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1. Introduction/Outline

Currently, there seems to be a trend within the petroleum industry to use fast and
accurate methods to simulate reduced sets of equations. Typically streamline and/or front
tracking methods are used to solve the hyperbolic Buckley-Leverett equation for two-phase
flow [8, 12, 14]. This allows for estimates of reservoir performance on more complete ge-
ological data, possibly without using upscaling. However, important physical phenomena
are neglected which may greatly influence the overall fluid distribution.

In this work we consider models of multi-phase flow which do include capillary forces.
We also allow for three phases. In particular we shall investigate a streamline front tracking
method (SFTM) [1]. This method is based on calculating streamlines locally around grid
points. The hyperbolic part of the problem is then calculated using front tracking. Since the
front tracking method requires a Riemann solver, we do currently only consider a triangular
model for three phase flow, i.e., the advective flux of the gas phase does only depend on
gas-saturation and not on the other saturations. To account for capillary effects we use
operator splitting [6]. The hyperbolic part of the solution is projected onto a regular grid,
and a complete solution in each time step is obtained by solving a parabolic equation.

The paper is organized as follows: In Section 2 we state a standard model for two-
and three-phase flow. In Section 3 the streamline front tracking method (SFTM) [1] is
developed. A modified method of characteristics (MMOC) [5] is also briefly discussed
and we we give an outline of a fast marching method (FMM) [7]. These methods are used
in the two-phase case as comparisons with the SFTM-method proposed here. In Section 4
we discuss a possible extension of the SFTM-method to three phase flow. This extension is
based on a triangular approximation of the fully coupled three-phase problem, and the so-
calledH-set method is used to solve associated Riemann problems. Some consequences
of the triangular approximation are also discussed. Finally, in Section 5 we present some
numerical experiments for two- and three-phase flow to demonstrate the methodology, and
a summary and conclusions are given in Section 6.
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2. Governing equations

The basic equations describing multi-phase immiscible flow in a porous medium, say
water (w), gas (g) and oil (o), is given by mass balance equations and Darcy’s law. Assum-
ing that the flow is incompressible, and that gravity can be neglected, the equations can be
written in a global pressure/total velocity formulation, see [3, 4], as follows:

(1) ∇·v = q(x,t),

(2) v = −λT (x,Sα)K (x) ·∇p,

(3) φ
∂Sα

∂t
+∇· [Fαv− εα∇·Dα (x,Sα)∇Sα] = qα (x,t).

Hereφ andK are the porosity and absolute permeability of the porous medium;Sα, vα,
krα andµα are, respectively, the reduced saturation, Darcy velocity, relative permeability,
and viscosity of phaseα; p is a global pressure derived from the phase pressures and
the capillary pressures, see [4]; λα = krα/µα denote the mobility ratio,λT =

∑

α λα is the
total mobility, andFα = λα/λT is the fractional flow of phaseα; v =

∑

α vα is the total
velocity;Dα is a simplified capillary diffusion/dispersion term andεα is (typically) a small
parameter which gives the relative importance of advective and capillary/dispersive forces;
finally q, qα account for injection and production wells. An additional constraint is given
by

∑

αSα = 1, and we note that
∑

α Fα = 1. To close the above system we need constitutive
relationships for the capillary pressures and relative permeabilities. We shall assume that
the concentration of gas in oil phase is constant (no phase transfer), which means that do
not have to calculate phase pressures. Thus, it suffices to specifyDα directly rather than
capillary pressures. In the experiments reported below we shall useDα (x,Sα) = K . For
the relative permeabilities use quadratic formskrα = S2

α , combined with Stone models for
the relative permeability of oil in the three-phase case, see Section 5. In the numerical
experiments, we consider a quarter-of-a-five-spot problem. Thus, no-flow conditions are
imposed on the boundaries.

3. Solution Strategy

To decouple the Pressure/Velocity equations (1), (2), from the saturation equations
(3), we use sequential time stepping. Thus, for a given saturation-field, say at timetn, we
calculate a new velocity field. The saturation field is then advanced to a new time-steptn+1

by solving (3), using the most recent velocity field. This is continued sequentially up to
a predetermined timet = T . To recover conservative and accurate fluxes we have used a
control volume finite element method [5]. From these fluxes we obtain a velocity field in
the lowest order Raviart-Thomas spaceRT0, on a regular Cartesian grid.

To solve the parabolic saturation Equation (3) with a given velocity field, we again use
operator splitting. First the purely hyperbolic part of Equation (3) is solved to advect the
solution up to a new time level, then diffusion/dispersion is accounted for by solving a heat
type equation on a regular grid, see [6] and references therein.

In previous work a Modified-Method-of-Characteristics (MMOC) has been used to
solve the two-phase flow problem based on the ideas outlined above, see [5]. This method
works excellent when the wave structure of the solution is knowna priori. For an estab-
lished front it has been shown that when the front is resolved this method gives the correct
front-width ofO(D/b), whereD andb is respectively an estimate of the diffusion and the
residual of the linearized fractional flow function. Below we present two alternative meth-
ods to the MMOC method, which both preserve the shape of self-sharpening fronts and are
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more flexible than the MMOC method in the sense that no a priori knowledge of the wave
structure is required. However, the fast marching method presented below is based on the
restriction that the initial data are monotone and that level sets propagate outwards from
their source.

3.1. A streamline front tracking method (SFTM). For simplicity we assume that
the computational domain is discretized by a regular Cartesian grid such that the velocity
v = v(x) ∈ RT0 is given. Furthermore, assume that approximate saturation valuesSn is
known at the cell centers at time-leveltn. Saturation values refer to water-saturationSw in
case of two-phase flow, and water- and gas-saturationSw, Sg in case of three-phase flow.
To obtain saturation valuesSn+1 at time-leveltn+1, we split Equation (3) into a hyperbolic
part:

(4) St+v ·∇F (S) = 0,

and a parabolic heat type equation

(5) St = ε∇· (D∇S).

In a standard operator-splitting fashion, equation (3) is solved in two steps: First, Equation
(4) is solved withSn as initial condition to obtain a first approximation, saȳSn+1 at the
next time-level. Then, saturation values at the next time-level are obtained by solving (5),
with S̄n+1 as initial condition. Now, consider the solution of Equation (4): Observe that on
streamlinesr = r (ξ) such that

(6)
dr
dξ

= v,

Equation (4) becomes one-dimensional:

(7) St+Fξ (S) = 0.

We exploit this to obtain new saturation-values at cell centersxI , in the following way:
First, trace streamlines (6) analytically forr (0) = xI and−ξmax < ξ < ξmax. Hereξmax =
|λmax|(tn+1− tn) with λmax being an estimate of the maximum wave speed of the system,
such that the streamline cover the domain of dependence for(xI ,tn+1). The streamline is
only traced in the upstream direction if all the wave speeds are positive. The piecewise
constant cell values of the saturations are then projected onto these local streamlines, thus
defining piecewise constant initial conditions for Equation (7). This conveniently arrange
for Equation (7) to be solved by the front tracking method: For a two-phase (scalar) prob-
lem the flux functionF , is simply replaced by a piecewise linear approximationF δ. We
then solve the Riemann problem associated with each of the initial discontinuities. Since
F δ is piecewise linear, the rarefaction part of the solution is approximated by disconti-
nuities. Thus, the solutions will always consist of a set of fronts traveling with distinct
speeds. We then have to keep track of the position of each such front, and solve new Rie-
mann problems whenever fronts collide, thereby obtaining a global solutionS̄ for any time
t > tn on the streamline. In particular we will obtain approximate saturation valuesS̄n+1 at
the cell centers. We refer to [11] for more details about the front tracking method.

The main advantages of the front tracking method, is that the method issuper fast
[11], and preserves the frontal structure of the solutions extremely well. On the other
hand, since the method heavily depends on solving Riemann problems, it is not easy to
extend the method to three-phase flow. In Section 4, we will discuss a solution strategy
for so-called triangular systems which may be a step towards this end. Equation (5) may
be solved by finite element or finite difference type of methods. In this work we have for
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convenience used a standard explicit central finite difference scheme. Note that a local
time step,∆tdiff ≤ tn+1− tn, is required to satisfy the stability constraint inherent in the
explicit finite difference method.

3.2. A fast marching method (FMM). An alternative to the front-tracking approach
is the fast marching method for reservoir simulation developed in [7]. This methodology
has shown to give very fast and accurate results for Buckley-Leverett type problems. Here
we extend the work in [7] by including diffusion/dispersion-effects using operator split-
ting as described above. To outline this procedure we consider the hyperbolic part of the
transport equation (3):

∂Sw

∂t
+v ·∇Fw (Sw) = 0, S(x,0) = S0(x).

We will assume that the initial functionS0 is monotone, and that the velocity field is so
that the level-sets of the saturation function never pass a point twice. This is not a restric-
tive assumption for the reservoir problem, since the flow will be directed from injection
wells towards production wells. Following [7], we consider a level setS(x,t) = k of the
saturation function. Let the front be defined byΞk(t) = {x : S(x,t) = k}. According to the
classical method of characteristics, the front will move with a characteristic speed given by
V(x) = dx

dt = v(x)F ′(k). Let Tk(x) be the timeΞk(t) crosses the pointx. The arrival time
satisfies the Eikonal equation

(8) ∇Tk ·v(x) =
1

F ′(k)
, F ′(k) > 0.

The evolution problem for the propagating front is hence reformulated in an Eulerian
framework.

The equation (8) can be solved rapidly by means of the fast marching method (see, e.g.,
[17, 16]). Since the flow is directed from injection towards production wells, information
will flow in one direction, that is, from regions with smaller to regions with larger arrival
times. Hence, the arrival time at a grid point can only depend on points with smaller
values. This fact motivates an upwind discretization for the Eikonal equation. For the
comparison results presented later we have applied a first order 9-point scheme based on
linear approximation of streamlines locally through each grid point. When the Eikonal
equation is solved to a prescribed final time, fronts corresponding to larger values ofS
may have crossed fronts corresponding to smaller values ofS. This corresponds to the
development of shocks. However, since the level sets have been transported according
to the characteristic speed, an approximation to the correct entropy weak solution can be
obtained from the multivalued solution by means of the collapse transform, i.e., a proper
vertical averaging of the multivalued solution, see [2], S(x) =

∑2p(x)
i=0 (−1)iŜi(x). Here

the multivalued solution̂Si is obtained by considering the positions of the level sets. The
resulting method is not subject to CFL-conditions. The method described in this section
will be described in detail in a forthcoming paper.

4. Triangular systems

A possible extension of the SFTM approach to three-phase flow, is to use an approxi-
mate Riemann solver to generate front speeds. However, to our knowledge, the construc-
tion of accurate and reliable Riemann solvers for fully coupled three-phase flow is not
a trivial task, and we have chosen a different approach here: Observe that the viscosity
of the gas phase is usually at least an order less than the viscosities of the liquid phases.
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Motivated by this fact it seems reasonable to assume that the fractional flow of the gas-
phase can be approximated by a flux function which only depends on the saturation of the
gas phase. Thus, we may consider the following 2×2-triangular hyperbolic system, as an
approximation to the hyperbolic part of the fully coupled system (3):

∂Sg

∂t
+

∂

∂x
Fg (Sg) = 0,(T1)

∂Sw

∂t
+

∂

∂x
Fw (Sg,Sw) = 0.(T2)

Systems of this type has been investigated in [9, 10, 13], and existence and uniqueness of
the solution to the Riemann problem is shown under general conditions.

4.1. A Riemann solver for triangular systems.The numerical construction of a
solution for a Riemann problem associated with equations (T1)-(T2) was developed by
Gimse [9], and is rather involved. The idea is to solve (T1) first using the front tracking
method. Thus, the approximate solution to (T1) consists of a set of constant states, say
SL
g = S1

g < S2
g < . . . < SN+1

g = SR
g , separated by jump discontinuities traveling with the

Rankine-Hugoniot shock speed:

(9) si =
Fg (Si+1

g )−Fg (Si
g)

Si+1
g −Si

g

, i = 1,2,. . . ,N.

Within each wedge of the solution fan, the fractional flow of the water phase depends only
on the water saturation and is given as:

F i
w (Sw)

def
= Fw (Si

g,Sw), i = 1,2,. . . ,N +1.

Thus, we may easily solve for the water saturation within each wedge once we know the
left- and right-hand state of the water saturation within the wedge. Obviously, successive
left- and right-hand states over the discontinuities in the gas-phase must also satisfy the
jump condition:

(10)
F i+1
w (Si+1

w )−F i
w (Si

w)

Si+1
w −Si

w

= si, i = 1,2,. . . ,N,

There are infinitely many statesSi
w, which satisfy conditions (10), leading to the definition

of the so-calledH-sets:

H1,in: The set ofSw-values in regionSL
g , that can be reached fromSL

w with speed
σ ≤ s1.

Hi,in: The set ofSw-values in regionSi
g, i = 2,3,. . .N, that can be reached from

Hi,out with speedσ such thatsi−1 ≤ σ ≤ si.
Hi+1,out: The set ofSw-values in regionSi+1

g , i= 1,2,. . .N+1, that can be reached
fromHi,in by a shock with speedsi.

The solution can now be assembled from these sets by connectingSR
w to SL

w by tracking
through admissible waves given by theH-sets. This procedure is described schematically
in the following diagram:

SR
w →Hn+1,out →Hn,in →·· ·

→Hi+1,out →Hi,in →·· ·

→H2,out →H1,in → SL
w
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Note that a jump from one set to the next always happens at the first possible value in the
currentH-set.

Gimse has shown [9] that the above construction gives aunique solution of equation
(T2) if the following conditions hold:

(A) Fg (0) = 0, (B) Fg (1) = 1, (C) Fw (Sg,1−Sg) = 1−Fg (Sg)

(D) ∂Fw
∂Sw

≥ 0, (E) ∂Fw
∂Sg

< 0, (F ) F ′
g (Sg) ≥ 0.

Conditions(A) and(B) are always satisfied if the transport equations are properly scaled.
Conditions(D) and(F ) are usually satisfied if gravity is neglected. Condition(E) guaran-
tees that successiveF i

w do not cross each other. This eventually simplifies the construction
of theH-sets. However, it has been shown that condition(E) is not necessary for the
existence and uniqueness of the solution , and can therfore be removed as a necessary
condition. Finally, condition(C) guarantees that the endpoints of successiveF i

w, are con-
nected by correct slopes given by the shock speedssi. Endpoints are here defined as points
where oil is at residual saturationSo = 0, orSg +Sw = 1. Note that this condition is al-
ways satisfied forgenuinely triangular systems (i.e,Fg ≡ Fg (Sg)), sinceFo = 0 at residual
oil-saturationSo = 0.

4.2. Can physical three-phase transport equations be approximated by a triangu-
lar system? Since the fractional-flow of the gas-phase is nearly independent of the water
saturation it seems natural to decouple the gas-phase from the other phases by simply plug
in a value for the water-saturation,S0

w, in the gas fractional-flow:

(11) Fg (Sw,Sg) ≈ Fg (S0
w,Sg)

def
= Fg (Sg).

Possibly, we can chooseS0
w so that the decoupled fractional-flow function is as close as

possible to the complete function in some norm over the admissible section of state space.
However,S0

w is chosen more or less arbitrary to beS0
w = 0 in the following experiments.

In Figures 3 and 4 we compare the solution of the triangular system, with the solution
of the full system in two different one dimensional cases. In Case 1 we get excellent
agreement between the two solutions. In Case 2 the full solution for the gas-phase consists
of two rarefaction waves connected by an intermediate shock wave. This wave structure
cannot be captured by the triangular system with a simplified fractional-flow function as
given by (11). A possible solution to this problem can be to letS0

w be defined locally for
each Riemann problem to be solved, which will allow for some feedback. This can be
combined with the fact that the total mobilityλT act as an approximate invariant for the
transport. ThusλT (Sw,Sg) ≈ λT (S0

w,Sg) may be used to eliminateSw from Fg in a more
accurate way. However, we will not pursue the idea further here.

Another, difficulty that arises from the approximation (11), is that condition(C) is
violated since

Fw (1−Sg,Sg) = 1−Fg (1−Sg,Sg) 6= 1−Fg (S0
w,Sg).

If condition (C) is not satisfied the construction of the solution may fail in two ways close
to values whereSo = 0: Either the construction of appropriateH-sets will fail, or the
tracking of admissible waves becomes impossible. SinceSo ≈ 0 =⇒ Sw ≈ 1−Sg, we may
circumvent the problem by replacingS0

w with 1−Sg in (11) when the oil phase is close
to residual. Again this require a local definition ofS0

w which has not been implemented in
our codes yet. For the robustness of the method this needs to be done.
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5. Numerical experiments

5.1. Two-phase flow:To obtain a comparison between the different methods we first
ran a series of experiments with a two-phase flow problem for a quarter-of-a-five-spot
problem with noflow conditions at the boundaries. The implementation has been done in
two space dimensions. The permeability field in these experiments was generated from a
(log-normal?) distribution and is plotted in Figure 1, together with typical flow directions.
The permeability contrast in this figure is a factor of 10. To avoid difficulties at the corners
the initial saturation is given by:

(12) S0(r) =
{

1− (r/0.3)(1− −1√2), r ≤ 0.3,
0, r > 0.3,

wherer denote the radial distance from the lower left corner and−1√2 is the shock saturation
of the Buckley-Leverett profile. In Figure 2, saturation contours are plotted after four
time steps for one of the experiments performed. Observe that the results are in excellent
agreement. Also note that the three methods allow for very long time steps.

The complexity of the MMOC method is comparable with the SFTM approach, whereas
the FMM method gives a much faster advection solver. In Table 1, we have attempted to
compare the efficiency of these methods. To do so we fixed a velocity field and did a pure
advection of the saturation front up to four time steps. The results in the table indicates
that when the number of nodes is increased by a factor 4, the run time increases by a factor
4 for the fast marching method and a factor of 6.5 for the front tracking method. Thus, the
fast marching method is optimal in this sense, whereas the front tracking method becomes
sub optimal because the number of fronts increase on each local streamline, in addition to
the increase of local streamlines.

5.2. Three-phase flow:In figures 3 and 4 we have compared solutions of triangular
approximations with the solutions of corresponding full three phase flow problems in one
space dimension. Below follows mobilities, fractional flows for the triangular approxima-
tions and initial conditions:

Case 1:

λg (Sg) = S2
g , λw (Sw) = S2

w/10, λo(So) = S2
o /10.

Fg (Sg) =
λg (Sg)

λtot(Sg,0)
, Fw (Sg,Sw) =

λtot(1−Sg,0)

λtot(Sg,1−Sg)
·

λw (Sw)
λtot(Sw,0)

,

S0
g =

{

0.6 if x < 0.4,
0.2 if x > 0.4,

andS0
w =

{

0.3 if x < 0.4,
0.7 if x > 0.4,

Case 2:

λg (Sg) = 50Sg, λw (Sw) = S3
w, λo(So) = 3.14So(1−Sw)2(1−Sg)2.

Fg (Sg) =
λg (Sg)

λtot(Sg,0)
, Fw (Sg,Sw) =

λw (Sw)
λtot(Sg,Sw)

.

S0
g =

{

0.25 ifx < 0.4,
0.1 if x > 0.4,

andS0
w =

{

0.75 ifx < 0.4,
0.0 if x > 0.4.

A standard upwind difference scheme is used to generate the reference solutions for
the fully coupled system. In Case 1 the triangular flow functions are carefully constructed
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to satisfy the conditions (A-F), see [15] for further details. In Case 2, only the flow func-
tions for gas is changed and as a result condition (C) is not satisfied. We are generally not
guaranteed that a solution exists, but for the chosen initial value problem it did. We note
that the shape of these functions differ significantly from the full three-phase model, espe-
cially for Case 1. From these one dimensional examples we conclude that the triangular
model may and may not give a good approximation to a fully coupled three-phase flow
problem.

To investigate the robustness of the SFTM method we have constructed a two dimen-
sional test example. To make sure that the conditions (A-F) are satisfied the fractional-
flows of Case 1 have been used, and we use the same permeability field and boundary
conditions as for the two-phase problem of Section 5.1. Initially the saturation for the wa-
ter is given by Equation (12), and the remaining volume at any point is partitioned into 10%
gas and 90% oil. The result is shown in Figure 5 and appears to be much more diffused
than the solutions of the two-phase problem. However, as seen from Figure 3, the shape
of the solution is really due to the shape of the fractional flows. Again we note long and
stable time steps are used.

6. Summary/conclusions

We have presented a front tracking streamline method (SFTM) for multi-phase flow in
porous media. The main advantage of this method is to handle the advective part of nonlin-
ear transport using streamline information, and still be able to solve for diffusive/dispersive
effects on a regular grid. The method has been compared with a Modified Method of Char-
acteristics (MMOC) and a Fast Marching (FMM) approach for two-phase flow problems.
The solutions obtained seems to be equally accurate. The SFTM and the MMOC are com-
parable in computational efficiency, whereas the FMM has a much faster advection solver.
However, compared to the MMOC and the FMM, the SFTM is more flexible and has less
restrictions with respect to the complexity of the problems that may be solved.

Using theH-set method the SFTM approach has been extended to solve three-phase
flow problems which are triangular. A 2×2 system is triangular if one of the fractional-
flows only depend on one of the saturations, whereas the other depends on both saturations.
Since most three-phase flow problems are fully coupled in both saturations, triangular sys-
tems can only be approximate. However, because the viscosity of the gas is much smaller
than the viscosities of the liquid phases the gas-phase is often nearly decoupled from the
other phases. We have shown that anaive triangular approximation of a fully coupled
system may and may not reproduce good approximations to the solutions of the complete
system. We have also suggested ways to improve the triangular approximation when this
gives poor comparisons with a full three-phase flow system.

Acknowledgments

We are grateful to Knut Andreas Lie and Jostein Natvig for letting us use parts of their
computer code.

References

[1] A.K. Ask, H.K Dahle, K.H. Karlsen, and H.F Nordhaug,A local streamline eulerian-lagrangian method for
two-phase flow, Computational Methods in Water Resources (L.R Bentley, J.F Sykes, C.A Brebbia, W.G
gray, and Pinder G.F, eds.), vol. 2, A.A Balkema, 2000, pp. 645–650.

[2] Y. Brenier, Averaged multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal.21 (1984),
1013–1037.



A STREAMLINE FRONT TRACKING METHOD 9

Grid Time Scaling
FMM SFTM FMM SFTM

Homogeneous 33× 33 0.09 0.14 – –
65× 65 0.38 0.89 4.22 6.36

129× 129 1.59 5.93 4.18 6.66
257× 257 6.98 43.30 4.39 7.30

Heterogeneous 33× 33 0.10 0.17 – –
65× 65 0.39 1.08 3.90 6.35

129× 129 1.56 7.52 4.00 6.96
TABLE 1. Comparison of run times for the advection solver using the
FMM and the SFTM, with∆t = 0.5 andT = 2.0.

[3] G. Chavent and J. Jaffre,Mathematical models and finite elements for reservoir simulation, Studies in
mathematics and it’s applications, vol. 17, North Holland, Amsterdam, 1986.

[4] Z. Chen and R.E. Ewing,Comparison of various formulations of three-phase flow in porous media, Journal
of Computational Physics132(1997), 362–373.

[5] H. K. Dahle, M. S. Espedal, and O. Sævareid. Characteristic, local grid refinement techniques for reservoir
flow problems.International Journal for Numerical Methods in Enginering, 34:1051–1069, 1992.

[6] M. S. Espedal and K. H. Karlsen. Numerical solution of reservoir flow models based on large time step
operator splitting algorithms. InFiltration in Porous Media and Industrial Applications (Cetraro, Italy,
1998), volume 1734 ofLecture Notes in Mathematics, pages 9–77. Springer, Berlin, 2000.

[7] K. H. Karlsen, K.-A. Lie, and N. H. Risebro. A fast marching method for reservoir simulation.Computa-
tional Geosciences, 4(2):185–206, 2000.

[8] A. Datta-Gupta and M. J. King,A semianalytic approach to tracer flow modeling in heterogeneous perme-
able media, Adv. in Wat. Res.18 (1995), 9–24.

[9] T. Gimse,A triangular riemann solver., Master’s thesis, Dept. of Mathematics, Univ. of Oslo, 1988.
[10] Tore Gimse,A numerical method for a system of equations modelling one-dimensional three-phase flow in a

porous medium, Nonlinear hyperbolic equations—theory, computation methods, and applications (Aachen,
1988), Vieweg, Braunschweig, 1989, pp. 159–168.

[11] L. Holden H. Holden and R. Høegh-Krohn,A numerical method for first order nonlinear scalar conservation
laws in one dimension., Comp. Math. Appl.15 (1988), 595–602.

[12] T. A. Hewett and T. Yamada,Theory for the semi-analytical calculation of oil recovery and effective relative
permeabilities using streamtubes, Adv. in Wat. Res.20 (1997), 279–292.

[13] L. Holden and R. Høegh-Krohn,A class ofn nonlinear hyperbolic conservation laws., Journal of Differential
Equations84 (1990), 73–99.

[14] M. J. King and A. Datta-Gupta,Streamline simulation: A current perspective, In Situ (Special Issue on
Reservoir Simulation)22 (1998), no. 1, 99–139.

[15] J. A. Kok, Front tracking for three-phase flow in porous media., Final report of the postgraduate program
Mathematics for industry. Eindhoven, Netherlands, 1994.

[16] J. A. Sethian.Level set methods. Cambridge University Press, Cambridge, 1996. Evolving interfaces in
geometry, fluid mechanics, computer vision, and materials science.

[17] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories.IEEE Transactions on Automatic Con-
trol, 40(9):1528–1538, 1995.

DEPT. MATH ., UNIV. BERGEN, JOHS. BRUNSGT. 12, N-5008 BERGEN, NORWAY

E-mail address: ingab@mi.uib.no, reshd@mi.uib.no, kennethk@mi.uib.no, hansfn@mi.uib.no



10 I. BERRE, H.K. DAHLE, K.H. KARLSEN, AND H.F. NORDHAUG

FIGURE 1. Permeability and velocity fields.



A STREAMLINE FRONT TRACKING METHOD 11

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

FIGURE 2. Comparisons between the MMOC (upper), the FMM (mid-
dle) and the SFTM (lower) on 129× 129 grid. ∆t = 0.5, ε = 10−2 and
T = 2.0.



12 I. BERRE, H.K. DAHLE, K.H. KARLSEN, AND H.F. NORDHAUG

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

TRI

FULL

Sw

Sg

FIGURE 3. Case 1: Comparison between the solutions (gas- and water
saturations) of the fully coupled system and the corresponding triangular
system.∆t = 0.25,T = 0.5 andε = 0.01.∆x = 0.0005 for the difference
scheme (FULL).
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FIGURE 4. Case 2: Comparison between the solutions (only gas-
saturations) of the fully coupled system and the corresponding trian-
gular system. saturation,Sw. ∆t = 0.25, T = 0.5, 1.0 andε = 0.01.
∆x = 0.0005 for the difference schemes (FULL).
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FIGURE 5. Solution of a quarter of a five spot problem for a triangular
system, gas saturation (upper) and water saturation (lower) on 129× 129
grid. ∆t = 0.5,ε = 10−2 andT = 2.0.




