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ABSTRACT: A method for solving the saturation equation for two-phase ¤ow is presented. The method may
be viewed as an operator splitting method or as an Eulerian-Lagrangian backtracking procedure or as a modi£ed
method of characteristics. For each time step, the method consists of an advection step and a diffusion step. The
advection step requires the tracking of streamlines locally around certain integration points. On each streamline
we have to solve a nonlinear hyperbolic equation. This is done using a front tracking method. The solution
from the tracking step is projected back onto a £xed grid, and we £nally have to solve a parabolic heat-type
equation.

1 INTRODUCTION

The numerical solution of advective-diffusive trans-
port problems arise in many important applications in
science and engineering, e.g. oil reservoir ¤ow, trans-
port of solutes in ground water and surface water, the
movement of aerosols and trace gases in the atmo-
sphere, to mention a few examples. The dif£culty of
solving such problems, especially if advection domi-
nates, have long been recognized as one of the more
challenging tasks in scienti£c computing, see (Mor-
ton 1996) for an overview.

An important class of numerical schemes for solv-
ing such problems are the Eulerian-Lagrangian local-
ized adjoint methods (ELLAM) (Celia et al. 1990;
Herrera et al. 1993; Wang et al. 1999). These schemes
have been successfully applied to linear transport
problems of various types, and give a framework for
devising Eulerian-Lagrangian type methods that are
both mass conservative and able to handle boundary
conditions in a fairly systematic way.

A more dif£cult problem is the solution of multi-
phase transport processes. This leads to nonlinear ad-
vection which greatly complicates the tracking part of
the algorithm. Usually this dif£culty has been over-
come by some kind of linearization, e.g., (Dahle et al.
1995; Douglas et al. 1997). However, such lineariza-
tions may put arti£cial restrictions on the time steps
that are not dictated by the physical processes investi-
gated.

The tracking algorithm is a major part of any
Eulerian-Lagrangian type method. Essentially, this

part consists of tracing ¤ow lines from certain inte-
gration points through a £xed spatial grid. Usually the
velocity £eld is calculated as a part of the model, and
the calculation of streamlines may then be done ef£-
ciently by analytical methods (Pollock 1988; Goode
1990; Datta-Gupta & King 1995; Lu 1994; Russell
& Healy 2000), or less ef£ciently by ode-solvers like
the Runge-Kutta methods. On the other hand, stan-
dard ode-solvers do not depend on any particular rep-
resentation of the velocity £eld, and are a lot easier to
implement.

A number of Eulerian-Lagrangian type methods
have been suggested to solve the saturation equa-
tion for two-phase immiscible ¤ow, e.g., (Dahle et al.
1990; Dahle et al. 1992; Dawson 1991; Douglas et al.
1997; Espedal & Karlsen 1999). In petroleum re-
search, streamline/streamtube-methods have become
very popular for solving this type of problems (Datta-
Gupta & King 1995; Bratvedt et al. 1996; Hewett
& Yamada 1997; King & Datta-Gupta 1998). The
main dif£culties encountered are the nonlinearity of
the fractional ¤ow (or ¤ux) function f (typically s-
shaped), which leads to self-sharpening fronts, and
the possible degenerate nature of the small capillary-
diffusion term.

Here we focus on the £rst dif£culty and will present
a scheme based on the following steps: Lagrangian-
step: Calculate the streamlines locally around certain
integration points on a £xed grid. Since the transport
equation is nonlinear, the calculation of the foot of the
streamline, i.e. the point where the streamline cross
the previous time level, becomes a nonlinear hyper-
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bolic equation. Thus, to advect the solution along the
local streamlines we use front-tracking (Holden et al.
1988) as a fast hyperbolic solver. This step involves a
projection of the solution from the previous time step,
onto the streamline. Eulerian-step: The advected so-
lution is projected back onto a £xed grid, and then
used as initial condition for a heat-type equation. This
parabolic equation is solved on a £xed grid, using a £-
nite difference scheme.

In the following, we £rst introduce a simple model
for two-phase ¤ow. Then, a fairly detailed description
of the numerical method is given, followed by some
preliminary numerical results and conclusions.

2 MODEL
The problem to be considered here is the saturation
equation for two-phase ¤ow (Chavent & Jaffre 1986):

ut +∇ · (f(u)v) = ε∇ · (D(u)∇u), (1)

where u ∈ [0, 1] is the saturation of the wetting phase.
For ease of presentation, we restrict the problem to a
two-dimensional domain. Furthermore, we have ne-
glected gravity in this model, since gravity gives rise
to an additional advection term (Karlsen et al. 1998).
The velocity £eld v is normally calculated as part of
the model, involving Darcy’s law and a compressibil-
ity condition. For the purpose of this work, we shall
simply assume that v is a given vector-valued func-
tion which satisfy:

∇ · v = 0. (2)

The fractional ¤ow (or ¤ux) function f is given as
the relative permeability of the wetting phase divided
by the sum of the relative permeabilities. A simple
analytic expression for this function is given by

f(u) =
u2

u2 + (1− u)2
. (3)

Note that f ′ ≥ 0 for u ∈ [0, 1]. The capillary diffu-
sion coef£cient D(u) is generally a nonlinear (bell-
shaped) function of u which becomes zero at the end
points u = 0, 1. Thus, (1) is an example of a parabolic
degenerate equation. This degeneracy add extra dif£-
culties that will be avoided here by setting D = 1. Fi-
nally, the parameter ε determines the relative impor-
tance of advective and diffusive forces, and is small
for advection dominated problems.

To close this model we need to specify an initial
state given by

u(x, y, 0) = u0(x, y), (4)

and boundary conditions. Generally, boundary con-
ditions add greatly to the complexity of any numer-
ical scheme, and is one reason why the ELLAM-
methodology was originally devised. However, since
the main purpose of this work is to demonstrate a
tracking concept for nonlinear transport problems, we

shall assume that the saturation u is de£ned on an
in£nite domain. The numerical solver will then be
supplied with zero Dirichlet- or Neumann-conditions,
whenever required.

3 NUMERICAL FORMULATION
Let the computational domain be discretized by a
rectangular Cartesian grid, and assume that an ap-
proximate solution, Un−1

ij , of equation (1), is given at
each node xij on the grid and time tn−1. The problem
is to £nd a new approximation at time-level tn, where
tn − tn−1 = ∆t. To do so, observe that a directional
derivative

d

dξ
= v · ∇, (5)

may be de£ned along streamlines

dr

dξ
= v. (6)

It follows that the hyperbolic part of the problem will
greatly simplify if we can construct a new orthogonal
coordinate system based on streamlines and velocity
equipotentials, see e.g. (King & Datta-Gupta 1998).

The approach taken here is to split equation (1) into
a hyperbolic part:

ut + v · ∇f(u) ≡ ut + fξ(u) = 0, (7)

using (2) and (5), and a parabolic part:

ut = ε∇ · (D∇u). (8)

The procedure is then £rst to advect the solution from
one time level to the next by solving (7) with the solu-
tion at the previous time level as initial condition. Sec-
ondly, this solution is diffused by solving (8) to obtain
a £nal solution at the new time level. This operator-
splitting algorithm is analyzed by (Karlsen & Risebro
1997).

3.1 Calculating Streamlines
Let xq denote £xed integration points. The placement
and number of integration points are somewhat arbi-
trary, but is chosen to be the cell-centers in this work.
We have to approximate streamlines backwards from
xq since f ′ ≥ 0. An ode-solver denoted RK(·) is
used to solve equation (6). Let x̄q = x̄q(ξ) be the
(approximate) streamline such that x̄q(0) = xq. Fur-
thermore, let λ = maxu |f

′|, and ∆ξq be the (largest)
Runge-Kutta step. The streamline has to be traced for
ξ ∈ [−λ∆t, 0]. The following quasi-algorithm de-
scribes the tracking:
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Algorithm 1:

x̄q = xq;
ξ = 0;
while ξ > −λ∆t;

∆ξ ← ∆ξq;
x← RK(∆ξ, x̄q);
while x /∈ neigh(x̄q);

∆ξ ← ∆ξ/2;
x← RK(∆ξ, x̄);

end while;
ξ ← ξ −∆ξ;
x̄q ← x;

end while;

The second while-loop is introduced to avoid that a
streamline is tracked more than one grid-cell in each
Runge-Kutta step. Here, neigh(x) denote the grid-
cell to which x belongs, and the eight neighbour cells
to this grid-cell.

Algorithm 1 produces points x̄k
q = x̄q(ξk) =

(xk
q , y

k
q ), k = 1, 2, . . . , K, on the streamline. The en-

tire streamline is constructed by introducing straight
lines between such points. Thus,

x̄q(ξ) =
1

∆ξk

(

x̄k−1
q (ξk − ξ)− x̄k

q(ξ − ξk−1)
)

,

for ξk ≤ ξ ≤ ξk−1. It is now easy to determine points
ξlc, l = 1, 2, . . . , L, where the streamline crosses grid-
lines. Assume that xk−1

q ≤ xi ≤ xk
q , where xi is the

i-th grid-line orthogonal to the x-axis, then

ξc =
∆ξk
∆xk

xi + xk
qξk−1 − xk−1

q ξk.

The points where a streamline crosses grid-lines or-
thogonal to the y-axis, are found by a similar calcu-
lation. The ordered set of all such points on a given
streamline,{ξlc}, is of course generated as part of Al-
gorithm 1.

3.2 Advection
We wish to determine the solution of (7) at the inte-
gration points xq and time-level tn, given the approx-
imate solution Un−1.

Equation (7) is a one-dimensional hyperbolic con-
servation law. The basic waves of the scalar equation
are rarefaction waves and shocks. There exist numer-
ous ef£cient solver for such problems, see for exam-
ple (Toro 1999). Here, we will use a front tracking ap-
proach. The front tracking method was £rst presented
in (Dafermos 1972), and later developed into a nu-
merical method by (Holden et al. 1988).

The front tracking method requires that the data is
replaced by piecewise constants along the streamline.
Here, we choose to place the discontinuities at the
crossing points {ξlc}. Then the initial data v0 can be
computed by

v0(ξ) =
1

∆ξl

∫ ξl−1
c

ξl
c

Un−1(ξ)dξ, (9)

for ξlc < ξ < ξl−1
c . To simplify the last calculation,

Un−1 is replaced by some cell average Ũn−1 on each
grid-cell, so that v0(ξ) = Ũn on the segment of the
streamline contained in the respective grid-cell. Note
that the way the streamlines are de£ned, states to the
left of ξKq and right of ξ0

q = 0 do not interact with
the solution at xq for t ∈ [tn−1, tn]. These states are
therefore replaced by the values at the endpoints.

Front tracking proceeds by calculating the position
of the discontinuities (fronts) at time tn. This also im-
ply the solution values at integration points xq to be
used in the diffusion step.

3.3 Diffusion
The solution of Equation (8), given the solution of (7)
at the integration points, are open for many choices
of discretization. Based on the ELLAM-methodology
£nite-element or £nite-volume type techniques are
natural choices. Here, a simple second order accurate
explicit central-difference scheme have been used,
since the main purpose of this work is to test the track-
ing concepts. The initial data Ūn−1

ij of (8) at nodes xij

is taken to be

Ūn−1
ij =

1

4

4
∑

k=1

Ūn−1(xqk
),

where xqk
, k = 1, . . . , 4, are the integration points of

the four cells that have xij as a common vertex.
Note that when solving (8) using an explicit differ-

ence scheme, there is a stability constraint on the time
step. Consequently, we may have to take many sub-
steps to propagate the solution of (8) from time tn−1

to tn.

4 NUMERICAL EXAMPLES
Some preliminary experiments are performed with a
rotating velocity £eld

v(x) = 2π[y,−x].

The initial condition (4) is chosen to be the cylindrical
pro£le:

u0(x) =

{

0, (x− 1)2 + (y + 1)2 > 0.32,
1, (x− 1)2 + (y + 1)2 ≤ 0.32.

The computational domain is set to be the square
[−4, 4] × [−4, 4]. This domain is discretized using
a uniform grid of 160 grid-cells in each direction
(∆x = ∆y = 0.05).
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Figure 1: Solutions with linear ¤ux, ε = 0.
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Figure 2: Solutions with linear ¤ux, ε = 0.1.
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Figure 3: Solutions with nonlinear ¤ux, ε = 0.
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Figure 4: Solutions with nonlinear ¤ux, ε = 0.1.
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We have run two sets of experiments. The £rst with
linear advection, f(u) ≡ 1, and the second with a
nonlinear ¤ux given by Equation (3). For each ex-
periment the £nal time is T = 1 (one rotation in
the linear case), and we have varied the time step as
∆t = 0.05, 0.2. The diffusion parameter is set to be
ε = 0 (no diffusion) and ε = 0.1.

The experiments show that some numerical diffu-
sion is introduced by the projection step, see Figure
1 and Figure 3. In particular, we see that the non-
linear hyperbolic waves are slightly distorted by the
number of projection steps, see Figure 3. However,
the front-tracking method is itself diffusion free, and
reproduces the waves correctly.

The introduction of a diffusion term, seems to al-
leviate the effect of the projection steps, see Figure 2
and Figure 4 and note that the u-axis is scaled differ-
ently form Figures 1 and 3. In fact, the combination of
front tracking and local streamlines seems to advect
the solution accurately and without grid orientation
effects.

5 CONCLUSIONS
The experiments reported here are in agreement with
what should be expected: The calculation of local
streamlines leads to negligible grid orientation effects
and allow us to use fast hyperbolic solvers. Some
numerical diffusion is introduced by the projection
steps, whereas the front tracker introduce no numeri-
cal diffusion.

The method seems to be fairly ¤exible. How-
ever, before any de£nite conclusions can be drawn,
more extensive experiments have to be performed.
In particular, semianalytical tracking methods should
be implemented, and different projection strategies
should be investigated. Comparisons with other meth-
ods and/or analytical results must also be done.

Work is in progress on the following modi£ca-
tions/extensions of the method: Most important, a
£nite-element or £nite-volume type method will be
implemented for the parabolic step. This should allow
us to use concepts from the ELLAM-methodology
and enable the method to be tested on more realis-
tic problems. Furthermore, the calculation of stream-
lines using ode-solvers seems to be computationally
very time consuming and will be replaced by semi-
analytical methods. Finally, splitting errors caused by
the nonlinearity of the ¤ux will appear when too large
time-steps are taken, see (Karlsen & Risebro ; Karlsen
et al. 1998; Brusdal et al. 1998). The use of a front
tracker allow us to construct correction terms that may
compensate for splitting errors.
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