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Abstract. Starting with the discovery of X-rays by Röntgen in 1895, the progress
in medical imaging has been extraordinary and immensely beneficial to diagno-
sis and therapy. Parallel to the increase of imaging accuracy, there is the quest
of moving from qualitative to quantitative analysis and patient-tailored therapy.
Mathematics, modelling and simulations are increasing their importance as tools
in this quest.

In this paper we give an overview of relations between mathematical modelling
and imaging and focus particularly on the estimation of perfusion in the brain. In
the forward model, the brain is treated as a porous medium and a two compartment
model (arterial/venous) is used. Motivated by the similarity with techniques in
reservoir modelling, we propose an ensemble Kalman filter to perform the parameter
estimation and apply the method to a simple example as an illustrative example.

1 Introduction

The 20th century produced such a plethora of discoveries and advances that in
some ways the face of medicine changed out of all recognition. Life expectancy
at birth is a primary indicator of the effect of health care on mortality. In
1901 in Europe, for instance, the life expectancy at birth was 48 years for
males and 51.6 years for females. After steady increases, by the 1980s the life
expectancy had reached 71.4 years for males and 77.2 years for females and
continues increasing at the same rate (source: Encyclopædia Britannica). The
rapid progress of medicine and health care in this era has been reinforced by
the enormous improvement in communication between the scientists, but also
the systematic use of statistics to develop more precise diagnostic tests and
more effective therapies, and the spectacular advances in imaging techniques.
This is development expected to continue at an increased pace.
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1895: Röntgen 
discovers X-Rays

1972: Hounsfield, 
first CT scan 

1969: first 
clinical use of 
MRI

1977: 1st human 
MR image

1950s: First 
works with 
ultrasound

1970s: Real time 
ultrasound machines

1898: Marie and 
Pierre Curie 
discovers polonium 
and radium

1920s: development of X-
Rays

1980: 1.5 T
3T, 5T, 7T human  
9T, 21.1T animal 
Functional MRI 
Diffusion tensor MRI 
PET-MR 
…

1999: PET/CT 
developed, by  
Townsend and Nutt

1987: Real time MRI 
of heart

1993: Functional MRI 
of brain

1952: Bloch 
and Purcell 
develop MR

Fig. 1. A timeline of non-invasive imaging techniques, starting from Röntgen’s dis-
covery of X-rays.

These new advances within imaging have contributed to shifting focus
from a mere qualitative image analysis (for instance whether there is or not
a tumor in an organ) to a quantitative analysis, like measuring volumes and
shapes, blood flow, perfusion etc. The quantification of functional features
is built on a combination of advanced imaging and mathematical modelling.
While the imaging technology, partly driven by advances in nuclear physics
and computer science, is experiencing a rapid development, the modelling
part of the quantification models is not progressing at a similar pace. Appar-
ent modelling challenges addressed already in the early 1990s [9] have yet to
be fully understood [20].

As an example of the future possibilities in the interaction between math-
ematical modelling and medical image analysis, in this paper we will focus
on the problem of estimating perfusion from dynamic imaging. By perfu-
sion we refer to the transfer of blood from the arterial to the venal system,
while by dynamic imaging we refer to functional methods that aim to the
analysis of concentration-time profiles of an indicator or tracer1 that induces
signal changes in an organ of interest. By rapid dynamic image acquisitions,
these signal changes are then converted into concentration-time curves. These
curves are the starting point for parameter estimation techniques. We apply

1 Like a magnetic contrast agent in Magnetic Resonance (MR), a radioactive tracer
in Computerized Tomography (CT) or Positron Emission Tomography (PET),
microbubbles in Ultrasound (US).
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estimation techniques developed in relation to a completely different appli-
cation: complex geophysical modelling.

The paper is organized as follows: in § 2 we briefly introduce compartment
models and tracer kinetic which are currently used in diagnostics and discuss
some of the limitations. These methods focus on the analysis of tracer con-
centrations over time and do not take into account the underlying anatomical
structure or the forces driving the flow.

In § 3 we introduce simple geometrical assumptions allowing for a dy-
namical description of perfusion (forward model) using pressure gradients
as the main forces for blood circulation. This is a novel PDE-framework for
perfusion in organs described as porous media flow. Thereafter, the model
parameters need to be tuned to match the dynamic imaging data (observa-
tions), independently of the choice of the model. The parameter estimation
for the PDE system in § 3 has clear similarities with identfication of spa-
tial distributed parameters in flow models for reservoir modelling and will be
discussed in § 4. A small illustrative example is provided in § 5, before we
conclude with an outlook in § 6.

2 A brief introduction to compartment models and
tracer kinetic

One of the most widespread methods for analysing concentration-time curves
is based on the technique of compartment modelling. Compartment models
were introduced by [8] in economics/industrial decision making to describe a
dynamical system in which a measurable quantity (indicator) flows between
system components called compartments. A compartment is a well-mixed
space in which the indicator has a uniform concentration.

The use of compartments in modelling is tailored for stationary regimes
and is based on some fundamental simplifying assumptions removing both a
temporal and a spatial complexity from the problem: instantaneous mixing
and uniform concentration in the compartment.

Compartment models are widely used in medicine, with application espe-
cially to pharmacokinetic and the study of tumours. Dating back to George N.
Stewart in late 19th century, investigations on the circulatory system have
been carried out by monitoring the distribution of an indicator substance
injected into the blood stream. Early efforts include measurements of blood
volumes in heart and lungs, and attempts to characterise the volume of a vas-
cular bed by utilising the concept of mean transit time (MTT). Using either
a constant or a perfectly localized (δ-distribution) concentration profile at
the inlet, Meier and Zierler [15] formalized these efforts under what is known
as central volume theorem, namely: Volume = Flow × MTT. In Dynamic
Contrast-Enhanced MRI (DCE-MRI), the compartment framework was con-
solidated in the early 1990s by Larsson et al. [13], Tofts et al. [22], Brix et al.
[5].
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Compartment models used in tracer kinetic consist typically of up to two
or three compartments, but higher number of compartments have been used.
In a generic setting, consider a system described by N compartments. Let
Vj be the volume of the jth compartment and Cj(t) the concentration of the
indicator (tracer) at time t. The change of tracer mass must be balanced by
the amount of indicator that flows in and out of the compartment,

Vj
d

dt
Cj(t) =

∑
i∈Inlets

Fi,jCi(t)−
∑

o∈Outlets

Fj,oCj(t) + G̃j(t),

where the last term accounts for sources/sinks in the compartments. The
system reduces to a linear system of differential equations, Ċ = AC + G(t),
where A = V −1F , V being the diagonal matrix of compartment volumes
and F the matrix of fluxes, and G = V −1G̃. This constant coefficients linear
system has a closed form solution C(t) = eAtC0+

∫ t
0

e(t−s)AG(s) ds. Assuming
C0 = 0 (no indicator at initial conditions, a typical experimental setup), and

introducing the convolution operator f ∗ g =
∫ t
0
f(t − s)g(s) ds, we see that

the concentration curve is C(t) = etA ∗ G(t) = R(t) ∗ G(t), where R(t) is
a residue function. In medical applications like perfusion or filtration [4,10],
G(t) typically is strongly related to the arterial input function (AIF). The
AIF tracer concentration is measured from some larger arteriole or artery
close to the tissue under consideration and is often treated as a single inlet.
The A-parameter and the corresponding residue function etA from the exact
solution of the system above tells us about volumes and flow rates, but has
poor tissue-specific properties otherwise. Therefore it is often preferred to use
indicator concentration curves of the type

C(t) = R(t) ∗G(t),

∫ ∞
0

R(t) dt = 1,

where the residue function is either empirically modelled to reflect the tissue
properties (model-based) [21] and in this case will depend on tissue-specific
parameters p, or has to be estimated altogether (model-free) usually by de-
convolution using regularized forms of Fast Fourier Transform (FFT) or Sin-
gular Value Decomposition (SVD) [4].

Once the compartment model has been set up and the parameters p
identified (either volumes and flow rates or organ specific parameters), the
parameters are computed by matching the model to observations (dynamic
images) either for a region of interest (ROI) or individually to image voxels
by solving

argminp(D(C(x, t,p), Co(x, t)) + S(C,Co,p)),

whereD is a distance function, Co is the reference (observation) and S(C,Co,p)
is a regularization term.

With the emergence and refinement of modern imaging technology, the
focus has gradually shifted from average properties of large scale tissue struc-
tures, or complete organs, to localised tissue properties at an increasingly
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higher spatial and temporal resolution. This raises some methodological chal-
lenges:

1. Voxels or regions-of-interest (ROIs) are assumed to represent isolated
systems which receive indicator through a single inlet, the AIF, with a
known concentration. This in not necessarily the case in a high resolution
imaging setting, as a region can have multiple inlets carrying different
concentrations, and none of them can be measured directly [9].

2. These isolated systems fail in exploiting the additional spatial structure
and connectivity with the neighbouring regions.

The above shortcomings have been shown to lead to well-known systematic
errors, hence major limitations of the classical compartment model tracer-
kinetic theory and difficulties in reproducibility of results [20,7,12].

In the quest for better models, these challenges are addressed in a theoreti-
cal work by Sourbron [20], where a systematic approach is formulated in terms
of global spatial-temporal conservation relations for the flow of contrast agent
between voxels. The procedure readily incorporates multi-compartment mod-
els, where the total flowing volume of each voxel is partitioned into a set of
distinct but interacting compartments reflecting local tissue structure. Each
compartment type potentially connects globally throughout the voxel-lattice
thus constituting a set of interacting flow networks. Connection coefficients
governing the flow between voxels and exchange between compartments can
then in principle be identified from the evolving contrast agent distribution.
We expect that forthcoming studies in this direction further will address is-
sues like computational feasibility, possibilities, and limitations with respect
to local parameter estimation in this framework.

In a recent work by Nævdal et al. [16] Sourbron’s two-compartment model
for blood flow and perfusion was augmented by introducing constitutive re-
lations for the flow system in terms of a dual porosity, dual permeability
formulation known from porous media modelling of fractured reservoirs for
petroleum and groundwater applications, see e.g., [3,19]. Assigning one pore
system to represent the arterial network and the other acting as venous net-
work, local transfer between the two systems can be attributed to blood flow
actually feeding the local tissue. In [14] a similar dual model formulation was
applied to study oxygen transport in tissue.

3 A spatial two-compartment model for brain
perfusion

Consider a patch of the capillary system containing a large number of capil-
laries. The width of a single capillary is in the range of a few microns, and
in vivo detection of single capillaries is therefore much below any resolution
found in current imaging devices. Instead, we want to model the average flow
response of all capillaries within a voxel using models for flow in porous me-
dia. This approach has previously been explored by several authors for the
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task of modelling blood flow in live tissue. Flow modelling takes into account
two basic principles, conservation of mass and conservation of momentum.
We describe the governing equations below.

3.1 Conservation of fluid mass

Mass balance of fluid flow is ensured by the continuity equation, expressed
in global form as

d

dt

∫
Ωi

φρdx+

∫
∂Ωi

ρ(u · n)dA =

∫
Ωi

Q̃dx (1)

for a geometric control volume Ωi with boundaries ∂Ωi. Here, n is the outer
unit normal vector of ∂Ωi, u : Ω × T → R3 is the flux per unit area
[m3 s−1 m−2], ρ : Ω×T → R is the fluid density [kg m−3], and Q̃ : Ω×T → R
is a fluid source term [kg s−1 m−3]. The volume fraction available for flow is
given by 0 < φ < 1 (known as porosity in the geo-sciences). Equation (1)
must be valid for every geometric control volume Ωi, hence, by the divergence
theorem, one obtains the local form

∂

∂t
(φρ) +∇ · (ρu) = Q̃. (2)

For incompressible fluid and constant fluid density, this equation is equivalent
to

∇ · u = Q (3)

where Q = Q̃/ρ has units [m3 s−1 m−3].

3.2 Balance of forces

Associated with the arterial and venous pore systems, we define a label
β ∈ {a, v}. The two pore systems are spatially identical, and their rela-
tive volume within a voxel is defined by the respective porosities. Within the
capillary brain tissue, valid for each pore system, we model a low velocity
flow according to Darcy’s law, providing the relation

u = −k

µ
∇p (4)

between the flux u and the pressure p when neglecting the gravitational
acceleration, k = k(x) [m2] is a permeability tensor, and p = p(x) [Pa] is the
pressure. It is assumed that k is symmetric and positive definite with only
nonzero diagonal elements kii = k, i = {1, 2, 3}.

Now, assume that the flow from the arterial to the venous compartment,
the perfusion P [m3 s−1 m−3], is proportional to the pressure difference be-
tween the arterial and venous compartment,

P := α(pa − pv) (5)
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for a proportionality constant α = α(x) [m s kg−1]. The parameter α will re-
flect microstructural properties of the capillary tissue affecting its ability to
mediate perfusion, mainly viscous resistance. Applying (5) yields the follow-
ing system of partial differential equations in the pressure fields pa, pv within
a capillary patch ΩC with boundary ∂ΩC ,

−∇ ·
(
ka
µ
∇pa

)
= −P x ∈ ΩC

−∇ ·
(
kv
µ
∇pv

)
= P x ∈ ΩC

uβ · n = 0 x ∈ ∂ΩβC \∂Ω
β
A

pβ = p0 x ∈ ∂ΩβA (6)

where n is the normal to ∂ΩC . An outer pressure is assigned as Dirichlet
boundary conditions at the partial outer boundary ∂ΩA. The two equations
are coupled via the perfusion term P , which is a negative sink term for the
arterial pore system and a positive source term in the venous pore system.
Neuman boundary conditions of no flow across boundaries are defined for
∂ΩC , separating the capillary patch from the surrounding tissue. The vis-
cosity of the fluid µ is assumed to be constant everywhere. Our flow model
for brain perfusion is entirely defined by (6). However, in order to develop
a framework for parameter estimation valid for dynamic contrast-enhanced
acquisitions, we must dilute the tracer in the computed flow as a dynamic
sequence. This dynamic sequence can then be used for estimation of physio-
logical parameters.

3.3 Tracer mass balance and indicator dilution

Tracer concentration C(t) = N/V [mol/m3] is the number of tracer molecules
N within a region of interest (ROI) of volume V . The tracer distribution
volume is typically different from the ROI volume, leading to the relation

Cβ = φβcβ (7)

connecting fluid concentration cβ(x, t) [mol/m3] to the control volume con-
centration Cβ(x, t).

The following criteria are assumed to hold: The injected tracer is ho-
mogeneously distributed in the incoming arterial input function (AIF), all
physiological and structural parameters are stationary within the time of ac-
quisition, and tracer transport by diffusion is not considered. For any of the
two pore systems, the influx of tracer into a control volume Ωi, e.g. a voxel,
is determined by the product of the fluid tracer concentration c(x, t) and the
stationary vector fluid flux u(x) [m3/s/m2]

−
∫
∂Ωi

c(u · n)dA (8)



8 Hanson et. al.

where n is surface normal of Ωi pointing to the outward direction. The rate
of change of tracer within the control volume equals

d

dt

∫
Ωi

C(x, t)dx. (9)

Combining (8) with (9) due to conservation of mass yields∫
Ωi

φ
∂c

∂t
dx = −

∫
∂Ωi

c(u · n)dA. (10)

In addition, we must account for the source terms. Denote the fluid concen-
tration of pore system β as cβ,k. Tracer mass balance for each of the pore
systems yields∫

Ωi

φa
∂ca
∂t

dx = −
∫
∂Ωi

ca(ua · n)dA−
∫
Ωi

caPdx

ca = cAIF x ∈ ∂ΩaA∫
Ωi

φv
∂cv
∂t

dx = −
∫
∂Ωi

cv(uv · n)dA+

∫
Ωi

caPdx. (11)

The total tracer mass within the control volume is linearly additive according
to

C(x, t) = Ca(x, t) + Cv(x, t). (12)

The model for indicator dilution is governed by (7), (11), and (12).

4 Parameter estimation

In the previous section we formulated our forward model in terms of a set
of partial differential equations with properties varying spatially. Several of
the coefficients in these partial differential equations have biological interpre-
tations, but their values are unknown. Therefore we are facing a large scale
parameter estimation problem. Among the terms that are unknown in the
continuous model for perfusion is the proportionality constant α in (5) and
the permeabilities ka and kv in (6). The model that we have formulated for
the forward problem has several similarities to modeling flow in an oil reser-
voir. The physical properties of the oil reservoirs as permeability and porosity
are unknown and need to be estimated from available measurements. Since
the forward models will be solved numerically, the models can be populated
with spatially varying permeability values and estimated from available mea-
surements. Within reservoir engineering, the ensemble Kalman filter (EnKF),
and variants thereof, has been found to be a suitable technique to estimate
such parameter fields, cf. [1,17].
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The EnKF is developed as a nonlinear extension of the Kalman filter [11].
The Kalman filter was originally developed to estimate the states s of a linear
dynamical system which can be described as

sn = F sn−1 + εn, (13)

where the observable output y is given as

yn = Gsn + ηn. (14)

In the above equations, εn ∼ N(0, CM ) is a model noise term, which has a
zero-mean multinormal distribution and covariance matrix CM . Similarly, ηn
is a measurement noise term satisfying ηn ∼ N(0, CD).

The Kalman filter has several interpretations. One interpretation is to
view it as the solution of a recursive Bayesian estimation problem, where the
initial prior distribution of the state vector s is a multinormal distribution
with mean ŝ0 and covariance matrix C0. At time step n, a new set of mea-
surements (observations) yon becomes available. Since the system is linear, the
posterior distribution will be multinormal, and its mean and covariance can
be calculated recursively. Assuming that we have accounted for the measure-
ments yo1, . . . ,y

o
n−1, the state s will be multinormal distributed with mean

ŝn−1 and covariance matrix Ĉn−1, which we denote by s ∼ N(ŝn−1, Ĉn−1).
Since the forward model (13) is linear, we get that the state s is distributed
as N(sn, Cn) where

sn = F ŝn−1
Cn = FĈn−1F

T + Ĉ
(15)

before taking the measurement yon into account. Once the measurement yon is
known, the posterior mean, ŝn, and covariance matrix, Ĉn, can be obtained
using the Kalman gain matrix

Kn = CnG
T (GCnG

T + CD)−1,

so that we get
ŝn = sn +Kn(yon −Gsn)

Ĉn = (I −KnG)Cn
= (C−1n +GTC−1D G)−1.

(16)

Here, I is an identity matrix of appropriate dimension.
For our application, the forward model is nonlinear and certain adaptions

are required. We write the forward model as

sn = F (sn−1) + εn (17)

where the model noise εn ∼ N(0, CM ). Our observations are assume to de-
pend linearly on the states and are given as

yn = Gsn + ηn
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where the measurement noise is given as ηn ∼ N(0, CD).
The ensemble Kalman filter can now be constructed by using an ensemble

of N samples of the distribution of the state vector s. At time n we can store
these N samples in a matrix Sn = [sn,1 . . . sn,N ] where sample i is denoted
as sn,i.

Initially the ensemble members (samples) are drawn from a prior distri-
bution, which typically is a multinormal distribution. We use the ensemble
to represent an approximation of the posterior distribution after assimilating
the measurements yo1, . . . ,y

o
n−1. The change in the distribution by the for-

ward model (17) is accounted for by running the forward model N times, i.e.
by calculating

sn,i = F (sn−1,i) + εn,i

with εn,i ∼ N(0, CM ). To get the approximation of the posterior distribution
for the measurement yon, we use the relation

yn,i = Gsn,i + ηn,i, i = 1, . . . , N, (18)

to obtain yon,i. The ensemble is then updated using an approximation of the
first and second order moment of the distribution of the state s. The first order
moment, the mean, is s̄n = 1

N

∑N
i=1 sn,i. The second order moment is given

as the (approximative) covariance matrix C̄n = 1
N−1

∑N
i=1(sn,i − s̄n)(sn,i −

s̄n)T . Having computed the covariance matrix C̄n, we can then compute the
Kalman gain matrix which is given as Kn = C̄nG

T (GC̄nG
T + CD)−1. The

Kalman gain is then used to update each ensemble member individually by

ŝn,i = sn,i +Kn(yon − yon,i). (19)

In practice, some care needs to be taken to avoid forming the full approxima-
tive covariance matrix C̄n as this not feasible for large scale systems. Different
approaches to handle this can be found in the literature. Some examples are
given in [1,6].

In the application we will present, our primary interest is to estimate
parameters of the model. This can be handled by appending the unknown
parameters p in the state vector and introducing an extended state vector

se =

[
s
p

]
. (20)

The forward model can now be written as

sen = F (sen−1) =

[
F (sn)

pn

]
. (21)

Here we have removed the model noise term as this will not be used in the
example we are presenting. The ensemble based estimation of the parameters
can then be performed on (20) using equations (18), (19) and (21).
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5 Numerical example

To illustrate the workflow described in the previous chapter we include an
example, in which the goal is to estimate the proportionality constant α given
in (5), a crucial parameter for quantifying perfusion. We assume that α is
varying spatially on a small domain and that we have perfect knowledge about
all other parameters of the model. In real images and medical applications,
the size of the domain will be significantly larger, and increased number of
voxels adds challenges to the estimation methodology. However, this is not
usually a problem and large scale examples (in terms of number of grid-
blocks/voxels) are already routinely used in different applications within the
geosciences (e.g., oceanography, reservoir engineering).

5.1 Forward model

For a forward flow model we chose a field of view FOV=[3, 3, 3] mm, divided
into [7, 7, 1] cells, hence providing a spatial resolution of [0.43, 0.43, 3.0] mm.
The arterial input ∂ΩaA is assigned in the upper left corner of the domain
with Dirichlet boundary conditions pa = 4 kPa. The venous outlet ∂ΩvA ia
assigned in the lower right corner of the domain with Dirichlet boundary
conditions pv = 1.4 kPa. The perfusion scaling parameter is set to α = 10−4

m s kg−1, and further scaled with the normalized Euclidean distance to the
closest arterial inlet or venous outlet to create a continuously varying field
for α (see Fig. 2 (upper left)). Constant permeability values ka = 1× 10−13

m2 and kv = 2×10−13 m2 are assigned to the arterial and venal pore system,
respectively. A porosity of φa = φv = 0.05 ia assigned to both pore systems.
Fluid viscosity is set to µ = 3× 10−3 Pa · s.

Equation (6) is discretized using two-point flux approximation [2]. The
resulting linear system is solved using a direct solver, providing a steady-state
pressure field pa and pv for each of the pore systems. The tracer evolution in
(11) is integrated across each cell, and then approximated as a forward Euler
time discretization, using first order upwinding for the tracer concentrations
[18]. Hence, tracer concentration is taken upstream for incoming flow, and
cell-centered for outgoing flow. A gamma function is chosen as arterial input
function (AIF) at the inlet ∂ΩaA.

5.2 Solution of inverse problem

We start by generating one hundred different spatially varying α-fields as
follows. All the fields are generated from a multinormal distribution with
constant mean 5 · 10−5 (which is close to the mean of the “true” α-field),
but with different covariance matrices. All the covariance matrices C used
for generating the ensemble members have size 49 × 49, corresponding to a
domain of 7× 7× 1 voxels. The diagonal elements are set to σ2 = (2 · 10−5)2.
Off-diagonal entries Ci,j describe the covariance between voxels i and j and
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Fig. 2. Upper left: True value of α. Upper right: Estimated value of α (after 59
seconds). Lower left: Standard deviation in the estimation of α as a function of
time (seconds). Lower right: Standard deviation of α at 59 seconds.

are assigned value σ2(1 − exp((d/a)2)) where d is the distance (in blocks)
between i and j. Since we do not assume much knowledge about a reasonable
value for a, each spatially varying α-field is generated with its own a drawn
from the uniform distribution on the interval [0, 7].

The mean of the initial ensemble varies slightly over the voxels, taking
values in the range [4.8 · 10−5, 5.4 · 10−5]. The true α that was use for gener-
ating the data set is shown in Fig. 2 (upper left). We simulated our forward
model as described in Section 3 for 60 seconds and used the concentration
values for each voxel from 3 seconds of simulation and further on with a time
interval with 2 seconds between each sample to generate measurements. The
measurements were generated by adding 10% noise to the simulated con-
centration values. Using a slight modification of the ensemble Kalman filter
as described in Section 4, we estimated the α-field, obtaining the the esti-
mate shown in Fig. 2 (upper right) as the estimate. The modification that
we did was to run our model from the initial time to the new set of mea-
surements each time new data was assimilated. This means that we run the
forward model with the initial ensemble of α values to 3 seconds, assimilate
the observations and modified the parameters (the α-fields), run the forward
simulation from initial time to time 5 seconds, assimilated new observations,
updated the ensemble of α-fields, and so on, until all observations were as-
similated. We can also quantify the uncertainty in the estimated values of
α. We show how the standard deviations for each voxel develop as function
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Fig. 3. Measured concentrations (black crosses), true concentration profile (thick
green curve), simulation with 100 initial ensemble members (blue curves) and 100
estimated ensemble members (red curves) for grid block (1,7) (left) and (7,7) (right).

of time in Fig. 2 (lower left). The spatial distribution of the final standard
deviations for the estimated α is shown in Fig. 2 (lower right).

In Fig. 3 we show two of the 49 concentration profiles that are used to
estimate α. We can see that there is a significant spread in the simulations
from the initial ensemble members (blue curves). Simulating with the final
ensemble members (red) does not give much internal variability, which might
be related to an underestimation of the uncertainty. A thick green line give
the simulation with the correct α-field. It can be seen that this simulation
agrees with the simulations from the final ensemble, even though the the
α-fields does not coincide.

6 Outlook

The goal of this paper was to present the feasibility of the application of
parameter-estimations techniques from reservoir modelling to a seemingly
completely different problem: perfusion in organs, in this specific setting,
the brain. The very preliminary results presented here are promising and at
present we are extending the model to the human brain, introducing vascu-
lar trees and modelling the capillary blood distribution. Human organs are
extremely complicated, and several layers of complexity can be considered,
including respiratory effects on the blood flow, interstitial pressures, changing
vessel diameters, transport across vessel walls, just to name a few. To coun-
teract this behaviour we will lean on a Bayesian approach, fitting well with
the ensemble Kalman filter method suggested here for solving the parameter
estimation problem.

Today’s therapies are decided on the base of diagnosis and statistics on
patient groups. The increased availability of imaging techniques, physiological
parameters, molecular markers, genetic data and other bio-markers, together



14 Hanson et. al.

with the increased computational power and the groundbreaking advances
in the field of machine learning, are paving the way towards individually
targeted therapies. Therapy will be decided not only based on the diagnosis,
but also on the knowledge on how the individual patient reacts to specific
treatments and drugs, in this way increasing effectiveness of treatment and
reducing social health costs.

Mathematics is going to play an increasingly important role in this pro-
cess. Mathematical equations describe the processes and numerical simula-
tions predict the outcomes. On one side, mathematics will become an in-
dispensable tool to do research in life sciences; on the other side, complex
biological systems that are poorly described in terms of today’s mathemati-
cal knowledge will stimulate the development of new mathematical theories.
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