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1. Scientific enviroment 

This work was carried out at the National Multiple Sclerosis Competence centre and 

Neuro-SysMed at the Department of Neurology, Haukeland University Hospital, 

Bergen, and the Department of Clinical Medicine, University of Bergen. Neuro-

SysMed is jointly hosted by Haukeland University Hospital and the University of 

Bergen, and supported as a Centre for Clinical Treatment Research (FKB) by grants 

from The Research Council of Norway. 

Main supervisor: Dr. Sonia Gavasso 

Co-supervisors: Prof. Christian Vedeler and Prof. Kjell-Morten Myhr  

Patients were included at the Department of Neurology. Sample preparation and 

laboratory work were performed at the Neurological research laboratory headed by 

Prof. Christian Vedeler and mass cytometry experiments were performed at the Flow 

Cytometry Core Facility, Department of Clinical Science, University of Bergen. The 

Helios Mass Cytometer was funded by the Bergen Research Foundation. Nello Blaser 

at the Department of Informatics, University of Bergen contributed with 

bioinformatic analyses and training. Vinko Tosevski at the University of Zürich 

contributed with cytometry and bioinformatics training. 

The study was funded by Helse Vest. Laboratory reagents and mass cytometry 

analysis was financed by the Neurological research laboratory and by research grants 

from Novartis and Fritz og Ingrid Nielssens legat for forskning av multippel sclerose.  
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3. Abbrevations  

ABC  - antibody binding capacity 

ARR  - annualized relapse rate 

BBB  - blood-brain-barrier 

CD  - cluster of differentiation 

CITRUS - cluster identification, characterization, and regression 

CNS  - central nervous system 

cDCs  - classical dendritic cells 

CSF  - cerebrospinal fluid 

DMT  - disease modifying therapy 

EDSS  - expanded disability status scale 

EID  - extended interval dosing 

FCS file - Flow Cytometry Standard file 

FSS  - fatigue severity scale 

HSCT  - hematopoietic stem cell transplantation 

ICP  - inductively coupled plasma 

IgG  - immunoglobulin G 

JCV  - John Cunningham virus 

MRI  - magnetic resonance imaging 

MS  - multiple sclerosis 
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NEDA - no evidence of disease activity 

NF-L  - neurofilament light chain 

NK cell - natural killer cell 

PBL  - peripheral blood leukocyte 

PBMC - peripheral blood mononuclear cell 

PML  - progressive multifocal leukoencephalopathy 

PPMS  - primary progressive multiple sclerosis 

RCT  - randomized controlled trial 

RO  - receptor occupancy 

RRMS - relapsing remitting multiple sclerosis 

SDMT  - symbol digit modalities test 

SID  - standard interval dosing 

Simoa  - single molecule array 

SPMS  - secondary progressive multiple sclerosis 

TCM  - central memory T cell  

TEM  - effector memory T cell 

TEMRA  - effector memory RA T cell 

tSNE  - t-distributed stochastic neighbor embedding 

VCAM-1 - vascular-cell adhesion molecule 1 

QSC beads - quantum simply cellular beads 
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4. Abstract 

Background: Natalizumab is a therapeutic antibody that effectively reduces disease 

activity in relapsing remitting multiple sclerosis (RRMS) by binding α4 integrin on 

leukocytes and preventing leukocyte migration into the central nervous system 

(CNS). Natalizumab is administered intravenously at a standard dose of 300 mg 

every 4 weeks. Approximately half of treated patients report subjective wearing-off 

symptoms at the end of the dosing interval. This phenomenon is sparsely 

investigated, and it is not known whether it has a biological cause or is associated 

with poor therapeutic efficacy. Accumulating evidence suggests that extending the 

dosing interval to up to 8 weeks maintains therapeutic efficacy in many patients while 

reducing the risk of progressive multifocal leukoencephalopathy (PML), a rare but 

potentially lethal complication of therapy. This has prompted efforts to personalize 

dosing intervals. Natalizumab receptor occupancy (RO) correlates with therapeutic 

response and has been suggested as a biomarker to navigate individual dosing. RO is 

traditionally measured by flow cytometry, but spectral overlap limits the number of 

markers that can be measured simultaneously. This restricts RO assays to the analysis 

of major cell types, although rare cell populations are of potential therapeutic 

relevance. Mass cytometry is a cutting-edge technology that allows simultaneous 

analysis of more than 40 parameters on single cells, facilitating measurement of RO 

in a broader array of cell types together with more biomarkers of interest than 

possible by conventional flow cytometry. Although RO assays are widely used in 

flow cytometry, no RO assay utilizing mass cytometry has been published prior to 

this study. 

Objective: We aimed to develop a method for reliable RO measurement with high-

parameter mass cytometry, and to study natalizumab RO and clinical characteristics 

in RRMS patients treated with natalizumab.  

Methods: We developed a novel method to measure RO with mass cytometry, 

allowing simultaneous in-depth immune monitoring and reliable measurement of 

natalizumab RO on multiple peripheral blood leukocyte subtypes. This was achieved 
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by adapting antibody-binding beads from flow cytometry to standardize the varying 

detection sensitivity in mass cytometry, generating accurate and reproducible RO 

results. We applied the natalizumab RO assay in a cross-sectional study of 40 RRMS 

patients treated with natalizumab at the Department of Neurology, Haukeland 

University Hospital. Clinical and radiological signs of disease activity were recorded, 

and fatigue, cognitive function and wearing-off symptoms were evaluated. We 

followed the patients prospectively for one year.  

Results: In the cross-sectional study, we found that patients who reported wearing-off 

symptoms regularly (at the end of every 4-week dosing interval) had lower 

natalizumab RO in several leukocyte subtypes. Body mass index (BMI) was higher in 

patients who regularly had wearing-off symptoms, and high BMI was associated with 

low RO. After 1-year follow-up none of the patients displayed clinical or radiological 

signs of disease activity, but patients reporting wearing-off symptoms regularly had 

more severe fatigue and cognitive dysfunction. 

Conclusions: Low natalizumab RO may contribute to the wearing-off phenomenon 

and high BMI may be the underlying cause. Patients with wearing-off symptoms 

showed no increased short-term risk of RRMS disease activity, but they may be more 

vulnerable to therapeutic failure if dosing intervals are extended than patients with 

higher RO levels. This work provides new tools for future exploration of natalizumab 

and other therapeutic antibodies in the era of personalized medicine. 
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6. Introduction 

6.1 Multiple sclerosis 

Multiple sclerosis (MS) is characterized by inflammation, demyelination and 

neurodegeneration in the central nervous system (CNS), leading to disruption of 

neuronal signaling and subsequent neurological symptoms.1 MS affects over 2 

million individuals worldwide with an average age of disease onset of 30 years and is 

one of the most common causes of neurological disability in young adults.2, 3 

Prevalence of the disease is higher in women than in men, and shows considerable 

geographical variation.4 Norway has amongst the highest prevalence in the world 

with 208 cases per 100 000.5 

6.1.1 Pathogenesis 

The disease was first defined in 1868 by the French neurologist Jean-Martin Charcot 

(1825-1893), who described disseminated sclerotic plaques (“sclerose en plaque 

disseminees”) in the CNS with loss of the myelin sheet surrounding the axons of 

neurons.6 More than 150 years later, the exact pathogenesis and etiology of MS 

remains unknown.  

Etiology and pathology  

The disease is thought to arise in genetically susceptible individuals, with 

environmental factors influencing disease penetrance.7-9 Genetic risk factors account 

for approximately 30% of the overall disease risk, and environmental risk factors 

including low vitamin D levels, Epstein-Barr virus infection, smoking, and obesity 

can interact with MS risk genes.9-12  

In the healthy CNS, axons of neurons are wrapped in myelin sheaths made from 

layers of the oligodendrocyte cell membrane. The pathological hallmark of MS is 

lesions with inflammation, demyelination, activation of glial cells, and axonal 

degeneration which can be widespread throughout the CNS.1, 13  
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Immunology  

Whether the disease is initially triggered in the periphery or inside the CNS is under 

debate:14, 15 MS has traditionally been considered an autoimmune inflammatory 

disorder, where an abnormal peripheral immune response targets the CNS (the 

outside-in model). According to this model, autoreactive immune cells are activated 

at peripheral sites and traffic over the blood-brain-barrier (BBB) into the CNS. The 

resulting inflammatory response and production of reactive oxygen species causes 

demyelination, axonal loss, neuronal damage, and eventual brain atrophy.8, 16 The 

alternative hypothesis is that neurodegeneration precedes inflammation, and that 

exposure of highly immunogenic myelin antigens causes a secondary immune 

response (the inside-out model).15 However, exposure of antigenic debris in other 

degenerative neurological diseases does not lead to MS and the majority of MS risk 

genes are associated with immune pathways, indicating that an immune predilection 

is necessary for the development of the disease.11  

Whatever the initial trigger, inflammation is present at all stages of MS, although 

more pronounced in acute phases than in chronic phases. Both the adaptive and innate 

immune system play an integral role, and MS lesions contain both activated CNS-

resident glial cells, including microglia and astrocytes, and infiltrates from peripheral 

immune cells, including macrophages, T and B lymphocytes.8, 17 T and B 

lymphocytes are adaptive immune cells which specifically recognize distinct antigens 

and can generate memory cells that respond faster and more vigorously to repeated 

exposures to the same antigen.17 T lymphocytes are classified into major subsets of 

cytotoxic (CD8+) and helper (CD4+) T cells, and naïve T cells can generate memory 

subsets with various functional properties after encountering their antigen. Central 

memory (TCM) cells home to secondary lymphoid tissues whereas effector memory 

(TEM and TEMRA) subtypes execute effector functions such as secretion of pro-

inflammatory cytokines and cytotoxicity at the site of inflammation.18, 19 In MS, 

autoreactive T lymphocytes are activated in the periphery, possibly in cervical lymph 

nodes draining CNS lymphatics, and re-activated locally by antigen presenting cells 

after having entered the CNS. Invading autoreactive B lymphocytes produce 
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oligoclonal antibodies that are detectable in the CSF and are of diagnostic value, 

however the specificity of these antibodies is largely unknown. Other B cell functions 

such as antigen presentation to helper T cells and cytokine production may therefore 

play a more central role in MS pathogenesis.20 Innate immune cells including 

granulocytes, natural killer (NK) cells, monocytes, and dendritic cells provide 

nonspecific reactions to foreign substances and debris and have specialized roles at 

various stages of inflammation including phagocytosis, antigen presentation to 

adaptive immune cells, and tissue repair. Invasion of peripheral immune cells and 

BBB disruption is especially pronounced in early MS lesions. Later, activation of 

CNS-resident microglia and astrocytes become more pronounced, forming multiple 

sclerotic scars which have given the disease its name.8 

6.1.2 Diagnosis 

Symptomatology 

The symptoms and disease course of MS are heterogeneous. Development of new 

demyelinating lesions or expansion of prior lesions can be asymptomatic or lead to 

clinical relapses, defined as monophasic episodes of subacute neurological symptoms 

with a duration of at least 24 hours.21 Symptoms depend on lesion location in the 

CNS, and can include visual, sensory, and motor impairment, cognitive deficits, 

fatigue, and autonomic disturbances often involving the urogenital system.22 In 

around half of relapses the recovery is incomplete, leading to persisting residual 

disability. 

Patients can present with one of two general MS disease patterns.8 Relapsing-

remitting MS (RRMS) is the most common form, affecting around 85% of newly 

diagnosed patients. This disease course is characterized by relapses followed by full 

or partial recovery, and patients are generally stable between relapses. The majority 

of patients with RRMS eventually enter a phase of secondary progressive MS 

(SPMS) characterized by progressively increasing neurological disability in the 

absence of relapses. The less common presentation is primary progressive MS 
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(PPMS), characterized by steadily increasing neurological disability independent of 

relapses from disease onset. 

Diagnostic criteria 

The diagnosis of MS relies on evidence of demyelinating lesions with dissemination 

in space and time, meaning lesions in two or more parts of the CNS that have 

occurred at different timepoints.21 Patients presenting with symptoms suggestive of 

MS routinely undergo clinical neurological examination, magnetic resonance imaging 

(MRI) of the brain and spinal cord with intravenous gadolinium contrast, and lumbar 

puncture for examination of the cerebrospinal fluid (CSF). MRI with contrast 

enhancement is often sufficient to confirm dissemination in space and time, but in 

some patients evidence of dissemination in time is obtained from oligoclonal 

immunoglobulin G (IgG) in the CSF.21 Demyelinating lesions are visible as 

hyperintense areas on T2-weighted MRI scans, and active inflammatory lesions with 

BBB disruption show gadolinium contrast enhancement because the contrast is able 

to pass from the blood into the CNS parenchyma.1 Since not all CNS lesions are 

symptomatic, patients who have experienced only one clinical relapse may have 

numerous lesions on MRI. Signs of CNS inflammation in the CSF include increased 

number of leukocytes and CSF-specific oligoclonal IgG bands reflecting abnormal 

intrathecal antibody production by clonally expanded B-cells.23  

An isolated clinical episode with MS symptoms without radiological evidence of 

dissemination in space and time is referred to as clinically isolated syndrome (CIS) 

and typical MS lesions on MRI not accompanied by clinical signs of MS (or a history 

of such) are referred to as radiologically isolated syndrome (RIS). 

6.1.3 Therapy 

There is still no cure that fully halts MS disease progression or reverses disability, but 

the long-term prognosis of RRMS has radically improved over the past three decades. 

This is mainly due to the introduction of disease modifying therapies (DMTs) in the 
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mid-1990s, which prevent development of demyelinating lesions and clinical relapses 

and reduce accumulation of disability.1 

Each DMT has a distinct safety and efficacy profile, commonly inducing immune-

suppression and reduction of CNS inflammation by various mechanisms of action 

like reducing numbers of circulating leukocytes, inhibiting trafficking over the BBB, 

or reducing cytokine production.24, 25 Choice of DMT is influenced by a combination 

of patient-related factors including disease aggressiveness, comorbidities, patient 

preferences, and family planning (pregnancy) and drug-related factors including 

mode of action, efficacy and side-effect profile, route and frequency of 

administration, and price.26 New compounds are constantly in development, and 

currently approved DMTs can be categorized as moderately effective (glatiramer 

acetate, β interferons, dimethyl fumarate, fingolimod, teriflunomide) and highly 

effective (natalizumab, alemtuzumab, cladribine, ocrelizumab, rituximab, and 

ofatumumab).24 Highly effective DMTs are generally associated with potentially 

more serious safety concerns and require greater monitoring. Thus, the traditional 

therapeutic strategy is an escalation approach where moderately effective DMTs are 

used as first-line therapy and escalation to highly effective DMTs is considered in 

cases of treatment failure with breakthrough disease. However, most patients have 

already accumulated disability before escalation, and highly effective DMTs have a 

more pronounced effect in young patients with little neurological disability.27 This 

has encouraged a paradigm shift towards early highly effective therapy to improve 

disease control and thus delay accumulation of disability. DMTs have been found to 

be effective only in RRMS with the exception of ocrelizumab, which was recently 

licensed for PPMS.28  

Autologous hematopoietic stem cell transplantation (HSCT) causes a sustained 

reduction of inflammatory activity in RRMS through “immune resetting” by 

immunoablative therapy followed by reconstitution of the immune system from 

hematopoietic stem and progenitor cells.29 Recently, a phase III randomized clinical 

trial reported HSCT to be superior to the best available DMT for a subset of RRMS 

patients with highly active disease.30 
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Methylprednisolone is used for relapse therapy to speed up and possibly improve 

recovery, and a wide range of further therapeutics and aids are available to relieve 

MS-related symptoms including spasticity, gait difficulties, urinary and sexual 

challenges, depression, fatigue, and pain.31  

6.1.4 Therapeutic response 

With the introduction of highly effective DMTs, the perception of what constitutes 

treatment success has become stricter. Careful monitoring for signs of disease activity 

is crucial for the early discovery of suboptimal response to therapy, preferably at a 

subclinical stage, to prevent accumulation of disability. Although DMTs are effective 

on a population level in RRMS, the therapeutic response and disease course in 

individual patients is unpredictable, and biomarkers are being sought to guide 

therapeutic decision-making and personalize therapy. 

Evidence of disease activity 

Disease activity is commonly evaluated by occurrence of clinical relapses, 

progression of neurological disability and MRI activity. MRI activity, often defined 

as new or enlarged T2 lesions or gadolinium-enhancing lesions, is more sensitive for 

disease activity than clinical relapses as it also captures clinically silent new lesions, 

thereby lowering the threshold for detecting treatment failure.27, 32 The most widely 

used scoring tool for neurological disability in MS is the Expanded Disability Status 

Scale (EDSS), a clinician-based assessment of CNS-functions with a score ranging 

from 0 to 10 where higher scores indicate more severe disability.33 An increasingly 

used treatment target and surrogate end point in MS clinical trials is ”no evidence of 

disease activity” (NEDA-3), defined as the absence of clinical relapses, disability 

progression (as measured by EDSS), and MRI activity.34  

What constitutes evidence of disease activity is currently debated, and the NEDA-3 

concept has been criticized for not adequately reflecting overall response to therapy.35 

Because the criteria emphasize inflammation more than degeneration, inclusion of 

annualized brain volume loss as a surrogate marker of neurodegeneration has been 
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suggested a fourth criterion (NEDA-4).36 The criteria have also been criticized for not 

taking into account neuropsychological symptoms like fatigue and cognitive 

impairment.37 Fatigue, a feeling of extreme mental or physical exhaustion, is a 

common symptom in MS which influences quality of life and working ability 

independently of MS-related physical disability.38-41 Cognitive impairment, affecting 

approximately half of patients with MS, may be present even before the first physical 

signs of the disease and reduces working ability and quality of life.42, 43 Cognitive 

impairment is underreported and correlates poorly with T2 lesions on MRI, and many 

patients have worsening of cognitive scores although fulfilling the criteria for NEDA-

3.44-46 Future NEDA definitions may include neuropsychological and working ability 

parameters, as well as patient reported outcomes to catch subjective symptoms of 

suboptimal therapeutic response that may not be perceived as important to physicians 

as they are to patients.35, 37, 47, 48  

Biomarkers and individual therapeutic response 

The heterogeneity of disease course and therapeutic response in MS has garnered 

interest for personalized therapy approaches that take into account individual 

variability.49 Development of personalized therapy can be aided by identification of 

biomarkers that elucidate the biological basis of observed variations in clinical 

disease activity and response to therapy. A biomarker is defined as a characteristic 

that can be objectively measured and serves as an indicator of normal biological 

processes, pathological processes or pharmacological reactions to therapy.50 MRI 

lesion activity is a well-established imaging biomarker in MS, and other MRI-based 

measures for regional or global cerebral atrophy are receiving increasing attention.35, 

51 Numerous molecular biomarkers, often measured in body fluids, have been 

proposed to aid the diagnosis of MS and allow prediction and early discovery of 

suboptimal therapeutic response and identification of patients at high risk for side-

effects.23 Despite extensive research, a gap remains between the numerous 

exploratory biomarkers proposed in studies and biomarkers that are validated and 

finally integrated into routine clinical practice. A body fluid biomarker for treatment 

response in MS should be process-specific and easily accessible (preferably in 
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peripheral blood), and most importantly; clinically useful, as assessed by the 

probability to improve patient outcome.23 For implementation in clinical practice, the 

test should have high analytic validity and be simple, cost effective, safe, and non-

invasive.  

Neurofilament as a multiple sclerosis biomarker  

Neurofilament light chain (NF-L) stands out as the most promising new molecular 

MS biomarker for use in routine clinical practice.52 Neurofilaments are neuron-

specific cytoskeletal components which are released into the CSF upon neuronal and 

axonal damage in the CNS, and have been explored as potential MS biomarkers for 

more than two decades since they were first reported to be elevated in patients with 

RRMS.53 The light chain subunit of neurofilaments, NF-L, has proven more useful in 

MS than other subunits.54 A small proportion of NF-L in CSF passes the BBB into 

peripheral blood and, although over 40-fold lower, serum NF-L levels strongly 

correlate with CSF levels.55, 56 Recent development of sufficiently sensitive methods 

for detection of NF-L in serum by single molecule array (Simoa) has made the 

biomarker feasible for repeated measurements in peripheral blood.57 NF-L levels are 

higher in MS patients than in healthy controls58 and further increase during relapses 

and MRI lesion activity.56, 59, 60 Levels decline both after initiation of DMT in 

treatment-naïve RRMS patients and when switching from moderately to highly 

effective DMTs.55, 56, 61, 62 Accumulating evidence supports NF-L as an important 

biomarker in clinical follow-up of therapeutic response in RRMS patients,52 

particularly as a marker of subclinical disease activity.56, 60 Normalization of NF-L 

levels has been proposed as a fifth treatment goal to be included in future NEDA 

definitions (NEDA-5).35, 47 

NF-L levels increase by approximately 2% per year in healthy individuals and show 

substantial inter-individual variation, and an age-specific cut-off for pathological 

levels is necessary before taking the biomarker into clinical use.52, 59 Using each 

patient as its own control has also been suggested.52 NF-L levels are elevated in a 

range of other neurological diseases including ALS, Alzheimer’s disease, stroke, 
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frontotemporal dementia, and Creutzfeldt-Jacobs disease,63-66 and combining NF-L 

with other biomarkers more specific to MS may be of value.52 

6.1.5 Prognosis 

Half a century ago, the prognosis of MS was poor: 10 years after diagnosis, 25% of 

patients could still work, 50% were out of work, and 25% had died of the disease.67 

The introduction of increasingly effective DMTs together with improved diagnostics 

and a more aggressive treatment target of NEDA instead of only clinical relapse 

reduction have contributed to the radically improved prognosis of RRMS.27 However, 

it is doubtful that RRMS can be fully arrested and that conversion to SPMS can be 

prevented with current therapies.68 Patients with MS have a shorter life expectancy 

than the general population, but over the last decades the relative survival has 

increased. This started already before the introduction of DMTs, possibly due to 

improved care, rehabilitation and treatment of symptoms and comorbidities.69, 70 

6.2 Natalizumab 

Natalizumab (Tysabri®, Biogen) is a highly effective DMT that prevents RRMS 

disease activity by blocking leukocytes from entering the CNS over the BBB. 

Natalizumab was approved for MS therapy in 2006 and is administered intravenously 

at a standard dose of 300 mg every 4 weeks.71 

6.2.1 Mode of action 

Infiltration of circulating leukocytes is an early event in the formation of 

demyelinating CNS lesions in RRMS.13 Leukocyte migration across the BBB in the 

vessels of the brain and spinal cord is facilitated by the adhesion of α4β1 integrin on 

leukocytes to vascular-cell adhesion molecule 1 (VCAM-1) on vascular endothelial 

cells (figure 1A).72, 73 Natalizumab is a recombinant humanized monoclonal IgG4 

antibody that selectively binds to the α4 subunit of α4β1 integrin and blocks binding 

to VCAM-1 (figure 1B). This results in the prevention of leukocyte migration over 
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the BBB and drastically reduces the formation of demyelinating CNS lesions, as first 

shown in an animal model of MS in 1992.74  

Figure 1: Natalizumab blocks leukocyte trafficking to the central nervous system (CNS) 

over the blood-brain barrier (BBB). (A) α4 integrin binds to vascular cell adhesion 

molecule 1 (VCAM1) on endothelial cells, giving leukocytes access to the CNS. (B) 

Natalizumab, a humanized antibody to α4 integrin, blocks binding of leukocytes to VCAM-1, 

thereby preventing lymphocyte entry into the CNS. Adapted and reprinted by permission 

from Rockefeller University Press: Journal of Cell Biology, 75 © 2012 

 

Disrupted trafficking of T lymphocytes was initially thought to be the major 

therapeutic effect of natalizumab,74 however its impact on trafficking, composition 

and function of other leukocyte subsets including B cells76-79 and altered levels of 

circulating lymphocytes80 and CD34+ hematopoietic stem cells81 has also been 

suggested to play a role. Further pharmacodynamic effects of natalizumab include 

downregulation of α4β1 integrin on the surface of leukocytes which contributes to 

their reduced migratory capacity over the BBB,82 and reduction of lymphocytes in the 

CSF reflecting restricted immune surveillance of the CNS.83 α4β1 integrin can 

modulate the survival, priming, and activation of leukocytes through interaction with 

fibronectin and osteopontin in the CNS, and natalizumab may also modulate 

inflammatory reactions inside the CNS by inhibiting these interactions.72  
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6.2.2 Clinical efficacy 

Reduction of disease activity 

Natalizumab efficiently prevents clinical relapses, formation of new CNS lesions, and 

accumulation of disability and in patients with RRMS, as demonstrated by 

randomized clinical trials, 84, 85 real-world data,86, 87 and meta-analyses comparing 

natalizumab to other DMTs.88, 89 Compared to placebo, natalizumab reduces the 

annualized relapse rate (ARR) by 68 % and the two-year risk of disability progression 

and formation of new or enlarged T2 MRI lesions by 42 and 83%, respectively.85 The 

ARR on natalizumab therapy is approximately 0.385, 86 and 24-month proportion with 

NEDA-3 is 70%.87 Natalizumab has positive effects on MS-related fatigue, cognitive 

dysfunction, mood, well-being, and quality of life.84, 90-94 The high efficacy is further 

supported by the observed reduction of NF-L to similar levels as healthy controls 

after initiation of natalizumab, indicating reduced axonal damage.62 

After natalizumab withdrawal, disease activity typically starts returning 10-12 weeks 

following cessation of therapy, but in some patients this occurs after only 6-8 

weeks.95, 96 Extensive rebound of MS disease activity can occur in this period. 

Development of transient or persisting anti-natalizumab antibodies is seen in 6-9% of 

patients, often during the first 3 months of therapy. Such antibodies bind to 

natalizumab and reduce therapeutic efficacy due to increased natalizumab clearance 

and may be accompanied by infusion-related adverse events.71, 97  

The wearing-off phenomenon 

As many as 54-63% of patients who receive natalizumab report that the effect “wears 

off” towards the end of the 4-week dosing interval, and that subjective symptoms, 

most commonly fatigue, increase during the last week of the dosing interval and 

improve shortly after receiving their next infusion.98-101 These patients show 

improved scores for fatigue, depression and quality of life after a new natalizumab 

infusion, while patients without wearing-off symptoms have stable scores throughout 

the dosing interval.100 Although frequent, the wearing-off phenomenon has been 
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sparsely investigated, and it is unknown whether the symptoms have an underlying 

biological mechanism or are purely psychological. 

6.2.3 Progressive multifocal leukoencephalopathy 

Natalizumab is generally well tolerated,85 but treatment is associated with increased 

risk of progressive multifocal leukoencephalopathy (PML), a rare but potentially 

lethal demyelinating CNS disease caused by infection of oligodendrocytes with John 

Cunningham (JC) virus.71, 102 About 30-70% of healthy adults have antibodies against 

JC virus, but primary infection usually goes unnoticed. PML is thought to be an 

opportunistic infection in immunocompromised patients, and is most often reported 

in patients with human immunodeficiency virus (HIV) and hematological 

malignancies and in patients receiving immunomodulatory therapy.103, 104 

Natalizumab increases PML risk more than any other immunomodulatory therapy. 

This is attributed to the reduced migratory capacity of immune cells over the BBB, 

resulting in impaired CNS immune surveillance and risk of opportunistic CNS 

infections.83, 105, 106 The incidence is highly dependent on three established risk 

factors: level of JC virus antibodies in serum (JCV index), use of immunosuppressant 

therapy prior to natalizumab, and duration of natalizumab treatment.71 Overall, PML 

affects 4/1000 natalizumab treated patients, however in patients with a high JCV 

index who have been treated with natalizumab for more than 2 years after previously 

receiving other immunosuppressants, the estimated PML risk increases to 17/1000 

treated patients.104 PML causes subacute neurological symptoms and can be 

diagnosed by typical MRI findings and detection of JC virus DNA in the CSF. Re-

establishing immune defense in the CNS by discontinuation of natalizumab (and 

sometimes plasmapheresis to remove drug from the circulation) is the only current 

treatment for natalizumab-associated PML, but the mortality is still approximately 

20%.104, 107 Starting natalizumab therapy is generally avoided in JC virus-positive 

RRMS patients to reduce the risk of PML. JC virus-negative patients under treatment 

with natalizumab are routinely screened for JC virus antibodies every 6th month, and 

switching to other DMTs is considered if patients convert to JCV-positive status. 
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6.2.4 Individualized natalizumab dosing and receptor occupancy  

The clinical response to natalizumab therapy is individual. While some patients still 

have disease activity when natalizumab is administered at the standard dose, several 

observational studies of doses administered with extended intervals suggest reduced 

risk of PML while maintaining therapeutic efficacy. Under-dosing may induce 

therapy failure and relapses with potentially permanent CNS damage, and a 

biomarker to safely navigate natalizumab dose optimization based on the individual 

therapeutic response is therefore highly relevant.  

Extended interval dosing 

As natalizumab-associated PML is attributed to reduced CNS immune surveillance, 

extending the natalizumab dosing intervals from 4 to 5-8 weeks has been proposed in 

an effort to reduce the PML risk by restoring partial immune surveillance of the CNS. 

Retrospective observational studies of such off-label extended interval dosing (EID) 

suggest that the therapeutic efficacy is maintained compared to standard interval 

dosing (SID).108-111 However, these studies are limited by non-randomized design 

with a possible selection bias of patients with less aggressive MS disease to the EID 

treatment group. A recent retrospective evaluation of over 35,000 JC virus positive 

patients treated with natalizumab showed substantially reduced occurrence of PML in 

patients treated with EID compared to those treated with SID, but the study was not 

randomized and did not evaluate therapeutic efficacy.112 The first randomized 

prospective trial of effectiveness and safety in SID versus EID (ClinicalTrials.gov 

identifier NCT03689972) is ongoing.  

Natalizumab receptor occupancy 

Receptor occupancy (RO) assays measure the binding of therapeutic antibodies to 

their cellular targets and are widely used in drug development and selection of 

optimal therapeutic dose.113 Natalizumab RO, defined as the proportion of α4 integrin 

bound by natalizumab, varies considerably between patients receiving the same dose 

and correlates with therapeutic efficacy and possibly with risk of natalizumab-
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associated PML.95, 96, 114-116 Therefore, natalizumab RO has been suggested as a 

biomarker to navigate individualized dosing, aiming to minimize natalizumab 

exposure to reduce the risk of PML while maintaining therapeutic efficacy.117 The 

lowest RO threshold to maintain therapeutic efficacy has not been determined, but 

some data suggest that optimal efficacy is achieved when RO is kept over 70-80%.118 

Natalizumab binds α4 integrin on the leukocyte surface with high avidity 

immediately after intravenous infusion.118 In general, natalizumab RO correlates with 

the level of free natalizumab in serum, peaking after infusion and declining towards 

the end of the dosing interval. Natalizumab has a mean volume of distribution of 5.7 

(SD ± 1.9) liters and a mean half-life of 11 (SD ± 4) days.71 Natalizumab serum level 

and RO varies between patients receiving the same standard dose of 300 mg every 4 

weeks, but generally decrease if dosing intervals are extended.116, 119 Serum levels of 

natalizumab are influenced by body weight and the presence of anti-natalizumab 

antibodies; serum natalizumab is estimated to be around 40% lower in a 100-kg 

individual compared to a 60-kg individual, and anti-natalizumab antibodies increase 

the clearance of natalizumab by approximately 3-fold.118 However, these factors 

alone only explain a small fraction the observed inter-individual variability in RO, 

and additional unknown factors apparently affect the relationship between 

natalizumab serum levels and RO.118  

Measurement of natalizumab receptor occupancy  

RO of therapeutic antibodies can be estimated by a variety of flow cytometry assays 

(figure 2).113, 120 The number of drug molecules that can bind to a cell depends on the 

number of available target receptors. Therefore, isolated measurement of bound drug 

is insufficient and total receptor levels need to be taken into account if levels vary 

between individuals or over time.113 Unknown variations in receptor levels can have 

disastrous consequences: in the first-in-human clinical trial of a novel anti-CD28 

therapy, a life-threatening cytokine storm occurred in healthy human subjects that had 

never been observed in preclinical trials in monkey.121 Follow-up studies revealed 
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that unexpectedly low receptor levels in humans compared to monkeys dramatically 

increased RO, causing a severe cytokine release syndrome.  

Levels of α4 integrin vary between individuals and natalizumab therapy itself induces 

reduction of α4 integrin levels, necessitating simultaneous quantitation of both 

natalizumab and α4 integrin in a natalizumab RO assay.122  

Figure 2: Receptor occupancy assays measure bound drug relative to total receptor level. 

Bound drug can be measured either indirectly by measuring only free receptors with an anti-

receptor antibody competing with bound drug (A) or directly by measuring occupied 

receptors with an anti-drug-antibody (B). Total receptors can be measured either directly 

with an anti-receptor antibody that does not compete with bound drug (C) or indirectly by 

measuring occupied receptors (B) in an in vitro drug saturated sample aliquot. Adapted and 

reprinted by permission from Wiley: Cytometry part A,123 © 2016 

 

6.3 Mass cytometry 

The central method in this study is the relatively novel analytical technology mass 

cytometry, and the following sections will provide a brief introduction to the method 

and associated caveats relevant to this study.  
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Cytometry (Greek for cell measurement) involves the detection and quantitation of 

features on the single-cell level, and typically employs labeled antibodies that bind 

specifically to these features. Since the late 1960s, flow cytometry has been the 

standard technique for single-cell analysis and employs antibodies conjugated to 

fluorescent labels to detect cellular features.124 Technological advances in flow 

cytometry allowing simultaneous measurement of increasing numbers of parameters 

have come hand-in-hand with more detailed knowledge of the complexity of immune 

cell subsets and functions. Despite these advances, signal overlap between fluorescent 

labels, causing signals to be measured not only in the primary channel but also in 

other channels, restrict the number of parameters that can be measured 

simultaneously by conventional flow cytometry. This limitation was radically 

overcome by the introduction of mass cytometry in 2009.125 Capable of simultaneous 

analysis of more than 40 cellular targets, mass cytometry allows insights into 

heterogeneous biological systems at a new level of complexity.126, 127 This is 

accomplished by conjugating antibodies to purified non-biological metal isotopes 

instead of fluorescent labels, dramatically reducing signal overlap.128 

6.3.1 The mass cytometry method 

Mass cytometry, or Cytometry by Time-Of-Flight (CyTOF), combines detection of 

isotopes by inductively coupled plasma (ICP) mass spectrometry with single-cell 

analysis.125 The methodology is outlined in figure 3.127 Cells in suspension are stained 

with a cocktail of metal-conjugated antibodies and sequentially introduced into the 

ICP where each cell is atomized and ionized to an ion cloud. Biological atoms 

originating from cells are removed so that only the isotopes originating from metal-

conjugated antibodies remain in the cloud. These are finally identified by their atomic 

mass, determined by time-of flight (TOF), and the abundance of each isotope in the 

cloud is determined by the signal intensity in detection channels corresponding to 

their atomic mass. The acquired signal from each ion cloud is recorded in Flow 

Cytometry Standard (FCS) files.129 

 



 29 

Figure 3: Schematic of single-cell analysis with mass cytometry. Cells stained with metal-

labeled antibodies are introduced into the mass cytometer via a capillary system ending in a 

nebulizer that disperses the suspension into droplets mostly carrying single cells. In the 

inductively coupled plasma (ICP, 5000 °C), each cell is vaporized and ionized into an ion 

cloud, which passes a quadrupole where biological ions are removed. The remaining ion 

cloud is analyzed by a time-of-flight detector and its ion content is recorded in Flow 

Cytometry Standard (FCS) files. Reprinted by permission from Elsevier: Trends in 

Immunology,127 © 2012 

 

In flow cytometry, cells are detected by their light scatter. There is no mass cytometry 

analog to light scatter; only ion clouds containing metal isotopes (i.e. not the cells 

themselves) are detected by the mass cytometer and registered as “events”. To be 

defined as an event and included in the FCS file, an ion cloud has to meet two criteria 

(which can be adjusted by the user): it must have an appropriate event length, 

reflecting its size, and the signal intensity in at least one mass channel must exceed 

the lower convolution threshold.130 This implies that only ion clouds creating 

uninterrupted signals exceeding the lower convolution threshold for an appropriate 

duration of time are defined as events and recorded.  
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As cells themselves do not contain any metals in the detection range of the mass 

cytometer, they can be incubated with DNA-binding reagents containing iridium to 

allow identification of ion clouds originating from separate cells.  

6.3.2 High dimensional data analysis 

The high dimensionality of mass cytometry has introduced new challenges for data 

processing and analysis.131 Cells are commonly classified into distinct subtypes based 

on expression of characteristic cluster of differentiation (CD) markers on their 

surface. Conventionally, the analysis of flow cytometry data has been performed by 

manually drawn gates in bivariate plots of CD markers. Such manual gating in 

bivariate plots becomes exponentially more complex with increasing numbers of 

markers, making this approach impractical for high-dimensional mass cytometry 

data.132 The demand for new approaches to gain insight into the structure of complex 

mass cytometry data has driven the development of automated data analysis tools to 

classify cells into groups or clusters (optimally representing distinguished cell 

subtypes) based on their expression patterns of CD markers. Numerous unsupervised 

and semi-supervised algorithm-based analysis tools for clustering and dimensionality 

reduction have been developed over the past decade,131, 133 two of which were 

employed in this study:  

ViSNE134 (Cytobank Inc., Beckman Coulter) is a widely used tool for dimensionality-

reduction of high-dimensional data. Using the t-distributed stochastic neighbor 

embedding (t-SNE) algorithm, viSNE allows projection of the high-dimensional 

relationship between cells in a two-dimensional plot by constructing two new 

dimensions (t-SNE1 and t-SNE2). Cell populations in the two-dimensional plot can 

then be defined by either manual gating or automated clustering algorithms.  

Citrus (cluster identification, characterization, and regression)135 (Cytobank) is an 

algorithm that identifies cell types by hierarchical clustering and subsequently 

identifies statistically significant differences between pre-defined patient groups in 

these clusters. 
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6.3.3 Factors influencing mass cytometry data 

The identification of meaningful variations in biological samples requires precise, 

standardized, and reproducible assays to distinguish true biological changes from 

technical artefacts.136 Mass cytometry data can be influenced by factors contributing 

to specific and nonspecific signal and by experimental variation. 

Specific and nonspecific signal 

The specific signal in mass cytometry originates from metal conjugated antibodies 

bound to cellular epitopes of interest, while other sources can contribute to 

nonspecific signal.137 In addition to nonspecific binding of antibodies to other than 

the epitopes of interest, there are three major contributors to nonspecific signal in 

mass cytometry: signal “spillover” of metal isotopes into neighboring ± 1 mass 

channels, isotope oxidation in the ICP causing signal in the + 16 mass channel, and 

incomplete isotope purification introducing signal from one or more other isotopes of 

the same metal element. The intensity of the nonspecific signal is dependent on the 

intensity of the signal in the primary channel, and careful panel design and titration of 

the antibody panel can minimize the effects on the data.138 Metals in the detection 

range of the mass cytometer are not found in a typical biological sample, but 

contamination from either in vivo origins (for example gadolinium from intravenous 

MRI contrast or cisplatin used in chemotherapy) or environmental components such 

as soap (barium), reagent containers (lead), or water (iodine) are other potential 

sources of nonspecific signal. 

The specific signal mainly depends on the cellular content of the epitope measured, 

but is also influenced by the metal content of the antibody, and the mass cytometers’ 

detection sensitivity for each metal isotope.130, 139 The antibody metal content, 

determined by the number of metal isotopes conjugated to an antibody, may differ 

between batches due to varying labeling efficacy in the process of antibody metal 

conjugation. The detection sensitivity for metal isotopes varies over the detection 

range of the mass cytometer, causing equal amounts of different metal isotopes to 

produce signals of differing intensity (figure 4).137, 140 The most sensitive range is for 



 32 

isotopes with atomic mass between 155 and 165 Dalton, and each mass cytometer has 

its own sensitivity pattern. 

Figure 4: Detection sensitivity varies due to different isotope transmission efficiency over 

the channels of the mass cytometer. Sensitivity is expressed as the ratio between observed 

and expected signal intensity of equal amounts of metal isotopes. The difference between the 

highest and lowest sensitivity is up to fivefold in CyTOF 1 and 2 mass cytometers, and lower 

in Helios mass cytometers. Reprinted by permission from Wiley: Cytometry A,140 © 2015.  

 

Variation and standardization 

To accurately measure biological variations with cytometry, the experimental 

variation must be kept at an absolute minimum.141 This is particularly important in 

mass cytometry, as the increased number of antibodies compared to flow cytometry 

magnifies potential variation.136 General recommendations are common for mass and 

flow cytometry, such as standardized sample collection and antibody staining 

procedures. In addition, several procedures to specifically address variation in mass 

cytometry have been established. Barcoding samples with unique combinations of 

metal isotopes and pooling them prior to antibody staining simplifies sample 

handling, reduces antibody consumption and limits batch effects in staining.142 

During daily setup of the mass cytometer, instrument performance can be controlled 

with a standardized tuning solution containing five different elements (cesium, 

iridium, lanthanum, terbium and thulium), and with cell-sized EQ Four Element 

Beads containing one of four elements (cerium, europium, holmium, and lutetium) in 

the detection range of the mass cytometer. The mass cytometer is sensitive to 

temperature changes and buildup of cellular material during sample acquisition, 
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which requires several hours for a typical experiment. EQ Four Element Beads are 

therefore routinely spiked into the samples prior to acquisition to allow for 

normalization of signal variations over the acquisition time.143 Methods for 

standardization across machines and over time, which are necessary in multicenter 

and longitudinal studies, are routinely used in flow cytometry, but not yet established 

in mass cytometry.141, 144 Most mass cytometry studies have been performed in a 

single lab at a single site, and established normalization methods do not fully correct 

for variations across mass cytometers.140, 145  

6.3.4 Receptor occupancy measurement with mass cytometry 

Although RO assays are widely used in flow cytometry,113, 120 no RO assay for mass 

cytometry has previously been published. High-parameter mass cytometry can enable 

the measurement of RO in more cell subtypes congruently with more cellular features 

of interest than what is currently achievable by flow cytometry. A mass cytometry 

RO assay shares many general methodological considerations with a flow cytometry 

assay, like the fundamental need for accurate quantitation of drug and receptor and 

the requirement for strict standardization and adequate controls.120 Other challenges, 

such as the influence of factors contributing to specific and unspecific signal, are 

mass cytometry-specific (page 25). Varying detection sensitivity between different 

mass channels140 (figure 4) could affect an RO an assay where bound drug and total 

receptor levels are measured by different antibodies. Measuring drug and receptor 

levels using antibodies conjugated to metal isotopes with different detection 

sensitivities can lead to either over- or underestimation of the RO, depending on 

which is detected in the most sensitive channel. Varying detection sensitivity patterns 

between mass cytometers140 would make the degree of this effect unpredictable. 
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7. Aims of the study 

The main aim of this thesis was to perform a mass cytometry study of natalizumab 

treated RRMS patients to investigate the relationship between natalizumab receptor 

occupancy (RO), the wearing-off phenomenon, and disease activity.  

Objectives: 

1. Develop a method for reliable and reproducible RO measurement with mass 

cytometry (paper I) 

2. Investigate whether wearing-off symptoms at the end of the dosing interval are 

associated with natalizumab RO or clinical and demographic patient characteristics 

(paper II) 

3. Evaluate whether wearing-off is associated with clinical or radiological outcomes 

(paper III) 
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8. Methods 

8.1 Patients and outcomes 

8.1.1 The cohort 

We invited all patients with RRMS receiving natalizumab at the Department of 

Neurology, Haukeland University Hospital in October 2018 (n=45) to participate in 

the main project. All patients had been diagnosed with MS according to the 2010 

McDonald diagnostic criteria146 or earlier (prior to the latest revision in 2017). None 

had anti-natalizumab antibodies. Blood samples used for the method development 

were collected from a subgroup of 8 treated patients during 2016. Healthy controls 

were volunteering employees at the Department without any known neurological 

condition. The study was approved by the Regional Committee for Medical Research 

Ethics, Western Norway (REK 2016/579). 

8.1.2 Patient outcome measures 

Patients were evaluated for evidence of disease activity by assessing clinical relapses 

and disability progression as measured by EDSS33, and by annual routine MRI scans 

without intravenous gadolinium contrast. We evaluated neurocognitive status using 

the Symbol Digit Modalities Test (SDMT),147 a 90-second test where the patient links 

geometric figures to specific numbers and a higher score indicates better 

neurocognitive function. We evaluated fatigue using the Fatigue Severity Scale 

(FSS),148 a survey where patients score their level of agreement (scores 1-7) on 9 

statements regarding fatigue and a higher score indicates more severe fatigue. At 

inclusion, patients filled in forms regarding working status, smoking, weight and 

height, and whether they experienced wearing-off symptoms at the end of the 4-week 

interval between natalizumab infusions (Appendix 1). We had observed patients 

reporting various wearing-off symptoms and that not all patients had such symptoms 

regularly, therefore we categorized wearing-off symptoms based on their frequency – 

never, sometimes (at the end of some infusion intervals), and regularly (at the end of 

every infusion interval) – and patients could also record type of symptoms. 
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8.2 Neurofilament analysis 

We measured the concentration of NF-L in serum samples with a single-molecule 

array (Simoa) assay (Quanterix, Billerica, MA). All serum samples were stored at -

80°C and thawed on the day of analysis. In paper II we used only samples collected at 

inclusion. In paper III we compared samples collected at inclusion with samples 

collected at the 1-year follow-up. To avoid technical variations, the baseline samples 

were re-analyzed together with the 1-year samples, keeping sample pairs from each 

patient in the same analysis batch. NF-L levels are not affected by repeated thaw-

freeze cycles of serum samples.149 

8.3 Mass cytometry analysis 

8.3.1 Samples 

In the initial method development, we evaluated two sample types: peripheral blood 

leukocytes (PBLs) and peripheral blood mononuclear cells (PBMCs). PBLs were 

obtained from whole blood and fixed with Proteomic stabilizer (SmartTube, Inc.) 

shortly after collection and stored at -80°C, whereas PMBCs were isolated from 

whole blood by a 2-hour protocol and stored alive at -200°C. We observed lower RO 

in PBMCs compared to PBLs from the same patients and noted a downregulation of 

α4 integrin if we incubated live PBMCs with natalizumab which was not observed in 

fixed PBLs. Fixation of cells with proteomic stabilizer shortly after collection 

apparently prevented effects of in vitro processing of samples and we therefore 

conducted all further experiments with PBLs only. 

We collected samples immediately before and 30 minutes after the 60-minute 

natalizumab infusions, at the expected time points for minimum and maximum 

natalizumab binding. Previous studies report that natalizumab RO is stable over time 

in patients receiving infusions with regular intervals.96 We also observed this when 

comparing RO over 2 infusion cycles in a subgroup of 10 patients, and we therefore 

performed the main experiment on samples from one infusion day only.  
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8.3.2 Antibody panel and staining  

Antibody panel design 

We developed an antibody panel for the study of innate and adaptive peripheral blood 

immune cells with potential roles in disease activity and response to natalizumab 

therapy (table 1).72, 150-152 CD34+ hematopoietic stem cells are the common 

precursors of these leukocytes and usually reside in the bone marrow, and 

natalizumab therapy increases levels of circulating CD34+ cells in peripheral blood.81 

Table 1: Overview of peripheral blood leukocyte subtypes evaluated in the study and their 

associated cluster of differentiation (CD) markers.  

 

We designed the antibody panel based on prior knowledge137, 140 and the Maxpar 

antibody panel designer (Fluidigm). In the RO assay, we measured cell-bound 

natalizumab and total α4 integrin directly with two different antibodies. Bound 

natalizumab was detected with an anti-IgG4 antibody (conjugated to 169Tm) specific 
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to the Fc portion of human IgG4. Total α4 integrin was detected with an anti-CD49d 

antibody (conjugated to 141Pr) specific for a different epitope than natalizumab so 

that the antibody could bind to α4 integrin independently of bound natalizumab 

(figure 2). 

We titrated antibody concentrations on samples using the same conditions as the 

samples for the main experiment. Anti-IgG4 and anti-CD49d were titrated to 

saturating concentrations (Figure 5). The remaining antibodies in the panel were 

titrated to the lowest separating concentrations that allowed discrimination of the 

populations of interest, while minimizing nonspecific signal in the ± 1 and + 16 mass 

channels. 

Figure 5: Titration to saturating concentration. Exemplified by titration of anti-IgG4 for 

detection of natalizumab in a treated patient (blue) and in a healthy donor (HD) as negative 

control (red). Vertical line representing the chosen dilution for saturating titration without 

increase in signal intensity in the negative control. 

 

Standardization and quality control  

Staining conditions such as temperature, incubation times, and cell numbers were 

standardized. PBLs were barcoded and pooled in batches of 20 samples before 

staining with aliquots of the same antibody cocktail to reduce variability in the 

staining procedure. Stained cells were fixed again with paraformaldehyde and 
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incubated with iridium-intercalator over night before acquisition. We adapted a 

method for controlling for experimental variation between samples with a common 

reference sample153 by reserving one spot in each barcode batch for a standard 

healthy donor sample so that we could control for batch-to-batch variability. Pooling 

with patient samples did not lead to binding of natalizumab to the healthy donor cells.  

Despite careful antibody panel design, we needed to ensure that we only measured 

specific signal in the two channels critical for the RO assay. We performed “mass 

minus one” (MMO) controls to check for spillover into the two channels by staining 

samples with the whole antibody cocktail minus anti-IgG4 (169Tm) or anti-CD49d 

(141Pr), respectively. To control for metal contamination, an aliquot of all samples 

was analyzed unstained. We controlled for competition between binding of anti-

CD49d and natalizumab by comparing the anti-CD49d signal in a healthy donor 

sample with and without prior incubation with natalizumab. Negative controls for 

anti-IgG4 were untreated healthy donor cells and positive controls were sample 

aliquots that had been saturated in vitro with natalizumab.  

8.3.3 Receptor occupancy measurement and standardization with beads 

Based on prior knowledge, bound natalizumab was measured in a more sensitive 

channel (169) than α4 integrin (141) in our mass cytometry RO assay, which would 

lead to an overestimation of the natalizumab/α4 integrin ratio (figure 6). We therefore 

needed to standardize the signal between the two channels to obtain a correct RO. 

In flow cytometry, a similar problem occurs when antibodies are conjugated to 

fluorophores with different brightness. This can be solved by employing antibody-

binding polystyrene beads, such as Quantum Simply Cellular (QSC) beads, as a 

reference for standardization of signal from different fluorophore-labeled 

antibodies.154 QSC beads are cell-sized polystyrene microspheres available in sets of 

four bead populations with known, gradually increasing antibody binding capacity 

(ABC).155 In flow cytometry, these beads are used to convert signal intensity to 

numbers of cellular epitopes.  



 40 

Figure 6: Differing mass cytometer detection sensitivity can affect RO results. In our RO 

assay, bound natalizumab was detected with anti-IgG4 (169Tm), and total α4 integrin was 

detected with anti-CD49d (141Pr). Anti-IgG4 was measured in a more sensitive channel 

than anti-CD49d. Reprinted by permission from Wiley: Cytometry A,156 © 2015 

 

We aimed to employ QSC beads to standardize the signal from anti-IgG4 and anti-

CD49d in our RO assay. In flow cytometry, beads can be detected by their light 

scatter, but as mass cytometry has no analog to light scatter and QSC beads do not 

contain any metal, they are not detectable by mass cytometry. When we saturated 

QSC beads with metal-conjugated antibodies, beads with the lowest ABC were 

incompletely detected by the mass cytometer, indicating that these beads did not 

contain enough metal ions to exceed the event length required to be detected as an 

event (figure 7A). Numerous unsuccessful attempts to overcome this problem 

included adjusting the mass cytometer settings for minimum event length and 

convolution threshold, titrating up the antibody concentration, and incubating the 

beads with various metals in the detection range of the mass cytometer, like cisplatin, 

iridium, and barcoding agents. However, at a cytometry conference (2018) a group 

from Berlin presented an unpublished method for adaption of QSC beads for mass 

cytometry by labeling them with Osmium Tetroxide (OsO4), a highly reactive 

compound that binds to polystyrene.157 When we labeled QSC beads with OsO4 prior 

to antibody staining, we could identify the beads in the osmium channels of the mass 

cytometer independent of the signal from the antibody (figure 7B).  
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Figure 7: Adaption of QSC beads for mass cytometry. (A) Five populations of QSC beads 

with increasing antibody binding capacity (ABC) stained with a metal-conjugated antibody. 

The beads per se are not detectable by the mass cytometer. Thus, beads with low ABC (low 

numbers of bound metal-conjugated antibodies) had insufficient event length for detection. 

(B) Mass cytometry rain plot during acquisition of QSC beads stained with anti-IgG4 

(169Tm) without (top) and with (bottom) OsO4 labeling. OsO4 labeling allows detection of 

QSC beads in the osmium channels.157  
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To cover the whole detection range of our samples, we purchased a custom-made 

bead population with extra low ABC, so that our set consisted of five bead 

populations. We analyzed the beads on the mass cytometer directly prior to 

acquisition of PBL samples and used the signal intensities of known amounts of anti-

IgG and anti-CD49d on the beads as a reference for standardization of signal intensity 

of unknown amounts of anti-IgG and anti-CD49d in the samples. 

8.3.4 Data analysis  

FCS files from PBL samples in our main patient cohort were analyzed in parallel both 

by a manual and an automated approach as outlined in figure 8. Briefly, we separated 

PBLs into subtypes, estimated RO in these PBL subtypes, and compared RO between 

patient groups. FSC files were de-identified with a random number and data analysis 

was blinded. Low expression of target receptor may cause inaccurate RO 

estimation,113 and cells with low α4 integrin levels (like naïve CD8+ and CD4+ T 

cells and granulocytes) were therefore excluded from the RO analyses.  

Figure 8: Data analysis workflow for PBL samples acquired by mass cytometry 
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9. Results  

Paper I: Optimization of Receptor Occupancy Assays in Mass Cytometry: 

Standardization Across Channels with QSC Beads 

In paper I, we developed a receptor occupancy (RO) assay for mass cytometry which 

allowed simultaneous RO measurement and high-parameter immune phenotyping of 

peripheral blood leukocytes (PBLs). The method was evaluated in a natalizumab RO 

assay where anti-IgG4 and anti-CD49d were used to measure natalizumab and α4 

integrin on eight PBL subtypes. Natalizumab was detected in a more sensitive mass 

channel than α4 integrin, leading to overestimation of the RO. We demonstrated how 

this could be solved by using antibody-binding quantum simply cellular (QSC) beads 

with known antibody binding capacity (ABC) for standardization across mass 

channels with different sensitivities before calculating RO (figure 9). In an in vitro 

drug saturated sample with expected RO of 100% (figure 10, dotted line), we found 

that the raw RO was significantly overestimated (left) and that QSC bead 

standardization generated reliable and reproducible RO results (right). 

Figure 9. Adapted and reprinted by permission from Wiley: Cytometry A,156 © 2015 
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Figure 10. Reprinted by permission from Wiley: Cytometry A,156 © 2015 

 

Paper II: Wearing-off at the end of natalizumab dosing intervals is associated 

with low receptor occupancy 

In paper II, we investigated whether wearing-off symptoms at the end of the 

natalizumab dosing interval were associated with clinical and demographic patient 

characteristics or natalizumab RO on leukocytes. 

In this cross-sectional study of 40 patients with relapsing-remitting MS (RRMS) 

receiving natalizumab at the Department of Neurology, Haukeland University 

Hospital, we recorded clinical and demographic data including age, body mass index 

(BMI), working status, smoking habits, disease characteristics, treatment duration, 

vitamin D levels, and wearing-off symptoms. We quantified neurofilament light chain 

in serum and measured natalizumab RO in 11 PBL subtypes by high-parameter mass 

cytometry. Associations with wearing-off symptoms were analyzed. 

We found that eight (20.0%) patients reported regular occurrence of wearing-off 

symptoms, 9 (22.5%) sometimes had wearing-off symptoms, and 23 (57.5%) did not 

have wearing-off symptoms. Median RO values (figure 11) were lower in patients 
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who regularly had wearing-off symptoms (blue line) than in patients who reported 

having such symptoms sometimes (green line) or never (red line).  

Figure 11. Reprinted by permission from Wolters Kluwer Health, Inc.,158 © 2020 

 

Patients who reported wearing-off symptoms regularly also had higher BMI and 

higher frequency of sick leave. High BMI was associated with low RO. No other 

demographic or disease characteristics were associated with the phenomenon. Thus, 

we concluded that low RO may explain the wearing-off phenomenon observed in 

some patients with RRMS treated with natalizumab, and that high BMI may 

contribute to this finding. 

Paper III: Wearing-off at the end of natalizumab dosing interval and risk of MS 

disease activity: a prospective 1-year follow-up study. 

In paper III, we evaluated the short-term risk of disease activity in a 1-year 

prospective follow-up of the same patient cohort (n=40). We found that all patients 

available for follow-up after one year (n=35) fulfilled the criteria for no evidence of 

disease activity (NEDA-3). Thus, wearing-off symptoms were not associated with 

short-term risk of disease activity. However, patients with wearing-off symptoms 

regularly had more severe fatigue and cognitive dysfunction. 
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10. Discussion 

10.1 Receptor occupancy and QSC beads in mass cytometry 

Measuring receptor occupancy (RO) of therapeutic antibodies with high-parameter 

mass cytometry could open new opportunities to explore therapeutic effects in 

complex biological systems.123 However, variations in the mass cytometers detection 

sensitivity for different metal-conjugated antibodies can lead to misinterpretation of 

the results. We observed an overestimation of the RO in our assay where drug was 

detected in a more sensitive channel than receptor (paper I). In an effort to account 

different detection sensitivity, we adapted antibody-binding QSC beads from flow to 

mass cytometry to perform signal intensity standardization before RO calculation. 

Bead standardized results were consistent with the expected RO, demonstrating 

successful standardization of signal intensity from different metal-conjugated 

antibodies. This approach can easily be adapted to RO assays of therapeutic 

antibodies used in other diseases.  

To be useful in clinical practice, RO results must be linked to robust clinical data, and 

standardization with QSC beads could be an important step in implementing mass 

cytometry RO assays in clinical trials. Standardization methods have been established 

in flow cytometry to allow comparison of experiments over time and between 

different instruments and laboratories which is necessary in multicenter and 

longitudinal trials.159 Mass cytometry has just only started to address these topics, and 

much additional mass cytometry standardization remains on the scale needed for 

large multi-center studies.139, 140, 145 Established normalization methods with tuning 

and EQ beads do not correct for sensitivity variations across the detection range 

which differs across mass cytometers, or for batch-to-batch differences in antibody 

metal content. It is plausible that QSC beads would correct for such machine- and 

reagent-based variability in mass like in flow cytometry,120, 157 but that was not tested 

in this study. Importantly, QSC beads only offer standardization of the specific signal 

from metal conjugated antibodies and do not correct for unspecific signal caused by 
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poor panel design or sample contamination, or for pre-analytical variations in sample 

handling or antibody staining procedures. 

In flow cytometry QSC beads are used for absolute quantitation of epitopes. It is 

unknown if this is possible in mass cytometry, as it is uncertain whether ion 

transmission efficiency is completely equal in QSC beads and cells when they pass 

through the mass cytometer. An RO assay only requires standardization of signal 

intensities and not quantitation of absolute numbers of epitopes. However, our 

collaborators in the adaption of QSC beads for mass cytometry report to obtain values 

in the range of expected absolute epitope numbers when using QSC beads.157  

Several different RO assay formats are used in flow cytometry (figure 2).113, 120 In our 

RO assay, variations in α4 integrin level required simultaneous measurement of 

bound drug and total receptor levels. We chose to directly measure bound drug 

(figure 2B), and total receptor levels (figure 2C) with two different metal-conjugated 

antibodies, necessitating standardization with QSC beads. This could have been 

avoided if we had instead chosen an assay where total receptor levels were measured 

indirectly with the same anti-drug antibody in an in vitro drug-saturated sample 

aliquot. However, staining and acquiring only two sets of QSC beads for the entire 

experiment instead of an in vitro drug-saturated aliquot of every sample cut the 

acquisition time and cost almost in two and reduced antibody and sample 

consumption. As QSC beads adapted for mass cytometry are not yet commercially 

available, antibody labeling needed to be preceded by OsO4 labeling with multiple 

time-consuming washing steps with strict safety precautions due to the toxicity of 

OsO4. Commercially available metal labeled QSC beads would ease the application. 

Although mass cytometry currently outperforms flow cytometry in terms of 

multiplexing capacity with very little overlap between channels, the technology has 

some disadvantages.130 The preferred speed of acquisition in mass cytometry is lower 

than in flow cytometry (<400 versus several thousand events per second) because the 

ion clouds are relatively large compared to the original cell and need to be analyzed 

one at a time to obtain correct analysis of single cell features. Sample transmission 
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efficiency is lower than in flow cytometry (approximately 50% in the Helios mass 

cytometer used in this study), which is problematic if sample amount is limited. Also, 

instrument handling is more technically demanding in mass than in flow cytometry 

and acquisition costs are considerably higher. These limitations should be considered 

in light of the study aim. While mass cytometry is superior in explorative studies of 

unknown terrain and in-depth characterization of complex biological systems, flow 

cytometry may be a more appropriate tool for measurement of predefined features in 

one or few cell types in many patients.  

In our study, mass cytometry allowed the analysis of multiple cell subtypes where 

only some showed statistically significant associations between natalizumab RO and 

wearing-off (paper II). These significant cell types could have been overlooked in a 

flow cytometry assay with fewer parameters, and we would not have come to the 

same conclusions.  

10.2 Natalizumab receptor occupancy and dosing 

Accumulating evidence suggests that therapeutic efficacy is maintained in many 

patients when natalizumab dosing intervals are extended from 4 to 5-8 weeks.108-110 

An important motivation for individualized natalizumab therapy is the observed 

reduction of PML risk in extended interval dosing (EID).112 EID also has 

socioeconomic benefits by reducing drug and administration costs with up to 50% (if 

intervals are extended to 8 weeks), and less frequent hospital visits are convenient for 

both patients and health care providers. Natalizumab is usually discontinued during 

pregnancy, but using the lowest effective dose is preferable to minimize fetal risk in 

cases where therapy is continued throughout pregnancy to avoid rebound MS disease 

activity in the mother.160, 161 The PML risk reduction in EID is attributed to reduced 

end-of-interval RO compared to SID, which is thought to allow some immune 

surveillance of the CNS. Consistent with previous studies,116, 118 we observed a 

considerable variability in natalizumab RO although patients received the same 

standard dose with 4-week intervals. Adequate RO of natalizumab apparently persists 

well beyond the standard dosing interval of 4 weeks in many patients.96, 114, 118 

Importantly, patients with lower than average natalizumab RO have increased risk of 
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disease breakthrough already 6-8 weeks after the last dose,95, 96, 115 and could 

therefore be at risk of disease breakthrough when RO is reduced in EID schedules. 

Thus, natalizumab RO has been proposed as a biomarker to guide optimal dosing for 

individual patients to balance the risks and benefits of the therapy. However, there is 

no established cut-off-value for a minimal RO to maintain clinical efficacy. As the 

studies supporting maintained efficacy in EID108-110 are observational and non-

randomized, patients with less aggressive MS are more likely to be moved to EID 

schedule than patients with an active disease, and there is often even less disease 

activity in the EID than in SID group in these studies. Inversely, patients selected by 

clinicians for EID are likely to have more PML risk factors than patient who remain 

on SID regimens, and the risk reduction in EID may therefore be even more 

pronounced than observed in the studies.116 These uncertainties will hopefully be 

dissolved in the ongoing randomized trial of EID versus SID (ClinicalTrials.gov 

identifier NCT03689972). It has been hypothesized that certain (unknown) leukocyte 

cell subsets play a more important role in JC virus surveillance while others 

contribute to MS disease activity,116 and identifying the level of unbound integrin 

needed to allow the right subsets to access the CNS while constraining others would 

be a major advance for dose optimization. We consider high-parameter mass 

cytometry superior to flow cytometry as a tool to explore this in future studies of 

natalizumab RO and PML risk in different dosing schedules. 

Natalizumab RO is a direct measure of the main biological effect of natalizumab, the 

blocking of interaction between α4β1 integrin and VCAM-1, but other biomarkers for 

therapeutic effect have been suggested. Measuring serum concentration of 

natalizumab may be easier, but the relationship between serum levels and RO is 

unpredictable due to influence of numerous known and unknown factors.118 Return of 

disease activity is timely more linked to receptor desaturation than decrease of serum 

levels (which happens earlier), indicating that RO reflects therapeutic efficacy better 

than serum levels.109 Natalizumab therapy leads to a rapid and sustained increase of 

circulating CD34+ hematopoietic stem cells possibly due to increased mobilization 

from the bone marrow, and the degree of natalizumab-induced mobilization of these 

cells has been suggested as a therapeutic biomarker because it correlates with 
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therapeutic efficacy.81 Natalizumab also leads to increased levels of circulating 

lymphocytes, and lymphocyte count in peripheral blood has likewise been reported to 

correlate with therapeutic efficacy and suggested as a biomarker.80 Natalizumab RO 

was not evaluated in these two studies.80, 81 We found that both levels of CD34+ cells 

and lymphocytes in peripheral blood correlate with natalizumab RO (unpublished 

data). The degree of hematopoietic stem cell and lymphocyte mobilization may thus 

be associated with therapeutic efficacy through RO. Body weight has also been 

suggested as a parameter to navigate dosing.162 The safety of weight-based dosing 

was evaluated in a phase II trial with only 6-month follow-up where effectiveness 

was not assessed,84 and a fixed dose of 300 mg every 4 weeks is the only dose ever 

evaluated in phase III trials.85, 163 Consistent with previous reports,116, 118 we found 

that RO generally decreased with high BMI, but we could still observe low RO 

among patients with low BMI. The inter-individual variability in RO can thus only 

partly be explained by body weight and BMI, making these parameters imprecise for 

navigating dose adjustment. Overall, natalizumab RO stands out as the biomarker 

best suited to guide individualized therapy.  

10.3 The wearing-off phenomenon 

Subjective wearing-off symptoms at the end of the natalizumab dosing interval are 

frequently reported, but phenomenon is poorly understood and has been sparsely 

investigated. We found an association between low RO and regular wearing-off 

symptoms (paper II). Consistent with the literature, 118 we found that high BMI was 

associated with low natalizumab RO. As median BMI was higher in the patient group 

with wearing-off symptoms regularly, we suggested that high BMI, by reducing RO, 

was the underlying cause of wearing-off symptoms. In a 1-year follow-up of the 

patients, we found that all patients fulfilled the criteria for NEDA-3 (paper III), 

although patients with wearing-off symptoms regularly had significantly poorer 

scores on fatigue (higher FSS) and cognitive function (lower SDMT). Baseline and 1-

year NF-L levels in serum were similar between groups, indicating no difference in 

axonal injury. 
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The possibility of a biological cause of the wearing-off phenomenon adds a new 

aspect to the debate on dosing intervals and may have several implications. Firstly, 

subjective wearing-off symptoms not associated with objective signs of disease 

activity may not be considered important by the physician or even be registered in the 

patient journal. Subjective complaints from patients are more likely to be emphasized 

by health care providers if they are supported by objective signs.164 Secondly, if 

patients with wearing-off symptoms have lower than average natalizumab RO, they 

may have increased risk of therapeutic failure if dosing intervals are extended. 

Correspondingly, if high RO is a risk factor for PML,116 patients with wearing-off 

symptoms could have lower than average PML risk so that EID is less beneficial. The 

effect of dosing intervals on the severity of wearing-off symptoms is uncertain and 

cannot be concluded from non-randomized observational studies of SID and EID 

because patients with such symptoms would be reluctant to extend dosing intervals 

and would thus be positively selected to the SID group.101 In order to address these 

unanswered questions, wearing-off symptoms should be evaluated in prospective 

studies of randomized natalizumab dosing regimens. Acknowledgement of the 

phenomenon will hopefully promote the inclusion of wearing-off evaluation in such 

studies. 

Fatigue and cognitive impairment are poorly captured in the NEDA-3 criteria, and 

poorer scores in patients with regular wearing-off symptoms could represent a 

suboptimal therapeutic effect. However, similar NF-L levels supports that there was 

no difference in disease activity between groups. Higher proportion of patients on 

permanent sick-leave in the group with wearing-off regularly could reflect cognitive 

impairment, which correlates with employment status.90 

Pro-inflammatory cytokines are thought to contribute to MS-related fatigue,165 and 

fluctuating cytokine levels have been suggested to induce the wearing-off symptoms 

in previous studies.100, 101 A hypothetical mechanism is that low natalizumab RO 

towards the end of the dosing interval could increase the migratory capacity of some 

cytokine-producing lymphocytes into the CNS and cause wearing-off symptoms, but 

not enough to allow lesion formation. Not all patients with low RO have wearing-off 
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symptoms, indicating the involvement of other contributing factors. If the 

phenomenon reflects reappearance of previously experienced MS symptoms as the 

natalizumab effect wears off, patients with mild previous symptoms may not 

experience wearing-off symptoms although RO is low. 

Only one previous study, published a few months before ours, has evaluated the 

relationship between the wearing-off phenomenon and natalizumab RO.101 In contrast 

to our results, no association between wearing-off symptoms and natalizumab RO or 

patient characteristics was found. However, they found non-significant trends similar 

to our significant results, and differences between their study and ours may have 

contributed to different results. In their flow cytometry assay, RO was only measured 

in two cell types, and significant cell types may theoretically have been overlooked. 

Body weight, which is negatively associated with RO, was higher in our cohort than 

theirs and the difference was even more pronounced in the group with wearing-off 

symptoms regularly. Differences in categorization may also have contributed. In their 

study101 patients were categorized based on whether they had symptoms currently 

(32%) or had ever had symptoms (54%), whereas we used the categories sometimes 

(22.5%) or regularly (20.0%), whereof only the latter was significantly associated 

with lower RO and high BMI. The study included a larger cohort than ours, but it 

contained both patients on SID (n=62) and EID (n=31) schedules and the number of 

patients on SID was only moderately higher than in our study (n=40).  

We suggest that high BMI reduces RO and contributes to the wearing-off 

phenomenon, but we have no proof of causality. Wearing-off symptoms may simply 

be a psychological effect and other mechanisms could explain the correlations found. 

High BMI could be a confounding factor independently causing both wearing-off 

symptoms and low RO. High BMI is not only a risk factor for developing MS, but 

may also influence the disease severity negatively through various suggested 

mechanisms such as vascular comorbidity, insulin resistance, and epigenetic 

modulation of immune cells.166-169 Such mechanisms could contribute to wearing-off 

symptoms independently of RO. However, symptom occurrence towards the end of 

the dosing interval follows the same temporal pattern as RO decline, unlike BMI, 
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which is relatively constant. Increased fatigue toward the end of the dosing interval 

may reflect less natalizumab-induced suppression of fatigue91 when RO declines. 

Alternatively, fatigue could be a common underlying factor, causing inactivity, high 

BMI (leading to the observed lower RO118), and lower participation in work-life. 

However, the temporal relationship between RO and the wearing-off symptoms 

supports our conclusion. We also observed a dose-response tendency with 

significantly lower median RO in patients with wearing-off symptoms regularly and 

similar non-significant trends in patients with symptoms sometimes, compared to 

patients who never had such symptoms (figure 11). Varying classification of wearing-

off symptoms across studies may lead to varying results when comparing 

natalizumab RO between groups. 

The small patient cohort limits the interpretation of our results. However, we expect 

that the limited statistical power only allowed us to detect large effects and that there 

may be associations of smaller effect size that went unnoticed. We observed no 

disease activity in our patients, and short prospective follow-up time and a possible 

selection bias of patients with good therapeutic effect in our patient cohort (as 

elaborated in the next chapter) may contribute. Further follow-up of our patient 

cohort may reveal differences in patient outcome.  

The main rationale for EID is reduced risk of PML in JC virus-positive patients. But 

should patients at high risk of PML receive natalizumab therapy? Better knowledge 

of the established PML risk factors – JCV index, natalizumab therapy duration, and 

prior use of immunosuppressants – has not lead to a decline in overall incidence of 

PML, and more caution in giving natalizumab to high-risk patients has been 

advised.170 Observational studies show promising PML risk reduction in EID 

compared to SID. Although the initiative to try off-label dosing schedules to decrease 

PML risk has partly come from treating neurologists, several of the large studies that 

encourage continuation of natalizumab therapy in JC virus-positive patients have 

either been sponsored109, 116 or funded112 by Biogen, the manufacturer of natalizumab. 

The first ongoing randomized prospective trial of SID versus EID (ClinicalTrials.gov 

identifier NCT03689972) will hopefully improve our understanding of the 
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effectiveness and safety of EID. Further research is required to confirm whether 

wearing-off symptoms deteriorate with EID, or if the low RO in this group increases 

risk of disease breakthrough if intervals are extended. As long as this remains 

unknown, we recommend maintaining the current practice of switching to other 

highly effective DMT instead of continuing natalizumab in EID in JC virus positive 

patients with wearing-off symptoms. EID leads to a more pronounced decrease of RO 

in high weight patients than in normal weight patients,116 motivating particular 

cautiousness with EID in patients with wearing-off symptoms and high BMI.  

10.4 Methodological considerations  

10.4.1 Patient cohort and study design  

The main limitation of our study is the small patient cohort, but all natalizumab 

treated patients in our department were invited and the inclusion rate was high, 

reducing the risk of inclusion bias. Some routines at our neurological department may 

have contributed to differences in our cohort compared to other studies of 

natalizumab therapy. Firstly, natalizumab treated patients in our department are 

usually promptly switched to other DMTs if they develop antibodies against JC-virus. 

Thus, none were JC virus positive at inclusion, while other studies of natalizumab RO 

often include JC virus positive patients. However, this does not affect any of the 

outcome measures evaluated in our study. Secondly, less expensive DMTs with 

comparable efficacy and lower PML risk than natalizumab (primarily rituximab) are 

increasingly used in our department, and few new patients have started therapy with 

natalizumab at our department the last years. Thus, patients with side effects or poor 

therapeutic response to natalizumab may have been negatively selected over time so 

that the remaining pool of treated patients at the time of inclusion may have had less 

side effects and better therapeutic response. The same mechanisms could potentially 

contribute to a slightly lower prevalence of wearing-off symptoms than in other 

cohorts, although we did not observe that wearing-off symptoms were associated with 

cessation of therapy. Finally, our early use of highly effective DMTs like natalizumab 
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could contribute to a patient cohort with less severe disease than cohorts where 

natalizumab is preserved strictly for second line therapy.  

The study design has some limitations. The predictive abilities of a biomarker are 

best studied prospectively,23 and the cross sectional design in paper II thus limits the 

interpretation of the results. The prospective follow-up of 1 year in paper III may be 

too short to reveal subtle differences in therapeutic efficacy, especially considering 

that natalizumab is a highly effective DMT with low expected annual relapse rate. 

We did not collect demographic or clinical data before initiation of natalizumab 

therapy and can therefore not rule out any pre-treatment differences between patient 

groups. 

10.4.2 Outcome measures  

Clinically relevant and well-defined outcomes are necessary to identify biomarkers 

that reliably reflect these meaningful outcomes.23  A strength of this study is that we 

evaluated established outcomes included in NEDA-3 as well as NF-L levels, patient 

reported outcomes, and neuropsychological measures that are poorly captured in 

NEDA-3, but are likely to be included in future NEDA definitions.47  

Clinical and MRI disease activity 

Clinical relapses correlate with accumulated disability and disease progression, but 

more so in the first two years of the diagnosis,37 and may therefore be less relevant in 

our population with median disease duration of 13 years. MRI lesion activity is more 

sensitive and specific to disease activity than clinical relapses and reveals both 

asymptomatic and symptomatic lesions.32 At our department, RRMS patients who are 

stable on DMT without clinical signs of disease activity are annually examined with 

MRI without gadolinium contrast. Accordingly, the patients in the cohort were only 

evaluated for new or enlarged T2 lesions and not for contrast-enhancement of lesions. 

We did not evaluate any other MRI metrics, like brain atrophy, which correlates 

better with cognitive impairment than lesion burden.46  
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EDSS emphasizes motor impairment and does not capture all aspects of disease 

progression, and the scale is not sensitive enough to reveal low levels of progression 

particularly in its lower ranges.37 EDSS is more robust for measurements over long 

time periods, and despite high inter-rater variability, EDSS is so commonly used that 

it allows comparison of results across studies.171, 172 A change in EDSS score of 1.0 to 

1.5 points has been suggested as clinically meaningful.171 In the context of this study, 

we consider EDSS suitable to control for confounding group-level differences in 

disability between the wearing-off groups (paper II), but a poor measure for disability 

progression over only a year in a cohort with a low median EDSS score of 2 (paper 

III). 

Cognition 

SDMT is considered the best psychometric measure available for cognitive status and 

processing speed in MS due to high reliability, predictive validity, sensitivity, and 

specificity. The test is not affected by mathematical ability or emotional burden, but 

some incidental learning of symbol–digit associations may occur.42, 173 A 

deterioration of four or more points is considered clinically meaningful.90 

Fatigue 

FSS is widely used to assess fatigue in both clinical practice and research, allowing 

comparisons across studies, and the test has acceptable reliability, internal 

consistency, and sensitivity.174 We did not evaluate depression and anxiety, which 

can negatively affect the severity of fatigue.  

Wearing-off symptoms 

Patient reported wearing-off symptoms is a central outcome measure in this study. 

We divided patients into categories based on symptom frequency, in addition to 

letting patients write freely which symptoms they had, but we did not assess severity 

of symptoms. Patient reported outcomes are being increasingly used to help detection 

and management of hidden RRMS symptoms and to bridge the gap between what 

matters most to patients and the focus of the physicians and regulatory authorities.175 
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To allow for comparison across studies, patient reported outcomes must be measured 

in a standardized and validated way. The few published studies of wearing-off 

symptoms100, 101 have categorized the symptoms in various ways, which will weaken 

the comparability of results.  

10.4.3 Molecular biomarkers used in the study 

Several important challenges complicate the path from bench to bedside for 

molecular biomarkers in MS.23 For implementation in clinical practice, MS 

biomarkers should be process-specific, preferably measurable in blood and clinically 

useful, and the test should have high analytic validity and be simple. Natalizumab RO 

is highly process-specific, directly measuring the most central biological effect: 

blocking of α4 integrin. However, RO analysis is technically demanding, time-

consuming and expensive, and the clinical usefulness is not fully determined. We 

have addressed some of the technical challenges in this work, aiming to improve the 

analytic validity of the test. NF-L, a neuron-specific biomarker, is elevated in CSF 

and blood in many other neurological diseases than MS and is not natalizumab-

specific. However, the analysis is less technically demanding and quicker than an RO 

assay. The clinical usefulness of NF-L in detecting disease activity and monitoring 

therapeutic response in MS has been increasingly documented.52  

These use of two biomarkers that complement each other is a strength of this study. A 

drawback of both biomarkers is that there is no established clinically relevant cut-off 

value and uncertain reproducibility across machines. 

10.4.4 Technical considerations 

Sample types and receptor occupancy assays 

Collection of blood is minimally invasive, and blood is convenient for the study of 

circulating immune cells and especially suited for the study of natalizumab RO 

because the therapeutic target is located on circulating cells. We collected samples 

immediately before and 30 minutes after natalizumab infusion, which allowed for the 

measurement of minimum and maximum RO levels, based on prior knowledge.118 



 58 

Because RO is known to be stable over time within treated patients,96 we only 

measured RO in samples collected at inclusion. 

We used PBL fixed in proteomic stabilizer shortly after collection because we 

observed that early fixation apparently preserved the in vivo cell status better than 

processing of live PBMCs. Firstly, we observed that RO levels were lower in PBMCs 

that were processed and stored alive than in PBL fixed shortly after collection, and 

we suspected that processing unfixed cells led to natalizumab detachment. In line 

with this, van Kempen and colleagues used a correcting factor of 1.4 to obtain more 

correct RO values on PBMCs because they observed that natalizumab slowly 

dissociated from the cells during isolation and storage.101 Secondly, we observed that 

in vitro incubation with natalizumab induced downregulation of α4 integrin in live 

PBMCs and not in fixed cells. Downregulation of target receptor after incubating live 

cells with drug is commonly seen in RO assays (less pronounced when incubating on 

ice than at room temperature),120 and downregulation of α4 integrin is a well-known 

effect of natalizumab in treated patients.122 Nonetheless, this effect is not always 

accounted for, like in two recently published studies of natalizumab RO.101, 116 Both 

studies used live PBMCs in an RO assay format where α4 integrin levels were 

measured indirectly by anti-IgG4 in sample aliquots that had been incubated with 

natalizumab at room temperature. If incubation led to receptor downregulation in the 

sample aliquot used to measure receptor levels, the drug/receptor ratio would seem 

higher than it was in vivo, thus leading to an overestimation of the RO. The reported 

RO values in these two studies were higher than in our data, and in one of the 

studies116 several patients had RO still exceeding 100% at the end of the 4-week 

dosing interval. We suspect the use of live PBMCs contributed to this.  

Using flow versus mass cytometry techniques to measure RO could possibly also 

affect the results. Flow cytometry-based studies report various mean natalizumab RO 

values, often more than 75% at the end of 4-week dosing intervals,96, 101 which is 

higher than in our study. Notably, the “background” RO in untreated patients is 

reported to be 10-15% in flow cytometry assays.96 We have no other mass cytometry 

RO studies to compare to yet, but we saw very low “background” anti-IgG levels in 
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untreated healthy donors (supplementary figure 4D, paper I), consistent with 

considerably lower background signal in mass than in flow cytometry.126  

Sample collection was performed in a standardized manner because inconsistent 

duration and temperature of incubation with Proteomic stabilizer across samples in a 

study may affect the results.176 PBL samples collected and stored at -80°C at different 

time points were thawed on the same day so that antibody staining and mass 

cytometry analysis of PBL was performed on all samples simultaneously.  

We titrated the quantitative antibodies to saturating concentrations in the same 

sample type and with the same cell concentration as used in the main experiment, as 

recommended.120 Despite these efforts, patient-to-patient variations in receptor levels 

may impact the individual optimal saturating antibody concentration and result in 

some variability in RO. 

Data analysis 

Data analysis was performed blinded in both the manual and unsupervised analysis 

approach. Manual analysis is time consuming but allows supervision of the process. 

Unsupervised analysis is less time consuming but the precision, accuracy, and 

variability of unsupervised methods varies and none of the algorithms are perfect.131 

We consider the combination of the two approaches a good quality control to confirm 

the results in our main experiment (paper II).  

10.5 Concluding remarks and future perspectives 

High-dimensional mass cytometry provides an unprecedented opportunity to capture 

and understand the complexity and heterogeneity of human disease, and to identify 

individual molecular signatures that underlie clinical outcomes and therapeutic 

responses.177 We developed a novel method for integrating an RO assay in high-

dimensional mass cytometry and present the first study employing QSC beads in 

mass cytometry. The method is easily adaptable to other therapeutic antibodies that 

are increasingly applied in the treatment of cancer and a broad range of 
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immunological diseases. Considering the widespread use of QSC beads and RO 

assays in flow cytometry together with the exponentially increasing number of mass 

cytometry studies (740 peer-reviewed publications over the last 10 years; Source: 

Fluidigm), we believe our method to be a highly relevant scientific contribution.123 

Moreover, QSC beads may allow for the standardization across mass cytometers and 

over time that is already well established in flow cytometry. This is a critical step on 

the path of implementing mass cytometry in multi-center longitudinal clinical trials 

that is necessary to link high-dimensional data to relevant clinical outcomes and 

provide advances in the field of precision medicine.177 

The utility of natalizumab RO as a biomarker to guide individualized dosing is 

hampered by the lack of a validated cut-off value for therapeutic efficacy. To 

establish such a cut-off, natalizumab RO measurement should be standardized and 

included in clinical trials of different dosing intervals. Such studies must be 

randomized to avoid selection bias of patients with non-active disease in EID groups. 

Using mass cytometry to measure RO in such trials would allow measurement of RO 

in a broad range of cell subtypes simultaneous with other potentially important 

therapeutic biomarkers. 

We observed an association between low natalizumab RO and wearing-off symptoms 

at the end of the 4-week dosing interval, which is the first indication of a biological 

cause of the phenomenon. There have been remarkably few studies of this frequent 

phenomenon, which may be due to a tendency for neurologists to under-recognize 

subjective symptoms although they may be important to treated patients. We found 

that all patients, including those with wearing-off symptoms regularly, fulfilled the 

criteria for NEDA-3. However, cognitive impairment and fatigue were more 

pronounced in patients with wearing-off symptoms regularly. We hope that the 

characteristics and clinical significance of the wearing-off phenomenon will be 

evaluated future randomized studies of natalizumab in different dosing intervals to 

avoid positive selection of patients with wearing-off in the SID group. In light of our 

results, we would be cautious with extending the dosing intervals in patients reporting 

wearing-off symptoms regularly, especially in the overweight and obese. 
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11. Appendix: Patient form at inclusion 

 

Forskningsprosjekt: Immun-karakterisering av pasienter som mottar sykdomsmodulerende 

behandling 

I forbindelse med prosjektet du deltar i ønsker vi å registrere oppdaterte opplysninger om deg. Disse 

vil bli lagret anonymisert i forskningsdatabasen og dette skjema vil bli makulert av prosjektansvarlig 

(Gerd Haga Bringeland). Utfylt skjema leveres i luken på dagposten. 

 

Navn:           Dato:  

 

1) Arbeidssituasjon: 

□ Fast arbeid,  stillingsprosent ……….. % yrke ………………………………..  

□ korttidssykemeldt,  sykemeldingsgrad …………..%  yrke ……………………………….. 

□ langtidssykemeldt/uføretrygdet 

□ annet: ……………………… 

 

2) Røykevaner: 

□ Aldri-røyker   

□ tidligere røyker 

□ nåværende av og til 

□ nåværende fast 

 

3) Vekt (kg) …………… Høyde (cm) …………… 

 

4) Noen pasienter opplever økte symptomer på slutten av 4-ukersintervallet mellom Tysabridoser. 

Gjelder dette deg?  

 □ Nei 

 □ Ja, av og til  Symptom(er):……………………………………………… 

 □ Ja, hver gang  Symptom(er):……………………………………………… 
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� Abstract
Receptor occupancy, the ratio between amount of drug bound and amount of total
receptor on single cells, is a biomarker for treatment response to therapeutic monoclo-
nal antibodies. Receptor occupancy is traditionally measured by flow cytometry. How-
ever, spectral overlap in flow cytometry limits the number of markers that can be
measured simultaneously. This restricts receptor occupancy assays to the analysis of
major cell types, although rare cell populations are of potential therapeutic relevance.
We therefore developed a receptor occupancy assay suitable for mass cytometry. Mea-
suring more markers than currently available in flow cytometry allows simultaneous
receptor occupancy assessment and high-parameter immune phenotyping in whole
blood, which should yield new insights into disease activity and therapeutic effects.
However, varying sensitivity across the mass cytometer detection range may lead to
misinterpretation of the receptor occupancy when drug and receptor are detected in
different channels. In this report, we describe a method for optimization of mass cyto-
metry receptor occupancy measurements by using antibody-binding quantum simply
cellular (QSC) beads for standardization across channels with different sensitivities.
We evaluated the method in a mass cytometry-based receptor occupancy assay for
natalizumab, a therapeutic antibody used in multiple sclerosis treatment that binds to
α4-integrin, which is expressed on leukocyte cell surfaces. Peripheral blood leukocytes
from a treated patient were stained with a panel containing metal-conjugated anti-
bodies for detection of natalizumab and α4-integrin. QSC beads with known antibody
binding capacity were stained with the same metal-conjugated antibodies and were
used to standardize the signal intensity in the leukocyte sample before calculating
receptor occupancy. We found that QSC bead standardization across channels cor-
rected for sensitivity differences for detection of drug and receptor and generated more
accurate results than observed without standardization. © 2019 The Authors. Cytometry Part

A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.

� Key terms
receptor occupancy; biomarkers; QSC beads; CyTOF; standardization; optimization;
multiple sclerosis; natalizumab; quantitative analysis; mass cytometry

RECEPTOR occupancy (RO) by therapeutic monoclonal antibodies is a potential
biomarker for therapeutic response and may support dose optimization in precision
medicine (1,2). RO assays generally involve measuring bound drug relative to total
target receptor on single cells by flow cytometry. Mass cytometry has rapidly evolved
to become a relevant tool in several fields of translational clinical research (3–6). In
mass cytometry, antibodies are conjugated to purified metal isotopes instead of
fluorophores, which dramatically reduces signal overlap and allows simultaneous
detection of more than 40 parameters in individual cells by inductively-coupled
plasma mass spectrometry (7). Mass cytometry permits measurement of RO in
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conjunction with more markers, and in more cell types of
interest, than is currently possible by flow cytometry. In order
to be useful, estimation of RO using mass cytometry must be
reliable and reproducible. Mass cytometers have varying sen-
sitivity over the detection range of metal isotopes (up to five-
fold difference in CyTOF 1 and 2, lower in Helios), and each
mass cytometer has its own sensitivity pattern (8,9). In a RO
assay, differences in detection sensitivity of anti-drug and
anti-receptor antibodies will result in either over- or underes-
timation of the RO, depending on which antibody is detected
in the most sensitive channel.

Quantum simply cellular (QSC) beads are cell-sized parti-
cles with known antibody binding capacity that were developed
for flow cytometry to enable determination of absolute num-
bers of cellular epitopes (10). We aimed to obtain more accu-
rate RO estimation in mass cytometry by employing QSC
beads for standardization across channels with varying detec-
tion sensitivity. We evaluated the applicability of QSC bead
standardization in a mass cytometry-based RO assay for natali-
zumab. Natalizumab is a humanized monoclonal IgG4 anti-
body that binds to the α4 subunit of surface integrins on
leukocytes, thereby preventing leukocytes from entering the
central nervous system over the blood-brain-barrier. Natalizu-
mab is used in the treatment of multiple sclerosis (MS) (11),
and the natalizumab RO has been suggested as a biomarker for
monitoring response to therapy (12,13). The assay used here
was adapted from a natalizumab RO assay previously pub-
lished for flow cytometry (14) in which bound natalizumab
was detected by an anti-IgG4 and total α4 integrin was
detected by an anti-α4 integrin antibody that binds to a differ-
ent epitope of the α4 integrin than natalizumab. We demon-
strated how the different detection sensitivities for natalizumab
and α4 integrin influenced the mass cytometry-based RO assay
results and how accurate and reproducible RO determination
was achieved by standardization with QSC beads.

MATERIALS AND METHODS

Subjects and Samples

The study was approved by the Regional Ethics Commit-
tee (approval REK 2016/579), and samples were collected

after written informed consent from one healthy donor and
one MS patient receiving natalizumab therapy (4 weeks after
the last infusion) at the Department of Neurology, Haukeland
University Hospital. Whole blood was obtained in heparin-
ized vacutainer tubes (Greiner Bio-One GmbH, Kremsmün-
ster, Austria), incubated with Proteomic stabilizer (Smart
Tube, Inc., San Carlos, CA) for 10 min according to the man-
ufacturer’s protocol, and stored at −80�C.

Mass Cytometry Antibody Panel and Titration

The 34 marker mass cytometry antibody panel
(Supporting Information Table S1a) consisted of 25 metal-
conjugated antibodies purchased pre-conjugated from Fluidigm
(South San Francisco, CA) and nine antibodies purchased from
Biolegend (San Diego, CA), R&D Systems, (Minneapolis, MN)
and Abcam (Cambridge, Great Britain) that were conjugated
to metal isotopes with the Maxpar Antibody Labeling Kit
(Fluidigm) according to the manufacturer’s protocol. In the
RO assay, bound natalizumab was measured with an anti-IgG4
(conjugated to 169Tm) specific for the Fc portion of human
IgG4 and total α4 integrin was measured with anti-α4 integrin
(conjugated to 141Pr) specific for a different epitope than nata-
lizumab (Fig. 1). Antibody titrations were performed on the
patient’s peripheral blood leukocytes (PBLs) under the same
conditions as the experiment (barcoded samples, staining vol-
ume 100 μl, 1.5 × 106 cells), and anti-IgG4 (169Tm) and anti-
α4 integrin (141Pr) were titrated to saturating concentrations.
An antibody cocktail containing the complete panel except
anti-IgG4 and anti-α4 integrin was pre-made and stored in
Maxpar Cell Staining Buffer (CSB; Fluidigm) in aliquots at
−80�C for up to 9 days during which time the three replicate
experiments were performed. Anti-IgG4 and anti-α4 integrin
were added to the antibody cocktail aliquot on the day of the
experiments.

Quality Control Experiments

Quality control (QC) experiments were performed on
the same patient PBL sample under the same conditions as
the main experiments. The following were analyzed:

Figure 1. Natalizumab RO assay: (a) Natalizumab was detected with anti-IgG4 (169Tm), and its receptor was detected with anti-α4 integrin

(141Pr). (b) Metal-conjugated antibodies are detected with different sensitivity depending on the atomic weight of the metal tag (graph

adapted from Tricot et al.). [Color figure can be viewed at wileyonlinelibrary.com]
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Unstained samples. To examine whether PBLs contained any
metals in the detection range of the mass cytometer (in MS
patients gadolinium can originate from intravenous contrast
used in MRI scans), an unstained aliquot of the barcoded
PBL sample, with only the DNA intercalation reagent used
for cell detection, was acquired.

Mass-minus-one controls. Two mass-minus-one (MMO)
controls were performed to test for spillover from other
markers in the panel into the channels used for detection of
anti-IgG4 and anti-α4 integrin. Barcoded PBLs were stained
with the complete panel except for either anti-IgG4 or anti-
α4 integrin.

Biological negative control. PBLs from an untreated healthy
donor were barcoded and pooled with patient PBLs to serve
as a negative control for binding of anti-IgG4 in the absence
of natalizumab.

Positive control. Patient PBLs incubated with natalizumab,
which were expected to have a RO of 100%, were used as a
positive control. The same sample was also used as reference
in some of the RO calculation methods.

Test of competitiveness between natalizumab and anti-α4
integrin. To examine whether natalizumab and anti-α4 integ-
rin bound to different epitopes of α4 integrin without compe-
tition, detection of α4 integrin on PBLs from the healthy
donor was compared with and without prior incubation with
natalizumab.

Barcoding, Pooling, and Freezing of Aliquots

Whole blood samples stored in Proteomic stabilizer were
thawed, and red blood cell lysis was performed with Thaw-
Lyse buffer 1 (Smart Tube, Inc.) according to the manufac-
turer’s manual. A total of 6 × 106 PBLs from each sample
were permeabilized and barcoded using the Cell-ID 20-Plex
Pd Barcoding kit (Fluidigm) according to the manufacturer’s
protocol. The two samples were washed in Maxpar PBS
(Fluidigm), pooled, and stored in three aliquots each contain-
ing 3 × 106 cells in Maxpar PBS with 10% DMSO (Dimethyl
sulfoxide, Sigma-Aldrich, Darmstadt, Germany) at −80�C for
up to 9 days. All centrifugation steps were performed at room
temperature at 800g.

In Vitro Incubation with Natalizumab and Antibody

Staining

The in vitro incubation with natalizumab and antibody
staining (Fig. 2a) was performed by the same operator in the
same lab on three separate days. On each of the days, one ali-
quot of 3 × 106 barcoded and pooled PBLs was thawed and
washed in Maxpar CSB. For optional incubation in vitro with
natalizumab, the sample was split into two tubes, which were
both incubated for 20 min at room temperature in Maxpar CSB
with 100 U/ml heparin (LEO Pharma A/S, Ballerup, Denmark)
to avoid nonspecific eosinophil antibody binding (15). To one
of the tubes, natalizumab (Lot 28918, Biogen, Cambridge,

Massachusetts) was added to a final concentration of
10 μg/ml. Both tubes were incubated for 30 min at room tem-
perature with intermittent vortexing and washed thoroughly in
Maxpar CSB. Prior to antibody staining, the number of cells in
each tube was adjusted to 1 × 106, and cells were incubated
again for 20 min at room temperature in Maxpar CSB with
100 U/ml heparin. Aliquots of the metal-conjugated antibody
cocktail were thawed, anti-IgG4 and anti-α4 integrin were
added, and antibody staining was performed in a total volume
of 100 μl. After 30-min incubation at room temperature with
intermittent vortexing, samples were washed with Maxpar CSB,
and a 10-min post-staining fixation was performed in fresh 2%
paraformaldehyde (Thermo Scientific, Waltham, MA) in Max-
par PBS at room temperature. Samples were washed with Max-
par PBS, resuspended in 1 ml of 125 nM Cell-ID™
Intercalator-Ir in Maxpar Fix and Perm Buffer (Fluidigm), and
stored at 4�C for 3–4 h. Immediately prior to acquisition, PBL
were washed in Maxpar PBS and Maxpar Water (Fluidigm),
resuspended in 0.1× EQ Four Element Calibration Beads
(Fluidigm) in Maxpar Water and filtered (Corning Falcon Test
Tube with Cell Strainer Snap Cap, Fisher Scientific, Hampton,
NN). All centrifugation steps were performed at room tempera-
ture at 800g.

Adaptation of QSC Bead Protocol for Mass Cytometry

QSC anti-mouse beads (Cat code 815A, Bangs Laborato-
ries Inc., Fishers, IN) with increasing antibody binding capac-
ity (ABC) for mouse-IgG were stained and acquired on the
same days as PBL samples (Fig. 2b) and used to create stan-
dard curves of signal intensity (dual counts) from known
numbers of anti-IgG4 (169Tm) and anti-α4 integrin (141Pr)
(Fig. 2c). The QSC bead kit consisted of four bead popula-
tions with known ABC (12,319–814,348, lot 13,359). To cover
the range of anti-IgG4 (169Tm) and anti-α4 integrin (141Pr)
dual count values in our PBL samples, we purchased one
additional QSC bead population with low ABC (2,685, lot
13,289), resulting in five QSC bead populations with ABC
range of 2,685–814,548.

QSC beads are identified by forward and side scatter in
flow cytometry, and they do not contain any metal in the
detection range of the mass cytometer. To enable identifica-
tion of QSC beads on the mass cytometer, the manufacturer’s
staining protocol was modified by addition of an osmium
tetroxide (OsO4) labeling step prior to antibody staining. Four
drops of each of the QSC bead populations were incubated
separately with 0.01–0.001% OsO4 (CAS#20816-12-0, Elec-
tron Microscopy Sciences, Hatfield, PA) diluted in Maxpar
PBS. After 30 min, beads were washed four times in Maxpar
PBS, once in Maxpar CSB, and stained separately with 1 μg
of either anti-IgG4 (169Tm) or anti-α4 integrin (141Pr) in a
total volume of 100 μl Maxpar CSB for 30 min at room tem-
perature. QSC beads were washed twice in Maxpar PBS and
once in Maxpar Water, resuspended in 200 μl 0.1 × EQ Four
Element Calibration Beads in Maxpar water, and filtered. The
five QSC bead populations were kept separate through all
staining and acquisition steps, and all centrifugation steps
were performed at room temperature at 2500g.
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A flow cytometry QC experiment was performed to
examine whether OsO4 labeling affected the ABC of QSC
beads. QSC beads with and without OsO4 labeling prior to

antibody incubation with anti-IgG-PE (Abcam, Supporting
Information Table S1b) were acquired on a flow cytometer
(BD LSR Fortessa, BD Biosciences, Franklin Lakes, NJ). Apart

Figure 2. Experimental workflow: (a) peripheral blood leukocytes (PBLs) were split into two aliquots for optional in vitro incubation with

natalizumab, stained with an antibody cocktail containing anti-IgG4 and anti-α4 integrin, and analyzed on a Helios mass cytometer.

(b) Quantum simply cellular (QSC) beads with known antibody binding capacity (ABC) were labeled with OsO4, stained with anti-IgG4 or

anti-α4 integrin, and acquired on the same mass cytometer on the same day. (c) Standard curves were created based on anti-IgG4 and

anti-α4 integrin signal intensities from QSC beads with known ABC, and signal intensities of the same antibodies from the PBL samples

were plotted into the standard curves for standardization before RO calculation. [Color figure can be viewed at wileyonlinelibrary.com]
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from staining QSC beads with a fluorochrome labeled anti-
IgG4-PE antibody, instead of a metal-conjugated antibody,
the QSC bead protocol described above was followed. To
evaluate the correlation between QSC beads on mass and flow
cytometry, QSC beads coated with anti-IgG4 (169Tm) or anti-
IgG4-PE were acquired by mass or flow cytometry, respec-
tively, and signal intensities were compared.

Acquisition on the Helios® Instrument

In each of the three replicate experiments, freshly stained
QSC beads and PBL samples were analyzed with the same
standard settings on a Helios mass cytometer (Fluidigm).
Before acquisition, tuning (CyTOF Tuning Solution, Flui-
digm) and calibration (EQ Four Element Calibration Beads,
Fluidigm) were performed according to the manufacture’s
guidelines. PBL sample acquisition was performed at a rate of
300–400 events per second.

Mass Cytometry Data Processing and Analysis

FCS files from analyses of QSC beads and PBL samples
were normalized to the EQ beads using the Fluidigm normal-
izer (Fluidigm). Normalized QSC bead FCS files were
exported to Cytobank software (Cytobank Inc., Santa Clara,
CA) for gating and downstream analysis. Signal intensity
(median dual counts) of QSC beads stained with anti-IgG4
and anti-α4 integrin, respectively, and the corresponding
ABC values were plotted using QuickCal template (Bangs
Laboratories) to create individual standard curves for the
antibodies.

Normalized PBL sample FCS files were debarcoded
(Fluidigm Debarcoder) and exported to Cytobank software
for gating and downstream analysis. Cleanup gating was per-
formed to obtain single PBL cells, and eight cell types of
interest were identified by manual gating: memory B cells,
monocytes, CD4 effector memory (TEM), central memory
(TCM), effector memory RA (TEMRA) T cells, and CD8 TEM,
TCM, and TEMRA cells.

In patient PBLs, 90th percentiles of anti-IgG4 (169Tm)
and anti-α4 integrin (141Pr) dual counts in the eight cell types
were exported for further calculations (Fig. 2c, left). Ninetieth
percentiles were used instead of medians because of the
bimodal distribution of α4 integrin and natalizumab in some
cell types. For optional QSC bead standardization (Fig. 2c,
right), these 90th percentiles were plotted against the respec-
tive standard curves in the QuickCal template and the corre-
sponding ABC values, which will be referred to as QSC bead
standardized signal intensities, were used in subsequent calcu-
lations. Untreated PBLs from the healthy donor were used as
negative controls.

Calculation of Receptor Occupancy

In patient PBLs with and without in vitro natalizumab
incubation, RO was calculated as a percent ratio between sig-
nal intensities of anti-IgG4 (169Tm) and anti-α4 integrin
(141Pr) with and without QSC bead standardization (Fig. 2c):

i. Raw RO (ROraw) based on raw 90th percentile dual
counts:

%ROraw = 100 ×
Dual counts anti− IgG4 169Tmð Þ

Dual counts anti−α4 integrin 141Prð Þ

ii. QSC bead standardized RO (ROstandardized) based on QSC
bead standardized signal intensities:

%ROstandardized = 100 ×
QSCbead standardized anti− IgG4 169Tmð Þ

QSCbead standardized anti−α4 integrin 141Prð Þ

In patient PBLs not incubated with natalizumab, we cal-
culated RO by an additional approach by determining the
ratio between RO (as calculated above) in the sample and RO
in the in vitro natalizumab saturated aliquot of the same sam-
ple:

iii. ROraw in the sample relative to ROraw in the 100% satu-
rated aliquot:

%ROvs:100%raw = 100 ×
%ROraw in sample

%ROraw in 100%saturated sample

iv. ROstandardized in the sample relative to ROstandardized in the
100% saturated aliquot:

%ROvs: 100%standardized = 100 ×
%RO stand in sample

%ROstand in 100%saturated sample

Statistics

In the sample incubated in vitro with natalizumab, RO
results were compared to 100% using a one-sample t test.
Otherwise, results from different RO calculation methods
were compared using a paired t test. Statistical significance
was defined as P < 0.05. We used R version 3.4.3 (16) for sta-
tistical analysis and Inkspace (Free Software Foundation, Inc.,
Boston, MA) for illustrations.

RESULTS

Quantification of Natalizumab and α4 Integrin in PBL

Cell Subtypes

Memory B cells, monocytes, CD4 TEM, TCM, and TEMRA

cells, and CD8 TEM, TCM, and TEMRA cells were gated in PBL
samples as illustrated in Supporting Information Figure S1a.
The 90th percentile dual counts of anti-IgG4 (169Tm) and
anti-α4 integrin (141Pr) of these cell types in the patient PBL
samples with and without natalizumab incubation in vitro
(Supporting Information Fig. S1b) were exported for RO
calculations.
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QSC Beads Were Used for Standardization of Signal

Intensities

QSC beads were gated as illustrated in Supporting Informa-
tion Figure S2a. Median dual counts of anti-IgG4 (169Tm) and
anti-α4 integrin (141Pr) in the five QSC bead populations were
determined (Fig. 3; Supporting Information Fig. S2b) and used
to create standard curves for each of the antibodies in the
QuickCal Template. QSC bead standardization of the PBL sam-
ples was performed by plotting raw signal intensities (90th per-
centile dual counts) of anti-IgG4 (169Tm) and anti-α4 integrin
(141Pr) in the cell types against the respective standard curves, as
shown in detail in Supporting Information Figure S2c. OsO4

labeling of the QSC beads prior to antibody staining did not
alter antibody binding capacity (Supporting Information
Fig. S3a). Moreover, there was a linear correlation between ABC
of the same QSC beads acquired by mass cytometry and by flow
cytometry (Supporting Information Fig. S3b).

Bead Standardization Compensated for

Overestimation of RO

Table 1 shows RO values from different calculation
methods based on data collected on patient PBLs with and
without in vitro incubation with natalizumab. Samples incu-
bated with natalizumab were expected to have ROs of 100%
in all cell subtypes. We compared two calculation methods
(Fig. 4a): ROraw and ROstandardized. We found that ROraw was
significantly different from the expected 100% in all eight cell
subtypes identified (p < 0.0001, median 126%, IQR:
116–130%), whereas ROstandardized was not significantly differ-
ent from 100% (p = 0.45, median 101%, IQR: 94–106%).

In the samples not incubated with natalizumab, RO was
unknown. Four different RO calculation methods were com-
pared (Fig. 4b): In addition to ROraw and ROstandardized, we
calculated ROvs100%raw and ROvs100%standardized based on RO
in the sample relative to RO in the corresponding 100% satu-
rated sample. As for the in vitro saturated samples, we found
that ROraw was higher than ROstandardized in each of the eight
cell subtypes (p values, medians and ranges are shown in
Fig. 4b). Neither ROstandardized nor ROvs100%raw were signifi-
cantly different from ROvs100%standardized in any of the sub-
types (p values, medians and ranges are shown in Fig. 4b).

To determine whether the overestimation of RO could
be caused by interfering factors, such as unwanted signal in
the channels for detection of anti-IgG4 (169Tm) and anti-α4
integrin (141Pr), several control experiments were performed.
First, unstained PBL samples did not contain any detectable
metals (Supporting Information Fig. S4a). Second, MMO con-
trols did not reveal spillover into either of the two channels
(Supporting Information Fig. S4b). Third, there was minimal
nonspecific binding of anti-IgG4 in the absence of natalizu-
mab in untreated PBLs from the healthy donor (Supporting
Information Fig. S4c). Finally, detection of α4 integrin by the
anti-α4 integrin antibody was not reduced by bound natalizu-
mab (Supporting Information Fig. S4d).

DISCUSSION

Embedding RO assays into high-parameter mass cytome-
try may be a valuable addition to therapy monitoring. How-
ever, to be useful, mass cytometry-based RO assay results

Figure 3. Median signal intensity of anti-α4 integrin (141Pr) and anti-IgG4 (169Tm) on QSC beads with known antibody binding capacity

(ABC). Error bars show the range of measured signal intensities in three replicate experiments. The same data for each of the

experiments are shown in Supporting Information Figure. S2b.
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must be reliable and reproducible. In this article, we showed
how direct comparison of drug and receptor detected in mass

cytometer channels with different sensitivities led to misinter-
pretation of RO. We demonstrated that reliable results can be
obtained by standardization across channels using QSC beads
with known ABC. A QSC bead protocol was adapted from
flow to mass cytometry. In the mass cytometry assay, signal
intensities from metal-conjugated antibodies in the sample
were standardized with standard curves created from QSC
beads coated with known numbers of the same metal-
conjugated antibodies.

We performed our mass cytometry RO assay for the
therapeutic antibody natalizumab on PBLs from one treated
patient with one healthy donor as a negative control in three
replicate experiments. An in vitro natalizumab-saturated ali-
quot with expected RO of 100% was used as a positive con-
trol. Natalizumab was detected with anti-IgG4 (169Tm) and
its target receptor was detected with anti-α4 integrin (141Pr).
Based on prior knowledge, 169 is a more sensitive channel of
the mass cytometer than 141, and we therefore expected over-
estimation of the RO. Indeed, we observed a consistent over-
estimation of the ROraw in all cell types (median 126%) of the
sample saturated in vitro with natalizumab with known RO of
100%. After QSC bead standardization of anti-IgG4 (169Tm)
and anti-α4 integrin (141Pr) signal intensities, the resulting
ROstandardized was no longer significantly different from the
expected (median 101%). The same pattern was observed in

Figure 4a. Receptor occupancy (RO) in three replicate

experiments with patient PBL aliquots. RO raw and RO stand in

the PBLs incubated in vitro with natalizumab (all cell types

combined) with expected RO 100% (marked by a horizontal line).

Each dot represents RO in one cell type, and lines connect RO

values determined in the same measurement using the two

calculation methods. P values for comparison of mean RO to the

expected (100%) in a one-sample t test.

Figure 4b. Receptor occupancy (RO) in three replicate experiments with patient PBL aliquots. ROraw, ROstandardized, ROvs. 100% raw, and

ROvs. 100% standardized in PBL aliquots with unknown RO. Heights of the bars are median values, and the error bars indicate the range of

measured values in three replicate experiments. P values for comparison of mean RO using a paired t test.
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the sample with unknown RO: ROraw was higher in all cell
types compared to ROstandardized.

QC experiments did not reveal other explanations for the
overestimation of RO: We did not detect preexisting (in vivo)
metal in the sample, spillover from other markers in the panel
into channels of interest, or nonspecific binding of anti-IgG4,
and bound natalizumab did not interfere with detection of
integrin. Overall, our results indicate that deviance in channel
sensitivity for anti-IgG4 (169Tm) and anti-α4 integrin (141Pr)
was indeed the cause of the overestimation of RO and that this
could be corrected by QSC bead standardization. In the sample
with unknown RO, after correcting for RO in the correspond-
ing 100% saturated sample, the effect of QSC bead standardiza-
tion disappeared so that there was no significant difference
between ROvs100%raw and ROvs100%standardized in any of the cell
types. There was also no difference between ROstandardized and
ROvs100%standardized. This indicates that using RO in a 100% sat-
urated sample as a reference mitigates overestimation of RO.

The general effect of the deviance in detection sensitivity
on RO results can be predicted by the relative location of the
antibody metal tags in the detection spectrum (8): If the drug
is detected in a more sensitive channel than the receptor, the
RO will be overestimated and vice versa. However, the detec-
tion sensitivity pattern varies between machines and cannot
be exactly predicted by existing tools. EQ calibration beads
and tuning solution only contain certain metals, whereas QSC
beads are stained with the actual metal-conjugated antibodies
used to stain the samples. The approach described here may

also correct for differences in batch-to-batch variability in
labeling efficiency (how many metal isotopes are conjugated
to the antibody) of in-house conjugated antibodies but that
was not tested in our study.

As no studies of RO in mass cytometry have yet been
published, the problem with diverging detection sensitivity
has not yet been addressed, but a similar problem arises in
flow cytometry where antibodies are conjugated to fluoro-
phores with different brightness. Some have addressed this by
using various antibody-binding beads (1,10). Others have
avoided measuring receptors in various ways: for example,
comparing bound drug in the sample to an in vitro drug-
saturated sample as an indirect measure of total receptor level
(17) or comparing bound drug during treatment to a baseline
before treatment (18). The latter method does not take into
account changes in total receptor levels during treatment.
Advantages of using QSC beads instead of staining several ali-
quots of the sample as a reference are that less sample is con-
sumed and that acquisition time is decreased. Measuring drug
and receptor on the same cells in the same run means that
there is no batch-to-batch variability and takes into account
varying receptor level during treatment. Labeling QSC beads
with metal before antibody staining is time-consuming, and
commercial antibody capture beads pre-labeled with metal in
the detection range of mass cytometer would simplify the
protocol.

Importantly, we here used QSC beads only for standardi-
zation and not for absolute quantitation of ABC. In mass

Table 1. Receptor occupancy (RO) in eight cell types in three replicate experiments with the same patient PBL sample

(A) RORAW AND ROSTANDARDIZED IN PATIENT PBLS SATURATED IN VITRO WITH NATALIZUMAB WITH EXPECTED RO OF 100%.

RO RAW RO STANDARD ZED

DAY 1 DAY 2 DAY 3 DAY 1 DAY 2 DAY 3

Mem B cell 120% 129% 132% 98% 105% 111%
Monocyte 114% 108% 113% 94% 89% 95%
CD4 TCM 115% 110% 122% 92% 86% 101%
CD4 TEM 114% 116% 126% 92% 94% 106%
CD4 TEMRA 116% 130% 129% 93% 102% 107%
CD8 TCM 129% 127% 148% 103% 101% 123%
CD8 TEM 123% 125% 131% 99% 100% 110%
CD8 TEMRA 130% 132% 147% 105% 106% 123%

(B) RORAW, ROSTANDARDIZED, ROVS100%RAW, AND ROVS100%STANDARDIZED in patient PBL with unknown RO (i.e., not incubated with natalizumab in vitro).

RO RAW RO STANDARDIZED RO VS. 100% RAW RO VS. 100% STANDARDIZED

DAY 1 DAY 2 DAY 3 DAY 1 DAY 2 DAY 3 DAY 1 DAY 2 DAY 3 DAY 1 DAY 2 DAY 3

Mem B cell 101% 95% 96% 82% 77% 81% 84% 73% 73% 83% 73% 73%
Monocyte 76% 72% 76% 62% 59% 64% 67% 67% 67% 66% 66% 67%
CD4 TCM 73% 77% 82% 57% 60% 68% 63% 70% 67% 62% 69% 67%
CD4 TEM 77% 75% 79% 61% 59% 66% 68% 64% 63% 66% 63% 62%
CD4 TEMRA 95% 89% 94% 75% 69% 78% 82% 68% 73% 81% 68% 73%
CD8 TCM 85% 84% 93% 67% 66% 78% 66% 66% 63% 65% 66% 63%
CD8 TEM 86% 88% 87% 68% 70% 73% 70% 70% 66% 69% 70% 66%
CD8 TEMRA 82% 87% 86% 65% 69% 72% 63% 66% 59% 62% 65% 59%
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cytometry, signal intensity is proportional to the amount of
metal-conjugated antibody bound per QSC bead or cell, but
no actual counting of epitopes is performed by the instru-
ment. Therefore, ABC values obtained by mass cytometry
require careful interpretation, and we refer to the resulting
semi-quantitative value as QSC bead standardized signal
intensity.

Despite efforts to reduce experimental variability by
using frozen aliquots of one barcoded sample and one anti-
body cocktail, we observed some day-to-day variability in the
three replicate experiments performed over a period of 9 days.
This could be due to variations in sample handling, staining,
cell numbers, and pipetting in the many steps of the protocol.
A superior approach for isolating the effect of QSC bead stan-
dardization and eliminating other experimental variation
would be to run the same stained beads and PBL samples on
different mass cytometers simultaneously.

Reproducibility over time and between instruments is
crucial in longitudinal and multicenter studies. In flow cyto-
metry, QSC beads allow comparison of experiments over time
and between different instruments (19,20). In mass cyt-
ometers, individual detection sensitivity patterns for different
machines and variations in machine performance over time
may affect results in longitudinal and multicenter studies.
Acquisition of data on samples and on QSC beads labeled
with the same metal-conjugated antibodies as used to stain
the samples on the same mass cytometer on same day may
correct for such variations.

In conclusion, our findings suggest that QSC bead stan-
dardization offers an effective means to standardize signal
intensities across channels of different sensitivity resulting in
reliable and accurate RO results. We demonstrated this in a
natalizumab RO assay, but the approach is applicable for RO
assays of any drug-receptor pair or in other mass cytometry
experiments involving comparison of abundance of two or
more markers. QSC beads should cover the whole range of
dual count values in the samples and may be labeled with any
metal within the detection range of the mass cytometer, but
alterations of bead ABC should be examined. There are cer-
tain factors that use of beads cannot correct. QC experiments
should be performed to evaluate unspecific binding and spill-
over into the channels for detection of drug or receptor, and
we suggest use of an in vitro drug-saturated sample with
known RO as a reference to validate the results. Future stud-
ies should evaluate whether QSC beads can, as in flow cyto-
metry, be used for standardization of experiments performed
on different mass cytometers and over time, which would be
an important step toward applicability of mass cytometry in
multicenter and longitudinal clinical studies.
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Supplementary Table 1: Antibodies used in the experiments. 

a) Mass cytometry antibody panel: 25 metal conjugated antibodies were purchased pre-conjugated 

from Fluidigm (South San Francisco, CA, USA). Nine antibodies purchased from Biolegend (San 

Diego, CA, USA), R&D Systems (Minneapolis, MN, USA) and Abcam (Cambridge, Great Britain) 

were conjugated to metals in-house using MaxPar X8 conjugation kits (Fluidigm).  

 
 

b) Anti-human IgG4-PE was purchased pre-conjugated from Abcam and used for quality control 

experiments in flow cytometry.  

 

Isotope tag Target clone Company

141Pr CD49d 9F10 Fluidigm

142Nd CD19 HIB19 Fluidigm

143Nd HLA-DR L243 Fluidigm

144Nd CD146 P1H12 Biolegend

145Nd CD4 RPA-T4 Fluidigm

146Nd CD8a RPA-T8 Fluidigm

147Sm CD20 2H7 Fluidigm

148Nd CD34 581 Fluidigm

149Sm CD25 (IL-2R) 2A3 Fluidigm

150Nd CD61 VI-PL2 Fluidigm

151Eu CD278/ICOS C398.4A Biolegend

152Sm CD66b 80H3 Fluidigm

153Eu CD194 (CCR4) 205410 Fluidigm

154Sm CD3 UCHT1 Fluidigm

155Gd CD161 HP-3G10 Biolegend

158Gd CD27 L128 Fluidigm

159Tb CD45RO UCHL1 Biolegend

160Gd CD14 M5E2 Fluidigm

161Dy CD183 (CXCR3) G025H7 Biolegend

162Dy CD11c Bu15 Fluidigm

163Dy CD33 WM53 Fluidigm

165Ho CD127 (IL7-Ra) A019D5 Fluidigm

166Er CD123 (IL-3R) AO19D5 Biolegend

167Er CD162 KPL-1 Fluidigm

168Er CD185 (CXCR5) 51505 R&D Systems

169Tm Human IgG4 HP6025  Abcam

170Er CD45RA HI100 Fluidigm

172Yb CD38 HIT2 Fluidigm

173Yb CD196/CCR6 G034E3 Biolegend

174Yb CD279 (PD-1) EH12.2H7 Fluidigm

175Lu CD235ab (Glycophorin) HIR2 Fluidigm

176Yb CD56 NCAM16.2 Fluidigm

209Bi CD16 3G8 Fluidigm

89Y CD45 HI30 Fluidigm

Fluorochrome tag Target clone Company

Phycoerythrin (PE) Human IgG4 HP6025 Abcam



Supplementary Figure 1:  

a) Gating strategy for PBL samples. Eight cell types of interest were identified: memory B cells, 

monocytes, CD4 effector memory (TEM), central memory (TCM), effector memory RA (TEMRA) T 

cells, and CD8 TEM, TCM, and TEMRA cells.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



b) Eight cell types in patient PBL samples without (-nata) and with (+nata) in vitro natalizumab 

incubation. Shown are 90th percentile of anti-IgG4 and anti-α4 integrin dual counts in 

experiments conducted on three separate days.  

 
 

 
 



 
 

 
 

 

 

 



Supplementary Figure 2:  

a) Gating strategy of QSC beads labeled with OsO4 prior to metal conjugated antibody.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



b) Signal intensity (median dual counts) of the five QSC bead populations stained with anti-IgG4 

(169Tm) (top) and anti-α4 integrin (141Pr) (bottom) in each of the three experiments. 

 

 
 

 

 



c) QSC bead standardization of patient PBL samples: Standard curves were created in QuickCal 

(Bangs Laboratories) based on median dual counts of anti-IgG4 (169Tm) and anti-α4 integrin 

(141Pr) (previous panel) in five QSC bead populations with increasing ABC. For bead 

standardization of patient PBL samples, raw signal intensities (dual count 90th percentiles, 

shown in supplementary Figure 1b) of the same antibodies in eight cell types were plotted 

into the correlating standard curves and translated into ABC values. Standard curves in the 

three replicate experiments (days 1, 2, and 3) are shown. 

 

Day 1, Anti-IgG4 (169Tm) 

 

 
 

 

 

 

 

 

 

 

 

Bangs Laboratories, Inc.               QuickCal v 2.3

QSC® anti-Mouse IgG  Lot # 13359 + custom low peak Acquisition Date

Entry Date

Bead ABC Dual counts Rqd beads 5 Mod Factor
Blank 0 0 #NUM! x̂ 2 y ŷ 2 x*y

Bead #1 2685 15,75 1,197281 1,433480735 3,4 11,7577 4,1054

Bead #2 12319 73,89 1,868586 3,491612393 4,1 16,7328 7,6436

Bead #3 65076 368,8 2,566791 6,588415588 4,8 23,169 12,355

Bead #4 249738 1332,53 3,124677 9,763606325 5,4 29,1328 16,865

Bead #5 814348 4343,54 3,637844 13,2339077 5,9 34,9377 21,503

12,39518 34,51102274 24 115,73 62,472

 Comments:

Day 1 count 5

Instrument

Make/Model:

PMT Setting: m= 1,021582361

Antibody Used: Anti-IgG4 (169Tm) b= 2,195708018

Regression Coefficient 0,9999 corr= 0,999947498

Detection Threshold: #NUM!

Sample

# Name Dual counts ABC Mod Chan
1 Mem B cell 55,01 9 413 1,740442

2 Monocyte 56,07 9 598 1,748731

3 CD4 CM T 25,28 4 254 1,402777

4 CD4 EM T 37,49 6 362 1,573915

5 CD4 EMRA T 29,05 4 903 1,463146

6 CD8 CM T 30,15 5 092 1,479287

7 CD8 EF T 33,39 5 652 1,523616

8 CD8 EMRA T 36,1 6 121 1,557507

9 100% sat: #NUM!

10 Mem B cell 87,27 15 082 1,940865

11 Monocyte 101,26 17 556 2,005438

12 CD4 CM T 46,57 7 940 1,668106

13 CD4 EM T 72,47 12 474 1,860158

14 CD4 EMRA T 45,28 7 715 1,655906

15 CD8 CM T 55,58 9 512 1,744919

16 CD8 EF T 59,88 10 265 1,777282

17 CD8 EMRA T 68,84 11 836 1,837841

18 #NUM!

19 #NUM!

20 #NUM!

21 #NUM!
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Signal intensity (dual counts)

Logarithmic (log/log) Calibration Plot



 

Day 1, Anti-α4 integrin (141Pr) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bangs Laboratories, Inc.               QuickCal v 2.3

QSC® anti-Mouse IgG  Lot # 13359 + custom low peak Acquisition Date

Entry Date

Bead ABC Dual counts Rqd beads 5 Mod Factor
Blank 0 0 #NUM! x̂ 2 y ŷ 2 x*y

Bead #1 2685 12,82 1,107888 1,22742 3,42894429 11,7577 3,7989

Bead #2 12319 51,41 1,711048 2,92768 4,090575455 16,7328 6,9992

Bead #3 65076 373,07 2,57179 6,61411 4,81342085 23,169 12,379

Bead #4 249738 1155,62 3,062815 9,38084 5,397484629 29,1328 16,531

Bead #5 814348 4078,44 3,610494 13,0357 5,910810034 34,9377 21,341

12,06404 33,1857 23,64123526 115,73 61,05

 Comments:

Day 1 count 5

Instrument

Make/Model:

PMT Setting: m= 0,98292

Antibody Used: Anti-α4 integrin (141Pr) b= 2,35666

Regression Coefficient 0,9989 corr= 0,99886

Detection Threshold: #NUM!

Sample

# Name Dual counts ABC Mod Chan
1 Mem B cell 54,36 11 542 1,735279

2 Monocyte 73,63 15 553 1,867055

3 CD4 CM T 34,83 7 452 1,541953

4 CD4 EM T 48,73 10 366 1,687796

5 CD4 EMRA T 30,6 6 561 1,485721

6 CD8 CM T 35,27 7 544 1,547405

7 CD8 EF T 38,84 8 294 1,589279

8 CD8 EMRA T 44,24 9 427 1,645815

9 100% sat: #NUM!

10 Mem B cell 72,6 15 339 1,860937

11 Monocyte 88,73 18 683 1,94807

12 CD4 CM T 40,54 8 651 1,607884

13 CD4 EM T 63,75 13 499 1,80448

14 CD4 EMRA T 39 8 328 1,591065

15 CD8 CM T 43,18 9 205 1,635283

16 CD8 EF T 48,67 10 354 1,687261

17 CD8 EMRA T 53,13 11 286 1,72534

18 #NUM!

19 #NUM!

20 #NUM!

21 #NUM!
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Signal intensity (dual counts)
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Day 2, Anti-IgG4 (169Tm) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bangs Laboratories, Inc.               QuickCal v 2.3

QSC® anti-Mouse IgG  Lot # 13359 + custom low peak Acquisition Date

Entry Date

Bead ABC Dual counts Rqd beads 5 Mod Factor
Blank 0 0 #NUM! x̂ 2 y ŷ 2 x*y

Bead #1 2685 18,19 1,259833 1,58718 3,42894429 11,7577 4,3199

Bead #2 12319 75,6 1,878522 3,52884 4,090575455 16,7328 7,6842

Bead #3 65076 354,6 2,549739 6,50117 4,81342085 23,169 12,273

Bead #4 249738 1369,68 3,136619 9,83838 5,397484629 29,1328 16,93

Bead #5 814348 4380 3,641474 13,2603 5,910810034 34,9377 21,524

12,46619 34,7159 23,64123526 115,73 62,731

 Comments:

Day 2 count 5

Instrument

Make/Model:

PMT Setting: m= 1,04211

Antibody Used: Anti-IgG4 (169Tm) b= 2,13002

Regression Coefficient 0,9999 corr= 0,99986

Detection Threshold: #NUM!

Sample

# Name Dual counts ABC Mod Chan
1 Mem B cell 57,9 9 267 1,762679

2 Monocyte 60,76 9 744 1,783618

3 CD4 CM T 27,45 4 257 1,438542

4 CD4 EM T 42,04 6 638 1,623663

5 CD4 EMRA T 29,74 4 628 1,473341

6 CD8 CM T 35,64 5 589 1,551938

7 CD8 EF T 38,97 6 134 1,59073

8 CD8 EMRA T 43,45 6 870 1,63799

9 100% sat: #NUM!

10 Mem B cell 69,79 11 258 1,843793

11 Monocyte 81,18 13 179 1,909449

12 CD4 CM T 35,46 5 559 1,549739

13 CD4 EM T 58,16 9 310 1,764624

14 CD4 EMRA T 36,79 5 777 1,56573

15 CD8 CM T 43,13 6 818 1,634779

16 CD8 EF T 50,1 7 970 1,699838

17 CD8 EMRA T 55,62 8 887 1,745231

18 #NUM!

19 #NUM!

20 #NUM!

21 #NUM!
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Signal intensity (dual couts)
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Day 2, Anti-α4 integrin (141Pr)  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bangs Laboratories, Inc.               QuickCal v 2.3

QSC® anti-Mouse IgG  Lot # 13359 + custom low peak Acquisition Date

Entry Date

Bead ABC Dual counts Rqd beads 5 Mod Factor
Blank 0 0 #NUM! x 2̂ y y 2̂ x*y

Bead #1 2685 12,56 1,09899 1,20778 3,42894429 11,7577 3,7684

Bead #2 12319 60,08 1,77873 3,16388 4,090575455 16,7328 7,276

Bead #3 65076 449,91 2,653126 7,03908 4,81342085 23,169 12,771

Bead #4 249738 1130,63 3,053321 9,32277 5,397484629 29,1328 16,48

Bead #5 814348 3988,4 3,600799 12,9658 5,910810034 34,9377 21,284

12,18496 33,6993 23,64123526 115,73 61,579

 Comments:

Day 2 count 5

Instrument

Make/Model:

PMT Setting: m= 0,99021

Antibody Used: Anti- α4 integrin (141Pr) b= 2,31511

Regression Coefficient 0,9972 corr= 0,99723

Detection Threshold: #NUM!

Sample

# Name Dual counts ABC Mod Chan
1 Mem B cell 61,04 12 113 1,785615

2 Monocyte 83,99 16 615 1,924228

3 CD4 CM T 35,86 7 153 1,55461

4 CD4 EM T 56,34 11 189 1,750817

5 CD4 EMRA T 33,53 6 693 1,525434

6 CD8 CM T 42,26 8 416 1,625929

7 CD8 EF T 44,16 8 791 1,645029

8 CD8 EMRA T 49,92 9 926 1,698275

9 100% sat: #NUM!

10 Mem B cell 53,9 10 709 1,731589

11 Monocyte 74,89 14 831 1,874424

12 CD4 CM T 32,35 6 460 1,509874

13 CD4 EM T 49,94 9 930 1,698449

14 CD4 EMRA T 28,23 5 644 1,450711

15 CD8 CM T 33,92 6 770 1,530456

16 CD8 EF T 40 7 971 1,60206

17 CD8 EMRA T 42,08 8 381 1,624076

18 #NUM!

19 #NUM!

20 #NUM!

21 #NUM!
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Logarithmic (log/log) Calibration Plot



Day 3, Anti-IgG4 (169Tm) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bangs Laboratories, Inc.               QuickCal v 2.3

QSC® anti-Mouse IgG  Lot # 13359 + custom low peak Acquisition Date

Entry Date

Bead ABC Dual counts Rqd beads 5 Mod Factor
Blank 0 0 #NUM! x̂ 2 y ŷ 2 x*y

Bead #1 2685 14,73 1,168203 1,3647 3,42894429 11,7577 4,0057

Bead #2 12319 69,68 1,843108 3,39705 4,090575455 16,7328 7,5394

Bead #3 65076 371,45 2,5699 6,60439 4,81342085 23,169 12,37

Bead #4 249738 1317,15 3,119635 9,73212 5,397484629 29,1328 16,838

Bead #5 814348 4486,2 3,651879 13,3362 5,910810034 34,9377 21,586

12,35273 34,4345 23,64123526 115,73 62,339

 Comments:

Day 3 count 5

Instrument

Make/Model:

PMT Setting: m= 1,00398

Antibody Used: Anti-IgG4 (169Tm) b= 2,24787

Regression Coefficient 0,9999 corr= 0,99992

Detection Threshold: #NUM!

Sample

# Name Dual counts ABC Mod Chan
1 Mem B cell 54,64 9 824 1,737511

2 Monocyte 50,45 9 068 1,702861

3 CD4 CM T 22,86 4 096 1,359076

4 CD4 EM T 33,57 6 024 1,525951

5 CD4 EMRA T 24,1 4 319 1,382017

6 CD8 CM T 28,14 5 046 1,449324

7 CD8 EF T 33,63 6 035 1,526727

8 CD8 EMRA T 34,68 6 224 1,540079

9 100% sat: #NUM!

10 Mem B cell 70,32 12 656 1,847079

11 Monocyte 72,57 13 063 1,860757

12 CD4 CM T 33,92 6 087 1,530456

13 CD4 EM T 53,61 9 638 1,729246

14 CD4 EMRA T 37,6 6 750 1,575188

15 CD8 CM T 42,82 7 691 1,631647

16 CD8 EF T 46,74 8 399 1,669689

17 CD8 EMRA T 53,86 9 683 1,731266

18 #NUM!

19   #VERDI!

20   #VERDI!

21 #NUM!
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Signal intensity (dual counts)

Logarithmic (log/log) Calibration Plot



Day 3, Anti-α4 integrin (141Pr) 

 

 

 

 

 

 

 

 

 

 

 

 

Bangs Laboratories, Inc.               QuickCal v 2.3

QSC® anti-Mouse IgG  Lot # 13359 + custom low peak Acquisition Date

Entry Date

Bead ABC Dual counts Rqd beads 5 Mod Factor
Blank 0 0 #NUM! x̂ 2 y ŷ 2 x*y

Bead #1 2685 11,94 1,077004 1,15994 3,42894429 11,7577 3,693

Bead #2 12319 62,82 1,798098 3,23316 4,090575455 16,7328 7,3553

Bead #3 65076 286,88 2,4577 6,04029 4,81342085 23,169 11,83

Bead #4 249738 1266,07 3,102458 9,62524 5,397484629 29,1328 16,745

Bead #5 814348 3968,82 3,598661 12,9504 5,910810034 34,9377 21,271

12,03392 33,009 23,64123526 115,73 60,895

 Comments:

Day 3 count 5

Instrument

Make/Model:

PMT Setting: m= 0,98749

Antibody Used: Anti- α4 integrin (141Pr) b= 2,35158

Regression Coefficient 0,9996 corr= 0,99961

Detection Threshold: #NUM!

Sample

# Name Dual counts ABC Mod Chan
1 Mem B cell 56,83 12 140 1,754578

2 Monocyte 66,76 14 232 1,824516

3 CD4 CM T 27,83 5 998 1,444513

4 CD4 EM T 42,44 9 099 1,627775

5 CD4 EMRA T 25,73 5 551 1,41044

6 CD8 CM T 30,18 6 498 1,479719

7 CD8 EM T 38,53 8 271 1,585799

8 CD8 EMRA T 40,38 8 663 1,606166

9 100% sat: #NUM!

10 Mem B cell 53,47 11 431 1,72811

11 Monocyte 64,21 13 695 1,807603

12 CD4 CM T 27,87 6 007 1,445137

13 CD4 EM T 42,42 9 095 1,627571

14 CD4 EMRA T 29,26 6 302 1,466274

15 CD8 CM T 28,95 6 236 1,461649

16 CD8 EF T 35,57 7 643 1,551084

17 CD8 EMRA T 36,73 7 889 1,565021

18 #NUM!

19 #NUM!

20 #NUM!

21 #NUM!
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Signal intensity (dual counts)

Logarithmic (log/log) Calibration Plot



Supplementary Figure 3: 

a) QSC beads acquired on a Fortessa flow cytometer without (left) and with (right) OsO4 

labeling prior to antibody staining stained with anti-IgG4-PE. Median fluorescence intensity 

(MFI) in the four standard beads are shown. 

 
 

b) Correlation of signal intensity of the same five QSC bead populations stained with either anti-

IgG4-PE or anti-IgG4 (169Tm) and acquired with flow or mass cytometry, respectively.  

  



Supplementary Figure 4: Quality control experiments using PBL samples:  

a) Preexisting metal in the detection channels for natalizumab (IgG4 169Tm, left) or α4 integrin 

(CD49d 141Pr, right) in unstained PBL samples from the healthy donor (top) and the patient 

(bottom). Samples were barcoded and Ir-intercalated for event detection. 

 
 

b) Mass-minus-one (MMO) controls in patient PBLs: 141 signal in sample stained with the panel 

minus anti-α4 integrin (left) and 169 signal in sample stained with the panel minus anti-IgG4 

(right). 

 
 

 



c) Healthy donor PBLs not treated with natalizumab. Median dual counts of anti-IgG4 in each of 

the eight cell types are shown. 

 

 
d) Healthy donor PBLs with (top) and without (bottom) in vitro incubation with natalizumab. 

The presence of drug (IgG4, left) did not affect detection of α4 integrin (CD49d, right), 

indicating non-competitive binding of anti-α4 integrin and natalizumab to different epitopes 

of α4 integrin. The 90th percentiles of anti-IgG4 and anti- α4 integrin in non-granulocytes are 

shown.  
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Abstract
Objective
We aimed to investigate whether wearing-off symptoms at the end of the natalizumab dosing
interval were associated with clinical and demographic patient characteristics or natalizumab
receptor occupancy (RO) on leukocytes.

Methods
In this cross-sectional study of 40 patients with relapsing-remitting MS (RRMS) receiving
natalizumab at the Department of Neurology, Haukeland University Hospital, we recorded
clinical and demographic data including age, body mass index (BMI), working status, smoking
habits, disease characteristics, treatment duration, vitamin D levels, and wearing-off symptoms.
We quantified neurofilament light chain in serum and measured natalizumab RO in leukocyte
subtypes by high-parameter mass cytometry. Associations with wearing-off symptoms were
analyzed.

Results
Eight (20.0%) patients who reported regular occurrence of wearing-off symptoms, 9 (22.5%)
who sometimes had wearing-off symptoms, and 23 (57.5%) who did not have wearing-off
symptoms were evaluated. Patients who regularly had wearing-off symptoms had lower nata-
lizumab RO than patients who reported having such symptoms sometimes or never. The
former group also had higher BMI and higher frequency of sick leave. High BMI was associated
with low RO. No other demographic or disease characteristics were associated with the
phenomenon.

Conclusions
Low RO may explain the wearing-off phenomenon observed in some patients with RRMS
treated with natalizumab, and high BMI may be the underlying cause.
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Natalizumab (Tysabri®, Biogen, Cambridge, MA) is a thera-
peutic monoclonal antibody used to treat patients with
relapsing-remitting MS (RRMS). It prevents leukocyte mi-
gration across the blood-brain barrier into the CNS by
binding to the α4 subunit of the α4β1 integrin (α4 integrin) on
leukocyte surfaces.1 Natalizumab is administered IV at
a standard dose of 300 mg every 4 weeks.

Although highly efficacious in preventing disease activity,
many patients report the so-called wearing-off symptoms at
the end of the 4-week dosing interval. Although wearing-off
symptoms are often reported, only a few previous studies have
described the phenomenon, and little is known about the
underlying causes of these symptoms.2–5

Natalizumab receptor occupancy (RO) is defined as the level
of natalizumab bound to α4 integrin on leukocytes and is
a potential biomarker to monitor and individualize natalizu-
mab therapy.6 RO has traditionally been measured with flow
cytometry. Mass cytometry is a novel technology for high-
parameter single-cell analysis. For mass cytometry, detection
antibodies are conjugated to metals instead of fluorophores,
allowing analysis of over 40 parameters simultaneously on
single cells.7 This permits measurement of RO in conjunction
with more markers and in more cell types of interest than is
currently possible by flow cytometry. We aimed to investigate
whether clinical and demographic patient characteristics or
natalizumab RO were associated with the wearing-off phe-
nomenon by using high-parameter mass cytometry to mea-
sure natalizumab RO in patients with RRMS treated with
natalizumab who do and do not report wearing-off symptoms
at the end of dosing intervals.

Methods
Patients
We invited all patients older than 18 years with a diagnosis of
RRMS who had received a minimum of 6 natalizumab infu-
sions at the Department of Neurology, Haukeland University
Hospital (n = 45) to participate in this cross-sectional study; 40
agreed to participate. At inclusion, we obtained baseline de-
mographic and clinical patient characteristics from the patients’
medical journal including age, sex, disease duration (years since
first MS symptoms), natalizumab treatment duration (years
since first natalizumab infusion), numbers of new MRI lesions
and clinical relapses in the last year before inclusion, serum
vitamin D level, Symbol Digit Modalities Test score,8 and
Expanded Disability Status Scale score.9 Each patient filled in
questionnaires on fatigue (Fatigue Severity Scale),10 and on
working status, smoking habits, weight, height, and whether

they had wearing-off symptoms (never, sometimes, and regu-
larly), and, if applicable, type of symptoms.

Standard protocol approvals, registrations,
and patient consents
The study was approved by the Regional Committee for
Medical Research Ethics, Western Norway (REK 2016/579),
and written informed consent was obtained from all partici-
pating patients.

Blood samples
At inclusion, we collected blood before and after natalizumab
infusion. For mass cytometry analysis, whole blood was col-
lected in heparinized Vacutainer tubes (Greiner Bio-One
GmbH, Kremsmünster, Austria), incubated with Proteomic
Stabilizer (Smart Tube, Inc, San Carlos, CA) for 10 minutes,
and stored at −80°C. Whole blood was then thawed, and red
blood cell lysis was performed with Thaw-lyse buffer I (Smart
Tube, Inc) to obtain peripheral blood leukocytes (PBLs). For
neurofilament measurement, whole blood was collected in
Vacutainer tubes with no additives (BD, Plymouth, United
Kingdom), incubated at room temperature for 60 minutes,
and centrifuged at room temperature at 3,200g for 13 minutes
before the serum was retrieved and stored at −80°C.

Neurofilament measurement
Serum samples were thawed, and the concentration of neu-
rofilament light chain (NF-L) was measured with a single-
molecule array (Simoa) assay (Quanterix, Billerica, MA)
according to the manufacturer’s protocol.

Mass cytometry RO assay
PBLs were stained with a 36-parameter mass cytometry an-
tibody panel (table e-1, links.lww.com/NXI/A190). Bound
natalizumab was detected with an anti-IgG4 antibody (con-
jugated to 169Tm). Total α4 integrin was detected with an
anti-CD49d antibody (conjugated to 141Pr) specific for a dif-
ferent epitope than natalizumab. The 36 metal-conjugated
antibodies were purchased preconjugated (Fluidigm, South
San Francisco, CA), or antibodies were purchased (BioL-
egend, San Diego, CA, R&D Systems, Minneapolis, MN, and
Abcam, Cambridge, Great Britain) and conjugated in-house
to metals with the Maxpar Antibody Labeling Kit (Fluidigm).
Briefly, we thawed, barcoded (Cell-ID 20-Plex Pd Barcoding
Kit, Fluidigm), and pooled PBL samples in batches of 20
randomly distributed samples, keeping paired samples from
the same patients in the same batch. A control PBL sample
from 1 healthy donor was included in each batch. Pooled
PBLs were first incubated in Maxpar cell stain buffer with 100
U/mL heparin (LEO Pharma A/S) for 20 minutes at room
temperature11 and then incubated with the antibody cocktail

Glossary
BMI = body mass index; cDC = conventional dendritic cell; EID = extended interval dosing; PBL = peripheral blood leukocyte;
PML = progressive multifocal leukoencephalopathy; RRMS = relapsing-remitting MS; RO = receptor occupancy.
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for 30 minutes at room temperature. Stained PBLs were
washed, fixed in fresh 2% paraformaldehyde (Thermo Sci-
entific, Waltham, MA) in Maxpar PBS for 10 minutes at room
temperature, and then incubated in 125 nM Cell-IDTM

Intercalator-Ir in Maxpar Fix and Perm Buffer (Fluidigm) at
4°C overnight. We performed all centrifugation steps at room
temperature at 800g.

Before mass cytometry analysis, PBLs were resuspended in
0.1× EQ Four Element Calibration Beads (Fluidigm) in
Maxpar cell acquisition solution (Fluidigm) and filtered
(Corning Falcon Test Tube with Cell Strainer Snap Cap,

Fisher Scientific, Hampton, NN). We used antibody binding
QSC beads (Bangs Laboratories, Inc., catalog number 815A,
Fishers, IN) to standardize signal intensities from anti-IgG4
(conjugated to 169Tm) and anti-CD49d (conjugated to 141Pr)
as previously described in detail.12We analyzed PBL andQSC
beads with the same standard settings on a Helios® mass
cytometer (Fluidigm) after tuning (CyTOF Tuning Solution,
Fluidigm) and calibration (EQ Four Element Calibration
Beads, Fluidigm) according to the manufacture’s guidelines.
Healthy control PBLs served as a negative control for anti-
IgG4 in the absence of natalizumab, and patient PBLs in-
cubated in vitro with natalizumab to an expected RO of 100%

Table 1 Demographic and clinical characteristics of patients with RRMS and the frequency of wearing-off symptoms

Total

Wearing-off symptoms

Never Sometimes Regularly
p
Valuea

p Value (age
adjusted)b

Patients with RRMS, n (%) 40 (100) 23 (57.5) 9 (22.5) 8 (20.0)

Age, y 43.0 (34.0–49.3) 45.0
(35.5–52.0)

34.0
(31.0–51.0)

43.0
(37.0–43.8)

0.382 —

Sex, female, n (%) 25 (62.5) 15 (65.2) 3 (33.3) 7 (87.5) 0.069 0.063

Height, cm 171 (166–179) 169 (165–173) 180 (177–182) 171 (167–173) 0.078 0.047

Weight, kg 75.0 (67.0–82.5) 75.0
(60.0–79.5)

73.0
(67.0–82.0)

81.5
(76.5–87.8)

0.107 0.022

BMI 25.3 (22.6–27.2) 25.1
(22.2–26.6)

23.9
(22.5–25.2)

27.8
(26.5–31.2)

0.023 0.006

Current smoker, n (%) 7 (17.5) 4 (17.4) 2 (22.2) 1 (12.5) 0.873 0.860

Sick leave, n (%) 9 (22.5) 2 (8.7) 3 (33.3) 4 (50.0) 0.04 0.013

Disease duration, y 13.0 (8.0–17.0) 13.0 (8.0–17.5) 13.0
(8.0–17.0)

12.5 (8.8–16.0) 0.949 0.798

Treatment duration, y 4.0 (3.0–7.3) 4.0 (3.0–8.5) 5.0 (3.0–6.0) 4.5 (2.0–8.0) 0.999 0.904

Dose number 56.5 (39.0–102.3) 49.0
(39.0–107.5)

69.0
(41.0–78.0)

63.5
(33.5–111.8)

0.974 0.816

Days since last dose 28.0 (28.0–28.0) 28.0
(28.0–28.5)

28.0
(28.0–28.0)

28.00
(27.0–28.0)

0.358 0.375

EDSS score 2.0 (1.0–3.5) 2.0 (1.0–3.5) 2.0 (1.5–2.5) 2.0 (1.5–3.1) 0.880 0.682

FSS score 4.8 (3.3–5.7) 4.6 (3.3–5.4) 4.3 (3.0–6.1) 5.3 (4.8–5.8) 0.223 0.186

SDMT 57.0 (50.0–67.3) 64.0
(52.5–68.5)

58.0
(54.0–64.0)

48.5
(45.5–56.0)

0.151 0.109

New lesions detected by MRI in last
year

0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) — —

Relapse activity in last year 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) — —

Serum vitamin D, nmol/L 74.50
(58.00–93.25)

76.0
(61.0–99.5)

74.0
(29.0–86.0)

73.0
(62.5–90.5)

0.796 0.773

Serum NF-L, pg/mL 6.1 (4.5–8.9) 8.0 (5.8–9.6) 5.1 (4.3–5.9) 4.6 (4.1–5.3) 0.011 0.390

Abbreviations: BMI = body mass index; EDSS = Expanded Disability Status Scale; FSS = Fatigue Severity Scale; SDMT = Symbol Digit Modalities Test; NF-L =
neurofilament light chain. RRMS = relapsing-remitting MS.
Numbers are median (interquartile range) unless otherwise stated.
a Unadjusted p values are calculated using a Kruskal-Wallis test.
b Age-adjusted p values are calculated with a likelihood ratio test between a linear model with only age and a linear model with age and the relevant baseline
variable as predictors.
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served as positive controls. Further quality control experi-
ments were performed as previously described in detail.12

Data processing, analysis, and statistics
After acquisition of QSC beads, we normalized (Fluidigm
normalizer) and exported FCS files to Cytobank software
(Cytobank, Inc., Beckman Coulter, Brea, CA) and created QSC
bead standard curves (QuickCal template, Bangs Laboratories).
After acquisition of PBL samples, we normalized (Fluidigm
normalizer), debarcoded (Fluidigm Debarcoder), and exported
the FSC files to Cytobank software for gating and downstream
analysis (figure e-1, links.lww.com/NXI/A190). We performed
clean-up gating to obtain single PBLs, and the data were arcsinh
transformed with a scale argument of 5.13 We then performed 2
independent analyses for RO calculation in single PBLs: one
was a manual analysis, and one used an unsupervised approach.

In the manual approach, we first identified the following 11
leukocyte subtypes of interest by manual gating: CD8+ central
memory (TCM), effector memory (TEM), effector memory
RA (TEMRA) T cells; CD4+ TEM, TCM, and TEMRA cells;
CD34+ cells; memory B cells; natural killer (NK) cells;
monocytes; and conventional dendritic cells (cDCs).We then
plotted the signal intensities (dual count 90th percentiles) of
anti-IgG4 and anti-CD49d in each of these cell types with the
QSC bead standard curves to obtain bead standardized values
and calculated %RO by the following formula:

%RO = 100 ×
QSC bead standardized anti − IgG4 ð169TmÞ
QSC bead standardized anti −CD49d ð141PrÞ

We compared ROs in the leukocyte subtypes in different
patient groups using a Kruskal-Wallis test.

In the unsupervised approach, we used R (version 3.4.3) to add
an extra variable into the FSC files: the ratio between signal
intensities of anti-IgG4 and anti-CD49d in each cell. This
resulted in an RO estimate for each cell. For visualization of
high-dimensional single-cell data, we performed automated di-
mensionality reduction with stochastic neighborhood embed-
ding (viSNE, Cytobank).14 We analyzed the new RO variable
with the cluster identification, characterization, and regression
tool CITRUS (Cytobank), an algorithm that automatically

identifies statistically significant differences between patient
groups.15We applied the correlativemodel SignificanceAnalysis
of Microarrays with a false discovery rate (adjusted for multiple
hypothesis testing) of 1%. CITRUS was run with 10 repetitions.

The relationship between baseline demographic variables and
wearing-offwas compared using a Kruskal-Wallis test. Statistical
differences with p < 0.05 were considered significant using
a 2-sided comparison. To test the age-corrected relationship
between baseline variables and wearing-off, we used a likelihood
ratio test between a linear model with only age and a linear
model with age and the relevant baseline variable as predictors.
We conducted a linear regression of the association between
RO and body mass index (BMI) and used a t test to assess
whether the slope was significantly different from zero. We used
R version 3.4.316 for statistical analysis and correlation plots.

Data availability
FCS files from anonymized patient PBL samples can be
accessed in the Flow Repository (ID: FR-FCM-Z2A9).

Results
Patient characteristics
Of the 45 patients who were eligible for inclusion, 40 (89%)
consented to participate in the study. Of 5 (11%) non-
consenting patients, 1 refused participation, and 4 had infusion
time points outside of the opening hours of the routine labo-
ratory where blood samples were collected. Eight (20.0%) of
the 40 participating patients reported having wearing-off
symptoms regularly at the end of every dosing interval, 9
(22.5%) sometimes did, and 23 (57.5%) reported never having
wearing-off symptoms (table 1). Themost frequent wearing-off
symptom was fatigue (table 2). Patients who regularly had
wearing-off symptoms had significantly higher BMI and higher
frequency of sick leave than patients who never or only
sometimes experienced such symptoms (table 1). After age
adjustment, weight was also significantly increased in patients
with wearing-off symptoms regularly, whereas height was in-
creased in patients with symptoms only sometimes. None of
the other demographic or clinical patient characteristics were
significantly different between the groups, and none of the
included patients had clinical relapses or new lesions onMRI in
the year before inclusion in the study. Age-adjusted median
serum NF-L levels were similar between groups. There was no
association between NF-L and BMI (data not shown).

Receptor occupancy
Manual gating of PBLs correlated well with the automated
mapping with viSNE (figure 1A). We observed a broad range of
natalizumab RO values. The median RO values in all leukocyte
subtypes before infusion and in 10 of 11 leukocyte subtypes
after infusion (figure 1B) were lower in patients who regularly
experienced wearing-off symptoms than in patients who never
or only sometimes experienced such symptoms. The differences
were statistically significant in CD8+ TEM, CD4

+ TEM, and

Table 2 Frequency of reported wearing-off symptoms

Symptom

Wearing-off symptoms

Sometimes Regularly

Fatigue 67% 63%

Psychological 33% 25%

Walking difficulty 11% 25%

Spasms 11% 13%

Pain 0% 13%
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Figure 1Natalizumab receptor occupancy (RO) in patients reportingwearing-off symptoms never, sometimes, or regularly

(A) Manually gated PBLs visualized on a viSNEmap. ROwas analyzed in 11 cell subtypes: CD8+ central memory (TCM), effectormemory (TEM), effectormemory
RA (TEMRA) cells; CD4

+ TEM, TCM, and TEMRA cells; CD34+ cells; memory B cells; natural killer (NK) cells; monocytes; and conventional dendritic cells (cDCs).
Neutrophils were not included in RO analysis. (B) Spider plot ofmedian RO values in 11 cell subtypes in patients before and after natalizumab infusion. (C) RO
values in 11 cell subtypes before and after natalizumab infusion. p values (Kruskal-Wallis test) comparing ROs in different wearing-off groups. (D) Left: median
RO values in cell clusters significantly different betweenwearing-off groups (SAM analysis in CITRUS). Right: significant cell clusters are visualized on the viSNE
map. PBL = peripheral blood leukocyte; SAM = Significance Analysis of Microarrays.
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CD4+ TEMRA cells before infusion and in CD8+ TCM, CD8
+

TEMRA, CD4
+ TCM cells, NK cells, monocytes, and cDCs after

infusion (figure 1C). Furthermore, in CD8+ and CD4+ T cells
not stratified into subtypes, RO was significantly lower in both
CD8+ and CD4+ T cells before infusion and in CD8+ T cells
after infusion in patients who regularly had wearing-off symp-
toms (figure e-2, links.lww.com/NXI/A190). Unsupervised
analysis of median ROs with CITRUS also showed lower me-
dian natalizumab ROs in patients with regular wearing-off
symptoms (figure 1D). Neither of the 2 analysis approaches
showed significant differences between patients reporting
wearing-off symptoms sometimes and never.

High BMI was associated with significantly lower RO in CD8+

TEM cells and cDCs before infusion and in CD8+ TEMRA cells,
CD34+ cells, and monocytes after infusion (figure 2).

Discussion
Natalizumab prevents disease activity in RRMS and has
positive effects on subjective symptoms such as mood, fatigue,
and cognitive function.17,18 However, subjective wearing-off
symptoms at the end of the 4-week interval are frequently
reported by patients. In this study, wearing-off symptoms
were reported by 42.5% of the patients (20.0% regularly and
22.5% only sometimes). We found lower natalizumab ROs in
patients who regularly experienced wearing-off symptoms
compared with patients who reported such symptoms never
or only sometimes. The result was replicated in 2 separate
data analysis pipelines. Furthermore, patients who reported
regularly experiencing wearing-off symptoms had higher
median body weight and BMI and higher sick leave frequency
than those who rarely or never experienced such symptoms.
Median height was increased in patients with symptoms only
sometimes. Other clinical and demographic factors were

similar between the patient groups. High BMI was associated
with low RO in several leukocyte subtypes.

The main limitation of our study is the small patient cohort. As
a consequence of this limited statistical power, we were only
able to detect large effects and acknowledge that there may be
associations of smaller effect size that went unnoticed.Wearing-
off symptoms were less frequent in our study than the preva-
lence of 54%–63% reported in other studies, but as previously
reported, the most frequent wearing-off symptom was
fatigue.2–5 In contrast to our results, a recent study found no
association between the wearing-off effect and natalizumab RO
or patient characteristics.5 The previously reported study used
flow cytometry to measure RO in CD8+ TEM cells and CD8+

effector T cells. By using high-parameter mass cytometry, we
were able to measure RO in 11 cell subtypes simultaneously.
We found that patients who regularly experienced wearing-off
symptoms had higher BMI than those who did not, and we also
observed an association between high BMI and low RO. Body
weight was higher in our cohort than in the previous study5

(median 75.0 vsmean 72.9 kg) andwas evenmore pronounced
in the groupwith wearing-off symptoms regularly (median 81.5
vs mean 74.6 kg). van Kempen et al.5 reported nonsignificant
trends similar to our significant results. Our wearing-off pop-
ulation had higher body weight than theirs, which may explain
why we observed statistically significant differences despite our
small cohort size. The association between high BMI and low
RO suggests that high BMI, by decreasing natalizumab RO,
may be the underlying cause of the wearing-off phenomenon.
Others have previously reported such an association between
low natalizumab RO and high body weight or BMI, and some
have suggested that the dose of natalizumab should be adjusted
for body weight.6,19,20 We found no associations between
wearing-off symptoms and disease activity markers such as
clinical relapses, new lesions detected by MRI in the past year,
or serum NF-L levels.21

Figure 2 Linear regression analysis demonstrates an association between RO and BMI

Plot of receptor occupancies (A) before and (B) after infusion for indicated cell types as a function of BMI. Solid lines have slopes that are significantly different
from zero (p < 0.05), and dashed lines have slopes that are not significantly different from zero. BMI = body mass index; RO = receptor occupancy.
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As also reported by others,19 we observed large interindividual
variations in natalizumab RO, and not all patients with low
RO had high BMI. A previous study reported that body
weight only partly predicts variability in natalizumab RO and
suggested other factors such as density and turnover of α4β1
integrin that may drive the variability.22

It has been hypothesized that cytokines could induce the
wearing-off symptoms.4,5 We speculate that lower natalizu-
mab RO at the end of the dosing interval could increase the
migratory capacity of cytokine-producing leukocytes into the
CNS resulting in the wearing-off symptoms. We found sig-
nificantly lower RO in the T-cell subtypes CD8+ TEM, CD4

+

TEM, and CD4+ TEMRA cells before infusion in patients who
regularly had wearing-off symptoms. TEM and TEMRA cells
home to the site of inflammation where they have effector
functions such as secretion of proinflammatory cytokines and
cytotoxicity; in contrast, TCM cells and naive T cells home to
secondary lymphoid organs.23,24

Our results suggest that low RO may be a contributing factor
to the wearing-off phenomenon and that higher BMI may be
an underlying cause. This supports the suggestion that nata-
lizumab dosing should be personalized. Personalization has
been mainly focused on extended interval dosing (EID).19

This has particularly been driven by the risk of progressive
multifocal leukoencephalopathy (PML), a serious complica-
tion of natalizumab therapy in patients previously exposed to
JC virus.25 Retrospective studies of off-label treatment with
EID have shown maintained efficacy26,27 and reduced PML
risk28 compared with standard interval dosing. However,
these studies are limited by possible selection bias due to
nonrandomized design, and the efficacy and safety of EID is
not fully known. As patients who regularly experience
wearing-off symptoms already have lower RO and report
symptoms at the end of dosing intervals, extending dosing
intervals could increase the risk of disease activity. We
therefore do not recommend EID in patients reporting
wearing-off symptoms regularly, as this could lead to an even
lower RO at the end of the interval than observed with
standard dosing.6,19 Further studies should investigate
whether wearing-off symptoms are associated with increased
risk of RRMS disease activity and whether increasing RO by
reduced dosing intervals or weight loss may mitigate the
symptoms.
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Supplementary Material 

 

Table e-1: Antibody panel 

Metal isotope 
tag 

Target Clone Company 

141Pr CD49d 9F10 Fluidigm 

142Nd CD19 HIB19 Fluidigm 

143Nd HLA-DR L243 Fluidigm 

144Nd CD146 P1H12 Biolegend 

145Nd CD4 RPA-T4 Fluidigm 

146Nd CD8a RPA-T8 Fluidigm 

147Sm CD20 2H7 Fluidigm 

148Nd CD34 581 Fluidigm 

149Sm CD25 (IL-2R) 2A3 Fluidigm 

150Nd CD61 VI-PL2 Fluidigm 

151Eu CD278/ICOS C398.4A Biolegend 

152Sm CD66b 80H3 Fluidigm 

153Eu CD194 (CCR4) 205410 Fluidigm 

154Sm CD3 UCHT1 Fluidigm 

155Gd CD161 HP-3G10 Biolegend 

156Gd CD184 (CXCR4) 12G5 Fluidigm 

158Gd CD27 L128 Fluidigm 

159Tb CD45RO UCHL1 Biolegend 

160Gd CD14 M5E2 Fluidigm 

161Dy CD183 (CXCR3) G025H7 Biolegend 

162Dy CD11c Bu15 Fluidigm 

163Dy CD33 WM53 Fluidigm 

164Dy CD15 W6D3 Fluidigm 

165Ho CD127 (IL7-Ra) A019D5 Fluidigm 

166Er CD123 (IL-3R) AO19D5 Biolegend 

167Er CD162 KPL-1 Fluidigm 

168Er CD185 (CXCR5) 51505 R&D Systems 

169Tm Human IgG4 HP6025  Abcam 

170Er CD45RA HI100 Fluidigm 

172Yb CD38 HIT2 Fluidigm 

173Yb CD196/CCR6 G034E3 Biolegend 

174Yb CD279 (PD-1) EH12.2H7 Fluidigm 

175Lu CD235ab (Glycophorin) HIR2 Fluidigm 

176Yb CD56 NCAM16.2 Fluidigm 

209Bi CD16 3G8 Fluidigm 

89Y CD45 HI30 Fluidigm 

 

 



Figure e-1. Data analysis of peripheral blood leukocyte (PBL) samples. A) Clean-up gating into single 

PBLs. RBC = red blood cells. B) Manual workflow: gating of 11 PBL subtypes, QSC bead 

standardization, and RO calculation. ABC = antibody binding capacity. C) Unsupervised workflow: 

dimensionality reduction for visualization with ViSNE, automated clustering and significance testing 

with SAM analysis in CITRUS, and visualization of clusters with significantly different median ROs in 

the three patient groups on the ViSNE map. 
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Figure e-2. Natalizumab RO in CD8+ and CD4+ T cells not stratified further into subtypes before 

(green) and after (orange) natalizumab infusion. P (based on Kruskal-Wallis test) comparing RO in 

patients reporting wearing-off symptoms never, sometimes, and regularly.
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Abstract 

Natalizumab effectively prevents disease activity in relapsing-remitting multiple sclerosis by 

binding α4 integrin and inhibiting leukocyte migration to the central nervous system. We 

recently reported an association between low natalizumab receptor occupancy and subjective 

wearing-off symptoms at the end of the 4-week dosing interval. Here, we aimed to evaluate 

the short-term risk of disease activity in a 1-year prospective follow-up of the same patient 

cohort (n=40). We found that all patients available for follow-up after one year (n=35) fulfilled 

the criteria for no evidence of disease activity (NEDA). Thus, wearing-off symptoms were not 

associated with increased short-term risk of disease activity. 
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Relapsing-remitting multiple sclerosis, natalizumab, wearing-off, biomarkers, receptor 

occupancy, treatment response 
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1. Introduction 

Natalizumab (Tysabri®, Biogen) administered intravenously at a standard dose of 300 mg every 

4 weeks efficiently reduces disease activity in relapsing-remitting multiple sclerosis (RRMS).1 By 

blocking α4 integrin on leukocytes, natalizumab inhibits leukocyte adhesion to and migration 

over the blood-brain barrier. Natalizumab receptor occupancy (RO) refers to the proportion of 

α4 integrins occupied by natalizumab on single cells, and has been suggested as a biomarker to 

monitor therapeutic efficacy and possibly patient-tailor therapy.2 Neurofilament light chain 

(NF-L) is another emerging biomarker for disease activity and neuroaxonal damage in RRMS, 

and is reported to return to levels of healthy individuals following initiation of natalizumab 

therapy.3  

Approximately 50% of patients treated with natalizumab report subjective wearing-off 

symptoms at the end of the 4-week interval between infusions.4-6 The underlying mechanisms 

of this phenomenon are unknown, but we recently found that patients who regularly reported 

wearing-off symptoms had lower natalizumab RO than those reporting such symptoms 

occasionally or never.6 Here, we aimed to investigate if the patients who regularly reported 

wearing-off symptoms had increased risk of disease activity during a 1-year follow-up.  

2. Methods 

2.1 Subjects  

We invited all patients with a diagnosis of RRMS over 18 years of age who had received a 

minimum of six natalizumab infusions at the Department of Neurology, Haukeland University 

Hospital (n=45) to participate, of whom 40 (88.9%) participated after written informed 

consent. The study was approved by the Regional Ethics Committee (REK 2016/579).  

2.2 Evaluation at inclusion and after one year 
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At inclusion, we obtained baseline demographic and clinical data from the patient’s medical 

journal. Each patient filled in questionnaires on fatigue (Fatigue Severity Scale; FSS),7 and on 

working status, smoking habits, weight, height, and whether they had wearing-off symptoms 

regularly (at the end of every dosing interval), sometimes (at the end of some dosing intervals), 

or never. Disability was evaluated with the Expanded Disability Status Scale (EDSS) and 

cognitive function was assessed by the Symbol Digit Modalities Test (SDMT)8 at inclusion and 

after one year. T2 MRI lesions and number of clinical relapses were registered during a 1-year 

prospective follow-up. No evidence of disease activity (NEDA) was defined as freedom of 

relapses and EDSS worsening, and lack of new or enlarged T2 lesions on MRI. Serum collected 

at inclusion and after one year was stored at -80°C and NF-L was quantified with a single-

molecule array (Simoa) assay (Quanterix).  

2.3 Statistical analysis 

For statistical analysis, patients were separated into two groups based on whether they 

reported wearing-off symptoms regularly (at the end of every dosing interval) or not (only 

sometimes or never). Patient characteristics, clinical and radiological signs of disease activity, 

and NF-L levels at baseline and after a 1-year follow-up were compared between the groups 

using a Kruskal-Wallis test. Statistical differences with p < 0.05 were considered significant 

using a two-sided comparison. 

3. Results 

Table 1 shows patient characteristics at inclusion and after a 1-year follow-up. After one year, 

five of the 40 included patients no longer received natalizumab therapy at our hospital; one 

had moved to another region and four had switched to other therapies due to antibodies 

against JC virus (n=2), side effects of natalizumab (n=1), or planned pregnancy (n=1). None of 

these five patients had reported wearing-off symptoms regularly.  
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None of the 35 remaining patients experienced clinical relapses, new or enlarged T2 lesions on 

MRI or EDSS score changes of >1 point during the 1-year follow-up period. Thus, all remaining 

patients fulfilled the criteria for NEDA. 

At inclusion, patients reporting regular wearing-off symptoms had higher BMI and higher 

frequency of sick-leave than patients with wearing-off symptoms only sometimes or never.6 

Median EDSS was similar between the wearing-off groups both at baseline and after one year. 

Patients reporting wearing-off regularly had poorer median FSS (higher score) and SDMT 

(lower score) than patients reporting symptoms only sometimes or never both at inclusion and 

after one year, and these differences became statistically significant after 1-year follow-up. NF-

L levels in serum were similar between the groups at inclusion and after 1-year follow-up. 

4. Discussion 

Subjective wearing-off symptoms at the end of the 4-week dosing interval are frequent among 

patients receiving natalizumab infusions, but the phenomenon remains poorly understood. 

Recently, we reported lower natalizumab RO in patients experiencing wearing-off symptoms 

regularly, possibly caused by high BMI.6 In this study, we aimed to evaluate the risk of disease 

activity in a 1-year prospective follow-up of the same patient cohort.   

We found that all patients available for follow-up after one year fulfilled the criteria for NEDA, 

and that subjective wearing-off symptoms were not associated with increased short-term risk 

of clinical or radiological signs of disease activity. The similar baseline and 1-year serum NF-L 

levels between the patient groups further supported this. Wearing-off symptoms were not 

associated with cessation of natalizumab therapy. 

Patients reporting wearing-off regularly had more severe fatigue and cognitive impairment 

than patients with symptoms only sometimes or never. MS-related fatigue and cognitive 

impairment are common and affect quality of life independently of physical disability, and the 
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current criteria for NEDA have been criticized for not emphasizing fatigue and cognitive 

function in the evaluation of therapeutic efficacy.9 Natalizumab has positive effects on fatigue 

and cognitive function10 and more severe symptoms in the patient group with wearing-off 

regularly could thus represent a sub-optimal therapeutic effect. However, the differences in 

FSS and SDMT were small and need to be confirmed in larger populations.  

In conclusion, although regular subjective wearing-off symptoms are associated with lower 

natalizumab RO,6 they were not associated with increased short-term risk of breakthrough 

disease. Patients with wearing-off symptoms regularly had more severe fatigue and cognitive 

impairment in the 1-year follow-up. Longer prospective follow-up of a larger patient cohort is 

necessary to determine whether the therapeutic efficacy of natalizumab is maintained over 

time in patients reporting wearing-off symptoms regularly. 
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Table 1: Patient characteristics at inclusion and after a 1-year follow-up. Patients reporting 

wearing-off symptoms at the end of natalizumab dosing intervals regularly (every dosing 

interval) or not (only sometimes or never). RRMS= relapsing-remitting multiple sclerosis, EDSS = 

Expanded Disability Status Scale, FSS = Fatigue Severity Scale, SDMT = Symbol Digit Modalities 

Test. S-NF-L = serum neurofilament light chain. P values of independent samples t test.  

  

Total 

Wearing-off symptoms 

p   Regularly Not regularly 

RRMS patients, n (%)        

Baseline 40 (100) 8 (20) 32 (80)   

After 1 year 35 (87,5%) 8 (23) 27 (77)   

Patient characteristics at inclusion        

Age, y 43.0 (34.0-49.3) 43 (37-43.75) 44 (33.5-51) 0.531 

Sex, females, n (%) 25 (62.5) 7 (87.5) 18 (51) 0.107 

BMI 25.3 (22.6-27.2) 27.8 (26.5-31.2) 24.30 (22.34-26.11) 0.008 

Current smoker, n (%) 7 (17.5) 1 (12.5) 6 (18.8) 0.681 

Sick-leave, n (%) 9 (22.5) 4 (50.0) 5 (15.6) 0.040 

Disease duration, y 13.0 (8.0-17.0) 12.5 (8.8-16.0) 13 (8-17.25) 0.747 

Treatment duration, y 4.0 (3.0-7.3) 4.5 (2.0-8.0) 4 (3-7.25) 0.959 

Dose number 56.5 (39.0-102.3) 63.5 (33.5-111.8) 56.5 (39-95.5)    0.933 

Days since last dose 28.0 (28.0-28.0) 28.00 (27.0-28.0) 28 (28-28) 0.382 

Markers of disease activity         
New or enlarged MRI T2 lesions 
during 1-year follow-up 0 0 0 - 
Clinical relapses during 1-year 
follow-up 0 0 0 - 

EDSS        

Baseline 2 (1.375-3.5) 2 (1.5-2.75) 2 (1-3.5) 0.681 

After 1 year 2 (1.5-3.5) 2 (1.875-2.375) 2 (1-3.5)       1.000 

FSS        

Baseline 4.78 (3.33-5.67) 5.33 (4.83-5.78) 4.44 (3.25-5.67)             0.119 

After 1 year 4.89 (3.56-5.72) 5.89 (5.31-6.31) 4.11 (3.39-5.39) 0.005 

SDMT        

Baseline 57 (50-67.25) 48.5 (45.5-56)   58 (52.75-68.25) 0.052 

After 1 year 59 (50.5-69) 48.5 (47-55.75) 62 (56-70)      0.023 

S-NF-L pg/ml        

Baseline 7.09 (5.27-9.38) 5.19 (5.03-6.09)     7.12 (5.55-9.64) 0.098 

After 1 year 7.71 (5.57-10.82) 6.46 (5.89-7.89) 8.02 (5.45-11.59)    0.610 
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