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Summary 

Newly hatched Atlantic cod (Gadus morhua) larvae face an uncertain future when 
they first enter their marine pelagic habitat. Prior to complete yolk absorption, the 
larvae will have to find food. This process includes the visual encounter, pursuit and 
attack, and capture and digestion of the prey item for utilization to meet energetic 
demands for metabolism and growth. However, food is not always easy to find and it 
is essential for larval survival that they encounter habitats where prey are abundant, 
and that the prey are of edible size. Fast growth ensures short time as small 
vulnerable larvae in a marine habitat consisting of numerous predators. 
This thesis emphasizes the use of individual-based models to explore and understand 
the various mechanisms that determine successful growth and survival through the 
early pelagic life stages of cod (Gadus morhua). We model larval feeding, growth, 
behavior, and survival, under various environmental settings at the spawning and 
nursery grounds along the coast of northern Norway and at Georges Bank located on 
the eastern coast of USA.  
Paper 1 focuses on the assemblage of a mechanistic individual-based model (IBM) 
for larval and early juvenile cod, and the validation of the model by comparing 
observed and modeled data. Validation and forcing data consisted of biological and 
environmental data from a controlled environment (macrocosm). Larval cod are able 
to move up and down in the water column in a prescribed manner by following rules 
of behavior. Vertical behavior elevates larval growth rates, compared to growth 
achieved under random behavior. Maximum growth rates are achieved for larvae in 
environments where prey density exceeded 10 nauplii·L-1. 
The implementation of vertical behavior in IBMs of larval fish was elaborated in 
Paper 2. Strong gradients in pelagic horizontal currents create different dispersal 
patterns of larval fish at different depths. This will in turn have strong effects on the 
integrated survival, growth, and dispersal of larval fish. Adaptive traits differ between 
individuals, are subject to selection, and have implications for the life history success 
of individuals, and emergent properties at the population level. Adaptive behavior in 
coupled IBMs and general ocean models can have significant impact on our 
understanding of life history traits of fish. 
In Paper 3 we test various strategies for vertical behavioral in IBMs. We implemented 
vertical behavior as a property that emerges from the trade off between individual 
state (stomach fullness and size) and the local environment (prey and predators). A 
number of strategies were tested and all proved to increase survival probability 
drastically compared to individuals that moved randomly.  
By implementing the vertical behavior as described in Paper 3 in an IBM, we are able 
to compare observations, and modeled feeding of cod larvae on zooplankton on 
Georges Bank, as described in Paper 4. The model predicts Pseudocalanus spp. to be 
the main prey item for larval cod because of its visibility of in the water column and 
its abundance. The preference for Pseudocalanus agrees with stomach observations. 
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The model also predicts Centropages to be an important prey item. However, with 
the exception of nauplii stages, Centropages is seldom found in stomach samples. 
Centropages may be inaccessible as a prey item because of their behavior or 
morphology.   
In Paper 5 we couple an IBM with a three-dimensional ocean model (ROMS). 
Individual larval cod are allowed to migrate vertically following simple rules while 
being advected horizontally by the simulated currents. Larvae that differ in 
behavioral strategy are released at two major spawning grounds of Northeast Arctic 
cod, Vestfjorden and Moskenesgrunnen in Northern Norway (68ºN) and tracked until 
size 18 mm. Behavior increased larval probability of survival compared to larvae 
passively drifting at fixed depths. Behavior influenced both the local depth 
distribution and the long-term horizontal distribution of larvae.  
The coupled biophysical model is used in Paper 6 to explore the effect of light, prey 
density, temperature, and turbulence on larval growth of Northeast Arctic cod 
through the spawning season. Light has a severe impact on growth of small (5-7mm) 
larvae. Prior to mid April, larval growth is low because of the limited hours of light 
sufficient for feeding. After mid-April, the increase in day length enables high growth 
rates for both 5 and 7mm larvae as long as prey density exceeds 5 nauplii·L-1. This 
suggests that peak spawning time of Northeast Arctic cod occurs when light 
conditions are optimal for larval feeding and growth. 
 
This thesis advocates the use of adaptive behavior as part of individual-based models 
for understanding the mechanisms that drive the dynamics and interactions between 
the ecosystem and its inhabitants. An IBM represents a practical and reliable tool to 
bridge the gap between physical oceanography and biology across a wide range of 
scales. Observations of the biological and physical structure of ecosystems provide 
data necessary for model validation, a requirement for making general ecological 
conclusions based on model results. In light of my work, I believe that this approach 
can reveal new information of life history traits of individuals and their consequences 
on population level, thereby increasing our understanding of ecosystems. 
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Introduction 

”Nogen løsning av spørsmaalet om fiskeriernes vekslinger engang for alle – ved 
en eller anden formel – lar seg ikke oppnaa, og enhver paastand om at ha naadd 
en slik løsning, vil ved nærmere prøvelse vise sig at tilhøre fantasiens verden.” 

”Any solution to the variability in the fisheries once and for all – by some 
formula – is not achievable, and any assertion that a solution has been found, 
will by closer inspection, prove to belong in a world of phantasy.”  (free 
translation)                                                                             

Hjort (1914b) 

For hundreds of years, fishermen have noted the large variability in the annual 

abundance of fish. Scientists have tried to explain why species of fish may explode in 

numbers one year, and be close to depleted the next year. So far, no single 

explanation has been found that solves the enigma of the variance in recruitment, 

however the problem is very much alive in scientific environments. 

The ability to predict recruitment can have major implications for fisheries 

management and exploitation of commercial species, such as Atlantic cod (Gadus 

morhua). Spawning stock biomass was early on regarded as an indicator for the year-

class strength, however with varying degree of success (Bradford & Cabana 1997). 

The spawner-recruit relationship assumes a correlation between recruitment biomass 

and the spawning stock biomass (SSB) or the biomass of eggs (E) (Marshall et al. 

1998, Jennings et al. 2001). MacKenzie et al. (2003) examined the relationship 

between several decades of empirical data of SSB and recruitment of 20 different 

North Atlantic cod stocks. The authors revealed large inter-annual variability of SSB 

and recruitment that occurs within stocks and among stocks of different sizes. The 

variability that makes prediction difficult is due to mechanisms that act at the pre (i) 

and post-spawn (ii) stages:  
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i) Spawning stock biomass is not necessarily proportional to egg production since 

individual fecundity of females is proportional to length and condition (Marshall et 

al. 1998). The quality and number of eggs spawned increases with female condition 

and age (Kjesbu et al. 1992, Kjesbu et al. 1998), hence a population of mainly first-

time spawners have less recruitment potential compared to a wide age and size 

structured population (Marshall et al. 1998). Spawner-recruit models try to reduce a 

multi-dimensional problem to 2 dimensions (SSB and recruitment), and tend to 

ignore variability in pre-recruit mortality. Consequently, the spawner-recruit 

approach fails to explain the large inter-annul variation that is caused by biological 

and environmental mechanisms and their interaction (Ulltang 1996). 

ii)  Egg quality (Marteinsdottir & Steinarsson 1998) and numbers (Marshall et al. 

1998) combined with density-independent abiotic processes (e.g. Pepin et al. 1997) 

has consequences for larval hatching success and larval condition (Marteinsdottir & 

Steinarsson 1998). In addition, the environmental and biological conditions of the 

larval habitat may be of crucial importance for larval survival through the early life 

stages. In fact, the variety of processes that affect larval survival probability from the 

egg to the early juvenile stage is so important that the number of survivors is believed 

to have prognostic value for recruitment (Sundby et al. 1989). Predicting recruitment 

therefore requires an understanding of the early life stages of fish. What identifies 

survivors and what life history they have, may differ between ecosystems, between 

years, and between fish species.  

Survival through the early life stages 

Studies of the early life history of fish focus on ontogenetic changes and the 

interaction between the individual and the environment (Hunter 1981, Chambers & 

Trippel 1997). Many important biotic and abiotic mechanisms (e.g. temperature 

(Otterlei et al. 1999, Ottersen & Loeng 2000), light (Blaxter 1986), turbulence (e.g. 

Sundby et al. 1994, MacKenzie & Kiørboe 1995), prey abundance (e.g. Hjort 1914a, 

Cushing 1990), predation (e.g. Øiestad 1985, Bailey & Houde 1989) of importance 
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for survival and growth of larval and juvenile fish have been identified (ICES 1994, 

2005). Still, only limited knowledge of their interaction exists (Nakken 1994, Ulltang 

1996). For nearly 100 years, the early life stages of fish have received much attention 

from fisheries biologist that have explored possible correlations between early life 

stage abundance and recruitment strength and variability (Bailey & Houde 1989, 

Leggett & Deblois 1994, Nakken 1994). A range of hypotheses exist on explaining 

sources of mortality during early life stages and possible variability in survival to 

recruitment, and most are not mutually exclusive. Starvation was proposed by Hjort 

(1914a) to be the main source of mortality for first-feeding larval fish. Cushing 

(1990) (and references therein) extended the ideas of Hjort in his match-mismatch 

hypothesis, and proposed starvation as a significant mortality source for the entire 

pelagic phase of larval and juvenile fish. In addition to the hypothesis of Hjort 

(1914a) and Cushing (1990, 1996), several other theories exists that describe sources 

of mortality through the early life stages of fish. Physical conditions that retain early 

life fish in nursery habitats was highlighted by Iles and Sinclair (1982) in their 

member-vagrant hypothesis as a key element for survival. Physical properties of 

varying scale also modify the properties of a habitat such as aggregation of prey 

patches during calm wind events (Lasker 1975). Patches of prey increases the feeding 

incident while simultaneously decreases the activity level of larval and juvenile fish 

needed to obtain food. Reduced activity level is also believed to reduce larval 

conspicuousness to predators (Munk 1995, Skajaa et al. 2003).  Encounter rate 

between predator and prey (Rothschild & Osborn 1988, MacKenzie & Kiørboe 1995) 

has also been recognized to increase in a dome-shape fashion (MacKenzie & Kiørboe 

2000) with small-scale turbulence both in the laboratory (Kiørboe & MacKenzie 

1995, MacKenzie & Kiørboe 1995) and in natural environments  (Sundby & Fossum 

1990, Sundby et al. 1994, Sundby 1995).  

Despite good feeding conditions through the early life stages, survival is modified by 

mortality rates from predation (Øiestad 1985). Predation pressure varies between 

ecological systems both temporally and spatially (Garrison et al. 2000), and decreases 

with size (Folkvord & Hunter 1986, Miller et al. 1988, Bailey & Houde 1989, 
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Leggett & Deblois 1994, Houde 1997). Thus, the probability of survival through 

ontogenetic stages is closely related to growth rate (Hare & Cowen 1997), size 

(“bigger is better hypothesis”, e.g. Leggett & Deblois 1994), and consequently the 

duration of ontogenetic stages (Houde 1987). When grouped this is usually termed 

the “growth-mortality hypothesis” (Hare & Cowen 1997). 

The mechanisms that regulate recruitment of fish are many and can vary within 

seasons, and between years among ecosystems and among their inhabitants. By 

incorporating currently identified mechanisms important to early life history of fish in 

individual-based models (IBMs), forced by realistic environmental conditions, we are 

able to study their relative importance and their interaction. Individual-based models 

relate the individuals to the environment so that properties and dynamics on 

population level emerge (Grimm & Railsback 2005). This thesis focuses on modeling 

the early life history of cod (Gadus morhua) during the transition from newly hatched 

larva to early juvenile with the intention of increasing our understanding on how 

processes at various scales may operate and differentiate larval cod growth and 

survival.  

Fish species and stocks  

Cod is a highly commercial fish species that lives in discrete stock units along the 

European coast from the Bay of Biscay to the Barents Sea, around Iceland, on the 

east and west coast of Greenland, and from Cape Hatteras to Ungava Bay along the 

east coast of USA (ICES 2005). This thesis focuses on two cod populations: the 

Northeast Arctic (or the Arcto-Norwegian) and the Georges Bank cod stocks. The 

Northeast Arctic cod (NA) is distributed throughout the Barents Sea. Mature 

individuals migrate to the Norwegian coastal areas as far down as 62ºN to spawn 

(Fig. 1 Paper 5). The majority of eggs are found in the Lofoten areas (~68 ºN) in the 

period from late February to early May (Pedersen 1984, Ellertsen et al. 1989). Eggs 

and larvae are then transported northwards with the ocean currents, away from the 
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spawning areas and into the nursery grounds in the Barents Sea. Pelagic juveniles 

settle to the bottom after 5-6 months (40-70-mm) (ICES 2005). 

The Georges Bank cod stock is primarily resident (ICES 2005). Spawning takes place 

at the Northeast Peak on Georges Bank (Fig. 1 Paper 3) during November to May, 

with peak spawning during February and March (ICES 2005). Eggs and larvae drift 

southwesterly with the currents towards the Great South Channel, before they enter 

the nursery grounds on Georges Bank sometime during summer (Lough & Bolz 

1989). Bottom settlement occurs at the size of 40-mm (Lough & Potter 1993). 

Objectives 

Modeling early life history of cod from the Georges Bank and Barents Sea dominates 

the main objectives of this thesis: 

• Develop a mechanistic individual-based model for the early life history of cod 

based on first-principle physics and biology. Use empirical biological and 

environmental data to validate and force the model. Can the model reproduce 

observable patterns in real systems? How does larval behavior affect feeding, 

growth, survival, and interaction with the environment? 

• Integrate the IBM with a general circulation model covering the habitat for the 

Northeast Arctic cod. How does the coupled model system predict larval 

growth under various environmental settings through the spawning season? 

What is the effect of behavior on survival and drift of larval cod? 
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Background 

Computer models provide researchers with a convenient tool for exploring and 

understanding the processes of an ecosystem. Or as stated by Peck (2004); “When a 

researcher builds a simulation model, they have created a world in which they have 

access to all of the laws and components of that world, and the relationships among 

those components.” However, how can we model complex ecosystems?  

Modeling individuals and populations 

A population is a system of individuals that differ in genetics and environmental 

histories (Heath & Gallego 1997, Fuiman et al. 2005). Consequently, variations in 

phenotypical traits such as behavior, growth, size, condition, and survival arise 

(Paper 2, Grimm & Railsback 2005). An important step towards understanding 

properties at the population level is therefore to recognize that individuals have 

different traits. The integrated interactions and properties at the individual level, 

defines the dynamics and properties at the population level (Grimm & Railsback 

2005). These properties are not present at the individual level, but emerge from 

interactions among individuals and the environment (Breckling et al. 2005, Grimm et 

al. 2005).  Further, the differences in genetic coding between spawners of the 

population ensure a large gene pool and thereby genetic differences between their 

offspring, and consequently a wide range of life history strategies. The range of 

strategies between individuals may dampen variability in populations in a fluctuating 

environment and the best strategy may differ between years. Considering the 

differences that exist between individuals it therefore seems logical to model 

ecosystems as a collection of individuals that differ in traits using an individual-based 

model. Information on individual traits is obtainable from measurements, which is a 

major advantage for individual-based models compared to population models 

(Huston et al. 1988).  
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Individual-based models  

Complex systems are classically approached by reductionism; i.e. the system can be 

described by sub-elements or mechanisms (Chalmers 1978). Each mechanism 

represents a process (e.g. metabolic rate, gut evacuation, prey encounter) studied 

experimentally. The general properties of the system can be described when the 

elements of the system are understood. The introduction of computers greatly 

increased the possibilities of understanding complex systems and made it possible to 

perform model analyses difficult to achieve in real life (Getz 1998, Peck 2004). 

Models evaluated against observations may therefore represent a scientific tool that 

can be used to test hypothesis (Peck 2004). The use of individual-based models 

(Huston et al. 1988)  as an experimental system in evolutionary and ecological 

studies has drastically 

increased since the 1990’s 

(DeAngelis & Rose 1992, Grimm 

& Railsback 2005). Individuals 

are represented by their state 

variables, e.g. weight, length, 

stomach fullness, (i-state, 

DeAngelis & Rose 1992), while 

the environment is described 

theoretically or from observations. 

This approach is contrary to the 

classical population models (p-

state,Caswell & John 1990) where size classes defines the structure of the population. 

This implies that individuals of the population are considered equal in traits. An early 

attempt to use IBM as a tool in ecology was DeAngelis et al. (1979) who explored the 

development of the size-structure of  a largemouth bass cohort over a period of 50 

days. The size-structure of the population was revealed from the state of the 

individuals, and provided results not accessible by the standard structured population 

 

Figure 2 Image of a newly hatched, 2 days post 

hatch, larva of size 4mm. Photo: Arild 

Folkvord. 



 15

models (Grimm 1999). The DeAngelis et al. model has had extreme influence on the 

development and use of IBMs in ecology and started a whole new family of fish 

population models (Grimm 1999). IBMs have since been used to explore a variety of 

ecological problems, such as the selection of anchovy spawning grounds in Southern 

Benguela (Mullon et al. 2002, Huggett et al. 2003, Parada et al. 2003), the 

recruitment variability of bay anchovy in Chesapeake Bay (Wang et al. 1997), 

growth-dependent mortality of herring (Gallego & Heath 1997), the drift and growth 

of Northeast Arctic cod from the spawning grounds in Lofoten to the nursery grounds 

in Barents Sea (Vikebø et al. 2005), how size-dependent predation controls size-

distribution of larval/juvenile bloater (Coregonus hoyi) in Lake Michigan (Rice et al. 

1993), artificial evolution of behavior and life history traits of Müller's pearlside 

(Maurolicus muelleri) (Strand et al. 2002), and in many other applications.  

An IBM represents organisms and ecosystems that can be manipulated in ways 

difficult to achieve in real life (Peck 2004). Still, model reliability depends on the 

underlying assumptions of the model and the models’ ability to reproduce observable 

patterns. Laboratory experiments where scientists have identified and explored the 

properties of a single, or a multitude of processes, provide information on relevant 

parts of an IBM. As the number of processes included in the model grows, the 

complexity and the room for error increases as well. Elements of a model should 

therefore be limited to the ones thoroughly studied and well documented.  

This thesis presents new approaches on modeling early life stages of cod, which can 

be distinguished into three main components; (i) mechanistic understanding of 

feeding and predation, (ii) the use of environmental and biological data to run and 

validate the IBM, (iii) how individual behavior influences growth, and survival.  

Mechanistic modeling of feeding 

The IBM 

The IBMs presented in this thesis is a blend of earlier model components (Fiksen et 

al. 1998, Fiksen & Folkvord 1999, Fiksen et al. 2002, Fiksen & MacKenzie 2002) 
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combined with a new physiology (Paper 1) and behavioral component (Paper 1, 3, 

4, 5, 6). The IBM contains a mechanistic feeding module, and the tight integration 

with high-resolution environmental data allows for detailed modeling of early life 

history of cod. The IBM is based on physical and biological parameters from 

observations on encounter, pursuit and attack, capture success, ingestion, 

assimilation, metabolism, and growth (Paper 1, 3, 4, 5, and 6). Feeding is estimated 

in a mechanistic fashion (Caparroy et al. 2000, Fiksen & MacKenzie 2002) where 

light (Skartveit & Olseth 1988), visual perception (Aksnes & Giske 1993, Aksnes & 

Utne 1997), and larval size are key mechanisms together with the physical and 

biological characteristics of the prey (contrast, visibility, size, jump angle, and escape 

speed) (Fiksen & MacKenzie 2002).  

Modeling larval foraging 

In most IBMs, capture success of larval fish is a deterministic relation between the 

size of the larvae and the prey, based on empirical stomach content data (Werner et 

al. 1996, Werner et al. 2001, Lough et al. 2005). This implies that capture of a given 

prey item is either a success or a failure, while the mechanistic model estimates 

capture success as a larval-prey size-dependent probability function. Leising and 

Franks (1999) modeled growth and feeding of cod and haddock on Georges Bank 

using an IBM based on work by Laurence (1985). In the model of Leising and Franks 

(1999), larval fish successfully captured prey items when the ratio of prey and 

predator length was above 1/70 and less than 1/10. These values are comparable to 

the ratio between prey and larval cod length observed in gut samples by Munk 

(1997). The model described here was parameterized for cod by Fiksen and 

MacKenzie (2002), and modeled capture success (Paper 4) agree with the observed 

values of Munk (1997).  

The distance a predator is able to perceive and encounter prey items increases with 

prey size (image area), and varies with light intensity, the clarity of the water, and the 

eye sensitivity of the predator. Encounter between prey and predator is then followed 

by pursuit. The pursuit time necessary to reach attack position increases with 
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increasing prey size (Walton et al. 1992). Small predators may therefore visually see 

prey items far away, but pursuit success may fail if pursuit time is long and the prey 

has moved out of perception area.  

Combined, pursuit and capture success varies with depth, light intensity, and with the 

relative length ratio between prey and predator, and the result is a dynamic interaction 

between predator, prey, and the environment (Paper 1-6). When we compared the 

mechanistic model with observations of prey items larval cod were able to capture 

(Lough et al. 2005), only small differences were revealed (Paper 4). This suggests 

that the most important physical and biological characteristics of both prey and 

predator is included in the mechanistic model. Luo et al. (1996) modeled prey 

selectivity of bay anchovy in Chesapeake Bay using a mechanistic model. The model 

setup estimated prey-predator encounter rates in a 3D setting. The visual ability of the 

anchovy, light intensity, water quality, and the size of the prey determined the rate of 

encounter, while a size-dependent function determined prey capture. Modeled prey 

selectivity corresponded with stomach samples. Luo et al. (1996) conclude that 

understanding of fish feeding ecology is best understood by observing the 

environment as seen by the fish.  

Turbulence has long been considered important for encounter rates between prey and 

predator (Rothschild & Osborn 1988, Sundby et al. 1994, MacKenzie & Kiørboe 

1995, Sundby 1995), however most IBM models have ignored light (Fiksen et al. 

1998). In the pelagic realm, light and water quality (turbidity level) shows large 

latitudinal and seasonal variations among ecosystems that influence feeding and 

growth of larval fish (Paper 6, Suthers & Sundby 1996). Newly hatched Northeast 

Arctic cod have a short growth season, but almost continuous light conditions 

(Pedersen et al. 1989), that enable continuous feeding and potentially high growth 

rates. Mechanistic models represent a method for modeling first-principle physics and 

biology of ecosystems as close to the real world as possible, and gives the researcher 

the opportunity to understand how components interact on a detailed level. Of course, 

our ability to correctly parameterize the model (see Fiksen and MacKenzie (2002) for 
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discussion on uncertainty in parameter values) are critical for model reliability and 

validation. New laboratory experiments on visual perception of larval cod would help 

increase the general validity of simulation results.  

Mechanistic modeling of predation on larval cod 

Rice et al. (1993) modeled size-dependent mortality of bloater fish in Lake Michigan 

using an IBM model. The probability of being eaten by the predator alewife (Alosa 

pseudoharengus) decreased with larval size, and survivors were the largest and fastest 

growing individuals. Similarly, Ottersen and Loeng (2000) found significant 

correlation between mean individual length and year-class strength of Northeast 

Arctic cod at the stage of 5 month-old pelagic juveniles, indicating that rapid larval 

and juvenile growth favors high survival.  In Paper 3, 4, and 5 encounter between 

larval cod and predators were simulated mechanistically as a function of the visual 

perception of the predator, the light conditions, and the predator density (Fiksen et al. 

2002). Visibility of larvae to fish predator increases with size, still, the probability of 

the larvae being eaten decreases as larger larvae are able to migrate deeper in the 

water column where predation is minimized (Paper 3-5). Many individual-based 

models include mortality, although the implementation differs. Some models include 

mortality on egg stages (Mullon et al. 2003), starvation (Letcher et al. 1996, Leising 

& Franks 1999, Hinrichsen et al. 2002), size-dependent functions (mortality 

decreases with larval size) (Bartsch & Coombs 2004, Bartsch 2005), as a growth-

related function (faster growing individuals have a higher probability of survival) 

(Gallego & Heath 1997), or as a random function (Gallego & Heath 1997). Modeling 

predation is not an easy task as predation pressure varies spatially and temporally 

within and among ecosystems. On Georges Bank, Garrison et al. (2000) observed 

increased predation pressure from mackerel and herring on cod and haddock larvae in 

years when temperature was high. The predators followed the temperature gradient 

and occasionally overlapped with the distribution of larval cod and haddock and 

caused high predation pressure. Such mortality events may be difficult to model 
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correctly; still, predation is of crucial importance for larval fish survival and should 

be included in IBMs in order to resemble real life history traits. By splitting mortality 

into three components (Papers 3-6), the scientists can explore how predation from 

invertebrates and piscivores, and starvation influences survival in size-structured 

populations. Explicit mechanistic simulations of predation from piscivores on larval 

fish enable us to understand how physical properties of the environment (e.g. 

phytoplankton production decreases visibility in the water column) may influence 

predation rates.  

Modeling the environment in IBMs 

The environment (larval habitat) describes the theater where the early life histories 

are played out, and represents a key element of an IBM. The fluctuating and changing 

environment is challenging to model in a reliable way, which can result in differences 

between the modeled and the actual habitat of interest. Studies of advection, 

dispersal, and distribution of larval fish (e.g. Hare et al. 1999, Fox et al. 2006) may 

not require a detailed description of the prey fields, but is required when modeling 

feeding ecology (Paper 1, 4). In most models the habitat is an assemblage of the 

ocean currents, temperature, turbulence, and prey fields, where variables are 

theoretically based (e.g. Paper 5, Hinckley et al. 1996, Werner et al. 2001), or a 

combination of theoretical and observed values (Paper 1, 3, 4, 6, Lough et al. 2005). 

An excellent example of the latter approach is the model of Bartsch et al. (2004, 

2005). Bartsch et al. (2004, 2005) derived monthly egg production of Calanus 

finmarchicus based on the long-term observations of the number of females from 

Continuous Plankton Recorder  (CPR) data, and satellite data of sea surface 

temperature and chlorophyll a concentration. The result was weekly average spatial 

distribution of prey suitable for mackerel in the North Atlantic. Zooplankton models 

provide an efficient way of to estimate larval prey abundance in time and space 

(Paper 6, Huse 2005). However, such models may be difficult to validate, as 

observations over large areas are needed. Still, oceanographic models encounter the 
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same problem, but model results have been verified by testing modeled data at 

specific stations were sampling are conducted (e.g. Vikebø et al. 2005). Most model 

experiments use data to validate the model (Wang et al. 1997, Voss et al. 1999), but 

environmental and biological observations are seldom used to force the model (Paper 

1, 3, 4). The re-simulation of the macrocosm experiment (Folkvord et al. 1994) used 

observed values of zooplankton, temperature, wind speed, and modeled light to 

epitomize the habitat, and enabled a direct comparison between modeled and 

observed stomach content and growth (Paper 1). Paper 4 modeled growth and prey 

selectivity of larval cod on the Georges Bank using data on the distribution and daily 

variation of four species, 13 stages each, of prey. This allowed for a detailed 

comparison between observed and modeled stomach content, and in my opinion, 

extensive use of data increases the validity and viability of a model.  

Scientific sampling procedures, e.g. 10m strata MOCNESS samples 6 times a day 

(e.g. Lough et al. 2005), do not necessarily resemble the fine scale details of the water 

column as experienced by larval fish (Pepin 2004). The data used in Paper 3 and 4 

were obtained by following a drifter deployed at 13 m depth for several days (Lough 

et al. 2005). The idea was that the trajectory of the drifter and the larval cohort 

corresponded, and consequently water samples along the drift trajectory would 

resemble the environment as experienced by the members of the cohort (Lough et al. 

2005). Horizontal currents differ with depth, and the drift at 13 m may not have been 

appropriate to describe the drift of the larval cohort. Pepin (2004) warns about the 

relatively low probability of sampling the same water parcel twice, thereby deducing 

assumptions of growth and predation by using samples from different parcels 

containing both zooplankton and larvae, but which essentially have experienced 

different ecological settings. Video plankton recorder (VPR) based studies may open 

up new possibilities for modeling the habitat of larval fish correctly (Davis et al. 

1992, Gallager et al. 2004). The VPR is moved through the water column at the speed 

of larval fish and digitally records plankton composition of the water column, as 

experienced by larval fish. A computer scans the digital pictures of the water and 

automatically recognizes prey species and sizes. VPR increases our ability to 
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understand the environmental composition as seen through the eyes of larval fish. 

VPR data can enforce a new, efficient method for modeling the environment more 

correctly, and perhaps increase our knowledge of small-scale processes effect on 

larval feeding and growth.  

Implementing behavior in individual-based models 

Coupled bio-physical models (Paper 6) generate dispersal patterns of individual 

members of populations in realistic flow fields. This opens up possibilities for 

bridging the gap between oceanography and biology (Paper 2, Vikebø et al. 2005). 

Spatial and temporal variability in the distribution of prey, light, turbulence, and other 

environmental cues, enforce larval fish to locate habitats for feeding while 

simultaneously avoiding predators. During the last few years, coupled models have 

been used extensively to model the effect of large-scale ocean currents on population 

dynamics of fish species around the world. Much effort has been put into model 

efforts to investigate how eggs and larvae drift passively with the prevailing currents 

from spawning grounds to nursery habitats, and how variability in current systems 

may affect egg and larval survival and recruitment (e.g. Werner et al. 1993, Hare et 

al. 1999). Huggett et al. (2003) modeled passive drift of anchovy eggs and larvae in 

the southern Benguela. Based on model results, the authors concluded the eggs and 

larval products that reach the nursery habitats successfully originate from the areas 

where the majority of spawning occurs. However, they also concluded that the model 

reproduced observable patterns when active swimming of the larvae was included. 

The same conclusion was reached by Werner et al. (1993) when they modeled drift of 

cod and haddock larvae on Georges Bank. Number of individuals to reach the nursery 

grounds on Georges Bank increased when directional swimming was included. 

Anchovy eggs and larvae in the southern Benguela was also explored by Parada et al. 

(2003). Here, the authors included buoyancy of the eggs and larvae, and tested for 

differential transport success of eggs and larvae from the spawning grounds to the 

nursery habitats. Parada et al. (2003) concluded that density played a significant role 
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in transport success. Studies like Huggett et al. (2003), Werner et al. (1993), and 

Parada et al. (2003) are fascinating and may help researchers understand underlying 

strategies of choice of spawning grounds and timing of the spawning. Still, larval fish 

do exhibit vertical behavior (Ellertsen et al. 1984, Lough & Potter 1993, Leis et al. 

2006) which could be included in coupled bio-physical models (Paper 2, 5) and 

increase our understanding of dispersal and drift of eggs, larvae, and early juvenile 

fish. Vikebø et al. (2005) showed that large variation arise in transport trajectories of 

particles located just a few meters away in the vertical. Strong gradients of horizontal 

ocean currents can have significant impact on the drift of particles. This was 

illustrated by modeling efforts by Fox  et al. (2006). The spawning grounds of plaice 

in the eastern Irish Sea are close to the nursery habitats and settlement grounds. Fox 

et al. (2006) revealed that when larval and juvenile plaice exhibited vertical behavior 

synchronized to the tides, the number of individuals to reach the nursery grounds 

increased. Paper 2 and 3 suggests that environmental (e.g. light, prey, predators) and 

physiological (e.g. size, stomach fullness) cues could be used as mechanisms to drive 

the behavior of larval fish. This thesis shows that flexible behavior of larval fish 

significantly increases the probability of larval fish survival (Paper 3, 5), growth 

(Paper 1, 3, 4), and dispersal (Paper 5), and represents an important element of 

IBMs that needs further research.  

Main findings and future perspectives 

• Modeled foraging of first-feeding larval cod suggests that prey density of 

10 nauplii·L-1 is sufficient for the larvae to grow at their physiologic 

maximum rate at temperatures 6-10ºC in early May (Paper 1, 6). The 

implementation of stomach as a larval state variable in the IBM improved 

the model bioenergetics, and proved important as an energy reserve during 

the early hours of the night (Paper 1). 

• Larval cod on Georges Bank favors Pseudocalanus spp. as prey item 

because of its visibility and abundance in the water column. Centropages 
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was modeled as a potentially preferred prey item, however Centropages 

spp. is seldom found in stomach samples with the exception of nauplius 

stages (Paper 4). This indicates a negative selection for this prey item 

• Flexible individual behavior motivated through environmental cues and 

individual states (Paper 2, 3) have significant impact on growth (Paper 1, 

3, 5), and survival (Paper 3, 5), and on dispersal patterns (Paper 5). 

• Day-length limit feeding and growth for newly hatched larval cod in 

Lofoten in Northern Norway prior to mid-April. By mid-April, day-length 

has increased considerably and the IBM suggests high growth at prey 

densities above 5 nauplii·L-1 (Paper 6). Time of season, day-length, and 

water temperature have major impact on growth and survival of larval cod 

in northern Norway (Paper 6). 

• Modeling early life history of cod using a mechanistic individual-based 

model in combination with detailed environmental data revealed 

information on the interactions between biotic and abiotic processes 

important for larval growth and survival. Models allow us to explore how 

processes and mechanisms influence larval growth and survival in an 

ethical, reliable, and affordable way. Virtual experiments can be repeated, 

and each single process can be turned on and off, thereby revealing its true 

effect on the system as a whole. 

In conclusion, understanding the functional relationships between physical and 

biological properties of ecosystems is a challenging task where individual-based 

models can suffice as a valuable tool. However, the strength of an IBM rests on our 

knowledge on the mechanisms and processes that compose the model in the first 

place. Experiments and observations provide valuable information that modelers may 

utilize. In future perspectives, it is tempting to hope that models, such as IBMs, can 

be used to predict recruitment strength of fish populations. If we understand what 

causes variability in year-class strength, we can take measures and precautions to 
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manage and sustain the populations and the fisheries. The study of early life history 

may prove to be a viable way to understand ecosystem dynamics and for preservation 

and management of marine habitats. Such knowledge seems ever more important 

when faced with climatologic changes and increasing interest in exploration for oil in 

marine habitats. It is therefore necessary to strive for knowledge of marine 

ecosystems, not only for exploitation of resources but also for the sake of 

preservation. 
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