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GENERAL INTRODUCTION 

Time is a fundamental part of all biological processes. During the whole process of evolution, 

living cells and organisms had to adapt to cyclic variations in the environment. In particular, 

the light and temperature conditions varied with day and night and with the seasons. The 

cellular functions and behavior in organisms were regulated according to their daily needs and 

provision of optimal conditions for survival. 

Time functions in cells are of two kinds. One is the cyclic variation, where the same 

events come back with regular intervals. Thereby, cellular adaptation occurs in a cyclic 

manner. The second way is longitudinal time regulation. From conception on, the 

development of organs occur sequentially and strictly coordinated in time until a mature fetus 

is ready for delivery. The periods of gestation, infant, growth and maturity, as well as aging, 

are strictly regulated in all higher organisms. Total life span is also rather constant within each 

species, although there are differences of many fold between short-lived and long-lived 

species. Thus, all the different longitudinal time periods in the life within a species are strictly 

coordinated to each other and are in concordance with total life span. 

Time regulation in single cells occurs at shorter intervals, both with cyclic and non-

cyclic variations. The oscillations may be down to a few seconds or even parts of seconds, 

such as nerve pulses. Heartbeat in higher organisms usually occurs as a rhythm of about one 

second or less, respiratory rhythm is slower, while the rhythm of the blood pressure is 

according to day and night. As a result, many types of time regulation and adaptation are 

occurring simultaneously in the same organism. Until a few years ago, the study of such time 

keeping was largely confined to the observation of phenomena from the outside and with 

mainly a descriptive approach. This has been replaced by a deeper understanding of the 

underlying biology and regulatory mechanisms at the genetic level (for recent review see 

Koukkari and Sothern, 2006b). 

This thesis deals with the hematopoietic system in mice and in men, a highly adaptable 

tissue with a high cell turnover and many different functions that cover all parts of the body. It 

is therefore no wonder that time keeping is an important part of the regulatory circuits. The 

main emphasis of this thesis is on the elucidation of local clock functions in cells of different 

stage of maturation, and discussion on how the molecular clock in bone marrow (BM) is 

unique compared to other tissues, as well as different between species.  
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Hematopoiesis in general 

During the last 40 years, extensive research has given a complex picture of the hematopoietic 

system. A total of 1.5-2.5 kg of hematopoietic tissue resides in the spongious part of bony 

tissue in the body and functions as a unity. Thus, the red BM has about the size of the liver, or 

more. A magnitude of nearly 10 11 mature neutrophilic granulocytes are mobilized daily from 

the BM to peripheral blood. Turnover time for the whole BM is of a magnitude of two weeks, 

whereby most of the cells in the marrow are replaced at least twice every month. The half-life 

of granulocytes in peripheral blood is only about 7 hours in man, after which they leave the 

blood stream by penetrating the vascular wall and enter into peripheral tissues. Here they 

exert their final functions of phagocytosis and degradation of foreign material for a couple of 

days until they die. This rapid turnover of the cells is totally dependent on a correspondingly 

high rate of cell proliferation in the marrow (reviewed in Benestad and Laerum, 1989). The 

granulocyte numbers in peripheral blood are not constant. They vary within the day and in 

relevance with the physiological state of the organism. Thus, exercise or food administration 

rapidly mobilizes granulocytes into circulation. Pathological conditions induce changes that 

are even more pronounced. For instance, an acute infection can increase the number of 

peripheral blood granulocytes within a few days by a magnitude of up to 10. In addition, the 

BM functions as a reservoir for storing mature cells which can be released according to the 

actual needs. 

Several types of blood cells are formed from specific precursor cells. These originate 

from progenitor cells, which are committed to one of the different cell lines in the marrow: 

granulopoiesis, erythropoiesis, megakaryopoiesis and lymphopoiesis. Progenitor cells are 

immature cells with high proliferative capacity, and most of them are actively cycling, 

producing new progeny. The development of the precursor cells occurs through a stepwise 

maturation, where each cell division is accompanied by a corresponding transcription of the 

genetic program for this particular cell type, ending with mature cells capable of exerting 

specialized functions. At this end stage, most of the mature cells have lost their ability to 

proliferate, such as erythrocytes and granulocytes, as well as megakaryocytes, and to some 

extent also monocytes and lymphocytes. Rapid cell division ends with loss of proliferative 

capacity. Hematopoiesis, therefore, consists of a rapid proliferation within strict limits. 

Progenitor cells are derived from stem cells, which in addition to unlimited cell proliferation 
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are able to produce new cells that can be committed for any of the cell lines in the 

hematopoietic tissue. This will be dealt with in the next section. 

The hematopoietic system develops from the yolk sac. Later, the hematopoietic 

activity in the embryo moves to the liver, while after birth the BM takes over (Keller et al., 

1999). BM stromal tissue has a significant influence on hematopoiesis. Stromal cells are 

important for anchoring of the hematopoietic cells, as well as for their nutrition and regulation 

by providing a microenvironment and producing growth factors and cytokines (Tavassoli and 

Friedenstein, 1983; Wolf, 1999). Stromal cells may support hematopoiesis in vitro, both as 

primary cells and as cell lines (Loeuillet et al., 2001). 

The high plasticity of the hematopoietic system requires a dynamic type of 

organization and multiple interactions (Roeder and Loeffler, 2002). A multitude of regulatory 

factors are involved in both hematopoietic cell production and differentiation including 

cytokines, growth factors, chemokines, polypeptides, and oligopeptides (Rameshwar et al., 

1997; Sachs, 1992; Thomas et al., 2004; Wolf, 1979). Several hormones and other cellular 

factors are involved in the expression of various specific genes and their products (Li et al., 

2003), including the key cell cycle control genes. In addition, the BM has a high density of 

efferent nerves (Calvo and Forteza-Vila, 1969), indicating that the nervous system may also 

be involved. 

Hence, hematopoiesis is a complex process regulated by many different factors. Its 

high proliferative activity combined with plasticity enables rapid adjustment to any alteration 

in the needs of the body. Due to the high ratio of cell production and release, hematopoietic 

tissue is completely dependent on continuous input of newly formed cells from the pool of 

stem cells.  

Properties and functions of stem cells 

By definition, a stem cell is a cell with two main properties: it is capable of an unlimited 

number of divisions, and it can give rise to all cell types within a tissue (Weissman, 2000). 

Usually stem cells are in a resting state with low proliferative activity, but can, when 

activated, have a progeny of more than a million cells within a week. Once a stem cell enters 

differentiation into one or several specific cell types, it has been considered as primarily an 

irreversible process. To what extent this is really so, is at present a matter of debate. Possibly 

some cells with differentiated properties may still be able to exert stem cell functions. 
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There is a hierarchy of three levels in stemness: (1) totipotent stem cells, which can 

give rise to a new individual, including the placenta; (2) pluripotent stem cells, which can 

make at least two different tissues; (3) multipotent stem cells, which can develop into all types 

of cells within a tissue. 

The next level in this hierarchy is a progenitor cell, which is already committed to 

become the ancestor of one cell type. Until a few years ago, “stem cell” was the denomination 

of these two functions, and very little was known about its morphology. With modern 

biological methods, the stem cell surface antigens and other biological properties have been 

characterized. Thereby, they can be specifically sorted out and analyzed morphologically. In 

consequence, this has led to experiments where the progeny of one single stem cell can be 

studied (Krause et al., 2001; Osawa et al., 1996). The development of flow cytometry and 

sorting methods has greatly contributed to the understanding of stem cell functions and other 

characteristics (see below). 

With new methods for studying the clonogenic potential of cells in vitro as well as in 

vivo, the occurrence of tissue-specific stem cells has been studied all over the body. Almost 

an explosion in the numbers of articles on this issue has resulted, and in addition, the 

therapeutic potential of stem cells for reconstituting damaged tissues has been explored 

(Gammaitoni et al., 2003). However, the limited potential for growth and renewal in vitro has 

so far been an obstacle to extensive clinical use. The use of supporting tissues, specific 

growth and chemotactic factors, as well as other factors in the microenvironment transferred 

to in vitro may be promising tools for overcoming this limitation (Moore et al., 1997; Zhong 

et al., 2004). Telomerase activity may be critical for this self-renewal, although the limitations 

of the in vitro environment have so far not been solved (Morrison et al., 1996). 

Although the concept that single immature cells could give rise to all types of 

hematopoietic cells was developed in the 1950s, more systematic attempts of isolating and 

characterizing of stem cells first came with the development of flow cytometry and flow 

sorting starting in the 1970s (van Bekkum et al., 1985; Visser and de Vries, 1994; Weissman, 

2002). Later, it was recognized that both in the unperturbed and irradiated mouse, sequential 

recruitment of stem cells in the marrow was responsible for the maintenance of steady state 

hematopoiesis (Drize et al., 2001). Then, the subclasses of progenitors in BM (e.g., 

responsible for lymphopoiesis) were further characterized (Kondo et al., 1997). 

By use of combinations of different methods, pluripotent stem cells have during the 

last 5-10 years been purified from the brain (Uchida et al., 2000), the skin (Toma et al., 2001), 

the lung (Kim et al., 2005) and some other tissues (Clarke, 2005; Qu-Petersen et al., 2002; Yu 
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et al., 2006). Furthermore, specific neoplastic stem cells with pluripotent properties can be 

isolated from human tumors (Al-Hajj and Clarke, 2004; Collins et al., 2005; Kim et al., 2005; 

Singh et al., 2004). An important part of this scenario is the identification of acute myeloid 

leukemia as a stem cell disease, wherein a subpopulation of the neoplastic cells retain stem 

cell functions (Lecuyer and Hoang, 2004). 

In recent years, particular attention has been paid to the possibility that hematopoietic 

stem cells, being essentially mesodermal in origin, can be harbored by other tissues (Lecuyer 

and Hoang, 2004). Thus, hematopoietic stem cells have been isolated both from brain and 

skeletal muscle (Jackson et al., 1999). Consequently, numerous attempts have been made to 

inject hematopoietic stem cells into other tissues both in the steady state and after injury and 

in the course of regeneration. Hematopoietic stem cells seem to be able to convert to other 

tissues, such as skeletal muscle in cell culture (Abedi et al., 2004), as well as develop in vivo 

into myocytes of skeletal or heart muscle (Muguruma et al., 2003), or hepatocytes (Lagasse et 

al., 2000). However, to what extent this phenomenon can be explained by a real plasticity at 

the single cell level, the cell capability for “re-programming” and/or “transdifferentiation”, or 

it has occurred due to the process of fusion with local differentiated cells, is not yet settled 

(Camargo et al., 2003; Krause, 2002; O'Malley and Scott, 2004; Wagers and Weissman, 

2004). Although more studies have to be done to describe the mechanisms of this 

phenomenon (Wagers and Weissman, 2004), stem cell plasticity in general seems to provide 

an important tool for inducing local repair in damaged tissues of different origins (Poulsom et 

al., 2002). 

 One important reason for the large body of data on hematopoietic stem cells is their 

accessibility from various sources. In contrast to most other tissues in humans, they can easily 

be harvested from peripheral blood, from fetal tissues and umbilical cord blood, as well as by 

sequence sampling of the marrow cavity in the skeleton (Huang et al., 1998). These cells can 

be serially transplanted in immunosuppressed rodents and be easily traced for comparison 

between short term and long term repopulating cells of the perturbed host (Lanzkron et al., 

1999; Spangrude et al., 1995). The cells can also be used for clinical purposes in man. Human 

and rodent stem cells express characteristic surface antigens (Spangrude et al., 1988), in 

particular CD34 (Guo et al., 2003) (although the earliest progenitor cells in a resting state may 

be negative for this marker), c-kit (Kawashima et al., 1996), sca-1 (Spangrude and Scollay, 

1990), but not CD38 (Poznansky et al., 2001) (Figure 1). The combination of these markers 

is successfully used for flow cytometric cell sorting (Spangrude et al., 1988). In addition, stem 

cells have a low number of mitochondria (confirmed by low rhodamine 123 
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Mature cells of  
specific lineages 

CD34+→ CD34-,
CD38+, Sca-1+, 

c-kit+, Lin-, 
non-SP, Rhohigh 

LT-HSC ST-HSC 

Lymphoid

Myeloid 

Self-renew 

Sca-1low,  
c-kitlow, IL-7R+, Lin-, 

non-SP, Rhohigh 

CD34+, Sca-1-, c-kit+,  
IL-7R-, Lin-, non-SP, Rhohigh 

CD34-→ CD34+, 
CD38-,Sca-1+,  

c-kit+, Lin-, 
SP, Rholow 

 Figure 1.  Lineage negative (Lin-) long- and short-term repopulating hematopoietic stem cells (LT-HSC 

and ST-HSC, respectively) and precursors can be separated by expression of surface markers and 

staining with Hoechst and Rhodomine (Rho). Most primitive HSC in Hoechst-stained bone marrow are 

contained in the side population (SP, see also Figure 2), and are characterized by low Rho fluorescent.  
 

uptake) (Uchida et al., 1996), and they are able to pump out the vital dye Hoechst 33342 

(Hoechst), constituting a so-called side population (SP) cells, enabling their specific flow 

cytometric cell sorting (Goodell et al., 1996) (also see later). 

Extensive attempts have been made to characterize the gene expression pattern 

responsible for “stemness”. Thus, for example, several home box genes have been identified 

as important for the development of primitive hematopoietic stem cells (Akashi et al., 2003; 

Terskikh et al., 2003; Zhou et al., 2001). However, surprisingly, a single gene expression 

studied by quantitative real-time polymerase cell reaction (Q-RT-PCR), as well as different 

types of microarrays, have not yielded a consistent pattern (Lemischka, 2001). Thus, there 

were considerable differences between embryonic and adult stem cells, and also between the 

different sources, including human and mouse stem cells (Lu et al., 2002). Therefore, there 

has been an urgent need for finding a more consistent pattern of key gene expression and not 

only a wide variety of stem cell-related gene expression, which may be more or less global. It 

also remains to be shown to what extent there is a dynamic variation in this gene expression, 

both with time and with the functional state of these cells. 
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Flow cytometry and high-speed cell sorting: application in 
hematopoiesis 

Flow cytometry means quantitative and qualitative measurements of single cells in suspension 

that pass through a light beam with high velocity. The measurements both include the light 

scattering that reflects the size and optical properties of the cells, and the absorption of light 

and emission of fluorescence from cell components that have been stained with a fluorescent 

dye (Shapiro, 2003b). Thereby, multiple cell parameters can be measured simultaneously, and 

by a combination of photodetectors and computer technology, these parameters can be 

analyzed in relation to each other. The flow of cell suspension can be broken up into 

electrically charged droplets after leaving a nozzle and having passed the light source. Cells 

containing specific signals can then be sorted out by passing a static electrical field (Shapiro, 

2003a).  

The first commercial flow cytometers became available in the early 1970s. These were 

both built as analyzers and as cell sorters by use of electrostatic deflection of charged 

droplets. However, a limiting factor was their rate of measuring or sorting, which usually was 

less than 1000 cells (events) per second. Consequently, it took a rather long time to obtain a 

high number of cells, which, for example, could be used for isolating RNA and studying gene 

expression. Especially when sorting out rare subpopulations, in many cases it was impossible 

to obtain a sufficient amount of cells for molecular biological analysis. A great step forward 

was the introduction of commercially available high-speed cell sorters in the early 1990s. By 

combining high pressure and high velocity of cell flow with several coupled photodetectors, 

the rate of sorting and analysis could be increased by a factor of 10-20 (van den Engh, 2000). 

Hence, using modern instruments, it is possible to sort routinely with speeds of 20-30,000 

cells (events) per second (Tsinkalovsky et al., 2005), keeping a high purity of sorted cell 

populations (Figure 2). It should be noted, however, that sorting speed depends on several 

parameters, such as cell source, type, and quality of the sample. Thus, flow sorting has moved 

from being an end-stage analytical tool to the combination of multiparameter analysis and 

based on this, isolating and further processing the cells for other types of methods, including 

cell culture studies. The sorting procedure can be accelerated by using immunomagnetic 

beads as a pre-enrichment step for cell isolation. For instance, these beads can be used for 

removing cells expressing lineage-specific markers, by so-called “lineage negative” (Lin-) 

selection. Another useful combination of these techniques is the application of 

immunomagnetic beads for selecting a specific cell population (for instance CD34+ cells)  
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Figure 2. The flow cytometric analysis of cells displayed in region 1 (R1, A) after sorting (B) shows a high 

purity of chosen population. Side population (SP) cells from Hoechst-stained mouse bone marrow were 

isolated in this experiment.  

 

with further analysis of isolated cell fraction purity by flow cytometry. 

Rather early, flow cytometry was used in hematopoiesis as a method of choice for 

analyzing the heterogeneous BM populations (Visser, 1992). Later, it was developed to 

become an everyday tool for studying both normal and pathological marrow (Knapp, 1992; 

Smaaland et al., 1992).  

An extensive survey of different applications of flow cytometry in hematology would 

be outside the scope of this introduction. However, it should be emphasized that flow 

cytometry has served as the main tool for isolation of primitive hematopoietic stem cells 

(Spangrude et al., 1988; Spangrude and Scollay, 1990; Visser, 1992). The employment of 

flow cytometry allows enrichment for quite primitive hematopoietic stem cell subsets using a 

combination of specific surface markers mentioned before (see previous section). Thus, 

sorting of Lin- cells positive for c-kit, sca-1 and Thy-1 low (mice), or CD38- subset of CD34+ 

cells (human) will represent stem cells with long-term reconstituting ability tested in lethally 

irradiated host mice.  

Another flow cytometric approach for hematopoietic stem cells isolation is based on 

the analysis of the functional properties of cells. One of the most useful methods is detection 

of the efflux of the DNA-binding vital dye Hoechst. This method, which was originally 

developed by Goodell et al. (1996) for isolation of mouse BM hematopoietic stem cells, 

yielded a distinct SP that displayed very low blue/red fluorescent emission intensities. This 

property depends on active efflux that is determined by the specific expression of the ATP-

binding cassette transporter G2 (ABCG2) in these particular cells (Zhou et al., 2001). The SP 

was shown to be highly enriched for primitive stem cells with long-term reconstitution ability 
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(Goodell et al., 1996) and was suggested as a marker for quiescent hematopoietic stem cells 

with anti-apoptotic properties (Arai et al., 2004). Additional studies have demonstrated that 

SP cell purification can be used as a general method for enrichment of stem cells from normal 

hematopoietic tissues of mammalian species, including humans (Bhattacharya et al., 2003; 

Goodell et al., 1997). Interestingly, SP cells are also present and exhibit stem cell properties 

in several nonhematopoietic tissues (reviewed in Challen and Little, 2006). Hence, the SP 

phenotype is regarded as a specific marker for stem cells from various sources (Bunting, 

2002; Zhou et al., 2001). SP cells have also been detected in some malignant tissues, where 

they may represent cancer stem cells (Haraguchi et al., 2006; Hirschmann-Jax et al., 2004; 

Kondo et al., 2004; Patrawala et al., 2005).  

In conclusion, flow cytometry (also with the application of immunomagnetic beads) is 

an important tool for isolating and characterizing hematopoietic stem and progenitor cells 

with high purity and specificity. 

Chronobiology in general, circadian variations in hematopoiesis, 
and statistical evaluation of rhythms 

Chronobiology is in the widest sense the knowledge of how the organisms adapts to the 

physical conditions in the environment. Most functions in the body show systematic 24-h 

(circadian) variations (Koukkari and Sothern, 2006b). 

The central pacemaker for circadian and seasonal variations in the body is situated in 

the suprachiasmatic nucleus (SCN), which in the human brain is situated above the chiasmatic 

crossing of the optical nerves and has a diameter of a few millimeters (Bartness et al., 2001). 

The SCN is the principle generator of circadian rhythms and is a part of an entrainment 

system that synchronizes a human being or an animal with its environment. Through complex 

nerve tracts, the SCN is connected to the pineal gland, where melatonin secretion is an 

important effector. In addition, the autonomous nervous system is responsible for peripheral 

tissue connections. Thus, the SCN has been found to be a part of the sympathetic outflow 

from the brain to different organs and tissues in the body, including the adrenal gland, and 

seems to be related to the modulation of neuroendocrine systems connected to the 

hypothalamus (Bartness et al., 2001). The SCN is also involved in the parasympathetic 

nervous system innervations of organs as the thyroid, the liver, the pancreas and the 

submandibular glands.  

Specific photoreceptors in the eye connect the SCN through the optical tract to the 

environment. The ganglion cells of the inner retina contain the pigment melanopsin, which 
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forms dendritic plexuses in a network that allows these cells to capture photostimuli across 

broad spatial domains (Ruby et al., 2002). The surrounding light is an important entrainment 

factor for the adaptation of the body to the environment and connects many important 

functions in the body to environmental cues. Alterations in the light conditions induce 

circadian phase shifting. The length of the day also modulates the light responses and 

mediates important hormonal reactions. Thus, important body functions, such as temperature, 

respiration, blood pressure, and heart beat, vary with day and night and with the succession of 

seasons (Bartness et al., 2001). The same applies to the secretion of many hormones, of which 

each has a characteristic pattern. For example, cortisol varies strongly with the time of the 

day, reaching a maximum in the early morning and a minimum during the night. 

The cell kinetics of different tissues also undergo strong circadian variations, and in 

particular rapidly proliferating tissues such as the BM, the gut mucosa, other surface epithelia 

and the epidermis (Smaaland et al., 1995a). Knowledge about such rhythms has been 

important for the understanding of cytotoxic effects on various tissues, and in particular, side 

effects of cytostatic therapy to normal tissues (Laerum et al., 1995). 

Is has long been known that the different parts of hematopoiesis undergo strong 

circadian and seasonal variations. This applies to the numbers of stem/progenitor cells  and to 

the proliferation of precursor cells of the different cell lines in the marrow sampled from 

human volunteers (Smaaland et al., 2002). In addition, peripheral blood cells undergo similar 

variations, and for example, circulating granulocyte numbers can vary with several orders of 

magnitude that is largely related to variation in serum cortisol (Abrahamsen et al., 1993; 

Laerum, 1995). It is also known that immune functions, including the tendency to allergic 

reactions, undergo considerable circadian variations (Ratajczak et al., 1993; Smaaland et al., 

2002). Both the clonogenicity of human CFU-GM in vitro and the total cell proliferation 

ability in the marrow are varying in parallel with a maximum during the day, roughly 

coinciding with the body temperature rhythm (Smaaland et al., 1992). Even the engraftment 

of stem cells in animal hosts has shown circadian variations, indicating that at least in mice, 

the time of injecting the cells may be critical for the result (D'Hondt et al., 2004). 

Interestingly, after transfer of murine BM progenitor cells to in vitro, the circadian rhythm 

may persist for several days (Bourin et al., 2002). It is therefore a good reason to claim that 

hematopoiesis largely occurs in rhythms, reflecting the renewal of hematopoietic cells as a 

labile pulsating organ (Laerum, 1995). Surprisingly, rhythmic variations could not be found in 

malignant lymphoma cells involving cervical lymph nodes (Smaaland et al., 1995b), 

indicating that malignant growth may be less dependent on environmental cues.  
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The understanding of circadian rhythms in hematopoiesis has been important for 

guiding cancer chemotherapy in order to enable higher doses to be given at time points of low 

proliferative activity. Thereby, toxic side effects due to high doses of cell cycle specific 

cytostatical drugs may be circumvented, giving the opportunity for administering higher doses 

to patients with malignant tumors unrelated to hematopoietic cells (Eriguchi et al., 2003; Levi, 

2006).A critical part of identification of circadian rhythms is the use of an appropriate 

statistical analysis for identification of sequential patterns of variations (Koukkari and 

Sothern, 2006a). In the area of medicine, one of the most commonly used computerized 

methods is the cosinor analysis. Originally introduced by the pioneer Franz Halberg in 1972, 

it has become an important statistical tool for biological studies of rhythms (Koukkari and 

Sothern, 2006a). The cosinor technique involves fitting a curve to a time series of data of a 

predefined period (24 h is often used to approximate the circadian rhythm) by least squares 

linear regression. The main parameters derived from the fitted cosine include (1) a p-value 

from a zero-amplitude test, (2) the double amplitude indicating the predictable range of 

change in the time series from peak to trough of the curve, and (3) the acrophase or peak of 

the fitted curve, in hours and minutes from a defined reference point (e.g., local midnight or 

the previous time of light-onset during light-darkness standardization) (Figure 3). Time series 

are also often analyzed for a time-effect by a one-way analysis of variance (ANOVA).  

Clock genes and their relevance for circadian rhythms 

For several years, it was an open question how the time functions could be regulated in tissues 

and in cells. Over years, researchers had observed that biological time was measured by 

cycles that range from milliseconds to years. Circadian rhythms, which measure time on a 

scale of approximately 24 h, are generated by one of the most ubiquitous and well-studied 

timing systems. Although this was found to be timed by a master clock in the brain that 

coordinated tissue-specific rhythms according to light input from the outside world, very little 

was known about the underlying mechanisms (Reppert and Weaver, 2002).  

A genetic basis for circadian timing was demonstrated about 30 years ago. The existence 

of clock genes was first proven in Drosophila melanogaster, Chlamydomonas reinhardi and 

Neurospora crassa by the isolation of circadian mutants. Later, mutations in clock genes were 

also identified in mammals, such as mouse, hamster and man. The Drosophila period (per) 

gene was the first clock gene to be cloned in 1984, and in the following years, all the currently 
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Figure 3. Rhythmic characteristics derived from a fitted cosine (created by R.B.Sothern).  

 
known mammalian clock genes have been cloned. A clock gene is usually defined as one 

whose product is required for the generation and/or maintenance of the circadian clock.  

 The cloning of the clock genes had a profound effect on the understanding of time 

regulation in peripheral tissues and led to the identification of clock genes and their protein 

products in different tissues/organs. In particular, the understanding of circadian rhythmicity 

at the intracellular level was significantly improved, thereby giving a clearer picture of 

nuclear and cytoplasmic events related to 24-h oscillations. The general picture is that clock 

genes are ubiquitous in cells including in prokaryotes, in plants, and in lower and higher 

animals. During evolution, such time-keeping functions at the genetic level seemed to occur 

for the first time about 700 million years ago and then have gradually been developing and 

specializing in different species. In a broader sense, all living cells contain internal time 

keeping functions by which they can be in phase with the environment. In mammals, 

circadian oscillations of clock gene expressions have been observed not only in the SCN, but 

also in many peripheral tissues, such as liver, heart, kidney, lung, pancreas, skeletal muscle, 

oral mucosa, skin, BM, and human peripheral blood mononuclear and polymorphonuclear 

cells (Balsalobre et al., 2000; Bjarnason et al., 2001; Boivin et al., 2003; Bourin et al., 2002; 

Chen et al., 2000; Damiola et al., 2000; Muhlbauer et al., 2004; Oishi et al., 1998). 

The question remained to what extent clock functions in peripheral tissues were 

independent or whether they were regulated by the central master clock in the SCN. 

Surprisingly, it has been shown that even in rat fibroblasts cultured in vitro for more than 

three decades,circadian gene expression can still be induced by using a serum shock 
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(Balsalobre et al., 1998). In general, the peripheral clocks seem to be phase-delayed as 

compared to the master clock by a magnitude of about 4 hours (Balsalobre et al., 1998). Thus, 

the model has been proposed that tissues have their own independent clock functions which 

are coordinated by the master clock. If the master clock is severely disturbed or non-

functioning, these may take over as time-regulatory functions. The expression “master and 

slave clocks” therefore has been used for this dependence. 

Traditionally, the clock gene functions and their regulation is described as a complex 

relationship between positive and negative feedback loops of genes and their products 

(reviewed recently by Ko and Takahashi (2006) (Figure 4). In the primary feedback loop, the 

positive elements include members of the basic helix-loop-helix (bHLH)-PAS (Period-Arnt-

Single-minded) transcription factor family, CLOCK and BMAL1. These proteins form 

heterodimers that initiate transcription of target genes containing E-box CIS-regulatory 

enhancer sequences, including Period (in mice, Per1, Per2 and Per3) and cryptochrome 

(Cry1 and Cry2). PER:CRY heterodimers then translocate back to the nucleus and repress 

their own transcription by acting on the CLOCK:BMAL1 complex completing a negative 

feedback loop. Another regulatory loop is induced by CLOCK:BMAL1 heterodimers 

activating transcription of orphan nuclear receptors, Rev-erbα and Rora. REV-ERBΑ and 

RORa regulate the circadian oscillation of Bmal1 subsequently competing for binding orphan 

receptor response elements (ROREs) present in Bmal1 promoter. It has been shown that 

RORs activate transcription of Bmal1, whereas REV-ERBs repress the transcription process. 

The autoregulatory feedback loops take approximately 24 h to complete a cycle and constitute 

a circadian molecular clock. The 24-h molecular clock generation is modified by post-

translational modifications, such as phosphorylation and ubiquitination. These processes 

significantly contribute to the precision of the mammalian clock by affecting the stability and 

nuclear translocation of core clock proteins. Casein kinase 1 epsilon and Casein kinase 1 delta 

(CK1ε and CK1δ) are critical factors that regulate the core circadian protein turnover in 

mammals. Mutations in CK1ε and CK1δ can have dramatic effects on circadian period. 

It should be noted that this traditional concept of circadian clockwork in mammals was 

developed by analogy with the Drosophila system, and evidence in favor of this concept is 

still incomplete (Hastings and Herzog, 2004). Some anomalous observations that run counter 

to the predictions of transcription/translation oscillator model were summarized and discussed 

in a recent review (Lakin-Thomas, 2006). In a recent study it was shown that Clock, one of 

the core clock genes, was not required for rhythmicity (Debruyne et al., 2006). Although 

CLOCK-deficient mice had an altered response to light, they continued expressing robust 
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circadian rhythms. Hence, it is likely that the traditional model of molecular clock 

components interactions can be modified, at least for the mammalian system. 

In mammals, many of the known clock genes have recently been experimentally 

disrupted. The genetic manipulations have resulted in variable phenotypes, whereby a 

disturbance of the circadian rhythmicity is obtained. For example, mPer3-deficient mice 

exhibit about ½ hour shorter periods than control animals. Total arrhythmicity has been 

observed in mBmal1-deficient mice (for review see Balsalobre, 2002). A study of circadian 

rhythmicity in triple mutant mice lacking mPer1, mCry and either mClock or mBmal revealed 

that certain combinations of mPer and mCry are necessary to drive the circadian clockwork. 

The presence of a single gene alone (e.g., mPer1 or mCry1) does not seem to be sufficient to 

induce rhythmic expression of downstream genes, but in this case, light-dark conditions may 

drive the rhythmic oscillator of some output genes (Oster et al., 2003).  

The proteins coded by clock genes and their protein heteromers are transcription 

factors expressed as a circadian cycle. In the widest sense of the word, a clock gene therefore 

denotes a transcription factor responsible for time regulation of other gene(s) as a more or less 

cascade effect (Balsalobre, 2002). These findings are largely based on the studies of neurons 

in the central nervous system and, in particular, the SCN. Thus, the clock genes were shown 

to constitute an important effector function related to input nervous signals induced by light 

effects of the retina. 

The use of systematic gene expression studies has given important information about 

output components of the clock system. Peripheral clocks seem to regulate the temporal 

variations in diverse biological processes by modulating so called “clock-controlled genes”. 

In a comparative analysis of circadian gene expression in mouse liver and heart representing 

12,488 genes, it was found that 8-10% of the genes were expressed rhythmically (Storch et 

al., 2002). It is important to note that only a minor overlap of oscillating genes between 

tissues was found in this study. 

It is probable that most of clock-controlled genes are not directly regulated by clock 

genes, but rather by transcription factors that accumulate or are controlled in a circadian 

manner (Balsalobre, 2002). An interesting example of such a directly regulated gene is Dbp, 

which oscillates in many tissues including the liver. Dbp encodes a transcription factor that 

controls the circadian expression of several digestive enzymes in the liver (Lavery et al., 

1999). It was suggested that the Dbp expression is directly controlled by 
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Figure 4. Transcription/translation oscillator model of the molecular clockwork. A complex of CLOCK and 

BMAL1 proteins activates transcription of Per1/Per2, Cry1/Cry2, Rev-Erbα and Rorα genes. A complex of 

PERs and CRYs proteins inhibits the positive effects of CLOCK:BMAL1. REV-ERBα and RORα proteins 

modify transcription of Bmal1. Casein kinases (CK) are regulatory factors for PER and CRY proteins. 

CLOCK:BMAL1 can also regulate expression of clock control genes (Ccg).  

From Ko and Takahashi, 2006 (© Published by Oxford University Press). 

 

CLOCK:BMAL1 heterodimers through an E-box (Gachon et al., 2004) (Figure 4). It is 

therefore likely that one common core oscillator in peripheral tissue may regulate many 

tissue-specific clock-controlled genes by directly modulating a relatively small number of 

tissue-specific circadian transcription factors that would then regulate multiple targets 

(Balsalobre, 2002). 

The question can be raised to what extent local clock gene expression can be regulated 

by input signals other than from the central master clock. This also seems to be case. For 

example, it was shown that the DNA-binding activity of CLOCK:BMAL1 heterodimers were 

drastically influenced by the ratio between the amount of reduced and oxidized forms of 

nicotinamide adenine dinucleotide, NAD (Rutter et al., 2002). Since these ratios are affected 
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by cellular metabolism, restricted feeding may thus directly reset peripheral clocks through 

metabolic activity. Temperature and temperature changes effect on circadian clocks was 

shown in cyanobacteria, unicellular algae, plants, fungi, arthropods, and vertebrates (reviewed 

in Rensing and Ruoff, 2002). 

Therefore, clock genes seem to be an integral part of local feedback regulation in 

cellular functions, both by constituting and modifying oscillations according to local and 

central needs.  

Development of chronobiological studies of hematopoiesis at the 
Gade Institute 

An important basis for the present thesis has been more than 25 years of systematic research 

on circadian and circannual variations in hematopoietic tissues. Thus, Nils Petter Aardal 

defended his thesis on circadian patterns in the BM of mice, showing rather labile variations 

of very high magnitude (Aardal, 1983). Olav Sletvold later followed this up by studying how 

this circadian pattern varied with the age of the animal (Sletvold, 1988). Thus the aging 

process in mice was accompanied by both lowered amplitude and alterations of the phasing. 

Robert Sothern in his thesis showed how the application of chronobiology could reduce the 

toxic effect of drugs and chemotherapy, and improve anticancer treatment (Sothern, 1992). 

This was followed by studies on humans by Rune Smaaland. He showed that there were 

strong circadian variations in hematopoietic tissues, based on sequence sampling from male 

volunteers (Smaaland, 1994). In particular, cell cycle distribution varied with the circadian 

period, and as already mentioned, in parallel with clonability of myelopoietic progenitor cells. 

In the work by Smaaland. a statistically significant circadian rhythm was found in cell-cycle 

variations (e.g., DNA S-phase) for Non-Hodgkin’s lymphomas (Smaaland et al., 1995b). 

However, at that time nothing was known about effector functions in the cells, including 

clock genes and timing at the cellular level. This prompted us to pursue a similar study on 

clock gene expression. 

In addition to the studies on the total bone marrow population and their progenitor 

cells, it was of particular interest to know how the precursor cells varied, and if this was in 

accordance with the other circadian rhythmic patterns. This was addressed in a thesis by 

Jenny Foss Abrahamsen, combined with systematic methodological studies of the sampling 

technique (Abrahamsen, 1997).  

Flow cytometric measurements have been an important tool in the studies included in 

all of these theses, combined with other methods. The Gade Institute started work on flow 
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cytometry in 1975 and was the first laboratory in Norway that employed the method on 

clinical material. This included sequence studies on leukemia treatment, as well as the 

development of a new method for quantitative and qualitative studies of phagocytosis (Aardal 

et al., 1979; Bassø, 1983; Bjerknes, 1984). 

High-speed cell sorting was first started in Norway in 2000.  
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PROBLEM FORMULATION AND AIMS OF THE STUDY 

Both hematopoiesis in general and stem/progenitor cells in particular are subjects 

to a multitude of influences. It has been demonstrated that many hematopoietic 

functions in rodents or humans are regulated in a circadian manner. Clock genes 

have been shown to play an important role in different tissues but have only been 

scarcely studied in hematopoiesis. On this background, the following aims of the 

present study were formulated: 

 

1.  To create and standardize the protocol for gene expression analysis in 

hematopoietic cells, including primitive stem cells and following 

preparative high-speed cell sorting (Article I). 

 

2.  To study clock gene expression variations in mouse whole BM population 

and the fraction of primitive stem cells using the advantage of high-speed 

flow cytometric analysis and cell sorting (Article II). 

 

3.  To study clock gene expression variations in human BM stem/progenitor 

cells (Article III). 

 27



LIST OF ARTICLES I – III  

I. Tsinkalovsky, O., Rosenlund, B., Laerum, O.D., and Eiken, H.G. (2005) 

Clock gene expression in purified mouse hematopoietic stem cells. Exp 

Hematol 33:100-107. 

 

II. Tsinkalovsky, O., Filipski, E., Rosenlund, B., Sothern, R.B., Eiken, H.G., 

Wu, M.W., Claustrat, B., Bayer, J., Levi, F., and Laerum, O.D. (2006) 

Circadian expression of clock genes in purified hematopoietic stem cells is 

developmentally regulated in mouse bone marrow. Exp Hematol 34:1248-

1260. 

 

III. Tsinkalovsky, O., Smaaland,R., Rosenlund, B., Sothern, R.B., Hirt, A., 

Steine, S., Badee, A., Abrahamsen, J.F., Eiken, H.G., and Laerum, O.D. 

(2007) Circadian variations in clock gene expression of human bone 

marrow CD34-positive cells (J Biol Rhythms in press). 

 28



 

GENERAL DISCUSSION  

Methodological considerations  

Stem/progenitor cell isolation by magnetic beads and flow cytometric sorting 

As the present lack of data on circadian gene expression in hematopoietic stem/progenitor 

cells could partly be explained by methodological difficulties we first aimed at improving and 

standardizing the protocol for gene expression analysis in these cells (Figure 5).  

In the study on mouse BM, we were able to target rare stem cell fractions for analysis, 

as it was possible to collect initially more BM cells by increasing the number of experimental 

animals. For detection of mouse hematopoietic stem cells, we employed a single step Hoechst 

staining method (Goodell et al., 1996). This simple and cheap method has been used 

extensively for purification of mammalian HSCs, and the SP phenotype was clearly shown to 

be a specific marker of primitive stem cells with long-term reconstitution ability (Goodell et 

al., 1996; Goodell et al., 1997). It should be noted, however, that technical issues in cell 

preparation and staining (cell number, dye concentration, duration of staining) and in flow 

cytometric analysis (filter setup, laser alignment) are known to influence SP and could cause 

some discrepancies in data interpretation (Montanaro et al., 2004). In our lab using the basic 

protocol of Goodell et al. (1996) for staining of mouse BM cells, we obtained results very 

similar to others (Article I). In our study, SP cells represented < 0.07% of the cell population, 

and were senstive to ABCG2 transporter inhibition by verapamil, reserpine or a 

fumitremorgin C. Approximately 80% of SP cells also expressed the early hematopoietic 

progenitor antigens sca-1 and c-Kit (Article I). High-speed flow cytometric sorting was 

chosen as a method for SP cell isolation. For the first time we performed a colony-forming 

assay of sorted SP cells (Figure 6) and showed that these cells were more than 75 times 

enriched in clonogenicity as compared to whole BM (Article I). This confirmed that the SP 

isolated in our lab was highly enriched for hematopoietic stem cells.  

As a target cell fraction in the experiments on human BM hematopoietic cells, we chose a 

population of CD34+ stem/progenitor cells. These cells were magnetically separated from 

low-density mononuclear cells using a Direct CD34 Progenitor Cell Isolation Kit and MS+ 

Column (from Miltenyi Biotec, Bergisch Gladbach, Germany). Although a combination of 

markers other than CD34 is reported to represent more primitive stem cell fractions, the 

whole population of CD34+ cells was chosen as a subset used routinely for clinical 
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Figure 5. Methodological approach for combination of flow cytometric, morphological and molecular 

analysis of hematopoietic stem cells. Sorting of cells based on surface marker expression and Hoechst efflux 

revealing side population (SP) allows fast collection of pure cell fractions for further morphological and 

morphological analysis, as well as for in vitro and in vivo studies. By increasing the velocity of the cell flow by a 

magnitude of several fold, automated cytometric cell analysis and sorting can be used for preparative purposes 

and not only as an analytical tool. 

 

applications (Handgretinger et al., 1998). Getting further enrichment in primitive stem cells 

(e.g., isolation of Lin- CD34+CD38- subpopulations, rhodamine low fraction or SP) will also 

considerably reduce cell numbers. In the experiments with sampling of human volunteers, this 

was not technically possible and ethically not advisable. The flow cytometry in this study was 

used for evaluation of isolated cell fraction purity that in these experiments ranged from 70.3 

to 95.6 %, median 82.3 % (Article III).  
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Figure 6. Colony assay of side population (SP) stem cells. The pictures (x 50 magnification) of burst-forming 

units-erythroid (BFU-E, left), granulocyte-macrophage (GM-CFU, middle) and granulocyte, erythroid, 

macrophage, megakaryocyte colony-forming units (GEMM-CFU, right) were taken on day 12 of growth. SP 

cells were plated in a concentration of 100 cells/ml in complete methylcellulose medium (MethoCult 3434, 

StemCell Technologies Inc, Canada). The index colony/cells plated for SP cells was 1/3, and demonstrated more 

than 75 times enrichment in clonogenity compared to the whole bone marrow (Article I). 

 

Hence, the chosen populations of hematopoietic mouse stem cells or human 

stem/progenitor cells, and the methods for cell isolation, were considered appropriate for the 

aims of the study. 

RNA purification  

RNA quality is important for any gene expression analysis. In our studies of simultaneous 

analysis of all major clock genes, RNA quantity was an additional critical factor for the 

evaluation of clock gene interactions. In the beginning, we performed several test experiments 

aimed at finding the best way of preparing cells for further RNA purification. The following 

protocol was chosen as the most appropriate: cells were spun down (300 g, 5 minutes at + 4 
0C), supernatants discarded, pellets snap frozen in liquid nitrogen and placed at –80 0C until 

use. This procedure yielded sufficient quantities of total RNA for further gene expression 

analysis avoiding RNA degradation. Both human and mouse samples were of high quality, 

confirmed by Nano LabChip tests run on an Agilent 2100 Bioanalyzer.  

In the human study, we were able to proceed with the cells within 2-3 hours after BM 

sampling. However, in the mouse study, due to the experimental conditions, Hoechst staining 

and cell sorting were performed after all samples were collected. This raised a question 

whether a delay in cell flow cytometric analysis and sorting could increase the risk of RNA 

degradation. In addition, we needed to prove that (1) flow cytometric sorting itself used in 

experiments with mouse BM, and the long time necessary for collection of appropriate cell 
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numbers, would not influence the RNA quality and (2) clock gene appropriate cell numbers 

would not influence the RNA quality and clock gene expression.  

The results of the study published in Article I indicate that enrichment by high-speed 

flow cytometric cell sorting (even with speeds up to 30,000 events/cells per second) induced 

little or no RNA degradation and did not influence the profile of clock gene expression. Thus, 

we confirmed that the method we used can be employed for circadian variation studies, as 

well as for chronobiological experiments, when collection and preparation of the samples 

cannot be done simultaneously and with a delay span of 12 h or even 24 h. 

Choice of reference genes for evaluation clock gene expression: a “geometric 
mean” approach 

In the studies of circadian clock gene expression when at least some of the target genes are 

expected to vary, it was important to find appropriate reference genes with a constant level of 

expression over 24 h. For both mouse and human studies, we chose the normalization strategy 

described previously (Vandesompele et al., 2002), using the geometric mean of three (mouse 

study) or four (human study) endogenous control genes. Therefore, each sample was 

normalized by dividing the quantity mean of the target gene by the quantity of the geometric 

mean. The quantity for each sample was estimated from the corresponding standard curve. 

This approach allowed us to reduce the possible error related to the use of only one 

housekeeping gene as an endogenous control for normalization.  

Rhythms of main body markers as an indicator of a circadian 
coordination in mice/human during the sampling of BM  

To ensure that experimental animals or human subjects maintained circadian coordination 

during sampling of BM, we tested the levels of so called “body marker rhythms”. High 

amplitude, significant hormonal rhythms were observed in corticosterone and melatonin in the 

mouse study, and in cortisol, growth hormone, testosterone in the human study. In addition, 

core body temperature in the mouse study, and total white blood cells, neutrophils, and 

lymphocytes in the human study also showed significant rhythms. These results indicate that 

the groups of mice and human subjects had a good circadian coordination over the 24 h 

period, when BM was sampled for gene expression analysis.  
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Relative level of clock gene expression (stem/progenitor cells vs. 
whole BM, and mouse vs. human) is dependent on cell population 
and species  

Before our studies, clock genes had never been analyzed in hematopoietic stem cells. 

Therefore, when we found that these genes are expressed in mouse SP cells or human CD34+ 

cells it was important to compare the level of relative expression of key clock genes in these 

cell populations and the whole BM.  

The most pronounced difference in mouse hematopoietic cell populations was found 

for mPer1 expression. In SP stem cells, it was almost 3 times as high as the other clock genes 

at all time-points. Conversely, in the whole BM, mPer1 showed low to moderate expression 

levels when compared to the other clock genes, depending on circadian time (Article II). It 

should be noted here (and will be discussed in the next section) that mPer1 was not rhythmic 

in SP cells, contrary to the whole BM.  

In humans, clock gene relative mRNA expression showed similar levels in CD34+ and 

whole BM cells, with the exception for hBmal1. In both cell types, hPer1, hPer2, hCry1, 

hCry2, hRev-erbα and hClock were expressed at about the same levels within each cell 

population, while hPer1 expression level was several fold lower. Expression of hBmal1 was 

as low as hPer1 in CD34+ cells, while it was the highest of all clock genes in the whole BM 

(Article III).  

Thus, the overall results demonstrated differences in relative levels of clock gene 

expression in hematopoietic cells corresponding to both the studied BM cell populations and 

species. However, we were not able to find any correlation between the level of clock gene 

expression and the rhythmic or non-rhythmic character of its circadian variations (see next 

section) at this time. 

The 24-h variations of clock gene expression are different in mouse 
stem cells and whole BM, which indicates that circadian variations 
of clock genes in mouse BM are developmentally regulated 

With the exception of mPer2, the majority of the key clock genes in mouse hematopoietic SP 

stem cells were not expressed rhythmically over 24-h periods during the constant conditions 

of the study. The pattern of clock gene circadian variations in the stem cells was different 

from that in the whole BM, where circadian rhythms were also observed for mPer1 and 
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mRev-erbα. Even the peaks of mPer2, the only gene which showed 24-h rhythmic expression 

in both cell populations, did not coincide (although acrophases and their 95% limits were not 

significantly different, P=0.145). 

A quite unexpected finding in this study was that circadian variations of mPer1 in 

mouse SP stem cells were weak and/or undeveloped. Per1 is known to be a core circadian 

gene and is regarded as a key marker of the circadian molecular clock. Rhythmic expression 

of this gene has been identified in both central and peripheral tissues. In contrast, we found a 

robust circadian rhythm for mPer1 in the whole BM, where high-amplitude variations of this 

gene were both large and consistent in all three experiments.  

 Recently, Morse et al, 2003 hypothesized that clock gene expression is 

developmentally regulated in testis based on their results that clock genes were constant over 

24 h in this organ. Later, similar pattern of clock gene variations were demonstrated in 

thymus (Alvarez and Sehgal, 2005). These data led authors to a conclusion that the circadian 

clock does not operate in immature cells undergoing differentiation (Alvarez and Sehgal, 

2005). As was discussed earlier, the SP fraction of mouse BM is highly enriched for primitive 

stem cells with long-term reconstitution ability (Goodell et al., 1996), and is comprised 

mostly of quiescent hematopoietic stem cells (Arai et al., 2004). Our findings that circadian 

expression of most of the key clock genes appeared to be non-rhythmic in this cell population 

can indicate that the activity of molecular clocks in mouse hematopoietic stem cells is also 

developmentally regulated. 

Mouse and human hematopoietic BM stem/ progenitor cells have a 
specific profile of circadian clock gene expression that is different 
as compared to other tissues 

In the mouse study we were able to collect liver samples in parallel to BM samples, and thus 

could compare patterns of clock gene expression in hematopoietic cells and liver. This also 

gave the advantage of having liver as a reference tissue, where the circadian patterns of 

molecular clocks are well-documented. In our experiments, 24-h clock gene expression 

variations in liver were similar to that reported by several others, including one in B6D2F1 

mice (Filipski et al., 2004). 

 We found that the circadian organization in the BM was different from liver. Thus, 

mPer1 (only in whole BM), mPer2 and mRev-erbα in hematopoietic cells oscillated with 

amplitudes several-fold lower as compared to liver. In both hematopoietic cell fractions, 
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 Figure 7. mDll1 and mHes1 express circadian rhythms in whole bone marrow (BM, right panel) but not 

significantly in side population (SP) stem cells (left panel, see p values). 

 

circadian expression of mCry1, known to be transcribed rhythmically in liver (Bustin, 2002), 

was more or less constant. Perhaps one of the most interesting findings was that mBmal1 is 

expressed rhythmically and with a high amplitude in liver, but did not oscillate significantly 

in mouse SP stem cells or in whole BM. This result was so unexpected that we repeated the 

analysis of mBmal1 expression in the whole BM using another primer/probe set (Tamaru et 

al., 2003). This reproduced a nonrhythmic mBmal1 expression profile and thus confirmed that 

the absence of mBmal1 rhythmicity in the BM populations was not due to the primers/probe 

design. In addition, we showed that hBmal1 was not significantly rhythmic over 24 h in 

human CD34+ cells.  

Bmal1 is a positive regulator of the molecular clock, and was shown to be expressed 

rhythmically in anti-phase to Per genes in some of the peripheral tissues, such as mouse liver 

(Yamamoto et al., 2004) or human oral mucosa (Bjarnason et al., 2001; Bustin, 2002; 

Yamamoto et al., 2004). Recent studies have demonstrated that the Bmal1 rhythm could also 

be unstable in other tissues, and have an unusual phase relationship with Per2 in human 

peripheral blood mononuclear cells (Teboul et al., 2005), or mouse BM (Granda et al., 2004). 

It was recently suggested that Bmal1 regulation may be tissue-specific (Emery and Reppert, 

2004), since RORs proteins that (with REV-ERB Α) control Bmal1 transcription (Akashi and 
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Takumi, 2005) showed strikingly different patterns across peripheral tissues with varying 

peak times (Guillaumond et al., 2005).  

 Our results that Bmal1 expression was not rhythmic in tested BM populations both in 

mice and humans suggest that it could be undeveloped in rapidly proliferating hematopoietic 

tissues. These data also showed that organization of gene time regulation in BM is different 

from other tissues. This concept is confirmed by our findings that mDbp and mWee1, closely 

related to the clock system in liver, were not rhythmic in mouse BM cells. Both mDbp 

(Lopez-Molina et al., 1997) and mWee1 (Matsuo et al., 2003) displayed a robust circadian 

rhythm in mouse liver and were used as classical examples of clock-controlled genes. 

Interestingly, we found that mDll1, coding a Delta-like ligand for Notch receptor (Karanu et 

al., 2000), and mHes1, a transcription factor and one of the major target of Notch signaling 

(Davis and Turner, 2001), were expressed rhythmically in whole BM (Figure 7, right). Notch 

signaling plays an important role in regulating differentiation and lineage specification in 

hematopoiesis, and the genes related to that system and expressing circadian rhythms could be 

candidate clock-controlled genes in BM. However, additional experiments have to be 

performed (e.g., with clock-gene knockouts) to prove that these genes are directly regulated 

by the clock gene(s). It is of special interest that mDll1 and mHes1 did not oscillate in SP 

stem cells (Figure 7, left) contrary to whole BM. This result confirms that rhythms in 

hematopoietic stem cells are developmentally-regulated. Notable during hematopoiesis, Notch 

signaling is especially important for stem cell compartmentalization, and has the propensity to 

expand the stem cells, promote their self-renewal, and influence their survival (Allman et al., 

2002). Thus, Hes1 plays a significant role in mouse primitive hematopoietic stem cell 

expansion, significantly preserves the long-term reconstituting activity of these cells during 

culture, and induces a several fold increase in mouse SP (Kunisato et al., 2003). This may 

address the question of possible correlations between the regulatory function of Notch 

signaling in stem cells and non-rhythmic expression of at least some of the genes involving in 

this pathway.  

From the point of physiological need, the specific organization of the molecular clock 

in hematopoietic tissue has to be related to its specific functions (see Introduction). Markedly 

different distributions of circadian phases in peripheral tissues (Storch et al., 2002), as well as 

minor overlap of cycling (clock-controlled?) genes between tissues (Panda et al., 2002), 

suggest that the clock system in general is organized in a tissue-specific manner. This 

property of the clock system is physiologically relevant, and useful in the process of 

adaptation of peripheral tissue(s) to particular conditions. This also supports the concept that a 
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molecular clock plays an important role in the regulation of specific tissue functions (Gachon 

et al., 2004).  

Further studies aimed on defining molecular links between circadian clocks and 

gene/protein expression in BM may help to understand how and to what extent hematopoiesis 

is controlled by endogenous rhythms. 
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CONCLUSIONS 

 

1. The developed methodological approach combining flow cytometric 

high-speed sorting (in mice) and magnetic beads isolation (in human) 

of stem/progenitor cell populations with Q-RT-PCR is useful for clock 

gene expression analysis and circadian variation studies in small 

hematopoietic cell fractions 

 

2. We demonstrated, for the first time, clock gene expression in purified 

hematopoietic stem cells in mice and stem/progenitor CD34+ cells in 

human over a 24-h period, with a relative level of expression different 

from that in whole bone marrow. 

 

3. Most clock genes (with the exception of mPer2) studied in mouse 

hematopoietic SP stem cells were not oscillating in a fully organized 

circadian manner, which could indicate that circadian clock gene 

expression variations in mouse bone marrow are developmentally 

regulated. 

 

4. We demonstrated that three of eight key clock genes expressed in 

human bone marrow CD34+ progenitor/stem cells hPer1, hPer2 and 

hCry2 exhibit a significant circadian rhythm.  

 

5. Bmal1 does not oscillate significantly in any of the studied fractions of 

mouse or human hematopoietic cells, which could indicate that Bmal1 

is not rhythmic in hematopoietic tissues.  

 

6. In general, clock gene expression in human and mouse hematopoietic 

bone marrow stem and progenitor cells has a specific circadian profile 

with some differences from the patterns in other tissues. 
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ERRATA 

The following typographical and grammatical corrections have been made after the 

submission of the thesis. 

Page 17, paragraph 1 after the subtitle, has been added: “…systematic 24-h (circadian) 

variations.” 

Page 19, paragraph 1,  has been added: “…an important statistical tool for biological studies 

of rhythms.” 

Page 19, the last paragraph: “…period (PER) gene…” has been changed to: “…period (per) 

gene…”   

Page 22, the last paragraph: “…accumulate or controlled…” has been changed to: 

“…accumulate or are controlled…” 

Page 27, III, “…(2006) Circadian variations in clock gene expression of human bone marrow 

CD34-positive cells (submitted to J Biol Rhythms).” has been changed to: “…(2007) 

Circadian variations in clock gene expression of human bone marrow CD34-positive cells (J 

Biol Rhythms in press).” 

Page 37, Conclusion 2: “...total bone marrow” has been changed to: “…whole bone marrow.” 
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