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i. Abstract 

Neurons are the main cellular components of the circuits of the central nervous system 

(CNS). The dendritic and axonal morphology of individual neurons display marked 

variability between neurons in different regions of the CNS and there is evidence that 

the morphology of a neuron has a strong impact on its function. For studies of 

structure-function relationships of specific types of neurons, it is important to visualize 

and quantify the complete neuronal morphology. In addition, realistic and detailed 

morphological reconstruction is essential for developing compartmental models that 

can be used for studying neuronal computation and signal processing. Here we 

describe in detail how multiphoton excitation (MPE) microscopy of dye-filled neurons 

can be used for visualization and imaging of neuronal morphology, followed by a 

workflow with digital deconvolution and manual or semi-automatic morphological 

reconstruction. The specific advantages of MPE structural imaging are low 

phototoxicity, the ease with which it can be combined with parallel physiological 

measurements from the same neurons, and the elimination of tissue post-processing 

and fixation-related artefacts. Because manual morphological reconstruction can be 

very time consuming, the chapter also includes a detailed, step-by-step description of a 

work flow for semi-automatic morphological reconstruction (using freely available 

software developed in our laboratory), exemplified by reconstruction of a retinal 

amacrine cell (AII). 

 

ii. Key words 

Computational neuroanatomy, Morphology, Neuronal reconstruction, Multiphoton 

excitation microscopy, 3D microscopy, Dendrites, Morphometry, Retina 

 

1 Introduction 

1.1 From Waldeyer and Cajal to MPE Microscopy 

In what later became known as the neuron doctrine, Wilhelm Waldeyer proposed in a 

review published in 1891 that "the nerve cell is the anatomical, physiological, 
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metabolic, and genetic unit of the nervous system" [1] (quoted and translated in [2]). 

Despite the wealth of discoveries that have accumulated over the more than 100 years 

that have since passed, the central tenet of this theory has stood the test of time: 

individual nerve cells, or neurons, are still considered to be a relevant level for 

investigating the function of the central nervous system (CNS) [3-5]. Neurons are the 

main cellular components of the CNS circuits that give rise to a rich variety of neural 

functions, including sensation and perception, motor action, and cognition. Despite 

enormous variability in the details of their morphology, neurons are characterized by 

the presence of multiple branching processes with specialized morphology. With the 

development of Golgi's technique for silver impregnation of individual neurons [6], 

and Cajal's technical refinements and subsequent application to essentially all regions 

of the central nervous system of several different species, this morphological variability 

was clearly described and documented [7, 8]. Despite delayed recognition of the 

importance of dendritic morphology for the functional properties of a neuron [9, 10], 

there is now strong evidence that the specific morphology of a neuron has a dramatic 

impact on its function [11]. Although the dendritic morphology of a given type of 

neuron can potentially be constrained by factors not directly related to signal 

processing and computation, e.g. development and innervation selectivity, it is 

generally accepted that, at least in principle, the computational and signal processing 

properties of a neuron are determined by its synaptic inputs, its three-dimensional (3D) 

dendritic morphology and the properties and location of the different ion channels 

expressed in the cell membrane. 

 

Because neurons are the fundamental building blocks of the nervous system, it is 

important to visualize, characterize, and quantitatively describe the morphology of 

single neurons. This workflow is essential for studies that aim to understand the 

structure-function relationships of specific types of neurons and how the 

morphological variability can support a correspondingly rich diversity with respect to 

differential signal processing [4, 12]. The morphology of single neurons can be 
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visualized with several different techniques (for an extensive review, including 

technical descriptions, see [13]). For some purposes, digital images will suffice as 

documentation, but for quantitative studies, digital reconstruction of the 3D 

morphology is an essential step [14-16]. A simple variant of digital reconstruction is 

focused on creating a representation of the skeleton of the tree structure in 3D which 

can be adequate for studies that primarily aim to characterize e.g. changes in branching 

pattern during development [17]. In a more advanced variant of digital reconstruction, 

however, a realistic and detailed morphological reconstruction is generated and used 

for compartmental modeling of neuronal computation and signal processing (reviewed 

by [14, 18]). 

 

Classically, reconstructing the morphology of single neurons meant performing a 

manual reconstruction by drawing, either directly from the light microscope (using 

special optical arrangements) or from the projected images of photographs. A 

disadvantage of both approaches is that they essentially lack any ability to represent 

3D information in a way that makes the reconstruction useful for quantitative analysis. 

This situation changed dramatically with the development of increasingly 

sophisticated methods for reconstruction that combine light microscopic imaging and 

computer-aided neuronal tracing software [18-21]. Digital reconstruction can be 

performed simultaneously with light microscopic imaging or subsequent to and 

independently of imaging, such that the reconstruction is performed from a previously 

stored digital image stack. Irrespective of the exact method, such manual 

reconstruction can be extremely time-consuming and it can be challenging to maintain 

a consistent approach either throughout an extended reconstruction session or from 

one session to the next. 

 

On this background, two major challenges of light-microscopic reconstruction of single 

neuron morphology can be summarized as follows: First, which method should be 

used for visualization of the neuron? Second, which method should be used for 
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reconstruction of the neuron? As will be reviewed in the remainder of this section, the 

answers to these questions are interrelated and depend strongly on the purpose of the 

reconstruction. We will also review important aspects of using MPE microscopy of 

dye-filled neurons for visualization and describe work flows for both manual and 

semi-automatic morphological reconstruction. 

 

1.2 Visualization 

With light-microscopic imaging, there are several different alternatives available for 

visualization of single neuron morphology. A major drawback of the classical Golgi 

method, irrespective of problems related to inconsistency, variable success rate, and 

reproducibility, is that it cannot easily be extended to a work flow that combines 

visualization with correlated physiological recordings under conditions where the 

same cell is used for both physiological and morphological analysis. With the advent of 

intracellular recording with microelectrodes, it became possible to fill cells with water-

soluble substances that could be visualized in the light microscope and used for 

display and morphological reconstruction. For high-quality visualization, however, 

there are essentially only two types of substances available; tracers (like biocytin [22] 

and Neurobiotin [23]) and fluorescent dyes. Fluorescent dyes can also be used for 

injecting neurons in fixed tissue slices (using sharp microelectrodes) and this can 

generate excellent morphology (e.g. [24]), but this approach cannot be extended to 

encompass correlated physiological measurements from the same neurons. Filling 

neurons with biocytin or Neurobiotin, using either sharp microelectrodes or patch 

pipettes, requires the use of live tissue (in vitro or in vivo). Subsequent visualization 

based on development of an insoluble reaction product has been used in a number of 

morphological, as well as correlated morphological-physiological investigations (e.g. 

[25], for review see [14]). Alternatively, biocytin and Neurobiotin can be reacted with 

avidin linked to a fluorescent dye. However, both visualization methods require tissue 

fixation which can compromise and distort exact morphological reconstruction [14]. 
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When it is a goal to avoid tissue fixation altogether, a useful alternative is to fill 

neurons in live tissue with a fluorescent dye, using either sharp microelectrodes or 

patch pipettes. Such dye-filled neurons can be imaged with wide-field fluorescence 

microscopy, but this technique lacks optical sectioning and there is a substantial risk of 

phototoxicity. Images obtained in this way can often be remarkably improved with 

digital deconvolution (see below), but generally not to the extent that they are 

adequate for detailed quantitative morphological reconstructions, as needed e.g. for 

compartmental modeling. In contrast, confocal laser-scanning microscopy provides 

optical sectioning and high resolution, but is not ideal when imaging fluorescent 

neurons in live tissue because of the high risk of phototoxicity (e.g. [26]). Confocal 

microscopy is ideal when imaging fluorescent neurons after tissue fixation, but, as 

indicated above, fixation introduces a considerable risk of tissue shrinkage and 

distortion that can lead to artefacts. 

 

Most of the disadvantages discussed above can be strongly reduced (even eliminated) 

by imaging fluorescently filled neurons with MPE microscopy. This technique 

provides optical sectioning and the ability to image, with high resolution, deep into 

intact tissue [27]. MPE microscopy has few disadvantages (perhaps the only major one 

being the high cost of the required pulsed infrared [IR] laser) and for practical 

purposes, the resolution is essentially as good as that of confocal microscopy for the 

same conditions of imaging [28]. Because of the strongly reduced risk of phototoxicity 

compared to wide-field and confocal fluorescence microscopy, MPE microscopy is 

uniquely suited for imaging neurons in live tissue in combination with measurements 

of electrophysiological responses from the same cells [29-31]. This approach also 

eliminates the need to post-process tissue (which can save many hours of extra work), 

fixation-related artefacts, and the risk of tissue distortion that often take place when 

mounting and embedding tissue between microscope slides and cover slips. One 

limitation that is difficult to avoid results from the compromise between the 

motivation to image using an objective with the highest possible numerical aperture 
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(NA) for maximum resolution and the need for a working distance that enables the 

positioning of micropipettes for recording from and/or filling the neuron. Whereas 

confocal imaging generally makes use of objectives with NA in the range of 1.3 - 1.4, 

the short working distance of these objectives prevents their use for imaging neurons 

with attached micropipettes. Water-immersion objectives that can be used for MPE 

microscopic imaging of dye-filled neurons have, at most, NA values in the range of 

0.95 - 1.05. To partially compensate for this shortcoming, we have implemented the use 

of post-acquisition deconvolution in our work flow for morphological reconstruction 

(described in detail below). Although intracellular electrophysiological recordings with 

sharp microelectrodes have contributed substantially to combined structure-function 

investigations of single neurons, the current method of choice for such investigations is 

whole-cell recording with the patch-clamp technique [32, 33]. 

 

1.3 Digital Morphological Reconstruction: Manual or Automatic? 

Because manual morphological reconstruction can be difficult and time consuming, 

there has been a strong motivation to develop computerized morphological 

reconstruction procedures that require minimal user involvement (for recent reviews, 

see [34, 35]). Ideally, such automatic procedures would, in addition to saving time and 

increasing output, have the additional benefits of reduced subjectivity (i.e., errors 

resulting from variations in interpretation between different operators) and reduced 

susceptibility to operator fatigue. A number of different procedures for automatic 

reconstruction are available, both as freely available software from academic research 

laboratories (e.g. ORION [36], TREES [https://www.treestoolbox.org] [37, 38], 

Neuromantic [https://www.reading.ac.uk/neuromantic/body_index.php] [39], and 

neuTube [https://www.neutracing.com] [40]) and as commercial software for semi-

automated and fully automated single neuron reconstruction (e.g. Neurolucida and 

Neurolucida 360 from MBF Bioscience [https://www.mbfbioscience.com], Imaris 

FilamentTracer from Bitplane [http://www.bitplane.com]). The extent to which the 

algorithms underlying the different procedures are freely available as source code 
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varies, but for some of the academic software, the full source code is available (e.g. the 

TREEs toolbox running in the MATLAB environment; [38]). This chapter includes a 

detailed, step-by-step description of a work flow for semi-automatic reconstruction 

using software recently developed in our laboratory [41]. The description is focused on 

reconstruction a retinal amacrine cell (AII), noting that this is just one example among 

several, but our software has performed reasonably well for this type of neuron. Our 

motivation for this development resulted from the specific challenge of reconstructing 

a densely branching neuron, but we expect the approach to be generally useful for 

reconstruction of neurons with widely varying morphologies. 

 

2 Materials and General Methods 

For animal anaesthesia, in vitro slice preparation, visualization with IR Dodt gradient 

contrast videomicroscopy, intra- and extracellular solutions, electrophysiological 

recording, data acquisition, MPE structural (and functional) imaging, and IR-laser 

scanning gradient contrast (IR-LSGC) imaging, see the chapter by Hartveit and Veruki 

(this volume). 

 

When electrophysiological responses are recorded for compartmental modeling, it is 

useful to correct membrane potentials for liquid junction potentials [42]. Such 

potentials can be measured experimentally, although it is difficult to do so without 

introducing considerable error. Instead, it is recommended to estimate the liquid 

junction potential by theoretical calculation, using e.g. the software program JPCalcW 

/ JPCalcWin. Some data acquisition programs can correct the holding potentials for 

liquid junction potentials online (e.g. Patchmaster from HEKA Elektronik) which can 

be very convenient. 

 

2.1 Acquisition of an Image Stack 

An image stack is acquired as a series of optical slices (XY) at fixed focal plane intervals 

from a given region. Depending on the size of the dendritic arborization, and 
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potentially even the size of the axonal field of the imaged neuron, it might be sufficient 

to acquire a single stack. Alternatively, tiling acquisition can be used when more than 

one stack is required to cover the cell and all its processes. When this is necessary, the 

individual image stacks should be sampled with sufficient overlap such that they can 

be assembled into a single composite stack before reconstruction (see below). 

 

To obtain image stacks that can be adequately processed with deconvolution (see 

Section 2.3), images must be sampled at a rate close to the ideal Nyquist rate, both in 

the X, Y, and Z direction. This sets an upper limit for the voxel ("3D pixel") size along 

each dimension and constrains the size of the image as a function of the digital zoom, 

the number of pixels (along X and Y), and number of slices (along Z). The Nyquist 

sampling distance in the lateral direction is calculated as: 

 ∆!= ∆!= !!"
!!"× !"#! 

and for the axial direction, the Nyquist sampling distance is calculated as: 

 ∆!= !!"
!!"× !!!"#!  

where n is the lens medium refractive index, k is the number of excitation photons 

(photon count; set to 2 for MPE microscopy), λex is the wavelength of the excitation 

light, and α is the half-aperture angle of the objective (reviewed by [43]). The web site 

for Huygens deconvolution software (https://www.svi.nl/NyquistCalculator) has a 

simple browser-based application to directly perform these calculations. As an 

example, for λex = 810 nm and a water immersion (n = 1.338) objective with NA = 0.95 

(NA = n × sin α), we get a Nyquist sampling distance in the lateral direction of ~107 

nm and in the vertical direction of ~512 nm. After calibrating the microscope, it is then 

possible to calculate the voxel size (XYZ) for any given combination of digital zoom 

and the number of pixels sampled in the X and Y directions for a given image. A useful 

approach is to adjust the digital zoom until the desired structure (e.g. dendritic 

arborization) almost fills the imaged region and then increase the number of pixels for 

ech image (e.g. to 1024[X] × 1024[Y]) until Nyquist rate sampling is satisfied. The 
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vertical interval between the slices of the image stack should be set directly in the 

image acquisition software. For acquisition of the complete arborization of an AII 

amacrine cell [44], we would typically sample image stacks with each slice set to 1024 × 

1024 pixels and adjust the digital zoom to obtain an XY pixel size of 80 - 90 nm. 

Constrained by the available intervals of the vertical focus mechanism of the 

microscope, we would use a focal plane interval of 400 nm.  

 

At each focal plane, a number of images can be averaged within each channel to 

improve the signal-to-noise ratio (SNR). It is tempting to increase the number of 

averages to improve the image quality, but there are trade-offs. Increased averaging 

does not improve the SNR linearly, it increases the risk of phototoxicity, and it 

increases the time required to sample a complete stack. When image stacks are 

subsequently processed by deconvolution (see below), we have found it optimal to 

average two frames for each slice. 

 

For neurons with larger dendritic trees, the requirement of Nyquist sampling may not 

be compatible with acquiring the complete morphology in a single stack, and multiple 

stacks must be acquired in a tiling pattern. Combining the individual stacks to a single 

composite stack can be done with an "image montage" stitching function (e.g. in 

Neurolucida) that creates a 3D image montage by manually arranging the set of stacks 

to optimize X, Y, and Z alignment. An alternative computer program ("Volume 

integration and Alignment System"; VIAS) is freely available and designed to integrate 

multiple stacks into a single volumetric dataset (http://research.mssm.edu/cnic/tools-

vias.html).  

 

2.2 Image Processing Prior to Deconvolution 

ScanImage [45], the MPE microscopy acquisition software used in our laboratory (see 

chapter by Hartveit and Veruki, this volume), stores the different channels of an image 

stack in an interleaved format. Thus, it is necessary to process the image stacks before 



 
11 

importing the data to the deconvolution software whenever more than one image 

channel has been acquired. For this, we use a simple routine developed in the IGOR 

Pro environment (64-bit) that takes a multi-channel image file, de-interleaves the data 

based on acquisition channels and saves each channel as an individual file. To 

compensate for drift and mechanical instabilities that can occur during the image 

acquisition (due to e.g. perfusion of the recording chamber), we use the Object 

Stabilizer module of Huygens to align images along the Z axis. The IGOR Pro 

ImageRegistration operation, as implemented in the SARFIA RegisterStack routines [46] 

can also be used to align the slices of an image stack. A specific advantage of the 

ImageRegistration operation is that it can align the image stack in one of the channels 

(e.g. the IR-LSGC channel) and then use the generated registration parameters to align 

the image stack of the other channels (e.g. fluorescence) according to the same 

parameters. This can be a useful feature when aligning image stacks of neurons with 

few processes.  

 

2.3 Deconvolution of Fluorescence Image Stacks 

Post-acquisition digital deconvolution is a very powerful technique for enhancing 

image quality [26, 47] and can be used with great advantage to increase the SNR and 

decrease the axial and lateral blurring [48] of image stacks before they are used for 

digital morphological reconstruction. Essentially, deconvolution removes noise and 

reassigns out-of-focus light, using a theoretically calculated or experimentally 

determined point spread function (PSF). 

 

There are several options for deconvolution software, both freely available academic 

software as well as commercial software. With respect to commercial software, our 

experience is with the powerful and flexible Huygens package from Scientific Volume 

Imaging. The Huygens software comes in two different base versions, Essential and 

Professional (both 64-bit). Whereas they differ in some of the added functionality (and 

therefore the cost), the core of the deconvolution operation is identical between the two 
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versions. The deconvolution procedure depends on specifying a PSF for the imaging 

system, but can use either a PSF that is experimentally determined for a specific setup 

and imaging condition or a PSF that is calculated theoretically. A number of different 

algorithms are available for deconvolution within the Huygens software. For 

deconvolving MPE microscopic images, we have obtained the best results using the 

Classic Maximum Likelihood Estimation (CMLE) algorithm. 

 

Before starting deconvolution of an image or image stack, the Huygens software 

requires user input of several parameters related to the microscope and imaging. Some 

parameters can be left with their default values calculated from data available in the 

image stack. The most critical user-specified parameter is the SNR. In theory the SNR 

value can be deduced from the image intensities and photon shot noise. However, we 

have adopted a more heuristic strategy to obtain an optimal setting, as is advised by 

the Huygens software. Increasing the SNR value used during deconvolution increases 

the sharpness of the restoration result, but when set higher than an optimal value, it 

leads to enhanced noise and spatial fragmentation of the structures in the images.  

Fig. 1 near here 

 

Although it can be time-consuming, it is well worth the effort to run a series of 

repeated deconvolutions with several different values of the SNR on the same image 

stack in order to estimate an optimal SNR (while keeping all other parameters and 

settings constant). In the course of a study with morphological reconstruction of dye-

filled AII amacrine cells from the rat retina [44], we investigated this process in detail. 

An example of the results that can be obtained with this procedure is illustrated in Fig. 

1, for an arbitrary region with a number of tightly packed dendritic processes imaged 

in a single focal plane of an AII amacrine image stack. The raw (unprocessed) image 

data are shown in Fig. 1a and Figs. 1b-g show the results for the same region after 

deconvolution with different values for the SNR (set to 1, 5, 10, 20, 40, and 80, 

respectively). Note that with increasing value for SNR, the sharpness of the 
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deconvolved images increases and noise is removed (corresponding to removing out-

of-focus light), but when the SNR for deconvolution is increased beyond an optimal 

value, the deconvolved images begin to display structural fragmentation of the 

dendritic processes. This is a sign that the SNR values are too high and the resulting 

images are over-deconvolved. For a more detailed analysis, we plotted linear intensity 

profiles for fluorescence at a series of locations across several dendritic processes. An 

example is illustrated in Fig. 1, where the position of the intensity profile corresponds 

to the line displayed in Fig. 1a. The population of linear intensity profiles for all the 

deconvolution results (Figs. 1b-g), together with that for the raw data, is illustrated in 

Fig. 1h. When the SNR for deconvolution is increased, it progressively increases the 

peak value of the intensity profile and the profiles remain smooth until the optimum 

SNR value has been reached. However, when the SNR is increased beyond the 

optimum (approximately 20 for the example illustrated in Fig. 1), the intensity profile 

displays increased noise, reflecting the spatial (morphological) fragmentation in the 

corresponding deconvolved images. This procedure depends on the judgment of and 

input from the operator. To ensure that the optimally deconvolved image stack is 

selected for morphological reconstruction, the procedure described here with visual 

inspection and generation of linear intensity profiles should be applied to several 

different regions (and processes) of the same stack.  

 

3 Manual 3D Morphological Reconstruction 

3.1 General Aspects 

In our laboratory, we routinely use the computer programs Neurolucida [19] and 

Neurolucida 360 for manual, computer-aided, quantitative morphological 

reconstruction of fluorescently labeled neurons. During reconstruction, the fluorescent 

processes in the different slices of an image stack are tracked by scrolling up and down 

through the stack and the computer mouse is used to delineate a given process and 

visually determine its diameter. Further details can be found in the on-line 

documentation (https://learn.mbfbioscience.com). 3D reconstruction of the soma can 
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be done in two different ways. One can identify the image slice corresponding to the 

largest outline ("maximum projection") and trace the circumference with a single 

contour. The volume of the soma is then estimated by spatial integration of this 

contour (through rotation) during the subsequent analysis. Alternatively, 3D 

reconstruction can be performed by tracing the soma with a series of contours, each at 

a different focal plane. In this case the volume of the soma is estimated by integrating 

over the series of individual contours. In general, we choose to use a single contour. 

Fig. 2 near here 

 

Figures 2a-c illustrate three different stages of the reconstruction workflow, with 

maximum intensity projections (MIPs) of the fluorescence image stack before (Fig. 2a) 

and after (Fig. 2b) deconvolution, and a projection of the final digital reconstruction 

(Fig. 2c). All projections have been overlaid on a single, representative image slice from 

the IR-LSGC channel (identical for panels a-c). The details of the dendritic arborization 

of the reconstructed neuron are more clearly displayed by the two-dimensional (2D) 

projection (shape plot) in Fig. 2d and the 3D visualization in Fig. 2e. 

 

For general morphological analysis and quantification of dendritic branching of a 

complete reconstruction, there are many different options available in the program 

Neurolucida Explorer (64-bit, MBF Bioscience; 

https://www.mbfbioscience.com/neurolucida-explorer;  

https://www.mbfbioscience.com/help/neurolucida_explorer/Content/NeurolucidaE

xplorer.html). In addition, the freely available program L-measure 

(http://cng.gmu.edu:8080/Lm/; [49]) offers similar as well as additional analysis 

options compared to Neurolucida Explorer, but does not have visualization 

capabilities.  

 

3.2 Special Considerations When Reconstructing Very Thin Processes 
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During manual reconstruction, it is essentially up to the operator to determine the 

thickness of the different fluorescent processes by visual inspection during the 

reconstruction, irrespective of whether this is done at the microscope or at the 

computer with an image stack. When morphological reconstruction is based on light 

microscopic imaging, it is a problem when the diameter of a neuronal process is below 

the resolution limit of light microscopy [14, 15]. For a self-luminous point object, as is 

the case when imaging subresolution structures with fluorescence light microscopy, 

the lateral (XY) Rayleigh two-point resolution (minimum resolved distance) is given by 

0.61! !" (e.g. [26, 50]), where λ is the wavelength of the emitted light and NA is the 

numerical aperture of the microscope objective. With MPE microscopy, only the 

excitation wavelength is important, and the resolution is improved by 2 (in the ideal, 

diffraction-limited case, assuming that the laser beam completely fills the back-focal 

plane of the objective) and the equation becomes 0.61! (!" 2) [51]. For example, in a 

situation with an excitation wavelength of 810 nm and an objective NA of 0.95, the 

resolution limit becomes approximately 0.37 µm in the ideal (diffraction-limited) case. 

If a neuronal process is thinner than this value, it can be detected if the fluorescence 

intensity is high enough to generate a signal above the noise level in the microscope 

hardware, but the diameter cannot be adequately resolved. To our knowledge, the only 

case where super-resolution (i.e., diffraction-unlimited) light microscopy has been used 

to image neuronal processes under conditions where the acquired images can be used 

for morphological reconstruction is the work of Sigal et al. [52]. Here, retinal neurons 

were imaged with stochastic optical reconstruction microscopy (STORM) applied to 

fluorescently labeled ultrathin sections, providing a lateral resolution of ~20 nm and an 

axial resolution of ~70 nm (limited by section thickness), which is sufficient for 

imaging some of the thinnest neuronal processes. However, sectioning of tissue for 

serial electron microscopy (EM) makes this approach very labor-intensive. 
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EM has a limit of resolution which is adequate for imaging the very thinnest neuronal 

processes, but has not routinely been applied for reconstructing complete arborizations 

of single neurons. The existence of ultrastructural data for a specific type of neuron, 

however, can often provide valuable information that can guide light microscopic 

reconstruction of processes with diameters below the limit of resolution of light 

microscopy [15]. An example is the detailed study of Tsukamoto & Omi of AII 

amacrine cells in mouse retina [53], which we used to guide our work with 

reconstruction of rat AII amacrine cells imaged with MPE microscopy [44]. We used 

the published 2D projections of complete EM reconstructions to make measurements 

from the thinnest processes illustrated. The estimated range of diameters were clearly 

below the expected limit of resolution for MPE microscopic imaging. We then 

subsequently corrected our morphological reconstructions digitally using a custom 

algorithm (for details, see [44]).  

 

4 Semi-automatic and Automatic Morphological Reconstruction 

There is a strong motivation to develop semi-automatic or even fully automatic 

methods for reconstructing the morphology of single neurons. The most important 

reason for this is undoubtedly the amount of time and work required for 

reconstructing even neurons with simple morphologies. During the course of manually 

reconstructing a large number of neurons from the mammalian retina, we became 

increasingly interested in supplementing the manual reconstructions with semi-

automatic or fully automatic reconstructions. However, our success after trying out 

some of the available computer programs for automatic reconstruction was limited, 

both for freely available and commercial software. To compensate for this, we 

developed a method that combined elements of existing reconstruction procedures, in 

particular the algorithm implemented in the TREES toolbox [38]. To enhance the 

functionality, we extended this with an algorithm for connecting disconnected 

neuronal segments that typically result from a previous stage of image segmentation. 
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This was implemented with the Fast Marching method for generating image-extracted 

paths [54]. 

Fig. 3 near here  

 

In the following, we present a detailed account and work flow for semi-automatic 

reconstruction using our approach (Fig. 3), with the retinal AII amacrine cell as an 

example. This is currently the only type of neuron for which our method has been 

extensively tested. Although the method was developed for reconstructing neurons 

with densely branching dendritic trees, we believe that it is likely to work well for 

other types of neurons as well. The software was developed in MATLAB and is freely 

available, including the source code (see Section 8; additional details can be found in 

the original publication [41]). Specific parts of the code use functions in the TREES 

toolbox [37, 38] and the CellSegm toolbox [55], both of which are freely available. 

 

4.1 Image Preprocessing 

The preprocessing consists of two steps: 

1. Image restoration by deconvolution. This is described in detail in section 2.3 and is 

performed as for manual reconstruction. The Object Stabilizer module in Huygens is 

also used here to align images along the Z axis to compensate for drift and mechanical 

instabilities. Processed image stacks are saved in 16-bit TIFF file-format, utilizing the 

whole dynamic range, and converted to the NRRD format in Fiji (http://fiji.sc; [56]). 

Following the next step, all subsequent processing is performed with MATLAB and the 

NRRD format makes file handling in MATLAB easier. 

Fig. 4 near here 

2. Manual removal of the pipette and extraneous fluorescence. Before automatic cell 

segmentation, it is necessary to remove the image of the recording pipette used to fill 

the cell with fluorescent dye (Fig. 4a). This step can also be used to remove any 

extraneous fluorescence that sometimes accumulates around the site of recording, 

caused by leakage from the pipette when the recording was established (Fig. 4b). 
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Otherwise, as long as the intensity is higher than background, such false signals will be 

treated by the segmentation algorithm as being part of the cell. To remove both the 

pipette and extraneous fluorescence, our procedure depends on manual 

circumscription of the corresponding area in a frontal (XY) MIP of the image stack 

(using the getline function in MATLAB; Fig. 4c). In cases where the image of the pipette 

is projected on top of cellular processes in the MIP, this procedure will unfortunately 

not generate a satisfactory result and an alternative method must be developed. 

 

4.2 Image Segmentation 

First, before intensity segmentation with thresholding, the image stack is filtered 

(smoothed) with coherence-enhancing diffusion [57]. For segmenting the dendritic 

arborization, the procedure uses adaptive thresholding, with an adaptive filter size r = 

[2.5, 2.5, 5] (µm). To reduce the likelihood that noise is segmented, we routinely 

increase the adaptive threshold by a constant value equal to 5% of the maximum image 

intensity. Sometimes adaptive thresholding generates indentations or holes in thicker 

structures with size comparable to the size of the adaptive filter. To compensate for 

this, we perform a second segmentation by applying simple global thresholding (by 

trial and error, the threshold is set to ~11% of the maximum image intensity), followed 

by morphological operations that identify the largest connected component. The goal 

of the simple second segmentation is to obtain the soma and, for the specific example 

of the AII amacrine cell, the neck of the thick primary (apical) dendrite. The results 

from the two segmentation operations (adaptive thresholding and global threshold) 

are joined and followed by removing small components consisting of <20 voxels 

(considered to be noise). 

 

In the next step, the goal is to connect all disconnected components generated by the 

initial segmentation by computing the optimal paths by which they can be connected. 

To accomplish this, our procedure uses the Fast Marching method, generally 

considered to be a versatile path extraction technique [54]. The procedure uses a point 
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in the soma as starting point and computes the Fast Marching arrival times for all 

voxels in the image stack. For the so-called speed function, we use the original image 

stack (after preprocessing). Then, segments are connected by back tracing the Fast 

Marching arrival time map from each segment to the soma. To accomplish this, the 

procedure automatically selects a point approximately in the center of the soma (for 

details, see [41]). The final (binary) representations of the cells are created by joining 

the voxels traversed by the connection paths and the segments from the initial intensity 

segmentation.  

 

4.3 Tree Representation by Skeletonization and Tubularization 

In the next step, the goal is to transform the binary cell representation (generated by 

the automated segmentation) to a tree representation. Our procedure uses a tree 

representation that follows the definitions of the SWC format. This is a simple tabular 

text format that lists a set of (X, Y, Z) positions and associated radii [58]. First, all slices 

within the segmented volume of the image stack are smoothed (3 x 3 pixel mean filter) 

and binarized by the Smooth and Make Binary functions in Fiji. Then, the segmented 

volume is skeletonized, i.e., thinned by surface erosion [59], using the Skeletonize3D 

function in Fiji. Each of the functions in Fiji is called automatically from within 

MATLAB. The coordinates of the voxels in the resulting skeleton are then used to 

generate a minimum spanning tree (MST; [60]), using the TREES toolbox [37, 38]. 

Generating an MST simultaneously optimizes both the total branch length and the total 

path length to the soma for all points (for details, see [41]). The process requires input 

from the user of a value for the so-called balancing factor that controls the relative 

weight between the wiring cost and the path length cost. For the AII amacrine cells 

imaged in our experiments, a small balancing factor of 0.01 provides a good result and 

essentially corresponds to drawing the shortest possible connections between points. 

 

In the last step of this section, the goal is to obtain the diameters of the neuronal 

branches. It is well known that for image stacks generated by light microscopy, the 
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axial (Z) resolution is inherently lower than the lateral (XY) resolution. In both the raw 

image stacks and those obtained by segmentation, this is reflected by the elliptical 

cross-sections of the branches, i.e., they are much thicker along the Z direction. In our 

procedure, this imaging artefact is corrected by a process termed "tubularization" 

where the diameter associated with each reconstruction point is calculated as twice the 

distance from the point to the closest border of the segmented volume. This is 

estimated by fitting the largest possible sphere, centered at the reconstruction point, 

into the segmented volume. These results are obtained by calculating the distance 

transform of the segmented image [61, 62]. As for the manual reconstructions, our 

procedure enforces a minimum branch diameter (set by the user). 

 

4.4 Postprocessing and Correction of Reconstruction Errors 

It is essentially unavoidable that an automatic reconstruction will contain errors. Some 

of these can be corrected in a series of semi-automatic post-processing steps, with some 

requiring more explicit user intervention. 

 

The first post-processing step is to clean the reconstructed tree from short and most 

likely false branches introduced during skeletonization. This is done with the clean_tree 

routine in the TREES toolbox [37, 38]. For this step the user has to input a value for the 

cleaning factor. Based on empirical testing, we set this value to 0.2, but for other cells 

different values might generate better results. The skeletonization procedure also 

usually generates a number of false branches inside and close to the outside of the 

soma. We have not found a satisfactory way to remove these branches 

programmatically and instead we have implemented a semi-automated procedure 

where the user is prompted to manually delineate a region around the soma where 

such "spurious" branches occur (using MATLAB's getline function). This is 

conveniently done by superimposing the generated skeleton on a MIP of the pre-

processed image stack from two different perspectives (front and side views). All 

points with XY- and YZ-coordinates within the delineated outlines are then removed. 
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The second post-processing step is to compensate for the introduction of discrete steps 

along the reconstructed branches. If left uncorrected, this will artificially increase the 

apparent branch length. It is a common problem that both manual and automatic 

reconstructions suffer from discrete steps along the Z-dimension, but with the 

automatic reconstructions we have observed that a similar phenomenon can be 

observed along the X- and Y-dimensions as well, most likely due to the large number 

of reconstruction points (per unit branch length). As a correction, our procedure 

spatially filters the reconstruction using the smooth_tree function in the TREES toolbox 

[38]. 

 

In the last step, the procedure generates a single contour to represent the soma by 

automatically tracing the outline of the soma in each slice of the image stack and 

selecting the contour close to the center, typically the contour with the largest area [41]. 

For calculating the surface area and volume of the soma, analysis programs such as L-

measure and NEURON (https://neuron.yale.edu/neuron/) assume that the soma has 

a primary axis in the XY plane and is rotationally symmetric. In the final step, the 

complete reconstruction is exported and saved in the SWC format. 

 

4.5 Proofreading and Editing for Semi-Automatic versus Automatic 

Reconstructions 

Inevitably, a procedure for automatic morphological reconstruction will generate 

errors that a human observer immediately recognizes as such. It is perhaps a paradox 

that when procedures for automatic reconstruction are designed by giving the user 

extensive control of the different steps of the reconstruction by providing access to a 

number of different parameters that control the reconstruction process, the user might 

end up spending more time tuning and varying the different parameters and re-

running the reconstruction, such that in the end, little time is saved relative to full 

manual reconstruction. Similarly, if automatic reconstruction has to be followed by 
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difficult and time-consuming post-reconstruction manual editing, the time saved 

during automatic reconstruction is effectively lost and little real progress has been 

made. Naturally, this calls for powerful, real-time visualization tools that can be used 

for efficient evaluation and proofreading and also for correcting the reconstructions 

when needed (see [63, 64] for detailed discussions). Our procedure does not provide 

such functionality. Instead, we recommend visualization and proofreading using either 

commercial software like Neurolucida/Neurolucida 360 and Imaris or the freely 

available programs Vaa3D (http://www.alleninstitute.org/what-we-do/brain-

science/research/products-tools/vaa3d/; [63, 65]), neuTube [40], and CVAPP 

(https://github.com/pgleeson/Cvapp-NeuroMorpho.org). Hopefully, even with an 

additional step of manual editing and post-reconstruction error correction, the total 

reconstruction time will be significantly shorter and less exhausting compared to a 

fully manual reconstruction. 

 

5 Morphological Reconstruction for Compartmental Modeling 

A major motivation for morphological reconstruction of any neuron with an arborizing 

dendritic tree is to perform computational modeling and simulations of signal 

propagation using realistic neuronal geometry (e.g. [36, 66]). Neuronal function can 

depend strongly on the dendritic tree morphology (e.g. [11]) and computer simulations 

based on accurate reconstruction of neuronal morphology and electrophysiological 

recording are considered necessary to understand the underlying mechanisms [67, 68]. 

Importantly, for a neuron with a complex dendritic arborization, the flow of electric 

current cannot be solved analytically and investigations must resort to compartmental 

representations where the neuronal structure is discretized. When the goal is to 

understand signal processing in a specific type of neuron and reproduce its electrical 

behavor in a series of conditions, the morphological reconstruction must be detailed 

and accurate. Ideally, such models should be developed from the same neurons from 

which the electrophysiological measurements are made [32, 33, 69]. Even though 

morphological reconstructions of the desired type of neuron might be available from a 
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data base, they will be of limited value for the development of compartmental models 

unless they are accompanied by high-quality electrophysiological data from the same 

cells. If the investigator assigns numerical values to the passive electrical parameters 

(specific membrane capacitance; Cm, specific membrane resistance; Rm, and cytoplasmic 

resistivity; Ri) of the model by guessing, there is no simple way of knowing how well 

the result will reproduce the behavior of the neuron under physiological conditions.  

 

When electrophysiological recording is performed in parallel with MPE microscopy to 

develop compartmental models for investigating single neuron computation and 

signaling, potential artefacts associated with fixation and processing of the tissue are 

completely avoided. Tissue shrinkage and distortion during fixation and histological 

processing is often a major limitation during subsequent morphological reconstruction 

and can change both branch diameters, individual branch morphology, as well as the 

overall shape of the dendritic (and axonal) arborization [14, 30]. Live imaging in 

parallel with the electrophysiological recording also eliminates the need to embed the 

tissue which can lead to tissue compression and consequent distortions. Live imaging 

with MPE microscopy has the additional advantage that there is no need to remove the 

recording pipette before imaging (as would generally be the case for confocal 

microscopy). With longer-lasting electrophysiological recordings it is often difficult to 

remove the pipette from the cell without removing the whole cell body. This can be 

problematic for subsequent morphological reconstruction and compartmental 

modeling, especially for small neurons where the cell body constitutes a large part of 

the total surface area of the neuron. 

 

6 Limitations and Comparison with other Methods 

Despite the amount of work required, light microscopic reconstruction is currently 

unrivaled when it comes to generating databases with quantitative information for a 

large population of cells of a given type. Such databases can be very useful for 

understanding the degree of variability of different morphological properties within a 
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given type of neuron [12, 70]. Even a purely morphological database can be useful for 

judging the extent to which any individual neuron of the same kind is representative of 

the "typical" morphology. 

 

Fully automatic reconstruction is not the only alternative to manual reconstruction. 

Semi-automatic procedures, e.g methods that involve variants of "finger pointing" with 

user-guided input to determine the basic skeleton and branching pattern of a neuronal 

tree (dendritic, axonal) have been developed. This includes both commercial solutions 

(e.g. Neurolucida 360) and freely available, academic software such as neuTube [40] 

and hxskeletonize (developed for the Amira environment; [16, 71]). 

 

It is currently not feasible to use EM for a larger population analysis with complete 

volumetric reconstruction of individual neurons. So far, complete EM reconstructions 

of single neurons have typically been limited to center-line skeletons, e.g. for large-

scale reconstructions of amacrine and bipolar cells in mouse retina [72, 73].  

 

7 Notes 

1. The workflow for both manual and (semi-)automatic reconstruction can also be 

applied for reconstruction of neuron morphology from confocal image stacks (with 

only a few minor modifications). When cells are injected with fluorescent dye using 

sharp (high-resistance) electrodes, either in live or fixed tissue, we generally 

recommend imaging with confocal microscopy as this allows the use of microscope 

objectives with higher NA and consequent higher resolution (both lateral and axial). 

2. For structural imaging with subsequent morphological reconstruction and 

compartmental modeling, we have obtained good results with a pipette solution with 

either Alexa Fluor 488 hydrazide (50 or 100 µM) or Alexa Fluor 594 hydrazide (40 or 60 

µM) as sodium salts (Thermo Fisher / Invitrogen). Additional details can be found in 

the chapter by Hartveit and Veruki (this volume). 
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8 Step-by-Step Procedure for Running the Automated Reconstruction in 

MATLAB 

This section describes running the automated algorithm described above (for details, 

see [41]). All computer code required is freely available and can be downloaded from 

https://www.researchgate.net/profile/Bas-Jan_Zandt. Running the code requires 

installations of MATLAB (commercial; https://www.mathworks.com) and Fiji (freely 

available; https://imagej.net/Fiji). The description below assumes that the software 

runs under Mac OS X with Apple's version 6 (legacy) of Java. 

 

8.1 Files Provided, Description of Folders and Subfolders 

Code_reconstruction (folder with MATLAB files for the reconstruction algorithm, 

containing a number of subfolders). 

Code (folder with files containing reconstruction code, including functions from the 

MATLAB toolboxes CellSegm [55] and Fast Marching [74]). 

Miji (folder with files to run Fiji from MATLAB). 

Xtra (folder with files from the TREES toolbox, files from the cbiNiftiRead toolbox to 

read/write NIFTI images and to scroll through image stacks). 

Data (folder with an image stack for testing the algorithm, downsampled to 256 × 256 × 

100 voxels to speed up execution and avoid long processing times). 

NLMorphologyConverter (folder with the program NLMorphologyConverter for 

converting between different file formats for representing the morphology of 

reconstructed neurons; freely available at http://www.neuronland.org/NL.html). 

 

8.2 Outline of Workflow 

The overall workflow consists of three parts: 

1. Installing and configuring the necessary software. 

2. Running the automated reconstruction on an image stack of an AII amacrine cell 

acquired with MPE microscopy and converting the resulting files such that they can be 
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opened in Neurolucida and Neurolucida Explorer (for editing or analysis) or imported 

to NEURON (for compartmental modeling and simulations). 

3. Optimizing reconstruction parameters and inspecting the results of the individual 

steps of the algorithm. 

 

8.3 Installing and Configuring the Software 

1. Running the program requires an installed version of MATLAB. The workflow 

described here has been tested on two different versions of MATLAB, version 2014b 

(running under Mac OS X 10.7.5) and version 2015b (running under Mac OS X 10.9.5). 

The Image Processing Toolbox and the Curve Fitting Toolbox are both required. 

2. In MATLAB, go to Preferences - MATLAB - General - Java Heap Memory and set 

"Java Heap Size" to its maximum (4096 MB) to prevent memory issues. 

3. Download and install Fiji, a distribution of ImageJ used for converting the format of 

the image stack and for the skeletonizatin step during reconstruction. Note: If too 

many plugins are installed for Fiji, this might cause MATLAB to crash. If this a 

problem, it can be solved by moving a number of the plugins from 

"/Applications/Fiji.app/plugins" to a new folder in the same path, e.g. named 

"plugins2". 

 

8.4 Running the Automated Reconstruction 

It is assumed that the image data are available in the form of a single image stack in the 

TIFF format. For the example described here, we will use the file named 

m999999_9_002_ch0_DS.tif (available in the Data folder). Note that the algorithm 

assumes a specific folder structure and that the subfolders containing MATLAB code 

and image data reside in the same parent folder. The output data will be written to a 

new subfolder inside this parent folder (as detailed below).  

1. Start by generating a folder for the image data and a scaling file: 
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a. Make a new folder inside the Code_reconstruction folder and provide it with a name 

identical to that of the file containing the image stack, e.g. m999999_9 for the example 

used here. 

b. Copy the image stack file to the folder generated in step a. 

c. For easier file handling, convert the image stack file to the NRRD format by opening 

it in Fiji and saving it as an *.nrrd file (menu: File / Save As / Nrrd ...). Save the file 

used here as m999999_9_002_ch0_DS.nrrd in the folder generated in step a. 

d. Create a *.mat file in MATLAB with the appropriate voxel (X × Y × Z) dimensions 

(same as in the image stack), i.e., 250 × 250 × 800 nm for the file used here. Open the 

Command Window in MATLAB and type on the command line: 

 voxel_size = [250, 250, 800]*1e-6 

(for historical reasons, the dimension of voxel_size is in mm). In MATLAB's Workspace 

window, right-click on voxel_size and select "Save As..." to save as voxel_size.mat in the 

folder generated in step a above (m999999_9). 

2. Generate an empty folder under Code_reconstruction and name it results_m999999_9 

for storing the results generated by the reconstruction algorithm. Now the 

reconstruction script can be run. 

3. In MATLAB, open the file Main.m ( Code_reconstruction / Code / Main.m). 

4. Right-click the tab of Main.m and select Change Current Folder To / ... / Code 

5. Set up the parameters for the reconstruction algorithm as follows: 

a. Select the Editor tab in MATLAB's ribbon and edit Main.m in MATLAB's editor 

window. Set all parameters to the values recommended in Appendix A (tuning the 

parameters is described in section 8.5). 

b. In Main.m, set the FIJIpath and FIJIscriptpath variables to the file paths where the Fiji 

plugins and scripts, respectively, are stored (see Appendix A for an example). 

c. Optionally save Main.m (this will be done automatically in the next step). 

6. Run Main.m as follows: Select the Editor tab in MATLAB's ribbon and click Run 

(green arrow head). This also automatically saves the Main.m file. If Step 4 above was 
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not executed, MATLAB will open a dialog stating that the file is not in the current 

directory. Respond by selecting "Change Folder". 

7. MATLAB displays a dialog with a request to select the image stack (*.nrrd) file: 

... / Code_reconstruction / m999999_9 / m999999_9_002_ch0_DS.nrrd 

Note: this automatically selects and configures the output folders and files based on 

the name of the folder in which the file is contained (folder m999999_9 for the example 

used here). 

8. MATLAB generates a window displaying a MIP of the cell in the frontal (XY) image 

plane, requesting the user to draw a region of interest (ROI) containing the cell, but 

excluding the pipette and any spurious fluorescence. Use the computer mouse to draw 

a ROI loosely around the cell by clicking multiple times and try to keep spurious 

fluorescence "blobs" (if present) outside the ROI. Draw the ROI such that it separates 

the image of the recording pipette from the image of the cell (presumably the soma, as 

in the example used here; Fig. 4). 

9. During execution, MATLAB will print information about the progress to the 

Command Window. Wait for the segmentation and skeletonization to finish. Note: the 

time required depends heavily on the size of the stack. For a stack with 1024 × 1024 × 

100 voxels, the process can take several hours and the time depends both on the 

number of voxels and the ratio between the parameters voxel_size and adaptivefiltersize 

(contained in the file Main.m). If the algorithm takes too long, it is a good idea to 

downsample the image stack (e.g. in Fiji or ImageJ) and/or change the size of 

adaptivefiltersize to a smaller value. 

10. The preliminary skeleton that is generated and displayed in a separate window will 

typically contain several spurious branches inside the soma. MATLAB prompts the 

user to indicate the region in which these branches should be removed. The region has 

to be delineated both in front (XY) and side (YZ) view. The reconstruction points that 

are inside the drawn ROIs will be removed. For the example cell used here, the 

selected ROIs should correspond to the soma in both projection planes such that only 

branches inside the soma will be removed. 
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11. After the ROIs with spurious branches have been indicated, program execution will 

continue and the algorithm will generate the tree, clean it, denote the soma, and export 

the results to SWC files. These steps take place automatically and do not require user 

intervention. 

12. Potential warnings (printed to the Command Window) about trifurcations can be 

ignored. 

13. When program execution has finished, MATLAB will have written four 

reconstruction files to the results folder (results_m999999_9) in addition to several *.mat 

files that contain the results of various intermediate steps: 

m999999_9_auto.swc (contains the reconstructed branches) 

m999999_9_auto_sm.swc (contains a smoothed version of the reconstructed branches) 

m999999_9_auto_soma.swc (contains the reconstructed branches and a soma contour) 

m999999_9_auto_sm_soma.swc (contains a smoothed version of the reconstructed 

branches and a soma contour) 

14. The *.swc output files can be directly visualized in e.g. Vaa3D. If desired, the user 

can convert the SWC format files to the Neurolucida ASC format with the 

NLMorphologyConverter program as follows: 

a. Copy the three *.swc files in the results_m999999_9 folder to the 

NLMorphologyConverter folder. 

b. Open a Terminal window (Mac OS X program). 

c. Change directory (with the cd command) to the NLMorphologyConverter folder. 

d. Execute the following command in the Terminal window (the character ">" is the 

prompt and should not be typed): 

> ./NLMorphologyConverter m999999_9_auto.swc m999999_9_auto.ASC 

NeurolucidaASC 

(repeat this step for the two other SWC format files) 

15. The ASC format reconstruction files can be opened in Neurolucida, Neurolucida 

Explorer and NEURON. Note that in Neurolucida, morphology reconstruction files 

contain a single or multiple contours to represent the soma and a single or multiple 
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unconnected trees that represent the branching tree(s) emanating from the soma 

(irrespective of whether the files are saved in the DAT or ASC formats). In SWC files, 

branch roots (corresponding to origin nodes in Neurolucida) are denoted by setting 

their parent identifier to -1 (at the last entry of a given line). In principle, an SWC file 

can therefore contain multiple unconnected trees. However, several applications, 

including the TREES toolbox, that are used to generate and export the reconstruction 

do not allow this. Our workaround for this problem is twofold. First, for the 

intermediate reconstruction files that do not contain a soma contour (see step 13 

above), the code connects all trees to a single point inside the soma (with the thickness 

of this point set to zero). Second, for the intermediate reconstruction files that contain a 

soma contour, the code connects all trees to a common point on the soma contour. As 

such, this might appear a bit odd in some of the figures generated to display the 

reconstruction. A more fundamental problem is that this property also prevents 

correctly importing the reconstruction to NEURON. Accordingly, we recommend 

using the ASC format reconstruction files generated with NLMorphologyConverter for 

this purpose. 

 

8.5 Optimizing Reconstruction Parameters 

When an image stack differs with respect to resolution, cell type, etc., from the one 

used in the procedure described above, the reconstruction parameters should be tuned 

to generate optimal results. Optimizing parameter values can be an art. The following 

section will be a guide to some of the tricks, with the goal of selecting optimal 

parameter values and settings in an informed way. The algorithm will be run step-by-

step to optimize the corresponding parameters. For this, we will make use of the 

convenient option in MATLAB that permits the user to run individual sections of code 

without running the whole script. To enable this functionality, the relevant sections in 

the Main.m file are delimited by a double percentage sign (%%) and can be run by 

using the computer mouse to click anywhere within a section (this will highlight the 
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code in the corresponding section) and clicking on the icon "Run and Advance" in the 

MATLAB ribbon displayed for the Editor tab (see https://www.mathworks.com/ 

help/matlab/matlab_prog/run-sections-of-programs.html). 

Detailed procedure: 

1. Open Main.m in the MATLAB editor window (as described above). 

2. Use the recommended parameter values, but for the purpose of the example work 

flow described here, edit Main.m to change two parameter values (from their default 

values) in the section "2. Parameters" (in this way, the script will run with parameters 

not optimized for the example image stack): 

  add2threshold = 0.2; 

 simpleThreshold = 0.2; 

3. Select the section "1. Clear previous session" by positioning the text cursor within it 

(left mouse click). In the MATLAB ribbon (displayed after selecting the Editor tab), 

click "Run and Advance" to execute the section and advance to the next section. Run 

the sections up to and including "4. Segmentation (thresholding)".  

4. Three graphs will appear with the results from the thresholding procedures. Inspect 

the graphs carefully. Compared to the result obtained with the default parameter 

values, it can be seen that many branches have been missed and the threshold values 

should be lowered.  

5. Optimize the threshold parameters as follows: 

a. In MATLAB, open the file optimize_threshold.m (located in the Code folder) that will 

be used to optimize the threshold. 

b. Set two parameter values in the section "2. Calculate and plot result of thresholding" 

of this optimization script as follows: 

 add2threshold = 0.2; 

 simpleThreshold = 0.2; 

c. Note that the optimization script loads results from the adaptive threshold 

calculations. Therefore, for a new image stack the script in Main.m needs to have been 

run, up to and including the section "4. Segmentation (thresholding)", at least once 
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with any set of parameters before running the optimization script (see above). In 

optimize_threshold.m, run the section "1. Initiation" followed by the section "2. Calculate 

and plot result of thresholding". 

d. A graph displaying the results appears. The add2threshold parameter increases the 

adaptive threshold. Setting it to a high value, where 1 corresponds to the maximum 

image intensity, results in the weaker branches not being segmented, while setting it to 

a low value can result in segmentation of background / noise fluorescence.  

e. Note that the simple thresholding mainly contributes to the total result by closing 

the gaps that appear in the segmentation of the soma. 

f. Lower the value of add2threshold as follows: 

 add2threshold = 0.1; 

and run the section "2. Calculate and plot result of thresholding" again. The result 

already looks better. 

g. Gradually reduce the value of add2threshold until reaching 0.005 (e.g. along the series 

0.2, 0.1, 0.02, 0.005) and check the consequence for the segmentation for each value by 

re-executing the section code. Note that changing this parameter affects not only which 

branches are segmented, but also their thickness. 

h. Try to find a value for add2threshold such that the resulting segmentation represents 

a reasonable compromise between segmenting too much noise and missing too many 

branches. 

i. The image stack used in this example can be properly segmented using adaptive 

thresholding alone. However, we found that especially in stacks with larger cell 

bodies, adaptive thresholding can lead to gaps in the segmentation inside the soma 

and primary dendrite. In such cases, the value for the parameter simpleThreshold can be 

tuned (in a similar way as done for add2threshold above) to find a value for which the 

gaps are removed, without affecting the rest of the segmentation too much. For the 

tuning, gradually reduce the value of simpleThreshold from 1 to 0 (e.g. along the series 1, 

0.7, 0.4, 0.2, 0.07, 0). 
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j. The last segmentation parameter that can be tuned is Nvoxels_segment_min. It is used 

to remove small and isolated segmented clusters of voxels ("blobs"). Segmented 

clusters containing fewer voxels than the parameter value are removed. To clearly 

demonstrate the effect of this parameter (do not do this for a real optimization), lower 

the threshold value to deliberately segment blobs of low-intensity background 

fluorescence, e.g. by setting 

 add2threshold = 0.005; 

Now gradually change the parameter Nvoxels_segment_min (located at the beginning of 

the section "2. Calculate and plot result of thresholding" in optimize_threshold.m) from 1 

to 500 (e.g. along the series 1, 10, 50, 200, 500; the default value is 20). Observe that for 

the smallest values of  Nvoxels_segment_min only the smallest loose segments will be 

removed, whereas the larger segments will be removed when larger values are 

selected. Again, a compromise has to be found between removing all unwanted 

background and not removing any smaller fragmented neuronal segments at all. 

k. Note the optimal values found for add2threshold, simpleThreshold and 

Nvoxels_segment_min. Close the file optimize_threshold.m and its accompanying figure 

window. Enter the optimized values for the parameters in the file Main.m.  

l. In Main.m, verify that the parameter redo_segmentation is set to "true" and rerun 

Main.m from the top, section by section, up to and including the section 

"4. Segmentation (thresholding)". Verify that the resulting segmentation is reasonable. 

6. Run the section "5. Segmentation (fast marching)". The result of this section depends 

on the parameter NbrightPixelsSoma which sets how many brightest pixels are initially 

used to determine the soma center (set to 100 by default; in section "2. Parameters"), 

but there is not much point in tuning this parameter, as it will not significantly 

influence the outcome. Inspect the results of the Fast Marching procedure after 

executing the code in the section "5. Segmentation (fast marching)". The various 

segments are displayed with different colors and are connected by the Fast Marching 

paths contoured with lines. 
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7. Run the section "6. Skeletonization". There is nothing to optimize here, as the 

skeletonization algorithm does not have any parameters. The result will be shown after 

executing the next section of code. 

8. Run the section "7. Tree generation and conversion to SWC file". Here, the values for 

the tree parameters can be optimized: 

a. Inspect the results from the skeletonization, displayed in the graph labeled 

"Skeletonization results" (generated after executing the code in the section "6. 

Skeletonization"), especially with respect to whether the mask for the soma was drawn 

correctly. The graph shows the skeleton with and without the voxels removed by the 

soma mask. Also inspect the graph labeled "Tree after cleaning and spurious branch 

removal" that can be rotated in 3D to see if any spurious branches remain. Note that for 

this example, relatively few branches have been generated inside the soma.  

b. If required, redraw the mask demarcating the branches inside the soma as follows: 

Delete the file somamask_manual.mat (written to the folder results_m999999_9) and re-

execute the section "7. Tree generation and conversion to SWC file". Note that the 

algorithm will always load the soma mask from this file if it exists. If an error is 

reported concerning the size of the mask, delete somamask_manual.mat. 

c. In MATLAB's Command Window, type 

 clean_tree_scaling = 2; 

and press Return and run the section "2. Parameters". Alternatively, change the value 

for clean_tree_scaling (the cleaning factor) directly in the file Main.m. and run the section 

"2. Parameters". Note that the majority of the small branches are removed, but so are 

many branches that seem perfectly valid. When clean_tree_scaling is set too low (e.g. at 

zero), small spurious tips that should be removed are kept. This can sometimes be hard 

to see in the graphs. In the MATLAB Command Window, type 

 sum(T_tree(tree)) 

to calculate and display the number of branch tips. Increase the value of the cleaning 

factor (e.g. along the series 0.01, 0.1, 0.5, 2) to reduce the number of tips. Decrease the 
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value of the cleaning factor when the cleaning process removes (too many) valid 

branches. 

d. The balancing factor (MST.bf) can be varied to change the pattern of connecting 

branches that are close to each other. A small value for the  balancing factor (e.g. 1e-3) 

favors short connections, whereas a larger value (e.g. 0.1) favors shorter routes to the 

soma. Try values ranging from 1e-4 to 1 and check the results when running the 

section "7. Tree generation and conversion to SWC file". 

9. Run the section "8. Soma contour generation". Verify that the graph of the area of the 

individual soma contours, as a function of (axial) distance into the stack, looks 

approximately circular and that the peak is correctly detected (it is marked by a red 

diamond symbol in the displayed graph). Verify that the corresponding contour 

indeed denotes the soma in the figure where the contour is displayed on top of an 

intensity projection. Enlarge the value of the parameter Dth (set in section "2. 

Parameters"; the default value is 36 degrees) to make the soma rounder or reduce it to 

include more of the extrusions into the soma contour. 

10. Finally, run the section "9. Plotting" to render a series of cylinders representing the 

tree displayed on top of a MIP of the cell. The figure (labeled "3D Tree above MIP") can 

be rotated in 3D. 

 

8.6 Additional Tips and Tricks for Running the Semi-Automatic Reconstruction 

1. When it is desirable to re-execute parts of the reconstruction algorithm with different 

parameter values, the redo switches at the top of the section "2. Parameters" (lines 24-

27) in Main.m can be set to "false" (the default setting is "true") to load the results of 

previous processing written to files on the hard drive. For example, to generate the 

trees with a different cleaning factor, set the redo switches for segmentation (line 24), 

fastmarching (line 25) and skeletonization (line 26) to "false", change the cleaning factor 

to the desired value and re-execute Main.m. This skips the long-lasting calculations 

corresponding to segmentation and skeletonization and can save much time during 

parameter tuning. 
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2. Note that if one section is re-executed, all the sections following it will have to be re-

executed as well. 

3. The files with the smoothed image (im_cohendiff.mat), adaptive threshold (th.mat and 

imth.mat) and manual masks (neuronmask.mat, somamask3d.mat) are always loaded from 

the hard drive if they exist. Delete these files from the results folder if their 

corresponding results need to be recalculated and/or redrawn. 

 

8.7 Appendix: Recommended Parameter Values for Automated Reconstruction 

%% parameters 
  
% % If the reconstruction is rerun, redo any previous steps? 
redo_segmentation = true; 
redo_fastmarching = true; 
redo_skeletonization = true; 
redo_treegeneration = true; 
plot_results = true; 
  
% % Segmentation 
Nvoxels_segment_min = 20; % Minimum nr of voxels in a segment (smaller 
segments are discarded) 
add2threshold = 0.05;     % Value added to adaptive threshold 
adaptivefiltersize = [2.5 2.5 5]; % [um] 
%adaptivefiltersize = [10 10 20];   % used for the Diadem Olfactory 
Projection fibers 
simpleThreshold = 0.11; % Threshold for soma and apical denrite 
(fraction of maximum image intensity) 
NbrightPixelsSoma = 100; 
  
% coherence enhancing diffusion filtering parameters 
cohenh.DT = 0.2; 
cohenh.NITER = 15; 
cohenh.KAPPA = 0.001; 
  
% % Skeletonization 
Nsample = 1;                % every Nth point in tree is sampled 
clean_tree_scaling = 0.2;   % larger values denote more aggressive 
cleaning 
Nminpts_trees = 4;          % remove trees (branches extending from 
the soma) with less then N points 
MST.bf = 0.01;              % balancing factor for MST (should be 
small if skeleton is accurate) 
MST.maxdist = 10;           % [um], maximum distance between connected 
points in MST 
  
% % Soma contour generation 
Dth = 36;          %degrees, a larger angle cuts off more branches and 
makes the soma rounder 
maxSomaSizeZ = 20; %[um], length of stack in z-direction to analyse: 
Set to double the typical soma size. 
SmoothLength = 8;  %[um], should be smaller than soma diameter: Set to 
~half of typical soma diameter 
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% % FIJI path 
FIJIpath = '/Applications/Fiji.app/plugins'; 
FIJIscriptpath = '/Applications/Fiji.app/scripts'; 
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Figure Captions 

Fig. 1 Digital deconvolution of multiphoton excitation (MPE) microscopic images of 

dye-filled AII amacrine cells. (a) Subregion of individual image slice (average of two 

individual frames) with details of arboreal dendrites of an AII amacrine cell. Straight 

line (length 4.4 µm) across process used to create intensity profiles displayed in (h). 

Note how image is affected by noise and blurring. (b-g) Same image as in (a) after 

deconvolution with different settings for the signal-to-noise ratio (SNR) in the 

deconvolution software, as indicated in (h). Note how deconvolution reduces noise 

and blurring and how increasing the SNR progressively improves the images, but 

eventually leads to spatial fragmentation, most pronounced in (f) and (g). (h) Spatial 

intensity profiles of raw image (a) and deconvolved images (b-g) for different values of 

SNR during deconvolution. Note noisy profile from raw image, reaching a peak 

intensity of approximately 200 (thick black line) and how increasing the SNR (b-d; 

colored lines) increases the peak intensity from approximately 250 to 350-400. For SNR 

of 20 (e), the intensity profile reaches an overall maximum while still remaining 

relatively smooth (thick red line). For SNRs of 40 (f) and 80 (g), the profiles become 

noisy, corresponding to the spatial fragmentation seen in the images (f and g). 

Brightness, contrast and gamma settings were identical for all panels (a-g). Bar, 2 µm 

(a-g). Adapted from Zandt et al. 2017 [44] 

 

Fig. 2 Workflow for MPE microscopic imaging and quantitative morphological 

reconstruction of dye-filled AII amacrine cells. (a) Maximum intensity projection of 

raw image stack of AII amacrine cell filled with Alexa Fluor 594 during whole-cell 

recording (dye-filled pipette attached to the cell body) overlaid on image of retinal slice 

acquired with IR-laser scanning gradient contrast microscopy. (b) Same as in (a), but 

after deconvolution. (c) Shape plot generated from computerized morphological 

reconstruction of cell in (a, b). Brightness and contrast of background image of retina 

had to be re-adjusted for composite images in (a-c). (d) Shape plot of reconstructed cell 
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showing details of dendritic arborization. (e) Three-dimensional view of morphological 

reconstruction. Bar, 10 µm (a-d). Adapted from Zandt et al. 2017 [44] 

 

Fig. 3 Overview of the algorithm and work flow for automatic reconstruction of 

neuronal morphology. Each box summarizes a series of steps that together constitute a 

processing stage, the name of which is indicated at the upper left corner of each box. 

The user is prompted for input twice during the procedure (indicated by "user input" 

in the work flow). Abbreviations: maximum intensity projection (MIP); three 

dimensional (3D); minimum spanning tree (MST). Reproduced from Zandt et al. 2017 

[41] with permission from Elsevier 

 

Fig. 4 Workflow for MPE microscopic imaging and preprocessing during 

morphological reconstruction of dye-filled AII amacrine cells. (a) Maximum intensity 

projection of raw image stack of cell filled with Alexa 594 during whole-cell recording 

(dye-filled pipette attached to the cell body). (b) Same as in (a), but after deconvolution 

and alignment. Areas with increased background fluorescence caused by leakage of 

fluorescent dye are circumscribed by dashed lines. (c) Same as in (b), but after removal 

of fluorescence corresponding to pipette and contaminating areas. Continuous line 

corresponds to manually delineated region containing the cell, outside of which 

fluorescence was removed. To enhance visibility, contrast in all panels was increased 

by 50%, leading to saturation of areas with higher intensity. Bar, 10 µm (a-c). 

Reproduced from Zandt et al. 2017 [41] with permission from Elsevier 
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•  Deconvolve and align images (Huygens)
•  Denote ROI containing soma and dendrites in frontal MIP (user input)
•  Cut away background and pipette

Preprocessing

•  Filter image with coherence-enhancing diffusion
•  Segment dendrites by adaptive thresholding
•  Segment soma and primary dendrite by simple thresholding
•  Join segmentations
•  Remove small components (< 20 voxels)
•  Connect components 

•  Determine approximate soma center
•  Calculate map of fast marching times from soma center 

(Accurate Fast Marching toolbox)
•  Back trace from each component

•  Join back-traced paths with segmented volume

Segmentation

•  Clean tree of short and unlikely branches (TREES toolbox)
•  Denote soma region in frontal and side projection (user input)
•  Remove spurious nodes in soma region
•  Apply spatial filter to smooth branches (TREES toolbox)
•  Generate cell volume for isosurface renderings and Dice coefficient
•  Add single soma contour
•  Export to SWC format (TREES toolbox)

Postprocessing

Raw image stack

Image stack containing neuron only

•  Smooth and binarize segmented volume (FIJI / ImageJ)
•  Skeletonize (3D) the segmented volume (FIJI / ImageJ)
•  Use voxel coordinates of skeleton as reconstruction points
•  Generate tree structure from points (MST; TREES toolbox)
•  Obtain diameters using distance transform on segmented stack

Skeletonization &
Tubularization

 Segmented image stack

Dendritic tree

Reconstruction in SWC format

Fig. 3 (Hartveit et al.)
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Fig. 4 (Hartveit et al.)


