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ABSTRACT

The application of extreme-value analysis to long-duration (30 year) global altimeter and radiometer

datasets is considered. In contrast to previous extreme-value analyses of satellite data, the dataset is suffi-

ciently long to enable a peaks over threshold analysis to be undertaken. When applied to altimeter data for

wind speed and significant wave height, this analysis produces values consistent with buoy validation data and

previous numerical model reanalysis datasets. The spatial distributions produced are also consistent with the

model reanalysis data. However, the altimeter data shows much greater finescale structure for wind speed,

which is consistent with known tropical cyclone activity. The greater data density provided by radiometer

measurements offers the potential to address altimeter undersampling. However, issues associated with the

radiometer’s inability to measure wind speed in heavy rain events appears to create an unacceptable ‘‘fair

weather’’ bias at extreme wind speeds. This renders the radiometer data of wind speed largely unusable for

the investigation of wind speed extremes. The study also clearly demonstrates the limitations of the initial

distribution method for extreme-value analysis, which is heavily biased by mean conditions.

1. Introduction

The determination of extreme-value estimates of envi-

ronmental parameters such as wind speed and wave height

is a common requirement for many coastal and offshore

applications. In the present context, ‘‘extreme value’’ is

used to describe the statistical estimate of the wind speed

or wave height, which, for instance, may be expected to be

exceeded once in, say, 100 years. That is, the 100-yr return

period wind speed or wave height. Alternatively, it can be

described as the wind speed or wave height that has a

probability of occurrence of 0.01 in any year.

The typical approach for the estimation of such

extreme-value parameters is to analyze a long-duration

time series of measured wind speed or wave height. As

the record is almost always shorter than the desired

return period, the procedure used is to fit a chosen

form for the probability distribution function (PDF)

of the recorded data and then extrapolate to the de-

sired probability level (e.g., 0.01 for a 100-yr return

level).

A number of practical challenges arise in this form

of analysis. As the focus is on the extreme-value ‘‘tail’’

of the PDF, how well this part of the PDF is defined

and how well the, often arbitrary, analytical form for

the PDF fits the data is critical. Obviously, it is desir-

able to reduce the extent of the required extrapolation

of the PDF as much as possible. As a result, there is

a strong requirement to have as long of a measured

time series as possible at the location or locations of

interest.

The most obvious approach to obtain long-duration

measured records is to use buoy or fixed offshore plat-

form data. Although suitable long-duration records exist

at specific sites, the key shortcoming of such data is

that it has very limited spatial distribution and hence is

seldom at the location required. One approach to over-

come both the temporal duration and spatial distribution

issues is to use numerical model data. Indeed, long-

duration reanalyses of wind speed and wave height,
Corresponding author: Ian R. Young, ian.young@unimelb.edu.

au

1 JANUARY 2019 TAKBASH ET AL . 109

DOI: 10.1175/JCLI-D-18-0520.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:ian.young@unimelb.edu.au
mailto:ian.young@unimelb.edu.au
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


which include data assimilation from satellites, are avail-

able [e.g., ERA-40 (Uppala et al. 2005) and ERA-Interim

(Dee et al. 2011)]. Naturally, these datasets are only as

good as the models used to produce them. Although

present-day atmospheric circulation and surface wave

models are remarkably reliable, their performance under

extreme conditions is still limited.

The advent of Earth-observing satellites has provided

a long (approximately 30 year) record of global wind

speed andwave height, and a number of previous studies

(Alves and Young 2003; Young et al. 2012) have ex-

amined the suitability of such data for extreme-value

analysis (EVA). Although these studies have shown

potential, they highlight a number of issues with such

data. These issues include the following: as data invari-

ably come from multiple satellites, careful long-term

calibrations are required; the datasets considered were

not sufficiently long to apply statistically sound ap-

proaches to extrapolation of the PDF; there were ques-

tions about the extreme-value performance of such

satellite systems; and the spatial separation of satellite

ground tracks means that radar altimeters may under-

sample extremes.

The present study examines a long-term (almost 30

year) calibrated and validated dataset of wind speed and

wave height obtained from both altimeter and radiom-

eter systems. As will be shown, the duration of the re-

cord is now such that the peaks over threshold (PoT)

method can be used for EVA of the data. The resulting

global distributions are consistent with the limited point

measurements of extreme wind speeds and wave heights

from buoys, as well as with numerical reanalyses. In

addition, for the first time, global distributions clearly

show dominant storm tracks and tropical cyclone ac-

tivity. As radiometer systems simultaneously measure a

broad swath of the ocean, they have the potential to sig-

nificantly enhance the quantity of data available and hence

address issues of perceived undersampling. However, lim-

itations in the performance of radiometer data when ap-

plied to EVA will also be highlighted.

The arrangement of the paper is as follows. Section 2

provides a brief review of previous studies of global

extreme-value estimates and the statistical approaches

adopted. This is followed in section 3 by a description

of the satellite dataset used in the present analysis and

its calibration, particularly under extreme conditions.

Section 4 compares extreme-value estimates from the

present satellite measurements with buoy observations.

A discussion of global distributions of extreme-value

wind speed and wave height using a variety of statistical

techniques and both satellite data types (altimeter and

radiometer) is provided in section 5. Finally, discussion

of the results and conclusions are provided in section 6.

2. Global estimates of extreme wind speed and
wave height

a. Extreme-value theory

As outlined by Goda (1988) and Coles (2001), the aim

of EVA is to estimate the probability distribution of the

extreme values of a variable from a record of empirical

samples. To achieve valid estimates of the extremes, the

data should be independent and identically distributed

(IID). For the present applications, the requirement of

independencemeans that successive observed data points

should be statistically uncorrelated. As a result, there

should not be multiple data points associated with the

same storm. As typical storms may have durations of

many hours, this means that successive data points may

need to be separated by up to 48h to ensure indepen-

dence (Lopatoukhin et al. 2000; Caires and Sterl 2005;

Vinoth and Young 2011). The requirement to be identi-

cally distributed is satisfied when data points in a sam-

ple show a common parent distribution in a population.

Should an area be subjected to quite different meteoro-

logical phenomena (e.g., tradewinds and tropical cyclones),

it is likely that these systems will have quite different

PDFs and the data should be partitioned and each PDF

considered separately (Vinoth and Young 2011). It should

be noted that as the present dataset does not provide a

mechanism to separate independent storm climate sys-

tems, no attempt has been made to partition the data.

There are three general approaches to EVA that have

been used in wind/wave applications—the initial distri-

bution method (IDM; Goda 1988, 1992; Ochi 1992;

Tucker 1991; Lopatoukhin et al. 2000; Vinoth and

Young 2011), the annual maximum method (AMM;

Coles 2001), and the PoT (Goda 1992; Ferreira and

Soares 1998; Van Gelder and Vrijling 1999; Alves and

Young 2003; Vinoth and Young 2011).

1) IDM

The most obvious means of forming the PDF is to sim-

ply create a histogram of recorded wind/wave data. Such

data, when obtained from in situ instruments, is typically

measured at hourly (or 3 hourly) intervals. A parametric

PDF can then be selected, fitted to the data, and extrap-

olated to the desired probability level P(x, x100), where

x can be either wind speed U10 or significant wave height

Hs. For the present application P(x, x100) represents

the probability level associated with the 100-yr event

(i.e., probability of exceedance of 0.01 in any year). For

the IDM approach (Tucker 1991; Cooper and Forristall

1997; Teng 1998), P(x, x100) is given by

P(x, x100)5 12D/T
100

, (1)
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where D is a decorrelation time scale in hours for ob-

servations of x, and T100 is the number of hours in 100

years. There is little theoretical guidance on the choice

of the value forD. Studies using buoy data (Tucker 1991;

Cooper and Forristall 1997; Teng 1998) have usually

adopted D5 3 hours, although it is almost certain that

actual decorrelation scales for ocean waves are consid-

erably longer. Rather, it seems that D might better be

described as a calibration term. The empirical nature of

the IDM extends beyond the choice of D. There is also

no theoretical guidance in terms of the PDF that should

be used to fit the data. Gumbel andWeibull distributions

are often used, the ultimate choice being the form that

best fits the observed PDF. The Gumbel distribution is

defined as

F(x)5 exp

�
2exp

�
2
x2A

B

��
, (2)

where F(x) is the cumulative distribution function; the

Weibull distribution takes the form

F(x)5 12 exp

"
2

�
x2A

B

�k
#
, (3)

and k, A, and B are shape, location, and scale parame-

ters, respectively.

There are still further limitations with the IDM ap-

proach. First, in most cases, the approach violates the

requirement for independent and identically distributed

data. When using in situ data measured at 1- or 3-h in-

tervals, it is almost certain that such data are correlated.

As the distribution is fitted to the full PDF, it is highly

likely that data at the peak of the PDF (mean condi-

tions) and that in the extreme tail (storms) will be from

different meteorological events and hence not identi-

cally distributed. Finally, the fit of the chosen PDF to the

data is always dominated by the bulk of the data, which

is near the peak of the PDF, rather than the extreme

tails where interest lies. Hence, the IDM tends to be

an extrapolation of these more benign conditions

than a model of the extremes. Despite these very sig-

nificant shortcomings, the IDM has been extensively

used (Goda 1992, 1988; Tucker 1991; Ochi 1992), as it is

the only alternative when only short time series are

available (i.e., less than 15 years). In the case of Earth-

observing satellites, the observational record has been

so short that previous attempts at EVA have only

yielded reasonable results when the IDM has been

used (Alves and Young 2003; Chen et al. 2004;

Challenor et al. 2005; Wimmer et al. 2006; Vinoth and

Young 2011).

2) AMM

One method to overcome the many limitations of

the IDM approach is to use so-called block maxima. In

this approach, the maximum value from a meteoro-

logically appropriate period is considered, rather than

all the data. The period might be a season or, more

commonly, a year (the annual maximum). In such a case,

it can be shown that these maxima will follow a gener-

alized extreme-value (GEV) distribution (Castillo 1988;

Coles 2001):

F(x)5 exp

�
2

�
11 k

�
x2A

B

��21/k�
. (4)

Depending on the value of the shape parameter k the

GEV takes on three forms:

Type 1 or Gumbel distribution k5 0, (unbounded)

Type 2 or Fréchet distribution k. 0, (unbounded)

Type 3 or Weibull distribution k, 0, (bounded)

For k$ 0, there is no upper bound to the distribution,

and values of x can take on infinitely large values, al-

though at very low probability levels. In contrast, for

k, 0 there is an upper bound to the magnitude of x. In

addition, it should be noted that (4) is a distribution

of maxima, whereas (3) is actually a distribution of

minima (although used for maxima by considering

the distribution of negative values 2x). Although the

AMM has the advantage of a sound theoretical basis

and ensures that the data are IID, it has the very sig-

nificant limitation of requiring very long time series

(greater than 30 years) to form stable estimates of the

PDF (i.e., only one value per year). In practice, such long

time series are seldom available for the case of wind/

wave data.

3) POT

A compromise that addresses the data availability

limitation of the AMM is the PoT approach (Castillo

1988; Coles 2001). Here, a threshold is set and only ex-

ceedences above this threshold considered. In such a

case, it can be shown that data will follow a generalized

Pareto distribution (GPD; Coles 2001),

F(x)5 12

"
11 k

�
x2A

B

�21/k
#
, (5)

where A becomes the value of the threshold. In this

approach, there is no theoretical guidance in the selec-

tion of the threshold parameter A and it is usually a

trade-off between stability and bias. That is, it must be

low enough to ensure sufficient data are available to fit a
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stable PDF, while not so low that it biases the fit to the

extreme values in the distribution. It is common to

select a value at a chosen high percentile (e.g., 90th or

95th percentile; Anderson et al. 2001; Caires and Sterl

2005; Challenor et al. 2005,Alves andYoung 2003;Vinoth

and Young 2011). It should be noted, however, that the

selection of the threshold does affect the extreme-value

estimates. In addition, the values chosen above the thresh-

old must still be independent (e.g., from separate storms).

This is often achieved by ensuring data are separated by

some defined time period (e.g., 48h; Lopatoukhin et al.

2000; Caires and Sterl 2005).

In the case of the PoT approach, the desired proba-

bility level for a 100-yr return period is

P(x, x100)5 12N
Y
/(100N

PoT
) , (6)

where NPoT is the number of data points in the PoT

analysis, and NY is the number of years covered by the

analysis.

b. Previous global extreme-value studies

The literature on extreme-value studies of wind speed

and wave height is extensive. The vast majority of these

studies, however, refer to point locations. We have not

attempted to review this literature here, rather we con-

centrate on the more limited global studies. As a result,

attention is confined to either numerical reanalysis model

or satellite datasets.

A number of long-duration reanalyses combining

numerical models of the atmosphere with data assimi-

lation are now available in public archives. These in-

clude ERA-40 (Uppala et al. 2005) and ERA-Interim

(Dee et al. 2011), for both of which a wave model

(WAM; Hasselmann et al. 1988) is incorporated into the

model system. Because of the long duration of the re-

analyses, these are attractive for EVA (e.g., Caires and

Sterl 2005; Sterl and Caires 2005). The length of the

reanalysis model records allows the use of threshold

methods (PoT) to determine global distributions of the

100-yr return period wind speed U100
10 and significant

wave height H100
s . Such datasets have three significant

limitations: the spatial resolution means that intense

small-scale events such as tropical cyclones are not well

resolved, the ability of the models to reliably model

extreme events has been questioned (Stopa and Cheung

2014), and the quantity of data assimilated into the

models varies with time, meaning that reanalysis data

may not be temporally stationary (Breivik et al. 2014;

Aarnes et al. 2012, 2015). It should be pointed out that the

issue of model resolution is being continually improved

as computational capabilities improve. The ERA-5 re-

analysis, which is presently being developed, will reduce

spatial resolution to 30 km (https://www.ecmwf.int/en/

forecasts/datasets/archive-datasets/reanalysis-datasets/

era5).

An innovative alternative to the use of reanalysis data

is to create very long-duration equivalent time series

using forecast ensembles (Breivik et al. 2013, 2014;

Meucci et al. 2018). By considering ensemble forecasts

at long forecast lead times (9–10 days), synthetic data-

sets of durations longer than 300 years can be formed.

With such data, EVA can be performed without the

need of any assumed PDF form (the probability level is

‘‘in sample’’ and can be determined directly from the

ranked data). This effectively removes issues of ex-

trapolation to the desired probability level, but ques-

tions about stationarity and tail biases (the ability of a

coarse model to represent extreme events) remain.

As the satellite records lengthened, a number of stud-

ies investigated global values of extreme wind speed

and wave height. These include Alves and Young (2003;

10 years of data), Chen et al. (2004; 8 years of data),

Challenor et al. (2005; 11 years of data), Wimmer et al.

(2006; 11 years of data), and Vinoth and Young (2011;

23 years of data). Vinoth and Young (2011) investigated

the use of PoT analyses but concluded that the time se-

ries was too short and hence adopted an IDM analysis,

as did all the previous studies. Although these analyses

produce plausible global distributions of U100
10 and H100

s

and comparable values to point buoy measurements,

there are again doubts about whether the instruments

accurately measure extreme conditions and, perhaps more

importantly, whether they undersample extreme events

due to the satellite orbit and footprint size (i.e., storm

peaks or whole stormsmay bemissed as altimeter ground

tracks can be separated by hundreds of kilometers). It

should be noted that all of these studies use radar altim-

eters with very narrow swaths on Earth’s surface. Instru-

ments such as radiometers and scatterometers, which

measure over a broad swath, have not previously been

used for global extreme-value analysis.

3. Satellite dataset

In the present study, we will use the calibrated and

validated satellite database of Young et al. (2017). This

database consists of altimeter (Hs and U10) and radiom-

eter (U10) data over the period 1984–2014 (30 years). The

data come from a total of 23 different satellites over this

period. Each of these satellite datasets was individually

calibrated (i.e., linear regression correction—slope and

offset) against NDBC buoy data, validated against an

independent buoy dataset, and cross validated at cross-

over points with other satellite systems. In addition, the

satellites were examined for any discontinuities or drifts
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in calibration over time, and where these were detected,

the data were corrected.

A full description of the manner in which altimeters

measure wind speed and wave height and radiometers

measure wind speed can be found in Young et al. (2017)

and Young and Donelan (2018). These details are not

repeated here. However, there are a number of issues

that are important when such data are subjected to

EVA. Altimeters are ‘‘nadir looking’’ instruments and

measure along a line directly below the satellite. The

footprint is approximately 8–10km in diameter with

roughly one measurement per second. As a result, al-

timeters have very good along-track resolution (ap-

proximately every 10 km) but relatively low across-track

measurement density. Depending on the orbit, ground

tracks are 100–400km apart at the equator. The exact

repeat cycle or time until the satellite repeats the same

ground track varies from 3 to 10 days. As a result, al-

timeters in polar orbits observe the globe from about

808S to 808N but may undersample or completely miss

small- tomedium-size storms. Although there have been

very few studies on the impact of rain on altimeter

measurements, it appears that they are not greatly af-

fected by rain (Young and Donelan 2018).

In contrast, radiometers (which measure only wind

speed), measure over a broad swath, approximately

1400 km wide. Across this swath, they provide data at

approximately 25 km resolution. Therefore, a typical

radiometer in a polar orbit will visit most points on

Earth’s surface twice per day. At a particular location,

the radiometer will typically produce approximately

30 times more data than an altimeter. Hence, radiome-

ters should be much less affected by undersampling

than altimeters. However, radiometer measurements are

heavily influenced by rain and typically cannot measure

under heavy rain conditions. As a result, it is very com-

mon for radiometers to miss the peaks of storms where

there is commonly heavy rain. As a result, this may in-

troduce a ‘‘fair weather’’ bias in radiometer data (Young

et al. 2017; Young and Donelan 2018).

In addition to calibrating the instruments, Young et al.

(2017) also examined their performance at extreme con-

ditions. This was accomplished by examining quantile–

quantile (QQ) plots between altimeter/radiometer and

buoy data, as well as QQ plots between altimeter and

radiometer winds at crossover points. They concluded

that compared to buoys, altimeters measure Hs accu-

rately up to 10m and U10 to 25ms21. This was as high as

reliable matchup data were available, and it is likely that

this good performance extends beyond these values. It

should be noted that the choice of algorithm relating ra-

dar cross section to wind speed for altimeters is critical to

their high-wind performance. Young et al. (2017) used a

combination of the form proposed byAbdalla (2007)with

the high wind speed correction of Young (1993). This

same combination has been used here.

In contrast to altimeters, radiometers appeared to

overestimate wind speed compared to buoys above

20ms21. However, there is evidence (Large et al. 1995;

Zeng and Brown 1998; Taylor and Yelland 2001;

Howden et al. 2008; Bender et al. 2010; Jensen et al.

2015) that buoys may underestimate extreme wind

speeds and waves due to tilting of the buoy and shel-

tering by large waves. It is therefore questionable to

assume that buoys represent ‘‘ground truth’’ under ex-

treme conditions.

As high-wind performance is critical for EVA, we

therefore searched for alternative wind observations to

conventional buoys. The obvious alternative is offshore

platform data. Data were obtained from the Norwegian

Meteorological Institute for offshore oil platforms. The

locations where data were available are shown in Fig. 1.

Offshore platform data are known to have a number

of issues, most notably flow distortion caused by the

structure. However, this dataset has been extensively

studied by the Norwegian oil industry, and power-law

corrections were available for each of the anemometers

to correct the data to a standard reference height of

10m. The same matchup criteria adopted by Young

et al. (2017) were used. That is, the satellite data needed

to be within 50 km of the platform, and the mismatch

in measurement time must be less than 30min. One of

FIG. 1. Locations of offshore platforms used to obtain ane-

mometer data for high wind speed calibration of the radiometer

instruments.
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the challenges in carrying out a high wind speed cali-

bration is obtaining sufficient data under these con-

ditions (i.e., there are few collocated observations at

high winds).

To maximize the available data, only radiometer

passes were considered (30 times more data than for

the altimeter). In addition, as the results of Young et al.

(2017) showed that there was little calibration differ-

ence between the various radiometers, these were all

pooled to form a single composite dataset. The dataset

consisted of more than 280 000 matchups, but only 1%

of the wind measurements exceeded 20m s21. Figure 2

shows both scatterplots of platform and radiometer

winds and the corresponding QQ plots. Figure 2a shows

the relationship between radiometer wind speed with

the Young et al. (2017) calibration applied and the

platform anemometer winds. Below 20m s21, the data

agree remarkably well, indicating that the boundary

layer corrections applied to the platform data were valid

and there was minimal impact from flow distortion

around the platforms. Above approximately 20ms21,

however, a gradual rolloff in the data is apparent (radi-

ometer winds are higher than platform winds). This

is more clearly seen in the corresponding QQ plot

(Fig. 2b). To address this issue, the following empirical

correction was applied to data above 18ms21:

U
10
* 5U

10
[12 0:013(U

10
2 18)0:79], (7)

where U10 is the radiometer wind speed, after the cali-

bration relations of Young et al. (2017) are applied, and

U10* is the corrected wind speed. In (7), units for wind

speed are meters per second. Figures 2c and 2d show the

results once the correction in (7) has been applied. It

should be noted that (7) is based entirely on the data

from the Norwegian sites shown in Fig. 1. It has been

assumed that this calibration holds generally and has

subsequently been applied globally.

4. Validation of satellite EVA analysis against
buoys

Following Alves and Young (2003) and Vinoth and

Young (2011), the global data were binned into 28 3 28
bins. In section 5, this binned dataset is used to in-

vestigate global distributions of extreme values. Here,

we validate the results against NDBC buoy data (Evans

et al. 2003). We select the same 10 deep-water NDBC

FIG. 2. Radiometer–platform anemometer comparisons: (left) scatterplots and (right) QQ

plots with (a),(b) no high wind speed correction and (c),(d) high wind speed correction [(7)].
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buoys used by Vinoth and Young (2011; see their Fig. 2).

These buoys were selected, as they are all more than

200km from shore, have a water depth exceeding 300m,

and were operational for the full duration of the com-

bined satellite datasets (1984–2014).

The validation approach used by Vinoth and Young

(2011) consisted of determining extreme-value estimates

(U100
10 ,H100

s ) using both IDMandPoT approaches for both

buoy and satellite (altimeter in their case). They then

compared IDM estimates for buoy with altimeter and

PoT estimates for buoy with altimeter (i.e., they com-

pared IDM buoy with IDM altimeter and PoT buoy with

PoT altimeter). What this showed was that the IDM re-

sults agreed well, but the PoT approach exhibited sig-

nificant differences. This is not surprising as the IDMfit is

actually dominated by the body of the distribution rather

than the tail. As long as buoys and altimeters produced

similar mean conditions, the IDM approach will give

extremes of comparable magnitude.

As we have longer time series, we have adopted a

more challenging validation approach. With 30 years of

data, PoT estimates from buoys can be obtained with

reasonable confidence. Therefore, we take the PoT es-

timates from the buoys as the baseline (ground truth)

and compare satellite estimates from PoT and IDMwith

these values. An important issue in applying the PoT

analysis is to select an appropriate threshold parameter

[A in (5)]. To investigate the sensitivity of extreme-value

estimates from the GPD [(5)] to the threshold value, a

28 3 28 region centered on 408N, 1808 (North Pacific) was

selected as a representative test point. The values ofU100
10

and H100
s were calculated using the PoT approach and

the altimeter data for a number of different values of

threshold, each specified as a percentile value. The re-

sults, normalized by the value with a threshold at the

75th percentile are shown in Fig. 3. For both wind speed

and wave height, the extreme-value estimates increase

as the threshold value is increased before reaching a

peak and then decreasing. Depending on the threshold

choice, the resulting extreme values can vary by up to

30%. The values of H100
s are more sensitive to the

choice of threshold than U100
10 . Ultimately, the 90th

percentile was adopted for the subsequent calculations.

This choice was largely dictated by a desire to avoid

the region of Fig. 3 where the values seem most sen-

sitive to the choice, while keeping the threshold value

as high as possible. Other locations were also tested

and, although there are differences, Fig. 3 is broadly

representative.

When applying a PoT analysis to the satellite data,

care must still be exercised to ensure that the data taken

above the selected threshold are independent. In the

case of altimeter passes, this is seldom an issue as, even

with multiple satellites in orbit, satellite passes at a lo-

cation are typically separated by at least two days (48 h).

Radiometer data are potentially more problematic, as a

single radiometer will image each location twice a day

(12-h separation). To test the sensitivity to these issues,

data were filtered such that only values separated by

chosen times were considered (e.g., data separated by

48 h). The calculated extreme values were quite in-

sensitive to the chosen time separation, and, hence, data

separated by a minimum of 48h have been used here.

Table 1 shows values of U100
10 and H100

s for buoys cal-

culated using the PoT approach (values shown in italics

columns of the table). These are compared to altimeter

values calculated with both PoT and IDM (U10, Hs) and

radiometer values calculated with IDM (U10). As will be

outlined in detail in section 5, the radiometer data proved

unsuitable for application of the PoT approach and hence

FIG. 3. Values of (a) H100
s and (b) U100

10 as a function of the threshold used for the PoT analysis, expressed

as a percentile. Values are shown normalized by the value at the 75th percentile. Data taken from a representative

28 3 28 region centered on 408N, 1808E (North Pacific).
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is not considered here. The values of U100
10 and H100

s

calculated for buoys using the PoT are in good agree-

ment with those of Vinoth and Young (2011). The

differences can be attributed to the longer duration of

measurements used here and a different threshold for

the PoT analysis. To determine the differences be-

tween buoys and satellites, the mean error was calcu-

lated as

Dr5 (H100
s,Alt 2H100

s,Buoy)/H
100
s,Buoy, (8)

for each buoy and then summed over all n buoys as

r5 1/n�Dr. The mean error was calculated forU100
10 in a

similar fashion. The altimeter PoT values are in rea-

sonable agreement with the buoys with r 5 27.5% for

H100
s and r5114.6% forU100

10 . These values compare to

Vinoth and Young (2011), who obtained r 5 217.31%

for H100
s and r 5 140.61% for U100

10 . Vinoth and Young

(2011) ultimately concluded that the PoT approach

could not be applied to determine extreme values using

their dataset. The results in Table 1 seem to indicate

that, at least at these buoy locations, the altimeter yields

extreme-value estimates in reasonable agreement with

buoys using the PoT approach.

As noted earlier, we have not presented IDM esti-

mates for buoys. An examination of the results of

Vinoth and Young (2011) shows thatH100
s for the buoys

are in reasonable agreement between PoT and IDM

analyses using D 5 3 h. However, U100
10 buoy calcula-

tions with IDMwere between 30% and 50% larger than

the corresponding PoT calculations. This is perhaps

not surprising, as the value of 3 h was developed for use

with buoy data of Hs. When applied to U10, and other

data, this value of D is questionable. This raises very

significant doubts about the use of the IDM approach.

To obtain values ofU100
10 andH100

s with satellite data that

were comparable to satellite or buoy PoT calculations,

the values of D needed to be significantly increased.

To obtain values of comparable magnitude for use in

comparative plots in section 5, these values were arbi-

trarily increased to D 5 500 h for wind speed (both al-

timeter and radiometer) and D 5 30 h for significant

wave height (altimeter). For completeness, calculations

in Table 1 for IDM have also used these values. As will

be shown in section 5, we do not advocate the use of the

IDM, and the arbitrary nature of the selection of D is

just one of its limitations.

5. Global distribution of extremes

a. Altimeter PoT analysis

To investigate the global distribution ofU100
10 andH100

s ,

the data were binned using 28 3 28 bins, and the PoT

analysis was applied to both wind speed and wave height

for the altimeter data and wind speed for the radiom-

eter data. Vinoth and Young (2011) attempted a similar

analysis with the result showing extremely noisy dis-

tributions. They concluded that the distributions of

H100
s showed promise but that the U100

10 estimates were

unusable.

Figure 4 shows color-filled contour plots of U100
10

(Fig. 4a) andH100
s (Fig. 4b) for the altimeter (PoT). The

contours have been drawn on the 28 3 28 grid without

further smoothing. In comparison to the findings of

Vinoth and Young (2011), the results show a far

smoother spatial distribution. The contours ofU100
10 show

much greater zonal structure than H100
s . This is consis-

tent with mean monthly climatology (Young 1994, 1999;

Young and Donelan 2018) and is caused by the disper-

sive nature of waves. Once generated, waves propagate

across oceanic basins as swell (Young et al. 2013),

ensuring a smoother distribution of Hs than U10. This is

also the case for the extreme values, as shown in Fig. 4.

Figure 4a shows the maxima ofU100
10 of approximately

38m s21 occur in the North Atlantic and North Pacific.

TABLE 1. EVA of NDBC buoy and satellite data. Buoy data shown with italics.

Buoy No.

Lat (8N),

lon (8E)
Hs buoy

(PoT) (m)

Hs altimeter

(PoT) (m)

Hs altimeter

(IDM) (m)

U10 buoy

(PoT) (m s21)

U10 altimeter

(PoT) (m s21)

U10 altimeter

(IDM) (m s21)

U10 radiometer

(IDM) (m s21)

46001 56.23, 212.05 13.8 12.7 14.5 24.9 28.9 33.9 34.2

46002 42.61, 229.46 14.7 13.1 12.7 24.4 26.3 30.4 29.9

46003 51.33, 204.15 16.1 14.8 15.7 26.1 29.2 34.8 29.2

46005 46.14, 228.93 14.6 14.4 14.6 25.3 27.9 31.1 30.9

46006 40.78, 222.60 15.4 13.4 14.8 27.2 27.5 27.5 31.2

51005 24.42, 197.90 11.9 10.4 9.9 18.9 26.7 25.8 26.9

44004 38.48, 289.57 13.5 13.8 13.6 27.3 34.4 37.0 34.4

41002 31.76, 285.16 13.5 11.6 10.4 25.9 33.2 33.2 30.4

42001 25.90, 270.33 11.5 11.3 11.3 28.1 26.4 26.4 26.2

42002 26.09, 266.24 11.5 10.8 7.1 26.3 31.0 26.0 27.2

Error — — 27.5% 28.7% — 114.6% 120.3% 118.1%
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Although the Southern Ocean is consistently windy

year-round and monthly means in winter are compara-

ble to the Northern Hemisphere (Young 1999; Young

and Donelan 2018), the extremes are not as great. The

maximum values of U100
10 in the Southern Ocean are

approximately 34ms21. This maximum tends to occur

south of the IndianOcean (betweenAustralia and South

Africa). The maxima in the North Atlantic and North

Pacific tend to be displaced toward the western bound-

aries of these basins. The reason for this can be seen

by examining Fig. 5, which shows the storm tracks of

tropical cyclones (and tropical low pressure systems)

over the period 1984–2014, obtained from the IBTrACS

data archive (Knapp et al. 2010). For clarity, only every

second storm track is shown in Fig. 5.

Figure 5 shows that NorthAtlantic and Pacific tropical

storms track east to west across the tropics of each ocean

basin, respectively, before turning north along the

western boundary of each basin. Because of the small

spatial scale of tropical cyclones and the relatively large

distance between altimeter tracks, it is likely that these

systems are undersampled in the present analysis. As

such systems move north, they tend to increase in size,

making it more likely that they are observed by the

altimeter. This is clear in the region of the western

North Atlantic, where extreme winds are predicted

(Fig. 4a) north of 308N, but there is no clear indication

of tropical cyclones moving across the tropical regions

of the Atlantic (east to west). In contrast, extreme

winds along the western boundary of the Pacific are

predicted as far south as 108N. There is then a clear

path of intense winds shown across the Pacific equato-

rial regions. North Pacific tropical cyclones (typhoons)

tend to be larger in spatial extent than North Atlantic

tropical cyclones (hurricanes; Knaff et al. 2014). They

are also more frequent, as shown in Fig. 5, making them

less affected by undersampling in the altimeter data-

set. This explains why the east–west tropical track is

clear in the western Pacific (108N) but not the western

Atlantic.

FIG. 4. Global values of (top)U100
10 (m s21) and (bottom)H100

s (m) obtained with a PoT analysis

and a GPD distribution. Data obtained from altimeter missions.
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A number of other storm track features can also be

seen in the values of U100
10 in Fig. 4a. The region of high

occurrence of tropical cyclones near the central Amer-

ican Pacific coast is reflected in a ‘‘hot spot’’ of extreme

wind of approximately 38ms21 in that region. There is a

region of reduced U100
10 in the central Indian Ocean.

Figure 5 shows that this corresponds to a region almost

devoid of tropical cyclones between the western Aus-

tralian and eastern African basins. Less clearly, there is

also a band of slightly elevated U100
10 from northeast of

New Zealand to east of New Guinea. Again, this cor-

responds to the track regions for South Pacific storms. A

further hot spot of elevated U100
10 can be seen in the Bay

of Bengal, another region of high occurrence of tropical

cyclones.

The eastern side of the South Atlantic (off Africa)

shows relatively low values of U100
10 with the exception

of a band of slightly increased values along the equator

between SouthAmerica andNorthAfrica. It is probable

that this is the signature of storm activity in the in-

tertropical convergence zone (ITCZ). A triangular re-

gion of low U100
10 bounded by the equator west of South

America is also clear in Fig. 4a.

Many of the same features described above are also

apparent in model calculations of U100
10 (Breivik et al.

2014; Meucci et al. 2018). Both the location and mag-

nitudes of the maximum values in the North Atlantic

and Pacific Oceans are comparable to Fig. 4a. Also, the

relatively low values in the triangular region west of

South America and across the Atlantic west of Africa

are found in both themodel and altimeter data in Fig. 4a.

However, features that we have attributed to small-scale

tropical cyclone activity are not clear in the model re-

sults. This includes tropical cyclone activity across the

Pacific north of the equator, or in the Pacific Ocean east

of Australia or the low-extremes area in the central

Indian Ocean. It should be pointed out that neither the

model results nor the altimeter dataset are optimal for

investigating tropical cyclone extremes. The spatial

resolution of the models (e.g., of order 100 km) means

that tropical cyclone winds will not be resolved. In

contrast, the altimeter will measure tropical cyclone

winds (Young 1993), provided there is a ground track

close to the tropical cyclone. However, as noted above,

these storms will be undersampled. Therefore, the

differences between U100
10 from model data and altim-

eter are as one would expect.

Figure 4b shows color-filled contours of H100
s calcu-

lated using the PoTmethod and altimeter data.As noted

previously, there is much less small-scale variability than

for U100
10 (Fig. 4a). The largest values of H100

s are once

again in the North Atlantic and North Pacific, with

values of approximately 18m. Again, the regions with

the largest extreme waves are displaced toward the

western boundaries of these basins, but not to the same

extent as the wind U100
10 (Fig. 4a). Similar to the extreme

winds, the largest values of H100
s in the Southern Hemi-

sphere are found south of the Indian Ocean between

Australia and South Africa, with values of approximately

16m. Values of H100
s gradually decrease from these

maximum regions in each hemisphere toward the equa-

tor. In the equatorial regions, H100
s reaches only approx-

imately 4m. These results are much smoother (spatially)

than the PoT results of Vinoth and Young (2011) and

agree well with model results (Breivik et al. 2014; Meucci

et al. 2018) both in magnitude and spatial distribution.

It is believed that Fig. 4 represents the first plausible

published estimates of U100
10 and H100

s obtained from

FIG. 5. Storm tracks of tropical cyclones (and tropical low pressure systems) over the period

1984–2014, obtained from the IBTrACS data archive (Knapp et al. 2010). For clarity, only

every second track is plotted.
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altimeter using a PoT analysis. These results do suffer

from the undersampling of small-scale meteorological

systems (e.g., tropical cyclones, storms) but are probably

less affected than low-resolution model data.

b. Radiometer PoT analysis

Because of the much higher data rates (30 times more

data) the radiometer has the potential to address the

undersampling issues noted above for altimeter U100
10

estimates with the PoT analysis. However, the radiom-

eter also has features that are undesirable at high wind

speeds. First, as noted in section 4, collocation between

anemometer and radiometer measurements shows that

the radiometers overestimate wind speed above ap-

proximately 20m s21.We have attempted to address this

issue by the high wind speed correction in (7). In addi-

tion, however, the radiometer cannot measure in heavy

rain. Examination of numerous cases of radiometer

passes over tropical cyclones in the present dataset in-

dicated that in almost all cases, a data ‘‘hole’’ exists

around the center of the stormwith no useable data and,

importantly, the high wind speeds being missed by the

radiometer. The same characteristic is clear in many

high-latitude storms with a data gap near the center of

the storm.

Figure 6 shows color-filled contours of U100
10 obtained

from the radiometer and the PoT analysis. Figure 6a

shows the result without the high wind speed correction

[(7)] and Fig. 6b with the inclusion of the correction. In

comparing the radiometer U100
10 result with the altimeter

values, it should be noted that the color scale in Fig. 6a

(radiometer) is 26–58ms21 compared to Fig. 4a (al-

timeter) of 16–40m s21. That is, the radiometer with-

out the high wind speed correction gives values of U100
10

much higher than the altimeter, previous model results

(Breivik et al. 2014; Meucci et al. 2018), and the buoy

data of Table 1. With the high wind speed correction

(Fig. 6b), the results are now of comparable magnitude

to the altimeter (Figs. 4a and 6b have the same color

scale). Also, Fig. 6b shows many of the same spatial

FIG. 6. Global values of U100
10 (m s21) obtained with a PoT analysis and a GPD distribution.

Data obtained from radiometer missions. (top) No high wind speed correction applied to the

data. (bottom) The high wind speed correction [(7)] applied to the data.
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features as Fig. 4a—highest values in the North Atlantic

and Pacific, low-wind triangular region in the Pacific

west of South America, tropical cyclone belt across the

Pacific (but less distinct), ITCZ band across the equa-

torial Atlantic (but less distinct), and the low wind speed

region in the Indian Ocean.

There are, however, a number of features in Fig. 6b

that differ from the altimeter results. The largest values

of U100
10 do not occur in the storm belts at about 458N,

rather they occur in distinct separate belts at around

308N. Similarly, a belt of high values ofU100
10 exists across

the Southern Hemisphere at approximately 308S, rather
than farther south in the Southern Ocean as in the al-

timeter data. Examination of the PDFs of the radiom-

eter showed that at the higher latitudes, 6458, the tail

was abruptly truncated (i.e., no high values). This re-

sulted in aGPD [(5)] fit to the data with a negative shape

parameter k. This places an upper bound on U100
10 . In

contrast, at lower latitudes k remained positive, pro-

ducing no upper bound and the larger values of U100
10

produced at 6308. We speculate that the lack of high

wind speed data at6458 is caused by the extreme winds

not being sensed by the radiometer because of high rain

rates. As the spatial distributions in Fig. 6b (or Fig. 6a)

are not plausible, we searched for an alternative fit to the

radiometer PDFs.

In an attempt to address the issues raised above, an

exponential (EXP) distribution was used with the PoT

analysis rather than a GPD. The EXP distribution is a

special case of the GPD [(5)] with k 5 0. This produces

an unbounded distribution but without the variability

caused by having k determined by the fit to the data

(which is problematic in the tail of the radiometer PDF).

The resulting values of U100
10 are shown in Fig. 7. As in

Fig. 6b, the high wind speed correction [(7)] has been

used but with the EXP distribution.

Although the use of the EXP has produced results

that vary spatially in a smooth manner, the spatial dis-

tributions are quite different from the altimeter GPD

(and previously published results; Vinoth and Young

2011; Breivik et al. 2014). Although the high wind speed

correction [(7)] was used for the data in Fig. 7, the

magnitude of the values of U100
10 are much greater than

Fig. 4a (altimeter, GPD)—scale 22–58m s21. As a result,

we conclude that the EXP distribution produces unsat-

isfactory results.

The results of Figs. 6 and 7 indicate that, despite the

greater sampling density provided by the radiometer, its

inability to provide data during rain events introduces

an unacceptable fair-weather bias for extreme-value

applications.

c. IDM analysis

As noted earlier, all previous studies of extreme-value

estimates from satellite data (altimeter) have opted for

an IDM analysis. This is despite the many shortcomings

of the approach outlined in section 2a (value of decor-

relation scaleD, independent and identically distributed

data). As the present analysis provides, for the first time,

stable estimates of both U100
10 and H100

s from a PoT anal-

ysis, these can be used as a basis to assess the usefulness of

an IDM analysis.

Figures 8a and 8b show U100
10 and H100

s , respectively,

for an IDM analysis of altimeter data. Figure 9 shows

U100
10 for an IDManalysis of radiometer data. As noted in

Table 1, the decorrelation scalesD were chosen so as to

give results of comparable magnitudes to the altimeter

and buoy PoT results (U100
10 ,D 5 500 h; H100

s ,D 5 30h).

FIG. 7. Global values of U100
10 (m s21) obtained with a PoT analysis and an EXP distribution.

Data obtained from radiometer missions. The high wind speed correction [(7)] applied to

the data.
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As expected, the results show smooth spatial distribu-

tions. Also, the values of U100
10 produced by both altim-

eter and radiometer are very similar. This is in stark

contrast to the results for the PoT analysis. Although

this may seem a positive feature of the IDM, this occurs

because the IDMfit to the PDF is controlled by the body

of the PDF rather than the tail. The altimeters and ra-

diometers produce mean monthly wind speeds in good

agreement (Young and Donelan 2018). Therefore, they

will produce IDM fits to the data that are also similar.

The fact that the tails of the respective distributions are

quite different has little impact on the resulting values

of U100
10 . The spatial distributions of U100

10 are also very

similar to the mean monthly distributions. For instance,

the maximum values in each hemisphere are of similar

magnitude (not the case for the PoT) and the distribu-

tions in theNorthAtlantic and Pacific aremore centrally

located, rather than being in the storm belts. Although

there is some suggestion of a tropical cyclone belt across

the Pacific, this is much less distinct than for the PoT

analysis and all other tropical cyclone signatures are

absent in the IDM analysis. Another interesting differ-

ence is that the PoT analysis did not show a local max-

imum in the area of the Horn of Africa, as a result of the

Somali/Oman coastal low-level jet (CLLJ; Ranjha et al.

2015). In contrast, the IDM shows a distinct local max-

imum (see below and Fig. 11).

The values of H100
s largely follow the same spatial

distributions as U100
10 (cf. Fig. 8a and Fig. 8b). This again

occurs because the spatial distributions of mean wind

speeds and wave heights are similar.

Figures 10 and 11 show the PDFs for both wind speed

and wave height, together with both IDM and PoT fits

to the data. Figure 10 shows results from a location in

the Pacific Ocean tropical cyclone belt (68N, 2148E;
Figs. 10a–d, U10; Fig. 10e–h, Hs), and Fig. 11 shows

results from a location off the Horn of Africa (148N,

608E; Figs. 11a–d, U10; Figs. 11e–h, Hs). These are two

locations where the IDM and PoT analyses give very

different results. Figures 10a–d show that the PDF of

FIG. 8. Global values of (top) U100
10 (m s21) and (bottom) H100

s (m) obtained with an IDM

analysis and a Gumbel distribution. Data obtained from altimeter missions.
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U10 has a relatively low wind speed peak at U10 ’
8m s21, however, an extended high wind speed tail

caused by the presence of tropical cyclones. The IDM

fits poorly to the tail and underestimates U100
10 . In con-

trast, the PoT with a GPD fit to the tail region more

accurately approximates the data. The differences for

Hs are not as great because the wave field is more

uniformly distributed (no local maximum band). As such,

the PDF is reasonably well modeled by both IDM and

PoT, and the values ofH100
s from the two approaches do

not differ greatly.

The PDFs for the Horn of Africa (Fig. 11) are clearly

affected by the strong winds of the Somali/Oman CLLJ.

The PDFs (both wind speed andwave height) are clearly

bimodal and there are clearly two populations of wind

speed and wave height. It is also clear that the high wind

speed peak (Somali/OmanCLLJ) has a very sharp drop-

off with increasingU10. This indicates that, although the

winds in the jet are high, there are few really extreme

events. Both approaches struggle to model the tail of the

PDF. However, the IDM greatly overestimates the tail of

the distribution, resulting in a localized peak in U100
10 ,

which is not supported by the shape of the PDF, as well

as not predicted by the PoT analysis. A similar situation

exists forHs, with the IDMagain overestimating the tail of

the PDF.

The comparisons between the PoT and IDM analyses

above clearly show the limitations of the IDM approach.

Although this approach has found favor when working

with short datasets, the results shown here clearly in-

dicate its significant theoretical and practical shortcomings.

As long-duration satellite and model reanalysis datasets

are now available, there seems little justification for its

continued use.

d. Changing wind and wave climates

The above analysis assumes that the time series con-

sidered are stationary. That is, there is no change in the

mean conditions over the approximately 30-yr mea-

surement period. In addition, applying such extreme-

value analysis to determine probable extremes also

assumes that mean conditions will not change in the

future. There is evidence to suggest that there have been

changes in both wind and wave mean climate over this

period (Young et al. 2011). In addition, there is also some

evidence that extreme conditions have also changed over

this period (Young et al. 2011, 2012). Further, model

studies (Hemer et al. 2013) indicate that wave climate

may also change in the future. At present, there is still a

significant level of uncertainty in these trend estimations.

The present estimates of both historical and future trends

are relatively small (mean Hs trends of approximately

0.5 cmyr21; mean U10 approximately 2 cms21 yr21). To

date, no reliable assessment of the potential impact on

extreme conditions exists.

6. Conclusions

The present analysis outlines the application of

extreme-value analysis to long-duration (30 year) global

altimeter and radiometer datasets. In contrast to pre-

vious extreme-value analyses of satellite data, the data-

set is sufficiently long to enable a PoT analysis to be

undertaken. When applied to altimeter data forU10 and

Hs, this PoT analysis produces values consistent with

buoy validation data and previous numerical model re-

analysis datasets. The spatial distributions produced are

also consistent with themodel reanalysis data. However,

FIG. 9. Global values of U100
10 (m s21) obtained with an IDM analysis and a Gumbel distri-

bution. Data obtained from radiometer missions. The high wind speed correction [(7)] applied

to the data.
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FIG. 10. The altimeter (left) PDF and (right) QQ plot at a 28 3 28 square centered on

68N, 2148E (Pacific tropical cyclone belt) for wind speed U10. (a),(b) The IDM fit to the

PDF and (c),(d) the PoT fit to the PDF. (e)–(h) As in (a)–(d), but for wave height Hs.
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FIG. 11. As in Fig. 10, but for a 28 3 28 square centered on 148N, 608E (Horn of Africa).

124 JOURNAL OF CL IMATE VOLUME 32



the altimeter data showmuch greater finescale structure

(U100
10 ), which is consistent with known tropical cyclone

activity (not generally resolved by reanalysis model

datasets). Although the altimeter must undersample

tropical cyclones to some extent, the present results are

encouraging and, as the number of altimeter missions

continues to increase and the data record expands, the

quality of the extreme-value projections will improve

further.

The greater data density provided by radiometer

measurements offers the potential to address altimeter

undersampling issues. However, issues associated with

the radiometer inability to measure wind speed in heavy

rain events appears to create an unacceptable ‘‘fair

weather’’ bias at extreme wind speeds. This renders the

radiometer data of U10 largely unusable for PoT EVA.

Because of the relatively short duration of altimeter

data, previous EVA studies have all used IDM analyses

for EVA. The extended dataset presented here can now

be successfully processed using the more theoretically

sound PoT approach. The present analysis shows that

the IDM yields quite biased estimates of extreme values

and their spatial distributions. As the PoT approach can

now be successfully applied to the available longer sat-

ellite datasets, there seems little reason for IDM ana-

lyses to be used in the future.
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