ̂(ξ ,0) = Φ̂(ξ )

that is a second-order ODE in z with boundary conditions at z=−h and z= 0. It has a
unique solution given by

ϕ̂(ξ ,z) =
cosh((h+ z)|ξ |)

cosh(h|ξ |)
Φ̂(ξ )

where ξ lies in the frequency space and z ∈ [−h,0]. Therefore by the definition of the
Dirichlet-Neumann operator (1.11) we have G0Φ = ∂zϕ at z= 0 and so

F(G0Φ)(ξ ) = ∂zϕ̂(ξ ,0) = |ξ | tanh(h|ξ |)Φ̂(ξ ).

In other words, G0 is a Fourier multiplier operator given by the formula

G0 = |D| tanh(h|D|) (1.18)

where we use the notation D=−i∂x if d = 1 and D=−i∇ =−i(∂x,∂y) if d = 2.
With the explicit expression (1.18) one can easily solve the linear Cauchy problem

(1.16)-(1.17) with η(0) = η0 ∈ S′, Φ(0) = Φ0 ∈ S′ as

η(t) = cosωtη0+G0
sinωt

ω
Φ0, (1.19)

Φ(t) =−g(1+κh2|D|2)sinωt
ω

η0+ cosωtΦ0, (1.20)

where ω = ω(D) is the Fourier multiplier operator defined by the symbol

ω(ξ ) =
√
g(1+κh2|ξ |2)|ξ | tanh(h|ξ |) (1.21)



1.3 Nonlinear long waves 5

that is called the water wave dispersion relation. Note that η satisfies a wave type
equation

∂ 2
t η +ω2η = 0

with frequency variable speed. Introducing the wave celerity

c(|ξ |) = ω(ξ )
|ξ |

=

√
g(1+κh2|ξ |2) tanhh|ξ |

|ξ |
(1.22)

one can notice that c′(|ξ |) < 0 after setting κ = 0. This phenomena results in the fact
that the linear solution always disperse. The phase speed increases with the wave length
approaching maximum c0 =

√
gh.

Dispersion of linear waves makes it impossible to explain the so called solitary
waves (or localised waves of translation) discovered by Russell in 1834, staying only
in the framework of the linear theory. Moreover, neglecting dispersion by assuming
waves to be long and substituting ω(D) with the long wave limit c20|D|2 one arrives at
the wave equation

∂ 2
t η − c20∆η = 0

where ∆ = −|D|2 = ∂ 2
x + ∂ 2

y . It comes across with the fact that the height of a soli-
tary wave depends on its speed, whereas this cannot be the case with the linear wave
equation.

1.3 Nonlinear long waves

Nonlinear long wave approximation of the water wave problem (1.12)-(1.13) can be
done through expansion of the Dirichlet-Neumann operator (1.11) developed in [20,
22]. It was shown in [49] that this operator depends analytically on the unknown η and
can therefore be expanded in the power series

G(η)Φ =
∞

∑
j=0

G j(η)Φ,

where each operator G j(η) is homogeneous of degree j in η . The first term G0 of zero
order was computed above in (1.18). The next term has the form

G1(η)Φ = D · (ηDΦ)−G0(ηG0Φ) (1.23)

and the rest terms in the power series can be computed using a recursion formula [19,
21].

In the long wave framework it is generally assumed that the surface displacement
and velocity are comparable with respect to smallness, at least after nondimensinal
transformation η 7→ η/h, v 7→ v/c0, see [6, 45], for example. For this reason we intro-
duce the surface velocity variable u = ∇Φ = (ϕx+ηxϕz,ϕy+ηyϕz). Note that by the
definition the new velocity u is curl free. It will be also convenient to introduce the
operator

K =

√
tanh(h|D|)

h|D|
. (1.24)
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Note that G0Φ =−hK2∇ ·u. We neglect cubic and higher order terms in (η ,u) in order
to approximate formally (1.12)-(1.13) by the system

∂tη =−hK2∇ ·u−∇ · (ηu)+hG0(ηK2∇ ·u), (1.25)

∂tu=−g
(
1+κh2|D|2

)
∇η − 1

2
∇|u|2 (1.26)

which can be found in [45]. Since we neglected the third order terms one could antic-
ipate a good agreement with the full problem (1.12)-(1.13), however, numerical simu-
lations carried out in [27] suggest that this system is probably ill-posed and so is not a
relevant asymptotic model.

In order to proceed we need to make some assumptions on relations between wave
amplitudes and lengths. Regard a wave-field with a characteristic non-dimensional
amplitude α = a/h. We suppose that a characteristic wavelength Lx along the x-axis is
of the same order as Ly along the y-axis. Define the small parameter µ = h/Lx. The
squared value µ2 is often referred as the shallowness parameter, whereas µα is called
steepness [44]. A particular scaling regime is defined by assuming a dependence of
α on µ , while η = hO(α), u =

√
ghO(α) and hD = O(µ). The latter means that the

Fourier transformations of η ,u are localised close to the origin, so the absolute value of
frequencies involved do not exceed µ . One of the mostly used scaling is the Boussinesq
regime α = O(µ2).

Using Taylor expansions of symbols corresponding to G0 and K in the first equation
(1.25) one obtains

∂tη =−h(1− 1
3
h2|D|2)∇ ·u−∇ · (ηu)+O(µ7)

in the Boussinesq regime, and so discarding the error term O(µ7) we arrive at the
following Boussinesq system

∂tη =−h
(
1+

1
3
h2∆
)

∇ ·u−∇ · (ηu), (1.27)

∂tu=−g
(
1−κh2∆

)
∇η − 1

2
∇|u|2 (1.28)

appeared in [24]. In the purely gravity case κ = 0 it is also known as the integrable
Boussinesq system [55]. Note that from the definition of velocity u and Equation (1.8)
follows

u= (v1,v2)+(∂tη +(v1,v2) ·∇η)∇η = (v1,v2)+ c0O(µ6),

and so in the Boussinesq regime we can identify u and the surface horizontal velocity
(v1,v2).

System (1.27)-(1.28) is a particular case of the following four-parameter Boussinesq
system

∂tη =−h
(
1+ah2∆

)
∇ ·u+bh2∆∂tη −∇ · (ηu), (1.29)

∂tu=−g
(
1+(c−κ)h2∆

)
∇η +dh2∆∂tu−

1
2

∇|u|2 (1.30)
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introduced in [6, 9] without the surface tension κ = 0. Here u = u(x,y, t) is the hori-
zontal velocity taken at some height in the fluid domain Ω, and a,b,c,d are modelling
parameters satisfying the constraint a+ b+ c+ d = 1/3. Such three degrees of free-
dom arise from the choice of height at which the horizontal velocity is taken and from
the double use of the BBM trick [5].

In order to justify rigorously Equations (1.29)-(1.30) one has to include the shallow-
ness parameter µ2 explicitly. It can be done by introducing non-dimensional variables
via changing x,y 7→ Lxx,Lxy, t 7→ (Lx/c0)t, η 7→ aη , u 7→ (ga/c0)u. This leads to

∂tη =−
(
1+aµ2∆

)
∇ ·u+bµ2∆∂tη −µ2∇ · (ηu), (1.31)

∂tu=−
(
1+(c−κ)µ2∆

)
∇η +dµ2∆∂tu−

1
2

µ2∇|u|2 (1.32)

where we have set α = µ2. Note that we have a balance here between dispersion and
non-linearity. Well-posedness of this system was investigated in [8, 53] establishing
long time T = O(µ−2) of existence for some particular restrictions on the modelling
parameters a,b,c,d. Consistency with the full water wave problem (1.12)-(1.13) with
the optimal error estimate O(µ4t) was proved in [9]. Note that the full problem is
well-posed [44] on the time scale O(µ−2).

In the one dimensional case d = 1 assuming waves travelling in one direction the
Boussinesq system (1.27)-(1.28) can approximately, staying in the same framework of
accuracy, be reduced to the scalar KdV equation

∂tη + c0∂xη +(1−3κ)
c0h2

6
∂ 3
x η +

3c0
2h

η∂xη = 0 (1.33)

firstly introduced by Boussinesq in 1871 and then later in 1895 by Korteweg and de
Vries. It is known to be globally well-posed in Hs with s ⩾ 1 (see [41], for instance).
This is a quasilinear equation, which in particular, results in the fact that for a proof
of the well-posedness one might need to study a regularized problem first, and then
investigate convergence of solutions of the regularized Cauchy problem [10]. In their
proof Bona and Smith have used the BBM regularization

∂tη + c0∂xη − (1−3κ)
h2

6
∂ 2
x ∂tη +

3c0
2h

η∂xη = 0 (1.34)

firstly introduced in [5]. In particular, they showed that the Cauchy problems for the
KdV and BBM equations give close solutions in the long wave limit. A nice exposition
of the well-posedness for (1.34) in Hs with s⩾ 0 can be found in [7].

In the physically relevant case κ < 1/3 one may rescale x and t by
√
1−3κ in

both equations (1.33), (1.34) to exclude the surface tension. Thus the capillary effect
does not play any significant role at this level of accuracy. One of the most important
features of Equations (1.33), (1.34) is that they admit explicit solitary wave solutions.
Indeed, one can easily check that the wave

η(x, t) = η0 sech2
(√

3η0

4(1−3κ)h3
(x−Ut)

)
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with the velocity depending on the amplitude η0 according to

U = c0
(
1+

η0

2h

)
is a solution of the KdV equation (1.33). Solitary waves for the BBM equation (1.34)
look similar. At this point we would like to make a remark that the general (a,b,c,d)-
family (1.29)-(1.30) also has explicit solitary waves [16, 24].

As one can notice the solitary wave solution of the KdV equation (1.33) is defined
for all η0/h > 0. However, solitary waves are found to peak at a maximum height
η0/h≈ 0.7 experimentally. To overcome this difficulty and precise the model Whitham
proposed [57, 58] the following equation

∂tη + c0
√
1+κh2|D|2K∂xη +

3c0
2h

η∂xη = 0 (1.35)

where we have the KdV type nonlinearity and the full dispersion (1.22). For the
Whitham equation with the surface tension we refer the reader to [28]. In the case
of pure gravity waves κ = 0, it was proved to be locally well-posed in Hs(M) with
M =R orM = T and s> 3/2 [33]. Moreover, several interesting phenomena predicted
byWhitham were confirmed, as for example, a solitary wave regime close to KdV [34],
the existence of a wave of greatest height [35], the existence of shocks [37], and mod-
ulational instability of steady periodic waves [38]. With the nontrivial surface tension
κ > 0 the dynamics of (1.35) appears to be completely different [42]. Finally, we point
out that the Whitham equation (1.35) was proved to be a relevant water wave model
[42]. However, it is justified only in the Boussinesq regime. In other words, it is proved
to be at least as accurate as the KdV equation (1.33). The question if the Whitham
equation (1.35) gives a better approximation remains open. Various numerical simula-
tions suggest the positive answer [11, 15, 28, 48]. We also refer to [42, 52, 54] for other
interesting numerical experiments.



Chapter 2

Main results

2.1 The Whitham equation for hydroelastic waves

We introduced a Whitham type model for describing thin elastic water cover. The
validity is checked numerically on periodic travelling waves. We also observed asym-
metric waves. Some of them bifurcate sub-harmonically from curves starting from
trivial solutions. And some of them cannot be obtained from the Crandall–Rabinowitz
asymptotics.

In fact Paper 2.1 is a continuation of our other work [28], where we have showed
how the surface tension naturally arises in asymptotic models from the Hamiltonian
formulation of the water wave problem. Moreover, the use of the Whitham equation
with surface tension was justified by a formal derivation and numerical experiments.

We work in the same variables η , u as they were introduced in Section 1.3 in the one
dimensional setting d = 1. They are non-dimensionalised in a way that h= g= c0 = 1.
The Hamiltonian formulation has the form

ηt =−∂x
δH
δu

, ut =−∂x
δH
δη

(2.1)

with the energy

H(η ,u) =
1
2

∫
R

[
η2+uD−1G(η)D−1u

]
dx+Hκ(η) (2.2)

where Hκ stands for the surface deformation energy due to either capillarity or elas-
ticity. Correspondingly, κ is either the capillarity or elasticity parameter. Simplifying
only the Hamiltonian functional in the long wave framework we obtain the system

ηt =− tanhD
D

ux− (ηu)x, (2.3)

ut =−ηx−κ|D|rηx−uux (2.4)

where r = 2 for the surface tension problem and r = 4 for the hydro-elastic problem.
Note that this system is Hamiltonian, and moreover, its Hamiltonian comparable with
the total energy (2.2) of the full problem. On the contrary, in such formulation one
inevitably has to impose more smoothness on variable η than on u. As a result operator
η 7→ ∂x(ηu) with fixed u is singular regardless of the choice of domain, and so one can
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hardly anticipate a satisfactory well-posedness result here. This does not seem in line
with the fact that surface tension sometimes is used for regularisation of approximate
models. Indeed, the following system

ηt =− tanhD
D

(1+κ|D|2)wx− (ηw)x, (2.5)

wt =−ηx−wwx (2.6)

can be found in [15, 42]. The corresponding initial value problem was considered in
[51] for κ = 0 and in [40] for κ > 0. The latter work provides with a more satisfactory
formulation of the Cauchy problem, because of the regularization effect due to the
surface tension. Note that the new velocity variable w= (1+ |D|2)−1u, and so formally
Systems (2.3)-(2.4) and (2.5)-(2.6) differ only in the nonlinear part, negligibly from
the long wave point of view. However, System (2.5)-(2.6) has a different Hamiltonian
structure, and in particular, its Hamiltonian is not comparable with the total energy
(2.2) of the full problem.

Assuming waves travelling in one direction we reduce System (2.3)-(2.4) to the
Whitham equation

ηt +K
√
1+κ|D|rηx+

3
2

ηηx = 0

where K is defined by (1.24).
We simulate periodic travelling waves η(x, t) = φ(x− ct) satisfying

− cφ +
3
4

φ2+K
√
1+κ|D|rφ = B (2.7)

with some constant B. Exploiting asymptotic Crandall–Rabinowitz expressions [23]
one can bifurcate from trivial solutions and obtain a wide range of travelling wave
solutions. However, there are some solutions that cannot be obtained from the linear
theory. Those were obtained by trial and error method. We would like to point out a
very good agreement between the Whitham approximation and the full hydro-elastic
travelling wave problem even for high waves.

2.2 Fully dispersive models for moving loads on ice sheets

The paper is on modelling of ice response of a floating elastic plate to the time-
dependent motion of a moving load. The final model combines the full dispersion
together with nonlinearity, forcing and damping.

The main motivation comes from the previous study 2.1. Firstly, deformations of an
ice cover are normally very small, and so nonlinearity is very weak. Hence presumably
the KdV type nonlinearity should be enough. Secondly, elastic effects affect only high
frequencies of the dispersion relation, so it makes more sense of using fully dispersive
models. Thirdly, as was mentioned at the end of the last section there are travelling
waves that cannot be deduced from the limit argument, but can be obtained from the
Whitham asymptotic model. As mentioned in the appendix of Paper 2.2, waves of half
a meter height and of 50 meters length in a channel of 4 meters depth might be of purely
nonlinear nature.
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2.3 Modified Babenko’s Equation For Periodic Gravity Waves OnWa-
ter Of Finite Depth

Known Babenko equations, as for example introduced in [17, 18, 43], have a flaw in the
following sense. The operators involved are parametrised by non-physical conformal
parameters. We modified the equation from our other paper [43] in order to exclude
the shortcoming. As a result we were able to carry out numerical bifurcation with a
fixed depth. To our knowledge this is the easiest way to calculate asymmetric periodic
travelling waves, in particular.

It is a continuation of our paper [43]. It turns out that 2D periodic travelling water
waves of finite depth can be described by the single differential equation

µJrw= w+wJrw+
1
2
Jr(w2) , where Jr =

∞

∑
n=1

λnPn . (2.8)

Here Pn is the projector onto the subspace of L2(0,π) spanned by cosnt and

λn = n
1+ r2n

1− r2n
(2.9)

is the corresponding eigenvalue of Jr = Br∂t , n ∈ N. Parameters µ > 0 and r ∈ (0,1)
are called the Froude number and conformal radius, respectively. The Hilbert transform
Br in L2(T) is defined by the line

Br

(
∞

∑
n=0

(an cosnt+bn sinnt)

)
=

∞

∑
n=1

1+ r2n

1− r2n
(an sinnt−bn cosnt).

If w ∈H1(0,π) solves (2.8) for some µ > 0 and r ∈ (0,1) then the corresponding wave
profile z = η(x) can be restored from the parametrisation x = −t −Brw(t),z = w(t)
with w being evenly extended on the whole interval t ∈ (−π,π). The square root √µ
gives the speed of the wave up to some dimensional constant. The non-dimensional
fluid depth h = − logr−P0w with a slight abuse of notation where P0w stands for the
mean value of w.

As one can see the conformal radius r, the undisturbed water depth h and the mean
value P0w are bounded by one relation. This makes it difficult to solve the problem as it
was formulated in the introduction 1.1 for the fixed depth h using the Babenko equation
(2.8). We modified (2.8) in the way

µ(1−P0)w= Lhw−Lh(−wJhw)+
1
2
(1−P0)(w2) (2.10)

where the nonlinear operators Lh, Jh parametrized by the physical depth h > 0 are
defined as follows. Firstly, we introduce the nonlinear functional

rh(w) = exp{−h−P0w}. (2.11)

Secondly, changing r to this functional in formula (2.9) giving the sequence of eigen-
values of Jr, we come to the following functionals

λ (h)
n (w) = n

1+[rh(w)]2n

1− [rh(w)]2n
, n= 1,2, . . . , (2.12)
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all of which are well defined provided P0w ̸=−h. Changing {λn}∞
n=1 to these function-

als in the definition of Jr, we introduce the following nonlinear operator

Jhw=
∞

∑
n=1

λ (h)
n (w)Pnw, w ∈ H1(0,π), P0w>−h.

The second operator is defined on the whole L2(0,π) by the formula

Lhw= P0w+
∞

∑
n=1

µ(h)
n (w)Pnw , where µ(h)

n (w) =
1− [rh(w)]2n

n{1+[rh(w)]2n}
.

Note that according to Proposition 2.1 of the paper there is a bijection between solutions
of the Babenko equations parametrised by h and solutions of the Babenko equations
parametrised by r. However, this bijection is not so much of use. Solving the equations
parametrised by r does not give us solutions of the initial problem for particular given
h. As a result one has to somehow iteratively adapt r to converge to the correct solution
of the physical problem for the given h. This is not very efficient. The modified version
of Babenko’s equation allows us to avoid this difficulty.

As in the case of infinite depth [3], we observed numerically sub-harmonic bifur-
cations. We believe that this Babenko equation can be used for analytical proof of
existence of these bifurcations, as it was done for the infinite depth in [14]. Note that
the infinite depth h= ∞ corresponds to r = 0.

2.4 A comparative study of bi-directional Whitham systems

We show how one can naturally come from the full water wave problem (1.12)-(1.13)
to different dispersive models of a Whitham–Boussinesq type. Numerical experiments
demonstrate that all these models approximate the full problem similarly. Moreover,
it turned out later (see [25, 30]) that one of the systems proposed in this paper is well
posed under physically satisfactory conditions.

To our understanding models of such type were introduced mostly ad hoc [1, 15,
31, 39, 42]. Moreover, the non-physically conditional well-posedness proved in [51]
for one of the systems was not enough. Unfortunately, we were not aware of the system
introduced in [31], while writing our paper, because they introduced a fully dispersive
system with satisfactory results on the initial value problem [31] and on existence of
solitary waves [32]. Other than that, it seemed that some tidiness were needed to be
add to the existing results.

We start from the formulation (1.14)-(1.15) and introduce the new variable

v= K2u= K2∇Φ

where Φ is the surface trace of the potential ϕ and K is given in (1.24). For simplicity in
the paper we consider the one dimensional problem d = 1 that corresponds to 2D water
waves. Since in [26, 30] we regard the initial value problem for both cases d = 1,2 we
will present here the content of Paper 2.4 more generally.

Under the change of variables Φ 7→ v the Hamiltonian structure (1.14) transforms
visually to

∂t(η ,v)T = J∇H(η ,v)
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with the skew-adjoint matrix

J=

 0 −K2∂x1 −K2∂x2
−K2∂x1 0 0
−K2∂x2 0 0

 .

Applying the Hamiltonian long wave approximation as was explained in Section 1.3
(see also [19, 22]), and keeping untouched the part of the Hamiltonian responsible for
the linear waves, one simplifies the energy functional to the form

H(η ,v) =
1
2

∫
R2

(
gη2+κgh2|∇η |2+h

∣∣K−1v
∣∣2+η |v|2

)
dx. (2.13)

Note that (2.13) is well defined on H1×
(
H1/2

)d
for κ > 0 and on L2×

(
H1/2

)d
for

κ = 0. Such Hamiltonian structure generates evolution described by the model{
∂tη +h∇ ·v=−K2∇ · (ηv),

∂tv+gK2∇(1+κh2|D|2)η =−K2∇
(
|v|2/2

)
.

(2.14)

There are two conserved quantities for this system. The first one is Energy (2.13). The
second one has the meaning of momentum and the form

I(η ,v) =
∫
R

ηK−2vdx. (2.15)

The latter conserves under the restriction that v is a curl free vector field (∇× v = 0),
which holds true according to the definition of the velocity variable v given above.

In addition to the introduction of System (2.14), we compared numerically perfor-
mance of different fully dispersive models. In most simulations results for (2.14) were
slightly better than for other Whitham–Boussinesq type models.

2.5 On well-posedness of a dispersive system of the Whitham–
Boussinesq type

Soon after submission of Paper 2.4 we obtained energy estimates for Model (2.14) for
the one dimensional case d = 1 and the pure gravity κ = 0, that were presented in this
short note. A natural choice of the energy norm is E(η ,v) = ∥η ,v∥Hs×Hs+1/2 .With the
energy estimates in hand we claimed the local well-posedness in Hs(R)×Hs+1/2(R)
with any s⩾ 1/2. This is a standard method to use for quasilinear equations. The result
was extensively extended later in my work with Selberg and Tesfahun [30], when we
realised that System (2.14) is actually of the semilinear nature in the absence of the
surface tension κ = 0.

In addition some numerical computations of solitary waves were carried out, which
allowed us to make a hypothesis about their existence for System (2.14). It was later
confirmed in my work with Nilsson [29]. This is a crucial milestone for the justification
of the model.
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2.6 Well-posedness for a dispersive system of theWhitham–Boussinesq
type

We have studied well-posedness for the Whitham–Boussinesq system (2.14) in the
pure gravity case κ = 0 at a very low level of regularity proposed in Paper 2.4. For
this purpose we improved dispersive estimates of Strichartz type for water waves and
implemented them together with the fixed point argument. In fact we derived the fre-
quency localised estimates. Conservation of Hamiltonian allows to extend globally
well-posedness at least for small initial data in the one dimensional case d = 1. This is
a nice complement to the existing initial value problem results on other fully dispersive
models [31, 51].

We work in the non-dimensional settings h = g = 1 with zero surface tension. We
take the initial data

η(0) = η0 ∈ Hs
(
Rd
)
, v(0) = v0 ∈

[
Hs+1/2

(
Rd
)]d

(2.16)

where d = 1,2. The corresponding Sobolev product space is notated shortly by X s. In
case d = 2 we also have to impose the natural curl free condition ∇×v0 = 0. System
(2.14) can be rewritten in the Duhamel form

(η ,v)(t) = S(t)u0−
∫ t

0
S(t− t ′)

(
K2∇ · (ηv)
K2∇

(
|v|2/2

))(t ′)dt ′ (2.17)

in X s
T =C([0,T ];X s). Here S(t) is the fundamental continuous group. In other words,

for any fixed u0 = (η0,v0)T ∈ X s function S(t)u0 solves the linear initial-value problem
associated with (2.14). With the help of the inequality ∥ f1 f2∥Hs ≲ ∥ f1∥Hs ∥ f2∥Hs+1/2

that can be found, for example in [36], the X s-norm of the right hand side integrand can
be estimated by ∥η ,v∥2Xs. This means that Equations (2.14) are semilinear, in particular.
One can proceed applying the fixed point argument to obtain solution u= (η ,v)T ∈ X s

T
at least for small enough T > 0. As one can notice the main ingredient here are suitable
bilinear estimates for the right hand side of (2.14). These estimates hold true provided
s> 0 for d = 1 and s> 1/2 for d = 2.

The main focus of the work is on lowering the regularity threshold for the lo-
cal well-posedness through the implementation of the dispersive nature of Equations
(2.14). However, the dispersion is weak in the sense that the time-decaying L1 → L∞-
boundedness of the group S(t) is not available. So instead, we obtain the decay estimate
on each component of the dyadic Littlewood-Paley decomposition with a sharp depen-
dence on the dyadic number. From this local-in-frequency decay we deduce bilinear
estimates in the Bourgain spaces X s,b

± (T ) associated with the water wave dispersion re-
lation (1.21). The local well-posedness is deduced from the contraction mapping prin-
cipal applied to the Duhamel formula (2.17) with the help of these bilinear estimates.
The dispersive estimate is given in Lemma 9 of the paper, whereas Lemma 10 provides
with the Strichartz estimates. By Smd(±t) we denote elements of the matrix S(t) ob-
tained after diagonalisation, more precisely, S(t) =Kdiag{Smd(t),Smd(−t)}K−1. The
final Bourgain bilinear estimates are given in Lemma 12 with the regularity restriction
s>−1/16 for d = 1 and s> 1/4 for d = 2.
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Global bound for d = 1 in X0 = L2(R)×H1/2(R) follows from the Hamiltonian
conservation, since H(η ,v) ≈ ∥η ,v∥2X0 provided ∥η ,v∥X0 is small. Hence the global
well-posedness in X s with s > 0 follows from the local result and an a priori bound
obtained from the persistence of regularity and the Brezis-Gallouet inequality [12, 13].
In the two dimensional case the gap between the energy space X0 and the solution
existence spaces X s with s> 1/4 is too big to claim the global-in-time well-posedness.
It worth to notice that a similar situation takes place in the capillarity case [26].

2.7 Solitary wave solutions of a Whitham–Boussinesq system

We have showed existence of solitary waves for the Whitham–Boussinesq system
(2.14) introduced in Paper 2.4. It was proved to be well-posed in the previous two
papers [25, 30]. Solitary waves we obtain from the Concentration–Compactness prin-
ciple [46] by Lions. We transformed the travelling wave system to one scalar equation.
There are two difficulties here: the symbol of the Fourier multiplier standing in the
linear part is of positive order and nonlinear part is also nonlocal.

Here we set h= g= 1, κ= 0 and d = 1 in (2.14). Solitary waves η(x, t) = η(x−ct)
and v(x, t) = v(x− ct), with c> 1 standing for the Froude number, satisfy the system

cη = v+K2(ηv), (2.18)

cv= K2η +K2v2/2 (2.19)

where K is a bounded self-adjoint operator in L2(R) defined by (1.24). Expressing η
via v by (2.19) and substituting to (2.18) one obtains

v=
1
c2
K2v+

1
2c

K2v2+
1
c
K4(vK−2v)− 1

2c2
K4v3

that can be represented as the Euler–Lagrange equation

dE(u)+λdQ(u) = 0,

after introducing the new variable u=−K−1v/c. The Lagrange multiplier λ =−1/c2.
The functionals involved are

E(u) =
1
2

∫
R

(
K−1u+

1
2
(Ku)2

)2

dx,

Q(u) =
1
2

∫
R
u2dx.

Hence, in order to find solutions of (2.18)-(2.19) we can instead consider the con-
strained minimization problem

inf
u∈Uq

E(u) with Uq =
{
u ∈ H1/2(R) : Q(u) = q

}
where q parametrises size of a solitary wave in some sense. Implementation of the
Lions principle in the spirit of [47] to a minimizing sequence provides us with solitary
waves. In addition we analyse the long wave asymptotic of the obtained solutions
following closely arguments of [32]. Thus we complement other results on solitary
wave existence for the fully dispersive bidirectional models [32, 50].
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2.8 Well-posedness for a Whitham–Boussinesq system with surface
tension

We have showed global well posedness for the Whitham–Boussinesq system (2.14)
introduced in Paper 2.4. In contrast to the case considered in [30], we have now an
additional half loss of regularity due to presence of the surface tension. It makes the
technique based on Strichartz estimates [30] inapplicable. Modified energy method is
used instead.

As above we stay in the non-dimensional settings h= g= 1 with the surface tension
κ > 0. Formally the Duhamel formula looks the same as (2.17). However, now the
group S(t) is continuous in the space

X s = Hs+1/2
(
Rd
)
×
[
Hs
(
Rd
)]d

where d = 1,2, since S(t)u0 solves a different linear system. So the integrand in (2.17)
lies in

[
Hs
(
Rd
)]1+d instead of X s. It means that Equations (2.14) are quasilinear. A

natural way to tackle the problem is to find an a priori estimate using the energy method
with the norm ∥η ,v∥Xs . However, it turns out that the straightforward use of X s-norm
as the energy does not allow to close the estimates. The main problem is to find an
appropriate coercive energy functional.

We define the following energy

Es(η ,v) =
1
2
∥η ,v∥2Xs +

1
2

∫
η
∣∣∣Js−1/2v

∣∣∣2
that up to norm equivalence coincides with Hamiltonian (2.13) for s = 1/2. From this
perspective the choice seems natural. In order to guarantee that Es is coercive one has
to impose an additional condition, namely, the non-cavitation of the flow. The latter
can be controlled locally by the first equation of the System (2.14) or globally by the
Hamiltonian conservation.

Finally, we would like to point out that the System (2.14) introduced in Paper 2.4
satisfies all the necessary conditions to be a relevant water wave model, such as well-
posedness, solitary wave existence (at least in case κ = 0). It incorporates the surface
tension in the natural physical way as was explained in Section 2.1. It is globally well-
posed for small initial data. We anticipate the wave breaking for big enough initial data,
that can be questioned by the future research.
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A R T I C L E I N F O

Keyword:

Hydroelastic waves

A B S T R A C T

A weakly nonlinear fully dispersive model equation is derived which describes the propagation of waves in a thin

elastic body overlying an incompressible inviscid fluid. The equation is nonlocal in the linear part, and is similar

to the so-called Whitham equation which was proposed as a model for the description of wave motion at the free

surface of an inviscid fluid.

Steady solutions of the fully nonlinear hydro-elastic Euler equations are approximated numerically, and

compared to numerical approximations to steady solutions of the fully dispersive but weakly nonlinear model

equation.

The bifurcation curves for these two different models are compared, and it is found that the weakly nonlinear

model gives accurate predictions for waves of small to moderate amplitude. For larger amplitude waves, the two

models still agree on key qualitative features such as the bifurcation points, secondary bifurcations, and the

number of oscillations in a given fundamental wave period.

1. Introduction

The present contribution is devoted to hydroelastic waves propa-

gating along a thin elastic body overlying an incompressible inviscid

fluid. The prime example for this situation is wave propagation in an ice

sheet over a body of water, a topic which has attracted increasing at-

tention among researchers in recent years.

One of the motivating problems for studying this situation has been

the motion of trucks and other vehicles on frozen lakes and rivers (see

for example [1,2]). In many such cases, hydroelastic waves are highly

dispersive but only weakly nonlinear. For example the measurements

recorded in [2] feature a large spectrum of wavelengths while non-

linearity is relatively weak. As a result, many researchers have chosen

to disregard nonlinear effects altogether [1,3–5]. More recently, non-

linear effects have come into focus as some studies of weakly and fully

nonlinear hydroelastic waves (see for example [6–9]) have suggested

that nonlinearity does have an appreciable effect on hydro-elastic

waves.

The nonlinear model system derived in [8] couples the well known

Saint-Venant (shallow water) system with hydroelastic dispersion, but

neglects gravity dispersion. Going further, the works [10,11] take into

account gravity dispersion in addition to both elasticity and non-

linearity. These studies depend heavily on the long-wave assumption

and therefore lose part of the information of the linearized problem, as

wavelengths are restricted to be very long when compared with the

undisturbed depth of the fluid and the elastic length scale. In order to

improve the modeling accuracy of such long-wave systems, in the

present work we are aiming at the derivation of a fully dispersive but

weakly nonlinear system. As mentioned above, the motivation and need

for such a system is given by experiments such as those reported in [2]

where a weakly nonlinear but highly dispersive response is recorded

which may not be adequately modeled by traditional long-wave equa-

tions.

The idea of using fully dispersive weakly nonlinear equations goes

back to Whitham [12], and was recently formalized both mathemati-

cally [13–15] and asymptotically [16,17]. Fully dispersive equations

have been the subject of a number of studies recently, especially re-

garding the existence and stability of traveling waves [18–23]. In the

current work, we first present a formal derivation of a Whitham-type

fully dispersive and weakly nonlinear system of evolution equations,

and then reduce the system to a single equation in the case when it can

be assumed that the waves travel in a single direction (such as is the

case for traveling waves). Using a recently developed open-source Py-

thon code, we then provide numerical approximations of traveling-wave

solutions of this system. In order to check whether the derivation and

numerical approximation are valid, we compare these solutions against
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numerical approximations of traveling-waves solutions of the fully

nonlinear Euler equations with an elastic surface layer. As will come to

light in Section 4, there is very good agreement between solutions of the

full model and the weakly nonlinear model.

The fully dispersive weakly nonlinear equation we are aiming for

can be written as

+ + =η Wη ηη
3

2
0.t x x (1)

Elasticity and gravity dispersion are combined in the convolution

Whitham operator �= − ∂ = −Wη w i η w η( ) ( )*x x x x
1 which is defined by

the dispersive function

= +w ξ ξ
ξ

ξ
( ) (1 ϰ )

tanh( )
.4

(2)

Here we have non-dimensionalized the variables so that we may take

the gravitational acceleration g=1 and the undisturbed depth of the

fluid as h0=1, and the corresponding long-wave speed is

= =c gh 10 0 . This non-dimensionalization is explained in the next

section. The floating ice sheet is included here by means of the non-zero

elasticity parameter �= ρϰ / where � is the coefficient of flexural ri-

gidity for the ice sheet and ρ=1 is the normalized density of the fluid.

The convolution operator W represents a Fourier multiplier operator

with the symbol (2). Note also that the Whitham equation (1) has the

conserved integral

∫ ∫= +Q η ηWη η( ) dx
1

2
dx.3

(3)

Firstly, in case of free surface ϰ=0, Eq. (1) was proposed by

Whitham [12] as a fully dispersive alternative to the well known Kor-

teweg-de Vries (KdV) equation. With non-zero ϰ the last equation [10]

is of the fifth order

+ + + + + =η η ηη η η
3

2

1

6

1

360
(19 180ϰ) 0.t x x xxx xxxxx (4)

For very long waves the KdV equation (4) is thought to be a good model

for hydro-elastic waves. In order to be able to model shorter waves one

needs to use an equation which also gives a good description of shorter

waves, such as for example Eq. (1).

In the present article, we arrive at the Whitham equation from the

Hamiltonian formulation of the water-wave problem given in [24–26]

and modified for the hydroelastic problem in [10]. Extending the re-

sults of [10,16,17] we justify the Whitham equation (1) as a Hamilto-

nian system. We also obtain numerical results on steady solutions of Eq.

(1) and compare them with solutions of the fully nonlinear hydro-

elastic system based on the Euler equations. The comparisons indicate

that the Whitham equation is able to provide a good description of

hydro-elastic waves. Indeed, small-amplitude solutions of the full Euler

equations are always closely approximated by the weakly nonlinear

model, regardless of the wavelength. For large-amplitude solutions,

there is good quantitative agreement in many cases, and good quali-

tative agreement in essentially all cases.

2. The hydro-elastic system

We consider a thin elastic plate supported by a fluid below. The

elastic layer is modelled by making use of the special Cosserat theory of

hyperelastic shells in Cartesian coordinates [27]. As already stated, the

fluid base is assumed to be inviscid and incompressible, and the fluid

flow is assumed to be two-dimensional and irrotational, so that po-

tential theory can be used to describe the flow.

In order to normalize the problem the following standard non-di-

mensionalization is used. Letting the dimensional variables be primed,

the non-dimensional variables are defined in terms of the fluid depth h0,

the gravitational acceleration g and the long-wave speed =c gh0 0 as

x′= h0x, z′= h0x and ′ =t h g t/0 . The unknowns are the vertical

deflection of the cover and the velocity potential, and these are non-

dimensionalized as η′= h0η and ϕ′= h0c0ϕ, respectively. This non-di-

mensionalization is equivalent to using the fluid depth h0 as a unit of

length, and h g/0 as a unit of time.

In the non-dimensional setting, the fluid domain is given by

∈ − < <x z z η x t{( , ) ℝ | 1 ( , )}2 extending to infinity in the positive and

negative horizontal x-direction. The complete hydro-elastic Euler

system [10] consists of the Laplace's equation in this domain

+ = ∈ − < <ϕ ϕ x z η x t0 for ℝ, 1 ( , ),xx zz (5)

the Neumann boundary condition at the flat bottom

= = −ϕ z0 at 1,z (6)

the kinematic condition at the free surface

+ − = ∈ =η ϕ η ϕ x z η x t0 for ℝ, ( , ),t x x z (7)

and the Bernoulli equation combined with elasticity

+ + + + ⎛
⎝

+ ⎞
⎠
= ∈ =ϕ ϕ ϕ η κ κ x z η x t

1

2
( ) ϰ

1

2
0 for ℝ, ( , ),t x z

2 2
ss

3

(8)

where = + −κ η η(1 )xxx
2 3/2 is the curvature of the shell and s is the ar-

clength along this cover and therefore

⎜ ⎟ ⎜ ⎟+ =
+

∂
⎛

⎝
⎜ +

∂ ⎛
⎝ +

⎞
⎠

⎞

⎠
⎟ +

⎛
⎝ +

⎞
⎠

κ κ
η η

η

η

η

η

1

2

1

1

1

1 (1 )

1

2 (1 )
.

x

x

x

x

x x

ss
3

2 2

xx
2 3/2

xx
2 3/2

3

The total energy of the system is the sum of the kinetic energy, the

potential energy and the shell deformation energy [10], so the Ha-

miltonian function for this problem is expressed as

∫ ∫ ∫ ∫ ∫= + ∇ +
+−

H z ϕ
η

η
dz dx

1

2
| | dz dx

ϰ

2 (1 )
dx.

η η

x
ℝ 0 ℝ 1

2

ℝ

xx
2

2 5/2

Introducing the trace of the potential at the free surface as Φ(x, t)= ϕ

(x, η(x, t), t), one may integrate in z in the first integral and use the

divergence theorem on the second integral to obtain

∫= ⎡
⎣⎢

+ +
+

⎤
⎦⎥

H η G η
η

η

1

2
Φ ( )Φ ϰ

(1 )
dx.

x
ℝ

2 xx
2

2 5/2
(9)

This integral represents the Hamiltonian functional of the water wave

problem with a floating thin elastic cover as found in [10]. The Ha-

miltonian is written in terms of the Dirichlet–Neumann operator G(η). It

was shown in [28] that this operator depends analytically on the un-

known η and can therefore be expanded in a power series

∑=
=

∞
G η G η( )Φ ( )Φ,

j

j

0

where each operator Gj(η) is homogeneous of degree j in η. The terms in

the power series can be computed using a recursion formula (see

[25,26]), and the first two terms have the form

= = −G η D D G η DηD D D ηD D( ) tanh( ), ( ) tanh( ) tanh( )0 1

where D=− i∂x is a self-adjoint operator on L (ℝ)2 .

Our first aim is to give the Hamiltonian formulation of the hydro-

elastic problem in terms of the displacement η and the variable

= = + = +u ϕ η ϕ ϕ ηΦ 1x x x y τ x
2 proportional to the velocity of the

fluid ϕτ tangential to the surface. Formally integrating by parts one may

rewrite the Hamiltonian in terms of new variables as

∫= ⎡
⎣⎢

+ +
+

⎤
⎦⎥

− −H η uD G η D u
η

η

1

2
( ) ϰ

(1 )
dx.

x
ℝ

2 1 1 xx
2

2 5/2
(10)

The integration by parts can be made mathematically precise by using

the following well known lemma.

Lemma 1. Let f, g be real-valued square integrable functions on the real line
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3.1 The Whitham equation for hydroelastic waves 23

ℝ. Regard D=− i∂x as self-adjoint on L (ℝ, ℂ)2 and a real-valued function

φ that is measurable and almost everywhere finite with respect to Lebesgue

measure. If f, g lie in the domain of the operator φ(D) then

∫ ∫= −fφ D g gφ D f( ) ( ) .

∫ ∫= −fφ D g gφ D f( ) ( ) .

3. Derivation of Whitham type evolution equations

We now give a formal analysis of the long-wave approximation of

the Hamiltonian. For the sake of completeness, we summarize some

arguments presented in [16]. Regarding a wave-field having a char-

acteristic non-dimensional wavelength λ and a characteristic non-di-

mensional amplitude α, we define the small parameter =µ
λ

1
and in

order to bring out the difference in the horizontal and vertical scales in

the problem, the scalings =η αη̃ and = = − ∂D λD λi˜
x are used. Then

the natural scaling for the velocity unknown u is =u αũ, and the Ha-

miltonian is scaled as =H α H̃2 . Omitting terms of cubic and higher

order in α, the scaled Hamiltonian (10) is then written using only the

terms G1 and G2 as

∫ ∫ ∫
∫
∫

= + ⎡
⎣

− + ⋯⎤
⎦

+

− ⎡
⎣

− + ⋯⎤
⎦

⎡
⎣

− + ⋯⎤
⎦

+ − + ⋯{ }

H η u µ D u
α

ηu

α
u µD µ D η µD µ D u

µ D η α µ Dη

˜ 1

2
˜ dx

1

2
˜ 1

1

3
˜ ˜ dx

2
˜ ˜ dx

2
˜ ˜ 1

3
˜ ˜ ˜ 1

3
˜ ˜ dx

ϰ

2
( ˜ ˜) 1

5

2
( ˜ ˜) dx.

ℝ

2

ℝ

2 2

ℝ

2

ℝ

3 3 3 3

4

ℝ

2 2 2 2 2

In the case of flexural-gravity waves, the linear terms are dominant and

terms of all order in μ should be kept. We may assume that α= o(μ)

such as for example the exponential scaling appearing in [17]. Then if

terms of order O(α2) and O(αμ) are disregarded, the Hamiltonian (10)

reduces to

∫= ⎡
⎣

+ + + ⎤
⎦

H η u
D

D
u ηu η

1

2

tanh
ϰ dx.

ℝ

2 2
xx
2

(11)

Now the hydro-elastic problem can be reformulated as a Hamiltonian

system using the variational derivatives of the approximate Hamilto-

nian (11). We point out [26,29] that the pair (η, Φ) represents the ca-

nonical variables for the Hamiltonian functional (9). Our purpose is to

derive the equations of motion in terms of η and u=Φx which is

slightly more convenient in the situation at hand. The transformation

(η, Φ)↦ (η, u) is associated with the Jacobian

∂
∂

= ⎛
⎝ ∂ ⎞⎠

η u

η

( , )

( , Φ)

1 0
0

.
x

So in terms of η and u the Hamiltonian equations have the form

= −∂ = −∂η
δH

δu
u

δH

δη
,t x t x

(12)

which is not canonical since the associated structure map Jη,u is sym-

metric:

⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⎛
⎝
∂
∂

⎞
⎠ −

⎛
⎝
∂
∂

⎞
⎠

= ⎛
⎝

− ∂
− ∂

⎞
⎠( )J

η u

η

η u

η

( , )

( , Φ)

0 1
1 0

( , )

( , Φ)

* 0

0
.η u

x

x
,

The Gâteaux derivative δH/δu of the Hamiltonian (11) is defined by

means of an arbitrary real-valued square integrable function h from the

variation

∫= + = ⎡
⎣

+

+ ⎤
⎦

=
δ H h

d

dτ
H u τh η h

D

D
u u

D

D
h

uηh

( ) ( , )
1

2

tanh tanh

2 dx.

u
τ 0

ℝ

Integrating by parts according to Lemma 1 and taking into account

arbitrariness of the given function h one obtains

= +δH

δu

D

D
u ηu

tanh

and similarly

= + +δH

δη
η u η

1

2
ϰ .2

xxxx

Substituting these variational derivatives into Eq. (12) we arrive at the

Hamiltonian system

= − −η
D

D
u ηu

tanh
( ) ,t x x (13)

= − − −u η uu ηϰ .t x x xxxxx (14)

This system is fully dispersive in the linear part, which is the distinctive

feature of the original Whitham equation [12]. At the same time it al-

lows bi-directional wave propagation, so that it may be of independent

interest.By changing variables in the Whitham system (13) and (14) one

may arrive at a new system, where the equations will be uncoupled in

the linear part. In other words we can separate solutions corresponding

to waves moving left and right. To justify this we follow the approach of

[16,17], and consider the linearization

+ =η
D

D
u

tanh
0,t x (15)

+ + =u D η(1 ϰ ) 0.t x
4 (16)

Looking for solutions of this linear system as waves η(x, t)= Aeiξx−iωt, u

(x, t)= Beiξx−iωt gives rise to the necessary condition

ω
2
− (ξ+ ϰξ5) tanh ξ=0. Introducing the phase speed as c=ω(ξ)/ξ

one arrives at the dispersion relation

= +c ξ ξ
ξ

ξ
( ) (1 ϰ )

tanh2 4

which coincides, up to the sign of c, with the Whitham dispersion re-

lation (2). Clearly, the choice c > 0 corresponds to right-going wave

solutions of the linear system (15), (16), while the phase speed c < 0

gives left-going waves. In order to split up left- and right-going waves

we use the following transformation of variables:

= + = −r η s η
1

2
( K u),

1

2
( K u),

(17)

where one anticipates K to be an invertible operator, or more precisely,

an invertible function of the differential operator D. The inverse

transformation has the form

= + = −−η r s u K r s, ( ).1 (18)

It turns out that the operator K can be chosen in a way that r and s

correspond to right- and left-going waves, respectively. Substituting the

transformation (18) to the linear system (15), (16) obtain

� �

� �

+ ∂ + =
− ∂ + =

r D K r D K s

s D K s D K r

( ( , ) ( , ) ) 0,

( ( , ) ( , ) ) 0,

t x

t x

where the operators � and � depend on D and K as follows:

� �= ⎛
⎝

+ + ⎞
⎠

= ⎛
⎝

+ − ⎞
⎠

−

−

D K
D

D
K

D K
D

D
K

1

2
(1 ϰ )

tanh
,

1

2
(1 ϰ )

tanh
.

4 1

4 1

So to achieve independence of the obtained two equations we need to

choose the transformation K in the way � =D K( , ) 0, so that

=
+

K
D

D

D

1

1 ϰ
·
tanh

4 (19)

which leads to � = =D K W w D( , ) ( ), in terms of the dispersive Whi-

tham operatorW which was introduced at the beginning of the paper by

means of the dispersive function (2). In this way, we get the two
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independent linear equations

+ ∂ =r Wr 0,t x (20)

− ∂ =s Ws 0.t x (21)

If we again look at the special solutions r(x, t)= exp(iξx− iωrt) and s(x,

t)= exp(iξx− iωst) then we conclude that the first equation (20) de-

scribes waves moving to the right with the phase velocity

= =c ω ξ w ξ/ ( )r r and the second equation (21) corresponds to the left-

going waves with = = −c ω ξ w ξ/ ( )s s .

Returning to the nonlinear theory we want to obtain a new

Hamiltonian system with respect to unknown functions (17). In new

variables r and s after integrating by parts due to Lemma 1 the Ha-

miltonian (11) takes the form

∫= + + − + −

+ + − + +−

H r s r s r s D r s

r s K r s r s

( , )
1

2
[( ) ( )(1 ϰ )( )

( )( ( )) ϰ( ) ]dx.

ℝ

2 4

1 2
xx
2 (22)

As explained in [29], the change of variables (17) transforms the

structure map to

⎜ ⎟ ⎜ ⎟= ⎛
⎝
∂
∂

⎞
⎠

⎛
⎝
∂
∂

⎞
⎠

=
⎛

⎝

⎜
⎜⎜

− ∂

∂

⎞

⎠

⎟
⎟⎟

J
r s

η u
J

r s

η u

K

K

( , )

( , )

( , )

( , )

*
1

2
0

0
1

2

r s η u

x

x

, ,

that leads to the Hamiltonian system

+ ∂ ⎛
⎝

⎞
⎠
= − ∂ ⎛

⎝
⎞
⎠
=r

K δH

δr
s

K δH

δs2
0,

2
0.t x t x

(23)

As explained above, one calculates variational derivatives of H given by

(22) with respect to r and s at a real-valued square integrable function.

Then after integrating by parts as in Lemma 1 and applying operator K/

2 one obtains as a result

= + − + + −− −K δH

δr K
K r s r s K r s

2
Wr

14
( ( ))

1

2
( ) ( ),1 2 1

(24)

= + − − + −− −K δH

δs K
K r s r s K r s

2
Ws

14
( ( ))

1

2
( ) ( ),1 2 1

(25)

If these expressions are substituted into (23), a Whitham system de-

scribing in terms of a left-going component s and a right-going comp-

nent r is appears. This system corresponds to the Hamiltonian (22)

which is the same as for the system (13), (14), and no further ap-

proximation has been made. Recalling that the approximate Hamilto-

nian (22) was obtained by discarding terms of order O(μα) and O(α2) in

(10) we may modify terms in the Hamiltonian on the of order O(μα) and

O(α2) without changing the overall order of approximation.Thus in

order to simplify the above system, we use the long-wave approxima-

tion D=O(μ) which leads to K=1+O(μ2), K−1=1+O(μ2) and

since r=O(α), s=O(α), the nonlinear part of (24), (25) can be written

as

∫ ∫= + − = + − +−H r s K r s r s r s O µ α
1

2
( )( ( )) dx

1

2
( )( ) dx ( ).1

ℝ

1 2

ℝ

2 2

Thus neglecting again terms of order O(μα), and assuming that the left-

going waves are s= o(α) such as in [26], we can write the nonlinear

part of the Hamiltonian as ∫=H r1/2 dx.1 ℝ
3 So eventually we arrive at

= +K δH

δr K
r

2
Wr

34
,2

(26)

=K δH

δs2
Ws.

(27)

These approximations in the Hamiltonian together with the equations

(23) yield the system

+ + =r Wr
K

32
(rr ) 0,t x x (28)

− =s Ws 0.t x (29)

This system is a fully dispersive system describing waves mainly

moving in the right direction. Since we have modified only the energy

of the hydro-elastic problem, the system (28), (29) is still Hamiltonian.

Indeed that system corresponds to the Hamiltonian

∫= + + − + − +

+ +

H r s r s r s D r s r

r s

( , )
1

2
[( ) ( )(1 ϰ )( )

ϰ( ) ]dx.

ℝ

2 4 3

xx
2

As one can see the first equation (28) can be considered independently

from the second one (29) which is actually linear and homogeneous.

Moreover, one can easily see that the Hamiltonian splits additively into

two functionals H(r, s)=H(r)+H(s), where the first one has the form

∫= ⎡
⎣

+ + ⎤
⎦

H r r D r r( ) (1 ϰ )
1

2
dx.

ℝ

4 3

With this energy, comparable with the initial total energy (9), the new

Whitham equation (28) becomes Hamiltonian in the sense (23).

One may now use the approximation K=1+O(μ2) in the first

equation (28) to arrive at the Whitham equation (1). This is consistent

with disregarding terms of order O(αμ) in the derivation of the system

(13),(14). Note, however, that this equation is then not Hamiltonian in

the current context. Indeed, we have changed the structure map Jr,s,

and the unknown η in Eq. (1) has the same meaning as r in Eq. (28),

though the Hamiltonian structure is different. We have

⎜ ⎟+ ∂ ⎛
⎝

⎞
⎠
=η

δQ

δη

1

2
0t x

where Q(η) is given in (3). Note that energy Q is not comparable with

the original Hamiltonian H given in (9), and it is therefore not clear

whether it represents the energy. Indeed, as indicated in [30], the

mechanical energy might take a completely different form in the con-

text of Eq. (3).

4. Numerical analysis

For the numerical analysis of Eq. (1) we use the method thoroughly

described in [31,32]. Here we will just give a quick overview. Travel-

ling wave solutions are under investigation, so the ansatz

= −η x t φ x( , ) ( ct) (30)

is employed which together with Eq. (1) yields

− + + =cφ
φ

Wφ B
34 2

(31)

with some undetermined constant B. We look for solutions of the last

equation that are even and 2L-periodic, so we compute solutions on the

interval [0, L] and restore it symmetrically on the whole interval [− L,

L]. We regard solutions with different wavelengths L and elasticity ϰ.

We also normalize solutions by requiring its mean-value to be zero. This

means that we require ∫ =φ 0
L

0
. We use a cosine collocation method,

so solutions of Eq. (31) are represented as linear combinations of

functions cos
mπx

L
, m=0, 1, …, that form a basis in L2(0, L). As ex-

plained in [20,31], for the discretization of the problem we look for

solutions in a subspace �N spanned by the first N of these cosine

functions and defined at the collocation points = −
x Ln

n

N

2 1

2
for n=1,

…, N. Let WN be the discrete form of the Whitham operator W and

�∈φN N be the discrete cosine representation of a solution φ. Then the

values of φN at the collocation points satisfy the algebraic equations

− + + =cφ x
φ

x W φ x B( )
34

( ) ( )N n

N

n
N

N n

2

(32)

with n=1, …, N. As indicated above, to this system one also needs to

add the mean-value normalization
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3.1 The Whitham equation for hydroelastic waves 25

∑ =
=
φ x( ) 0.

n

N

N n

1 (33)

To compute profiles along the bifurcation curve, we introduce a para-

meter θ as a coordinate on the curve. We define the pseudo-waveheight

A by the equation

− == … = …φ x φ x Amax ( ) min ( ) ,n N N n n N N n1, , 1, , (34)

and treat the pseudo-waveheight A= A(θ) and the phase speed c= c(θ)

as functions of the parameter θ. This procedure is described in more

detail in [31].

Eqs. (32)–(34) form the final system to be solved by Newton's

method. The unknowns here are φN(x1), …, φN(xN), B, θ. Solutions

bifurcating from the linearization of Eq. (31) can be obtained from the

initial guess, provided by the Stokes approximation [31].The numerical

algorithm used to solve the fully nonlinear Euler equations with an

elastic term (5)–(8) is based on the conformal mapping techniques

[33,34] and generalizes previous works on gravity waves or capillary

waves [35,36] to the hydroelastic case [10]. We will give just some

essentials here. The Bernoulli equation (8) at the free surface in the

moving frame X= x− ct and Y= z has the form

�+ + + ⎛
⎝

+ ⎞
⎠
=ϕ ϕ η κ κ

1

2
( ) ϰ

1

2X Y
2 2

ss
3

where � is the Bernoulli constant. As above (30) the surface is re-

presented by η(x, t)=φ(X), so the outward unit normal vector is

= − +φ φn ( , 1)/ 1X X
2 .The physical domain bounded by the free sur-

face and the bottom is transformed with a conformal mapping from

X+ iY to ξ+ iζ into a strip of thickness h (called conformal modulus),

with ζ=0 corresponding to the free surface and ζ=− h corresponding

to the bottom. Solving a Dirichlet boundary-value problem for Y(ξ, ζ) in

the mapped domain, using Cauchy-Riemann relations between the

partial derivatives of X(ξ, ζ) and Y(ξ, ζ) and denoting

= +X ξ X ξ iˆ ( ): ( 0)m = +Y ξ Y ξ iˆ ( ): ( 0), we obtain after some algebra and

dropping the hats (see e.g. [35])

�= −X Y1 ,ξ ξ

where � is the operator � = i coth h D. In the new variables the Ber-

noulli equation can be re-written

�
+

+ + ⎛
⎝

+ ⎞
⎠
=c

X Y
Y κ κ

1

2
ϰ

1

2
.

ξ ξ

2

2 2 ss
3

(35)

The elastic term +( )κ κss
1

2
3 can be expanded in an explicit form in

terms of derivatives of X and Y, as explained in [11]. The velocity po-

tential on the free surface is satisfying ϕ= cξ. We expand the variable Y

as a Fourier series

∑=
=−∞

∞
Y ξ a e( ) ,

n

n
ξin

and we are using equally-spaced collocation points = −
+ξj

π j

N

2 ( 1)

2 1
, j=1,

…, 2N+1. The non-local operator acts (for n≠ 0) as

� =e i e( ) coth(nh) .ξ ξin in

After truncating the Fourier series at n= ± N, we satisfy the Eq. (35)

at the 2N+1 collocation points for the 2N+2 unknowns an, n=−N,

…, N and the Bernoulli constant � . The remaining equation is obtained

by fixing a0= h and the nonlinear system obtained is solved in MA-

TLAB using a Newton method. In practice, for any given c we choose an

initial guess h=1 of the conformal modulus and then we enforce that

the dimensionless height of the fluid in the physical space remain un-

changed and equal to 1 for all computations, so we actually use a fixed-

point procedure to guarantee

∫ =
−L

YX dξ
1

2
1,

L

L

ξ

until the correct value of h is found for each c. It was found that

N=128 is enough for most of the calculations to obtain a very good

accuracy of solutions. When the curves are turning in the bifurcation

diagrams, a version of this algorithm is used, where the height of the

wave is enforced and c was found as part of the solution.

17 In Figs. 1–18, one can see how solutions change in the bifurca-

tion diagrams. Solutions are plotted on the interval [− L, L], where L

ranges from π/2 to 4π, and several features are worth noting. First of

all, in the bifurcation curves in Figs. 1, 8 and 11, for large to inter-

mediate wavelengths, the bifurcation curves of the hydro-elastic Whi-

tham equation are very close to the bifurcation curves for the Euler

system as long as the waveheight, defined as max(Y)−min(Y), is

below about 0.4. A similar conclusion is reached by examining Figs. 2,

9, 12 and 16, where steady wave profiles are shown, and a close match

between the two curves is evident. Whitham waves of larger amplitude

still resemble the full hydro-elastic waves, qualitatively as shown in

Figs. 3–7 for L=4π and ϰ=1, and similarly in Figs. 13, 14 and 18 for

other parameter values. It is also worth noting that on the period

[− 4π, 4π] solutions with large enough waveheight develop several

secondary crests which actually start dominating the main crest at the

center of the wave.

For small-amplitude solutions the error in the phase speed c is

generally below 1%. For large-amplitude solutions, the error in the

phase speed becomes larger. An extreme example is shown in Figs. 8

and 10. Concerning solutions high up on the branch in Fig. 8, if one

Fig. 1. Bifurcation diagrams for L=4π and ϰ=0.1. The blue curves represent

the full hydroelastic system. The green curves represent the Whitham equation.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 2. Wave profiles for L=4π, ϰ=0.1 near the bifurcation point of the

rightmost curve in Fig. 1. The blue curve is an approximate solution of the full

Euler system with c=0.9910. The green curve an approximate solution of the

Whitham equation with c=0.9911. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this

article.)
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matches the waveheight, then a near-exact match in the shape of the

wave is obtained, such as in the blue and green profiles in Fig. 10.

However, the phase velocities for these two solutions vary a great deal.

On the other hand if one tries to get the best fit for the phase velocity,

then the solution profiles have very different waveheights, though they

still look qualitatively similar (cf. blue and red curve in Fig. 10). Fig. 10

also shows the interesting result (when compared with Figs. 13 and 14)

that a larger elastic parameter ϰ actually leads to fewer oscillations in

the steady wave profile.

Fig. 3. Wave profiles for L=4π, ϰ=0.1 higher up on the main branch in

Fig. 1. The blue curve represents the Euler system with c=1.0506. The green

curve represents the Whitham equation with c=1.0391. (For interpretation of

the references to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 4. Wave profiles for L=4π, ϰ=0.1 on the second (middle) bifurcation

point in Fig. 1. The blue curve represents the Euler system with c=0.9764. The

green curve represents the Whitham equation with c=0.9742. (For inter-

pretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

Fig. 5. Wave profiles for L=4π, ϰ=0.1 on the left bifurcation branch ema-

nating from the middle bifurcation point in Fig. 1. The blue curve represents the

Euler system with c=0.9553. The green curve represents the Whitham equa-

tion with c=0.9545. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Fig. 6. Wave profiles for L=4π, ϰ=0.1 on the third (leftmost) bifurcation

point shown in Fig. 1. The blue curve represents the Euler system with

c=0.9530. The green curve represents the Whitham equation with c=0.9552.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 7. Wave profiles for L=4π, ϰ=0.1 on the right bifurcation branch

emanating from the leftmost bifurcation point in Fig. 1. The blue curve re-

presents the Euler system with c=0.9553. The green curve represents the

Whitham equation with c=0.9501. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this

article.)

Fig. 8. Bifurcation diagrams for L=2π and ϰ=1. The blue curve represents

the full hydroelastic system. The green curve represents the Whitham equation.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

E. Dinvay, et al. $SSOLHG�2FHDQ�5HVHDUFK��������������²���

���



3.1 The Whitham equation for hydroelastic waves 27

For large enough wavelengths and small enough elasticity, branches

were found which do not connect to trivial solutions with vanishing

waveheight (see Figs. 1 and 11). On the other hand, for short

wavelengths there are secondary bifurcation from the main branch,

such as shown in Fig. 15. In this figure, one can see how 2π-periodic

solutions bifurcate from π-periodic ones. In all cases examined, the

bifurcation picture of the Whitham model looks qualitatively similar to

the fully nonlinear hydro-elastic system. Since the Whitham equation is

much more easily approximated numerically, future work will include

obtaining bifurcation curves for a larger parameter space of ϰ and L,

such as for example presented for the similar Whitham equation with

capillarity in [32].

Finally, we want to comment on two other models mentioned in the

current paper, the 5th-order KdV equation (4) with a flexural term, and

the fully nonlinear Whitham equation (28). Since the flexural effect

corresponds to the term with the 5th derivative in (4), it appears that

elasticity has a rather weak effect in the long-wave regime. Indeed, in

the case of long waves, the Whitham equation (1) with a free surface

(i.e. ϰ=0) gives similar small-amplitude solutions to solutions of other

models depicted in Fig. 12. However, with increasing of amplitude

elasticity causes the appearance of several crests on the fundamental

wavelength [− L, L], whereas the wave profiles of the free surface

Whitham equation have exactly one crest and are strictly monotonic to

both sides of it [20]. Some simulations of (4) and (28) are presented in

Fig. 9. Wave profiles for L=2π, ϰ=1 for small-amplitude solutions on the

bifurcation branches in Fig. 8. The blue curve represents the Euler system with

c=0.9779. The green curve represents the Whitham equation with c=0.9771.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 10. Wave profiles for L=2π, ϰ=1. The blue curve represents the Euler

system with c=0.4767. The green curve represents the Whitham equation with

c=0.7431. The red curve shows a different solutions of the Whitham equation

with c=0.5002 (that is 5% difference from c=0.4767). (For interpretation of

the references to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 11. Bifurcation diagrams for L=2π and ϰ=0.1. The blue curves re-

present the hydroelastic system. The green curves represent the Whitham

equation (1). The black curves correspond to the fully nonlinear Whitham

equation (28). The purple color is associated with the KdV-like equation (4).

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 12. Wave profiles for L=2π, ϰ=0.1 for small-amplitude waves on the

main branch in Fig. 11. The blue curve shows a solution of the full hydro-elastic

system with c=0.9653. The green curve shows a solution of the Whitham

equation (1) with c=0.9657. The black solution corresponds to the Hamilto-

nian Whitham equation (28) with c=0.9654. The purple color is associated

with the KdV equation (4) for c=0.9668. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this

article.)

Fig. 13. Wave profiles for L=2π, ϰ=0.1 for waves high up on the main

branch in Fig. 11. The blue curve shows a solution of the full hydro-elastic

system with c=0.9668. The green curve shows a solution of the Whitham (1)

equation with c=0.9685. The black solution corresponds to the Hamiltonian

Whitham equation (28) with c=1.0682. The purple color is associated with the

KdV equation (4) for c=0.9607. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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Figs. 11–14. Note that both Whitham equations (1), (28) give travelling

waves very similar to the fully nonlinear solutions. Whereas the elastic

KdV (4) gives qualitatively different waves, i.e. with a different number

of wavecrests on a fundamental wavelength. Moreover, the KdV wave

depicted in Fig. 14 is a solution of the secondary bifurcation type. It can

be obtained by bifurcating from the L= π-branch as shown in Fig. 11.

On the other hand, it does not seem possible to obtain corresponding

solutions of the full system and equations (1), (28) in a similar way

continuously from linear theory.

5. Conclusion

In order to understand properties of waves in a thin elastic sheet

overlaying an inviscid fluid, a fully dispersive system of equations was

derived using the Hamiltonian formulation of the hydroelastic surface

wave system. The Hamiltonian was approximated using an asymptotic

expansion of the Dirichlet–Neumann operator, and the derivation was

based on fundamental ideas regarding Hamiltonian evolution systems

[24–26,29]. It was also shown how the Hamiltonian equations can be

restricted to model wave propagation in a single direction. Finally, a

single fully dispersive weakly nonlinear equation of Whitham type (1)

has been derived. This equation is the hydro-elastic version of the so-

called Whitham equation put forward by Whitham [12] based on

phenomenological considerations.

In order to further validate Eq. (1) as a model for hydro-elastic

Fig. 14. Wave profiles for L=2π, ϰ=0.1 on the leftmost branch in Fig. 11.

The blue curve shows a solution of the full hydro-elastic system with

c=0.9353. The green curve shows a solution of the Whitham equation (1) with

c=0.9261. The black solution corresponds to the Hamiltonian Whitham

equation (28) with c=0.9486. The purple color is associated with the KdV

equation (4) for c=0.8932. It corresponds to the secondary bifurcation curve

in Fig. 11. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 15. Bifurcation diagrams for L= π and L= π/2 with ϰ=0.1. The blue

curves represent the full hydroelastic system. The green curves represent the

Whitham equation. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Fig. 16. Wave profiles for L= π, ϰ=0.1 for small-amplitudes solutions on the

left branch in Fig. 15. The blue curve shows a solution of the full hydro-elastic

system with c=0.9140. The green curve shows a solution of the Whitham

equation with c=0.9129. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 17. Wave profiles for L= π, ϰ=0.1 on the left branch in Fig. 15. The blue

curve shows a solution of the full hydro-elastic system with c=0.5148. The

green curve shows a solution of the Whitham equation with c=0.6790. The

red curve shows a solution of the Whitham equation with c=0.5402 (that is

5% difference from c=0.5148). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Wave profiles for L= π, ϰ=0.1 on the secondary branch on the very

right in Fig. 15. Note that these solutions have full wavelength 2π, the same as

the solutions in the leftmost branch in Fig. 15. The blue curve shows a solution

of the full hydro-elastic system with c=1.0173. The green curve shows a so-

lution of the Whitham equation with c=1.0786. The red curve shows a solu-

tion of the Whitham equation with c=1.0658 (that is 5% difference from

c=1.0173). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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3.1 The Whitham equation for hydroelastic waves 29

waves, a numerical study of traveling waves has been undertaken.

Numerical approximations of steady solutions of (1) were compared to

numerical approximations of steady solutions of the full hydro-elastic

system introduced in Section 2. Bifurcation branches and wave profiles

were compared, and it was shown that small-amplitude solutions of (1)

resemble solutions of the full hydro-elastic system rather closely. In-

termediate-amplitude solutions of the two approximations are still

comparable, and even large-amplitude solutions of (1) show good

qualitative agreement. In addition, it can be seen in Figs. 1, 8, 11 and 15

that bifurcation branches of (1) contain the same features as the bi-

furcation curves for the corresponding fully nonlinear hydro-elastic

system. In particular, primary and secondary bifurcation points and the

number of branches are closely matched.

Further work on these issues will include the study of whether the

flow below the surface can be reconstructed from the surface profile

η(x, t). Such an analysis has recently been begun in the case of a free

surface in [37]. In the present situation, this issue is more complicated

because of the elastic layer. Nevertheless, analyzing for example the

derivation used in [8] it seems possible that progress could be made.

Another important issue which deserves further study is the analysis

of the nonlinear regime of the bifurcation curves, and the stability of

the traveling waves. Such an analysis has been provided for the original

Whitham equation [18,21,23], and the Whitham equation with surface

tension in [22,32] but not yet for the equation derived in the current

work.

The current model may also be extended by the inclusion of a

variety of additional physical effects, such as a horizontal loading on

the ice sheet, as described in [8], a vertical forcing [2], and the influ-

ence of nontrivial bathymetry [38]. These issues will be the focus of

future work.
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In 1967, Whitham proposed a simplified surface water-wave model which combined 
the full linear dispersion relation of the full Euler equations with a weakly linear 
approximation. The equation he postulated which is now called the Whitham equation has 
recently been extended to a system of equations allowing for bi-directional propagation of 
surface waves. A number of different two-way systems have been put forward, and even 
though they are similar from a modeling point of view, these systems have very different 
mathematical properties.
In the current work, we review some of the existing fully dispersive systems, such as found 
in [1,4,9,17,22,23]. We use state-of-the-art numerical tools to try to understand existence 
and stability of solutions to the initial-value problem associated to these systems. We also 
put forward a new system which is Hamiltonian and semi-linear. The new system is shown 
to perform well both with regard to approximating the full Euler system, and with regard 
to well posedness properties.

 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Consideration is given to the two-dimensional water-wave problem for an inviscid incompressible fluid with a free 
surface over an even bottom. As this problem has not been completely resolved mathematically, there is still interest in 
developing new simplified models which yield an approximate description of the waves at the free surface in the case 
when the waves have distinctive properties, such as small amplitude or large wave period. In particular, there is the Boussi-
nesq scaling regime which gives a good approximate description of long waves of small-amplitude. Recently, there has been 
interest in full-dispersion model which aims to give an exact description of “linear” waves while still being weakly nonlin-
ear, and therefore accommodating some nonlinear processes such as wave steepening. The idea of representing the linear 
dynamics exactly goes back to the work of Whitham [27] who conceived the equation (now called Whitham equation)

ηt + gWηx +
3
2
c0
H
ηηx = 0, (1.1)

where W = w(−i∂x) =F−1wF is a Fourier multiplier operator defined by the dispersive function

w(ξ) =

√

tanh(Hξ)
gξ

, (1.2)

* Corresponding author.
E-mail addresses: evgueni.dinvay@math.uib.no (E. Dinvay), Denys.Dutykh@univ-savoie.fr (D. Dutykh), henrik.kalisch@math.uib.no (H. Kalisch).
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and c0 =
√

gH is the limiting long-wave speed, defined in terms of the undisturbed fluid depth H and the gravitational 
acceleration g . The Fourier transform F and inverse transform F−1 are defined in the standard way, such as for example 
in [28]. It is clear that since the operator W reduces to the identity for very long waves (ξ → 0), the Whitham equation 
reduces to the inviscid Burgers equation for very long waves. Properties of the Whitham equation have been investigated in 
[11,12,16,19,21,24].

Recently, Whitham’s idea has been extended to the study of systems of evolution equation which allow for bi-directional 
wave propagation. In particular, in [1], Aceves-Sánchez, Minzoni and Panayotaros, found the Whitham system

ηt = −HKux − (ηu)x, (1.3)

ut = −gηx − uux, (1.4)

and in [23], it was shown how this system arises as a Hamiltonian system from the Zakharov–Craig–Sulem formulation of 
the water-wave problem using an exponential long-wave scaling. The operator K is defined by the Fourier symbol tanh(Hξ)

Hξ
, 

so that we have the relation HK = gW2 . It can be seen that since the operator K reduces to the identity operator for 
very long waves (ξ → 0), this Whitham system reduces to the classical shallow-water system for very long waves. In the 
remainder of this article, we will refer to the system (1.3), (1.4) as the ASMP system.

The system (1.3), (1.4) has been studied in a number of works. In particular, it was shown in [10] that it admits periodic 
traveling-wave solutions and features a highest cusped wave on the bifurcation branch. The modulational stability of its 
periodic traveling-wave solutions has been investigated numerically in [4], and the system has been studied numerically in 
the presence of an uneven bottom in [25]. Moreover, it was shown in [14] that the initial-value problem on the real line is 
well posed locally-in-time for data that are strictly positive and bounded away from zero.

On the other hand, the system

ηt = −Hvx − (ηv)x, (1.5)

vt = −gKηx − vvx (1.6)

was put forward by Hur and Pandey in [17], and it was shown to behave somewhat more favorably than (1.3), (1.4) with 
regard to modulational instability and local well posedness (see also [4]). We will call this system the HP system.

In the current work, it is shown how the ASMP system (1.3), (1.4) and the HP system (1.5), (1.6) can be related by 
an asymptotic change of variables. Using the new variables, it is also possible to obtain a Hamiltonian system which is 
much less sensitive to instabilities than either the ASMP or HP system. We also show that the new system yields better 
approximations to the full water-wave problem than any of the other bi-directional Whitham system in use so far. We also 
present two other Hamiltonian systems, the right–left system, where dependent variables are chosen to represent wave 
propagating mainly to the left or to the right, and the essentially right-going system For the sake of completeness, we also 
include the Matsuno system in our study since it is easily obtained using the Hamiltonian theory.

2. The Hamiltonian formalism

A two-dimensional water-wave problem with the gravity g and the mean depth H is under consideration. The fluid is 
supposed to be inviscid and incompressible with irrotational flow. The unknowns are the surface elevation η(x, t) and the 
velocity potential φ(x, z, t). The fluid domain is the set 

{

(x, z) ∈ R
2
| − H < z < η(x, t)

}

extending to infinity in the positive 
and negative horizontal x-direction. Liquid motion is governed by the Euler system consisting of the Laplace’s equation in 
this domain

φxx + φzz = 0 for x ∈ R, −H < z < η(x, t), (2.1)

the Neumann boundary condition at the flat bottom

φz = 0 at z = −H, (2.2)

the kinematic condition at the free surface

ηt + φxηx − φz = 0 for x ∈R, z = η(x, t), (2.3)

and the Bernoulli equation

φt +
1

2

(

φ2
x + φ2

z

)

+ gη = 0 for x ∈R, z = η(x, t). (2.4)

The total energy of the fluid motion consists of potential and kinematic energy:

H =

∫

R

η
∫

0

gzdzdx+
1

2

∫

R

η
∫

−H

|∇φ|
2 dzdx. (2.5)
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It is known that the system (2.1)–(2.4) is equivalent to a certain Hamiltonian system. Indeed, with the trace �(x, t) =
φ(x, η(x, t), t) of the potential at the free surface and the Dirichlet–Neumann operator G(η) the total energy (2.5) takes the 
form

H =
1

2

∫

R

gη2dx+
1

2

∫

R

�G(η)�dx. (2.6)

We regard H(η, �) as a functional on a dense subspace of L2(R) × L2(R). We do not wish to specify smoothness of functions 
η, � and the exact domain of the functional H at this point, but we assume its variational derivatives lie in L2(R). The pair 
(η, �) represents the canonical variables for the Hamiltonian functional (2.6) with the structure map

Jη,� =

(

0 1

−1 0

)

and so the Hamiltonian equations have the form

ηt =
δH

δ�
, �t = −

δH

δη
. (2.7)

This evolutionary system in L2(R) is known to be equivalent to the Euler system (2.1)–(2.4). However, it does not simplify 
the problem since in general there is no explicit expression for the operator G(η). More details on the Hamiltonian approach 
can be found in [5–7,30].

3. Weakly nonlinear approximations

In this section several approximations to Hamiltonian (2.6) will be presented. Each one will give rise to a system that 
can be considered as an approximate model to (2.7). The analysis is mainly heuristic consisting of arguments represented 
in [5,9], for example.

Regarding the self-adjoint operator D = −i∂x in L2(R) we assume that the Dirichlet–Neumann operator appearing in 
(2.6) may be approximated by the sum G(η) = G0 + G1(η) where

G0(η) = D tanh(HD), G1(η) = DηD − G0ηG0.

Such substitution should not change the Hamiltonian significantly since the remaining terms in the truncated operator G(η)

are of at least quadratic order in η and its derivatives. After integration by parts (Lemma 2.1 in [9]) it leads to

H =
1

2

∫

R

(

gη2
+ �G0� − η(D�)2 − η(G0�)2

)

dx. (3.1)

One may notice the relative advantage of this approximation immediately. Instead of integrating the system (2.1)–(2.4), the 
much simpler system (2.7) with Hamiltonian (3.1) is to be solved.

In works on the surface water-wave problem, it has been common to use unknowns other than the potential �. Here, we 

use the variable u = �x = φx +ηxφz = φτ

√

1+ η2
x , which is proportional to the velocity component of the fluid ϕτ which is 

tangent to the surface. This change of variables transforms the Hamiltonian (3.1) to

H =
1

2

∫

R

(

gη2
+ u

tanh HD

D
u + ηu2

+ η(tanh HDu)2
)

dx. (3.2)

From now on, we will refer to the pair (η, u) as Boussinesq variables. Note that unlike (η, �) these new variables are not 
canonical. The corresponding structure map has the form

Jη,u =

(

0 −∂x
−∂x 0

)

and the Hamiltonian system (2.7) transforms to

ηt = −∂x
δH

δu
, ut = −∂x

δH

δη
. (3.3)

It will become clear later that it is convenient to introduce yet another change of dependent variables. We define the new 
velocity variable v =Ku, where the transformation K is defined by the expression

K =
tanh HD

HD
, (3.4)
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which shows that it is an invertible and bounded Fourier multiplier operator. While the physical meaning of the new 
velocity variable v =K∂x� = i tanh(HD)�/H is not clear, it will be shown later that it can be used to find a new system of 
equations which has desirable mathematical properties. In these new variables the Hamiltonian functional H(η, v) has the 
form

H =
1

2

∫

R

(

gη2
+ HvK−1v + η(K−1v)2 + η(HDv)2

)

dx (3.5)

with the structure map

Jη,v =

(

0 −K∂x
−K∂x 0

)

and the Hamiltonian system (2.7) transforming to

ηt = −K∂x
δH

δv
, vt = −K∂x

δH

δη
. (3.6)

In physical problems a question often arises if there is a way to split waves on right- and left-going components. One 
possible way of doing this splitting is to regard the linearization of the problem given in elevation-velocity variables and 
then change variables [23]. Namely, regard the following transformation

r =
1

2
(η +Wu), s =

1

2
(η −Wu) (3.7)

where W is supposed to be an invertible function of the differential operator D . The inverse transformation has the form

η = r + s, u = W
−1(r − s). (3.8)

Omitting the details provided in [9] we notice that to split the linearized system into two independent equations one needs 
to take

W =

√

H

g
K =

√

tanh HD

gD
. (3.9)

The new variables r and s correspond to right- and left-going waves, respectively. Returning to the nonlinear theory we want 
to obtain a new Hamiltonian system with respect to unknown functions (3.7). Using the variables r and s and integrating 
by parts puts the Hamiltonian (3.2) into the form

H =
1

2

∫

R

(

2g(r2 + s2) + (r + s)(W−1(r − s))2 + (r + s)(
√

gG0(r − s))2
)

dx, (3.10)

with the structure map

Jr,s =

(

−W∂x/2 0

0 W∂x/2,

)

and the Hamiltonian system (2.7) transforming to

rt = −
1

2
W∂x

δH

δr
, st =

1

2
W∂x

δH

δs
. (3.11)

In what follows we perform a Hamiltonian perturbation analysis based on the assumption of smallness of wave gradients. 
Regard a wave-field with a characteristic non-dimensional wavelength λ = l/H , amplitude α = a/H and velocity β = b/

√
gH

where l, a and b are typical dimensional parameters. Define the small parameter µ = 1/λ. Usually α and β are identified 
and regarded as functions of wave-number µ. For justification of the models derived below there is no need for this 
identification or concretization of the dependence α, β on µ. The meaning of the scaling is of course that η = HO(α), 
u =

√
gHO(β) and HD = −iH∂x = O(µ). During our derivations, omission of higher-order terms is applied only to the 

Hamiltonian expressions (3.2), (3.5). The main idea is that high-order dispersive effects have little effect on the energy of 
the motion. Moreover, this approach guarantees that the obtained systems are Hamiltonian.
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3.1. Matsuno model

The first useful system can be obtained if we take Hamiltonian (3.2) as it is and find the corresponding variational 
derivatives. Taking any real-valued square integrable smooth function h and using the definition

∫

R

δH

δu
(x)h(x)dx =

d

dτ

∣

∣

∣

∣

τ=0

H(u + τh,η) =
1

2

∫

R

(HhKu + HuKh + 2ηuh + 2η(tanh HDu) tanh HDh)dx

one arrives after integration by parts to

δH

δu
= HKu + ηu − tanh HD(η tanh HDu)

and in the same way to

δH

δη
= gη +

1

2
u2

+
1

2
(tanh HDu)2.

Thus System (3.3) transforms to

ηt = −HKux − (ηu)x + tanh HD(η tanh HDu)x, (3.12)

ut = −gηx − uux − (tanh HDu) tanh HDux (3.13)

which appeared in [18], and is similar to the systems found in [3] and [22]. It is not known so far if the system is well 
posed, but from a modeling point of view, it is sometimes regarded as the most exact model of all the so called bidirectional 
Whitham systems. Even though this system conserves the Hamiltonian (3.2), it turns out that this system is very sensitive 
to aliasing due to spatial discretization.

3.2. ASMP model

Simplifying the Hamiltonian through and appropriate scaling such as α = O (µN ) and thus discarding the last integrand 
in (3.2), one arrives at the system

ηt = −HKux − (ηu)x,

ut = −gηx − uux.

This is the system (1.3), (1.4) mentioned in the introduction. The corresponding Hamiltonian is

H =
1

2

∫

R

(

gη2
+ HuKu + ηu2

)

dx. (3.14)

This is also a Hamiltonian system with respect to the same Boussinesq variables η, u in the same sense as (3.3). This model 
started to attract attention after it appeared in [1] and [23]. The local well-posedness of the system (1.3)–(1.4) is proved 
[14] by imposing the additional condition infη(x, 0) > 0 on the initial surface elevation. It should be remarked that this 
condition may mean that the system is not useful from a physical point of view since all surface water wave models should 
have the property that the mean elevation be zero. However strictly positive solutions, like solitons for example, have always 
featured prominently in the analysis of such systems. In a recent paper by Claassen and Johnson [4] the well-posedness for 
more general initial data was questioned. In fact the authors showed numerically that the ASMP system is probably ill-posed 
in L2(T). However, our computations suggest to assume this is not the case in L2(R) and so that the system is probably 
well-posed on the real line. We also show that periodic discretization affects numerical computations significantly.

3.3. Hamiltonian version of the Hur–Pandey model

Regarding the Hamiltonian (3.5) given in the new variables defined above, one may discard the last integral in the 
expression and simplify the next one staying in the same framework of accuracy up to O(µ2αβ2). This results in the 
Hamiltonian

H =
1

2

∫

R

(

gη2
+ HvK−1v + ηv2

)

dx (3.15)

with the Gâteaux derivatives
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δH

δv
= HK

−1v + ηv,

δH

δη
= gη +

1

2
v2.

Thus for the Hamiltonian (3.15), the system (3.6) has the form

ηt = −Hvx −K(ηv)x, (3.16)

vt = −gKηx −K(vvx). (3.17)

To the best of our knowledge this system is completely new. One may notice that the nonlinear part of System (3.16)–(3.17)
contains only the bounded operator K∂x , which could mean that it is at least a locally well-posed system. Moreover we 
shall see later that among all bidirectional Whitham systems this is numerically the most stable one.

If one formally substitutes the operator K into the nonlinear part of (3.16)–(3.17) by unity according to the long wave 
approximation K = 1 +O(µ2) then one arrives at the system

ηt = −Hvx − (ηv)x,

vt = −gKηx − vvx,

i.e. system (1.5), (1.6) which was introduced by Hur & Pandey [17]. This system does well in the sense of numerical stability 
comparing with ASMP model but not as well as its Hamiltonian relative (3.16)–(3.17). Unlike the system (3.16)–(3.17) one 
cannot say for certain if the Hur–Pandey system is Hamiltonian with the same structure map as the original water-wave 
problem.

3.4. Right–left waves model

Again simplifying the Hamiltonian (3.10) up to O(µ2αβ2) we obtain

H = g

∫

R

(

r2 + s2 +
1

2H
(r + s)(r − s)2

)

dx (3.18)

with the Gâteaux derivatives
δH

δr
= 2gr +

g

2H
(3r + s)(r − s),

δH

δs
= 2gs −

g

2H
(3s + r)(r − s).

Hence for the Hamiltonian functional (3.18) the bi-directional Whitham system has the form

rt = −gWrx −
g

4H
W∂x(3r + s)(r − s), (3.19)

st = gWsx −
g

4H
W∂x(3s + r)(r − s). (3.20)

This system is also new even though it has implicitly appeared in a recently submitted paper [8], where it was not investi-
gated further. Here we emphasize its usefulness and demonstrate that this system also outperforms the system (1.5)–(1.6) in 
the sense of numerical stability. Moreover, the variables r, s have a clear physical meaning and in particular initial data are 
easier to obtain. This means that sometimes the initial elevations r(x, 0) and s(x, 0) can be measured directly as opposed to 
velocity variables. We do not know if the system is well-posed. It deserves note that the symbol of the unbounded operator 
W∂x behaves like a square root at infinity. This fact might be enough to obtain well posedness. In any case, as shown later, 
the system has favorable numerical stability properties.

3.5. Uncoupled twin-unidirectional model

One may notice that in the system (3.19)–(3.20), the coupling between the dependent variables is due to the following 
part of Hamiltonian (3.18):

Hcoupling = −
g

2H

∫

R

rs(r + s)dx. (3.21)

This part may sometimes be neglected. Then we arrive to the Hamiltonian

H = g

∫

R

(

r2 + s2 +
1

2H
(r3 + s3)

)

dx (3.22)
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and the corresponding Hamiltonian system consisting of the two independent equations

rt = −gWrx −
3g

2H
Wrrx, (3.23)

st = gWsx +
3g

2H
Wssx. (3.24)

The first equation is a modification of the equation proposed by Whitham [27,28]. The second one is its analogue for 
left-going waves. It is not known if they are well-posed even though for a large class of similar equations the answer is 
affirmative [13]. We shall see below that it is quite often the case that colliding waves almost do not affect each other and 
one may admit independence and regard basically just the equation (3.23). Up to small terms, the final result is obtained 
by linear superposition (3.8). Indeed in Fig. 2 the dependence on time of interaction energy (3.21) for the right–left system 
(3.19), (3.19) is represented. One can see that the interaction is going on for a short time and is of negligible order. This 
results in a small residual of solution after the interaction.

4. The numerical approach

All the models discussed in the project are solved by treating the linear part L and the nonlinear part N separately 
using a split-step scheme. In other words we solve a system of the form

zt = L(z) +N (z) (4.1)

which is treated by solving the systems zt = L(z) and zt = N (z). Denote by exp(tL) an integrator of the first one and 
exp(tN ) an integrator of the second one. We make use of a symplectic integrator of 6th order introduced by Yoshida [29]. 
The main advantage of such an integrator is that the time step can be made relatively large which can accelerate calculations 
greatly. Yoshida developed his numerical scheme for separable finite Hamiltonian systems, however, it proved to be efficient 
also in water wave problems [2]. Below we describe the method in application to the models derived. Following Yoshida a 
one step integrator for the whole system (4.1) is approximated by the product

exp[δt(L+N ))] = exp(c1δtL)exp(d1δtN )exp(c2δtL) · . . . · exp(d7δtN )exp(c8δtL)

where δt is the time step and ci , di are constants given by

c1 = c8 = w3/2, c2 = c7 = (w3 + w2)/2, c3 = c6 = (w2 + w1)/2, c4 = c5 = (w1 + w0)/2

and

d1 = d7 = w3, d2 = d6 = w2, d3 = d5 = w1, d4 = w0.

Here we take the following set of weights

w3 = 0.784513610477560, w2 = 0.235573213359357,

w1 = −1.17767998417887, w0 = 1.315186320683906.

One can notice that the integrator is symmetric. The meaning of the product is that each time step is divided into substeps.
The systems zt = L(z) and zt = N (z) are solved using spectral methods. Moreover, the first one for each model can be 

solved exactly. For example, the linearization of the system (3.16)–(3.17) has the following solution

η(t) = cosUtη0 − iHD
sinUt

U
v0,

v(t) = −ig/H tanh HD
sinUt

U
η0 + cosUtv0,

with the initial data η0 , v0 . The operator U has the form

U =

√

gG0 =

√

gD tanh HD. (4.2)

These formulas represent the integrator exp(tL) for the systems (3.16)–(3.17) and (1.5)–(1.6) since the linear part L is the 
same for those two.

For the systems (1.3)–(1.4) and (3.12)–(3.13) the integrator exp(tL) has the form

η(t) = cosUtη0 − i tanh HD
sinUt

U
u0,

u(t) = −igD
sinUt

U
η0 + cosUtu0,

with the initial data η0 , u0 .
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For the system (3.19)–(3.20), the operator exp(tL) is diagonal,

gW∂x = igWD = i
√

gG0 sgn D,

and the linearized problem has the solution

r(t) = exp(−itU sgn D)r0,

s(t) = exp(itU sgn D)s0,

where r0 , s0 are initial right- and left-going waves, respectively, and U is defined by (4.2).
For all models discussed here, we use the standard Runge–Kutta scheme of 4th order as the nonlinear integrator exp(tN ). 

It is explicit but not symplectic. One might argue that it makes the whole integrator exp(tL + tN ) not symplectic any more.

As an alternative we also ran all computations with a symplectic Euler scheme, such as described in [15]. This scheme 
turns out to be explicit for most of the models discussed here. Indeed, for example, for the ASMP model (1.3)–(1.4) one step 
of the semi-implicit Euler method has the form

ηn+1 = ηn − δt∂x(HKun + ηn+1un),

un+1 = un − δt∂x(gηn+1 +
1

2
u2
n)

that can be resolved with respect to ηn+1 as follows. On the space lN2 define operator Bn f = −δt∂x(un f ) that is bounded 
‖Bn‖ � δtNmaxun . Expecting uniform boundedness of solution u one can choose the time step δt = O (1/N) so that ‖Bn‖ �
C < 1. Thus

(1− Bn)ηn+1 = ηn − δt∂xHKun

is resolved as

ηn+1 = (1+ Bn + B2
n + . . .)(ηn − δt∂xHKun).

Hence ηn+1 , un+1 are resolved via ηn , un and the scheme is explicit and symplectic at the same time.

The numerical scheme of the free-surface problem for the Euler equations is based on a time-dependent conformal 
mapping of the fluid domain into a strip. A complete description of the method can be found in [20,26].

5. Numerical experiments

The model systems described above are now characterized with respect to numerical instability due to spatial discretiza-
tion. For the numerical experiments we make the problem nondimensional by setting H = 1 and g = 1. The computational 
domain is −L ≤ x ≤ L, with L = 70. Initial conditions are imposed by means of

η0(x; x0,a, λ) = a · sech2( f (x− x0)) − C, (5.1)

where

f (λ) =
2

λ
log

(

1+

√

2
)

, C(λ) =
a

2 f L
(tanh f (L − x0) + tanh f (L + x0)) .

Here C(λ) and f (λ) are chosen so that 
∫ L
−L η0(x)dx = 0, and the wave-length λ is the distance between the two points x1

and x2 at which η0(x1) = η0(x2) = a/2. Below we always take the wave-length λ =
√
5.

In all problems below we are interested in time evolution from t0 = 0 to tmax = 50. In cases of collision of two waves we 
send them towards each other. So first of all we simulate problems that cannot be described by unidirectional models like 
KdV or Whitham equations. Secondly, one can see that all the models introduced are in line with the effect of quasi-elastic 
interaction of waves. So after collision waves behave as independent with slight tails. In all experiments below we provide 
initial data η(x, 0) and �(x, 0) for the Euler system. Initial data for the approximate models can easily be obtained by 
applying transformations of variables u(x, 0) = ∂x�(x, 0), (3.4) and (3.7). According to (3.8) one can make quasi-right moving 
waves taking the surface velocity u(x, 0) = W−1η(x, 0).

As was already said the splitting method we are making use of allows us to take relatively large time steps. So we take 
δt = 0.05 when the number of Fourier harmonics is either N = 512 or N = 1024. This choice is dictated by the stiffness of 
the ASMP model (1.3)–(1.4) since the scheme becomes unstable for large N and might need filtering due to the probable 
ill-posedness of the model. In comparative experiments, on the other hand, we do not want to use any filtration.
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Fig. 1. Experiment (A). The thin grey curve represents the initial data. The black curve is the approximate solution of the full Euler system at t = 50. The 
color coding is as follows: purple – Hamiltonian HP system; red – right–left system; blue – ASMP system; green – HP system. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Left panel: Development of the Hamiltonian for total initial energy H = 0.1420, and the coupling term Hcoupling for Experiment (A). Right panel: 
close-up of the graph of Hcoupling .

Experiment 5.1 (A). Consider a collision of two approaching positive waves. Let a = 0.2 and x0 = 20. Impose initial surface

η(x,0) = η0(x; x0) + η0(x;−x0)

and initial potential

�(x,0) = −

x
∫

0

W
−1η0(ξ ; x0)dξ +

x
∫

0

W
−1η0(ξ ;−x0)dξ.

All approximate systems in Experiment (A) are solved on the grid with N = 1024. (Fig. 1.)

Experiment 5.2 (B). Consider a collision of a trough and a convex wave. Let a = 0.1 and x0 = 20. Impose initial surface

η(x,0) = η0(x; x0) − η0(x;−x0)

and initial potential

�(x,0) = −

x
∫

0

W
−1η0(ξ ; x0)dξ −

x
∫

0

W
−1η0(ξ ;−x0)dξ.

All approximate systems in Experiment (B) are solved on the grid with N = 512. (Fig. 3.)
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Fig. 3. Experiment (B). The thin grey curve represents the initial data. The black curve is the approximate solution of the full Euler system at t = 50. The 
color coding is as follows: purple – Hamiltonian HP system; red – right–left system; blue – ASMP system; green – HP system.

Fig. 4. Experiment (C). The thin grey curve represents the initial data. The black curve is the approximate solution of the full Euler system at t = 50. The 
color coding is as follows: purple – Hamiltonian HP system; red – right–left system; blue – ASMP system; green – HP system.

Experiment 5.3 (C). Consider a collision of two troughs. Let a = 0.1 and x0 = 20. Impose initial surface

η(x,0) = −η0(x; x0) − η0(x;−x0)

and initial potential

�(x,0) =

x
∫

0

W
−1η0(ξ ; x0)dξ −

x
∫

0

W
−1η0(ξ ;−x0)dξ.

All approximate systems in Experiment (C) are solved on the grid with N = 512. (Fig. 4.)

Experiment 5.4 (E1–E3). Consider the evolution of waves with the initial surface elevation

η(x,0) = η0(x; x0 = 0)

where a = 0.3 and x0 = 0. Impose firstly (E1) initial potential

�(x,0) =

x
∫

0

W
−1η0(ξ)dξ,

than secondly (E2) initial potential

�(x,0) =

x
∫

0

η0(ξ)dξ,
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Fig. 5. Experiment (E1). The thin grey curve represents the initial data. The black curve is the approximate solution of the full Euler system at t = 50. The 
color coding is as follows: purple – Hamiltonian HP system; red – right–left system; blue – ASMP system; green – HP system.

Fig. 6. Experiment (E2). The thin grey curve represents the initial data. The black curve is the approximate solution of the full Euler system at t = 50. The 
color coding is as follows: purple – Hamiltonian HP system; red – right–left system; blue – ASMP system; green – HP system.

and finely (E3) initial potential

�(x,0) = 0.

All approximate systems in Experiments (E1–E3) are solved on the grid with N = 1024. (Figs. 5–7.) Note that the initial 
potential of Experiment (E2) creates only approximately a right-going wave according to the linear long wave theory. Any-
way neither the conditions of Experiment (E1) or of Experiment (E2) induce completely one way propagation as numerical 
results shows. Surprisingly, initial potentials of the type as in Experiment (E3) lead to better correspondence between ap-
proximate models and the Euler system then initial potentials of the type as in Experiment (E2). And moreover, of the type 
as in Experiment (E2) lead to the better correspondence then of the type as in Experiment (E1). We believe it is mainly a 
technical feature since the initial error of evaluation surface potential via W−1 and integration normally increases with the 
time.

In all presented figures initial elevation profiles are marked by grey lines. Solutions of the Euler system (2.1)–(2.4)
are black, of the ASMP system (1.3)–(1.4) are blue, of the Hur–Pandey system (1.5)–(1.6) are green, of the Hamiltonian 
Hur–Pandey system (3.16)–(3.17) are purple, and of the right–left system (3.19)–(3.20) are red. (See Table 1.)

In order to quantitatively compare the accuracy of each approximate model we calculate the differences between Euler 
solutions and solutions of each system correspondingly. These errors are measured in the integral L2-norm normalized by 
initial condition as follows

E =
‖ηEuler − ηmodel‖

‖ηinitial‖

where

‖ηEuler − ηmodel‖ = max
t

√

∫

(ηEuler(x, t) − ηmodel(x, t))2dx
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Fig. 7. Experiment (E3). The thin grey curve represents the initial data. The black curve is the approximate solution of the full Euler system at t = 50. The 
color coding is as follows: purple – Hamiltonian HP system; red – right–left system; blue – ASMP system; green – HP system.

Table 1

Hamiltonians H for various systems, evaluated at t = 50.

Experiment A B C E1 E2 E3

Euler 0.1316 0.0329075955585 0.03291 0.1481 0.1398 0.0740610317118

ASMP 0.1440 0.0329075170851 0.03136 0.1686 0.1569 0.0740419134333

Hamiltonian HP 0.1405 0.0329075170854 0.03180 0.1626 0.1524 0.0740419134422

Right–Left 0.1420 0.0329075170854 0.03162 0.1651 0.1543 0.0740419134422

Table 2

Errors E , evaluated at t = 50.

Experiment A B C E1 E2 E3

ASMP 0.488 0.109 0.149 0.883 0.768 0.153

Hur–Pandey 0.253 0.085 0.126 0.339 0.315 0.082

Hamiltonian HP 0.167 0.130 0.106 0.231 0.207 0.061

Right–Left 0.167 0.089 0.128 0.240 0.218 0.048

and

‖ηinitial‖ =

√

∫

η(x,0)2dx.

Here ηEuler(x, t) is the solution for the Euler system and ηmodel(x, t) corresponds either to ASMP, Hur–Pandey, Hamiltonian 
Hur–Pandey or Right–Left system. The corresponding results are represented in Table 2.

As was stated above some models work better in the sense of numerical stability. There were many discussions about 
ill-posedness of ASMP model [4]. In the next experiment we provide an example with initial data satisfying the condition 
for local well posedness. One can see that the initial data is lifted over the real axis so the mean value is approximately 0.35. 
It is known from Ehrnström, Pei, Wang [14] that we are in a locally well posed situation, however, the obtained solution 
seems very unstable as one can see in Fig. 8. This experiment was repeated with different time integrators, including the 
symplectic first-order Euler method described in Section 4. The results were always the same, pointing to doubts about the 
long-time well posedness of the ASMP system.

In order to systematize our experiments regarding the well posedness and stability of the Whitham systems, we used 
the following initial data:

Experiment 5.5. Suppose we have a trough with amplitude a = 0.3. Let x0 = 0. Solve System (1.3)–(1.4) with the initial surface

η(x,0) = −η0(x) + 0.35

and the initial velocity

u(x,0) = W
−1η(x,0).

Problems with the HP system (1.5)–(1.6) may occur if an initial trough is deep enough. In the example shown on Fig. 9
we have to filter half of the high Fourier modes to make computations stable. The resulting noisy solution continues its 
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Fig. 8. Approximate solution of the ASMP Whitham system with initial data satisfying the condition infη0 > 0.

Fig. 9. Left panel: De-aliased solution of the HP system with N = 512 and time step = 0.05. Snapshot is taken at t = 25. Right panel: The same for 
Hamiltonian version of the HP system and the Right–Left system.

propagation and one can notice that all the oscillations happen around some reasonable mean curve that can be obtained 
easily by solving either the system (3.16)–(3.17) or the system (3.19)–(3.20) without any filtration. The results are repre-
sented on Fig. 9.

Experiment 5.6. Suppose a = 0.6 and x0 = 0. Solve System (1.5)–(1.6) with initial surface

η(x,0) = −η0(x)

and initial velocity

v(x,0) = KW
−1η(x,0).

As to numerical stability of the Right–Left system (3.19)–(3.20), we can notice that this system encountered problems 
only in extreme non-physical situations, as for example, with an initial deep trough of amplitude a = 1.2 and increasing 
number of harmonics up to N = 215 . The Hamiltonian version of the Hur–Pandey system (3.16)–(3.17) is numerically stable 
even in such a physically absurd problem.

Finally, let us look at the development of the Hamiltonian in two cases. First, an example of self-stabilization in the 
Matsuno system:

Experiment 5.7. Suppose a = 0.2 and x0 = 0. Solve Matsuno System (3.12)–(3.13) with initial surface η(x, 0) = η0(x) and initial 
velocity u(x, 0) =KW−1η(x, 0). We take the time step δt = 0.1 and the number of grid points N = 512.

One might think that a numerical method conserving the total energy could remove the instabilities in the solution. 
Unfortunately this is not the case. We applied a simple projection method [15] to obtain a conservative method. With this 
method, energy was indeed conserved, and we managed to get a constant instead of the time-varying energy shown in 
Fig. 11. However, the solutions itself remained noisy such as in Fig. 10, and the computational cost is substantially higher 
than in the nonconservative method.
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Fig. 10. Self-stabilized solution of the ASMP, Hamiltonian HP and Matsuno systems with N = 512 and time step δt = 0.1. Left panel: t = 20, right panel: 
t = 50.

Fig. 11. Total energy of solutions of ASMP and Hamiltonian HP systems, and self-stabilized solution of the Matsuno system as a function of time t , with 
N = 512 and time step δt = 0.1.
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The initial-value problem for a particular bidirectional Whitham system modelling
surface water waves is under consideration. This system was recently introduced in
Dinvay (2018). It is numerically shown to be stable and a good approximation to
the incompressible Euler equations. Here we prove local in time well-posedness. Our
proof relies on an energy method and a compactness argument. In addition some
numerical experiments, supporting the validity of the system as an asymptotic model
for water waves, are carried out.
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1. Introduction

We regard the Cauchy problem for the system that in non-dimensional variables has the form

ηt = −vx − i tanh D(ηv), (1.1)

vt = −i tanh Dη − i tanh Dv2/2 (1.2)

where D = −i∂x and so tanh D is a bounded self-adjoint operator in L2(R). The system models the two-

dimensional water wave problem for an inviscid incompressible flow. As usual η denotes the surface elevation.

Its dual variable v roughly speaking has the meaning of the surface fluid velocity. In the Boussinesq regime

it coincides with the horizontal fluid velocity at the surface.

Eqs. (1.1)–(1.2) appeared in literature recently as an alternative to other linearly fully dispersive models

able to describe two-wave propagation [1]. Those models capture many interesting features of the full water

wave problem and are in a good agreement with experiments [2]. As to well-posedness, the existing results for

them are not satisfactory. For example, the system regarded in [3] is locally well posed if only an additional

non-physical condition η > C > 0 is imposed. This system is probably ill-posed for large data if one removes

the assumption η > 0. An heuristic argument is given in [4]. This is not a problem for System (1.1)–(1.2).

E-mail address: evgueni.dinvay@math.uib.no.

https://doi.org/10.1016/j.aml.2018.08.005
0893-9659/© 2018 Elsevier Ltd. All rights reserved.
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Another important property of System (1.1)–(1.2) is its Hamiltonian structure. Indeed, regarding the

functional

H(η, v) =
1

2

∫

R

(

η2 + v
D

tanh D
v + ηv2

)

dx

Eqs. (1.1)–(1.2) can be rewritten in the form

∂t(η, v)T = J∇H(η, v)

with the skew-adjoint matrix

J =

(

0 −i tanh D
−i tanh D 0

)

.

In particular, H is a conserved quantity. Thus Eqs. (1.1)–(1.2) provide an example of a nonlinear Hamiltonian

system that is locally well posed. It is worth to notice that this model can be obtained in the long wave

framework from Zakharov’s system [5] also known to be Hamiltonian.

In some sense (1.1)–(1.2) can be regarded as a regularisation of the system introduced in [6]. Indeed, if

one formally admits that tanh D ∼ D for small frequencies, then substituting D instead of tanh D to the

nonlinear part of System (1.1)–(1.2) one arrives to the system regarded in [6]. Such approximation is in

line with the long wave framework, when we keep all dispersive terms in the linear part and exactly first

dispersive term untouched in the nonlinear part. That is formally justified due to smallness of regarded

water waves. Changing variables and admitting tanh D ∼ D in nonlinear part, as explained in [1], one

can arrive to the system studied in [3]. It is also worth to notice that for the system regarded in [6] the

Benjamin–Feir instability of periodic travelling waves is proved. If one in addition formally discards the

term η∂xu in the system given in [6], then a new alternative system turns out to be locally well-posed and

features wave breaking [7]. However, the latter does not belong to the class of Boussinesq–Whitham models

since nonlinear non-dispersive terms have been neglected.

In addition it is worth to notice that System (1.1)–(1.2) outperforms other bidirectional Whitham models

both in the sense of numerical stability and accuracy of approximation of Euler equations [1]. This is might

not be surprising since in the nonlinear part of Eqs. (1.1)–(1.2) we have a bounded operator. However, if

one tries to diagonalise the system then one will encounter a fractional derivative |D|

1/2
both in the linear

and nonlinear parts. So further considerations turn out to be not completely straightforward.

Finally, let us formulate the main result. We stick to the usual notations of Sobolev spaces Hs = Hs(R)

with the norm defined via Fourier transform.

Theorem 1.1. Let s > 0. For any η0 ∈ Hs+1/2(R) and v0 ∈ Hs+1(R) there exists a positive

time T > 0 depending only on the norm ‖η0‖Hs+1/2 + ‖v0‖Hs+1 such that there exists unique solution

(η, v) ∈ C([0, T ]; Hs+1/2(R) × Hs+1(R)) of System (1.1)–(1.2) with the initial data (η0, v0). Moreover, it

depends continuously on the initial data.

In the following section a priori bound is established. The complete proof of the existence would result

from a standard compactness argument implemented on a regularised version of the system. In the third

section, we derive an estimate for the difference of two solutions. With this estimate in hand, one can prove

the uniqueness as well the continuity of the flow map. For the complete proof one can follow Bona and

Smith [8], for example. In the fourth section consistency is analysed. In the end, the relevance of (1.1)–(1.2)

as an asymptotic model for water waves is supported by numerical calculations. The latter demonstrates

a good agreement with the Euler equations. It is worth to notice that Theorem 1.1 does not rely on the

non-cavitation hypothesis 1 + η > 0, since smallness of waves is implied in the model.
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2. A priori estimate

For the notational convenience we stick to the case of the low regularity with s = 0 in the theorem

formulation. One can see that it changes insignificantly the derivation of the estimate. Introduce a functional

of the form

B(η, v) =
1

2

∫

R

(

η|D|η + v|D|

2
v
)

dx (2.1)

and a norm E(η, v) of the view

E2(η, v) =
1

2
‖η ‖

2

L2
+

1

2
‖v ‖

2

L2
+B(η, v) (2.2)

that is obviously equivalent to ‖η‖H1/2 + ‖v‖H1 . Here the pair η(x, t), v(x, t) represents a possible solution

of System (1.1)–(1.2).

Lemma 2.1 (A Priori Estimate). Suppose η(t) ∈ H1/2(R) and v(t) ∈ H1(R) solving System (1.1)–(1.2)

are defined on some interval including zero. Then there exist constants C > 0 and T > 0 such that

E(t) 6
E0eCt

1 − E0(eCt
− 1)

for any t ∈ [0, T ). Here E(t) stands for E(η(t), v(t)) and E0 = E(0).

Proof. Firstly, calculate the obvious derivative

1

2

d

dt
‖η ‖

2

L2
=

∫

ηηt = −

∫

ηvx − i

∫

η tanh D(ηv) 6 ‖η‖L2
‖∂xv‖L2

+ ‖η ‖

2

L2
‖v‖L∞

that follows from Hölder’s inequality and boundedness of operator tanh D in L2(R). Similarly

1

2

d

dt
‖v ‖

2

L2
6 ‖η‖L2

‖v‖L2
+ ‖v ‖

2

L2
‖v‖L∞

.

Hence derivative of the first two terms in (2.2) is bounded as

1

2

d

dt

(

‖η ‖

2

L2
+‖v ‖

2

L2

)

6

(

‖η‖L2
+ ‖η ‖

2

L2
+‖v ‖

2

L2

)

‖v‖H1 . (2.3)

Differentiating (2.1) with respect to t obtain

d

dt
B(η, v) =

∫

R

[

η|D|ηt + v|D|

2
vt

]

dx =

=

∫

R

[

−η|D|∂xv − iη|D| tanh D(ηv) − iv|D|

2
tanh Dη − iv|D|

2
tanh Dv2/2

]

dx (2.4)

Note that i|D|

2
tanh D = ∂x|D||tanh D| and so combining the first and the third integral in (2.4) gives

−

∫

η|D|∂xv −

∫

v∂x|D||tanh D|η =

∫

v∂x|D|(1 − |tanh D|)η 6 C‖η‖L2
‖v‖L2

since operator ∂x|D|(1−|tanh D|) is obviously bounded. Again applying i|D| tanh D = ∂x(|tanh D|−1)+∂x

to the second part of the Integral (2.4) obtain

− i

∫

η|D| tanh D(ηv) =

∫

η∂x(1 − |tanh D|)(ηv) −

∫

η∂x(ηv)
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where the first integral is bounded by ‖η ‖

2

L2
‖v‖L∞

up to a constant. The second integral

−

∫

η∂x(ηv) =
1

2

∫

v∂xη2 = −

1

2

∫

η2∂xv 6
1

2
‖η2

‖L2
‖∂xv‖L2

6 C‖η ‖

2

H1/2 ‖v‖H1

where the L4-norm was controlled by H1/2-norm as in Theorem 3.3 of the book by Linares and Ponce [9].

Noticing again i|D|

2
tanh D = iD|D|(|tanh D| − 1) + ∂x|D| one can treat the last part of Integral (2.4) as

− i

∫

v|D|

2
tanh Dv2/2 = i

∫

vD|D|(1 − |tanh D|)v2/2 −

∫

v∂xv|D|v 6

6 C‖v ‖

2

L2
‖v‖L∞

+ ‖∂xv ‖

2

L2
‖v‖L∞

6 C‖v ‖

3

H1 .

Thus combining all these inequalities in Identity (2.4) one arrives at

d

dt
B(η, v) 6 C

(

‖η‖L2
‖v‖L2

+ ‖η ‖

2

L2
‖v‖H1 + ‖η ‖

2

H1/2 ‖v‖H1 + ‖v ‖

3

H1

)

that is together with (2.2) and (2.3) results in

d

dt
E 6 C(E + E2) (2.5)

where equivalence of E(η, v) to ‖η‖H1/2 + ‖v‖H1 was used. Integration of (2.5) proves the lemma. �

3. Uniqueness

Suppose on some time interval we have two solution pairs η1, v1 and η2, v2 of System (1.1)–(1.2). Introduce

functions θ = η1 − η2, w = v1 − v2 and ζ = (η1 + η2)/2, u = (v1 + v2)/2. Then θ and w satisfy the following

system

θt = −wx − i tanh D(uθ + ζw), (3.1)

wt = −i tanh Dθ − i tanh D(uw). (3.2)

The idea is to obtain an estimate for this system similar to the priori bound given in the above lemma. For

this purpose one calculates derivative of the square norm E2(θ, w). Calculations are similar

1

2

d

dt

(

‖θ ‖

2

L2
+‖w ‖

2

L2

)

6
√

2‖θ‖L2
‖w‖H1 + (‖ζ‖L2

+ ‖u‖H1) (‖θ‖L2
+ ‖w‖H1)

2
(3.3)

and for the derivative of the rest part of E2 obtain

d

dt
B(θ, w) =

∫

R

[−θ|D|∂xw −

−iθ|D| tanh D(uθ + ζw) − iw|D|

2
tanh Dθ − iw|D|

2
tanh D(uw)

]

dx. (3.4)

The first and the third integral in (3.4) together are estimated exactly as the corresponding part in (2.4) by

‖θ‖L2
‖w‖L2

up to some constant. Similarly also estimate the fourth integral in (3.4) by ‖u‖H1‖w ‖

2

H1 up to

a constant. Due to identity i|D| tanh D = ∂x(|tanh D| − 1) + ∂x, instead of regarding the second integral in

(3.4) it is enough to estimate the following integral
∫

|θ∂x(ζw)| 6 ‖|∂x|

1/2
θ‖L2

‖|∂x|

1/2
(ζw)‖L2

6

6 C‖|∂x|

1/2
θ‖L2

(

‖|∂x|

1/2
ζ‖L2

‖w‖L∞
+ ‖ζ‖L4

‖|∂x|

1/2
w‖L4

)

6 C‖ζ‖H1/2‖θ‖H1/2‖w‖H1

which finishes the estimation of Derivative (3.4). Firstly, the fractional Leibniz rule was used here, that was

derived by Kenig, Ponce, and Vega [10]. For the exact form we apply, one can look on page 52 of the book
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by Linares and Ponce [9]. Secondly, L4-norms were estimated via H1/2-norms. This estimate follows also

from product estimates in Sobolev spaces.

The resulting inequality has the form

d

dt
E(θ, w) 6 C

(

1 + ‖ζ‖H1/2 + ‖u‖H1

)

E(θ, w). (3.5)

Taking into account boundedness of the norm ‖ζ‖H1/2 +‖u‖H1 on the regarded time interval one can deduce

uniqueness from the obtained inequality (3.5).

4. Consistency

In this section we will show that System (1.1)–(1.2) is at least as precise as any of Boussinesq systems [11]

in the sense of approximation of water waves. Denoting by h the mean depth of the fluid layer, by a a typical

amplitude and by λ a typical wave length we assume

ε = a/h = (h/λ)2
≪ 1

where ε is a long wave parameter in this Boussinesq regime. In this framework the regarded Whitham–

Boussinesq model has the form

ηt = −vx − i
√

ε tanh(
√

εD)(ηv), (4.1)

vt = −

i
√

ε
tanh(

√

εD)η − i
√

ε tanh(
√

εD)v2/2 (4.2)

that is consistent with the following Boussinesq system

ηt = −vx − ε(ηv)x, (4.3)

vt = −

(

1 +
ε

3
∂2

x

)

ηx − εvvx (4.4)

rigorously studied in [12,13]. In fact the latter is an ill-posed almost fully justified model [5].

Lemma 4.1 (Consistency). Let s > 0. Suppose that there exist T > 0 and a pair η ∈ L∞([0, T ); Hs+5(R)),

v ∈ L∞([0, T ); Hs+3(R)) solving System (1.1)– (1.2). Then this pair satisfies Eq. (4.3) up to a reminder

r bounded as

‖r‖L∞

T
Hs 6 Cε2

‖η‖L∞

T
Hs+3‖v‖L∞

T
Hs+3 ,

and Eq. (4.4) up to a reminder q bounded as

‖q‖L∞

T
Hs 6 Cε2

(

‖η‖L∞

T
Hs+5 + ‖v ‖

2

L∞

T
Hs+3

)

.

Proof. The proof follows from a straightforward estimation of reminders r and q. �

The energy method reapplied to System (4.1)–(4.2) can guarantee the time of existence only of order

O(1/
√

ε). Thus for the full justification one needs to prove long-time existence.

5. Computation of solitary waves

In this section we calculate numerically solitary waves corresponding to the Whitham–Boussinesq system

(1.1)–(1.2) and compare them with the Euler solitary waves. We also regard evolution of Euler solitary
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waves with respect to System (1.1)–(1.2). This comparison supports relevance of System (1.1)–(1.2) for

water waves theory. It is just an additional justification to what has been done in [1]. However, these new

calculations give a complete quantitative information on the accuracy of the model when it comes to solitary

wave problems. The numerical scheme implemented here is relatively simple, so one should anticipate that

a similar analysis has been done with most other justified models either unidirectional or bidirectional. On

the other hand accuracy calculated below is impressive and deserves to be pointed out.

For notational convenience, we use the same notations η, v for solitary waves profiles corresponding to

(1.1)–(1.2). In other words, we write η(x, t) = η(x − ct) and v(x, t) = v(x − ct). Here c stands for a Froude

number coinciding with the speed of a soliton in our non-dimensional framework. The corresponding solitary

waves system has the view

cη = v + K(ηv), (5.1)

cv = Kη + Kv2/2 (5.2)

where K = tanh D/D is a bounded self-adjoint operator in L2(R). A simple heuristic analysis shows that

solutions of System (5.1)–(5.2) are smooth and expected to exist for any c > 1. Indeed, expressing η via v

by (5.2) and substituting to (5.1) one obtains

v =
1

c2
Kv +

1

2c
Kv2 +

1

c
K

2(vK

−1v) −

1

2c2
K

2v3.

Clearly, operator K

−1
− |D| is bounded and the operator K improves the smoothness of its operand by one

order. So if one takes v ∈ H1 and substitutes it to the right part of the last identity then one obviously gets

v ∈ H2, which results in the fact that both solutions v and η are infinitely smooth and there is no restriction

on their amplitudes.

A use of the Petviashvili iteration method is made to calculate solitary waves [14]. Applicability of the

method, as well as existence of such solutions, is out of scope of this note. The essence of the method is to

split the linear L and the nonlinear N parts as follows

L(η, v) =

(

c −1
−K c

) (

η
v

)

, N (η, v) =

(

K(ηv)
Kv2/2

)

and so System (5.1)–(5.2) can be rewritten as L(η, v) = N (η, v). Clearly, the operator L is invertible if and

only if c2 > 1. The Petviashvili iterative scheme is defined by

(ηn+1, vn+1)T = S2
n
L

−1(N (ηn, vn))

where Sn is a stabilisation factor computed by

Sn =

∫

(ηn, vn)L(ηn, vn)dx
∫

(ηn, vn)N (ηn, vn)dx
.

An analogous splitting is applied to the Babenko equation describing Euler gravity solitary surface

waves [14]. This is implemented in the code [15]. For time evolution performance of System (1.1)–(1.2),

it is treated by the numerical scheme thoroughly described in [1].

For comparison with the fully nonlinear model we introduce the relative difference between waves η1 and

η2 as

d(η1, η2) =
‖η1 − η2‖L2

‖η1‖L2

. (5.3)

As is pointed out above, solutions of System (5.1)–(5.2) are defined for any Froude number c > 1, whereas

for the fully nonlinear solitary waves it does not exceed c ≈ 1.29421 that is the highest possible speed
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Fig. 1. Amplitude versus speed relation a(c) for the Whitham system (solid line) and the Euler system (dashed line) on the left.
Relative difference ǫ(c) on the right.

Fig. 2. Solitary waves corresponding the Froude number c = 1.25 for the Whitham system (solid line) and the Euler system
(dashed line) on the left. Evolution of the Euler solitary wave due to the Whitham system on the right.

for solitary waves. In Fig. 1 solitons for different models are compared. In the left picture one can see the

dependence of amplitude a = η(0) on speed c. The black line corresponds to the Whitham–Boussinesq model

and the dashed line to the full Euler model. In the right picture one can see the dependence on speed of the

relative difference ǫ(c) = d(η0, η), where Euler η0 and Whitham η solitons correspond to the same speed c.

It is worth to notice that even for solitary waves with amplitude of order a = 0.4 the error of approximation

does not exceed 10%. It approaches zero when amplitudes are taken small.

In Fig. 2 approximation of relatively high solitary waves is examined. In the left picture solitons

corresponding to c = 1.25 for different models are represented. The dashed line is for the Euler solitary

wave η0(x). The latter is taken as an initial condition for numerical integration of System (1.1)–(1.2). Thus

one can look at the time evolution of the fully nonlinear solitary wave with respect to the approximate

model System (1.1)–(1.2) in the right picture in Fig. 2. The shot is taken at the moment t = 112. The

corresponding initial data has the form

η(x, 0) = η0(x), v(x, 0) = K(u1 + u2∂xη0)

where elevation η0, horizontal u1 and vertical u2 velocities are associated to the Euler solitary wave moving

with the speed c = 1.25 (the dashed line in the picture). One can see that the initial wave is diminishing

leaving a dispersive tail behind. It is worth to notice that after some time this leading wave turns out

to be a solitary solution of (5.1)–(5.2). More precisely, if one excludes the tail from the solution η(x, t)

then at the moment t = 10 minutes (according to our nondimensional settings) we have the difference

d(ηs, η) = 2.2 · 10−5. Here ηs is the solution of (5.1)–(5.2) corresponding to the Froude number c = 1.22957.

This allows us to make a conjecture about asymptotic stability of solitary waves for the regarded model

(1.1)–(1.2).
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6. Conclusions

The dispersive Boussinesq system (1.1)–(1.2) was derived using Hamiltonian perturbation theory by

Dinvay, Dutykh and Kalisch [1]. In the current paper this system has been proved to be locally well-

posed. Its accuracy as of an asymptotic model was tested with solitary waves, the latter admit a complete

characterisation via speed–amplitude relation.

There are many possibilities for further study of System (1.1)–(1.2). First, it is desirable to prove long

time existence and so complete the full justification of the model. Second, it is of interest to check if the

model features modulational instability and wave breaking. Third, it would be interesting to try to extend

the local result of the paper to a global well-posedness and possibly to prove asymptotic stability of solitary

waves. Existence of the latter should be also shown rigorously.
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WELL-POSEDNESS FOR A DISPERSIVE SYSTEM OF THE

WHITHAM–BOUSSINESQ TYPE

E. DINVAY, S. SELBERG AND A. TESFAHUN

Abstract. We regard the Cauchy problem for a particular Whitham–Boussinesq system modelling

surface waves of an inviscid incompressible fluid layer. We are interested in well-posedness at a very

low level of regularity. We derive dispersive and Strichartz estimates, and implement them together

with a fixed point argument to solve the problem locally. Hamiltonian conservation guarantees

global well-posedness for small initial data in the one dimensional settings.

1. Introduction

We consider the following Whitham-type system posed on R
1+1

{

∂tη + ∂xv = −K2
1∂x(ηv)

∂tv +K2
1∂xη = −K2

1∂x(v
2/2),

(1.1)

where

K1 := K1(D) =
√
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with the skew-adjoint matrix

J =

(

0 −i tanhD
−i tanhD 0

)

,

which in particular guarantees conservation of the energy functional H. It is worth to notice
that System (1.1) can be derived at least formally in the long wave asymptotic regime from the
Zakharov-Craig-Sulem formulation of the water wave problem [18] also known to be Hamiltonian.
The Hamiltonian structure of the Zakharov-Craig-Sulem formulation is canonical, in the sense that

the corresponding skew-adjoint matrix J =

(

0 1
−1 0

)

. It is interesting to notice that Model (1.1)

also enjoys a canonical Hamiltonian structure, which is directly comparable with the one of the
full water wave system, when using variables (η, ψ) where ψ is such that v = i tanhDψ. Numerical
simulations done in [8] show how insignificantly values of functional H differ from the corresponding
energy levels of the full water problem.

We also consider a system posed on R
2+1 of the following Whitham-Boussinesq type

{

∂tη +∇ · v = −K2
2∇ · (ηv),

∂tv+K2
2∇η = −K2

2∇
(

|v|
2/2

)

,
(1.5)

where v = (v1, v2) ∈ R
2 is a curl free vector field, i.e., ∇× v = 0, and

K2 := K2(D) =
√
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In fact (1.1) can be regarded itself as a regularization of the system introduced by Hur and
Pandey [14]. The latter was also investigated numerically in [8] and compared with other models of
Whitham-Boussinesq type. Admitting formally tanhD ∼ D for small frequencies and substituting
D instead of tanhD to the nonlinear part of Equations (1.1), one comes to the system regarded in
[14]. Hur and Pandey have proved the Benjamin–Feir instability [14] of periodic travelling waves
for their system, which makes it valuable. If one in addition formally discards the term η∂xu in the
system given in [14], then a new alternative system turns out to be locally well-posed and features
wave breaking [15]. However, the latter does not belong to the class of Boussinesq–Whitham models
since nonlinear non-dispersive terms have been neglected.

We would like to pay special attention to a system that was not considered in [8] but was in-
troduced by Duchêne, Israwi and Talhouk [9]. They modified the bi-layer Green-Naghdi model
improving the frequency dispersion. In fact, their system is also linearly fully dispersive, which
makes it a close relative to System (1.1). Note that their system is Hamiltonian as well. More-
over, they have justified the Green-Naghdi modification proving well-posedness, consistency and
convergence to the full water wave problem in the Boussinesq regime [9]. In addition, consistency
of Hamiltonian structure is shown, so that energy levels of the approximate model can be compared
with the full water energy. Existence of solitary waves for their system is also proved in [10]. Re-
turning to the system regarded by Ehrnström, Pei and Wang [11], we should notice that a question
of existence of solitary waves for it, is closed as well [20]. Finally, we point out that well-posedness
of the modified Green-Naghdi model is satisfactory, in the sense that it needs neither surface tension
nor any non-physical initial condition. All this together makes it a promising system. And indeed,
as noticed in [9], their modification gives more reliable results when it comes to large-frequency
Kelvin-Helmholtz instabilities than other models of the Green-Naghdi type.

On the contrary, System (1.1) has a couple of advantages compared with the modified Green-
Naghdi model [9]. Firstly, it is derived, though not rigorously, from the Zakharov-Craig-Sulem
formulation, and as a result one knows the relation between variables (η, v) and those describing
the full potential fluid flow [8]. As to the modification discussed, it is presented in variables where
the first one has the meaning of the surface elevation and so coincides with η. Its dual variable
is called the layer-averaged horizontal velocity [9]. In the Boussinesq regime it definitely coincides
with the same object associated with the full Euler equations. However, one cannot guarantee
that it will be the case in shorter wave regimes. Whereas for Whitham type models one might
anticipate a good agreement which is confirmed by experiments [5]. Here we must admit that
neither the Whitham-Boussinesq system (1.1) nor the modified Green-Naghdi system are tested by
Carter [5]. So it might be only a matter of time before the modified Green-Naghdi velocity is given
an exact physical meaning. In other words, we expect that this velocity will be associated with the
full water problem notions. The second issue is that it does not seem obvious how the modified
Green-Naghdi system can be generalized to a three-dimensional model, whereas for System (1.1)
it is straightforward.

Let us formulate the main results. The first one is an improvement of the local existence claimed
in [7].

Theorem 1 (Local existence in 1d). Let s > −1/16. Given any R > 0 there exists a time

T = T (R) > 0 such that for any initial data (η0, v0) ∈ Xs := Hs(R) × Hs+1/2(R) with norm

‖η0‖Hs + ‖v0‖Hs+1/2 ≤ R, there exists a solution (η, v) in the space Xs
T := C([0, T ];Hs(R) ×

Hs+1/2(R)) of the Cauchy problem (1.1), (1.3). Moreover, the solution is unique in a subspace of

Xs
T and it depends continuously on the initial data.

Theorem 2 (Local existence in 2d). Let s > 1/4. Given any R > 0 there exists a time T =

T (R) > 0 such that for any initial data (η0,v0) ∈ Xs := Hs
(

R
2
)

×
(

Hs+1/2
(

R
2
))2

with ∇×v0 = 0
and with norm ‖η0‖Hs + ‖v0‖(Hs+1/2)2 ≤ R, there exists a solution (η,v) in the space Xs

T :=

C
(

[0, T ];Hs(R2)×
(

Hs+1/2
(

R
2
))2

)

of the Cauchy problem (1.5), (1.6). Moreover, the solution is

unique in a subspace of Xs
T and it depends continuously on the initial data.
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Remark 1. For s > 0 in 1d and s > 1/2 in 2d the solution is unique in the whole space Xs
T .

Moreover, the flow map is real analytic for such values of s.

Theorem 1 does not rely on the non-cavitation hypothesis 1 + η > 0, since smallness of waves is
implied in the model. It can be seen as a drawback comparing with the model from [9]. However, as
mentioned above, it is difficult to say for now which one of these two competing models is a better
approximation to the Euler equations. Instead of the non-cavitation, there is another condition
that we have to impose to prove the following global result. The meaning of this new condition
is that the total energy should be positive and not too big. We point out that this condition is
imposed at the energy level of regularity and is independent on the regularity s of the initial data.

Theorem 3 (Global existence in 1d). Assume that s > 0 and consider the local solution from

Theorem 1. There exists δ > 0 such that if

‖η0‖L2(R) + ‖v0‖H1/2(R) 6 δ

then the solution extends to a global-in-time solution

(η, v) ∈ C
(

R;Hs(R)×Hs+1/2(R)
)

.

In the sections below, we first diagonalize Systems (1.1) and (1.5) and reformulate the local
theorems in the new variables. Then we demonstrate how the local result can be obtained in
less general settings applying an elegant classical PDE technique based on the standard Sobolev
embedding. This also demonstrates the necessity of dispersive estimates for going down to the
energy level of regularity s = 0 in 1d. Note that the domain of the Hamiltonian functional (1.4) is

L2(R)×H1/2(R). After that we obtain estimates of Strichartz type studying asymptotic behaviour
of a particular oscillatory integral (see Lemma 9 and its proof below). This is an improvement
comparing with dispersive estimates obtained in [1]. In fact we have L∞-norm decay dominated
by L1-norm locally in frequency, which gives us localised Strichartz estimates. Whereas the decay
in [1] is dominated by weighted Sobolev spaces, though frequency independent. With the new
estimates in hand we can apply the fixed point argument in a ball of the Bourgain space associated
with the water wave dispersion. This gives us the local existence theorems, Theorems 1 and 2.

The last step is to prove the global well-posedness theorem 3. For s = 0 it comes straightforwardly
from the energy (1.4) conservation via the continuity argument and the local result. For s > 0
we prove the persistence of regularity. Surprisingly, it is not enough just to have the dispersive
Strichartz estimates to claim the persistence. Thankfully, our velocity variable v is bounded in
H1/2-norm and so we are able to use the following limiting case of the Sobolev embedding theorem.

Lemma 1 (Brezis-Gallouet inequality). Suppose f ∈ Hs(Rd) with s > d/2. Then

‖f‖L∞ 6 Cs,d

(

1 + ‖f‖Hd/2

√
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The main focus of the work is on lowering the regularity threshold for the local well-posedness
through the use of dispersive estimates. One anticipates that even the weak dispersive properties
of System (1.1) can lower the threshold at least to the limit case s = 0. This together with
the global bound automatically gives us the global well-posedness in X0. However, the weakness
of dispersion means that the time-decaying L1 → L∞-boundedness of the semigroup, associated
with the linearised system, does not hold. As a result the standard strategy based on Strichartz
estimates is unavailable. So instead, we obtain the decay estimate on each component of the dyadic
Littlewood-Paley decomposition with a sharp dependence on the dyadic number. From this local
decay we deduce bilinear estimates in the Bourgain space associated with the water wave dispersion
relation. The local well-posedness is deduced from Duhamel’s formula with the help of these bilinear
estimates.

The main peculiarity of the two dimensional case is that with this technique we are able to prove
the local well-posedness in Xs = Hs ×Hs+1/2 ×Hs+1/2 only for s > 1/4. It still leaves a gap from
the energy space X0, too big to claim global existence. Moreover, even in 1d it is not clear so far
if the problem is globally well-posed for some s ∈ (−1/16, 0).

2. Diagonalization of (1.1) and (1.5), and reformulations of the local existence

theorems

We diagonalize (1.1) as follows. Defining the new variables

u+1 =
K1η + v
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To diagonalize (2.9) we define

u±2 =
K2|D|η ∓ i∇ · v
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Theorem 4 for s > −1/16 and Theorem 5 for s > 1/4 we need to derive dispersive estimates on the

semigroups Smd
(±t) := e∓itmd(D), where

m1(ξ) = ξK1(ξ) = ξ

√
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and

‖(η1v1 − η2v2, v
2
1/2− v22/2)‖Xs 6 Cs‖(η1 − η2, v1 − v2)‖Xs(‖(η1, v1)‖Xs + ‖(η2, v2)‖Xs).

Thus for any T,M > 0 and u, u1, u2 ∈ BM ⊂ Xs
T hold

‖A(u)− S(t)u0‖Xs

T

6

∫ T

0

‖(ηv, v2/2)‖Xs 6 CsT‖u‖
2
Xs

T

,

‖A(u1)−A(u2)‖Xs

T

6 CsT‖u1 − u2‖Xs

T

(‖u1‖Xs

T

+ ‖u2‖Xs

T

),

and so taking M = 2‖u0‖Xs and T as in the lemma formulation we conclude that A is a contraction
in the closed ball BM . The first statement of the lemma follows from the contraction mapping
principle.

We turn our attention to smoothness of the flow map. Let R > 0, T = (7CsR)−1 and B = BR(0)
be an open ball in Xs. Define Λ : B ×Xs

T → Xs
T as

Λ(u0, u) = u−A(u;u0)

that is obviously a smooth map. Its Fréchet derivative with respect to the second variable is defined
by

duΛ(u0, u)h = h+ i

∫ t

0

S(t− t′) tanhD

(

v η
0 v

)

h(t′)dt′

where u = (η, v)T and h ∈ Xs
T . If u1 ∈ Xs

T is the solution of Problem (3.3) corresponding the
initial data u0 ∈ B then Λ(u0, u1) = 0. Moreover, it satisfies the following estimate

‖u1(t)‖Xs 6 ‖u0‖Xs + Cs

∫ t

0

‖u1(t
′)‖2Xsdt′

and so
∫ t

0

‖u1(t
′)‖2Xsdt′ 6

t‖u0‖
2
Xs
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3.2. Local well-posedness for s > 1/2 in 2d. The proof is essentially the same. Now the change
of variables has the form

K =
1
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and if s > 1/2 then

‖(η, v)(t)‖Xs 6 ‖(η0, v0)‖Xs + Cs

∫ t

0

‖v‖Hs+1/4‖(η, v)‖Xs

where constant Cs depends only on s.

Proof. Estimating A(t) given by (3.2) in Xs-norm defined by (3.1), one deduces from (3.3) the
following inequality

‖(η, v)(t)‖Xs 6 ‖(η0, v0)‖Xs +

∫ t

0

∥

∥

∥

∥

(

tanhD(ηv)
tanhD(v2/2)

)

(t′)

∥

∥

∥

∥

Xs

dt′.

It is left to calculate the integrand. Provided s ∈ (0, 1/2) by the Leibniz rule [19] we have

‖Js tanhD(ηv)‖L2 . ‖Jsη‖Lp1‖v‖Lq1 + ‖η‖Lp2‖Jsv‖Lq2 (3.5)

where setting p1 = 2, q1 = ∞, p2 = 2/(1 − 2s), q2 = 1/s and using the Sobolev embedding obtain

‖Js tanhD(ηv)‖L2 . ‖η‖Hs (‖v‖L∞ + ‖v‖H1/2) .

Similarly, but now for any s ∈ (0,∞) we have
∥

∥JsK−1 tanhDv2
∥

∥

L2
.

∥

∥

∥
Js+1/2v2

∥

∥

∥

L2

. ‖v‖L∞

∥

∥

∥
Js+1/2v

∥

∥

∥

L2

. ‖v‖L∞

∥

∥K−1v
∥

∥

Hs . (3.6)

This implies the first inequality in the statement valid for s ∈ (0, 1/2).
Regarding the case s = 1/2 and setting p2 = q2 = 4 with the same p1 = 2, q1 = ∞ in the Leibniz

inequality (3.5), after implementation the Sobolev embedding, obtain

‖Js tanhD(ηv)‖L2 . ‖η‖Hs‖v‖Hs+1/4 .

This inequality is obvious for s > 1/2 since Hs is an algebra under the point-wise product, and so is
true for any s > 1/2. Taking into account (3.6) we deduce the second inequality of the lemma. �

In order to use the persistence of regularity lemma 5 one needs two Gronwall inequalities. One
of them is considered to be standard. For the completeness, we give here a proof of the other
Gronwall type inequality, which is less standard and will be used below.

Lemma 6 (Gronwall inequality). Let y(t) > 1 be a continuous function defined on some interval

[0, T ] with y(0) = y0. Suppose that for any t ∈ [0, T ] hold

y(t) 6 y0 + C

∫ t

0

y log y.

Then

y(t) 6 exp
(

eCt log y0
)

.

Proof. One can easily calculate

d
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and if s > 1/2 then

‖u(t)‖Xs 6 ‖u0‖Xs exp

(

C

∫ t

0
‖v‖Hs+1/4

)

where constant C depends only on s, ‖u(0)‖X0 and ‖u(0)‖Xs .

Proof. Suppose s ∈ (0, 1/2) and u(t) = (η(t), v(t)) ∈ Xs solves System (1.1) on some time interval.
Let its initial data u0 be small with respect to X0-norm in the sense of Lemma 4. Then u(t)
stays bounded in X0, and so ‖v(t)‖H1/2 is bounded by the same constant independent on the time
interval. Hence from the Brezis-Gallouet limiting embedding (1.8) one deduces

‖v(t)‖L∞ . 1 + log (2 + ‖v(t)‖Hs+1/2)

and applying Lemma 5 obtain

‖u‖Xs 6 ‖u0‖Xs + C

∫ t

0
(1 + log (2 + ‖u‖Xs)) ‖u‖Xs .

Introducing y(t) = 2 + ‖u(t)‖Xs we arrive at the assumption of the Gronwall inequality lemma 6.
As a result we have the estimate

2 + ‖u‖Xs 6 exp
(

e2Ct log (2 + ‖u0‖Xs)
)

that is the first claim.
In the case s > 1/2 we make use of the second inequality in Lemma 5 and a more standard

Gronwall inequality [23]. �

4. Dispersive estimate for Smd
(±t)f

First we establish a lower bound for the first and second derivatives of the function m(r) =

r
√
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Now let us estimate m′(r). One can assume without loss of generality that r > 0. Since

K(r) =
√
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Corollary 1. Assuming λ > 1, d ∈ {1, 2} and 2 ≤ r ≤ ∞, we have

‖Smd
(±t)fλ‖Lr

x(R
d) .

(

λ3d/4
|t|−d/2

)1−2/r
‖f‖Lr′

x (Rd).

The remainder of this section is devoted to the proof of Lemma 9. It suffices to prove the estimate
for positive times:

‖Smd
(t)fλ‖L∞

x (Rd) . λ3d/4t−d/2
‖f‖L1

x(R
d) (t > 0). (4.5)

One can write

[Smd
(t)fλ] (x) = F

−1
x

[

eitmd(ξ)βλ(|ξ|)f̂
]

(x) = (Iλ,t ∗ f)(x),

where

Iλ,t(x) = F
−1
x

[

eitmd(ξ)βλ(|ξ|)
]

(x) =

∫

Rd

eix·ξ+itmd(ξ)βλ(|ξ|) dξ = λd

∫

Rd

eiλx·ξ+itmd(λξ)β(|ξ|) dξ.

(4.6)
Then by Young’s inequality

‖Smd
(t)fλ‖L∞

x (Rd) ≤ ‖Iλ,t‖L∞

x (Rd)‖f‖L1
x(R

d), (4.7)

so (4.5) reduces to proving

‖Iλ,t‖L∞

x (Rd) . λ3d/4t−d/2. (4.8)

But clearly,

‖Iλ,t‖L∞

x (Rd) . λd,

so in view of (4.8) it is enough to consider the case where

λ3d/4t−d/2
≪ λd

⇔ t ≫ λ−1/2. (4.9)

The proof of (4.8) in this case is given in the following two subsections, first for space dimension
d = 1 and then for d = 2.

4.1. Proof of (4.8) when d = 1. In one dimension we have

Iλ,t(x) = λ

∫

R

eitφλ(ξ)β(|ξ|) dξ,

where

φλ(ξ) := λξx/t+m1(λξ) = λξx/t+ λξK1(λξ).

Note that m1(ξ) = m(ξ), where m is as in Lemma 8. Now since the function φλ is odd we can
write

Iλ,t(x) = 2λ

∫

∞

0
cos(tφλ(ξ))β(ξ) dξ = 2λ

∫ 2

1/2
cos(tφλ(ξ))β(ξ) dξ.

Since

φ′

λ(ξ) = λ
[

x/t+m′(λξ)
]

, (4.10)

φ′′

λ(ξ) = λ2m′′(λξ), (4.11)

we see from Lemma 8 that

0 < −φ′′

λ(ξ) = −λ2m′′(λξ) ∼ λ3
〈λ〉−5/2

∼ λ1/2 (4.12)

for ξ ∈ [1/2, 2]. Here we used also the assumption λ ≥ 1.
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4.1.1. Non-stationary contribution. This is the case when either (i) x ≥ 0 or (ii) x < 0 and −x/t ≪

λ−1/2 or −x/t ≫ λ−1/2. Then since m′(λξ)) is positive and comparable to 〈λξ〉−1/2 (Lemma 8),
we see from (4.10) that

|φ′

λ(ξ)| & λ1/2 (4.13)

for ξ ∈ [1/2, 2]. Integration by parts yields

Iλ,t(x) = 2λt−1

∫ 2

1/2

d
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But by the mean value theorem and (4.12),

|φ′

λ(ξ)| = |φ′

λ(ξ)− φ′

λ(ξ0)| ∼ λ1/2
|ξ − ξ0| for ξ ∈ [1/2, 2],

so we we conclude that
∣

∣

∣

∣

∣

∫ ξ0−δ

1/2
cos(tφλ(ξ))β(ξ) dξ

∣

∣

∣

∣

∣

. t−1λ−1/2δ−1 = t−1/2λ−1/4,

by the definition of δ above. The third integral in (4.16) can be estimated in a similar way, and
satisfies the same estimate, while the second integral (4.16) is trivially estimated as

∫ ξ0+δ

ξ0−δ
cos(tφλ(ξ))β(ξ) dξ . δ = t−1/2λ−1/4.

Summing up the three contributions, we conclude that the desired estimate holds,

|Iλ,t(x)| . λ3/4t−1/2,

in the stationary case under the assumptions that φ′

λ(ξ0) = 0 for some ξ0 ∈ [1/2, 2], and that
1/2 ≤ ξ0 − δ and ξ0 + δ ≤ 2. If 1/2 > ξ0 − δ or ξ0 + δ > 2, the above argument is easily modified.

For example, if ξ0 + δ > 2, we split the integral as
∫ ξ0−δ
1/2 +

∫ 2
ξ0−δ instead; the first integral is then

treated as above and the second is trivially O(δ).
It remains to prove the estimate when the function φ′

λ has no zero in [1/2, 2], so it is either positive
or negative everywhere in that interval. Since the arguments for these two cases are similar, we
just treat the case where φ′

λ < 0 in [1/2, 2]. Then we split the integral as

Iλ,t(x) = 2λ

(

∫ 1/2+δ

1/2
+

∫ 2−δ

1/2+δ
+

∫ 2

2−δ

)

cos(tφλ(ξ))β(ξ) dξ.

The first and third integrals are trivially dominated in absolute value by δ, while for the second
integral we use integration by parts, estimating

∣

∣

∣

∣

∣

∫ 2−δ

1/2+δ
cos(tφλ(ξ))β(ξ) dξ

∣

∣

∣

∣

∣

. t−1

(

1
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4.2. Proof of (4.8) when d = 2. In two dimensions we have

Iλ,t(x) = λ2

∫

R2

eiλx·ξ+itm2(λξ)β(ξ) dξ

which is the inverse Fourier transform of the radial function λ2eitm2(λξ)β(ξ), and hence Iλ,t(x) is
also radial. So we may set x = (|x|, 0). Then in polar coordinates we have

Iλ,t(x) = λ2

∫

∞

0

∫ 2π

0
eiλr|x| cos θeitm2(λr)rβ(r) dθdr.

We can write
∫ 2π

0
eiλr|x| cos θ dθ =

∫ π

0

(

eiλr|x| cos θ + e−iλr|x| cos θ
)

dθ

= 2

∫ 1

−1
eiλr|x|s

(

1− s2
)

−1/2
ds

= 2πJ0(λr|x|),

where Jk(r) is the Bessel function:

Jk(r) =
(r/2)k
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4.2.2. Case 2: |x| ≫ λ−1. Using (4.21) in (4.17) we write

Iλ,t(x) = 2πλ2

{

∫ 2

1/2
eitφ

+

λ
(r)h(λr|x|)β̃(r) dr +

∫ 2

1/2
e−itφ−

λ
(r)h̄(λr|x|)β̃(r) dr

}

,

where
φ±

λ (r) = λr|x|/t±m(λr).

Set Fλ(|x|, r) = h(λr|x|)β̃(r). In view of (4.22) we have

|Fλ(|x|, r)|+ |∂rFλ(|x|, r)| . (λ|x|)−1/2 (4.25)

for all r ∈ (1/2, 2), where we also used the fact λ|x| ≫ 1.
Now we write

Iλ,t(x) = I+λ,t(x) + I−λ,t(x),

where

I+λ,t(x) = 2πλ2

∫ 2

1/2
eitφ

+

λ
(r)Fλ(|x|, r) dr,

I−λ,t(x) = 2πλ2

∫ 2

1/2
e−itφ−

λ
(r)F̄λ(|x|, r) dr.

Observe that
∂rφ

±

λ (r) = λ
[

|x|/t±m′(λr)
]

, ∂2
rφ

±

λ (r) = ±λ2m′′(λr),

and hence by Lemma 8,

|∂rφ
+
λ (r)| & λ1/2, |∂2

rφ
±

λ (r)| ∼ λ1/2 (4.26)

for all r ∈ (1/2, 2), where we also used the fact that m′ is positive.

Estimate for I+λ,t(x)
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We decompose

I−λ,t(x) = 2πλ2

(

∫ r0−δ

1/2
+

∫ r0+δ

r0−δ
+

∫ 2

r0+δ

)

e−itφ−

λ
(r)F̄λ(|x|, r) dr. (4.29)

Integrating by parts we write the first integral as
∫ r0−δ

1/2
e−itφ−

λ
(r)F̄λ(|x|, r) dr

= it−1

[

e−itφ−

λ
(r) F̄λ(|x|, r)
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5. Function spaces, Linear and bilinear estimates

5.1. Function spaces. The mixed space-time Lebesgue space Lq
tL

r
x on R

d+1 is defined with the
norm

‖u‖Lq

t
Lr
x
= ‖‖u(t, ·)‖Lr

x
‖Lq

t
=

(

∫

R

(
∫

Rd

|u(t, x)|r dx

)
q
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Lemma 10 (Localized Strichartz estimates). Let λ > 1 and d ∈ {1, 2}. Assume that 2 < q < ∞

and 2 ≤ r ≤ ∞ satisfy
2
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Proof. By symmetry we may assume 1 ≤ λ1 ≤ λ2. Consider first the case d = 1. By Hölder’s
inequality and (5.3),

‖uλ1
vλ2

‖L2

t
L2
x

≤ ‖uλ1
‖L4

t
L∞

x

‖vλ2
‖L4

t
L2
x

. ‖uλ1
‖L4

t
L∞

x

‖vλ2
‖
X0,b

±

,

so it only remains to check that

‖uλ1
‖L4

t
L∞

x

. λ
3/8
1 ‖uλ1

‖
X0,b

±

,

but this holds by Lemma 10 if λ1 > 1, while if λ1 = 1 we can use the Bernstein inequality (5.6)
followed by (5.3) to obtain

‖uλ1
‖L4

t
L∞

x

. ‖uλ1
‖L4

t
L2
x

. ‖uλ1
‖
X0,b

±

.

Now consider the case d = 2. We apply Hölder’s inequality and (5.3) to write

‖uλ1
vλ2

‖L2

T
L2
x

≤ ‖uλ1
‖L2

T
L∞

x

‖vλ2
‖L∞

T
L2
x

. ‖uλ1
‖L2

T
L∞

x

‖vλ2
‖
X0,b

±

.

To estimate ‖uλ1
‖L2

T
L∞

x

we want to use Lemma 10, so we let 2 < r < ∞ and define q by 2/q = 1−2/r.

Thus 1/2 = 1/q + 1/r, so applying Hölder in t, the Bernstein inequality in x, and finally Lemma
10, we get

‖uλ1
‖L2

T
L∞

x

≤ T 1/rλ
2/r
1 ‖uλ1

‖Lq

T
Lr
x

. T 1/rλ
2/r
1 λ

(3/4)(1−2/r)
1 ‖uλ1

‖
X0,b

±

,

proving the claimed estimate in the case λ1 > 1. If λ1 = 1, we can apply the Bernstein inequality
and (5.3), instead of Lemma 10, and again we get the desired estimate. �

We now present the key bilinear space-time estimates needed for the proof of local well-posedness.

Lemma 12. Let 1/2 < b < 1 and 0 < T < 1. Assume that sd > −1/16 if d = 1 and sd > 1/4 if

d = 2. Then we have the estimates
∥

∥|D|K2 (u ·Kv)
∥

∥

X
sd,b−1

±
(T )

. T 1−b
‖u‖

X
sd,b

±

‖v‖
X

sd,b

±

, (5.13)

‖|D|K (Ku ·Kv)‖
X

s
d
,b−1

±
(T )

. T 1−b
‖u‖

X
s
d
,b

±

‖v‖
X

s
d
,b

±

, (5.14)

where the signs in all the X
±

norms can be chosen independently on each other.

Proof of (5.13). In view of (5.2) the estimate (5.13) reduces to proving
∥

∥|D|K2 (u ·Kv)
∥

∥

L2

T
H

s
d

x

. ‖u‖
X

s
d
,b

±

‖v‖
X

s
d
,b

±

,

which by duality can be reduced to
∣

∣

∣

∣

∫ T

0

∫

Rd

|D|K2
〈D〉

sd
(

〈D〉
−sdu · 〈D〉

−sdKv
)

w dxdt

∣

∣

∣

∣

. ‖u‖
X0,b

±

‖v‖
X0,b

±

‖w‖L2

t,x

. (5.15)

Decomposing u =
∑

λ1≥1 uλ1
and v =

∑

λ2≥1 vλ2
we have

LHS (5.15) .
∑

λ,λ1,λ2≥1

∣

∣

∣

∣

∫ T

0

∫

Rd

|D|K2
〈D〉

sdPλ

(

〈D〉
−sduλ1

· 〈D〉
−sdKvλ2

)

wλ dxdt

∣

∣

∣

∣

. (5.16)

Setting
aλ1

:= ‖uλ1
‖
X0,b

±

, bλ2
:= ‖vλ2

‖
X0,b

±

, cλ := ‖wλ‖L2

t,x

we have
‖u‖

X0,b

±

∼ ‖(aλ1
)‖l2

λ1

, ‖v‖
X0,b

±

∼ ‖(bλ2
)‖l2

λ2

, ‖w‖L2

t,x

∼ ‖(cλ)‖l2
λ

,

hence the estimate (5.15) reduces to proving

RHS (5.16) . ‖(aλ1
)‖l2

λ1

‖(bλ2
)‖l2

λ2

‖(cλ)‖l2
λ

. (5.17)

To this end, we note that by Lemma 11 we have, for ε > 0 arbitrarily small,

‖Pλ (uλ1
vλ2

)‖L2

T
L2
x

. min(λ1, λ2)
3d/8+ε

‖uλ1
‖
X0,b

±

‖vλ2
‖
X0,b

±

. (5.18)



128 Selected works

22 E. DINVAY, S. SELBERG AND A. TESFAHUN

We remark that in dimension d = 1, the lemma would actually allow us to take ε = 0, but the
proof below works for sufficiently small, positive ε > 0 in both dimensions.

Then using Cauchy-Schwarz, (5.12) and (5.18) we obtain

RHS (5.16) .
∑

λ,λ1,λ2≥1

∥

∥|D|K2
〈D〉

sdPλ

(

〈D〉
−sduλ1

· 〈D〉
−sdKvλ2

)∥

∥

L2

T,x

‖wλ‖L2

T,x

.
∑

λ,λ1,λ2≥1

λsd min(λ1, λ2)
3d/8+ελ−sd

1 λ
−1/2−sd
2 aλ1

bλ2
cλ

. I1(d) + I2(d) + I3(d),

(5.19)

where

I1(d) =
∑

λ,λ1,λ2≥1
λ.λ1∼λ2

λsdλ
3d/8+ε−1/2−2sd
2 aλ1

bλ2
cλ,

I2(d) =
∑

λ,λ,λ2≥1
λ1≪λ2∼λ

(

λ1
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By Cauchy-Schwarz, (5.12) and (5.18) we obtain

S .
∑

λ,λ1,λ2≥1

λ
1
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dependence on the initial data can be shown in a similar way, by the difference estimates. This
concludes the proof of Theorems 4 and 5.

Then we use the transformation (2.1) to obtain the solution

(η, v) ∈ C
(

[0, T ];Hs1(R)×Hs1+1/2(R)
)

of the original system (1.1)–(1.3). Similarly, we use the transformation (2.7) to obtain the solution

(η,v) ∈ C

(

[0, T ];Hs2
(

R
2
)

×

(

Hs2+1/2
(

R
2
)

)2
)

of the original system (1.5)–(1.6). Thus we obtain also Theorems 1 and 2.

6.2. Proof of Theorem 3. Here we assume d = 1. For s = 0 one can easily extend the local result
globally making use of Lemma 4. With the global bound of the lemma we can reapply the local
result, Theorem 1, as many times as we want, thus proving Theorem 3 with δ = ǫ0/2 for s = 0.
The proof for positive s is done iteratively. In other words, assuming the result for some s′ ≥ 0 we
prove for s ∈ (s′, s′ +1/4]. The argument is essentially the persistence of regularity based on the a
priori estimate lemma 7, where we use the notation ‖(η, v)‖Xs defined by (3.1). Indeed, the first
estimate in Lemma 7 allows to reapply the local result and extend the solution to any time interval
if 0 < s < 1/2. In the case s > 1/2 extension is carried out iteratively making use of the second
inequality in Lemma 7.
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Abstract

The travelling wave problem for a particular bidirectional Whitham system modelling

surface water waves is under consideration. This system firstly appeared in [9], where it

was numerically shown to be stable and a good approximation to the incompressible Euler

equations. In subsequent papers [8, 10] the initial-value problem was studied and well-

posedness in classical Sobolev spaces was proved. Here we prove existence of solitary

wave solutions and provide their asymptotic description. Our proof relies on a variational

approach and a concentration-compactness argument. The main difficulties stem from the

fact that in the considered Euler-Lagrange equation we have a non-local operator of positive

order appearing both in the linear and non-linear parts.

1 Introduction

1.1 Motivation and background

We consider the system

ηt = −vx − i tanh(D)(ηv), (1.1)

vt = −i tanh(D)η − i tanh(D)

(

v2

2

)

, (1.2)

with D = −i∂x and F(tanh(D)f)(ξ) = tanh(ξ) ̂f(ξ), where F is the Fourier transform

F(f)(ξ) =

∫

R

f(x)e−ixξ dx.

We are interested in solitary wave solutions of (1.1)–(1.2) and so we search for solutions of the

form

η(x, t) = η(x+ ct), v(x, t) = v(x+ ct), (1.3)

1
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with η(x + ct), v(x + ct) → 0, as |x + ct| → ∞. Here η denotes surface elevation and v is the

fluid velocity at the surface. Such systems describes permanent progressive surface waves of a

fluid layer. The model (1.1)-(1.2) approximates the two-dimensional water wave problem for an

inviscid incompressible potential flow.

System (1.1)–(1.2) was introduced in [9] as a fully dispersive model for two-way wave prop-

agation. In recent years several fully dispersive two-way systems have been paid close attention

to, and for a survey we again refer to [9], where they compare some of these models, and in

particular, find that the system (1.1)–(1.2) approximates the full water-wave problem better than

some of the other fully dispersive bidirectional models. It worth to point out that those demon-

strate a good agreement with experiments [7]. In addition, System (1.1)–(1.2) has been recently

shown to be well-posed in [8, 10]. Moreover, the result is global if the initial data is sufficiently

small. The latter is the main advantage of Equations (1.1)–(1.2) comparing with other models

regarded in [9]. Indeed, there is a local well-posedness result for another system regarded in [9]

obtained by Ehrnström, Pei and Wang [13]. However, they impose an additional non-physical

condition η > C > 0. Kalisch and Pilod [16] have proved local well posedness for a surface ten-

sion regularisation of the system from [13] without the positivity assumption η > 0. However,

the maximal time of existence for their regularisation is bounded by the capillary parameter.

Whereas one does not need any regularisation or special non-physical conditions to claim the

well posedness for (1.1)–(1.2). In fact Model (1.1)–(1.2) can be regarded itself as a regular-

ization, arising naturally from the Hamiltonian formulation of the water wave problem, for the

system introduced by Hur and Pandey [15]. There is another Whitham-Boussinesq type model

known to be well-posed that was not considered in [9] and was introduced by Duchêne, Israwi

and Talhouk [11]. For more discussion on the Cauchy problem and rigorous justification of the

various Whitham related equations we refer to [17]. Note that for systems regarded in [11] and

[13] existence of solitary waves was proved in [6] and [22], respectively. The next natural step is

to show the solitary wave existence for Equations (1.1)–(1.2). This is the main aim of the current

paper.

We use a variational approach together with Lion’s method of concentration-compactness

[19] to establish the existence of solitary wave solutions of (1.1)–(1.2). This approach has been

used extensively to prove existence of solitary wave solutions to equations of the form

ut + Lux + n(u)x = 0, (1.4)

where L is a Fourier multiplier operator of order s and n(u) is a homogeneous nonlinear term.

Under the travelling wave ansatz u = u(x+ ct), equation (1.4) becomes

cu+ Lu+ n(u) = 0. (1.5)

In [23] the author studied long wave model equations of the form (1.4), with s ≥ 1, and proved

existence and stability of solitary wave solutions. This approach was later used in [3] to prove

existence of solitary waves for an equation used to model stratified fluids, with s = 1, and was

later generalized in [1] to s ≥ 1. A class of Whitham type equations of the form (1.4) was

studied in [12], with a Fourier multiplier operator of negative order. In this case the resulting

functional in the constrained minimization problem is not coercive. This makes the application

of the concentration compactness theorem a lot more technical, requiring the authors to use a

strategy developed in [4, 14] and first consider a related penalized functional acting on periodic

2
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functions. In the recent work [21] an entirely different approach to proving the existence of

solitary wave solutions of the Whitham equation, based on the implicit function theorem instead,

was presented. Arnesen proved existence of solitary wave solutions to two different classes of

model equations [2], one of them of the form (1.4), for s > 0. Results, similar and previous

to those of Arnesen, were obtained in [18] in application to two particular cases, namely, the

fractional Korteweg-de Vries and the fractional Benjamin-Bona-Mahony equations. The case

when the nonlinearity n is allowed to be inhomogeneous was considered in [20], where the

author proved the existence of solitary wave solutions of (1.4), for operators of positive order

and with weak assumptions on the regularity of the symbol.

These methods have also been applied to bidirectional Whitham type equations. As men-

tioned above, in [6] the authors established the existence of solitary waves for the class of modi-

fied Green–Naghdi equations introduced in [11], and in [22] the authors proved the existence of

solitary waves for the Whitham–Boussinesq system regarded in [9, 13]. Just as in [12], both of

the functionals appearing in [6, 22] are noncoercive, so the minimization arguments adapted to

noncoercive functionals developed in [4, 14] are used in order to obtain the existence of mini-

mizers. In addition, the Fourier multiplier operator is entangled with the nonlinearity in [6, 22],

which makes the proofs more technical.

1.2 The minimization problem

We formulate the problem in the variational settings. A Hamiltonian structure [8] of System

(1.1)–(1.2) allows us to do this in a straightforward way. Indeed, under the travelling wave

ansatz (1.3), Equations (1.1)–(1.2) can be written as

Kv + ηv + cKη = 0, (1.6)

η +
v2

2
+ cKv = 0, (1.7)

where we have introduced a Fourier multiplier of the form

K =
D

tanh(D)
. (1.8)

Note that this operator is of order one. It is equivalent to the Bessel potential J = (1 − ∂2

x)
1/2

associated with the symbol 〈ξ〉 =
√

1 + ξ2, since ξ/ tanh ξ ≃ 〈ξ〉. Regarding the Hamiltonian

and momentum

H(η, v) =
1

2

∫

R

η2 + vKv + ηv2 dx,

I(η, v) =

∫

R

ηKv dx,

one can notice that Equation (1.6) can be written as

dvH + cdvI = 0,

and Equation (1.7) as

dηH + cdηI = 0.

3
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Our aim is to obtain a single travelling wave equation that can in turn be interpreted as a

constrained minimization problem. We can derive a travelling wave equation in the following

way. In (1.6)–(1.7) we make the change of variable v = K−1/2ṽ, which yields the new system

K1/2ṽ + η(K−1/2ṽ) + cKη = 0, (1.9)

η +
(K−1/2ṽ)2

2
+ cK1/2ṽ = 0. (1.10)

From (1.10) we get that

η = −
(K−1/2ṽ)2

2
− cK1/2ṽ, (1.11)

and inserting this into (1.9) yields

ṽ−K−1/2

(

(K−1/2ṽ)3

2

)

−cK−1/2(K1/2ṽK−1/2ṽ)−cK1/2

(

(K−1/2ṽ)2

2

)

−c2Kṽ = 0. (1.12)

Here we make the change of variables ṽ = cu so that (1.12) becomes

1

c2
u−K−1/2

(

(K−1/2u)3

2

)

−K−1/2(K
1

2uK−1/2u)−K1/2

(

(K−1/2u)2

2

)

−Ku = 0. (1.13)

Now let us show that Equation (1.13) represents an Euler-Lagrange equation for some functional.

Indeed, regard the surface elevation and velocity defined by u as follows

ηu = −c2
(

(K−1/2u)2

2
+K1/2u

)

, (1.14)

vu = cK−1/2u, (1.15)

and note that

H(ηu, vu)+cI(ηu, vu) = c4
[

−
1

2

∫

R

uKu+K1/2u(K−1/2u)2 +
(K−1/2u)4

4
dx+

1

2c2

∫

R

u2 dx

]

,

which leads us to define

E(u) =
1

2

∫

R

uKu+K1/2u(K−1/2u)2 +
(K−1/2u)4

4
dx,

Q(u) =
1

2

∫

R

u2 dx.

We then note that equation (1.13) can be written as

dE(u) + λdQ(u) = 0,

where λ = −1/c2. Hence, in order to find solutions of (1.13) we can consider the constrained

minimization problem

inf
u∈Uq

E(u) with Uq =
{

u ∈ H1/2(R) : Q(u) = q
}

. (1.16)

Instead of working with the specific Fourier multiplier K, we will work with a more general

class of Fourier multipliers, and thus a more general constrained minimization problem.

4
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Definition 1.1 (Admissible Fourier multipliers). Let operator L be a Fourier multiplier, with

symbol m, i.e.

F(Lf)(ξ) = m(ξ) ̂f(ξ).

We say that L is admissible if m is even, m(0) > 0 and for some s′ > 1 and s > 1/2 the symbol

satisfies the following restrictions.

(i). The function ξ 7→
m(ξ)

〈ξ〉s
is uniformly continuous, and

m(ξ)−m(0) ≃ |ξ|s
′

for |ξ| 6 1,

m(ξ)−m(0) ≃ |ξ|s for |ξ| > 1.

(ii). For each ε > 0 the kernel of operator L−1/2 satisfies

F
−1

(

m−1/2
)

∈ L2(R \ (−ε, ε)). (1.17)

There exists p ∈ (1, 2) ∩ [2/(s+ 1), 2) such that

F
−1

(

m−1/2
)

∈ Lp(−1, 1). (1.18)

The symbol m(ξ) = ξ/ tanh(ξ) satisfies the conditions of Definition 1.1 with s = 1 and

s′ = 2 [5]. We have the corresponding functional

E(u) =
1

2

∫

R

(

L1/2u+
1

2
(L−1/2u)2

)

2

dx (1.19)

defined on Hs/2(R). Our main goal is then to obtain a solution of the minimization problem

inf
u∈Uq

E(u) with Uq =
{

u ∈ Hs/2(R) : Q(u) = q
}

. (1.20)

For convenience we separate E into the functionals

L(u) =
1

2

∫

R

uLu dx,

Nc(u) =
1

2

∫

R

L1/2u(L−1/2u)2 dx,

Nr(u) =
1

2

∫

R

(L−1/2u)4

4
dx

so that

E(u) = L(u) +N (u)

where

N (u) = Nc(u) +Nr(u).

We are now ready to state our main results.

5
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Theorem 1.2. Let Dq be the set of minimizers of E over Uq. There exists q0 > 0 such that for

each q ∈ (0, q0), the set Dq is nonempty and ‖u‖
2

H
s
2
. q uniformly for u ∈ Dq. Each element of

Dq is a solution of the Euler–Lagrange equation

λu+ L−1/2

(

(L−1/2u)3

2

)

+ L−1/2(L1/2uL−1/2u) + L1/2

(

(L−1/2u)2

2

)

+ Lu = 0. (1.21)

The Lagrange multiplier λ satisfies

m(0)

2
< −λ < m(0)−Dqβ, (1.22)

where β = s′

2s′−1
and D is a positive constant.

Our other main result concerns the asymptotic behavior of travelling wave solutions of (1.1)–

(1.2).

Theorem 1.3. If L = K then there exists q0 > 0 such that for any q ∈ (0, q0) each minimizer

u ∈ Dq belongs to Hr(R) for any r > 0 with ‖u‖
2

Hr . q, and moreover, it satisfies the following

long wave asymptotics

sup
u∈Dq

inf
x0∈R

∥

∥q−2/3u(q−1/3
·)− ψKdV(· − x0)

∥

∥

H1(R)
. q1/6,

whereas the corresponding surface elevation (1.14) and speed (1.15) satisfy

sup
u∈Dq

inf
x0∈R

∥

∥q−2/3ηu(q
−1/3

·) + ψKdV(· − x0)
∥

∥

H1/2(R)
. q1/6,

sup
u∈Dq

inf
x0∈R

∥

∥q−2/3vu(q
−1/3

·) + ψKdV(· − x0)
∥

∥

H3/2(R)
. q1/6,

where

ψKdV(x) = −λ0 sech
2

(

1

2

√

3λ0x

)

and λ0 = 3/ 3
√
16. In addition, the Lagrange multiplier λ satisfies

λ = −1 + λ0q
2/3 +O(q5/6).

We discuss here briefly how to prove Theorems 1.2, 1.3.

The main ingredient in proving Theorem 1.2 is Lion’s concentration compactness theorem

[19]:

Theorem 1.4 (Concentration-compactness). Any sequence {en}n∈N ⊂ L1(R) of non-negative

functions such that

lim
n→∞

∫

R

en dx = I > 0

admits a subsequence, denoted again {en}n∈N, for which one of the following phenomena occurs.

6
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• (Vanishing) For each r > 0, one has

lim
n→∞

(

sup
x∈R

∫ x+r

x−r

en dx

)

= 0.

• (Dichotomy) There are real sequences {xn}n∈N, {Mn}n∈N, {Nn}n∈N ⊂ R and I∗ ∈ (0, I)
such that Mn, Nn → ∞, Mn/Nn → 0, and

∫ xn+Mn

xn−Mn

en dx → I∗ and

∫ xn+Nn

xn−Nn

en dx → I∗,

as n → ∞.

• (Concentration) There exists a sequence {xn}n∈N ⊂ R with the property that for each

ǫ > 0, there exists r > 0 with
∫ xn+r

xn−r

en x ≥ I − ǫ,

for all n ∈ N.

We will apply this theorem to en = u2

n, where {un}
∞

n=1
is a minimizing sequence, and

show that the vanishing and dichotomy scenarios cannot occur. Then we obtain a convergent

subsequence of {un}
∞

n=1
using the concentration scenario. The functional E is similar to the

corresponding functionals appearing in [6, 22], in the sense that the Fourier multiplier and the

nonlinerity are entangled. However, in contrast with [6, 22], our functional E is coercive, hence

the penalization argument of [4, 14] is not necessary in our case.

In [6], the exclusion of dichotomy gets more technical due to the entanglement of the Fourier

multiplier with the nonlinearity, and this is true for the present work as well. In contrast, the ex-

clusion of the vanishing scenario is straightforward in [6], while this is not the case in the present

work. This is due to the fact that in [6] the constrained minimization problem is formulated in

Hs(R), s > 1/2, allowing the use of the embedding Hs(R) →֒ L∞(R), while our problem is

formulated in Hs/2(R), preventing us to make use of this embedding. Instead we show that if

{un}
∞

n=1
is vanishing, then L−1/2un is vanishing as well, which leads to a contradiction. In order

to show that L−1/2un is vanishing we make use of the integrability assumptions (1.17), (1.18)

imposed on the kernel of L, and this is the only instance where these assumptions are used. Apart

from (1.17), (1.18) we have precisely the same assumptions on L as in [20], and we are able to

adopt many of the methods used in that paper to our present work. Also, we refer to [20] for a

discussion on the necessity of assumptions (i), (ii) in Definition 1.1.

Theorem 1.3 is established using standard arguments, see for example [6, 12].

2 Technical results

The current section is devoted to the general properties of the functionals introduced above. We

start with a useful proposition on continuity of symbol m(ξ) described by Definition 1.1.

Lemma 2.1. There is a function ω : R → [0,∞), bounded above by a polynomial, with

limλ→0 ω(λ) = 0, such that

|m(ξ)−m(η)| ≤ ω(ξ − η)〈ξ〉
s

2 〈η〉
s

2 .

7
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Proof. See [20, Proposition 2.1].

The following functional estimates will be used a lot in the text below, sometimes without

references.

Proposition 2.2. For any u ∈ Hs/2(R) one has

L(u) ≃ ‖u‖
2

Hs/2 .

Proof. This is immediate from Definition 1.1.

Proposition 2.3. For any s > 1/2 and u ∈ Hs/2(R) one has

|Nc(u)| . ‖u‖
2

L2 ‖u‖Hs/2 , (2.1)

|Nr(u)| . ‖u‖
4

L2 . (2.2)

Proof. Inequality (2.2) follows from the Sobolev embedding

|Nr(u)| =
1

8

∥

∥L−1/2u
∥

∥

4

L4
.

∥

∥|∂x|
1/4L−1/2u

∥

∥

4

L2
.

∥

∥J1/4−s/2u
∥

∥

4

L2
. ‖u‖

4

L2 .

Inequality (2.1) follows from (2.2) and Hölder’s inequality.

Proposition 2.4. For s > 1/2 and u, h ∈ H
s
2 (R) the Fréchet derivative of E satisfies

|dE(u)(h)| . ‖u‖
H

s
2
(1 + ‖u‖L2 + ‖u‖

2

L2) ‖h‖H
s
2

Proof. We first note that

|dL(u)(h)| . ‖u‖
H

s
2
‖h‖

H
s
2
.

Next consider

dNc(u)(h) =
1

2

∫

R

L1/2h(L−1/2u)2 + 2uL1/2(L−1/2uL−1/2h) dx, (2.3)

where
∥

∥L1/2h(L−1/2u)2
∥

∥

L1
≤

∥

∥L1/2h
∥

∥

L2

∥

∥L−1/2u
∥

∥

2

L4
. ‖u‖

2

L2 ‖h‖H
s
2
,

∥

∥uL1/2(L−1/2uL−1/2h)
∥

∥

L1
≤ ‖u‖L2

∥

∥L1/2(L−1/2uL−1/2h)
∥

∥

L2

. ‖u‖L2

∥

∥L−1/2uL−1/2h
∥

∥

H
s
2

. ‖u‖L2

∥

∥L−1/2u
∥

∥

H
s
2

∥

∥L−1/2h
∥

∥

Hs

. ‖u‖
2

L2 ‖h‖H
s
2
.

Using the above estimates in (2.3), we immediately get that

|dNc(u)(h)| . ‖u‖
2

L2 ‖h‖H
s
2
.

In a similar way we find that

|dNr(u)(h)| . ‖u‖
3

L2 ‖h‖H
s
2
,

which concludes the proof.

8
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We next record a decomposition result for Nc.

Lemma 2.5. Let u ∈ Hs/2(R). Then

Nc(u) =
1

2
√

m(0)

∫

R

u3 dx+Nc1(u) +Nc2(u) +Nc3(u),

where

N1c(u) =

√

m(0)

2

∫

R

u
(

(L−1/2
−m−1/2(0))u

)2
dx

N2c(u) =

∫

R

u2(L−1/2
−m−1/2(0))u dx

N3c(u) =
1

2

∫

R

(L−1/2u)2(L1/2
−m1/2(0))u dx,

and

|N2c(u)| ≤ ‖u‖
2
L4

∥

∥(L−1/2
−m−1/2(0))u

∥

∥

L2

|N3c(u)| . ‖u‖
2
L2

∥

∥(L−1/2
−m−1/2(0))u

∥

∥

L2
.

Proof. The proof is straightforward and is therefore omitted.

Before we continue we want to make a remark on the convolution theorem. According to our

choice of the Fourier transform normalisation, for any two functions f and g we have

F(fg) =
1

2π
̂f ∗ ĝ

where star stands for convolution.

Lemma 2.6. The functional E defined by (1.19) is translation invariant. In other words, for any

u ∈ Hs/2(R) then E(uh) = E(u), where uh(x) = u(x− h) denotes translation by h ∈ R.

Proof. Due to the property ûh(ξ) = e−ihξû(ξ) and the Plancherel theorem we have

E(uh) =
1

4π

∫

R

∣

∣

∣

∣

√

m(ξ)ûh(ξ) +
1

2
F

(

(

L−1/2uh

)2
)

(ξ)

∣

∣

∣

∣

2

dξ

=
1

4π

∫

R

∣

∣

∣

∣

e−ihξ
√

m(ξ)û(ξ) +
1

2
e−ihξ

F

(

(

L−1/2u
)2
)

(ξ)

∣

∣

∣

∣

2

dξ = E(u)

where we have also used the fact that the Fourier transform of multiplication is convolution of

Fourier transforms up to a normalization constant.

In the following lemma we provide a slightly sharper estimate for Nc. It will be the first step

towards the non-vanishing proof given below.

Lemma 2.7. For s > 1/2 the following estimate hold true

|Nc(u)| . ‖u‖2L2(R)‖L
−1/2u‖L∞(R)

9
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Proof. Clearly, L−1/2u ∈ L∞(R) and so applying a Kato–Ponce type estimate obtain

|Nc(u)| . ‖u‖L2‖L1/2(L−1/2u)2‖L2 . ‖u‖L2‖Js/2(L−1/2u)2‖L2

. ‖u‖L2‖Js/2L−1/2u‖L2‖L−1/2u‖L∞ . ‖u‖2L2‖L
−1/2u‖L∞ .

We finish this section with a lemma which will be used when ruling out the dichotomy

scenario.

Lemma 2.8. Let ϕ ∈ S(R), and let Ar : H
s/2(R) → Hs/2(R), Br : L

2(R) → L2(R) be the

operators

Arf = [L, ϕ
( .

r

)

]f,

Brf = [L−

1

2 , ϕ
( .

r

)

]f.

Then the operator norms

‖Ar‖ , ‖Br‖ → 0 as r → ∞.

Proof. We follow the proof of [20, Lemma 6.2]. Let ϕr(x) = ϕ(x/r). Using Lemma 2.1, we

find that for f, g ∈ Hs/2(R)

|〈Arf, g〉| =
1

2π

∣

∣

∣

∣

∫

R

∫

R

ϕ̂r(η) ̂f(ξ − η)(m(ξ)−m(ξ − η))ĝ(ξ) dη dξ

∣

∣

∣

∣

.

∫

R

|ϕ̂r(η)ω(η)|

∫

R

〈ξ − η〉
s
2 | ̂f(ξ − η)|〈η〉

s
2 |ĝ(η)| dηdξ

.

∫

R

|ϕ̂(η)ω (η/r)| dη ‖f‖Hs/2 ‖g‖Hs/2 .

Hence ‖Ar‖ .
∫

R
|ϕ̂(η)ω(η/r)| dη and this last integral tends to zero by the dominated conver-

gence theorem as r → ∞, since ω is bounded above by a polynomial and limη→0 ω(η) → 0.

Similarly, for f, g ∈ L2(R) we have

|〈Brf, g〉| =
1

2π

∣

∣

∣

∣

∫

R

∫

R

ϕ̂r(η) ̂f(ξ − η)(m−1/2(ξ)−m−1/2(ξ − η))ĝ(ξ) dηdξ

∣

∣

∣

∣

=
1

2π

∣

∣

∣

∣

∫

R

∫

R

ϕ̂r(η) ̂f(ξ − η)

(

m(ξ − η)−m(ξ)

m1/2(ξ − η)m1/2(ξ)(m1/2(ξ − η) +m1/2(ξ))

)

ĝ(ξ) dηdξ

∣

∣

∣

∣

.

∫

R

|ϕ̂r(η)ω(η)|

∫

R

〈ξ − η〉s/2

m1/2(ξ − η)
| ̂f(ξ − η)|

〈η〉s/2

m1/2(η)
|ĝ(η)| dηdξ

.

∫

R

|ϕ̂(η)ω (η/r)| dη ‖f‖L2 ‖g‖L2 ,

and we can conclude in the same way as before that ‖Br‖ → 0 as r → ∞.

10
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3 Near minimizers

In this section we provide necessary estimates for the infimum

Iq = inf
u∈Uq

E(u) (3.1)

and for those u ∈ Uq that give values E(u) close to this infimum. The regarded functional (1.19)

is non-negative and so the same is true for the infimum. However, we also need an upper bound

for Iq and this is addressed in the next result.

Proposition 3.1. There exist constants D, q0 > 0 such that for q ∈ (0, q0) holds

0 6 Iq < m(0)q −Dq1+β,

with β = s′

2s′−1
.

Proof. It is immediate that 0 6 Iq. To establish the other inequality we consider ϕ ∈ C∞(R),
with supp(ϕ̂) ⊆ (−1, 1), ϕ(x) ≤ 0, x ∈ R and Q(ϕ) = 1. We rescale and define ϕq,α(x) =
√

q/αϕ(x/α), α > 1, so that Q(ϕq,α) = q.

We first note that

L(ϕq,α) ≤ m(0)q + C1qα
−s′ , C1 > 0, (3.2)

and using Proposition 2.3

|Nr(ϕq,α)| ≤ C2q
2, C2 > 0. (3.3)

In order to estimate Nc(φq,α) we begin by estimating

0 ≤ m1/2(ξ)−m1/2(0) ≤
m(ξ)−m(0)

2
√

m(0)
,

|m−1/2(ξ)−m−1/2(0)| ≤
m(ξ)−m(0)

2m(0)
√

m(0)
,

and then, using Lemma 2.5, we find that

|N2c(ϕq,α)| . q3/2α−s′−1/2,

|N3c(ϕq,α)| . q3/2α−s′ .

Moreover, since ϕ(x) ≤ 0, we have that

1

2
√

m(0)

∫

R

ϕq,α(x)
3 dx = −2C0q

3/2α−1/2, C0 > 0

N1c(ϕq,α) ≤ 0.

Hence, it follows from the above estimates that there exists α0 > 1, such that for α ≥ α0,

Nc(ϕq,α) ≤ −C0q
3/2α−1/2,

11
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and combining this with (3.2), (3.3), yields

E(ϕq,α) ≤ m(0)q −
(

C0q
3/2α−1/2

− C1qα
−s′

)

+ C2q
2, (3.4)

and by choosing α−s′ = Bqβ , with 0 < B ≤ α−s′

0
q−β , so that α ≥ α0, we get from (3.4) that

E(ϕq,α) ≤ m(0)q − (C0B
1/(2s′)

− C1B)
︸ ︷︷ ︸

=:2D

q1+β + C2q
2, (3.5)

By choosing B small enough we have that D > 0, and if we in addition choose q0 sufficiently

small, we find that

Iq ≤ E(ϕq,α) < m(0)q −Dq1+β.

We now define a near minimizer to be an element u of Uq such that

E(u) < m(0)q −Dq1+β. (3.6)

By the previous proposition, there exist such elements u ∈ Uq.

Proposition 3.2. A near minimizer u ∈ Uq satisfies

‖u‖
2

Hs/2 . q.

Proof. Using propositions 2.2, 2.3 and 3.1, we find that

‖u‖
2

H
s
2 (R)

≃ L(u)

= E(u)−N (u)

. m(0)q −Dq1+β + ‖u‖
2

L2(R)
‖u‖

H
s
2 (R)

+ ‖u‖
4

L2(R)

. m(0)q −Dq1+β + q ‖u‖
H

s
2 (R)

+ q2.

Hence, it follows that for q sufficiently small

‖u‖
2

H
s
2 (R)

. m(0)q −Dq1+β
. q.

We next show that Iq is strictly subadditive as a function of q. This is essential when proving

that dichotomy cannot occur.

Proposition 3.3. For any q1, q2 ∈ (0, q0) such that q1 + q2 ∈ (0, q0), holds

0 < Iq1+q2 < Iq1 + Iq2 . (3.7)

12
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Proof. We show that Iq is strictly subhomogeneous, i.e

Iaq < aIq, a > 1, q < aq < q0, (3.8)

from which the strict subadditivity follows from a standard argument. First we show that (3.8)

holds for a ∈ (1, 2]. Let {un}
∞

n=1
be a minimizing sequence. From (3.6) we have that

L(un) +Nc(un) +Nr(un) < m(0)q −Dq1+β, (3.9)

and since L(un) ≥ m(0)q, Nr(u) ≥ 0, we get from (3.9) that

Nc(u) < −Dq1+β. (3.10)

We also note that
√
a− 1 ≥ (a− 1)/(1 +

√
2). With this in mind we see that

Iaq ≤ E(a1/2un)

= L(a1/2un) +N (a1/2un)

= aL(un) + a3/2Nc(un) + a2Nr(un)

= aE(un)− a(Nc(un) +Nr(un)) + a3/2Nc(un) + a2Nr(un)

= aE(un) + (a3/2 − a)Nc(un) + (a2 − a)Nr(un)

≤ aE(un)− (a3/2 − a)Dq1+β + (a2 − a)C3q
2

≤ aE(un)− (a2 − a)

(

Dq1+β

1 +
√
2
− C3q

2

)

.

Hence, for q0 sufficiently small

Iaq + (a2 − a)
Dq1+β

2
√
2

< aIq,

which implies (3.8) for a ∈ (1, 2], but also that Iq > 0, for q ∈ (0, q0), proving the first inequality

in (3.7). For the general case when a > 1, we choose l ∈ N sufficiently big so that a ∈ (1, 2l].
Then a1/l ∈ (1, 2], and so

Iaq = Ia1/la(l−1)/lq < a1/lIa(l−1)/lq = a1/lIa1/la(l−2)/lq < a2/lIa(l−2)/lq < . . . < aIq.

4 Existence of minimizers

In order to establish the existence of minimizers, we will apply the concentration-compactness

principle (Theorem 1.4) to en = u2

n, where {un}
∞

n=1
is a minimizing sequence. The idea is to

show that the vanishing and dichotomy scenarios cannot occur and then prove the existence of a

minimizer using concentration. We start by excluding the vanishing scenario.

Proposition 4.1. Vanishing does not occur.

13
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Proof. Let {un}
∞

n=1 ⊆ Uq be a minimizing sequence of E . By Lemma 2.7 we have

|Nc(u)| . ‖u‖2L2(R)‖L
−1/2u‖L∞(R)

and so for a minimizing sequence

qβ . ‖L−1/2un‖L∞(R).

Arguing as in the proof of [6, Lemma 4.5], we have for any x ∈ R that

‖L−1/2un‖L∞(x−1,x+1) . ‖L−1/2un‖
1−1/(2s)

L2(x−1,x+1)‖L
−1/2un‖

1/(2s)
Hs(R)

. ‖L−1/2un‖
1−1/(2s)

L2(x−1,x+1)‖un‖
1/(2s)

H
s

2 (R)
. q1/(4s)‖L−1/2un‖

1−1/(2s)

L2(x−1,x+1),

and hence

qβ−1/(4s)
. sup

x∈R

‖L−1/2un‖
1−1/(2s)

L2(x−1,x+1),

which means that L−1/2un cannot vanish. Now we show that L−1/2un is vanishing if one assumes

that un is vanishing. In order to do this we start by decomposing

(L−1/2un)(x) = (F−1(m−1/2) ∗ un)(x)

=

∫

R

F
−1(m−1/2)(y)un(x− y) dy

=

∫

|y|<ǫ

F
−1(m−1/2)(y)un(x− y) dy

︸ ︷︷ ︸

=:I1

+

∫

ǫ≤|y|≤R

F
−1(m−1/2)(y)un(x− y) dy

︸ ︷︷ ︸

=:I2

+

∫

|y|≥R

F
−1(m−1/2)(y)un(x− y) dy

︸ ︷︷ ︸

=:I3

,

and so

∥

∥L−1/2un

∥

∥

L2(x̃−1,x̃+1)
≤ ‖I1‖L2(x̃−1,x̃+1) + ‖I2‖L2(x̃−1,x̃+1) + ‖I3‖L2(x̃−1,x̃+1) .

The goal is then to show that each of the above integrals can be made arbitrarily small.

By assumption there exists p ∈ (1, 2) ∩ [2/(s+ 1), 2) such that (1.18) holds, and so
∥

∥F
−1

(

m−1/2
)∥

∥

Lp(−ε,ε)
= o(1) as ε → 0. On the other hand its dual number p′ satisfies condi-

tion 1/2 − 1/p′ 6 s/2 resulting in the embedding H
s

2 (R) →֒ Lp′(R). Thus applying Hölder’s

inequality to I1 yields

‖I1‖
2
L2(x̃−1,x̃+1) 6

∫ x̃+1

x̃−1

∥

∥F
−1

(

m−1/2
)
∥

∥

2

Lp(−ε,ε)
‖un‖

2
Lp′ (R)

dx = o(1) as ε → 0.

For I3 we apply the Cauchy–Schwarz inequality as follows

‖I3‖
2
L2(x̃−1,x̃+1) 6

∫ x̃+1

x̃−1

∥

∥F
−1

(

m−1/2
)∥

∥

2

L2(R\(−R,R))
‖un‖

2
L2(R) dx = o(1) as R → ∞.

14
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After choosing ε, R we turn our attention to I2

‖I2‖
2
L2(x̃−1,x̃+1) 6

∫ x̃+1

x̃−1

∥

∥F
−1

(

m−1/2
)∥

∥

2

L2((−R,R)\(−ε,ε))
‖un(x− y)‖2L2(ε<|y|<R) dx

6 C(ε, R)‖un‖
2
L2(−1−|x̃|−R,1+|x̃|+R) → 0 as n → ∞,

if one assumes vanishing of un.

We next turn our attention to the dichotomy scenario.

Proposition 4.2. Dichotomy cannot occur.

Proof. Let χ : R → [0, 1] be a smooth cutoff function with χ(x) = 1, for |x| ≤ 1 and χ(x) = 0,

for |x| ≥ 2, and such that

χ = χ2
1, 1− χ = χ2

2,

where χ1, χ2 are smooth. Next, let wn(x) = un(x− xn) and

w(1)
n (x) = χ1

(

x

Mn

)

︸ ︷︷ ︸

=:χ1n(x)

wn(x), w(2)
n (x) = χ2

(

x

Mn

)

︸ ︷︷ ︸

=:χ2n(x)

wn(x),

Note that from the dichotomy assumption

1

2

∫

Mn≤|x|≤2Mn

w2
n dx ≤

1

2

∫

Mn≤|x|≤Nn

w2
n dx

=
1

2

∫ Nn

−Nn

w2
n dx−

1

2

∫ Mn

−Mn

w2
n dx

→ q∗ − q∗

= 0.

Since |wi
n(x)| ≤ |wn(x)|, i = 1, 2, it follows directly that

∫

Mn≤|x|≤2Mn

(w
(i)
n )2 dx → 0, as

n → ∞. From this we can then deduce

1

2

∫

R

(w(1)
n )2 dx =

1

2

∫ Mn

−Mn

w2
n dx−

1

2

∫

Mn≤|x|≤2Mn

(w(1)
n )2 dx → q∗,

and similarly

1

2

∫

R

(w(2)
n )2 dx =

1

2

∫

R

w2
ndx−

1

2

∫ 2Mn

−2Mn

w2
n dx+

1

2

∫

Mn≤|x|≤2Mn

(w(2)
n )2 dx → q − q∗.

We next show that

E(w(1)
n ) + E(w(2)

n )− E(wn) → 0, n → ∞. (4.1)

As a first step towards this, we show that

L(w(1)
n ) + L(w(2)

n )− L(wn) → 0, n → ∞ (4.2)

15
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Indeed, note that

L(w(1)

n ) + L(w(2)

n )− L(wn) =
1

2

∫

R

w(1)

n Lw(1)

n + w(2)

n Lw(2)

n − (χ2

1n + χ2

2n)wnLwn dx,

and using Lemma 2.8 we find that

∫

R

w(1)

n Lw(1)

n − χ2

1nwnLwn dx =

∫

R

χ1nwn(L(χ1nwn)− χ1nLwn) dx

=

∫

R

χ1nwn[L, χ1n] dx

→ 0, n → ∞

In the same way we find that

∫

R

w(2)

n Lw(2)

n − χ2

2nwnLwn dx =

∫

R

χ2nwn[L, χ2n − 1]wn dx → 0, n → ∞,

hence, (4.2) holds. The next step is to show that

N (w(1)

n ) +N (w(2)

n )−N (wn) → 0, n → ∞, (4.3)

and for this we use the decomposition N = Nc +Nr, and show that

Nc(w
(1)

n ) +Nc(w
(2)

n )−Nc(wn) → 0 n → ∞, (4.4)

Nr(w
(1)

n ) +Nr(w
(2)

n )−Nr(wn) → 0 n → ∞. (4.5)

Starting with (4.4), we note that

Nc(w
(1)

n ) +Nc(w
(2)

n )−Nc(wn) =
1

2

∫

R

(

L1/2w(1)

n (L−1/2w(1)

n )2 + L1/2w(2)

n (L−1/2w(2)

n )2

− (χ2

1n + χ2

2n)L
1/2wn(L

−1/2wn)
2

)

dx,

furthermore
∫

R

L1/2w(1)

n (L−1/2w(1)

n )2 − χ2

1nL
1/2wn(L

−1/2wn)
2 dx

=

∫

R

L1/2w(1)

n (L−1/2w(1)

n )2 − χ2

1nL
1/2w(1)

n (L−1/2wn)
2 dx

+

∫

R

χ2

1nL
1/2w(1)

n (L−1/2wn)
2
− χ2

1nL
1/2wn(L

−1/2wn)
2 dx,

16
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and using Lemma 2.8 we find that
∫

R

L
1

2w(1)

n (L−1/2w(1)

n )2 − χ2

1nL
1/2w(1)

n (L−1/2wn)
2 dx

=

∫

R

L1/2w(1)

n ((L−1/2w(1)

n )2 − χ2

1n(L
−1/2wn)

2) dx

=

∫

R

L1/2w(1)

n (L−1/2w(1)

n + χ1nL
−1/2wn)(L

−1/2w(1)

n − χ1nL
−1/2wn) dx

=

∫

R

L1/2w(1)

n (L−1/2w(1)

n + χ1nL
−1/2wn)[L

−1/2, χ1n]wn dx

→ 0, n → 0,

and
∫

R

χ2

1nL
1/2w(1)

n (L−1/2wn)
2
− χ2

1nL
1/2wn(L

−1/2wn)
2 dx

=

∫

R

χ2

1nL
1/2(w(1)

n − wn)(L
−1/2wn)

2 dx

=

∫

R

L1/2(χ1n(w
(1)

n − wn))χ1n(L
−1/2wn)

2 dx

−

∫

R

[L1/2, χ1n](w
(1)

n − wn)χ1n(L
−1/2wn)

2 dx,

where
∣

∣

∣

∣

∫

R

L1/2(χ1n(w
(1)

n − wn))χ1n(L
−1/2wn)

2 dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

χ1n(χ1n − 1)wnL
1/2(χ1n(L

−1/2wn)
2) dx

∣

∣

∣

∣

≤ ‖χ1n(χ1n − 1)wn‖L2

∥

∥L1/2(χ1n(L
−1/2wn)

2)
∥

∥

L2

. ‖wn‖L2([−2Mn,−Mn]∪[Mn,2Mn])
‖wn‖

2

Hs/2

→ 0, n → ∞,

and
∫

R
[L1/2, χ1n](w

(1)

n −wn)χ1n(L
−1/2wn)

2 dx → 0, n → ∞, according to Lemma 2.8. Hence

limn→∞

∫

R
L1/2w

(1)

n (L−1/2w
(1)

n )2 − χ2

1nL
1/2wn(L

−1/2wn)
2 dx = 0, and in the same way we

can show that limn→∞

∫

R
L1/2w

(2)

n (L−1/2w
(2)

n )2 − χ2

2nL
1/2wn(L

−1/2wn)
2 dx = 0, which implies

(4.4). The limit (4.5) can be shown using similar techniques as (4.4) and we therefore omit the

details.

We conclude that (4.3) holds, which together with (4.2) implies (4.1). Since {wn}
∞

n=1
is a

minimizing sequence, we get that

lim
n→∞

E(w(1)

n ) + E(w(1)

n ) → Iq. (4.6)

However,

lim
n→∞

(

E
(

v(i)n

)

− E
(

w(i)
n

))

= 0, i = 1, 2, (4.7)
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where v
(1)

n =

√

q∗/Q(w
(1)

n )w
(1)

n , v
(2)

n =

√

(q − q∗)/Q(w
(2)

n )w
(2)

n . By construction v
(1)

n ∈ Uq∗ ,

v
(2)

n ∈ Uq−q∗ , and so using (4.6), (4.7), we find that

Iq = lim
n→∞

E(v(1)n ) + E(v(1)n ) ≥ Iq∗ + Iq−q∗ ,

which contradicts Proposition 3.3.

Proposition 4.3. There exists u ∈ Uq solving minimization problem E(u) = Iq.

Proof. By the concentration-compactness principle our minimizing sequence en = u2

n ∈ L1(R),
n ∈ N, concentrates. Moreover, due to the translation invariance one can assume that it concen-

trates around zero, and so

∫

|x|>r

u2

n(x) dx → 0 uniformly with respect to n ∈ N as r → ∞.

In addition, {un}
∞

n=1
is a bounded sequence in H

s

2 (R) due to Proposition 3.2, and so

‖(un)h − un‖
2

L2 . q
∥

∥ξ 7→ |eiξh − 1|〈ξ〉−s/2
∥

∥

2

L∞

that tends to zero uniformly with respect to n ∈ N as h → 0. Taking into account the bounded-

ness of {un}
∞

n=1
in L2(R) one deduces from the Frechet–Kolmogorov theorem that {un}

∞

n=1
is

relatively compact in L2(R). Thus we can assume that {un}
∞

n=1
converges to some u in L2(R).

Again using that {un}
∞

n=1
is bounded in H

s

2 (R) , we may in addition assume that un converges

weakly in H
s

2 (R) to u. Hence u ∈ Uq and it is left to check that it solves the minimization

problem.

Firstly, applying the weak lower semi-continuity argument we deduce

L(u) 6 lim inf
n→∞

L(un).

Indeed, the square root of L(u) defines a norm in H
s

2 (R), equivalent to the standard Sobolev

norm. By the Mazur theorem a closed ball is weakly closed. The latter property implies the

weak lower semi-continuity of the functional L.

It is left to show that N (un) tends to N (u) as n → ∞. The cubic part is estimated as

|Nc(u)−Nc(un)| 6
1

2

∣

∣

∣

∣

∫

R

(

L−1/2u
)2

L1/2(u− un) dx

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∫

R

(

(

L−1/2u
)2

−
(

L−1/2un

)2
)

L1/2un dx

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∫

R

(u− un)L
1/2

(

L−1/2u
)2

dx

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∫

R

(

L−1/2(u− un)
) (

L−1/2(u+ un)
)

L1/2un dx

∣

∣

∣

∣

. ‖u− un‖L2

∥

∥

∥
L1/2

(

L−1/2u
)2
∥

∥

∥

L2

+
∥

∥L−1/2(u− un)
∥

∥

H
s

2

∥

∥L−1/2(u+ un)
∥

∥

H
s

2

∥

∥L1/2un

∥

∥

L2
. q ‖u− un‖L2

18
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which tends to zero as n → ∞. For the remainder we have

|Nr(u)−Nr(un)|

=
1

8

∣

∣

∣

∣

∫

R

(

L−1/2(u− un)
) (

L−1/2(u+ un)
)

(

(

L−1/2u
)2

+
(

L−1/2un

)2
)

dx

∣

∣

∣

∣

.
∥

∥L−1/2(u− un)
∥

∥

Hs/2

∥

∥L−1/2(u+ un)
∥

∥

Hs/2

(

∥

∥L−1/2u
∥

∥

2

L4
+
∥

∥L−1/2un

∥

∥

2

L4

)

. q3/2 ‖u− un‖L2

that tends to zero as n → ∞. Summing up we obtain

Iq 6 E(u) 6 lim inf
n→∞

E(un) = Iq

which concludes the proof.

We finish the proof of Theorem 1.2 by proving the estimate. Let u be a minimizer. We know

that u satisfies the Euler–Lagrange equation

λu+ dE(u) = 0.

Taking the inner product in this equation with u yields

−2λq = dE(u)(u)

= 2L(u) + 3Nc(u) + 4Nr(u)

= −L(u) + 3E(u) + 4Nr(u) (4.8)

Since L(u) ≥ m(0)q and |Nc(u)| = O(q3/2), |Nr(u)| = O(q2) by Proposition 2.3, it is easy to

see from the second inequality in (4.8) that for q sufficiently small

−λ >
m(0)

2
.

For the upper bound we use (4.8) together with propositions 2.3, 3.1, 3.2 to deduce that

−2λq = −L(u) + 3E(u) + 4Nr(u)

= −L(u) + 3Iq + 4Nr(u)

≤ −m(0)q + 3(m(0)q −Dq1+β) +O(q2)

= 2m(0)q − 3Dq1+β +O(q2),

hence, for q sufficiently small

−λ < m(0)−Dqβ.

5 Long wave approximation

In this section we return to the initial variational problem for the Whitham–Boussinesq system.

So from now on L = K. We will show that all minimizers are infinitely smooth and refine

existing estimates for them.
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Lemma 5.1. There exists q0 > 0 such that for each r > 0 holds ‖u‖2Hr . q uniformly for

q ∈ (0, q0) and u ∈ Dq.

Proof. Firstly, one can notice that the statement holds for r ∈ [0, 1/2], due to Proposition 3.2.

We will extend the result by induction to bigger values of r applying Formula (1.13).

Let r > 1/2, then from the equivalence of operators K, J and product estimates in Sobolev

spaces we deduce
∥

∥

∥
K−1/2

(

K−1/2v
)3
∥

∥

∥

Hr

. ‖v‖3Hr ,

∥

∥K−1/2
(

K1/2vK−1/2v
)∥

∥

Hr
. ‖v‖2Hr ,

∥

∥

∥
K1/2

(

K−1/2v
)2
∥

∥

∥

Hr

. ‖v‖2Hr

for any v ∈ Hr(R). All three constants here depend only on r.

Now for any minimizer u ∈ Dq calculate Ku by Formula (1.13) and obtain

‖u‖Hr+1 . ‖Ku‖Hr 6 |λ|‖u‖Hr +
1

2

∥

∥

∥
K−1/2

(

K−1/2u
)3
∥

∥

∥

Hr

+
∥

∥K−1/2
(

K1/2vK−1/2u
)∥

∥

Hr
+

1

2

∥

∥

∥
K1/2

(

K−1/2u
)2
∥

∥

∥

Hr

.
√
q

for any r > 1/2. We have used |λ| 6 1 according to Theorem 1.2. This concludes the proof by

induction.

Lemma 5.2. There exist q0 > 0 and C > 0 such that the following estimates hold

‖u‖L∞ 6 Cq2/3, (5.1)

‖∂xu‖
2

L2 6 Cq5/3, (5.2)

‖∂2

xu‖
2

L2 6 Cq7/3 (5.3)

uniformly for q ∈ (0, q0) and u ∈ Dq.

Proof. Introducing the notation

M(u) =
1

2
K−1/2

(

K−1/2u
)3

+K−1/2
(

K1/2uK−1/2u
)

+
1

2
K1/2

(

K−1/2u
)2

one can rewrite Equation (1.13) in the form

(λ+K)u = −M(u).

Note that −λ ∈
(

0, 1−Dq2/3
)

according to Theorem 1.2 and so λ + 1 > Dq2/3. The Fourier

transform of minimizer u can be estimated as

|û(ξ)| =

∣

∣

∣

∣

F(M(u))

λ+m(ξ)

∣

∣

∣

∣

6
|F(M(u))|

Dq2/3 +m(ξ)− 1
. |F(M(u))(ξ)|

(

χ
|ξ|61(ξ)

q2/3 + ξ2
+

χ
|ξ|>1(ξ)

q2/3 + |ξ|

)

where χA(ξ) stands for the characteristic function of a set A. As was shown in the proof of

Lemma 5.1 M(u), is smooth and its Hs-norm is bounded by q for any non-negative s. Hence

F(M(u)) multiplied by any power of ξ is bounded by q with respect to L2-norm.
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Let us show that the L∞-norm of F(M(u)) is bounded by q. Indeed, we have

∣

∣

∣
F

(

K1/2
(

K−1/2u
)2
)

(ξ)
∣

∣

∣
.

∫

R

√

m(ξ)|û(ξ − ζ)û(ζ)|
√

m(ξ − ζ)m(ζ)
dζ . ‖u‖2L2 . q,

∣

∣F
(

K−1/2
(

K1/2uK−1/2u
))

(ξ)
∣

∣ .

∫

R

√

m(ξ − ζ)|û(ξ − ζ)û(ζ)|
√

m(ξ)m(ζ)
dζ . ‖u‖2L2 . q

and similarly

∣

∣

∣
F

(

K−1/2
(

K−1/2u
)3
)

(ξ)
∣

∣

∣
. ‖u‖L2

∥

∥

∥

(

K−1/2u
)2
∥

∥

∥

L2

. ‖u‖3L2 . q3/2.

Thus ‖F(M(u))‖L∞ . q. So we are in a position to prove (5.1), indeed,

‖u‖L∞ . ‖û‖L1 .

∫

|ξ|61

|F(M(u))(ξ)|

q2/3 + ξ2
dξ +

∫

|ξ|>1

|F(M(u))(ξ)|

q2/3 + |ξ|
dξ

. q−1/3
‖F(M(u))‖L∞ + ‖F(M(u))‖L2 . q2/3.

Estimate (5.2) is proved as follows

‖∂xu‖
2

L2 = ‖ξ 7→ ξû(ξ)‖2L2 .

∫

|ξ|61

ξ2|F(M(u))(ξ)|2

(q2/3 + ξ2)2
dξ +

∫

|ξ|>1

ξ2|F(M(u))(ξ)|2

(q2/3 + |ξ|)2
dξ

. q−1/3
‖F(M(u))‖2L∞ + ‖F(M(u))‖2L2 . q5/3.

A straightforward repetition of the last argument for the second derivative of the minimizer gives

‖∂2

xu‖
2

L2 = ‖ξ 7→ ξ2û(ξ)‖2L2 .

∫

|ξ|61

ξ4|F(M(u))(ξ)|2

(q2/3 + ξ2)2
dξ +

∫

|ξ|>1

ξ4|F(M(u))(ξ)|2

(q2/3 + |ξ|)2
dξ

. q1/3‖F(M(u))‖2L∞ + ‖F(∂xM(u))‖2L2 . q7/3 + ‖∂xM(u)‖2L2 (5.4)

that is only O(q2) and so weaker than (5.3). However, Estimate (5.2) is a refinement compared

with Lemma 5.1, so it can be used for more delicate estimate of the square norm ‖∂xM(u)‖2
L2 as

follows

∥

∥

∥
∂xK

1/2
(

K−1/2u
)2
∥

∥

∥

L2

.
∥

∥K−1/2uK−1/2∂xu
∥

∥

H1/2

.
∥

∥K−1/2u
∥

∥

H1

∥

∥K−1/2∂xu
∥

∥

H1/2 . q4/3,

where product estimates were used. To continue, first note that the estimate of the derivative

(5.2), will not be spoiled if one changes L2-norm to Hs-norm with any s > 0. In other words,

‖∂xu‖Hs . q5/6, and so

∥

∥∂xK
−1/2

(

K1/2uK−1/2u
)∥

∥

L2
.

∥

∥K1/2∂xuK
−1/2u

∥

∥

L2
+
∥

∥K1/2uK−1/2∂xu
∥

∥

L2

. ‖∂xu‖H3/2 ‖u‖L2 + ‖u‖H3/2 ‖∂xu‖L2 . q4/3.
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The last remaining term is estimated similarly

∥

∥

∥
∂xK

−1/2
(

K−1/2u
)3
∥

∥

∥

L2

.
∥

∥(K−1/2u)2K−1/2∂xu
∥

∥

L2
. ‖u‖

2

H1/2 ‖∂xu‖L2 . q11/6.

Thus

‖∂xM(u)‖L2 . q4/3

that together with (5.4) conclude the proof of Estimate (5.3).

Remark 5.3. Lemmas 5.1, 5.2 remain valid with the surface elevation ηu and velocity vu defined

by (1.14), (1.15) substituted instead of the minimizer u ∈ Dq.

We now turn to the task of approximating the solutions found in Theorem 1.2 with solutions

of the KdV-equation. For this part we follow [6] closely.

We introduce the long-wave scaling SKdV(f)(x) = q2/3f(q1/3x) and note that when making

the ansatz u = SKdV(ψ) in (1.13), the leading order part of the equation as q → 0 is, with

λ = −1 + λ0q
2/3,

λ0ψ +
3

2
ψ2

−
ψxx

3
= 0. (5.5)

Equation (5.5) is the travelling wave version of the KdV-equation, which has the up to translation

the following unique solution

ψKdV(x) = −λ0 sech
2

(

1

2

√

3λ0x

)

.

We note that (5.5) is the Euler-Lagrange equation of the minimization problem

IKdV := min
ψ∈V1

EKdV (ψ),

where

EKdV (ψ) :=
1

2

∫

R

ψ2

x

3
+ ψ3 dx,

and V1 := {ψ ∈ H1(R) : Q(ψ) = 1}. The constraint Q(ψKdV) = 1 requires that λ0 = 3/16
1

3 .

The relation between E and EKdV is now established.

Lemma 5.4. For u ∈ H2(R) hold

E(u) = Q(u) + EKdV(u) + Erem(u), (5.6)

with

|Erem(u)| .
∥

∥∂2

xu
∥

∥

2

L2
+ ‖u‖L∞ ‖∂xu‖

2

L2 + ‖u‖
2

L2 ‖∂xu‖L2 + ‖u‖
2

L4

∥

∥∂2

xu
∥

∥

L2
+ ‖u‖

4

L2 ,

(5.7)

|〈dErem(u), u〉| .
∥

∥∂2

xu
∥

∥

2

L2
+ ‖u‖L∞ ‖∂xu‖

2

L2 + ‖u‖
2

L2 ‖∂xu‖L2 + ‖u‖
2

L4 ‖∂xu‖L2 + ‖u‖
4

L2

(5.8)
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Proof. We note that

E(u) =
1

2

∫

R

uKu dx+Nc(u) +Nr(u)

= Q(u) +
1

2

∫

R

u(K − 1)u dx+
1

2

∫

R

u3 dx+N1c(u) +N2cu+N3c(u) +Nr(u)

= Q(u) + EKdV(u)

+
1

2

∫

R

(

m(ξ)− 1−
ξ2

3

)

|û|2 dξ +N1c(u) +N2c(u) +N3c(u) +Nr(u)

︸ ︷︷ ︸

=:Erem(u)

Since m(ξ) = ξ/ tanh(ξ), we have that |m(ξ)− 1− ξ2

3
| . ξ4, so that

∫

R

∣

∣

∣

∣

m(ξ)− 1−
ξ2

3

∣

∣

∣

∣

|û|2 dξ .
∥

∥∂2

xu
∥

∥

2

L2
.

From Lemma 2.5 we have

|N1c(u)| .

∫

R

|u((K−1/2
− 1)u)2| dx . ‖u‖L∞ ‖∂xu‖

2

L2 .

Similarly we find that

|N2c(u)| . ‖u‖
2

L4 ‖∂xu‖L2 ,

|N3c(u)| . ‖u‖
2

L2 ‖∂xu‖L2 .

The term Nr(u) is estimated in Proposition 2.3, hence (5.7) is established. The estimate (5.8) is

proved in a similar way and we therefore omit the details.

Lemma 5.5. There exists q0 > 0 such that

Iq = q + EKdV(u) +O(q2), uniformly over u ∈ Dq, (5.9)

Iq = q + q
5

3 IKdV +O(q2). (5.10)

Proof. Let u ∈ Dq. From Lemma 5.1 we know that u ∈ Hr(R) for any r ≥ 0. In particular

u ∈ H2(R), hence by Lemma 5.4

E(u) = q + EKdV(u) + Erem(u).

Using (5.7) together with Lemma 5.2, we get |Erem(u)| . q2. Hence, (5.9) follows.

Turning now to (5.10) we let ψ = S−1

KdV(u) and note that ψ ∈ V1 and

EKdV(u) = q5/3EKdV(ψ) ≥ q5/3IKdV,

so this together with (5.9) implies

Iq ≥ q + q5/3IKdV +O(q2).
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On the other hand, ũ := SKdV(ψKdV) ∈ Uq, so again using (5.9) obtain

Iq ≤ E(ũ)

= q + EKdV(ũ) +O(q2)

= q + q5/3EKdV(ψKdV) +O(q2)

= q + q5/3IKdV +O(q2),

which concludes the proof of (5.10).

The statement of Theorem 1.3 is a summary of the following lemmas.

Lemma 5.6. There exists q0 > 0 such that for any q ∈ (0, q0) and u ∈ Dq there exists xu ∈ R

such that
∥

∥S−1

KdV(u)− ψKdV(· − xu)
∥

∥

H1
. q1/6,

uniformly with respect to q ∈ (0, q0) and u ∈ Dq.

The proof of Lemma 5.6 is identical to the proof of [6, Theorem 5.5] and is therefore omitted.

We next relate the two Lagrange multipliers λ and λ0.

Lemma 5.7. The Lagrange multipliers related to the minimization problem (1.20), satisfy

λ = −1 + λ0q
2/3 +O(q5/6).

Proof. Let u ∈ Dq. From Lemma 5.4 we have

〈dE(u), u〉 = 2q + 〈dEKdV(u), u〉+O(q2). (5.11)

Moreover, 〈dEKdV(u), u〉 = q5/3〈dEKdV(S
−1

KdV(u)), S
−1

KdV(u)〉, and by Lemmas 5.2, 5.6

〈dEKdV(S
−1

KdV(u)), S
−1

KdV(u)〉 − 〈dEKdV(ψKdV), ψKdV〉 = O(q1/6).

Combining this with (5.11), we obtain

〈dE(u), u〉 = 2q + q5/3〈dEKdV(ψKdV), ψKdV〉+O(q11/6). (5.12)

On the other hand, from the Euler-Lagrange equations we have

2λq + 〈dE(u), u〉 = 0,

2λ0 + 〈dEKdV(ψKdV), ψKdV〉 = 0,

and when we combine this with (5.12), we get

−2λq = 2q − 2λ0q
5/3 +O(q11/6),

and dividing with −2q yields

λ = −1 + λ0q
2/3 +O(q5/6).
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For each solution u of (1.13), we have the corresponding physical parameters ηu, vu defined

by (1.14), (1.15) where −1/c2 = λ = −1 + λ0q
2/3 + O(q5/6) by Lemma 5.7. We have the

following estimates for ηu, vu that are similar to the one given in Lemma 5.6.

Lemma 5.8. There exists q0 > 0 such that for q ∈ (0, q0) and u ∈ Dq there exists xu ∈ R such

that
∥

∥S−1

KdV(ηu) + ψKdV(· − xu)
∥

∥

H1/2 . q1/6,
∥

∥S−1

KdV(vu) + ψKdV(· − xu)
∥

∥

H3/2 . q1/6

uniformly with respect to q ∈ (0, q0) and u ∈ Dq.

Proof. We will prove the first inequality. The second one can be proved analogously. Firstly,

one can notice that due to 1/2 < −λ < 1 in accordance with to Estimate (1.22), it is enough to

prove
∥

∥λS−1

KdV(ηu) + λψKdV(· − xu)
∥

∥

H1/2 . q1/6, (5.13)

where xu is taken as in Lemma 5.6. The first term under the norm in (5.13) has the form

λS−1

KdV(ηu) =
q−2/3

2

(

K−1/2u
)2

(q−1/3
·) + q−2/3(K1/2u)(q−1/3

·)

where the first element of the sum is negligible in view of the straightforward estimate
∥

∥(K−1/2u)2(q−1/3
·)
∥

∥

H1/2 . q.

The second element of the sum can be rewritten as follows. We note that

(K1/2u)(q−1/3x) = (K1/2
q u(q−1/3

·))(x),

where we used Kq to denote the Fourier multiplier operator with symbol m(q1/3·). We then get

that q−2/3(K1/2u)(q−1/3
·) = K

1/2
q S−1

KdV(u). Using this, we find that

q−2/3(K1/2u)(q−1/3
·)− ψKdV(· − xu) = K1/2

q S−1

KdV(u)− ψKdV(· − xu)

= K1/2
q (S−1

KdV(u)− ψKdV(· − xu)) + (K1/2
q − 1)ψKdV(· − xu).

Here the last term is estimated as
∥

∥(K1/2
q − 1)ψKdV(· − xu)

∥

∥

H1/2 . q1/3 ‖ψKdV‖H3/2 .

Finally, we have

∥

∥λS−1

KdV(ηu) + λψKdV(· − xu)
∥

∥

H1/2 .
∥

∥K1/2
q (S−1

KdV − ψKdV(· − xu))
∥

∥

H1/2

+
∥

∥(K1/2
q − 1)ψKdV(· − xu)

∥

∥

H1/2 + ‖(1 + λ)ψKdV(· − xu)‖H1/2 + q1/3

that gives (5.13) by Lemma 5.6 and 5.7.
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WELL-POSEDNESS FOR A WHITHAM–BOUSSINESQ SYSTEM WITH

SURFACE TENSION

EVGUENI DINVAY

Abstract. We regard the Cauchy problem for a particular Whitham–Boussinesq system modelling

surface waves of an inviscid incompressible fluid layer. The system can be seen as a weak nonlocal

dispersive perturbation of the shallow water system. The proof of well-posedness relies on energy

estimates. However, due to the symmetry lack of the nonlinear part, in order to close the a priori

estimates one has to modify the traditional energy norm in use. Hamiltonian conservation provides

with global well-posedness at least for small initial data in the one dimensional settings.

1. Introduction

Consideration is given to the following one-dimensional Whitham-type system
{

∂tη = −∂xv − i tanhD(ηv),

∂tv = −i tanhD(1 + κD2)η − i tanhDv2/2
(1.1)

where D = −i∂x and tanhD are Fourier multiplier operators in the space of tempered distributions
S
′(R). The positive parameter κ stands for the surface tension here. The space variable is x ∈ R

and the time variable is t ∈ R. The unknowns η, v are real valued functions of these variables.
We pick the initial values η(0), v(0) corresponding to the time moment t = 0 in Sobolev spaces as
follows

η0 ∈ Hs+1/2(R), v0 ∈ Hs(R) (1.2)

where s > 1/2. System (1.1) has the Hamiltonian structure

∂t(η, v)
T = J∇H(η, v)

with the skew-adjoint matrix

J =

(

0 −i tanhD
−i tanhD 0

)

and the energy functional

H(η, v) =
1

2

∫

R

(

η2 + κ(∂xη)
2 + v

D

tanhD
v + ηv2

)

dx (1.3)

well defined on H1
×H1/2. The latter conserves on solutions together with momentum I(η, v) that

has the same view as in the pure gravity case

I(η, v) =

∫

R

η
D

tanhD
vdx.

In case of the trivial surface tension κ = 0, System (1.1) was proposed in [6] as an approximate
model for the study of water waves to provide a two-directional alternative to the well-known
Whitham equation [22]. The latter was proved to be consistent with the KdV equation [18] in the
long wave regime [19]. We also refer to [10] for another version of the fully-dispersive Boussinesq
type. Importance of such models is supported by experiments [4]. The unknown η denotes the
deflection of the free surface from its equilibrium position, corresponding to the vertical level z = 0.
The bottom is assumed to be flat and located at the level z = −1. The variable v is associated
with the free surface velocity as explained in [6].

2010 Mathematics Subject Classification. 35Q53, 35Q55, 35A01.
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The initial value problem for Model (1.1) was studied in [5, 9] in the case of vanishing surface
tension κ = 0. In the same framework existence of solitary waves was proved in [8]. A natural
extension of the existing results is to consider the case of non-trivial capillarity κ > 0. Note that
usually the term 1+κD2 is applied to −vx in the first equation as it is done in [12], for example, to
regularise the system regarded in [11]. However, the case regarded here is physically more relevant
[7]. It turns out that surface tension spoils regularity. Indeed, the multiplication operator η 7→ vη
is not bounded in our problem. We have 1/2 loss of regularity here, which means that System (1.1)
is quasilinear. As a result the proof of well-posedness demands a technique different from the one
used in [9].

As to additional initial conditions, apart from inclusions given in (1.2), one has to impose a

restriction essentially similar to the one used in [9], namely, smallness of the H1
×H1/2-norm of

(η0, v0). This is important for the global-in-time existence. The meaning of this condition is that
the total energy H(η0, v0) should be positive and not too big. We point out that this condition
cannot be significantly weakened even for the proof of the local result, which is also different from
the non-capillarity situation. More precisely, for the local regular (s is large enough in (1.2))
well-posedness result it is enough to assume non-cavitation instead.

Definition 1. We say that elevation η ∈ C([0, T ];L∞(R)) satisfies the non-cavitation condition if
there exist h,H > 0 such that H > η > h−1 on R× [0, T ]. Analogously, one defines non-cavitation
at a particular time moment.

The non-cavitation condition is a physical condition meaning that the elevation of the wave
should not touch the bottom of the fluid for System (1.1) to be a relevant model. For convenience
we have also included boundedness from above in this definition. We exploit the definition for
providing with more general local existence formulation at high regularity level. However, in the
low regularity case this condition cannot be controlled without imposing a stronger assumption, as
we shall see below. We turn now to the formulation of the main result.

Theorem 1. Let s > 1/2. For any η0 ∈ Hs+1/2(R) and v0 ∈ Hs(R) having sufficiently small

H1
× H1/2-norm there exists a unique global solution (η, v) ∈ C([0,∞);Hs+1/2(R) × Hs(R)) of

System (1.1) with the initial data (η0, v0). Moreover, the solution depends continuously on the

initial data on any finite time interval [0, T ].

Remark 1. Assuming instead of smallness of H1
× H1/2-norm the noncavitation condition for η0

one obtains local well-posedness for s > 3/2.

The proof is essentially based on the energy method, that is natural to apply to quasilinear
equations. The scaling Hs+1/2(R) × Hs(R) is needed to rule out the linear terms. The main
difficulty lies in the lack of symmetry of the nonlinearity. Indeed, a direct time differentiation of
the norm ‖η, v‖Hs+1/2

×Hs leads to the term
∫ (

Js−1/2∂xη
)

ηJs+1/2v, where Jσ stands for the Bessel
potential of order −σ (see the proof of Lemma 6 below). Note that this term cannot be handled
by integration by parts or commutator estimates, and so cannot be estimated via the energy norm.

To overcome this difficulty we modify the energy norm adding the cubic term
∫

η
(

Js−1/2v
)2

. The
linear contribution of the derivative of this term will cancel out the mentioned inconvenient term.
Meanwhile, the contribution coming from the nonlinear terms can easily be controlled. As we
point out below a hint on the choice of the modifier comes from Hamiltonian (1.3). Note that after
adding the cubic term the energy loses coercivity, and so one has to impose an additional condition.
Either the noncavitation for big s or the smallness for small s of the initial data, both propagating
through the flow of System (1.1), is enough to ensure that the modified energy is coercive.

Additionally, consideration is also given to a system posed on R
2+1 of the form

{

∂tη +∇ · v = −K2
∇ · (ηv),

∂tv +K2
∇(1 + κ|D|

2)η = −K2
∇

(

|v|
2/2

) (1.4)
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that is a direct two dimensional extension of Model (1.1). Here v = (v1, v2) ∈ R
2 is a curl free

vector field, that is ∇× v = 0, and

K =
√

tanh |D|/|D|

with D = −i∇. So the corresponding symbol K(ξ) =
√

tanh(|ξ|)/|ξ|. We complement (1.4) with
the initial data

η(0) = η0 ∈ Hs+1/2
(

R
2
)

, v(0) = v0 ∈ Hs
(

R
2
)

×Hs
(

R
2
)

. (1.5)

As above the variables η and v stand for the surface elevation and the surface fluid velocity,
respectively. The system enjoys the Hamiltonian structure

∂t(η,v)
T = J∇H(η,v)

with the skew-adjoint matrix

J =





0 −K2∂x1
−K2∂x2

−K2∂x1
0 0

−K2∂x2
0 0



 ,

which in particular, guarantees conservation of the energy functional

H(η,v) =
1

2

∫

R2

(

η2 + κ|∇η|2 +
∣

∣K−1
v

∣

∣

2
+ η|v|2

)

dx. (1.6)

The noncavitation definition in the two dimensional problem has exactly the same view as in
Definition 1 with the real line R substituted by the plane R

2.

Theorem 2. Let s > 1. Suppose that the initial data (1.5) has curl free velocity ∇× v0 = 0 and

either has small enough H1 ×H1/2 ×H1/2-norm if s 6 2 or satisfies the noncavitation condition

if s > 2. Then there exist T > 0 depending only on the initial data and a unique solution (η,v) ∈

C
(

[0, T ];Hs+1/2(R)× (Hs(R))2
)

of System (1.4) associated with this initial data. Moreover, the

solution depends continuously on the initial data.

Note that the theorem has the local character, in the opposite of the one dimensional case.

Remark 2. The same results hold in the periodic case as well. The proof is similar up to some
small changes in the commutator estimates [15].

In the next section some important inequalities are recalled. In Section 3 we introduce the
modified energy and obtain the corresponding energy estimate for System (1.1). In Section 4 we
obtain the energy estimate for the difference of two solutions of System (1.1). In Section 5 the
parabolic regularisation is studied and the corresponding energy estimate is deduced. In Section 6
a priori estimates are obtained. Finally, in Section 7 we comment on the last steps in the proof of
Theorem 1, omitting only the thorough discussion of the initial data regularisation. In Section 8
we discuss some peculiarities of the two dimensional problem.

2. Preliminary estimates

We start this section by recalling all the necessary standard notations. For any positive numbers
a and b we write a . b if there exists a constant C independent on a, b such that a 6 Cb. The
Fourier transform is defined by the formula

̂f(ξ) = F(f)(ξ) =

∫

R

f(x)e−iξxdx

on Schwartz functions. By the Fourier multiplier operator ϕ(D) with symbol ϕ we mean the

line F (ϕ(D)f) = ϕ(ξ) ̂f (ξ). In particular, D = −i∂x is the Fourier multiplier associated with the
symbol ϕ(ξ) = ξ. For any α ∈ R the Riesz potential of order −α is the Fourier operator |D|α and
the Bessel potential of order −α is the Fourier operator Jα = 〈D〉α, where we exploit the notation
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〈ξ〉 =
√

1 + ξ2. The L2-based Sobolev space Hα is defined by the norm ‖f‖Hα = ‖Jαf‖L2 , whereas

the homogeneous Sobolev space Ḣα is defined by ‖f‖Ḣα = ‖|D|αf‖L2 .
Introduce the operator

Kκ =

√

(1 + κD2)
tanhD

D
(2.1)

where κ is the surface tension. Note that κ > 0 is a fixed constant. We implement the notation
K = K0 =

√

tanhD/D used in [9]. Its inverse K−1 and Kκ both have the domain H1/2(R) and

are equivalent to the Bessel potential J1/2. Below we will need to compare J , |D| and K−2 and so
we prove the following simple estimates.

Lemma 1. For any f ∈ L2(R) hold

∥

∥

(

J −K−2
)

Df
∥

∥

L2
6 ‖(J − |D|)Df‖L2 6

1

2
‖f‖L2 .

Proof. By the Plancherel identity it is enough to check the following inequalities

0 6 〈ξ〉 −
ξ

tanh ξ
6 〈ξ〉 − |ξ| 6

1

2|ξ|

where the middle one is trivial. The rightmost inequality follows from

〈ξ〉 − |ξ| =
1

〈ξ〉+ |ξ|
6

1

2|ξ|
.

The leftmost one follows from the tanh-definition via exponents and the obvious

e2ξ + e−2ξ
> 2 + 4ξ2.

�

Throughout the text we make an extensive use of the following bilinear estimates. Firstly, we
state the Kato-Ponce commutator estimate [14].

Lemma 2 (Kato-Ponce commutator estimate). Let s > 1, p, p2, p3 ∈ (1,∞) and p1, p4 ∈ (1,∞]
be such that 1

p = 1
p1

+ 1
p2

= 1
p3

+ 1
p4
. Then

‖[Js, f ]g‖Lp . ‖∂xf‖Lp1‖Js−1g‖Lp2 + ‖Jsf‖Lp3‖g‖Lp4 (2.2)

for any f, g defined on R.

By the commutator [A,B] between operators A and B we mean the operator [A,B]f = ABf −

BAf. Secondly, we state the fractional Leibniz rule proved in the appendix of [16].

Lemma 3. Let σ = σ1 + σ2 ∈ (0, 1) with σi ∈ (0, σ) and p, p1, p2 ∈ (1,∞) satisfy 1
p = 1

p1
+ 1

p2
.

Then

‖|D|
σ(fg)− f |D|

σg − g|D|
σf‖Lp . ‖|D|

σ1f‖Lp1‖|D|
σ2g‖Lp2 (2.3)

for any f, g defined on R. Moreover, the case σ2 = 0, p2 = ∞ is also allowed.

We also state an estimate, firstly appeared in [17] in a weaker form, and later sharpened in [21].

Lemma 4. Suppose a, b, c ∈ R. Then for any f ∈ Ha(R), g ∈ Hb(R) and h ∈ Hc(R) hold

‖fgh‖L1 . ‖f‖Ha‖g‖Hb‖h‖Hc (2.4)

provided that

a+ b+ c >
1

2
,

a+ b > 0, a+ c > 0, b+ c > 0.

Proving a global-in-time a priori estimate we will use the following limiting case of the Sobolev
embedding theorem.
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Lemma 5 (Brezis-Gallouet inequality). Suppose f ∈ Hs(Rn) with s > n/2. Then

‖f‖L∞ 6 Cs,n

(

1 + ‖f‖Hn/2

√

log(2 + ‖f‖Hs)
)

. (2.5)

Inequality (2.5) was firstly put forward and proved for a domain in R
n with n = 2 in the work

by Brezis, Gallouet [2]. It was extended to the other Sobolev spaces in [3].

3. Modified energy

For s > 1/2 define the modified energy

Es(η, v) =
κ

2
‖η‖2

Hs+1/2 +
1

2
‖v‖2Hs +

1

2

∫

η
(

Js− 1

2 v
)2

(3.1)

where the pair η(x, t), v(x, t) represents a possible solution of System (1.1). Note that in the limit
case s = 1/2 this quantity almost coincides with the Hamiltonian

E1/2(η, v) = H(η, v) +
κ − 1

2
‖η‖2L2 +

1

2

∫

v
(

J −K−2
)

v.

Lemma 6. Suppose s > 1/2 and η(t) ∈ Hs+1/2(R), v(t) ∈ Hs(R) solve System (1.1). Then

d

dt
Es(η, v) . ‖η‖2

Hs+1/2 + ‖v‖2Hs +
(

‖η‖2
Hs+1/2 + ‖v‖2Hs

)2
.

Proof. Firstly, we regard the limit case s = 1/2. Taking into account energy conservation derive

d

dt
E1/2(η, v) = (κ − 1)

∫

ηηt +

∫

v
(

J −K−2
)

vt.

Substituting the right hand side of the first equation (1.1) to the first integral obtain
∫

ηηt = −

∫

ηvx − i

∫

η tanhD(ηv) 6 ‖∂xη‖L2‖v‖L2 + ‖η‖L2‖η‖L∞‖v‖L2

following from Hölder’s inequality and boundedness of operator tanhD. Similarly, the second
integral

∫

v
(

J −K−2
)

vt = −i

∫

v
(

J −K−2
)

tanhDη + iκ

∫

(D tanhDη)
(

J −K−2
)

Dv

−
i

2

∫

v
(

J −K−2
)

tanhDv2 6
1

2
‖η‖L2‖v‖L2 +

κ

2
‖∂xη‖L2‖v‖L2 +

1

4
‖v‖L2‖v‖2L4

is estimated using Hölder’s inequality and boundedness of operators tanhD,
(

J −K−2
)

D in L2(R).
Applying standard Sobolevs’ embeddings one proves the statement for s = 1/2.

Assuming s > 1/2 calculate the derivative

κ

2

d

dt
‖η‖2

Hs+1/2 = −κ

∫

(

Js+ 1

2 η
)

Js+ 1

2∂xv − iκ

∫

(

Js+ 1

2 η
)

Js+ 1

2 tanhD(ηv)

= iκ

∫

(

Js+1Dη
)

Jsv + iκ

∫

(

Js− 1

2Dη
)

Js+ 1

2 (ηv) + I1

where the rest

I1 = iκ

∫

(

Js+1 tanhDη − JsDη
)

Js(ηv)

= iκ

∫

Js ((J − |D|) tanhDη +D(| tanhD| − 1)η) Js(ηv) . ‖η‖2Hs‖v‖Hs .
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The derivative of velocity norm

1

2

d

dt
‖v‖2Hs = −i

∫

(Jsv)Js tanhDη − iκ

∫

(Jsv)JsD2 tanhDη −
i

2

∫

(Jsv)Js tanhDv2

= −iκ

∫

(Jsv)Js+1Dη + I2 + I3

where the first and the third integrals are put in I2. They can be estimated straightforwardly

I2 . ‖η‖Hs‖v‖Hs + ‖v‖3Hs

and the rest

I3 = iκ

∫

(Jsv)Js(J −D tanhD)Dη

= iκ

∫

(Jsv)Js(J − |D| − |D|(| tanhD| − 1))Dη . ‖η‖Hs‖v‖Hs .

Summing up these derivatives obtain

κ

2

d

dt
‖η‖2

Hs+1/2 +
1

2

d

dt
‖v‖2Hs = +iκ

∫

(

Js−
1

2Dη
)

ηJs+
1

2 v + I1 + I2 + I3 + I4

where the last part

I4 = iκ

∫

(

Js−
1

2Dη
) [

Js+
1

2 , η
]

v . ‖η‖
Hs+1/2

(

‖∂xη‖Lp1‖Js−
1

2 v‖Lp2 + ‖Js+
1

2 η‖L2‖v‖L∞

)

is estimated applying Hölder’s inequality and the Kato–Ponce commutator estimate. Taking
p1(s) =

1

1−s
, p2(s) =

2

2s−1
for s ∈ (1

2
, 1) and p1 = p2 = 4 in case s > 1 one deduces to

I4 . ‖η‖2
Hs+1/2‖v‖Hs

after implementing the Sobolev embedding. Differentiation of the last summand of energy Es gives

1

2

d

dt

∫

η
(

Js−
1

2 v
)2

= −i

∫

η
(

Js−
1

2 v
)

Js−
1

2 tanhDη − iκ

∫

η
(

Js−
1

2 v
)

Js−
1

2D2 tanhDη

−
i

2

∫

η
(

Js−
1

2 v
)

Js−
1

2 tanhDv2 −
1

2

∫

∂xv
(

Js−
1

2 v
)2

−
i

2

∫

tanhD(ηv)
(

Js−
1

2 v
)2

(3.2)

where the first summand, that we notate by I5, is estimated easily

I5 6 ‖η‖L∞‖v‖
Hs−1/2‖η‖Hs−1/2

via Hölder inequality. The third integral in (3.2), notated by I6, is estimated in a similar way

I6 6
1

2
‖η‖L∞‖v‖

Hs−1/2‖v2‖Hs−1/2 . ‖η‖
Hs+1/2‖v‖3Hs

where the last bound follows from the fact that Hs is an algebra. The fourth integral in (3.2) equals

I7 = −
i

2

∫

(

sgnD|D|
1

2 v
)

|D|
1

2

(

Js−
1

2 v
)2

= −i

∫

(

sgnD|D|
1

2 v
)(

Js−
1

2 v
)

Js−
1

2 |D|
1

2 v

−
i

2

∫

(

sgnD|D|
1

2 v
)

[

|D|
1

2

(

Js−
1

2 v
)2

− 2
(

Js−
1

2 v
)

Js−
1

2 |D|
1

2 v

]

where the first integral can be treated with interpolation in Sobolev spaces and the second integral
by the fractional Leibniz rule as follows

I7 . ‖sgnD|D|
1

2 v‖
Hs−1/2‖Js−

1

2 v‖
H1/2‖Js−

1

2 |D|
1

2 v‖L2 + ‖sgnD|D|
1

2 v‖L2‖Js−
1

2 |D|
1

2 v‖2
L2 . ‖v‖3Hs .

The last integral in (3.2), that we notate by I8, is bounded by

I8 6
1

2
‖η‖L∞‖v‖L2‖Js−

1

2 v‖2
L4 . ‖η‖

Hs+1/2‖v‖3Hs .
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It is left to calculate the second integral in (3.2). For this we approximate D tanhD by J in exactly
the same way as was done for estimating integral I3 so that

− iκ

∫

η
(

Js− 1

2 v
)

Js− 1

2D2 tanhDη = −iκ

∫

η
(

Js− 1

2 v
)

Js+ 1

2Dη + I9

= −iκ

∫

η
(

Js+ 1

2 v
)

Js− 1

2Dη + I9 + I10

where the first rest

I9 = iκ

∫

η
(

Js− 1

2 v
)

Js− 1

2D(J −D tanhD)η . ‖η‖L∞‖v‖Hs−1/2‖η‖Hs−1/2

follows from Hölder’s inequality together with boundedness of operator D(J −D tanhD) and the
last part

I10 = −iκ

∫

(

Js− 1

2Dη
)

[J, η] Js− 1

2 v . ‖η‖Hs+1/2

(

‖∂xη‖Lp1‖Js− 1

2 v‖Lp2 + ‖Jη‖Lp3‖Js− 1

2 v‖Lp4

)

follows from the Hölder and Kato–Ponce inequalities. Again taking p1 = p3 =
1

1−s , p2 = p4 =
2

2s−1

for s ∈ (12 , 1) and p1 = p2 = p3 = p4 = 4 for s > 1 one deduces

I10 . ‖η‖2
Hs+1/2‖v‖Hs

after implementing the Sobolev embedding. Finally, summing Derivative (3.2) with the derivative

of square of Hs+1/2
×Hs-norm according to Definition (3.1) obtain

d

dt
Es(η, v) = I1 + . . . + I10 . ‖η‖2

Hs+1/2 + ‖v‖2Hs +
(

‖η‖2
Hs+1/2 + ‖v‖2Hs

)2

which concludes the proof. �

In the following obvious statement the non-cavitation condition plays a crucial role.

Lemma 7 (Coercivity). Let s > 1/2 and (η, v) ∈ C
(

[0, T ];Hs+1/2(R)×Hs(R)
)

be a solution of

System (1.1) for some T > 0. If in addition η satisfies the non-cavitation condition then

Es(η, v) ∼ ‖η‖2
Hs+1/2 + ‖v‖2Hs .

Corollary 1 (Energy estimate). In the conditions of the previous lemma holds true

d

dt
Es(η, v) . Es(η, v) + Es(η, v)2.

As we shall see below, the non-cavitation condition is convenient to work with only in the case
of high regularity s > 3/2. Then the time interval on which the condition holds true can be
easily estimated through the first equation in (1.1). Our goal is to study well-posedness in spaces
of low regularity. So in case of s 6 3/2 we will have to impose a stronger condition, instead of
non-cavitation, namely smallness of the initial data norm to control it in time with the help of
Hamiltonian conservation.

Lemma 8. There exists a constant H > 0 depending only on the surface tension κ > 0 such

that for any ǫ ∈ (0,H] if a pair u(t) = (η(t), v(t)) ∈ H1(R) × H1/2(R), having initial condition

‖u0‖H1
×H1/2 6 ǫ/2, solves System (1.1) then ‖u(t)‖H1

×H1/2 6 ǫ for any time t.

Proof. We use a continuity argument. Without loss of generality we prove the statement with a
norm equivalent to H1

×H1/2-norm instead. Regard the norm defined by

‖u‖2 =
κ

2
‖∂xη‖

2
L2 +

1

2
‖η‖2L2 +

1

2
‖K−1v‖2L2 .

Then there exists C > 0 such that

‖u‖2(1− C‖u‖) 6 H(u) 6 ‖u‖2(1 + C‖u‖)
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where u = u(t) is a solution of (1.1) defined on some interval. Take H = (2C)−1, any 0 < ǫ 6 H
and a solution with u0 = u(0) having ‖u0‖ 6 ǫ/2. By continuity ‖u‖ 6 ǫ on some [0, Tǫ] and so

‖u‖ 6
√

2H(u) =
√

2H(u0) 6

√

1 + Cǫ/2

2
ǫ < ǫ

which means that the continuous function ‖u(t)‖ cannot touch the level ǫ with time. �

As a consequence of the lemma we can control ‖η‖L∞ for any s > 1/2 admitting only small
initial data. Paying this price we can guarantee non-cavitation, in particular.

4. Uniqueness type estimate

Suppose that we have two solution pairs η1, v1 and η2, v2 of System (1.1) on some time interval.
Define functions θ = η1 − η2, w = v1 − v2. Then θ and w satisfy the following system

θt = −wx − i tanhD(θv2 + η1w), (4.1)

wt = −i tanhD(1 + κD2)θ − i tanhD((v1 + v2)w)/2. (4.2)

We need an a priori estimate similar to one obtained in the previous section for the difference of
solutions. For this purpose we introduce the difference energy

Er(η1, v1, η2, v2) =
κ

2
‖θ‖2

Hr+1/2 +
1

2
‖w‖2Hr +

1

2

∫

η1

(

Jr− 1

2w
)2

. (4.3)

Note that Es(η, v) = Es(η, v, 0, 0) and so this new notation is in line with (3.1).

Lemma 9. Let (η1, v1), (η2, v2) ∈ C
(

[0, T ];Hs+1/2(R)×Hs(R)
)

be solutions of System (1.1) for

some T > 0 and s > 1/2. Their difference is denoted by (θ,w). Let 0 < r 6 s− 1/2. Then

d

dt
Er(η1, v1, η2, v2) .

(

1 + ‖η1‖
2

Hs+1/2 + ‖v1‖
2
Hs + ‖v2‖

2
Hs

) (

‖θ‖2
Hr+1/2 + ‖w‖2Hr

)

.

Proof. We follow the same arguments as in the proof of Lemma 6. The derivative of squared norm

κ

2

d

dt
‖θ‖2

Hr+1/2 +
1

2

d

dt
‖w‖2Hr = −κ

∫

(

Jr+ 1

2 θ
)

Jr+ 1

2 ∂xw − iκ

∫

(

Jr+ 1

2 θ
)

Jr+ 1

2 tanhD(θv2)

− iκ

∫

(

Jr+ 1

2 θ
)

Jr+ 1

2 tanhD(η1w)− i

∫

(Jrw)Jr tanhDθ

− iκ

∫

(Jrw)JrD2 tanhDθ −
i

2

∫

(Jrw)Jr tanhD(v1 + v2)w

= I1 +O
(

‖θ‖Hr‖w‖Hr + ‖v2‖Hr+1/2‖θ‖2Hr+1/2 + ‖η1‖Hr‖θ‖Hr‖w‖Hr + ‖v1 + v2‖Hs‖w‖2Hr

)

where

I1 = iκ

∫

(

Jr− 1

2Dθ
)

Jr+ 1

2 (η1w).

In the case r > 1/2 we have the commutator estimate
∥

∥

∥

[

Jr+ 1

2 , η1

]

w
∥

∥

∥

L2

. ‖∂xη1‖L4

∥

∥

∥
Jr− 1

2w
∥

∥

∥

L4

+
∥

∥

∥
Jr+ 1

2 η1

∥

∥

∥

L4

‖w‖L4 . ‖η1‖Hs+1/2‖w‖Hr

and so

I1 = iκ

∫

(

Jr− 1

2Dθ
)

η1J
r+ 1

2w +O (‖η1‖Hs+1/2‖θ‖Hr+1/2‖w‖Hr ) . (4.4)

For r ∈ (0, 1/2) we apply the Leibniz rule
∥

∥

∥
|D|

r+ 1

2 (η1w)− w|D|
r+ 1

2 η1 − η1|D|
r+ 1

2w
∥

∥

∥

L2

. ‖|D|
σ1η1‖Lp1 ‖|D|

σ2w‖Lp2 . ‖η1‖H1‖w‖Hr
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where p2 > 2 is such that σ2 = r−1/2+1/p2 > 0. The last estimate is due to Sobolev’s embedding.

Operator Jr+ 1

2 − |D|
r+ 1

2 is bounded in L2. Thus

I1 = iκ

∫

(

Jr− 1

2Dθ
)

|D|
r+ 1

2 (η1w) +O (‖η1‖Hs+1/2‖θ‖Hr+1/2‖w‖Hr )

= iκ

∫

(

Jr− 1

2Dθ
)

w|D|
r+ 1

2 η1 + iκ

∫

(

Jr− 1

2Dθ
)

η1|D|
r+ 1

2w +O (‖η1‖Hs+1/2‖θ‖Hr+1/2‖w‖Hr )

where the first integral can be estimated by interpolation in Sobolev spaces. In the second integral

the fractional derivative |D|
r+ 1

2 can be approximated by Jr+ 1

2 to come again to (4.4) now for
0 < r < 1/2.

Differentiation of the energy modifier gives

1

2

d

dt

∫

η1

(

Jr− 1

2w
)2

= −i

∫

η1

(

Jr− 1

2w
)

Jr− 1

2 tanhDθ − iκ

∫

η1

(

Jr− 1

2w
)

Jr− 1

2D2 tanhDθ

−
i

2

∫

η1

(

Jr− 1

2w
)

Jr− 1

2 tanhD(v1 + v2)w −
1

2

∫

∂xv1

(

Jr− 1

2w
)2

−
i

2

∫

tanhD(η1v1)
(

Jr− 1

2w
)2

= I2 +O
(

‖η1‖Hs‖θ‖Hr−1/2‖w‖Hr−1/2 + (1 + ‖η1‖Hs) (‖v1‖Hs + ‖v2‖Hs) ‖w‖2Hr

)

where

I2 = −iκ

∫

(

Jr− 1

2Dθ
)

J(η1J
r− 1

2w) = −iκ

∫

(

Jr− 1

2Dθ
)

η1J
r+ 1

2w

+ ‖θ‖Hr+1/2O

(

‖∂xη1‖Lp1‖Jr− 1

2w‖Lp2 + ‖Jη1‖Lp3‖Jr− 1

2w‖Lp4

)

= −iκ

∫

(

Jr− 1

2Dθ
)

η1J
r+ 1

2w +O (‖η1‖Hs+1/2‖θ‖Hr+1/2‖w‖Hr )

following from the Kato–Ponce inequality with p1 = p3 = 1
1−s

, p2 = p4 = 2
2s−1 for s ∈

(

1
2 , 1

)

and

p1 = p2 = p3 = p4 = 4 for s > 1. Summing I2 together with I1 calculated in (4.4) we conclude the
proof. �

Corollary 2 (Energy estimate for difference). If in addition to the conditions of the previous we

assume non-cavitation for η1 then

d

dt
Er(η1, v1, η2, v2) .

(

1 + ‖η1‖
2
Hs+1/2 + ‖v1‖

2
Hs + ‖v2‖

2
Hs

)

Er(η1, v1, η2, v2).

Proof. Non-cavitation implies coercivity for Er and the rest is obvious. �

Remark 3. The restriction s > 1/2 appeared in the lemma and its corollary is inconvenient. It
comes from the loss of Hamiltonian structure of System (4.1)-(4.2). This results in the fact that
we can obtain only a weak solution in case s = 1/2 and probably not unique.

5. Parabolic regularisation

For application of the energy method we need to do a parabolic regularisation of the view
{

ηt + vx + i tanhD(ηv) = −µ|D|
pη,

vt + i tanhD(1 + κD2)η + i tanhDv2/2 = −µ|D|
pv

(5.1)

where µ ∈ (0, 1). We want to prove solution existence for (5.1) for any given µ, by the contraction
mapping principal and so p should be big enough. However, we also do not want to spoil our energy
estimates, and so p should be small enough. As we shall see below, this bounds us to p ∈ (1/2, 1].
Here the left number comes from the following lemma.
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Lemma 10. For any s > 1/2, µ ∈ (0, 1) and p > 1/2 there exists a finite positive bound C(T ),
tending to zero as T → 0, such that

∫ T

0

∥

∥

∥
e−µt|D|

p
(f(t)g(t))

∥

∥

∥

Hr
dt 6 C(T ) ‖f‖CTHr ‖g‖CTHs

for any functions f, g defined on [0, T ]. Here either r = s+ 1/2 or r = s.

Proof. In the case r = s > 1/2 the statement is obvious due to boundedness of exp(−µt|D|p) and
the algebraic property ‖fg‖Hs . ‖f‖Hs ‖g‖Hs . Hence C(T ) = csT with some constant cs depending
only on s.

Otherwise we use
∥

∥

∥
e−µt|D|

p
(fg)

∥

∥

∥

Hr
6

∥

∥

∥
ξ 7→ e−µt|ξ|p

〈ξ〉1/2
∥

∥

∥

L∞

‖fg‖Hr−1/2

where in the case r = s = 1/2 by the Hölder inequality we have

‖fg‖Hr−1/2 = ‖fg‖L2 6 ‖f‖L4 ‖g‖L4 . ‖f‖H1/4 ‖g‖H1/4 . ‖f‖Hs ‖g‖Hs

and in the case r = s+ 1/2 we obviously have

‖fg‖Hr−1/2 . ‖f‖Hr ‖g‖Hs .

It is left to check that the L∞-norm above is locally integrable. Indeed, we can estimate the function
at ξ ∈ [0, 1] and at ξ > 1 separately

e−µt|ξ|p
〈ξ〉1/2 6 max

{

21/4, sup
ξ>1

21/4ξ
1

2p e−µt|ξ|

}

6 21/4 max
{

1, (2peµt)
−

1

2p

}

that is an integrable function with respect to time over any bounded interval for p > 1/2. The
integral of this function over [0, T ] defines the bound C(T ). �

With Lemma 10 in hand we can prove the local well-posedness in Hs+1/2 ×Hs with s > 1/2 for
System (5.1) by the fixed-point argument. Diagonalization has the matrix form

S(t) = exp(−µt|D|
p)K

(

exp(−itKκD) 0
0 exp(itKκD)

)

K
−1

where

K =
1
√
2

(

1 1
Kκ −Kκ

)

, K
−1 =

1
√
2

(

1 K−1
κ

1 −K−1
κ

)

with Kκ defined by (2.1). For any fixed u0 = (η0, v0)
T ∈ Xs = Hs+1/2 × Hs function S(t)u0

solves the linear initial-value problem associated with (5.1). Let Xs
T = C([0, T ];Xs) and regard a

mapping A : Xs
T → Xs

T defined by

A(η, v;u0)(t) = S(t)u0 +

∫ t

0

S(t− t′)(−i tanhD)

(

ηv
v2/2

)

(t′)dt′. (5.2)

Then the Cauchy problem for System (5.1) with the initial data u0 may be rewritten equivalently
as an equation in Xs

T of the form

u = A(u;u0) (5.3)

where u = (η, v)T ∈ Xs
T .

Lemma 11. Let s > 1/2, p > 1/2, µ ∈ (0, 1) and u0 = (η0, v0)
T ∈ Xs. Then there is T =

T (s, p, µ, ‖u0‖Xs) > 0, decreasing to zero with increase of the norm of u0, such that there exists a

unique solution u = (η, v)T ∈ Xs
T of Problem (5.3).

Moreover, for any R > 0 there exists T = T (s, p, µ,R) > 0 such that the flow map associated

with Equation (5.3) is a real analytic mapping of the open ball BR(0) ⊂ Xs to Xs
T .
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Proof. We need to show that the restriction of A on some closed ball BM with the center at point
S(t)u0 is a contraction mapping. Note that ‖S(t)u‖Xs . ‖exp(−µt|D|

p)u‖Xs . Hence by Lemma
10 for any T,M > 0 and u, u1, u2 ∈ BM ⊂ Xs

T hold

‖A(u)− S(t)u0‖Xs
T
6 C(T )‖u‖2Xs

T
6 C(T )(M + ‖u0‖Xs)2,

‖A(u1)−A(u2)‖Xs
T
6 C(T )‖u1 − u2‖Xs

T
(‖u1‖Xs

T
+ ‖u2‖Xs

T
) 6 2C(T )(M + ‖u0‖Xs)‖u1 − u2‖Xs

T
,

and so taking M = ‖u0‖Xs one can find such T that A will be a contraction in the closed ball BM .
The first statement of the lemma follows from the contraction mapping principle. Smoothness of
the flow map can be proved in the same spirit applying the implicit function theorem instead, and
so we omit it. Some details can be found in [9]. �

Lemma 12. Suppose s > 1/2 and η(t) ∈ Hs+1/2(R), v(t) ∈ Hs(R) solve System (5.1) with

µ ∈ (0, 1) and p ∈ (1/2, 1]. Then

d

dt
Es(η, v) . ‖η‖2

Hs+1/2 + ‖v‖2Hs +
(

‖η‖2
Hs+1/2 + ‖v‖2Hs

)2
.

In other words, the parabolic regularisation (5.1) does not spoil the energy estimate.

Proof. Following the proof of Lemma 6 one arrives at

d

dt
Es(η, v) . ˜I1 + ˜I2 + . . .

where

˜I1 = −µκ
∥

∥

∥
|D|

p/2η
∥

∥

∥

2

Hs+1/2
− µ

∥

∥

∥
|D|

p/2v
∥

∥

∥

2

Hs
6 0,

˜I2 = −
µ

2

∫

(

Js−1/2v
)2

|D|
pη − µ

∫

η
(

Js−1/2v
)

Js−1/2
|D|

pv . ‖η‖Hs+1/2‖v‖2Hs

for p 6 1 and the rest is the same as in Lemma 6. �

As was noticed at the end of Section 3, one has to make sure that the modified energy is coercive.
An effective way to do it at the low level of regularity is to control ‖η‖L∞ via the energy conservation.
One can get the same controllability for the regularised problem via the energy dissipation due to
the following result.

Lemma 13. Suppose η(t) ∈ H1(R), v(t) ∈ H1/2(R) solve System (5.1) with µ ∈ (0, 1) and p ∈

(1/2, 1]. Then there exists δ > 0 independent on the viscosity µ such that H(η, v) is a non-increasing

function of time t provided ‖η(t)‖H1 + ‖v(t)‖H1/2 6 δ holds for any t.

Proof. Hamiltonian (1.3) has the derivative

1

µ

d

dt
H(η, v) = −‖η‖2

Ḣp/2 − κ ‖η‖2
Ḣp/2+1 −

∥

∥K−1v
∥

∥

2

Ḣp/2 − I1 − I2,

where the rest integrals

I1 =

∫

ηv|D|
pv, I2 =

1

2

∫

v2|D|
pη

are of no definite sign. One has to check that I1, I2 are absorbed by the first three norms. The
main difficulty arising here is that two different homogeneous Sobolev spaces cannot be compared
for inclusion, however, there is interpolation between them.
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Using the Hölder inequality, the fractional Leibniz rule for |D|
p/2, the Sobolev embeddings

Ḣ1/4
→֒ L4, H1

→֒ L∞ and H1/2
→֒ H1/4

→֒ L2 obtain

|I1| =

∣

∣

∣

∣

∫

|D|
p/2(ηv)|D|

p/2v

∣

∣

∣

∣

6

∥

∥

∥
|D|

p/2(ηv) − v|D|
p/2η − η|D|

p/2v
∥

∥

∥

L2

∥

∥

∥
|D|

p/2v
∥

∥

∥

L2

+
∥

∥

∥
v|D|

p/2η
∥

∥

∥

L2

∥

∥

∥
|D|

p/2v
∥

∥

∥

L2

+
∥

∥

∥
η|D|

p/2v
∥

∥

∥

L2

∥

∥

∥
|D|

p/2v
∥

∥

∥

L2

. ‖η‖L∞

∥

∥

∥
|D|

p/2v
∥

∥

∥

2

L2

+
∥

∥

∥
|D|

p/2η
∥

∥

∥

L4

‖v‖L4

∥

∥

∥
|D|

p/2v
∥

∥

∥

L2

. ‖η‖H1

∥

∥K−1v
∥

∥

2

Ḣp/2 + ‖v‖H1/2 ‖η‖Ḣp/2+1/4

∥

∥K−1v
∥

∥

Ḣp/2

where ‖η‖Ḣp/2+1/4 can be interpolated between Ḣp/2-norm and Ḣp/2+1-norm. Hence I1 can be

absorbed provided H1
×H1/2-norm of the solution is small.

The second integral I2 can be treated similarly for p = 1 exploiting |D| = D sgnD. Indeed,

I2 = −

∫

|D|
1/2(v sgnDη)|D|

1/2 sgnDv

and so it can be estimated by the same chain of inequalities since sgnD preserves Sobolev norms.
For p ∈ (1/2, 1) we have

2|I2| 6 ‖|D|
pη‖

L
4

1+p
‖v‖

L
4

1+p
‖v‖

L
2

1−p
. ‖η‖

Ḣ
1+3p

4

‖v‖
Ḣ

1−p

4

‖v‖Ḣp/2

by the Hölder inequality and the Sobolev embeddings Ḣ
1−p

4 →֒ L
4

1+p , Ḣp/2
→֒ L

2

1−p . Again we
interpolate the norm of η between Ḣp/2-norm and Ḣp/2+1-norm. Estimate ‖v‖

Ḣ
1−p

4

6 ‖v‖H1/2 and

‖v‖Ḣp/2 6
∥

∥K−1v
∥

∥

Ḣp/2 . Eventually we obtain

|I1|+ |I2| .
(

‖η‖2
Ḣp/2 + κ ‖η‖2

Ḣp/2+1 +
∥

∥K−1v
∥

∥

2

Ḣp/2

)

max {‖η‖H1 , ‖v‖H1/2}

that concludes the proof.
�

As a simple corollary with the proof similar to that of Lemma 8 one obtains the following.

Corollary 3. There exists a constant δ > 0 depending only on the surface tension κ > 0 and the

parabolic regularisation power p such that if a pair u(t) = (η(t), v(t)) ∈ H1(R) ×H1/2(R), having
initial condition ‖u0‖H1

×H1/2 6 δ/2, solves System (5.1) then ‖u(t)‖H1
×H1/2 6 δ for any time t.

The dependence of δ on the parabolic regularisation power p is unimportant since below we stick
only to the case p = 1.

6. A priori estimate

We have an a priori global bound for solutions of both systems (1.1) and (5.1) in H1
×H1/2 due

to Lemma 8 and Corollary 3, respectively. Our aim is it to obtain estimates in Hs+1/2
×Hs with

s > 1/2.

Lemma 14 (A priori estimate). Suppose s > 1/2. Let (η, v) ∈ C
(

[0, T ⋆);Hs+1/2(R)×Hs(R)
)

be

a solution of System (1.1) (or of the regularised system (5.1) with µ ∈ (0, 1) and p = 1) defined on

its maximal time of existence and satisfying the blow-up alternative

T ⋆ < +∞ implies lim
t→T ⋆

‖η(t), v(t)‖Hs+1/2
×Hs = +∞. (6.1)

Suppose that its initial data (1.2) either satisfies the non-cavitation condition for s > 3/2 or has

small enough H1
× H1/2-norm for s 6 3/2. Then there exists T0 = T0

(

‖η0, v0‖Hs+1/2
×Hs

)

< T ⋆

such that

sup
t∈[0,T0]

‖η(t), v(t)‖Hs+1/2
×Hs 6 C ‖η0, v0‖Hs+1/2

×Hs (6.2)

for some C > 0 independent on µ.
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Proof. We closely follow the arguments in [12] since we have essentially the same energy estimates.
The main difference lies in the control of coercivity of the modified energy (3.1) for small s. Let
h0,H0 define non-cavitation of η0 according to Definition 1. Regard h = h0/2 and H = H0 + h0/2.
If the wave η satisfies the non-cavitation condition associated with h,H then there exist positive
constants c0(h), C0(H) such that

c0 ‖η, v‖
2
Hs+1/2

×Hs 6 Es(η, v) 6 C0 ‖η, v‖
2
Hs+1/2

×Hs

by coercivity of the energy. These constants depend only on h0,H0. They are used to define the
time set

T =

{

T ∈ (0, T ⋆) : sup
t∈[0,T ]

‖η(t), v(t)‖Hs+1/2
×Hs 6 3

√

C0/c0 ‖η0, v0‖Hs+1/2
×Hs

}

that is non-empty and closed in (0, T ⋆) by the solution continuity. Moreover, for ˜T = supT we

have either ˜T < T ⋆ and so ˜T ∈ T or ˜T = T ⋆ = +∞ by the blow-up alternative (6.1). Introduce
T0 = min{T1, T2} with

T1 =
1

C1
log

(

1 +
1

1 + C1C0 ‖η0, v0‖
2
Hs+1/2

×Hs

)

,

T2 =











h0

C2

(

‖η0, v0‖Hs+1/2
×Hs + ‖η0, v0‖

2
Hs+1/2

×Hs

) for s > 3/2

1 otherwise

where C1, C2 are two big positive constants to be fixed below in the proof. The idea is to show
that these constants can be chosen, independently on the initial data, in such a way that T0 ∈ T

or equivalently T0 6
˜T .

Assume the opposite ˜T < T0. Firstly, we will check that the non-cavitation condition holds on

[0, ˜T ]. Indeed, in the low regularity case s ∈ (1/2, 3/2] it is assumed smallness of the initial data

and so H1
×H1/2-norm of the solution stays small with time evolution by Lemma 8 and Corollary

3. In particular, the wave satisfies the non-cavitation condition. For s > 3/2 one can estimate η
using the first equation in System (1.1) (or in System (5.1)) as follows

η(x, t) = η0(x) +

∫ t

0
∂tη(x, t

′)dt′

where

‖∂tη‖L∞ 6 ‖∂xv‖L∞ + ‖tanhD(ηv)‖L∞ + µ ‖|D|η‖L∞ . ‖η‖Hs + ‖v‖Hs + ‖η‖Hs ‖v‖Hs

with the implicit constant independent on µ ∈ (0, 1), obviously. Hence

‖∂tη‖L∞ . ‖η0, v0‖Hs+1/2
×Hs + ‖η0, v0‖

2
Hs+1/2

×Hs

uniformly on (0, ˜T ] ⊂ T . Thus we have
∥

∥

∥

∥

∫ t

0
∂tη(x, t

′)dt′
∥

∥

∥

∥

L∞

6 ˜T sup
t∈(0,T̃ ]

‖∂tη(t)‖L∞ 6
h0
2

for big enough C2 since ˜T < T2. As a result the non-cavitation

h− 1 = h0/2− 1 6 η 6 H0 + h0/2 = H

holds on R× [0, ˜T ]. Without loss of generality one can assume that for s 6 3/2 the non-cavitation
of η is governed by the same h,H.
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Let E(t) = Es(η, v)(t) be the energy defined by (3.1) and E0 = E(0). For System (1.1) (or for
System (5.1)) we have the a priori energy estimate given in its differential form by Corollary 1. A
straightforward integration gives

E(t)

(

1−
E0

1 + E0

ect
)

6
E0

1 + E0

ect

for any t ∈ [0, ˜T ] with c depending only on h. Note that

ect 6 1 +
1

1 + C1E0

for any C1 > c and 0 6 t 6 ˜T < T1. In particular,

E0

1 + E0

ect 6
1/C1 + E0

1 + E0

< 1

if in addition C1 > 1. Thus

E(t) 6
1

(

E0

1+E0
ect

)

−1

− 1
6 E0

2 + C1E0

1 + (C1 − 1)E0

6 2E0

if in addition C1 > 2. As a result we have

‖η(t), v(t)‖Hs+1/2
×Hs 6

√

2C0/c0 ‖η0, v0‖Hs+1/2
×Hs

for all t ∈ [0, ˜T ]. Taking into account ˜T < T ⋆ and continuity of the solution one can find ˜T < T ′ <
T ⋆, T0 such that on [0, T ′] holds

‖η(t), v(t)‖Hs+1/2
×Hs 6 2

√

C0/c0 ‖η0, v0‖Hs+1/2
×Hs

which contradicts the definition of ˜T . Therefore, we showed that T0 6
˜T concluding the proof. �

Lemma 15. Suppose s > 1/2 and a pair η(t) ∈ Hs+1/2, v(t) ∈ Hs solves System (1.1) (or the

regularised system (5.1) with µ ∈ (0, 1) and p = 1). Then if s < 1 the following holds true

d

dt
Es(η, v) .

(

1 + ‖v‖L∞ + ‖η, v‖2H1
×H1/2

)

‖η, v‖2Hs+1/2
×Hs ,

and if s > 1 then

d

dt
Es(η, v) .

(

1 + ‖η, v‖2Hs+1/4
×Hs−1/4

)

‖η, v‖2Hs+1/2
×Hs .

Moreover, the implicit constants do not depend on µ.

Proof. The estimates obtained while proving Lemmas 6, 12 need to be refined for s > 1/2 as follows.
We stick to the notations used in the corresponding proofs. Note that by Lemma 4 we have

˜I2 .
∥

∥

∥
Js−1/2v

∥

∥

∥

L2

∥

∥

∥
Js−1/2v

∥

∥

∥

H1/2
‖|D|η‖Hs−1/2 + ‖η‖Hs

∥

∥

∥
Js−1/2v

∥

∥

∥

H1/2

∥

∥

∥
Js−1/2

|D|v
∥

∥

∥

H−1/2

. ‖η, v‖Hs
×Hs−1/2 ‖η, v‖

2

Hs+1/2
×Hs .

Since Hs
∩ L∞ is an algebra under the point-wise product one obtains

I2 . ‖η‖Hs‖v‖Hs + ‖v‖L∞‖v‖2Hs . (1 + ‖v‖L∞) ‖η, v‖2Hs+1/2
×Hs .

The integral I4 is essentially estimated already as

I4 . ‖η‖2Hs+1/2

{

‖v‖H1/2 + ‖v‖L∞ for s ∈ (1/2, 1)

‖v‖Hs−1/4 for s > 1
.

In order to refine I7 we need to estimate
∥

∥

∥

(

sgnD|D|
1/2v

)

Js−1/2v
∥

∥

∥

L2

.

∥

∥

∥

(

sgnD|D|
1/2v

)
∥

∥

∥

Lp1

∥

∥

∥
Js−1/2v

∥

∥

∥

Lp2
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following from Hölder’s inequality with p1(s) =
1

1−s , p2(s) =
2

2s−1 for s ∈ (12 , 1) and p1 = p2 = 4 in
case s > 1. Implementing the Sobolev embedding and gathering the rest of I7 obtain

I7 . ‖v‖2Hs

{

‖v‖H1/2 for s ∈ (1/2, 1)

‖v‖Hs−1/4 for s > 1
.

The integral I10 is also estimated already as

I10 . ‖η‖2Hs+1/2

{

‖v‖H1/2 for s ∈ (1/2, 1)

‖v‖Hs−1/4 for s > 1

Thus gathering all the parts obtain

˜I1 + ˜I2 + I1 + . . .+ I10 . ‖η, v‖2Hs+1/2
×Hs

{

1 + ‖v‖L∞ + ‖η, v‖2H1
×H1/2 for s ∈ (1/2, 1)

1 + ‖η, v‖2Hs+1/4
×Hs−1/4 for s > 1

which are the desired estimates. �

Knowing coercivity of the energy Es, controlled either by the smallness or by the non-cavitation
of the initial data, one can deduce from the lemma that the time of existence depends only on
‖η0, v0‖Hs′+1/2

×Hs′ where 1/2 < s′ < s. Taking into account the boundedness of ‖η, v‖H1
×H1/2 ,

holding true at least for small initial data, one can get a stronger result thanks to the Brezis-Gallouet
limiting embedding (2.5). In order to exploit it we need the following Gronwall inequality.

Lemma 16 (Gronwall inequality). Let y be an absolutely continuous positive function defined on

some interval [0, T ]. Suppose that almost everywhere

y′ 6 Ay log y

where A > 0 is constant. Then there exists C > 0 independent on T such that

y(t) 6 exp
(

CeAt
)

.

Proof. Denote the right hand side by z(t) = exp
(

CeAt
)

, where we take C > 0 such that z(0) > y(0).
Regard the derivative

(y

z

)

′

=
y′z − yz′

z2
6 A

y

z
log

y

z
where the latter is less than zero at least for t = 0. So the fraction y/z decreases and stays always
below the unity.

�

Corollary 4 (Persistence of regularity). In the conditions of the a priori estimate lemma 14 the

following holds true

‖η(t), v(t)‖Hs+1/2
×Hs 6 exp

(

CeCt
)

provided s < 1, and if s > 1 then

‖η(t), v(t)‖Hs+1/2
×Hs 6 ‖η0, v0‖Hs+1/2

×Hs exp

(

Ct+ C

∫ t

0
‖η, v‖2Hs+1/4

×Hs−1/4

)

where the constant C > 0 does not depend on µ. In particular, the maximal time of existence

T ⋆ = +∞ provided ‖η0, v0‖H1
×H1/2 is small enough.

Proof. The statement is obvious for s > 1. Suppose s ∈ (1/2, 1). By Lemma 8 and Corollary 3
the norm ‖η(t), v(t)‖H1

×H1/2 stays bounded with time. Hence from the Brezis-Gallouet inequality
(2.5) one deduces

‖v(t)‖L∞ . 1 + log (2 + ‖v(t)‖Hs) .

Thus applying Lemma 15 and taking into account that Es is coercive obtain

d

dt
Es

. (1 + log (2 + Es))Es.
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As a result, after the application of the previous lemma with y = 2 + Es, we have the estimate

Es
6 exp

(

CeCt
)

,

which again due to coercivity of Es leads to the first inequality of the corollary after renaming the
constant.

�

7. Proof of Theorem 1

With the a priori estimate (6.2) in hand we can reapply the local existence lemma 11 for the
regularised problem (5.1) with µ ∈ (0, 1) and p = 1 in order to obtain solution uµ = (ηµ, vµ) on the
time interval [0, T0] defined by Lemma 14. Convergence of uµ as µ → 0 follows from an adaptation
of Lemma 9 to the difference energy (4.3) with ηj = ηµj , vj = vµj (j = 1, 2) and 0 < µ2 < µ1 < 1.
The proof repeats the arguments of Lemma 9 and Lemma 13. Moreover, using the Gagliardo–
Nirenberg interpolation one can obtain that uµ converges to some u in C([0, T0];H

r+1/2
×Hr) as

µ → 0 for any 0 < r < s. This u is a solution of (1.1) in the distributional sense. Furthermore, to

prove persistence u ∈ C([0, T0];H
s+1/2

×Hs), justify all the previous steps and obtain continuity
of the flow map one has to regularise the initial data (1.2) as uǫ0 = (η0 ∗ ρǫ, v0 ∗ ρǫ), where ρǫ is an
approximation of the identity parametrised by 0 < ǫ < 1 [1, 13]. An application of the Bona–Smith
argument in a straightforward standard way [1, 15, 20] results in the persistence and continuous
dependence. We omit further details.

8. The two-dimensional problem

In this section we comment briefly on adaptation of the proof for the two dimensional case.
Firstly, we define the modified energy

Es(η, v) =
κ

2
‖η‖2

Hs+1/2 +
1

2
‖v‖2Hs

×Hs +
1

2

∫

η
∣

∣

∣
Js−1/2v

∣

∣

∣

2

(8.1)

and notice that it is coercive provided the wave η satisfies the noncavitation condition or has small
H1-norm. Note that the latter does not imply the first one, since now we do not have embedding of
H1 to L∞. The smallness of H1

×H1/2
×H1/2-norm can be controlled by the energy conservation.

Indeed, by Hölder’s inequality and the Sobolev embedding the cubic part of Hamiltonian (1.6) is
estimated as

∫

R2

η|v|2dx . ‖η‖L2 ‖v‖
2

H1/2
×H1/2

and so repeating the arguments given in the proof of Lemma 8 we arrive at the conclusion that
the small enough initial data stays small through the flow. For s > 2 the noncavitation preserves
locally-in-time due to the first equation in (1.4). The energy estimates and the rest of the proof of
Theorem 2 can be done in exactly the same manner as in the one dimensional case, and so we omit
further details.
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