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ABSTRACT 

Chronic hyperglycaemia is a peculiar feature of diabetes mellitus (DM). Sequential metabolic 

abnormalities accompanying glucotoxicity are some of its implications. Glucotoxicity most 

likely corresponds to the vascular intricacy and metabolic alterations, such as increased 

oxidation of free fatty acids and reduced glucose oxidation. More than half of those with 

diabetes also develop cardiac abnormalities due to unknown causes, posing a major threat to 

the currently available marketed preparations which are being used for treating these cardiac 

complications. Even though impairment in cardiac functioning is the principal cause of death 

in individuals with type 2 diabetes (T2D), reducing plasma glucose levels has little effect on 

cardiovascular disease (CVD) risk. In vitro and in vivo studies have demonstrated that 

inhibitors of sodium glucose transporter (SGLT) represent a putative therapeutic intervention 

for these pathological conditions. Several clinical trials have reported the efficacy of SGLT 

inhibitors as a novel and potent anti-diabetic agent which along with its anti-hyperglycaemic 

activity possesses the potential of effectively treating its associated cardiac abnormalities. 

Thus, hereby, the present review highlights the role of SGLT inhibitors as a successful drug 

candidate for correcting the shifts in deregulation of cardiac energy substrate metabolism 

together with its role in treating diabetes related cardiac perturbations. 

 

Keywords: Sodium glucose co-transporter (SGLT); Diabetes mellitus; Diabetic 

cardiomyopathy. 
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INTRODUCTION 

Diabetes mellitus (DM) is a chronic metabolic disorder characterised by progressive 

hyperglycaemia and sequential metabolic abnormalities accompanying glucotoxicity [1]. 

Hyperglycaemia in type1 diabetes (T1D) pertains to the absolute loss of pancreatic β cells, 

whereas in T2D, hyperglycaemia is an indicative of an insulin resistant state together with the 

abnormalities in an insulin production and its secretion, including various endocrinopathies 

contributing in this heterogeneous disorder [2]. An insulin resistant state in T2D is followed 

by a concomitant hyperglycaemia, hypertension, dyslipidemia, pro-thrombotic factors, and 

pro-inflammatory state. All of these factors are interrelated in the pathogenesis of cardiac 

complications and are considered as a significant paramount for an increased risk of cardiac 

abnormalities [1,2]. Glucotoxicity most likely corresponds to the vascular intricacy attending 

DM. Micro-vascular diseases are stratified by the changes in vessel size, development of 

diabetes associated nephropathy, neuropathy, retinopathy and onset of premature macro-

vascular or cardiovascular (CV) complications [1]. 

On an average, 450 million people were affected by diabetes in year 2015 and this 

number has been projected to escalate to 642 million by the end of year 2040. Countries with 

low national per capita income/developing countries are at increased risk of having CV 

mortality due to diabetes related cardiac abnormalities [3]. Multiple trials including Diabetes 

Control and Complications Trial Research Group and UK Prospective Diabetes Study 

(UKPDS) came to an agreement that micro-vascular changes can be improved by monitoring 

the glycaemic control [4,5]. However, macro-vascular changes convey a potential risk for the 

progression of cardiac abnormalities [1]. Obese/overweight individuals or individuals with 

concomitant hyperglycaemia, hypertension, dyslipidemia, pathogenic and pro-inflammatory 

state are highly susceptible to cardiac complications [6,7]. In view of multiple CV risk factors 
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beyond hyperglycaemia that are commonly presentable in majority of the T2D patients, a 

multi-factorial approach for combating these CV risk contributors needs to be highlighted. 

Currently available drugs for the treatment of diabetes are potent glucose lowering agents, 

capable of improving accompanying cardio-metabolic abnormalities but their chronic use for 

sustained glycaemic control, limits their efficacy [8]. Recently, up-regulation of SGLT has 

been implicated in causing glucose dysregulation and alterations in cardiac energy substrate 

metabolism in diabetic patients [9-12]. In hyperglycaemic conditions, glucose transport 

through SGLT is also associated with the activation of NADPH oxidase (NOX2), production 

of reactive oxygen species (ROS), and cell death of cardiomyocytes (13,14). 

Currently, much attention has been laid on the role of SGLT1/SGLT2 inhibitors for 

improving glycaemic control by reducing intestinal and renal absorption of glucose and by 

promoting excretion of glucose in urine [15]. SGLT1 is expressed in heart tissue of several 

species including various other organs. Increased cardiac glucose uptake and SGLT1 

expression has been reported in diabetic cardiomyopathy [16]. Therefore, aforementioned 

facts clearly indicate that inhibition of SGLT could be the newer therapeutic strategy for the 

management of diabetes and its associated cardiomyopathy. The present review discusses 

about the newer therapeutic approach aimed at improving hyperglycaemia associated 

complications by altering the function of sodium glucose transporters (SGLT) in heart and 

kidney. 

 

MECHANISMS INVOLVED IN DIABETES INDUCED CARDIAC 

COMPLICATIONS 

Chronic diabetes is a cluster of numerous cardiac abnormalities such as cardiac dysfunction, 

ischemia/reperfusion (I/R) injury, cardiomyopathy and microangiopathy [17,18]. Alterations 

in lipid profile, pancreatic insulin insufficiency, increased glycaemic index and sedentary 

lifestyle are the major contributors involved in diabetes-related cardiac abnormalities but still 
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the precise mechanism and pathways involved in the development and worsening of cardiac 

dysfunction in hyperglycaemic subjects are not clearly understood [19]. However, ROS 

generation and alterations in cardiac energy substrate metabolism could be the probable 

mechanisms responsible for diabetes induced cardiac abnormalities. 

 

The reactive oxygen species (ROS) theory 

Hyperglycaemic condition is well correlated with oxidative damage and insulin resistance, 

which occurs through oxidative phosphorylation (OXPHOS) of glucose in mitochondria. 

OXPHOS of glucose is related with the generation of free radicals such as nitrite, hydroxyl 

ions and superoxide anion [20]. Oxidative damage occurs at cellular level causing direct 

damage to proteins and mitoDNA causing modulations in normal physiological processes 

[21, 22]. For instance, elevated oxidative load is linked with the down-regulation of nitric 

oxide level causing impairment in the functioning of endothelium, ultimately heading 

towards vascular dysfunction and CV abnormalities [23-25]. Role of oxidative stress in 

modulating various intracellular signalling pathways has been well recognized [26]. In insulin 

resistant state, translocation of glucose transporter 1 (GLUT1) from intracellular 

compartments towards the plasma membrane is significantly decreased. However, under the 

same condition, SGLT1 gets expressed in the sarcolemma membrane where it co-localizes 

with the sodium potassium ATPase. An age-dependent increase in the cardiac SGLT1 

expression is reported in mice models, although the underlying mechanism behind this 

increase is still unknown. SGLT1 up-regulation is also related with the glucotoxicity and 

insulin resistant state in T2D (27). Figure 1 gives a brief idea about the role of SGLT1 

inhibitors in the mechanism of diabetes induced CV complications. 
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Cardiac energy substrate metabolism 

Insulin sensitive/ insulin resistant mechanism are necessary for proper cardiac functioning. 

Studies carried out by Belke et al., in cardiomyocyte selective insulin receptor knockout mice 

demonstrates that proper insulin signalling is of utmost relevance for maintenance and 

maturation of contractile phenotype of cardiomyocytes.  Results of their study indicates that 

in cardiomyocytes derived from insulin signalling deficient mice there exists a shift in cardiac 

energy substrate metabolism which can be characterized by decreased fatty acid oxidation 

and elevated glucoxidation [28]. The observed shift in substrate metabolism is paradoxically 

the reversed change as evident in diabetes, where fatty acids are major cardiac fuel compared 

to glucose [29]. Insulin-dependent glucose uptake at cellular level is primarily carried out by 

glucose transporters, which facilitates the transport of glucose from intracellular compartment 

to the cell membrane [30]. However, SGLT are another class of transporters which are 

involved in the renal, intestinal and cardiac absorption of glucose [31]. 

 

RENAL AND INTESTINAL GLUCOSE ABSORPTION: ROLE OF SODIUM 

GLUCOSE TRANSPORTERS 

Approximately 160-180 g of glucose is filtered on the daily basis by glomeruli of kidneys in 

normo-glycaemic individuals. Most of the filtered glucose is reabsorbed by the proximal 

tubules [14, 32-35], however in diabetic condition, amount of filtered glucose exceeds the 

maximal threshold for renal glucose absorption such that the excess glucose is excreted out in 

urine [36-38]. Between the early 1980’s and 1995, transport studies carried out on membrane 

vesicles and gene expression studies in isolated proximal tubules of rat and rabbit revealed 

that most of the glucose uptake is mediated by the two SGLT namely (i) high affinity/low 

capacity SGLT1 (SLC5A1) (K0.5 of 0.4mM for glucose and 3 mM for sodium) and (ii) low 

affinity/high capacity SGLT2 (SLC5A2) (K0.5 of about 2∙0 mM for glucose and about 0∙1 

mM for sodium) [34, 38-40]. These transporters have the characteristic property of 
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accumulating glucose within the cells. SGLT are capable of initiating several intracellular 

events as sodium glucose co-transport is coupled with the membrane depolarization. SGLT1 

also act as a rate limiting factor for glucose absorption [34,40,41]. Among both the SGLT 

isoforms, SGLT2 is responsible for the maximum renal glucose absorption (approximately 

90%) in the segment 1 (S1) region of the proximal tubule while the SGLT1 facilitates the 

absorption of intestinal glucose, contributing only 10% of the total renal glucose absorption 

in the S3 segment of distal proximal tubule. SGLT2 inhibitors exert its anti-hyperglycaemic 

activity through increased renal excretion of glucose in urine posing a minimal risk for 

hypoglycaemia. Increased volume depletion due to elevated glycosuria also helps in reducing 

blood pressure and promoting weight loss [39]. 

 

SGLT1transporter is predominantly expressed in gut, heart and lungs. SGLT1 is the 

principal transporter present in the enterocytes lining intestinal villi, these transporters 

account for maximal glucose absorption in the intestine. Transport of glucose across the 

brush border of apical membrane is driven by electrogenic gradient established by sodium 

potassium ATPase pump [42,43]. Mutations in the SGLT1 genes (SLC5A1) or defects in 

SGLT1 trafficking are responsible for causing glucose galactose malabsorption, an autosomal 

recessive disease characterised by severe diarrhoea and dehydration [39,44]. mRNA 

expression analyses have conferred its localization in several other organs as well, such as 

brain, skeletal muscle, lung, gall bladder, trachea, liver, uterus, testis, colon, rectum, brain, 

blood vessels, stomach, mesenteric adipose tissue, breast, pancreatic alpha-cells including 

heart. Table 1 enlists the different organs where SGLT1 is expressed in humans and rats [34, 

43, 45-47]. Expression of SGLT1 has also been reported in rats and humans myocyte and 

sarcolemma of heart. In diabetes, improved capacity of cardiac glucose uptake by SGLT1 

directly relates to its increased expression and activity in the myocyte and sarcolemma 
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playing a significant role in sustained hyperglycaemia and worsening of cardiac functions 

[48-49]. Figure 1 gives the brief representation of the role of SGLT inhibitors in progression 

of diabetic cardiomyopathy. 

 

DIABETIC CARDIOMYOPATHY AND SGLT1 

The term diabetic cardiomyopathy was coined by Rubler et al. in 1972. Clinically, it is 

defined as the structural and functional changes of myocardium occurring in diabetic 

individuals even in the absence of coronary artery disease and hypertension [51]. Compared 

to the healthy individuals, individuals with diabetic cardiomyopathy are more vulnerable 

towards the increased risk of heart failure. Numerous reports suggest that ROS has been 

implicated in the progression and development of diabetic cardiomyopathy. ROS deteriorates 

the normal cardiac functioning by causing direct damage to proteins, initiating programmed 

cell death and altering several signal transduction pathways [50,52]. 

Association of high glucose and activation NOX2 was clearly demonstrated by 

Balteau and his colleagues in their in-vitro study conducted on primary cultured rat 

cardiomyocytes. High glucose (HG 21mM)-treated cultured rat cardiomyocytes exhibited 

increased expression of NOX2. Results of their study further reports that activation of NOX2 

is related with the activation of Rac1GTP secondary pathway. Evidently, Rac1GTP activation 

is connected with the enhanced production of ROS and cell death through translocation of 

p47phox from cytoplasm to the plasma membrane. However, ROS production was 

significantly reduced in HG treated primary cultured rat cardiomyocytes co-incubated along 

with 1mM phlorizin. In conclusion, they proposed that the inhibition of SGLT1 in heart could 

be one of the probable mechanisms behind the reduced generation of ROS as it is the only 

isoform of SGLT transporter to be expressed in the heart [50]. 
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Moreover, similar kinds of results were also obtained in an in vitro experiment 

conducted on neonatal ventricular myocytes, where co-incubation of HG (30mM) for 24 hrs 

in insulin (10nM) pre-treated neonatal ventricular myocytes resulted in glycogen deposition. 

Increased expression of glycogen specific autophagy proteins has been reported in hearts of 

streptozotocin treated diabetic rats [53]. Evidently, increased glycogen accumulation has also 

been noticed in db/db diabetic mice [54]. Mutations in the PRKAG2 gene are one of the chief 

contributors in glycogen storage cardiomyopathy in human subjects [55]. An in vivo study, 

carried out on double transgenic mice, has reported that the transgenic knockdown of cardiac 

SGLT1 is associated with the attenuation of PRKAG2 gene mutation related cardiomyopathy. 

Double transgenic mouse (TG) (TGT400N/TGSGLT1-DOWN) was used in their 

experimental study, which was reproduced by allowing the transgenic mice (TG) over 

expressing human T400N mutant PRKAG2 cDNA (TGT400N) to cross over with the TG 

mice exhibiting particular knock down of cardiomyocyte selective RNA of SGLT1 

(TGSGLT1-DOWN). Data obtained from their study reveals that cardiac mass and glycogen 

accumulation was significantly reduced in TGT400N/TGSGLT1-DOWN mice indicating the 

potential role of SGLT1 in PRKAG2 gene related mutation. Salient findings obtained from 

their histopathological and echocardiographic studies further elucidate that 

TGT400N/TGSGLT1-DOWN mice were also capable of restoring structural and functional 

abnormalities and exerts beneficial effects on left ventricular function in comparison to the 

TG mice expressing SGLT1 i.e. (TGSGLT1-ON) (56). 

 

DRUG CANDIDATES FOR SGLT INHIBITION 

 In 1835, a dihydrochalcone glucoside, phlorizin (Fig 2.a) was isolated from the bark of apple 

tree, due to its bitter taste it was used as an antipyretic in patients suffering from malaria. In 

1886, Joseph Von Mering reported that phlorizin administration can cause transient 
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glycosuria and later on it was established that phlorizin related effects are mediated through 

SGLT [57]. In early the 1970s, it was discovered that phlorizin acts on the renal proximal 

tubules playing an important role in restoring insulin sensitivity, and regulates glycaemic 

levels [58-62]. Phlorizin is a non-selective inhibitor of SGLT, but its poor pharmacokinetic 

profile and gastrointestinal side effects has limited its clinical utility [61,62]. Chemically, 

phlorizin is derived from an O-glycoside which undergoes rapid hydrolysis by the action of 

intestinal glycosidase [63]. Rapid hydrolysis of phlorizin has led to the development of novel 

phlorizin based analogues. These analogues are categorized by the type of glycoside from 

which they are derived (i) compounds derived from O-glycosides and (ii) those which are 

derived from C-glycoside (64). Table 2 presents the list of O and C glycosides. Compounds 

derived from C-glycoside hold better pharmacokinetic properties as they are resistant to the 

action of intestinal glycosidase. Currently, a majority of C-glycosides are under clinical trials 

while few got approved for their use in United States and Europe as an add-on therapy with 

marketed anti-hyperglycaemic agent [65]. Table 3 represents the list of recommended SGLT 

inhibitors approved by Diabetes Canada which are used in combination with marketed anti-

hyperglycaemic agents and table 4 presents the pharmacokinetic profile of the prominent 

SGLT inhibitors which are derived from C-glycosides. 

Presently, few SGLT2 inhibitors are approved for their commercial use in Europe, 

Canada, Japan and United States for treating T2DM [66]. Although available preparations are 

listed under inhibitors for SGLT2 but still they all possess varying degree of selectivity for 

SGLT1. For example, empagliflozin is 27,000 times more specific for SGLT2 in comparison 

to SGLT1 with a inhibitory concentration of IC50 = 3.1 nM (SGLT2), IC50 = 8,300 nM 

(SGLT1), similarly dapagliflozin, and canagliflozin are also highly specific for SGLT2 

compared to SGLT1. Inhibitory concentration of dapagliflozin for both the SGLT is IC50 = 

1.2 nM (SGLT2), IC50 = 1,400 nM (SGLT1) and specificity of canagliflozin for SGLT2 is 
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achieved at maximal IC50 of 4.2 nM, however for attaining similar degree of inhibition for 

SGLT1 greater amount of inhibitor is required having an IC50 of 663 nM (67). Canagliflozin 

at a dose of 300 mg (more than the marketed dose) inhibits intestinal glucose absorption 

through inhibition of SGLT1 and stimulates the secretion of enteroendocrine cell (EEC) 

hormone in normoglycaemic adults (68). 

 

EFFICACY OF SGLT1 INHIBITORS IN PRECLINICAL AND CLINICAL STUDIES 

Sotagliflizon, a dual inhibitor of SGLT (SGLT1/SGLT2) possess a greater potency towards 

the inhibition of SGLT2. Per-oral (p.o) administration of sotaglifloizn significantly attenuates 

the increase in plasma glucose levels in T2D subjects maintained at high glucose diet [69, 

70]. Administration of sotagliflozin in T2D patients is coupled with the increased secretion of 

glucagon like peptide 1 (GLP-1) indicating its potent glucose lowering action with no reports 

of gastrointestinal side effects [70].  

At present, numerous clinical trials are being carried out on SGLT for the 

development of selective SGLT1 inhibitors [71-73]. Mizagliflozin (DSP-3235) and KGA-

2727 are two selective SGLT1 inhibitors which are under clinical trials; (Fig.2.b and Fig.2.c) 

[74]. Several lines of evidence indicate that the maximal glycaemic control can be achieved 

by administration of target specific pharmacologically active novel molecules [75,76]. For 

evaluating the role of SGLT1 inhibitor (KGA-2727), Shibazaki et al have investigated the 

effects of acute/chronic administration of KGA-2727 in Zucker fatty diabetic (ZDF) rats (a 

model for T2D) and in streptozotocin treated rats (a model for T1D) [77]. Administration of 

single dose of KGA 2727 in both the animal models caused significant reduction in intestinal 

glucose absorption and plasma glucose levels as demonstrated by oral glucose tolerance test 

(OGTT). Chronic administration of KGA 2727 in ZDF rats fed on normal pellet diet and/or 
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rats kept on fasting, caused significant reduction in blood glucose with an increase in GLP-1 

secretion although plasma glucose levels were reported to be decreased as demonstrated by 

OGTT. Improvement in structural abnormalities and morphological changes in pancreatic β-

cells were also observed in ZFD rats [77]. Dobbin and his colleagues reported that oral 

application of SGLT1 inhibitors prior to high glucose diet has significantly reduced the 

elevated blood glucose level [72]. Contrarily, when compared with the chronic treatment of 

sotagliflozin, chronic administration of KGA 2727 to ZFD rats has resulted in significantly 

increased levels of plasma insulin in OGTT. According to their study reduced excursions of 

blood glucose by SGLT1 inhibitors after uptake of glucose-rich food are due to the inhibition 

of glucose absorption. The effects of SGLT1 inhibitors on secretion of gastrointestinal 

hormones may be dependent on the composition of the ingested food. The effects may 

change during progression of the T2D [77]. Thus, SGLT1 inhibition represents a promising 

therapeutic strategy aimed at correcting diabetic complications through the inhibition of 

cardiac glucose uptake in myocytes.  

[Figure 2.a to 2.f] 

 

SGLT INHIBITORS UNDER CARDIOVASCULAR TRIALS  

 Several gliflozins such as empagliflozin, canagliflozin, dapagliflozin (Fig.2.d, Fig.2.e, 

Fig.2.f) are known to possess positive outcome on CV mortality. EMPA REG clinical trial 

for empagliflozin has reported 14% reduction in total incidences of non-fatal myocardial 

infarction and stroke in empagliflozin treated patients. Empagliflozin also caused a 35% 

reduction in hospitalization rate for heart failure although frequency for hospitalization of 

unstable angina cases remains unaltered. In secondary outcomes, remarkable decline of 38% 

has been observed in CV mortality rates and moreover deaths due to other causes have 

witnessed a decline of 32%. Minimal decrease in blood sugar levels were also documented 
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between empagliflozin and placebo groups (7.8% vs. 8.2%) [78,79]. Despite of its listed 

beneficial effects, none of the changes have been observed in case of myocardial infarction 

(MI) and stroke in patients treated with empagliflozin compared to placebo. The exact 

mechanism of action behind the protective effect of SGLT inhibitors on CV function is still 

unknown. However, according to some reports obtained effects of SGLT inhibitors are 

related with the overall improvement in hemodynamic and renal functions [80, 81]. Some 

studies claim that modulation in cardiac energy substrate metabolism is the acting 

mechanistic pathway for SGLT [81]. Numerous trials are under pipeline on the major drug 

candidates of this class such as canagliflozin and dapagliflozin for evaluating its effect on CV 

function [82,83]. 

 Canagliflozin Cardiovascular Assessment Study (CANVAS) was a randomized, 

placebo controlled single blinded, parallel study.  A total of 10,142 T2D patients were 

enrolled in the presented study with (n = 5,795) in canagliflozin arm and (n = 4,347) in 

placebo arm. Patients were treated daily with 100 mg and 300 mg daily doses of 

canagliflozin. T2D patients of ≥30 years of age having history of atherosclerotic cardiac 

disease and are highly susceptible for CV risk were recruited in this study. Another age group 

of patients having ≥50 years of age with high-density lipoprotein cholesterol concentration 

(<38.7 mg/dl) were considered suitable for the CANVAS. In canagliflozin arm incidence of 

MI, stroke and CV mortality has been reported in 26.9 patients out of 1,000 patients 

compared to the 31.5 patients out of 1,000 patients in placebo arm. Albuminuria levels were 

also found to be reduced in 89.4 patients compared to the 128.7 patients out of 1,000 

participants, p value < 0.05 was considered as statistically significant. Results obtained from 

the CANVAS trial have shown beneficial effects on T2D patients presentable with a history 

of CVD [83]. Hence, it can be interpreted that canagliflozin could be one of the best suitable 

drugs for treating T2D and for combating associated CV complications. Similarly, various 
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clinical trials are also being carried out on dapagliflozin for evaluating the risk benefit ratio 

for its use in T2D subject which are prone to CV risk [84]. 

Dapagliflozin Effect on Cardiovascular Events (DECLARE-TIMI158) (ClinicalTrials.gov 

Identifier: NCT01730534) [84]. Based on the findings of this trial, the use of dapagliflozin at 

5 mg and 10 mg doses has been approved by European Medical agency (EMA), Food drug 

administration (FDA), and Pharmaceuticals and Medical Devices Agency. Japan (PMDA). 

Dapagliflozin Effect on Symptoms and Biomarkers in Diabetes Patients with Heart Failure 

(DEFINE-HF) (ClinicalTrials.gov Identifier: NCT02653482) [85], presently participants are 

being enrolled for this study, it is sponsored by Saint Luke's Health System. In addition to 

this, Effect of Dapagliflozin on the Incidence of Worsening Heart Failure (DAPA-HF) is 

another study to be conducted for dapagliflozin. DAPA-HF is sponsored by AstraZeneca 

(ClinicalTrials.gov Identifier: NCT03036124) [86]. Above mentioned are the major clinical 

trials for assessing the efficacy of dapagliflozin against CV disease events [84-87]. Results 

from CANVAS, DECLARE and EMPA REG in future will help the scientists and health care 

providers to conclude that whether the positive CV outcomes achieved are confined only to 

the empagliflozin drug of this class or they are associated with the class effect. Table 5 

briefly explains the current status of gliflozins. 

 

POTENTIAL SIDE EFFECTS OF INHIBITION OR DOWN REGULATION OF 

SGLT1/SGLT2 

Potential side effects in the small intestine and kidney 

Glucose galactose malabsorption is often linked with the use of SGLT1 inhibitors acting in 

the small intestine. Gastrointestinal side effects can be minimized by using reversible SGLT1 

inhibitors which partially blocks SGLT1 and by prescribing suitable dosage that could be 

given in the presence of food containing small quantities of glucose and galactose. It has been 
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reported that RS1 protein, encoding RSC1A1 gene causes upregulation of SGLT1 at post-

transcriptional level and RS1derived peptides containing motifs of hRS1 such as QCP, QSP 

possess the ability to cause inhibition of SGLT1 expression at post-transcriptional level at 

low glucose concentrations. Regardless of this information, further studies on RS1 peptides 

are still needed to be carried out to investigate its role in selective inhibition of SGLT1. 

Moreover with use of these peptides, side effects of glucose and galactose malabsorption 

were also not observed [88]. In case of enteric inflammation caused due to bacterial infection, 

up-regulation of SGLT1 is known to impart protective effect. Possible mechanism behind the 

observed effects could be associated with the increased uptake, followed by subsequent 

increase in glucose and galactose concentrations in the small intestine [89-91]. Evidently, 

SGLT1 also plays an important role in ameliorating the gastrointestinal mucositis when 

treated with the cytostatic agents. Interestingly, gastrointestinal mucositis was also found to 

be inhibited in wild type mice expressing SGLT++ on treatment with glucose analog 

BLF501, however no inhibition was observed in SGLT—knockdown mice [92]. 

 

Genital mycotic infections (GMI) 

Data obtained from several clinical studies have presented the increased risk of GMIs and 

urinary tract infections (UTIs) linked with the use of SGLT inhibitors [93-100]. Increased 

incidence of GMIs and UTIs has been reported with the use of dapagliflozin and 

canagliflozin in female population when compared to male population [101-102]. In one 

study, investigators have found that four month chronic treatment of canagliflozin has 

presented the risk of GMI in 10.4% female and 4.2 % male patients compared to the dummy 

medication (3.2% males and 0.6% females) [103]. 
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Majority of the GMI cases (99% approx) can be treated with the marketed antifungal drugs. 

The chances of getting affected by UTI are approximately 5 % in all the subjects who are on 

glifozin therapy. Recent meta-analysis conducted on gliflozins presented an increased risk of 

42% for UTIs with a confidence interval of 1.06 to 1.90, whereas risk for GMIs is 

predominant in females with an occurrence rate of 5 to 10%. [104]. A higher occurrence rate 

of UTIs and GMIs in gliflozin users is attributed to the consistent and marked glycosuria 

which promotes the growth of pathogenic microbes. Interestingly, inhibition of SGLT1 is 

known to exert immunological effect playing an essential role in prevention and protection of 

sepsis in gut [86]. The Canagliflozin trial, having both male and female participants, has 

indicated that the male subjects are at greater vulnerability of developing genital infections 

such as balanitis/balanoposthitis [97,105], while the females were more prone to candidiasis 

infection such as vulvo-vaginal candidiasis, vulvitis, vulvovaginal mycotic infection, vulvo-

vaginitis [101, 105-111]. Higher rates of UTIs (2.9% to 13.3%) compared to placebo/dummy 

medication have also been noted in the T2D patients taking one or more medication from 

standard treatment regimen such as pioglitazone or sitagliptin, irrespective of the use of any 

of the inhibitor of SGLT, less than 1% cases are linked with the concurrent organ damage or 

withdrawal of drug therapy [101, 105-107, 109, 111]. Most of the GMIs and UTIs occur 

within the first year of a start of the drug therapy, with a relapse rate of less than 3 %. A 

newer meta-analysis for dapagliflozin, comprising data obtained from 12 randomized placebo 

controlled trials was carried out to assess the vulnerability of UTIs, with their most common 

forms such as dysuria or cystitis. The collected data was represented in the form of 

percentage, but this study fails to provide the mean statistical differences existing between the 

specific groups. Three doses of dapagliflozin 2.5 mg, 5 mg, and 10 mg with n =814, n=1145 

and n=1193 patients and n=1393 patients in placebo arm were used in the study [112]. Higher 

incidence of UTIs approximately 7.3% and 6.5% have been reported in 5mg and 10mg 
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dapagliflozin dose groups compared to the placebo arm with an incidence rate of 4.2% and 

4.5% in case of 2.5mg dose of dapagliflozin. For clinical assessment of UTIs, urine samples 

were collected from all the patients who have been found symptomatic for the occurrence of 

UTIs. Routine culture of urine samples was performed to determine the vulnerability of UTIs 

in dapagliflozin treated patients, patients treated with 5 mg and 10 mg doses of dapagliflozin 

represents the more positive trend for getting affected by UTIs [101, 112]. Treatment with 

canagliflozin has not shown any significant differences in the mean percentage risk for 

bacterial infections affecting the lower urinary tract. Evidently, 8.7% females are at increased 

susceptibility of having lower urinary tract bacterial infections, compared to placebo with a 

percentage risk of 7.7% [113]. However, comparatively lower rate of incidence has been 

observed in male subjects (1.4%) compared to placebo (0.6%) [114]. Further, reported UTIs 

are not fatal and can be treated with the marketed antibiotics.  

 

Effects on bone biomarkers and fracture 

Higher incidence of bone fractures have been prevalent in T2D subjects, however the 

possible causes of bone fractures, changes in bone mineral density and bone biomarkers 

remains poorly understood. These incidences are further strengthened by the concomitant use 

of other anti-diabetic agents such as thiazolidinediones which are commonly used for treating 

T2D [115]. Hence, assessing the risk benefit ratio and effect of SGLT on bone mineral 

density and biomarkers is of considerable importance. Clinical studies have reported 

significant increase in beta-CTx (17.1% to 24.9%), a known bone resorption marker with a 

modest decrease in procollagen type 1 N-terminal propeptide (P1 NP) (−5.7% to −6.9%), an 

important marker for bone formation in the canagliflozin treated group [116, 117]. Similar 

kind of modifications in bone density markers were also observed in the patients taking 

pioglitazone as a drug therapy. Pioglitazone treatment resulted in 16.8% increase in beta-CTx 
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with no changes in P1 NP [115]. Despite several changes in bone biomarkers, none of the 

incidence has been reported for bone fracture in gliflozin users [114]. Several evidences 

elucidate that pioglitazone use is linked with the greater risk (5.1%) of  bone fractures 

compared to placebo (2.5%). However, the  use of canagliflozin for treating T2D possess an 

advantage over pioglitazone as its use is associated with negligible bone demineralization as 

illustrated by Dual-energy X-ray absorptiometry (DEXA) [117]. Another study assessed that 

the use of canagliflozin is linked with an overall increase of up to 2.5% and 2.3% bone 

fracture incidence at 100 mg and 300 mg dose compared to placebo [118]. According to 

European medical agency (EMA), no incidence of dapagliflozin induced bone 

demineralization has been reported in elderly patients or in renal compromised patients (≥60 

to <90 mL/min/1.73 m2), although some cases of bone fractures have been related well with 

the use of dapagliflozin in renal compromised patients with an average risk of 4.8% and 9.4% 

in 5 mg and 10 mg treated individuals (EMA [homepage on the Internet] Forxiga 

(Dapagliflozin) [119,120]. A phase III, randomized, double-blind, placebo controlled, 102- 

week (24-weeks for multicentred study and 78 weeks of extended patient blind study) study 

demonstrates the zero percent change in bone biomarkers when compared with placebo. It 

also recommends the use of dapagliflozin as a safer add-on therapy to metformin for treating 

T2D. Moreover, similar results were also reported for canagliflozin use. However, 

canagliflozin was administered only for a limited period of 26 weeks [121].  

 In case of emapagliflozin minimal number of evidences has been reported for bone fracture 

compared to placebo, with no effects on bone mineral density even after the chronic 

treatment of two years [122,123]. 
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Malignancies   

Studies on clinical subjects have indicated that SGLT1 plays an important role in mediating 

glucose uptake in cancerous cells. However, the precise mechanism by which it contributes to 

carcinogenesis is poorly understood [124]. Recently, it has been reported that inhibition of 

SGLT1 directly exerts deteriorating effects on the treatment of cancer.  Increased risk of 

bladder and breast cancer has been observed in dapagliflozin trial. Data obtained from meta-

analysis of dapagliflozin indicates the increased risk of bladder and breast cancer when 

compared with the placebo [119,121,124]. According to the reports published by FDA, 

10/6045 bladder cancer cases were noted in dapagliflozin group and 1/3512 in control group, 

with an overall occurrence rate of 6.11% [118]. The underlying mechanism behind the 

increased risk of cancer growth with the use of dapagliflozin could be based on the following 

assumptions (i) increased excretion of glucose in urine, promoting proliferation of malignant 

cells and (ii) urinary tract infections associated with the use of SGLT, as there continuous use 

may cause irritation in bladder epithelium [125]. Further use of dapagliflozin alone and in 

combination with pioglitazone is contraindicated in the patients having history of bladder 

cancer [94,126]. 

 

CONCLUSION 

Enhanced glycosuria offers a promising therapeutic approach for treating hyperglycaemia and 

its related cardiovascular complications. Efficacy of SGLT inhibitors for treating diabetes has 

been proven clinically, it has been elucidated that SGLT inhibitors can also be used for 

treating obesity. Further, reports suggest that it can be used in conjunction with other 

available anti-diabetic agents and insulin to enhance its efficacy. Recent reports suggest that 

oral application of SGLT inhibitors also helps in reducing blood pressure and promotes 

weight loss. Moreover, reduction in plasma glucose level may directly relate with the 
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improvement in glomerular function and damage, results from chronic studies are still 

awaited. To date, very few data is available, concerned with the use of dual SGLT1/SGLT2 

inhibitors and much more safety data from clinical trials is still awaited for proving its 

protective role in diabetes related cardiovascular complications and for the development of 

specific SGLT1 inhibitors. 
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FIGURE LEGENDS 

Figure.1. Role of SGLT inhibitors in progression of diabetic cardiomyopathy. In 

addition to free fatty acids glucose acts as a cardiac fuel and is involved in energy production. 

Under normal conditions basal glucose uptake was regulated by glucose transporter 1 

(GLUT1), whereas glucose transporter 4 (GLUT4) is responsible for insulin induced glucose 

uptake. Both GLUT1 and GLUT4 belong to the major class of facilitative transporters. It has 

been suggested that under diabetic condition, GLUT4 expression is getting significantly 

reduced however this decrease is compensated by the upregulation of sodium glucose 

transporter 1 (SGLT1) which is possibly involved in impairment of cardiac energy substrate 

metabolism playing a chief role in cardiac damage. Along with this, SGLT1 upregulation has 

also been correlated well with the glycogen accumulation, activation of NADPH oxidase 

(NOX2) and production of reactive oxygen species (ROS).  

 

Figure.2. Chemical structures for SGLT1/2 inhibitors (approved/under clinical trials). 
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Table 1 Localization and expression of SGLT1 in human and rat under diabetic 

condition. 

Localization Species Expression under 

diabetic condition 

Reference 

Heart Rat (capillaries), human Up-regulated in both  (123,124) 

Small intestine Rat , human Up-regulated in both  (123, 125) 

Kidney Rat , human Up-regulated in rat            (47, 128) 

Trachea Human Unknown (46) 

Pancreatic alpha 

cells 

Human Unknown  (4) 

Liver Human Unknown (43) 

Lung Human Unknown (43) 

Brain 

(ventromedial 

hypothalamus) 

Rat, human Unchanged in rat, 

unkonwn in case of 

humans 

(129,130) 

Mesenteric adipose 

Tissue 

Human Unknown (45) 

Skeletal muscle Rat Unknown (131) 

Prostate Human Unknown (45) 

Cervix Human Unknown (45) 

Salivary glands Rat Unknown (129, 132)  
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Table 2 SGLT inhibitors derived from O glycosides and C glycosides. * SGLT1 selective. 

O-glycosides Drawback Reference 

T-1095 Extensive hepatic 

metabolism of its active 

metabolite, increased 

glucosuria 

(133) 

Sergliflozin Unfavourable efficacy, 

pharmacokinetic 

instability, rapid 

hydrolysis by β-

glucosidases 

(134) 

Remogliflozin Unfavourable efficacy, 

pharmacokinetic 

instability, rapid 

hydrolysis by β-

glucosidases 

(135) 

AVE2268 Pharmacokinetic 

instability 

(137 ) 

C-glycosides Drawback Reference 

Dapaglifozin 

(BMS-512148) 

Urinary tract infections, 

painful micturition 

(137) 

 

Empagliflozin 

(BI 10773) 

 

Intravascular volume 

contraction, 

hypotension in patients 

(139) 

 

https://clinicaltrials.gov/ct2/show/NCT01131676
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with compromised renal 

function. 

Canagliflozin 

(TA-7284, 

JNJ-28431754) 

Urinary tract infections (140) 

Tofogliflozin 

(CSG-452 

(R-7201, RG-7201) 

Urinary tract infections (141) 

Ipragliflozin 

(ASP-1941) 

Urinary tract infections (141) 

Luseogliflozin 

(TS-071) 

Urinary tract infections (141) 

Ertugliflozin 

(PF-04971729) 

Urinary tract infections (140) 

Sotagliflozin 

(LX-4211) 

Urinary tract infections (142) 

*Mizagliflozin 

(DSP-3235) 

None reported yet (143) 

ISIS-SGLT2Rx 

(ISIS-388626) 

 NCT00836225 

KGA-2727* Abdominal pain, 

flatulence 

 (139) 
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Table 3 SGLT inhibitors as add on therapy agents with other anti-hyperglycaemic 

conditions. 

SGLT inhibitor 

and its trade 

name 

Min 

dose 

Max 

dose 

Metformin is 

contraindicated 

Add on to MET, SU/ Add on to 

MET+ SU 

Add on to 

insulin 

(+/- MET) 

Dapagliflozin 

(Forgixa®, 

Fargixa®) 

5 mg 10 mg Yes Yes Yes 

Empagliflozin 

(Jardiance®) 

10 mg 25 mg Yes Yes and also with PIO Yes 

Canagliflozin 

(Invokana®) 

100 mg 300 mg Yes Yes Yes 

 

Abbreviations: MET: metformin, SU: sulfonylurease, PIO: pioglitazone 
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Table.4. Pharmacokinetic profile of the prominent SGLT inhibitors which are derived 

from C-glycosides. 

Drug / trade 

name 

Dose 

(mg/kg) 

Cmax* 

(µM) 

IC50 for 

SGLT1 (nm) 

IC50 for 

SGLT 

(µm) 

Ratio 

IC50SGLT1/ 

Cmax 

Reference 

Dapagliflozin 

 

10,20 0.5, 0.7 1391-1400 1.4 2.8, 2.0 (136-140, 143-145,143-

149) 

 Empagliflozin 

 

5, 25 0.2, 0.6 8300 8.3 41.5, 13.8 

Canagliflozin 

 

100, 

300 

2.5, 7.8 684-710 0.7 0.3, 0.1 

 

 

SGLT 

inhibitor 

Development phase Dose (mg/kg) Registered cardiovascular trial 

Empagliflozin Approved by European 

medicine agency (2014/05), 

Food drug administration 

(2014/08) 

10, 25  

(EMPA-REG-OUTCOMETM) 

(Empagliflozin) Cardiovascular 

Outcome Event Trial in Type 2 

Diabetes Mellitus Patients 

NCT01131676 

 

 

Canagliflozin Approved by   European 

medicine agency (2013/11), 

Food drug administration   

100, 300  

CANVAS 

(Canagliflozin Cardiovascular 

Assessment Study) 
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Source of information: homepages of the FDA, EMA, PMDA, (148-153) 

(www.clinicaltrials.gov). Abbreviations: PMDA, Pharmaceuticals and Medical Devices 

Agency. Japan. 

 

(2013/03),  NCT01032629 

 

 

Dapagliflozin Approved by   European 

medicine agency (2012/11),  

Food drug administration  

(2014/01), PMDA (2014/03) 

5, 10 mg  

DECLARE TIMI58 

(Dapagliflozin Effect on 

Cardiovascular Events) 

NCT01730534 

 

 

Luseogliflozin Approved by PMDA (2014/03) 2.5, 5 NCT02528019 

Tofogliflozin Approved by PMDA (2014/3) 20 Not applicable 

Ipragliflozin Approved by PMDA (2014/01) 25, 50 Not applicable 

GSK-1614235 Phase I 1, 5, 20 

(0.25 to 40) 

NCT01607385 

BI44847 Phase I 100, 400, 800 Not applicable 

LX4211 Phase II  NCT01742208 

EGT0001474 Phase I 25, 75, 150 NCT00924053 

ISIS-SGLT2Rx Phase I 50, 100, 200, 

400 

NCT00836225 

EGT0001442 Phase II 20 NCT01377844 

http://www.clinicaltrials.gov/
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SGLT 

inhibitor 

Development phase Dose (mg/kg) Registered cardiovascular trial 

Empagliflozin Approved by European 

medicine agency (2014/05), 

Food drug administration 

(2014/08) 

10, 25  

(EMPA-REG-OUTCOMETM) 

(Empagliflozin) Cardiovascular 

Outcome Event Trial in Type 2 

Diabetes Mellitus Patients 

NCT01131676 

 

 

Canagliflozin Approved by   European 

medicine agency (2013/11), 

Food drug administration   

(2013/03),  

100, 300  

CANVAS 

(Canagliflozin Cardiovascular 

Assessment Study) 

NCT01032629 

 

 

Dapagliflozin Approved by   European 

medicine agency (2012/11),  

Food drug administration  

(2014/01), PMDA (2014/03) 

5, 10 mg  

DECLARE TIMI58 

(Dapagliflozin Effect on 

Cardiovascular Events) 

NCT01730534 

 

 

Luseogliflozin Approved by PMDA (2014/03) 2.5, 5 NCT02528019 

Tofogliflozin Approved by PMDA (2014/3) 20 Not applicable 

Ipragliflozin Approved by PMDA (2014/01) 25, 50 Not applicable 

GSK-1614235 Phase I 1, 5, 20 

(0.25 to 40) 

NCT01607385 

BI44847 Phase I 100, 400, 800 Not applicable 

LX4211 Phase II  NCT01742208 

EGT0001474 Phase I 25, 75, 150 NCT00924053 

ISIS-SGLT2Rx Phase I 50, 100, 200, NCT00836225 
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Table 5.  Current status of gliflozins. 

 

 

400 

EGT0001442 Phase II 20 NCT01377844 
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Figure 2 
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