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Abstract

The high heritability and recurrence rates observed for several complex diseases
justify the search for genetic risk factors. However, despite decades of intense and
extensive research, the underlying genetic basis of most complex traits has not been
fully deciphered. This unexplained genetic etiology underscores the need to ex-
amine etiologic disease mechanisms other than simple genetic effects alone, such
as the effect of maternal genes or the effect of parental origin. Additionally, since
genome-wide association studies (GWAS) are commonly underpowered due to the
large number of single-nucleotide polymorphisms being tested, poorly designed and
inadequately powered studies that are unable to capture most of the genetic variants
underlying a trait might also contribute to the unexplained genetic etiology.

Family-based study designs have been introduced specifically for studies of ge-
netic risk factors. The main study unit is the case-parent triad design, which involves
genotyping cases (affected offspring) and both their biological parents. However, a
variety of other child-parent configurations and population-based study designs are
also amenable to genetic association studies, including (but not limited to) cases
in combination with unrelated controls, case-mother dyads, and case-parent triads
in combination with unrelated controls or control-parent triads. Large clinical and
population-based biobanks and national health registries have created unique oppor-
tunities for genetic, epidemiological, and clinical research worldwide. Nonetheless,
there is currently a lack of flexible models that accommodate family structure in
data. Models that incorporate non-standard genetic effects, such as maternal effects
and parent-of-origin effects, are warranted. Moreover, joint models that integrate
genetic, environmental, and epigenetic risk factors are needed to elucidate their
combined effect on disease.

This thesis focuses on models for analyzing GWAS data for binary disease traits
as well as methods for maximizing the statistical power of such studies, allowing for
a broad range of child-parent configurations in the calculations. Using maximum
likelihood estimation in a log-linear model, we developed new methodology to de-
tect parent-of-origin-environment interactions, a possible mechanism contributing
to disease susceptibility that has not yet been sufficiently explored. The approach
has been implemented in our R package Haplin. In the Haplin framework, we also
developed an extensive setup for power and sample size calculations, both through
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analytic approximations and Monte Carlo simulations, which is essential not only
in study planning but also in understanding and interpreting statistical findings.
Within the power calculation module, we also implemented a relative efficiency cal-
culator. Relative efficiency measures allow a more informative and general design
comparison than straightforward and standard power analyses. We aimed to opti-
mize the study design in genetic association studies given the constraints of available
resources, i.e., maximize the statistical power using the least sample collection and
genotyping cost.
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1 Background

The high heritability and recurrence rates observed for many complex traits and dis-
orders justify the search for genetic risk factors. Genome-wide association studies
(GWAS) scan single-nucleotide polymorphisms (SNPs) across the genome to iden-
tify genetic variants that are more common in individuals with a particular trait
than in those without this trait. GWAS have identified hundreds of genetic vari-
ants associated with complex traits and diseases and improved our understanding
of their genetic architecture [1–3]. Still, despite decades of genetic research, the
causes of many complex traits and diseases remain largely unknown. An exam-
ple is oral clefts, in which the genetic variants identified thus far explain only a
small fraction of the observed familial clustering and assumed genetic variance [4–
7]. This unexplained genetic etiology highlights the need to investigate etiologic
disease mechanisms beyond simple genetic effects alone, such as the effect of ma-
ternal genes, parent-of-origin (PoO) effects, and interactions between genetic effects
and environmental exposures. Furthermore, the large number of SNPs being tested
in a GWAS may result in a high number of false negative association findings [8],
and a larger proportion of disease heritability and phenotypic variation might be
identified with increased statistical power.

Familiar epidemiological designs such as population-based case-control or cohort
designs can be used to search for genetic risk factors [9, 10]. However, specific
to genetic association studies is the use of family-based designs, in which cases
(affected offspring) and their biological parents are genotyped [11, 12]. The family-
based designs represent a challenge to the available statistical and computational
methods, and proper models that account for family structure in data are needed.

This thesis includes three papers, all of which involve methods for analyzing
GWAS data or maximizing the scientific gain of such studies, allowing for the inclu-
sion of family-based designs. In Paper I [13], we developed methods for analyzing
parent-of-origin-environment interactions (PoOxE), a yet unexplored but plausible
cause of complex diseases. There is a lack of software for genetic power calcula-
tions accommodating family structure in data, complicating the interpretation of
genetic association findings. A comprehensive framework for power calculations was
developed in Paper II [14]. The statistical power may be increased through care-
ful deliberation of possible study designs. In Paper III [15], we aimed to compare
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and optimize study designs for genetic association studies by assessing the relative
efficiency of alternative designs.

This background will give an introduction to genetic association studies and
GWAS in particular, followed by definitions of genetic effects and etiological scenar-
ios. Family-based study designs relevant to this thesis will be described. I will then
define the concept of statistical power and emphasize why its consideration is essen-
tial in the design of efficient genetic association analyses and in the interpretation of
statistical results. Furthermore, a brief introduction to some of the basic statistical
tests that first incorporated family-based study designs into their analyses will be
given. Lastly, I will present our R package Haplin, a statistical software for genetic
association analysis of binary disease traits [16, 17]. Haplin forms the basis for this
thesis and is the framework in which our new methods and software developments
have been implemented.

1.1 Genetic markers and single-nucleotide polymorphisms

A genetic marker can be described as a variation of a gene or a deoxyribonucleic
acid (DNA) sequence at a locus, i.e., a known position on the chromosome, that
can be used to identify individuals or populations, or to study associations between
genes and a disease known or believed to have a genetic background. In the human
genome, SNPs are the most abundant form of variation, in which an appreciable
frequency (e.g., more than 1%) of individuals in the population differ by a single
nucleotide (adenine (A), cytosine (C), guanine (G) or thymine (T)) in a segment
of the DNA [10, 18]. For example, at a locus, most individuals might have the
sequence CCT, whereas some might have the sequence CAT instead. Since there is
a possibility of either having the alternative C or A, the second position is considered
a SNP (see Figure 1). Each of two or more variants of a gene at a locus is termed
an allele [19]. In humans, almost all SNPs are diallelic [18], meaning that only two
alternatives of the nucleotide can occur. Thus, C and A are the possible alleles for
the diallelic SNP in this example. The less common allele is termed the minor allele,
and the proportion (i.e., relative frequency) at which it occurs in a given population
is termed the minor allele frequency (MAF) [19]. SNPs occur very frequently in
the human genome and thus provide a dense marker spacing. They are therefore
commonly used as genetic markers to unravel the genetic basis of inherited diseases.
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Figure 1: Illustration of a SNP. The two DNA molecules are different at a single base-pair
location, where the upper DNA molecule has a C nucleotide and the lower has an A. SNP
model by David Eccles (Gringer) [20]

Note, however, that several other types of genetic variation exist. For example,
structural variants, including copy-number variants, translocations, or inversions of
relatively large DNA segments, have been implicated for a number of diseases [2].

All individuals have two copies of each gene; one copy inherited from the mother
and the other inherited from the father. Hence, for a SNP with alleles C and A, three
genotypes are possible: CC, CA, and AA. In the simplest form of a genetic associa-
tion analysis, the three genotypes can be used as exposure categories to investigate
associations between genes and an inherited disease.

1.2 Mendelian and complex traits

Mendelian (monogenetic) traits are diseases or phenotypes caused by variation in a
single gene, and the mode of inheritance can be dominant or recessive, autosomal, or
linked to the X chromosome [21]. The alleles causing Mendelian traits are typically
rare and highly penetrant, i.e., most individuals carrying the particular genetic
variant also exhibit the associated disease (Figure 2). Mendelian traits are often
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recognized by their typical patterns of inheritance within families. Genetic linkage
analysis, i.e., pedigree analysis of large families with multiple affected individuals,
has therefore been successful in mapping the genetic basis of several Mendelian
traits, such as Huntington’s disease and cystic fibrosis [22, 23]. Two genetic loci on
the same chromosome are linked if they are located near each other and thus tend
to segregate together more often than what would be expected under independent
inheritance. Hence, genetic linkage analysis quantifies the co-segregation of a marker
locus and a trait locus among related subjects by studying within-family differences
between markers and the trait in question [24].

Most traits are, however, not caused by variation in a single gene but have an
architecture that is much more involved. Complex (multifactorial) traits are defined
by the cumulative effect of multiple genes and possible interactions with environ-
mental exposures and epigenetic factors [25, 26]. Examples of complex diseases are
oral clefts, type 2 diabetes, Alzheimer’s disease, and schizophrenia. A linkage ana-
lysis has low power to detect genes of moderate effect [27, 28]. Thus, although many
complex traits are known to cluster in families, linkage studies have had limited
success in mapping the multifactorial architecture underlying complex diseases.

1.3 Genetic association studies for complex traits

Genetic association studies are commonly used to identify SNPs (or other genetic
variants) associated with complex traits. A marker allele is associated with a trait
if the allele frequency is significantly higher or lower among affected individuals
compared to what is expected from the general population (Figure 3) [24]. The
candidate-gene approach to genetic association studies focuses on prespecified genes,
based on a priori knowledge of its biological or statistical significance for the trait in
question. However, the a priori knowledge is often limited, and candidate-gene stud-
ies have suffered from poor replication rates among reported significant associations
[30–32]. In contrast, a GWAS scans the entire genome in thousands of individu-
als. Commonly used SNP arrays contain hundreds of thousands of SNPs [3], and a
GWAS is therefore characterized as being a hypothesis-free approach. Nevertheless,
the variants detected by a GWAS are mainly common alleles with low to moderate
penetrance, i.e., only a small proportion of individuals with a given genotype exhibit
its phenotypic effect (Figure 2). Typically, the identified alleles contribute to the
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Figure 2: Correlation between allele frequency, penetrance and disease susceptibility. An
important aim of genetic research is to identify associations with the characteristics shown
within the two diagonal lines. Most genetic variants identified by GWAS have low to
moderate effect size and are relatively common in the population, as shown by the blue
circle. Adapted from McCarthy et al. [29]
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inherited component of complex diseases but cannot, even when combined, fully ex-
plain the total disease susceptibility [1, 29]. Low-frequency alleles with intermediate
penetrance might explain more of the heritability, but increased sample sizes are
needed to identify these variants through a GWAS [1, 33].

Genetic association methods are the main focus of this thesis and include both
candidate-gene and genome-wide association analyses. The basic statistical analyses
are the same for both approaches, i.e., each SNP is analyzed in the same manner
regardless of being a candidate SNP or part of a genome-wide scan. The main
statistical difference is, however, in post-processing and interpretation of results,
especially due to multiple testing issues induced by a GWAS approach. Note that
an association does not imply that the marker allele itself is the disease-causing
allele. It is more likely that an allelic association is due to linkage disequilibrium
(LD), a non-random association between alleles at different loci on a chromosome
in a natural breeding population, occurring, for example, when the marker allele
and the actual disease-causing allele are so close that they are transmitted together
more often than would be expected by chance [18, 24]. Alternative explanations
could also be spurious associations caused by population stratification or simply a
Type I error (false positive) [24]. These concepts will be elaborated in later sections
(1.6 and 1.7).

1.4 The complexity of isolated oral clefts

Oral clefts are the most common craniofacial birth defect, with a prevalence of 1 in
700 livebirths worldwide [34]. Oral clefts are broadly categorized as to whether they
affect the lip only (CLO), the palate only (CPO), or both lip and palate (CLP). Al-
though debated, CLO and CLP have traditionally been analyzed combined, forming
the single group of cleft lip with or without cleft palate (CL/P) [35]. While oral
clefts are frequently seen in association with other anomalies or as part of recognized
syndromes, the isolated form, i.e., non-syndromic and occurring without other con-
genital defects, constitutes approximately 70% of CL/P cases and 55% of CPO cases
[36, 37]. Among first degree relatives, Sivertsen et al. [4] reported relative recurrence
risks of 32 for isolated CL/P and 56 for isolated CPO, suggesting a stronger genetic
component for CPO than for CL/P. The major role for genes is also supported by
twin studies, where heritability estimates as high as 91% for isolated CL/P and



Genetic effects and etiologic scenarios 21

Figure 3: The hybrid design for family-based association analyses, consisting of affected
offspring and their biological parents (case-parent triads) together with unaffected offspring
and their biological parents (control-parent triads). The filled rhombus denotes the affected
offspring. The probability of an AA genotype is equal to that of aA in both the case-parent
triad and the control-parent triad, assuming Mendelian transmission. However, if there
is an association between the genotype and the disease, the distribution among cases
will differ from what would be expected under Mendelian transmission. The association
approach tests for this asymmetry. Figure courtesy of Jugessur et al. [24]

90% for isolated CPO have been reported, with correspondingly small environmen-
tal factors (9% for isolated CL/P and 10% for isolated CPO) [6, 7]. Although the
environmental contribution is likely to be smaller than the genetic component, the
prevalence of oral clefts varies by ethnicity, geography, lifestyle, and environmental
exposures [37, 38]. Thus, we cannot exclude the role of environmental risk factors
and their possible interactions with genes. Moreover, because CL/P is more preva-
lent in males and CPO is more prevalent in females [37], it is reasonable to believe
that also X-linked genes may contribute to the overall complexity of oral clefts.

1.5 Genetic effects and etiologic scenarios

To better understand disease biology, statistical methodologies that can differentiate
between various casual models and disease mechanisms are needed. I will here intro-
duce the genetic effects investigated throughout this thesis. The parameterization
of penetrances is explained in Section 3.1.
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1.5.1 Child effects

In the study of genetic effects, a relevant question relates to whether a variant allele
inherited from one or both parents increases or decreases the risk of a disease, i.e.,
whether the genotype of an individual directly affects disease risk. This effect can
be estimated from a case-control design, and terminology such as a “case genotype
effect” has been used to describe this genetic effect in the literature [39]. However,
the effect can also be fitted from the offspring in a case-parent triad. I will therefore
refer to this as a “child effect” throughout this thesis, even though it is important to
note that the offspring may be of any age, depending on the disease under study. In
the study of pregnancy complications or birth defects (e.g., preeclampsia or isolated
oral clefts), a child effect is sometimes referred to as a “fetal effect” [16, 40, 41].
This term was used in Paper I due to the application of new methodology to CPO
data. In Paper III, we used the term “regular autosomal effect” to emphasize that the
effect can also be estimated for late-onset diseases. Different modes of inheritance are
possible for child effects, such as dominant, recessive, or multiplicative (log-additive)
[42], as further described in Section 3.1. Although most association analyses have
primarily targeted autosomal markers, the effect of offspring genes can also be linked
to the X chromosome (Section 1.5.5). The terminology is somewhat confusing and
ambiguous. However, the definition of child effects relates to the parameterization
of penetrances, as described in Section 3.1.

1.5.2 Parent-of-origin effects

A PoO effect occurs if the phenotypic effect of a variant allele carried by an individual
depends on its parent of origin. Hypothetically, an allele might be protective when
derived from the mother but harmful when derived from the father. Because the
effect of an allele in the child is modified by its parental origin, a PoO effect can be
interpreted as a statistical interaction. This is in contrast to analyses of child effects,
in which the two alleles in the child are considered to be functionally equivalent,
i.e., the effect of a variant allele is assumed to be independent of whether it is
inherited from the mother or the father. A PoO effect can be indicative of genomic
imprinting, an epigenetic phenomenon where a variant allele carried by the child
is expressed when inherited from one parent and silenced when inherited from the
other [43–45]. Genomic imprinting may occur as an effect of different levels of DNA
methylation (see Section 1.5.6) depending on parental origin, and it thus represents
an exception to the classical Mendelian inheritance [46]. PoO effects have been
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implicated in numerous complex traits, e.g., attention deficit hyperactivity disorder
[47] and type 2 diabetes [48, 49], suggesting that imprinted loci may explain parts of
the phenotypic variation and disease heritability. However, few of these results have
been validated by replication, and the impact of parent of origin has largely been
overlooked [26, 48]. Studies of PoO effects are often insufficiently powered due to
small sample sizes, and information on parental genotypes is not always available in
data. Further research and better models to fit PoO effects are therefore requested
[26].

1.5.3 Maternal effects

A maternal genetic effect occurs if a variant allele carried by the mother increases
or decreases the risk of disease in her child, regardless of whether the allele is passed
to her child [50]. This is distinct from our definitions of child and PoO effects,
where we measure the effect of alleles carried by individuals themselves and not
their mothers. The effect of maternal alleles may operate via mechanisms in the
intrauterine environment, influencing the development of the fetus directly [51].
Maternal effects may therefore be particularly relevant for pregnancy conditions
such as preeclampsia or birth defects that originate in fetal life [52]. However,
conditions that depend on fetal development have also been associated with health
outcomes throughout life [53, 54]. In recent years, the effect of maternal alleles has
been estimated and discussed in a broader context too, and its relevance has been
demonstrated even for an individual’s educational attainment [55]. A maternal effect
might be statistically confounded with a child or a PoO effect due to shared alleles
between the mother and her child [39, 56]. Moreover, interaction effects might occur
due to a maternal-fetal genotype incompatibility [57]. These underlying genetic
mechanisms have different biological interpretations, and distinguishing between
child, PoO, and maternal effects, as well as possible interactions, is important in
advancing our understanding of the genetic architecture of complex traits [56, 57].

1.5.4 Gene-environment interactions

A genetic effect can be modified by an exposure or stratification variable such as an
environmental risk factor, study site, and ethnicity. For example, maternal pericon-
ceptional vitamin use has been found to modify the association between SNPs and
isolated CL/P [58]. This is referred to as a gene-environment interaction (GxE),
and the genetic effect involved might be a child, a PoO, or a maternal effect. In the
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literature, the genetic effect most frequently referred to is a child effect. However,
since epigenetic changes (e.g., DNA methylation, Section 1.5.6) can be modified by
environmental factors, a search for interactions between PoO and environmental risk
factors (PoOxE) might be particularly relevant [26]. We will use the abbreviation
GxE without specific referral to the genetic effect in question, whereas PoOxE indi-
cates that PoO is the genetic effect under scrutiny. A specific search for PoOxE has
been the primary focus in several of our latest papers [59–61], and the methodology
was developed in Paper I. The identification of GxE effects may not only improve
our insights into the etiology of complex diseases but may also provide new oppor-
tunities to intervene on environmental risk factors alone, especially in population
subgroups known to be genetically more susceptible to these exposure effects [60].

1.5.5 Effects of X-linked markers

Genes located on the X chromosome have distinctive patterns of inheritance since
they are present in unequal numbers in males and females. A mother transmits one
X chromosome to all of her children, whereas a father transmits his X chromosome to
his daughters and his Y chromosome to his sons. The expression of X-linked mark-
ers is complex, and epigenetic processes such as DNA methylation (Section 1.5.6)
may influence the dose effect in females. An example is X-inactivation, in which
one of the two X chromosomes in females is silenced to ensure dosage compensation
between the two sexes [62]. GWAS have mostly targeted autosomal markers, and
analyses on the X-chromosome are underrepresented in the literature. This may be
partly because most of the statistical methodology and software applied in genetic
association studies were originally designed for the analysis of autosomal markers.
However, since genetic variants on the X chromosome have been associated with sev-
eral complex traits and diseases, methods and tools that accommodate the specific
inheritance pattern of X-linked markers have been developed [63–67]. A search for
genetic effects on the X chromosome is particularly relevant when a disease displays
sex-specific differences in prevalence [67], as is seen for CL/P and CPO, systemic
lupus erythematosus, and Sjögren’s syndrome [37, 68]. Although most research on
the X chromosome has been focusing on child effects, PoO and maternal effects may
also be X-linked [69].
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1.5.6 DNA methylation

DNAmethylation is an epigenetic process where methyl groups are added to cytosine
nucleotides, most commonly within cytosine-phosphate-guanine (CpG) dinucleotide
motifs [61]. Although DNA methylation does not alter the underlying DNA se-
quence, it may still influence gene expression and manifest itself through various
genetic effects such as PoO and X-inactivation. The methylation state is influenced
by both environmental exposures and the DNA code itself. Nevertheless, the mecha-
nisms through which gene-expression levels are affected are not yet fully understood
[62, 70].

1.6 Study designs

A variety of family-based and population-based study designs are amenable to ge-
netic association analyses. Relevant study designs include the standard case-control
design, case-mother and case-father dyads, case-parent triads, and various case-
family configurations in combination with unrelated controls or control families.
Different study designs can accommodate different genetic effects, and each design
has its own set of advantages and vulnerabilities. I will here give an introduction to
the study designs relevant to this thesis.

1.6.1 The case-control design

Classic epidemiological designs such as the population-based case-control design
(Figure 4a) are frequently used in genetic association analysis to identify child ef-
fects and their interactions with environmental or behavioral risk factors [71]. The
allele frequencies of cases and controls are compared to detect variants associated
with the disease under interrogation, and familiar statistical methods such as logistic
regression or a chi-squared (χ2) test are commonly applied to test for effects [72].
However, population stratification might occur when cases and controls have been
sampled from a heterogeneous population, where unrecognized subpopulations differ
systematically in both allele frequencies and disease prevalence. Population strat-
ification is a potential cause of false positive results in genetic association studies,
but it could also mask a true association. Hence, additional control or correction
for population stratification may be needed [73].
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a)

b)

c)

Figure 4: A selection of study designs for genetic association analyses. a) The case-control
design (c-c); b) Various case-parent designs: i) Case-parent triad (mfc); ii) Case-mother
dyad (mc); iii) Case-father dyad (fc); c) Various hybrid designs: i) Case-parent triad
with independent control-parent triad (mfc-mfc); ii) Case-mother dyad with independent
control-mother dyad (mc-mc); iii) Case-parent triad with independent control-mother dyad
(mfc-mc); iv) Case-parent triad with independent control offspring (mfc-c)
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1.6.2 The case-parent triad and dyad designs

In the late 1980s and early 1990s, Falk and Rubinstein [11] and Self et al. [74]
observed that alleles associated with a given disease will occur more frequently in
diseased offspring than what would be expected based on the parental allele distri-
bution. Hence, parental genotypes of affected individuals could be used to study the
association between genetic variants and a disease. The non-transmitted parental
alleles would serve as individually matched genetic controls, i.e., so-called “pseudo-
controls”, thus eliminating the effects of population stratification. This insight gave
rise to the family-based study designs [12, 75–78]. In the case-parent triad design, a
sample of cases (affected offspring) and both their biological parents is genotyped. In
the case-mother and case-father dyad designs, a sample of cases and their biological
mothers or fathers is genotyped, respectively. The different designs are illustrated
in Figure 4b. Besides removing bias due to population stratification, an inherent
strength of the family-based designs is its ability to estimate PoO, or maternal ef-
fects from the information on parental genotypes. Whereas a child effect is estimated
by comparing the allele frequencies of transmitted versus non-transmitted (pseudo-
control) alleles, a PoO effect is primarily estimated in case families by comparing
the frequencies of alleles transmitted from mother to child with the frequencies of
alleles transmitted from father to child [14]. An allele working through the mother
will be overrepresented in case-mothers compared with case-fathers [52]. Note that
child, PoO and maternal effects can be estimated not only from case-parent triads
but also from case-mother or case-father dyads. Nevertheless, there are also some
drawbacks, and the family-based designs depend heavily on Mendelian transmission,
which means that children are assumed to carry a random sample of the parental al-
leles. This fundamental Mendelian assumption must hold at the ages when children
come under study. Moreover, unbiased estimates of maternal effects rely on “mating
symmetry”, i.e., we assume that the allele counts for mothers versus fathers are sym-
metric within parental mating types [52]. Another disadvantage of the family-based
designs is the inability to estimate main effects of environmental exposures; interac-
tions may be detected, but unrelated controls are required to determine whether the
exposure is protective or detrimental [79]. Practical issues might also occur, such as
obtaining DNA from parents if the disease is late onset. As a result, family-based
designs may be genetically selective [80].
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1.6.3 The hybrid design

To incorporate the advantages of the case-control and case-parent designs, Nagelk-
erke et al. [81] proposed a joint analysis of case-parent triads, unrelated cases and
unrelated controls using generalized logistic (Poisson) regression. Their approach
has been further explored and modified, and various other hybrid designs have been
suggested [80, 82–86]. The full hybrid design comprises case-parent triads together
with control-parent triads [85]. Weinberg and Umbach [80] and Vermeulen et al. [84]
also use case-parent triads but propose different configurations of unrelated control
families. Whereas the method by Weinberg and Umbach proposes genotyping par-
ents of controls but not the controls themselves, Vermeulen et al. sample controls
and their mothers. Since fathers may be hard to recruit, Shi et al. [83] proposed
a case-mother/control-mother design. An overview of study designs and analysis
features combining case-control and family data has been given by Infante-Rivard
et al. [87]. Although the hybrid design combines the merits of both the case-control
and case-parent triad designs, a straightforward combined analysis may be biased
due to population stratification or non-Mendelian transmission, and corrections may
be necessary to obtain valid estimates and inference. Different configurations of the
hybrid design are illustrated in Figure 4c. Note that the hybrid designs do not
necessarily involve the same number of case families as control families.

1.6.4 Notation

We have used the abbreviations in Figure 4 to denote the different study designs.
The letters c, m, and f denote the child (case or control), mother and father, re-
spectively. The left side of the hyphen denotes case families, whereas the right side
denotes control families. For example, mfc denotes case-parent triads, mc denotes
case-mother dyads, c-c denotes the case-control design, and mfc-mfc denotes the full
hybrid design. We have used the term hybrid design to describe all constellations of
study designs involving case families and unrelated control families, except for the
c-c design.

1.7 Statistical power

A statistical hypothesis test is a method for drawing statistical inference from data
in which statistical evidence for rejecting a hypothesis is summarized objectively.
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In the classical (frequentist) approach to hypothesis testing [88], we formulate two
competing hypotheses, a null hypothesis (H0) and an alternative hypothesis (H1),
compute a test statistic using the observed data, and then decide whether to reject
H0 based on the calculated test statistic. The general formula for a test statistic
can be written as

Test statistic =
Observed value - Hypothesized value
Standard error of the observed value

.

It is used to derive a p-value, defined as the probability of obtaining a difference at
least as extreme as the one observed if H0 is true, and we reject H0 if the p-value
is less than a preset threshold. Typically, H0 refers to an effect size of zero (no
difference), whereas a two-sided H1 refers to a non-zero effect size.

When testing a null hypothesis, two types of errors can be made. The Type
I error refers to falsely rejecting H0, i.e., rejecting H0 when it is true, and the
probability of making a Type I error is defined as α. The Type II error refers to
the mistake of failing to reject H0 when it is false. The probability of making a
Type II error is defined as 1 − γ(β), where γ(β) denotes the statistical power, and
β denotes the effect size. The statistical power is thus defined as the probability of
correctly rejecting H0 when H0 is false and a true association exists. The definitions
are summarized in Table 1.

Table 1: The two types of errors in hypothesis testing and their probabilities

Decision:
Do not reject H0 Reject H0

Truth:
H0 is true Correct decision Type I error

1− α α

H0 is false Type II error Correct decision
1− γ(β) γ(β)

The optimal study has small probabilities of making both types of errors. How-
ever, these probabilities are inversely related. The probability of making a Type I
error, α, is controlled by the researcher and is usually preset at the conventional
threshold level of 0.05, known as the significance level of the test. Thus, the proba-
bility of making a Type II error, 1− γ(β), and therefore also the statistical power,
γ(β), are subject to factors that cannot be controlled for, such as the true effect
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size or the MAF of a SNP. Nevertheless, measures can be taken to maximize the
statistical power, e.g., increasing the sample size or optimizing the study design,
although constraints of resources, such as money or the number of available cases,
might limit these possibilities. In genetic association analyses, the effective sample
size depends on the number of families, allele frequencies, and family design. These
additional factors increase the complexity of power calculations.

1.7.1 Statistical power in a GWAS

The classical approach to hypothesis testing has been widely adopted in genetic
association studies. Statistical power analyses are particularly important in a GWAS
in order to maximize the scientific gains from the typically high genotyping and assay
costs. They are also a prerequisite for optimal study design [8].

As previously mentioned, the conventional significance level of α = 0.05 is com-
monly used to test a single null hypothesis. However, if m independent hypothesis
tests are performed, each at the α significance level, the probability of at least one
false positive result is 1 − (1 − α)m ≥ α when the null hypothesis is true for all
tests. If 1,000,000 tests are conducted, each at the 5% significance level, we expect
50,000 tests to be rejected by chance, even though no true association exists. The
vast number of SNPs being tested in a GWAS leads to multiple testing issues, and
a GWAS is therefore frequently underpowered. Moreover, most effect sizes reported
from genetic association studies of complex traits are small, and empirical studies
show that individual relative risks of disease are commonly below two [1, 89–91].
The small effect sizes further limit the power of a GWAS.

The statistical power provides valuable information when interpreting the results
of a GWAS. Poor power may result in a large number of false negative findings,
and a power analysis might shed light on non-significant associations by indicating
whether the GWAS was inadequately powered. A power analysis may also indicate
the smallest detectable effect size, given the sample size at hand [92]. Furthermore,
poor power may increase the proportion of false positive findings among significant
results. For example, in a study consisting of 1100 SNPs in which 100 have a true
association with the disease, an expected number of 50 SNPs will be false positives
at the 5% significance level, assuming no dependencies between the SNPs. The
number of true positive findings is defined by 100 · γ(β). That is, if γ(β) = 1, there
are 100 true positive findings, which constitute 2/3 of the significant results (1/3
of the significant results are false positive findings). However, if γ(β) = 0.5, we
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expect 50 true positive findings, which constitute 1/2 of the significant results. The
multiple testing burdens have resulted in the use of stringent significance thresholds
in GWAS, and a genome-wide significance level of 5 · 10−8 has been widely adopted
to control the Type I error rate, thus allowing for multiple testing [8, 93]. Multiple
testing issues will be further elaborated in Section 5.2.3.

1.7.2 An intuitive introduction to relative efficiency

As previously explained, a variety of child-parent configurations are amenable to
genetic association studies. While different study designs can be compared directly
by computing the power for a given set of parameter values, such calculations ignore
the costs of data collection. For instance, a fixed number of complete case-parent
triads could be compared with the same number of case-control pairs. Although
the case-parent triad design requires 1.5 times the amount of genotyping relative to
the case-control design (assuming the same number of cases and controls) [71], a
straightforward power calculation would show identical power for the two alterna-
tives. For example, using 500 case-parent triads, a relative risk (RR) of 1.3, and a
MAF of 0.2 gives a power of 68% at the 5% nominal significance level. The same
power is also obtained if we instead use 500 cases and 500 controls. Hence, a more
informative and general design comparison can be achieved by studying the relative
efficiency of two different study designs, defined as the ratio of sample sizes needed
for each of the two designs to obtain the same significance level and power [94,
Chapter 14]. This is equivalent to the ratio of variances of two separate parameter
estimators, each estimator corresponding to one of the two study designs, taking
into account the number of genotyped individuals within each design.

The concept of relative efficiency is closely related to that of statistical power
and sample size. This relationship is illustrated in Table 2, in which we compared
the efficiency of the full hybrid (mfc-mfc) design with that of the case-parent triad
(mfc) design. For the mfc design, a design unit consists of one case child together
with his/her biological parents (altogether three genotyped individuals). For the
mfc-mfc design, we here used an equal number of case families and control families,
and a design unit thus consists of one case-parent triad together with one control-
parent triad (altogether six genotyped individuals). The total number of individuals
required to obtain the desired power is calculated by multiplying the number of
design units with the number of genotyped individuals within a unit. The relative
efficiency is then computed by dividing the total number of individuals needed with



32 Background

T
ab

le
2:

T
he

re
la
ti
on

sh
ip

be
tw

ee
n
re
la
ti
ve

effi
ci
en
cy
,s

ta
ti
st
ic
al

po
w
er
,a

nd
sa
m
pl
e
si
ze

P
ow

er
m
fc

m
fc
-m

fc
R
el
at
iv
e
effi

ci
en

cy
**

N
um

be
r
of

un
it
s

N
um

be
r
of

in
di
vi
du

al
s*

N
um

be
r
of

un
it
s

N
um

be
r
of

in
di
vi
du

al
s*

0.
6

41
5

12
45

26
7

16
02

0.
78

0.
7

52
3

15
69

33
6

20
16

0.
78

0.
8

66
5

19
95

42
7

25
62

0.
78

0.
9

89
0

26
70

57
2

34
32

0.
78

T
he

sa
m
pl
e
si
ze

is
ca
lc
ul
at
ed

fo
r
ch
ild

eff
ec
ts

us
in
g
th
e
H
ap

lin
fu
nc
ti
on

sn
pS
am
pl
eS
iz

e
w
it
h
an

R
R

of
1.
3
an

d
a
M
A
F
of

0.
2
at

th
e
0.
05

no
m
in
al

si
gn

ifi
ca
nc
e
le
ve
l.
Fo

r
th
e
m
fc
-m

fc
de
si
gn

,w
e
us
ed

an
eq
ua

ln
um

be
r
of

ca
se

fa
m
ili
es

an
d
co
nt
ro
lf
am

ili
es

*
T
he

(t
ot
al
)
nu

m
be

r
of

in
di
vi
du

al
s
is

co
m
pu

te
d
by

m
ul
ti
pl
yi
ng

th
e
nu

m
be

r
of

de
si
gn

un
it
s
w
it
h
th
e
nu

m
be

r
of

ge
no

ty
pe

d
in
di
vi
du

al
s

w
it
hi
n
ea
ch

de
si
gn

un
it
(e
.g
.,
41
5
ca
se
-p
ar
en
t
tr
ia
ds

co
ns
is
t
of

12
45

in
di
vi
du

al
s)

**
T
he

re
la
ti
ve

effi
ci
en
cy

is
ca
lc
ul
at
ed

by
di
vi
di
ng

th
e
to
ta
ln

um
be

r
of

in
di
vi
du

al
s
ne
ed
ed

to
ob

ta
in

th
e
de
si
re
d
po

w
er

w
it
h
th
e
m
fc

de
si
gn

by
th
at

ne
ed
ed

w
it
h
th
e
m
fc
-m

fc
de
si
gn

(e
.g
.,
12
45
/1
60
2=

0.
78
).

W
e
se
e
th
at

th
e
re
la
ti
ve

effi
ci
en
cy

is
co
ns
ta
nt

ac
ro
ss

th
e

di
ffe

re
nt

le
ve
ls

of
po

w
er
,f
av
or
in
g
th
e
m
fc

de
si
gn



Statistical methods for genetic association studies of binary disease traits 33

the mfc design by that needed with the mfc-mfc design. It thus refers to a ratio
of the number of genotyped individuals, not a ratio of the number of families or
design units. We see that while 1995 individuals are needed for the mfc design to
reach a power of 80%, 2562 individuals are required for the mfc-mfc design. The
relative efficiency is 0.78, favoring the mfc design. In principle, the relative efficiency
remains (close to) constant across the different levels of power and is therefore a
useful measure for choosing the optimal study design. A more detailed discussion
of relative efficiency is provided in Paper III, where we compared study designs
asymptotically by using the concept of Pitman efficiency, i.e., by examining the
variances obtained under the null hypothesis [95]. The Pitman efficiency is useful
for preventing non-informative comparisons in situations where the effect size or
sample size increases such that the power converges to 1.

1.8 Statistical methods for genetic association studies of binary

disease traits

Genetic association studies have much in common with classic epidemiological stud-
ies of environmental risk factors. If the standard case-control design is used, the
data can be analyzed in similar manners, for example, via standard χ2 tests for
association or logistic regression [72]. Separate odds ratios can be estimated for the
genotypes aa vs. AA and aA vs. AA, where lowercase indicates the minor allele.
Alternatively, the genotypes can be grouped to assess dominant effects (aa and aA
vs. AA), recessive effects (aa vs. aA and AA) or a dose-response relationship (e.g.,
coding AA, aA, and aa as 0, 1, and 2, respectively, and then applying a test for
trend). With fewer parameters, such groupings would increase the statistical power,
provided the model is correct.

Despite the similarities in analysis, several issues pertain specifically to genetic
association studies. The family-based study designs have been proposed for genetic
studies, and the transmission disequilibrium test (TDT) and related alternatives
were introduced in the early 1990s to avoid spurious associations from population
stratification [76]. In its simplest form, the TDT tests for over-transmission of an
allele from heterozygous parents to affected offspring. It uses the standard McNemar
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test statistic for matched samples, given by

T = (nA,a − na,A)2/(nA,a + na,A),

where n denotes the genotype counts as shown in Table 3. Under the null hypothesis
of equal transmission, T is asymptotically χ2 distributed with one degree of freedom.
Only the off-diagonal elements of Table 3 are used in the calculations of T , and
homozygous parents are therefore discarded. In its original form, T cannot be
calculated from families where the maternal or paternal genotype is missing [96],
which potentially leads to a great loss of information. However, alternatives have
been suggested to handle missing parental data, such as the 1-TDT [97].

An intuitive extension of the TDT for estimating PoO effects would be estab-
lished by stratifying the frequencies of transmitted and non-transmitted alleles ac-
cording to the parental origin. However, when accounting for parental origin, the
ambiguous counts where both parents and offspring are heterozygous are often dis-
carded. Moreover, there might be dependencies between parental transmissions
from two heterozygous parents when the allele is associated with the disease [98],
rendering the intuitive PoO approach statistically invalid when the model is not
multiplicative. Although this can be avoided at the expense of power by discard-
ing counts where both parents are heterozygous (the transmission asymmetry test
(TAT) [99]), the TDT and its extensions are not able to separate the effects of alleles
carried by the child, the mother, or both [50, 52].

To account for the drawbacks of the TDT-like approaches, flexible methods based
on conditional logistic regression [100–102], log-linear [16, 52, 98, 99, 103], and multi-
nomial modeling [104–106] have been proposed. As opposed to the TDT, which only
calculates a single p-value, these models also produce relative risk estimates. A fur-
ther advantage is the ease of generalization from the simplest situation of child effects
to more advanced causal scenarios. For the assessment of PoO and maternal effects,
a review and comparison of different statistical methodologies have been performed
elsewhere [50]. The log-linear model of Gjessing and Lie [16] forms the basis of this
thesis and will be described in greater detail in Section 3.1.
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Table 3: Observed counts of transmitted and non-transmitted alleles for the TDT with
data from affected offspring and both their parents

Non-transmitted allele
Transmitted allele A a Total

A nA,A nA,a nA,A + nA,a
a na,A na,a na,A + na,a

Total nA,A + na,A nA,a + na,a 2n

The first index letter denotes the transmitted allele, and the second index letter denotes
the non-transmitted allele. In total, there are n offspring and 2n parents

1.9 The Haplin software

Several statistical tools for genetic association analysis exist that allow both es-
timation and testing of genotype relative risk parameters. A review of the most
prominent programs is provided in Section 5.1, and I will here briefly introduce the
Haplin software. Haplin provides the basis for this thesis into which all new methods
and functionalities have been implemented. A detailed description of the underlying
models is provided in several of our previous publications [13, 14, 16, 85] and will
also be detailed in Section 3.

The R package [107] Haplin is based on log-linear modeling and provides a flex-
ible framework for genetic association analyses of binary disease traits [16, 17]. A
full maximum-likelihood model for estimation is implemented, and Haplin there-
fore provides explicit relative risk estimates with asymptotic standard errors and
confidence intervals. Haplin enables the estimation of child effects, PoO effects, ma-
ternal effects, and GxE effects [13, 85]. Moreover, X chromosome analyses are easily
performed, depending on the preassumed genetic model [66, 67, 69]. The basic
log-linear model implemented in Haplin assumes Mendelian transmission, Hardy-
Weinberg equilibrium (HWE), and random mating. Although the main unit of
study is the case-parent triad, the log-linear model can be extended to include unre-
lated and unaffected controls or control families under the rare disease assumption
[80]. Haplin uses the expectation-maximization (EM) algorithm [108] to account
for unknown parental origin in ambiguous (uninformative) triads, e.g., when the
mother, father, and child are all heterozygous for the same two alleles. The EM
algorithm also accounts for missing parental genotypes, thus enabling analyses of
case-mother or case-father dyads. The fundamental model in Haplin relates to a
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single multi-allelic locus. However, it can be adapted to the situation of multiple
closely linked markers within a locus by statistically reconstructing haplotypes of
unknown phase [16]. Furthermore, calculations can be performed in parallel, and
Haplin is therefore well-suited for handling GWAS data. As part of this thesis, a
complete setup for power, sample size, and relative efficiency calculations has re-
cently been integrated into the log-linear framework and implemented as a new
Haplin module. Installation details are given in Section 7 and on the Haplin website
at https://people.uib.no/gjessing/genetics/software/haplin.

1.9.1 A Haplin example

An introduction to Haplin is most easily given for a child effect. We investigate a
fictional SNP, here named rs123, with alleles a and A, where a is the less frequent.
There are three possible genotypes: AA, aA and, aa. We choose the more common
genotype as our reference, AA, and estimate the relative risks RRaA and RRaa

associated with the genotypes aA and aa, respectively. If a increases the risk, RRaA

and RRaa should generally be larger than 1 (if the effect is recessive, RRaA = 1 and
RRaa > 1 ). However, if a decreases the risk, the estimates should generally be less
than 1. We here assume a multiplicative dose-response model, i.e., RRaa = RR2

aA,
although Haplin also allows estimation of both parameters separately.

The dataset rs123_data consists of 340 case-parent triads and 460 control-parent
triads. A child effect is analyzed by the Haplin command

res <- haplin(rs123_data, response = "mult", design = "cc.triad",

ccvar = 1, reference = "ref.cat").

The argument response = "mult" specifies a multiplicative dose-response relation-
ship. The argument design = "cc.triad" specifies that our data contains a combi-
nation of case-parent triads and control-parent triads, and
ccvar = 1 points to the data column containing the case-control variable. The
more frequent allele (genotype) is chosen as the reference category by the argument
reference = "ref.cat".

Haplin first outputs summary information on data and markers (here not shown),
before continuing with the estimation results:
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----Estimation results:----

Date of call: Mon Sep 09 09:37:41 2019

Number of triads: 800

Number of haplotypes: 2

Haplotype frequencies with 95% confidence intervals:

Haplotype Frequency(%) lower upper

A 90.19 88.98 91.29

a 9.81 8.71 11.02

We see that the MAF is close to 10%. Haplin then outputs the relative risk estimates:

Single- and double dose effects (Relative Risk) with 95% confidence intervals:

Reference method: ref.cat

Reference category: 1 (Haplotype A)

Response model: mult

----Child haplotypes----

Haplotype Dose Relative Risk Lower CI Upper CI P-value

A Single REF

A Double REF

a Single 1.4 1.09 1.82 0.00918

a Double 1.97 1.18 3.32 0.00918

Relative to A (or AA), carrying a single dose of a increases the risk by 40%. Assum-
ing a multiplicative dose-response model, carrying a double dose of a gives a relative
risk of 1.4032 = 1.97 (estimates with better precision are given by the command
haptable(res)). The double-dose relative risk is not estimated freely, which is also
demonstrated by the shared p-value. The result is significant at the 5% nominal
level and is illustrated in Figure 5, obtained by the plotting function plot(res).
The fictional SNP, rs123, is simulated by the function hapSim, and the full code
needed to obtain the data and run the analysis is given in Appendix I.
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Figure 5: Estimated relative risks for child effects shown on a log-scale. Vertical bars
represent 95% confidence intervals. Carrying either one or two copies of allele a increases
the risk of disease, relative to the reference allele A



39

2 Objectives

Recent developments in genetic and epigenetic assays represent a great challenge
to the available statistical and computational methods. In particular, important
modeling challenges are:

• Appropriate models for family structure in data, in particular case children
with parents (family data), with or without independent controls

• Models that integrate non-standard genetic effects beyond simple child effects,
such as PoO and maternal effects

• Incorporation of genetic, environmental, and epigenetic risk factors in com-
bined models that can elucidate their joint effect on disease

• Lack of framework for statistical power calculation based on the full triad
design, including power calculations for child, PoO, and maternal effects, as
well as interactions between genetic effects and environmental or epigenetic
exposures

There is a general lack of implementation of such models, making it difficult to
analyze GWAS data. Moreover, the lack of an extensive framework for statistical
power analysis prevents optimal planning of study design and complicates the inter-
pretation of statistical findings. In this context, the specific aims of the thesis are
as follows.

• Develop and incorporate methods for assessing PoOxE effects in case-parent
triads with or without unrelated controls (Paper I)

• Develop a framework for power and sample size analysis of genetic effects based
on a variety of family-based study designs (Paper II)

• Provide insights into how relevant designs compare in terms of relative effi-
ciency and optimize the study design for genetic association studies (Paper
III)

The new methodologies and developments will be implemented in the Haplin frame-
work, thus facilitating genetic association research of family-based data. The focus
of this thesis is on binary disease traits. In Papers I—III, child, PoO, and maternal
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effects are primarily modeled assuming a multiplicative dose-response relationship
(as outlined in Section 3.1), although other modes of inheritance can be fitted in the
Haplin framework.
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3 Statistical methods and material

This section will present statistical methods and material relevant to Papers I—III.
The log-linear maximum likelihood approach forms the basis of Haplin, and a general
introduction for child effects will be given. I will then outline how the model can be
extended to handle PoO effects, maternal effects, and GxE effects for a locus with
multiple alleles or haplotypes with unknown phase. I will also briefly explain how the
EM algorithm can be applied to account for incomplete or missing data. Hypothesis
testing in Haplin is mainly performed using a Wald test. I will introduce the Wald
test statistic and explain how the statistical power of the test can be computed,
both analytically and through Monte Carlo simulations. Next, I will describe the
Haplin power functions, which have been written as part of this PhD project. In
Paper II, an external validation of Haplin results was carried out by comparisons
with the EMIM (Estimation of Maternal, Imprinting and interaction effects using
Multinomial modelling) software. An introduction to EMIM is therefore given (for
an overview of other statistical software for genetic association analysis, see Section
5.1). In Paper I and Paper III, data on CPO were used to illustrate the PoOxE test
and relative efficiency measures, and details on the data material will be provided.
I will then summarize the statistical methods and materials used for each paper and
end this section with comments on ethical considerations.

3.1 The log-linear model

In this section, I will describe the underlying sampling and penetrance model of the
log-linear likelihood approach. A more detailed derivation is provided in Gjessing
and Lie [16].

We consider a single, multi-allelic locus with K alleles A1, A2,..., AK , with corre-
sponding population allele frequencies p1, p2,..., pK . The genotypes for the mother,
father, and child are denoted by M , F , and C, respectively. Here, we assume that
the child inherits the second allele from the mother and the second allele from the
father. Thus, the full triad is denoted by (M ,F ,C) = (AiAj, AkAl, AjAl) = (AiAj,
AkAl). A case-parent triad is sampled through a case child, i.e., an affected offspring.
Due to Bayes’ theorem, the conditional probability of (M ,F ,C) given disease in the
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child can be written as

P (M,F,C|D) = P (D|M,F,C)P (M,F,C)/P (D).

The disease prevalence P (D) is unidentifiable owing to the sampling approach
and functions only as a normalizing constant. The triad population frequency
P (M,F,C) can be expressed as P (M,F,C) = P (C|M,F )P (M,F ). The transmis-
sion probability, P (C|M,F ), depends only on Mendelian inheritance and is there-
fore trivial. The mating type probabilities, P (M,F ), are population quantities.
Hence, if we also assume HWE and random mating, i.e., that allele and geno-
type frequencies will remain constant in a random-mating population, we have that
P (M,F,C) = pipjpkpl. The HWE restriction can be disturbed by factors such as
population stratification, and the assumption can be avoided by considering the
relative frequencies for the mating types [52, 99], or by including a multiplicative
parameter that allows homozygotes to have a higher frequency in the population
than what is expected under HWE [16]. Deviations from HWE and different pa-
rameterization models will be further discussed in Section 5.2.2.

The disease penetrance P (D|M,F,C) is the probability of disease in the child
conditional on the genotype of the case-parent triad. For child effects, we assume
that the mating type (M,F ) is irrelevant when the genotype of the child is known.
The penetrance can therefore be written as

P (D|M,F,C) = P (D|C) = P (D|AjAl) = B · RRjRRlRR∗
jl,

where RRj and RRl denote the relative risks associated with alleles Aj and Al,
respectively, and where B is the baseline risk level. Without loss of generality,
we use A1 as the reference allele and set RR1 = 1. Deviations from what would
be expected from a multiplicative dose-response relationship is modeled by RR∗

jl,
where we set RR∗

jl = RR∗
j when j = l and RR∗

jl = 1 if else. It follows that the full
sampling model can be parameterized as

P (M,F,C|D) = pipjpkpl · B · RRjRRlRR∗
jl/P (D). (1)

For a diallelic SNP, the penetrance model is P (D|A1A1) = B, P (D|A1A2) = B ·RR
and P (D|A2A2) = B·RR2RR∗. A recessive effect of A2 would then be seen as RR = 1

and RR2RR∗ 6= 1, and a dominant effect would mean that RR = RR2RR∗ 6= 1. A
multiplicative dose-response relationship would be seen as RR2RR∗ = RR2, i.e.,
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RR∗
j = 1 for all j.
Let nijkl denote the observed frequency of (AiAj, AkAl). In the observed data,

nijkl relates to the triad probabilities P (M,F,C|D). Thus, conditioning on disease
in the child, the expected triad type frequencies can be written as

mijkl = E(nijkl) = ε · pipjpkpl · RRjRRlRR∗
jl, (2)

where ε is a normalizing constant. For a diallelic SNP, the theoretical multinomial
distribution is shown in Table 4.

Table 4: Frequencies in case-parent triads for a diallelic SNP

Genotype

Row number Mother Father Child Theoretical triad type frequency

1 A1 A1 A1 A1 A1 A1 p41
2 A2 A1 A1 A1 A1 A1 p31p2

3 A1 A2 A1 A1 A2 A1 RR · p31p2
4 A2 A2 A1 A1 A2 A1 RR · p21p22
5 A1 A1 A2 A1 A1 A1 p31p2

6 A2 A1 A2 A1 A1 A1 p21p
2
2

7 A1 A2 A2 A1 A2 A1 RR · p21p22
8 A2 A2 A2 A1 A2 A1 RR · p1p32
9 A1 A1 A1 A2 A1 A2 RR · p31p2
10 A2 A1 A1 A2 A1 A2 RR · p21p22
11 A1 A2 A1 A2 A2 A2 RR2 · RR∗ · p21p22
12 A2 A2 A1 A2 A2 A2 RR2 · RR∗ · p1p32
13 A1 A1 A2 A2 A1 A2 RR · p21p22
14 A2 A1 A2 A2 A1 A2 RR · p1p32
15 A1 A2 A2 A2 A2 A2 RR2 · RR∗ · p1p32
16 A2 A2 A2 A2 A2 A2 RR2 · RR∗ · p42

A normalizing constant must be included to ensure that the relative frequencies sum to
1. p1 and p2 are the allele frequencies corresponding to A1 and A2, respectively, i.e.,
p1 + p2 = 1. RR is the relative risk associated with A2, using A1 as the reference
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Taking the logarithm, we have that

log(mijkl) = Xβ = X1β1 +X2β2 +X3β3, (3)

where
β1 = (log(p1), . . . , log(pK))T ,

β2 = (log(RR2), . . . , log(RRK))T ,

β3 = (log(RR∗
1), . . . , log(RR∗

K))T ,

and whereX1,X2 andX3 are appropriate design matrices with dimensions K4×K,
K4 × (K − 1) and K4 ×K, respectively. A more detailed explanation of the design
matrix X is provided in Additional file 1 of Paper II, and an example will also be
given in Section 3.5.2. Note that the intercept is not included in Eqn. (3) since
the columns in X1 sum to a constant. The normalizing constant ε is accounted
for when recovering the allele frequencies from pi = exp(β1i)/

∑
j exp(β1j), where

the components of β1 have been estimated without the restriction
∑

i pi = 1. We
assume a Poisson distribution for the observed triad type frequencies nijkl, with
expected cell values proportional to P (M,F,C|D). The log-linear model in (3) can
therefore be fitted by the use of standard software for Poisson regression (e.g., the
glm function in R [107]), where the total log-likelihood is

l =
∑

ijkl

(nijkllog(mijkl)−mijkl).

Note that unrelated controls or control families are readily incorporated in the
log-linear model. Let D̄ denote the event that the child does not have the disease.
Under the rare-disease assumption, we have that P (D̄|M,F,C) ≈ 1 and P (D̄) ≈ 1,
resulting in P (M,F,C|D̄) ≈ P (M,F,C). Hence, P (M,F,C|D̄) can be expressed as
the product of the population allele frequencies, pipjpkpl. As illustrated in Figure 6,
a relative risk is the measure of effect resulting from the case-parent triad design,
whereas an odds ratio is the measure of effect resulting from the case-control design.
In principle, the rare-disease assumption allows us to use relative risks and odds
ratios interchangeably [85].
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Figure 6: A relative risk (RR) is the effect measure resulting from the case-parent triad
design, whereas an odds ratio (OR) is the effect measure resulting from the case-control
design. Under the rare-disease assumption, the relative risks and odds ratios can be used
interchangeably

3.1.1 Extensions to PoO and maternal effects

PoO and maternal effects are readily included in the log-linear model. For a PoO
effect, we assign different effects to the alleles carried by the child, depending on the
parent of origin. We then estimate the relative risk ratio RRRj = RRM,j/RRF,j,
which measures the risk increase or decrease associated with allele Aj, relative to
the reference allele, when the allele is transmitted from the mother as opposed to
the father. To include the possible effects of maternal alleles, we assume that the
alleles carried by the mother have a multiplicative effect in addition to the alleles in
the child. The penetrance models are shown in Table 5.

To estimate PoO effects, we would need to know the parental origin, which is
unknown for ambiguous triads, e.g., if all individuals in a triad are heterozygous
for the same two alleles. To reconstruct parent of origin, our PoO model is there-
fore combined with the EM algorithm. The EM algorithm will be explained in
Section 3.2.

3.1.2 Extensions to gene-environment interactions

With the additional assumption that, conditional on parental genotypes, the geno-
type of the child and the exposure status are independent, GxE effects can be
analyzed using the case-parent triad design [79, 109]. We fit the log-linear model
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separately in each exposure stratum for the genetic effect under study (i.e., child,
PoO, or maternal effects) and apply a Wald-based post-test (described in Section
3.3) to examine whether the effect estimates deviate significantly across environmen-
tal strata. For child effects, the outcome of interest is the relative risk ratio, defined
as RRR = RRexposed/RRunexposed. An RRR > 1 would mean that exposed children
carrying the variant allele have an increased risk of disease relative to unexposed
children carrying the variant allele. However, it is important to note that although
interactions may be detected from the case-parent triad design, the main effect of
an environmental exposure cannot be estimated without the addition of unrelated
controls. A thorough derivation of the GxE and PoOxE models is the primary fo-
cus of Paper I and will, therefore, not be described in further detail herein. The
conditional independence assumption underlying the GxE test can be relaxed when
studying PoOxE effects. These constraints will be discussed in Section 5.2.1.

3.1.3 Haplotype estimation

A haplotype is defined within a region of a chromosome that is usually inherited as
a single unit. It is a sequence of alleles from several closely linked SNPs or mark-
ers within a locus that tend to be inherited together. With the assumption of no
recombination between the markers, the log-linear model for multiple alleles at a
locus can be extended to a haplotype situation. If haplotype phase were known, the
haplotype estimation would proceed as for a single, multi-allelic marker, treating
each haplotype as a single allele. However, phase cannot be deduced for ambiguous
triads. If one or several markers are ambiguous, we cannot, in general, deduce any
of the haplotypes in the triad (with the exception of an individual being homozy-
gous at all markers except for a single ambiguous marker) [16]. The number of
ambiguous haplotypes will become substantial as the number of markers increases,
and statistical reconstruction, for example via the EM algorithm, is necessary.

Haplin offers a sliding-window approach over a sequence of markers. This au-
tomates the analysis of a sequence of single SNPs, e.g., a GWAS analysis, or a
haplotype analysis of a sequence of overlapping sliding windows. The rationale is
that overlapping sliding windows may increase the chance of “bracketing” a causal
variant if the haplotype has a SNP on each side of the variant. Nonetheless, loss
of power is expected due to unknown haplotype phase and an increased number of
degrees of freedom resulting from a larger number of alleles.
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3.1.4 Analysis of X-linked markers

Several causal scenarios are relevant to an X-linked marker. In the log-linear setup
of Haplin, various X-chromosome models may be fitted depending on the assump-
tions made about allele effects in females versus males, such as shared or different
baseline risks, shared or different relative risks, and possible X-inactivation in fe-
males. Analyses of X-linked markers have not been of primary concern in Papers
I—III and will, therefore, not be discussed any further in this thesis. For details on
the possible parameterizations in Haplin, please consult our previous publications
[66, 67, 69].

3.2 Using the EM algorithm to maximize the missing-data

likelihood

In genetic association studies, incomplete information can originate from several
sources. Genotype data could be missing due to failed genotyping, or family mem-
bers, e.g., case-fathers or case-mothers, could be missing by design. Moreover, infor-
mation is frequently lacking due to unknown phase or parental origin, such as when
all three individuals in a case-parent triad are heterozygous (corresponding to rows
7 and 10 in Table 4). In the general population, one would actually expect this to
occur in 12.5% of triads if both SNP alleles are equally likely (i.e., MAF = 0.5). Sta-
tistical methodology for handling unobserved variables or missing data is therefore
essential in the analysis of genetic data.

Let β be the parameter vector and let X be an appropriate design matrix,
as given in Eqn. (3). If we first assume that the full genotype of all triads can
be observed, the number of each triad type, n, e.g., corresponding to the rows of
Table 4, can be described by independent Poisson distributions, where the expected
number of triads in each row is given by m = exp(Xβ) (for a full explanation
of the notation, formulas and dimensions, please consult Additional file 1 of Paper
II). Hence, with complete information, β can be estimated by a straightforward
maximization of the Poisson log-likelihood

l(β) = nTXβ −m.,

where m. = mT1.
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With incomplete data, however, the likelihood contribution from a single ob-
served (possibly ambiguous) triad j is aTj p, where p = m/m. is the vector of cell
probabilities in a multinomial model and aj is defined as the ambiguity vector for
the observed triad j, as explained in Additional file 1 of Paper II. If the mother,
father, and child are all heterozygous for the same two alleles, aj would be a vector
with ones at positions 7 and 10, and zeros otherwise (Table 4). Thus, one would
need to maximize the more difficult ambiguity log-likelihood

lA(β) =
N∑

j

(log(aTjm))−m., (4)

where N = nT1 is the total number of observed triads. Usually, the maximum
likelihood estimate of β has no closed form, and the ambiguity likelihood could be
maximized directly via a search algorithm, such as an adapted Newton iterative ap-
proach [64]. However, Haplin uses instead the EM algorithm [108], which is a general
and stable iterative optimization approach. It can be used to find maximum likeli-
hood estimates with incomplete information, assuming that the missing genotypes
are missing at random, i.e., independent of genotype. The EM algorithm is based
on the idea of replacing the ambiguity log-likelihood lA(β) by a sequence of easier
maximizations using the complete log-likelihood l(β). The procedure is as follows.
Starting from an (arbitrary) initial value of β, we predict the expected number of
triads in each row by the formula m = exp(Xβ), pretending that the initial β is
the true value. We then redistribute the ambiguity cells according to their expected
values, given the observed total of ambiguity cells (e.g., the observed sum of rows
7 and 10 in the example above). This is the expectation (E) step, and the expec-
tations can be calculated with both phase ambiguity and incomplete triads at the
same time. In Haplin, the initial value of β is set to 0. Given the new distribution
of cells, we then maximize l(β) to find yet a new β estimate, using standard Poisson
regression. This is the maximization (M) step. We continue the iteration process
until the parameters converge. The ambiguity log-likelihood increases for every it-
eration, and the EM algorithm thus converges to the incomplete-data maximum
likelihood estimate [108].

Even though the EM algorithm provides a valid estimate of β, the variance-
covariance matrix computed in each M step does not account for the extra uncer-
tainty resulting from the incomplete data. The correct variance-covariance estimate,
Σ̂, is the inverse of the observed Fisher information matrix, computed from lA(β̂)
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in Eqn. (4). The derivation is given in Additional file 1 of Paper II. In Haplin,
50 EM iterations are used as default, which suffice to reach convergence in most
situations. However, in PoO estimation based on genotype data from case-mother
or case-father dyads, the number should be increased for small sample sizes (results
not shown).

3.3 The Wald test

Our model is based on a maximum likelihood approach, and the Wald test can be
used for hypothesis testing. Let β̂ = [β̂1,β̂2, ..., β̂S]T denote the combined vector
of S relative risk estimates on a log-scale with corresponding asymptotic variance-
covariance estimate Σ̂. From standard asymptotic theory of log-linear models, we
have that asymptotically, β̂ follows an approximate multivariate normal distribution,
i.e.,

β̂ ∼MVN(β,Σ)

as the sample size goes to infinity. The test of r hypotheses on the S parameters
can be defined as a linear combination by using an r×S matrix D. Asymptotically,
we have that

Dβ̂ ∼MVN(Dβ,ΣD),

where Σ̂D = DΣ̂DT . The Wald test statistic is then defined as

T = (Dβ̂)T Σ̂
−1

D (Dβ̂).

Under the null hypothesis of Dβ = 0, T follows approximately a chi-squared dis-
tribution with r degrees of freedom, χ2(r). For the one-parameter case, the Wald
statistic simplifies to

T =
β̂2

σ̂2
∼ χ2(1),

where σ̂2 is the asymptotic variance estimate of β̂.
By defining an appropriate contrast matrix D, a large number of hypothe-

ses, including PoO, GxE, and PoOxE effects, can be tested. Note that for GxE
and PoOxE effects, the strata are independent, and the variance-covariance ma-
trix is therefore block diagonal. A detailed description is provided in Paper I.
The Wald test is asymptotically equivalent to the likelihood ratio and
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score tests [110, Chapter 1]. However, the Wald test is calculated based on the
parameter estimates and their variance-covariance matrix and is therefore compu-
tationally simpler in our situation.

3.4 Statistical power calculations

In Haplin, the statistical power can be computed based on the non-centrality pa-
rameter for the Wald test statistic or through Monte Carlo simulations. I will here
give a general description of the two approaches.

3.4.1 Power of the Wald test

When the null hypothesis, H0, is false, T is asymptotically non-central chi-squared,
χ2(r, λ), with r degrees of freedom and non-centrality parameter

λ = (Dβ)TΣ−1
D (Dβ), (5)

i.e., the non-centrality parameter is calculated by replacing the estimated parameters
in the Wald test statistic by their true values [111]. The statistical power of the Wald
test can then be calculated analytically by the formula

γ = P (χ2(r, λ) > χ2
α(r)), (6)

where χ2
α(r) is the upper-α quantile of the chi-squared distribution with r degrees of

freedom. The power of rejecting H0 at a fixed significance level α is thus completely
determined by the number of degrees of freedom and the non-centrality parameter.
For a fixed value of r, the power increases as the non-centrality parameter increases.

3.4.2 Monte Carlo simulations

The statistical power of a test can also be estimated by a Monte Carlo method in
which the test procedure is replicated multiple times under given conditions. The
observed power will then be the proportion of significant tests among the replicates.
The following algorithm describes the Monte Carlo approach for power estimation,
given a preselected value of the effect size and other necessary parameters concerning
the test.

1. For each replicate, indexed by j = 1, . . . , J :
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(a) Generate the jth random sample from the given distribution (under the
conditions of the preset parameter values and effect size)

(b) Calculate the test statistic from the jth sample

(c) If H0 is rejected at the nominal significance level α, set Ij = 1. If else,
set Ij = 0

2. Calculate the empirical power by computing the proportion of significant tests
1

J

∑J
j=1 Ij

If the samples are generated from the null distribution, the proportion of significant
tests will then be the observed Type I error rate, i.e., the attained significance level.

Although analytical power calculations are much more time-efficient than brute-
force simulations, asymptotic results may not be valid for small to moderately sized
datasets. The Monte Carlo simulation approach is, on the other hand, a completely
general and robust statistical method for confirming software implementations, com-
puting the empirical power and the empirical significance level, as well as for compar-
ing statistical models and software. It is therefore a useful and valuable supplement
to the asymptotic calculations.

3.5 Power and sample size analysis in Haplin

A considerable part of this thesis involves power analysis in genetic association
studies. The theory underlying the calculations is not new. However, there has
been a lack of software implementation, and a complete setup for power calculations
based on different configurations of the hybrid design has not been available. I will
here describe the Haplin framework for power analysis, which has been written as
part of this PhD project.

3.5.1 snpPower and snpSampleSize

For single-SNP analyses of child effects, the statistical power and sample size can be
computed using the Haplin functions snpPower and snpSampleSize. We assume a
multiplicative dose-response relationship and count the number of “real” case alleles
(the alleles transmitted from parents to affected offspring in case families), “real”
control alleles (all alleles from the control families) and “pseudo-control” alleles (the
alleles from case parents that have not been transmitted to the affected child).
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The case (affected offspring) is the basis of the family-based designs and is always
genotyped in our model. The total number of case alleles is then N1 = 2n1, where
n1 is the number of case families. The total number of control alleles can be written
as N0 = a1n1 + a0n0, where a1 is the effective number of control alleles from a case
family (i.e., pseudo-control alleles), a0 is the effective number of control alleles from
a control family, and n0 is the number of control families.

A single case and a single control (without genotyping their parents) identify two
case alleles and two control alleles, respectively. In this situation, a1 = 0 and a0 = 2.
However, a complete case-parent triad has four alleles, two of which are transmitted
to the case. The two non-transmitted alleles function as pseudo-controls, and a
case-parent triad thus represents two case alleles and two control alleles (a1 = 2).
Moreover, the inclusion of a complete control-parent triad adds four control alleles
(a0 = 4).

The complexity of counting the alleles increases when case dyads or control dyads
are included. If a case and only one of his/her parents are available, there are two
case alleles and one control allele. However, we cannot always deduce which allele
has been transmitted from the genotyped parent. Thus, a1 < 1, and its value
depends on the MAF and RR [112]. A similar argument applies if a control and
only one parent are available for genotyping. We then have three control alleles but
cannot deduce the parent of origin if both the control offspring and his/her parent
are heterozygous. This reduces the effective number of control alleles (a0 < 3). The
results are summarized in Table 6.

When the total number of alleles is counted, the power calculations are similar to
the approach used for a regular case-control design. snpPower calculates the power,
γ, by using the asymptotic normal approximation for the natural logarithm of the
odds ratio (OR), where the relative risks and odds ratios are used interchangeably
due to the rare disease assumption. Hence, the formula is given by

γ = Φ(z − z1−α/2) + Φ(−z − z1−α/2),

where Φ(z) = P (Z ≤ z), i.e., the standard normal distribution function, and

z = ln(OR)/
√

1/(N1p1(1− p1)) + 1/(N0p0(1− p0)).

Here, p0 is defined as the MAF within the control group, and p1 = p0 · OR/(1 −
p0 + p0 · OR) is the MAF within the case group. Thus, for a given number of case
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families, control families, relative risks, minor allele frequencies, and Type I error
rates, the power is readily computed.

The calculations are illustrated with a simple example. If we plan to include 100
case-parent triads in a study, both N1 and N0 equal 200. Assuming an RR (OR)
of 2.0, a MAF (p0) of 0.1 (here, the minor allele is the risk increasing allele), and
a nominal significance level of 0.05, we have that p1 = 2/11 and z = ln(2)/0.299 =

2.32, resulting in a power of γ = Φ(2.32 − 1.96) + Φ(−2.32 − 1.96) = 0.641. The
corresponding snpPower command and its output are

snpPower(cases = list(mfc = 100), controls = list(mfc = 0),

RR = 2.0, MAF = 0.1)

cases.mfc controls.mfc RR MAF alpha power

1 100 0 2 0.1 0.05 0.641071

Please consult the Haplin website or the snpPower help page in R for an explanation
of the arguments and their options.

snpSampleSize is the inverse function of snpPower. For child effects, it calculates
the number of case families and control families needed for a single SNP to obtain
the desired power for specified family designs and given values of relative risks, minor
allele frequencies, and Type I error rates. Applying the result of the above example,
we obtain

snpSampleSize(fam.cases = "mfc", fam.controls = "no_controls",

RR = 2.0, MAF = 0.1, power = 0.641071)

fam.cases fam.controls RR MAF alpha power case.families control.families

1 mfc no_controls 2 0.1 0.05 0.641071 100 0

Explanations and documentation are given on the Haplin website and the help page
in R.

Note that most of the functionality of snpPower is also covered by the more
flexible Haplin function hapPowerAsymp (to be described next), which extends to
power calculations of haplotype effects, PoO effects, maternal effects, GxE effects,
etc. However, snpPower is somewhat easier to use and is therefore a valuable sup-
plement for simple power calculations of single-SNP child effects.
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Table 6: The effective number of control alleles for child effects in the single-SNP situation

Genotyped individuals Control family Case family

a0 a1

mfc 4 2
mf 4 -

mc or fc (3− f(1))* (1− f(OR))*
m or f 2 -

c 2 0
* The effective number of control alleles is derived by subtracting the subset of

ambiguous dyads, where f(OR) =
1−MAF
MAF ·OR

/

(
1 +

1−MAF
MAF ·OR

)2

, and where OR is set

to 1 in control families

3.5.2 hapPowerAsymp

The asymptotic power of the Wald test is calculated by Eqn. (6), where the non-
centrality parameter, λ, is given by Eqn. (5). The main difficulty is the calculation
of Σ, which is computed from the log-linear model accounting for transmission
ambiguities and missing data. The derivation of Σ is given in Additional file 1 of
Paper II.

The asymptotic power to detect an RR of 2.0, using 100 case-parent triads and
a MAF of 0.1, is computed by the Haplin command

hapPowerAsymp(cases = c(mfc=100), haplo.freq = c(0.9,0.1), RR = c(1,2))

In order to calculate Σ, we first need to compute the β values defined in Eqn. (3).
We set β11 = 0 and calculate β1j = log(pj/p1) for j = 2, . . . , K. In this example, we
have that β1 = (0, −2.1972246)T and β2 = β21 = log(2) = 0.6931472 (the first allele
is used as the reference, and β2 is therefore of length 1). Assuming a multiplicative
dose-response effect, β3 is redundant. We then construct the 4-column matrix G,
which includes one column for each of the parental alleles, to list all possible triad
genotypes. The matrix has dimensions q × 4, where q = l4 and l is the number of
alleles at a locus. For a diallelic SNP with alleles 1 and 2,
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G =




AM1 AM2 AF1 AF2

1 1 1 1

2 1 1 1

1 2 1 1

2 2 1 1

1 1 2 1

2 1 2 1
...

...
...

...
2 1 2 2

1 2 2 2

2 2 2 2




,

with dimensions 16×4, where AM and AF denote the maternal and paternal alleles,
ordered such that the second allele from each parent is transmitted to the child.
From G, we construct the corresponding q × p design matrix X for a log-linear
model. It includes columns for estimating allele frequencies, child allele dose effects,
maternal dose effects, etc., depending on the estimation model of interest. In our
example, the design matrix is

X =




A1 A2 Ac

4 0 0

3 1 0

3 1 1

2 2 1

3 1 0

2 2 0
...

...
...

1 3 1

1 3 2

0 4 2




,

where the first and second columns count the number of alleles A1 and A2 in each
row of X, respectively, and the third column counts the number of variant alleles
(here, A2) inherited by the child. We then compute the expected number of triads
in each row, m = exp(Xβ), and the calculation of Σ now follows from Additional
file 1 of Paper II (scaled to the correct sample size). Here, we are interested in
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the power to detect an RR of 2.0 for the minor allele A2, which corresponds to the
parameter β21. Consequently, λ = β2

21/σ
2
β21

= 0.69314722/0.08916667 = 5.388258

and P (χ2(1, 5.388258) > χ2
0.05(1)) = 0.641071, which is equivalent to the power

attained using snpPower.
Since hapPowerAsymp is integrated as part of the general analysis framework in

Haplin, the value of Σ is readily attainable. This facilitates power calculations for
different scenarios, such as for PoO and maternal effects, as well as extensions to
GxE and haplotype effects. As Haplin is extended (e.g., to allow other study designs
or genetic effects), corresponding power calculations will readily follow.

3.5.3 hapRun and hapPower

Haplin also includes a complete setup for power analysis through Monte Carlo sim-
ulations. The Monte Carlo approach to power calculation is described in Section
3.4.2, and the algorithm is implemented in Haplin via the two companion functions
hapRun and hapPower. First, hapRun simulates haplotype data under the conditions
of the given effect size and parameter values, in which triad genotypes are generated
from the multinomial distribution (step 1a in the Monte Carlo algorithm). The
multinomial probabilities are calculated by listing all possible genotype combina-
tions in the triad format and then applying the sampling model in Eqn. (2) (or
an adapted parameterization depending on the genetic effect in question). For a
diallelic SNP, the multinomial distribution for a child effect is given in Table 4. If
control-parent triads are added to the analysis, we set RR = 1 and RR∗ = 1 in the
multinomial. Next, hapRun runs Haplin on the simulated data, i.e., performs the
statistical inference, and outputs the results (step 1b). This output is then fed to
hapPower, which subsequently performs the power calculations by computing the
proportion of p-values less than the nominal significance level (steps 1c and 2).

The power simulations in Haplin are general, and hapRun enables power calcula-
tions for a wider range of parameterization models than the current implementation
of hapPowerAsymp. hapRun can also handle a composite of several child-parent
configurations, and it permits missing individuals to be generated at random (see
Additional file 2 of Paper II). Brute-force simulations are, however, time-consuming,
and parallel processing has been implemented to speed the analyses. With four CPU
cores (2.8 GHz per core), a regular power calculation of child effects takes less than 4
minutes using 10,000 data replicates of 200 case-parent triads for a diallelic SNP. A
similar power calculation for PoO effects takes approximately 5 minutes. Examples
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and relevant Haplin commands for hapRun and hapPower are given in Additional
file 2 of Paper II.

3.5.4 hapRelEff

hapRelEff computes the relative efficiency of two study designs. The variance for
the relevant parameter estimator is calculated for each of the two designs and then
compared. The number of genotyped individuals is taken into account. Thus, each
individual is given the same cost regardless of disease status and regardless of being
a child, a mother, or a father. Note that different costs (e.g., between cases and
controls) can be inferred but are not considered in the current version of hapRelEff.
The relative efficiency is calculated based on the asymptotic variance-covariance
structure of the parameter estimator (Additional file 1 of Paper II), although a
simulation procedure would be equally applicable.

I will illustrate the calculations with an example of PoO effects, comparing the
mfc-mfc design (using an equal number of case and control families) with the mfc
design, assuming a multiplicative dose-response relationship. For each design, we
extract the relevant element from Σ (corresponding to the parameter of interest and
scaled to a single design unit) and calculate

mmfcω
2
mfc

mmfc-mfcω2
mfc-mfc

,

where mmfc and mmfc-mfc are the number of genotyped individuals for the mfc and
mfc-mfc designs, respectively, and ω2

mfc and ω2
mfc-mfc are the variances representing

a single design unit, as explained in Appendix 1 of Paper III. For this example, we
observe that ω2

mfc = ω2
mfc-mfc, regardless of the MAFs and the relative risk values.

Since mmfc = 3 and mmfc-mfc = 6, the relative efficiency equals 1/2, favoring the mfc
design. Examples and relevant Haplin commands are given on the Haplin website
and the R help page.

3.6 The EMIM software

For external validation of Haplin results, comparisons with other software are use-
ful. Similar to Haplin, the companion programs PREMIM and EMIM are easy-to-
use command-line tools for genetic association analysis of child, PoO, and mater-



Case-parent triad study: illustration of analysis with cleft palate only data 59

nal effects on autosomal markers, tailored to genotype data from several different
child-parent configurations [104–106]. While PREMIM extracts genotype data from
PLINK-format pedigree files (e.g., .ped or .bed files) [113] and generates the re-
quired input files for EMIM, EMIM performs the subsequent statistical analyses.
PREMIM and EMIM are written in C++ and FORTRAN 77, respectively, and
the run time is therefore faster than Haplin, which is implemented in R. The
computational speed is an advantage for GWAS analysis. The statistical analyses
in EMIM are performed using a multinomial modeling procedure which permits
the simultaneous consideration of a variety of child-parent configurations. A range
of different parameterization models and optional likelihood assumptions are al-
lowed, including HWE and random mating. The equivalence between log-linear and
multinomial models [114] implies that the modeling approaches used by Haplin and
EMIM should provide equivalent inference. However, instead of fitting log-linear
models for unobserved variables (ambiguities) via the EM algorithm, EMIM maxi-
mizes the multinomial likelihood directly via a maximization subroutine (MAXFUN,
http://darwin.cwru.edu/sage). In order to perform the actual hypothesis tests,
PREMIM and EMIM must be combined with external software (such as R), and
there are no built-in commands for post-processing of results. Power computations
are not implemented in EMIM, and several external steps are required to calculate
the attained power of analysis, including data simulations and the computation of
test statistics and corresponding p-values resulting from the EMIM analysis.

Information on EMIM and PREMIM is available from https://www.staff.

ncl.ac.uk/richard.howey/emim. Details on the multinomial modeling approach
and the various parameterization models used by EMIM have been described by
Ainsworth et al. [104].

3.7 Case-parent triad study: illustration of analysis with cleft

palate only data

From a previously published GWAS [115–117], genotype data and information on
maternal periconceptional cigarette smoking were available for 550 isolated CPO
families, including 466 complete case-parent triads. The CPO families stem from
an international cleft collaboration which comprises both European/US and Asian
populations. GWAS details have been provided in the original publication [115],
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and characteristics of the study population and information on quality control have
been given by Haaland et al. [59]. The GWAS dataset is available from the db-
GaP database (https://www.ncbi.nlm.nih.gov/gap) under study accession ID
phs000094.v1.p1. We used the CPO data to demonstrate both our PoOxE test in
Paper I and the relative efficiency estimates in Paper III. For the purpose of illustra-
tion, only a few SNPs were selected from the GWAS data, and a full genome-wide
scan has not been performed as part of this thesis.

3.8 A brief overview of statistical methods and materials,

Papers I—III

In all papers, Haplin is the main tool for analysis. Thus, log-linear models form
the basis for the new methodological developments and software implementations.
Statistical inference is based on the Wald test, and a multiplicative dose-response
model has been assumed.

3.8.1 Paper I

We developed a new statistical and computational tool to estimate and test for
PoOxE effects in a GWAS. The method can be described as a two-step approach.
We first fit the log-linear model separately in each exposure stratum and then apply
a Wald-based post-test to assess whether the PoO estimates deviate significantly
across the exposure levels. The interaction approach was implemented in Haplin.
As an illustration of the methodology, we applied the PoOxE test to top hits from
previous published GWAS with case-parent triad data on CPO, assessing whether
maternal smoking during the periconceptional period modifies the PoO effects. We
used the same genetic triad data as applied in previous studies [59, 116, 117] and
therefore stress that our examples and the corresponding results function only as
an illustration and not as an independent replication of findings. Lastly, we evalu-
ated the performance of the PoOxE test. Power calculations were mainly performed
using asymptotic approximations (hapPowerAsymp). However, the attained signifi-
cance level and the small-sample behavior were investigated through Monte Carlo
simulations (hapRun and hapPower).
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3.8.2 Paper II

We developed an extensive setup for power calculations in Haplin, including both
analytical calculations using the non-centrality parameter for the Wald test statistic
(Section 3.4.1 and 3.5.2) and a straightforward Monte Carlo simulation approach
(Section 3.4.2 and 3.5.3). In Paper II, we compared the asymptotic power approx-
imations (using hapPowerAsymp) to the power of analysis attained in simulations
with Haplin (using hapRun and hapPower). For external validation, we further com-
pared the results to the power of analysis attained in simulations using the EMIM
software. For power analysis in EMIM, the Haplin function hapSim was used to sim-
ulate the genotype data. We then converted the data to standard PLINK-format
files, which we subsequently fed into PREMIM and EMIM for analysis. Our primary
focus was on child, PoO, and maternal effects.

3.8.3 Paper III

We provided insights into how relevant study designs compare in terms of relative
(Pitman) efficiency and illustrated the methodology with extensive analyses for a
range of genetic effects and etiologic scenarios based on asymptotic approximations.
Our main focus was on child (regular autosomal), PoO, and maternal effects, and
both single SNPs and haplotypes were assessed. Moreover, to facilitate relative
efficiency analyses in other scenarios, we implemented the calculations as an easy-
to-use function in Haplin (hapRelEff, Section 3.5.4). As a demonstration, we also
compared the empirical efficiency of the case-mother dyad design with that of the
case-parent triad design using preselected SNPs from the CPO data.

3.9 Ethical considerations and consents

Paper I and Paper III Ethics approvals for the cleft consortium were obtained
from the respective ethics committees at each institution in the collaboration. For
details on the recruitment sites, the research approvals, and protocols, please consult
the online “Supplementary Note” of the original publication [115], as well as the study
outline for these publicly available data at dbGaP (https://www.ncbi.nlm.nih.
gov/gap) under study accession ID phs000094.v1.p1.
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Paper II The work presented in Paper II is based on analytic formulas and Monte
Carlo simulations and does not include any research on human subjects or human
data. Hence, no specific ethical approvals are required.



63

4 Summary of main results

4.1 Paper I

We developed new methodology to assess PoOxE effects in case-parent triads with
or without unrelated control families. We illustrated that PoOxE effects can oc-
cur even in the absence of separate PoO or GxE effects. Haplin allows for parallel
processing of analyses, and the run time of a genome-wide PoOxE scan is there-
fore satisfactory. The power to detect a PoOxE effect is approximately 80% using
a nominal significance level of 5%, a relative risk ratio of 1.6 (RRM,2 = 1.6 and
RRM,1 = RRF,1 = RRF,2 = 1), a MAF of 0.2, and a total sample size of 2000
case-parent triads with equally sized exposure groups. However, changing the nom-
inal significance level to 5 · 10−8, a total of 10,000 case-parent triads are needed to
reach the same power. Since the PoOxE analysis tests for a second-order interac-
tion effect, a larger sample size is required for the PoOxE test to achieve the same
power compared with tests for similar PoO or GxE effects. We also showed that the
PoOxE test is asymptotically unbiased. However, when the number of case families
is too small in one or several exposure groups, the attained significance level may
not match the nominal.

The layout of Table 1 and Table 2 in the published article makes them somewhat
difficult to read. The tables, in their submitted versions, are therefore attached in
Appendix II.

4.2 Paper II

Based on log-linear modeling, we implemented a complete setup for power calcu-
lations in Haplin. Statistical power calculations can be performed for child, PoO,
maternal, and GxE effects, and an inherent strength of the Haplin framework is the
ability to compute power for both single SNPs and haplotypes, either autosomal
or X-linked. Moreover, Haplin accommodates family-structure in data, and a wide
range of study designs are therefore applicable for power analyses.

In Paper II, we showcased the functionalities for power analysis in Haplin by
extensive examples. For the mfc, mc, mfc-mfc, and mc-mc designs, we illustrated
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that the statistical power to detect a given child effect is identical to that of a
maternal effect when adjusting for the possible confounding of the effects with one
another. Furthermore, we showed that unrelated control-parent triads do not add
extra power to the mfc design when investigating PoO effects.

Statistical power analyses in Haplin can be carried out in two ways, either an-
alytically by using the asymptotic variance-covariance structure of the parameter
estimator, or else by using a straightforward Monte Carlo simulation approach. We
showed that the two procedures for power calculation provide similar results. For
external validation, we further compared the Haplin power calculation module to
the power of analysis attained in simulations with EMIM. The consistent results
observed between Haplin and EMIM across different study designs and genetic pa-
rameterization models confirm the computational accuracy of the statistical infer-
ence methods used in both software. They also show that the power calculations
in Haplin are applicable to genetic association studies analyzed by either log-linear
or multinomial modeling approaches. In summary, the results indicate that Haplin
provides a versatile and robust framework for power calculations in genetic associ-
ation analyses for a broad range of different genetic effects and etiologic scenarios,
based on a variety of family-based study designs.

4.3 Paper III

In Paper III, we argued for augmenting power analysis with relative efficiency when
designing a genetic association study. We introduced a comprehensive framework
for relative efficiency estimation and provided insights into how relevant designs
compare according to relative efficiency. The methodology was illustrated with
analyses of child (regular autosomal), PoO, and maternal effects, using the Pitman
efficiency.

Our findings relate to power and efficiency considerations only. For child effects,
the c-c design is recommended, and an equal number of cases and controls maximizes
the efficiency. For a PoO analysis, optimal efficiency is achieved for the mfc or mc/fc
design, depending on the MAF. We also observed that unrelated controls or control
families would not increase the power attained by the mfc design, as previously
indicated in Paper II. For maternal effects, the results suggest that the mfc design
would be an overall good choice when adjusting for child effects, whereas the mfc-c
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or mc-mc design would be appropriate when adjusting for PoO effects.
In a search for child or PoO effects, we found that an adjustment for maternal

genes could cause a substantial loss of power. Hence, we do not recommend including
maternal effects in a full GWAS scan for child or PoO effects. As an alternative, we
propose additional post-scan analyses to control for the possible confounding.

We also showed that the relative efficiency depends on both the genetic effect in
question and the MAF of a given SNP. The results presented are thus subject to the
investigated parameter values and should not be interpreted as general guidelines.
Furthermore, practical issues should always be taken into consideration, such as the
availability of parental genotypes or an appropriate control sample, as well as costs
related to recruitment and phenotyping. Nevertheless, relative efficiency is a useful
measure for optimizing the study design, and a careful review of relevant designs
should be performed as a routine prior to performing a GWAS.
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5 Discussion

The log-linear model in Haplin forms the basis of this thesis, and the new methodolo-
gies and developments have been integrated into this framework. However, several
other statistical software have also been designed for genetic association analysis,
permitting the estimation and testing of genotype relative risk parameters similar
to those investigated in Haplin. Although a complete listing and comparison are
beyond the scope of this thesis, I will nonetheless briefly review some of the most
commonly used tools. I will also mention some of the most prominent power calcu-
lation software for genetic association testing. Further, I will discuss some general
methodological issues that are relevant to the papers herein. Genetic effects and
study designs in genetic association testing are the primary objectives of the thesis.
I will, therefore, summarize this section with a few additional remarks on these topics
that have not been fully discussed in Papers I—III. Specific discussion points from
the individual papers will not necessarily be repeated. Strengths and limitations
will be discussed consecutively.

5.1 Statistical software for genetic association analyses

The most widely used software for whole-genome association and population-based
linkage analyses is PLINK. The original paper about this software [113] has been
cited more than 13,000 times according to the Web of Science Core Collection (apps.
webofknowledge.com; accessed October 9, 2019). PLINK was developed to perform
a number of basic, large-scale analyses. It is a computationally efficient tool for data
management, quality control, and GWAS. However, few family-based association
tests are incorporated in the software, and a complete setup for likelihood-based
estimation is lacking. The ability of PLINK to detect PoO effects is limited to
an intuitive TDT-like approach, which, as noted in Section 1.8, is not generally
statistically valid [50, 98]. Both Haplin and EMIM, which are investigated in this
thesis, are able to handle input data from PLINK. The software can therefore be used
in combination. For example, PLINK can be used for the initial data management
and quality control, whereas Haplin or EMIM can be applied for the actual testing
of the genotype relative risk parameters. Note, however, that PLINK holds several
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functionalities for association testing that are not implemented in Haplin or EMIM,
including quantitative trait and sibship analysis.

Another well-established and flexible tool for genetic association analysis of bi-
nary and quantitative traits is UNPHASED [64]. A variety of family-based study
designs, including sibship data, can be analyzed using UNPHASED, and missing
genotype data are handled through direct maximization of the incomplete-data likeli-
hood. UNPHASED can perform haplotype analysis on both autosomal and X-linked
data, and modification of haplotype relative risks according to the parent of origin
has also been implemented. In addition, UNPHASED can run a sliding-window
analysis over a selection of markers, similar to Haplin. Although a sliding-window
approach is convenient for GWAS analysis, UNPHASED is not designed for this
purpose. Dudbridge, the author of UNPHASED, suggests that GWAS packages
(e.g., PLINK) should be used for the initial quality control and analysis [118]. UN-
PHASED could then be applied to verify promising findings in situations where its
approaches are more efficient, such as family-based studies with incomplete parental
information or haplotype analysis. A comparison of family-based methodologies for
assessing haplotype effects on the X chromosome showed that Haplin has more con-
sistent Type I error rates and better power than UNPHASED, even when HWE
is not fulfilled [119]. However, the comparisons were conducted under simulated
scenarios corresponding to X-chromosome models that are available in Haplin, thus
optimizing the performance of Haplin.

Another genetic analysis software, Mendel, performs likelihood-based statistical
analysis of binary and quantitative traits for a wide range of genetic problems, cover-
ing both parametric linkage in large pedigrees and genome-wide association analysis
of rare alleles [120, 121]. Mendel encompasses several options for association testing,
including the maternal-fetal genotype (MFG) incompatibility test for assessing both
child and maternal effects as well as mother-child interaction effects [57]. The MFG
test for binary traits is also implemented in EMIM, and a comparison of EMIM and
MENDEL showed similar inference. However, EMIM is faster and provides an easier
implementation of various parameterization models [105]. Although the MFG test
was developed using a log-linear modeling approach for case-parent triads, it has not
yet been implemented in Haplin. Thus, power calculations and relative efficiency
measures for the MFG test are currently lacking, and the incorporation of the MFG
test would have been advantageous to this thesis.

Similar to Haplin, LEM (Log-linear and event history analysis with missing data
using the EM algorithm) [122–124] is also based on log-linear modeling and designed
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to analyze child, PoO, and maternal effects in family triads. Howey and Cordell [105]
demonstrated that the inference provided by EMIM and LEM is similar, which
is as expected due to the mathematical equivalence between the multinomial and
log-linear model [104, 114]. However, EMIM is considerably faster. For PoO and
maternal effects, Connolly and Heron [50] reviewed different statistical methods
for binary traits and compared them according to Type I error rates, statistical
power, and suitability for studying different etiologic scenarios. The multinomial
model in EMIM was recommended because EMIM has the most consistent Type I
error rate, attains the strongest power, is easy to implement, and offers additional
flexibility. Regrettably, Haplin was not included in that review, but the comparisons
between Haplin and EMIM in Paper II showed similar inference across multiple
genetic effects and study designs. We have also conducted extended analyses using a
lower significance threshold (α = 10−4) than what was demonstrated in Paper II, and
the close correspondence between EMIM and Haplin still holds (results not shown).
Hence, EMIM and Haplin are both reliable and versatile approaches for performing
genetic association analysis based on genotype data from a wide range of child-parent
configurations, offering, to a broad extent, similar functionalities. The advantage
of Haplin is that it is able to examine both X-linked and GxE effects. EMIM, on
the other hand, allows a variety of likelihood assumptions other than HWE, such
as mating symmetry [99], parental allelic exchangeability [83] and a “conditional
on parental genotype” model [102]. The different likelihood assumptions will be
discussed further in Section 5.2.2.

There are also several other software that deserve to be mentioned. TRANSMIT
[125] was one of the first software to test for association between a genetic marker
and a disease trait by investigating the transmission of markers from parents to af-
fected offspring. It can handle missing parental genotypes as well as the transmission
of multi-locus haplotypes, even when the haplotype phase is unknown. The TRIad
Multi-Marker (TRIMM) method [126] was designed to detect risk-related haplo-
types by applying multiple SNPs from case-parent triads directly without having
to infer haplotypes. TRIMM offers a non-parametric approach for testing multi-
ple SNPs simultaneously. It can accommodate deviations from HWE, population
structure, and non-negligible rates of recombination, and the methodology can be
used to investigate child, PoO, and maternal effects. Although TRIMM is better
at detecting associations dominated by a single SNP or haplotype, Haplin performs
better when several risk-associated haplotypes are involved [127]. The Bioconduc-
tor package trio [128] in R specializes in genome-wide analyses of case-parent triad
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data, and both TAT [99] and the parent-of-origin likelihood ratio test (PO-LRT) [98]
have been included to detect PoO effects. I will end this section by acknowledging
GenABEL [129], an R package designed to handle GWAS data in a memory-efficient
way, facilitating both data management and quality control in R as well as GWAS
analysis. Up until 2018, Haplin depended on GenABEL to convert .ped files to
Haplin format. Unfortunately, GenABEL was discontinued and removed from the
CRAN repository in May 2018 due to lack of maintenance.

5.1.1 Power calculation software

Genetic Power Calculator (GPC) is an easy-to-use tool to calculate statistical power
for linkage and association mapping [92]. The paper by Purcell et al. [92] has
been cited nearly 1650 times according to the Web of Science Core Collection
(apps.webofknowledge.com; accessed October 9, 2019), reflecting its valuable con-
tribution to the research community. Another well-known power calculation software
for genetic studies is Quanto, which offers power and sample size computations for
child effects, GxE, and gene-gene interactions [130–132]. GPC and Quanto are both
based on closed-form analytic power formulas. They can perform power calculations
for both quantitative and binary traits, and power analysis of sibship data is also in-
corporated. Nevertheless, only a limited number of study designs are available that
accommodate parental information and family structure. Moreover, power analyses
of PoO and maternal effects have not been implemented, and power calculations
involving X-linked markers or haplotypes are not available in the modules imple-
mented to date in either software. Unfortunately, neither GPC nor Quanto seem
to have been updated in recent years. Notably, several of the modules in GPC are
undocumented and unsupported, and the latest version of Quanto was released in
2009.

The PBAT software [133, 134] includes a unified approach to the family-based
association test (FBAT) [135], which is a generalization of the TDT. It incorporates
nearly all of the features of the preceding FBAT package [136] but also provides
power calculation functions for binary and quantitative disease traits, thus accom-
modating a wide range of family- and population-based study designs with the ability
to handle missing parental genotypes [137–139]. Similar to Haplin, PBAT includes
functionalities for verifying the analytical power calculations by Monte Carlo simula-
tions. Although a thorough comparison between the power functionalities of Haplin
and PBAT would be useful, PBAT and FBAT have been incorporated in the com-
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mercialized Golden Helix Foundation software (https://www.goldenhelix.com),
thus preventing the widespread use of their tools in academic research.

The analytical power calculations in Haplin are general; we apply the asymp-
totic normal distribution of the log-transformed relative risk and relative risk ratio
parameters and use the non-centrality parameter for the test statistic. The power
functions in Haplin are implemented as part of a unified analysis setup. This makes it
easy to extract the variance-covariance matrix needed to compute the non-centrality
parameter in different scenarios. As additional methods of analysis are developed
and implemented in Haplin, corresponding power calculations can readily be incor-
porated, both analytically and through simulations. Hence, further advancements
of power functionalities are more easily achievable in Haplin than in independent
power calculation software that are based on closed-form analytic equations for each
situation (i.e., not integrated as part of a general analysis framework).

Our power calculations are, nevertheless, restricted to binary disease traits. Even
though power calculations for quantitative traits can also be performed based on
the non-centrality parameter for the Wald test statistic, the quantitative-trait non-
centrality parameter cannot be calculated within the current Haplin setup. In Hap-
lin, quantitative traits such as birth weight or gestational length can be analyzed
by dichotomizing the outcome variable. For example, gestational length may be
assessed by assigning the cut-off at preterm birth, defined as birth prior to 37 com-
pleted weeks of gestation [140]. However, the dichotomization of quantitative vari-
ables may cause several problems, and valuable information can be lost [141]. For
analytical power calculations of quantitative traits, please consult the recent publi-
cation of Wang and Xu [111].

5.2 Methodological considerations and limitations

For our PoOxE calculations in Paper I, we assumed independence between exposure
and the child’s genotype conditional on parental mating type. However, I will show
here that this constraint can be relaxed, as previously derived in our recent paper
[61]. The reliance on the HWE assumption has been a matter of some debate, and
several alternative likelihood assumptions have been introduced in the literature. A
short summary of the most important parameterizations will be provided below.

Owing to the excessive number of SNPs being tested in a GWAS, issues of
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multiple comparisons are of major concern in whole-genome association testing.
Although methods for handling multiple testing are beyond the scope of this thesis,
a few general remarks will be provided in Section 5.2.3.

5.2.1 The assumption of conditional independence between exposure
and child genotype given parental genotypes

The standard log-linear model describes the probability of the case-parent triad
genotype, conditional on the child being a case, and can be parameterized as

P (M,F,C|D) =
P (D|M,F,C)P (M,F,C)

P (D)
.

If we assume that information about the parental genotypes is irrelevant for the
disease penetrance when the genotype of the child is known, we have that

P (M,F,C|D) =
P (D|C)P (M,F,C)

P (D)
,

as explained in Section 3.1. With a categorical exposure variable, E, included, the
analogous parameterization is

P (M,F,C,E|D) =
P (D|C,E)P (E|M,F,C)P (M,F,C)

P (D)
,

assuming that the parental genotypes for the disease penetrance are irrelevant when
the child’s genotype and exposure status are known. To estimate GxE effects in case-
parent triads, a standard constraint is independence between C and E conditional on
parental genotype, i.e., P (E|M,F,C) = P (E|M,F ) [79, 142]. Note that (M,F,C)

here denotes the unordered triad type, as opposed to the strict ordering used in
Section 3.1. The sampling model can be expressed as

P (M,F,C,E|D) =
P (D|C,E)P (E|M,F )P (M,F,C)

P (D)

=
P (D|C,E)P (M,F |E)P (C|M,F )P (E)

P (D)
,

where P (D|C,E)P (M,F |E)P (C|M,F ) corresponds to a stratum-specific log-linear
model. Since P (E) and P (D) are constant within a stratum, the log-linear model
can be fitted directly within each stratum (see Section 3.1).

When estimating PoOxE effects (Paper I), the sampling model can be parame-
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terized as

P (M,F,Cjl, E|D) =
P (D|Cjl, E)P (E|M,F,Cjl)P (M,F,Cjl)

P (D)
,

where Cjl = AjAl denotes that allele Aj is inherited from the mother and allele
Al is inherited from the father. Assuming that P (E|M,F,C) = P (E|M,F ), we
could proceed as for the child effects. However, to estimate the ratio RRRj =

RRM,j/RRF,j within each stratum, a less stringent assumption would suffice [61].
With the constraint that

P (E|M,F,Cjl) = P (E|M,F,Clj) = P (E|M,F,C), (7)

i.e., the alleles of the child may affect the exposure directly, even within parental
mating types, but the effect should not depend on parental origin, we have that

P (M,F,Cjl, E|D) =
P (D|Cjl, E)P (M,F |E)P (C|M,F,E)P (E)

P (D)
· P (Cjl|M,F )

P (C|M,F )
,

where the latter fraction depends on Mendelian inheritance. For the standard eval-
uation in Haplin, the log-linear model is fitted within each exposure stratum. How-
ever, since P (C|M,F,E) may depend on both E and the (unordered) C = AjAl, the
separate within-stratum estimates of RRM,j and RRF,j may be biased. Nevertheless,
for the ratio RRRj = RRM,j/RRF,j obtained in each stratum, the bias cancels out
if Eqn. (7) holds true. The different assumptions required for GxE and PoOxE
analyses for a variety of study designs have previously been described in our recent
paper [61].

An example where the conditional independence assumption P (E|M,F,C) =

P (E|M,F ) could fail, possibly biasing the GxE estimate, is if the variant allele itself
directly affects an individual’s propensity for the exposure, either through appetite
or aversion. For instance, an individual’s reluctance toward excessive alcohol intake
may be associated with a genetic variant that slows the detoxification of alcohol
[143]. However, unless this mechanism depends on the parent of origin, the PoOxE
estimate would still be valid.
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5.2.2 Deviations from HWE

The triad population frequencies P (M,F,C) = P (AiAj, AkAl) can be parameterized
in different ways. The basic implementation in Haplin employs haplotype-frequency
parameters under the HWE assumption. Thus, P (M,F,C) = pipjpkpl, where pi is
the population frequency for allele Ai, with the constraint that

∑
i pi = 1. While

HWE is a reasonable assumption in random mating populations, it is disputed in
populations with substructures. The case-parent triad design inherently protects
against population stratification, but some of this protection is lost if the HWE
assumption is not satisfied. To avoid the HWE constraint, Wilcox et al. [52] and
Weinberg et al. [99] made the less strict assumption of “mating symmetry” and
introduced six mating type parameters, µ1− µ6, as shown in Table 7. However, the
number of parameters can be reduced in the presence of inbreeding or population
stratification, situations which typically cause an excess in the observed proportion
of homozygotes from what would be expected under HWE [144]. Gjessing and
Lie [16] suggested modeling such deviations by the triad frequencies P (M,F,C) =

pipjp
∗
ijpkplp

∗
kl, where p∗ii = p∗i for each homozygote and p*ij = 1 for all heterozygotes.

This parameterization has been implemented as an addition to the standard HWE
model in Haplin, but it is not yet available in the official version.

Several other constraints have been proposed in the literature. For example, the
“conditional on parental genotypes” (CPG) introduces as many as nine mating type
stratification parameters, µ1 − µ9 (Table 7) [83, 101, 102]. This model should be
more robust to departures from mating symmetry or HWE but loses statistical power
compared with corresponding models with fewer parameters [105]. The “parental
allelic exchangeability” (PAE) assumption asserts that the four alleles carried by
a pair of parents in the source population are randomly distributed among them
[83, 126]. In the context of the parameterization of Wilcox et al. [52] and Weinberg
et al. [99], this corresponds to setting µ4 = µ3 (Table 7). This restriction is slightly
stronger than mating symmetry but considerably weaker than HWE since it still
allows populations with substructures.

The HWE assumption reduces model complexity. Hence, HWE simplifies com-
putations and improves the computational efficiency in Haplin. It also facilitates
haplotype reconstruction; the parameterization of Table 4 in Section 3.1 is readily
extended to haplotype analysis. Such extensions would become more cumbersome
with the parameterization outlined in Table 7, where the multinomial is catego-
rized according to the number of copies of the variant allele carried by the mother,
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father, and child. While fewer parameters lead to a more constrained model, the
statistical power is increased, provided the model is correct. As a consequence, a
power analysis in Haplin would typically overestimate the power of log-linear or
multinomial models adopting the mating type parameter approach. Comparisons
of different constraints in EMIM show that the power to detect an association de-
creases as one makes less restrictive but potentially more robust constraints [105,
Figure 2]. The decrease in power is more pronounced for child and maternal effects
than for the EMIM maternal imprinting effects. The loss of power is also greater
at lower significance thresholds. Nonetheless, most researchers would not have suf-
ficient knowledge at the planning stage of a study to be able to realistically specify
possible configurations of mating type parameters.

Since the default implementation in Haplin uses the HWE assumption, an ana-
lysis scheme should always include a strategy for investigating large deviations from
HWE. Haplin performs a chi-squared test for HWE on all SNPs as an automated
part of all analyses. Thus, as a routine, top hits from a GWAS analysis in Haplin
should be checked post hoc to prevent spurious associations caused by, for instance,
population stratification, genotyping errors, or deviations from Mendelian transmis-
sion.
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5.2.3 Multiple testing issues

In Paper II, the analyses were carried out using a nominal significance level of
α = 0.05, assuming that there is only a single locus (i.e., one hypothesis) under
investigation. As there are several hundred thousand SNPs in a GWAS, it is cru-
cial to correct for multiple comparisons. The most common way of adjusting for
multiple testing is by using the Bonferroni corrected significance level, defined by
αBonferroni = α/m, where α is the family-wise significance level and m is the num-
ber of (independent) hypotheses being tested. The Bonferroni method controls the
family-wise error rate (FWER) at level α, i.e., guarantees that the probability of
making at least one Type I error does not exceed the given significance threshold.
Another well-established method for controlling the FWER is the Šidák correction,
defined by αŠidák = 1 − (1 − α)1/m, which is marginally less conservative than the
Bonferroni adjustment. Both of these methods are easily handled by the Haplin
power calculation modules, by modifying the significance level to the appropriate
threshold. Power analyses investigating different FWER thresholds (more relevant
to a GWAS) were performed in Paper I.

The commonly used Bonferroni and Šidák corrections are overly conservative
when the tests are not statistically independent. This would be the situation in
a GWAS, since a large proportion of SNPs are in LD. Modifications have been
suggested to allow correlations between adjacent SNPs, for example by evaluating
the effective number of independent tests [8]. The widely adopted genome-wide
significance threshold of 5 · 10−8 is equivalent to a Bonferroni adjustment of 106

tests, assuming that dependencies between neighboring SNPs are so strong that a
full GWAS search corresponds to conducting 106 tests, regardless of the number of
SNPs actually being tested [93].

Instead of controlling the FWER, however, another approach entails controlling
the false discovery rate (FDR), i.e., the expected proportion of true null hypotheses
among the null hypotheses that have been rejected [145]. If the FDR is controlled
at the 0.05 level, this approach ensures that no more than 5% of the reported
significant findings will be false positives. The FDR method is less conservative
than the FWER corrections, resulting in better power to reject the null hypothesis
when the alternative hypothesis is true. Thus, sample size estimation for a specified
number of true rejections, while controlling the FDR at a given threshold, would
be of great importance in genetic studies. However, these calculations would also
depend on the effect sizes among the true positives [146], which is normally unknown.
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Although sample size calculations under FDR control could be obtained through
simulations, the incorporation of such procedures is beyond the scope of this thesis.
They would be a useful extension to the power calculation module in Haplin in
future developments of the software.

5.3 Genetic effects and study designs

The GWAS is used to identify associations between genetic markers and traits in
samples from populations, with the primary aim of increasing knowledge of disease
biology [3]. A straightforward GWAS search for child effects may discover several
markers associated with the disease. However, even when a marker allele is the actual
disease-causing allele, the translation from a GWAS finding to biology is fraught
with difficulties, as one may not understand the underlying mechanisms causing
the statistical association. For example, if RRM = 2 and RRF = 1, an attenuated
association might still be detected in a search for child effects, although the effect is
maternally inherited. Hence, statistical methodologies that can distinguish between
various casual models are essential not only for the identification of new disease loci
but also for advancing the understanding of the biological mechanisms involved [26].

The power to detect complex scenarios, e.g., interaction effects, in a full GWAS
analysis is generally limited, and a strategy for selecting candidate genes would
help to reduce the number of tests. For PoO effects, the search could be limited
to imprinted genes, or, alternatively, to top hits from a GWAS scan for child ef-
fects. However, these types of candidate-gene approaches have suffered from poor
replication rates in follow-up studies [30], and the optimal strategy is not known a
priori.

Numerous studies have aimed to detect GxE and PoO effects separately for
a large number of traits and diseases [40, 116, 117]. However, because maternal
environmental factors affecting methylation patterns might also influence the effects
of maternally and paternally inherited alleles in unequal measure, it is reasonable
to assume that the joint interaction effect may also affect the risk of a complex
disease. In 2011, Wang et al. [147] developed a logistic regression approach for
detecting interactions between imprinted genes and environmental exposures using
birth cohort designs with mother-offspring pairs. Although the need to develop
methods for analyzing PoOxE effects has been warranted [26, p. 616], the procedure



78 Discussion

has had relatively little impact in terms of citations (cited six times in the Web of
Science Core Collection (apps.webofknowledge.com; accessed November 10, 2019)).
Three notable limitations of their approach are the restriction of study design, the
inability to account for maternal effects, and the lack of implementation in software.
Our recently developed PoOxE test (Paper I) is based on log-linear modeling and
can readily be adapted to accommodate these limitations. The ability to integrate
a wide range of family-based study designs improves estimation by using all the
available information. Analyses are not restricted to a fixed design; genotype data
from various child-parent configurations can be combined, such as a mixture of case-
parent triads and case-mother dyads, possibly supplemented by unrelated cases and
controls. Furthermore, the inclusion of the methodology in Haplin is a prerequisite
for ease of use, and researchers can readily apply our functions to investigate PoOxE
effects in their own data.

When investigating a GxE or a PoOxE effect, the environmental exposure may
refer to an individual’s exposure to, for example, alcohol, smoking, diet, or exercise.
However, when studying birth defects, the environmental exposure will typically
refer to a maternal exposure. It may also refer to a stratification factor, such as
ethnicity or study site. In Paper I, the exposure of interest was maternal smoking
during the periconceptional period. However, in a few instances, the two strata
referring to paternally inherited alleles were labeled as “exposed” and “unexposed”
fathers. Although the strata were correctly categorized, this labeling was imprecise
as the exposure status should be referring to that of the mother of their child.

In a recent paper [61], we used Haplin to search for statistical interactions be-
tween a SNP allele and DNA methylation (GxMe) and between a PoO effect and
DNA methylation (PoOxMe), treating the methylation level as the exposure of in-
terest. This can be viewed as a direct application of the GxE and PoOxE approaches
in Paper I, and the same constraints would therefore apply. A GxMe search relies
on the conditional independence assumption between exposure (methylation) and
the child’s genotype given the genotypes of the parents. This assumption may not
hold when the methylation levels at a CpG site are directly affected by a nearby
SNP, which is the situation for methylation quantitative trait loci (meQTLs) [148–
150]. A PoOxMe investigation relies on a less stringent assumption (Eqn. 7) and is
therefore more likely to be valid. A PoOxMe investigation might also be biologically
intriguing. For instance, since a PoO effect may result from imprinting, and since
imprinting may occur through differing methylation levels depending on parental
origin, we might anticipate that methylation levels at nearby CpGs could actively



Genetic effects and study designs 79

affect the magnitude of the PoO effect [61, 151].
The definition of PoO effects in the literature is somewhat ambiguous in that

both genomic imprinting and trans-generational (e.g., maternal) effects have been
described as parent-of-origin effect types [50, 51]. The parameterization of PoO
effects is relatively complex, and various models have been proposed that allow for
different interpretations, as reviewed by Ainsworth et al. [104]. The PoO effect
investigated in Papers I—III pertains to the parameterization in Table 5 and is
defined by the ratio RRR = RRM/RRF . However, an assessment of maternally
(RRM) or paternally (RRF ) inherited PoO effects might also be of interest. In
Haplin, both RRM and RRF are estimated freely, and individual tests for the null
hypotheses RRM = 1 and RRF = 1 are performed. Figure 7 (see page 82) shows
the relative efficiency for testing the hypotheses RRR = RRM/RRF = 1 (PoO
effect, blue line), RRM = 1 (the effect of alleles of maternal origin, orange line), and
RRF = 1 (the effect of alleles of paternal origin, green line), where i) compares the
case-mother dyad design relative to the case-parent triad design, ii) compares the
case-father dyad design relative to the case-parent triad design, and iii) compares
the case-father dyad design relative to the case-mother dyad design. The allele
frequency corresponds to the risk increasing allele.

For PoO effects under H0 (Figure 7a), we observe that the efficiency of the case-
mother and case-father dyad designs exceeds that of the case-parent triad design for
allele frequencies less than 0.25 or above 0.75. These findings are in agreement with
the observations in Paper III. However, somewhat counter-intuitive, we see that
case-mother dyads provide better efficiency than case-parent triads and case-father
dyads when testing for the effect of paternally derived alleles. By symmetry, we also
observe that case-father dyads provide better efficiency than case-parent triads and
case-mother dyads when testing for the effect of maternally derived alleles. More-
over, under H0, the case-mother and case-father dyad designs appear to be equally
efficient for testing the ratio RRR = RRM/RRF = 1. However, when RRM > 1

and RRF = 1 (Figure 7b), we observe that the case-mother dyad design attains
better efficiency for allele frequencies less than 0.5, whereas the case-father dyad
design attains better efficiency for allele frequencies above 0.5. A similar discussion
(possibly with slightly different parameterizations for the effect of maternally and
paternally derived alleles) was also made by Howey et al. [106]. Most of their find-
ings are in agreement with those of Figure 7, but a few observations might seem
to go in the opposite direction. Our results have been thoroughly checked through
simulations in both Haplin and EMIM, which are consistent, and the inconsisten-
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cies might therefore be due to different methods, tests, or parameterization models
used in the simulations or analyses. Nonetheless, the source of the discrepancies
has not yet been identified. Howey et al. [106] also conclude that the case-parent
triad design provides better power than the case dyad designs. Although this is true
when comparing an equal number of case families (e.g., comparing 500 case-mother
or case-father dyads with 500 case-parent triads), their conclusion does not take
relative efficiency into account.

While no rare disease assumption is necessary for relative risk estimation in
case-parent triads [52], this assumption is required to incorporate unrelated and
truly unaffected controls in the Haplin framework. The log-linear model in Haplin
assumes that the control sample comprises a random sample from the population,
i.e., that the controls are of unknown disease status. Given that the control sample is
truly unaffected, this corresponds to making a rare disease assumption (see Section
3.1). Thus, if the disease is rare, either unaffected or population-based controls can
be used [104]. By contrast, for a common disease, the log-linear structure would
be lost if the controls are truly unaffected, but one may proceed with the relative
risk estimation if the controls are randomly sampled from the population [140].
This distinction is essential because the controls are used to aid the estimation of
population allele frequencies. If the disease is common, these frequencies might be
biased if they are fitted conditional on (unaffected) disease status in the offspring.

In Paper II, we found that unrelated control families would not improve the
power obtained by the case-parent triad design alone when estimating PoO effects.
This was also demonstrated in Paper III, where the relative efficiency of the hy-
brid designs decreases when the ratio of control families to case families increases or
when the number of genotyped individuals within a control family increases. Nev-
ertheless, independent control-parent triads may still be useful because they allow
estimation of the main effects of an exposure. Moreover, unrelated control families
are necessary to check key assumptions underlying the case-parent triad design (e.g.,
HWE, mating symmetry, and Mendelian transmission), and to account for false pos-
itive findings. For instance, Eqn. (7) would not be needed for the assessment of
PoOxE effects if P (E|M,F,C) could be estimated directly among control-parent
triads. Alternatively, unbiased within-stratum estimates of RRM,j and RRF,j could
be obtained by including control-parent triads in a hybrid analysis [61].

Family-based study designs facilitate the estimation of genetic effects without
bias from population stratification, and various child-parent configurations have
been interrogated and compared herein. However, the case-sibling design, in which
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each case is matched to one or more unaffected siblings, has not yet been discussed.
For case-sibling studies, within-family dependencies can be accounted for by apply-
ing conditional logistic regression [152]. Alternatively, the case-sibling data can be
considered as nuclear family data with parents missing by design. Under a rare dis-
ease assumption, this information can be incorporated into a log-linear framework,
in which the missing-parents likelihood can be maximized via the EM algorithm
[153, 154]. Case-sibling studies are of particular value for diseases with late onset
when parents may not be available, although parental information is still needed to
estimate PoO or maternal effects. Moreover, with information on exposure status of
unaffected siblings, estimation and testing of environmental influences are feasible,
which cannot be done with the case-parent triad design alone. However, estimation
of main exposure effects would not be possible in twin studies if the environmental
factor refers to a maternal exposure during pregnancy. When investigating child
effects, the case-sibling study design has less power than both the case-parent triad
and the case-control designs [155]. Assuming a multiplicative dose-response rela-
tionship, power calculations in Quanto [130–132] show that the use of unmatched
case-control pairs is approximately twice as efficient as case-sibling pairs and that
the case-parent triad design is 4/3 times as efficient as the case-sibling design. These
relative efficiency estimates are independent of the MAF. For a rare phenotype, the
case-sibling design with infinitely many siblings would provide the same information
as the case-parent triad design [154], and the inclusion of unaffected siblings would
thus only improve estimation if one or both parents are missing.

Literature review completed December 2019.
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Figure 7: Relative efficiency for testing the hypotheses RRR = RRM/RRF = 1 (blue
line), RRM = 1 (orange line) and RRF = 1 (green line), comparing the case-mother dyad,
case-father dyad, and case-parent triad designs. The allele frequency corresponds to the
risk increasing allele



83

6 Concluding remarks and further perspectives on

GWAS discoveries

Genetic epidemiology aims to study the contribution of genetic risk factors, as well
as their interactions with environmental exposures, in determining disease etiology
in families and populations. A lot of time and effort have been invested in examin-
ing genetic susceptibility to disease, but despite decades of extensive research, the
genetic basis of complex diseases remains largely unknown. This underscores the
need to interrogate etiologic disease mechanisms other than child effects alone, and
we have here developed new methodology for assessing PoOxE effects (Paper I). Al-
though PoOxE effects are likely to explain only a small proportion of the unknown
genetic architecture of a trait, a PoOxE search may also be useful for distinguishing
between different patterns of gene expression, thus aiding biological interpretation.
Since an insignificant test can stem from both the absence of an effect and a lack of
statistical power, a sizable fraction of the unknown genetic etiology might also be
explained by poorly designed and underpowered studies that are unable to capture
most of the genetic variants underlying a trait. To address these shortcomings, we
developed a comprehensive setup for power and sample size calculations (Paper II)
and used these as building blocks for comparing relevant study designs in terms of
relative efficiency (Paper III).

Owing to a general lack of software implementation, it has been difficult to
plan, analyze, and interpret genetic studies. The implementation of methodology
in Haplin has, therefore, been a priority, and models accommodating family-based
data have been a primary concern. The extensive framework for analysis and power
calculation in Haplin facilitates not only the analysis of genetic data but also the
planning stage of the study, with the aim of making the most out of the available
resources. Statistical methodologies that are able to differentiate between various
casual models are essential for advancing the field of complex trait research. The
establishment of approaches that integrate epigenetic and genetic data is still in
its infancy [61, 156–159], and the ability to incorporate methylation and exposure
data will provide further opportunities to explore the GWAS design. Nevertheless,
challenges remain as to how identified loci can be studied for mechanisms, especially
since most identified markers themselves do not cause the disease. Upscaling of fine-
mapping technologies and strategies is paramount [160], and replacing SNP arrays
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with whole-genome sequencing is a natural next step [3].
Large clinical and population-based biobanks and national health registries con-

tinue to create new opportunities for genetic, epidemiological, and clinical research
worldwide. Sharing of genetic data has facilitated novel research and discoveries.
The UK Biobank provides publicly available genetic data on more than 500,000 par-
ticipants, along with a large collection of phenotypic and health-related information
[161]. In Norway, the ongoing Norwegian Mother, Father and Child Cohort Study
(MoBa) has genotyped random subjects from large clinical and population-based
biobanks and national health registries [162, 163]. To date, it contains information
on 11,000 case-parent triads. Larger studies will enable the identification of new
loci with smaller effect sizes. It will also allow the detection of variants with lower
frequencies [164]. However, for rare-variant associations of a complex disease with
low population prevalence, new discoveries will be restricted by the limited number
of cases. To test for associations of rare variants, so-called burden or collapsing
tests have been introduced, in which rare-variant information in a region is com-
bined into a genetic score or a summary dose variable [165]. With whole-genome
sequencing data, such methods can be further improved to increase the statistical
power [3, 166, 167].

The architecture underlying complex diseases is multifactorial, consisting of nu-
merous risk loci, structural variants or other forms of genomic variation, intricate
gene-gene and gene-environment interactions, as well as epigenetics. Most effect
sizes reported are small, and the identification of significant markers is largely de-
pendent on sample size [168]. Polygenic risk scores are routinely used to quantify
the cumulative genetic effects among a collection of markers [169]. Each single vari-
ant may show a small effect individually, but when analyzed combined, they can
be used to identify individuals at higher risk for a given disease [91]. When the
sample size is limited, polygenic risk scores can be useful for association testing
and for demonstrating a genetic basis even when no single markers alone reach the
level of significance in a GWAS [170]. By examining interactions between polygenic
risk scores and environmental factors, the power to detect GxE effects can be im-
proved [171]. As the sample size increases, polygenic risk scores can also be used to
construct valuable risk prediction models [172–175].

Resolving the multifactorial architecture underlying complex diseases seems like
a never-ending task, and it might be just that. Nevertheless, since the introduction
of the GWAS design more than two decades ago [27], remarkable discoveries in
human genetics have been made, ranging from the identification of genes and loci to
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a better understanding of the biological pathways involved in complex disease. The
substantial improvements of high-throughput technologies and systems approaches
have facilitated the translation of GWAS discoveries to biology and treatments.
With whole-genome sequencing data, together with detailed phenotypic and -omics
data on millions of individuals, new discoveries will continue to improve diagnosis,
prognosis, prevention, and treatment. However, the question of whether precision
medicine will become the paradigm of health care in the near future remains a matter
of debate [3, 168, 176–179].
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7 Software, electronic database information, and

availability

Haplin

Haplin [16] is implemented as a standard package in the statistical software R

[107]. It can be installed from the official R package archive, CRAN (https:
//cran.r-project.org), from which also the source code for the Haplin func-
tionalities is available. For a thorough description of the Haplin functions and
their arguments, please consult our website at https://people.uib.no/gjessing/
genetics/software/haplin.

Notes: Up until May 2018, Haplin depended on GenABEL to store and handle
GWAS data. A new and extensive data storage system was developed by Julia
Romanowska and introduced in Haplin Version 7.0.0. As a result, minor changes to
the Haplin commands presented in the Supporting Information (S1) of Paper I are
needed to run the PoO, GxE, and PoOxE analyses. All updates are documented on
the R help page and on the Haplin webpage.

PREMIM/EMIM

Information on PREMIM and EMIM [104, 105] is available from https://www.

staff.ncl.ac.uk/richard.howey/emim.

CPO data

The GWAS dataset is available from the dbGaP database (https://www.ncbi.
nlm.nih.gov/gap) under study accession ID phs000094.v1.p1. Details have been
provided in the original publication [115].
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8 Errata

Paper I

• In Section 3.1, the GxE effect of SNP rs470563 has a p-value of 4.5×10−4, not
4.5−4.

• In Appendix A.2, χ2
α(r) was incorrectly defined as the α quantile of the chi-

squared distribution with r degrees of freedom. However, the correct definition
is the “upper-α quantile”, as defined in Section 3.4.1 in this thesis.

Paper II

• In Additional file 1, n should be defined as the q × 1 vector n = [n1, ..., nq]
T .
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Appendices

Appendix I—Haplin commands for the example in Section

1.9.1

The Haplin commands below were used to simulate and analyze the data in Section
1.9.1. However, small adjustments have been made for renaming the SNP and alleles.
Note that small discrepancies may occur depending on the processor architecture
and operating system. Please consult the R help files for a description of the Haplin
functions and their arguments.

## Load Haplin
library(Haplin)

## Set seed
set.seed(1231)

## Simulate data in Haplin format using 340 case-parent triads and
## 460 control-parent triads, a MAF of 0.1, and a relative risk of 1.6

hapSim(nall = c(2), n.strata = 1, cases = c(mfc = 340), controls = c(mfc = 460),
haplo.freq = c(0.9, 0.1), RR = c(1, 1.6), RRstar = c(1, 1),
n.sim = 1, dire = "haplinData")

## Read and prepare data for analysis

data <- genDataRead(file.in = "haplinData/sim1.dat",
file.out = "haplinData", dir.out = "haplinData",
format = "haplin", n.vars = 1, allele.sep = " ", col.sep = " ")

prep.data <- genDataPreprocess(data.in = data, design = "cc.triad",
file.out = "prep_data", dir.out = "haplinData")

## Run Haplin analysis
res <- haplin(prep.data, response = "mult", design = "cc.triad",

ccvar = 1, reference = "ref.cat")

## Get full output
haptable(res)

## Plot results
plot(res, filename = "haplin_run.png")
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Appendix II—Tables 1 and 2 from Paper I

The layout of Tables 1 and 2 in the published paper makes them somewhat difficult to read. To
better illustrate the classification of genetic effects, the submitted versions are also attached.

Table 1, Paper I: PoO, GxE and PoOxE effects for cleft-palate-only example SNPs

a) rs7516430, CHD1L 1

Test effect Stratum RRM RRF RRM/RRF

PoO effects∗
RRS 1.79 0.52 3.42 (1.86, 6.15)
RRNS 1.79 0.52 3.42 (1.86, 6.15)

RRS/RRNS 1 (-) 1 (-) 1 (-)

GxE effects∗∗
RRS 1.22 1.22 1 (-)
RRNS 1.06 1.06 1 (-)

RRS/RRNS 1.15 (0.51, 2.61) 1.15 (0.51, 2.61) 1 (-)

PoOxE effects
RRS 1.88 0.66 2.83 (0.90, 8.63)
RRNS 1.76 0.48 3.68 (1.80, 7.37)

RRS/RRNS 1.07 (0.43, 2.69) 1.40 (0.40, 4.83) 0.77 (0.20, 2.91)

b) r470563, ZNF236 2

Test effect Stratum RRM RRF RRM/RRF

PoO effects∗
RRS 0.95 1.07 0.89 (0.67, 1.17)
RRNS 0.95 1.07 0.89 (0.67, 1.17)

RRS/RRNS 1 (-) 1 (-) 1 (-)

GxE effects∗∗
RRS 0.48 0.48 1 (-)
RRNS 1.15 1.15 1 (-)

RRS/RRNS 0.42 (0.26, 0.68) 0.42 (0.26, 0.68) 1 (-)

PoOxE effects
RRS 0.44 0.52 0.86 (0.39, 1.87)
RRNS 1.09 1.22 0.89 (0.66, 1.20)

RRS/RRNS 0.41 (0.21, 0.79) 0.42 (0.23, 0.80) 0.96 (0.41, 2.24)

c) rs2964137, ICE1 3

Test effect Stratum RRM RRF RRM/RRF

PoO effects∗
RRS 1.42 1.06 1.34 (0.90, 1.97)
RRNS 1.42 1.06 1.34 (0.90, 1.97)

RRS/RRNS 1 (-) 1 (-) 1 (-)

GxE effects∗∗
RRS 1.16 1.16 1 (-)
RRNS 1.25 1.25 1 (-)

RRS/RRNS 0.93 (0.54, 1.60) 0.93 (0.54, 1.60) 1 (-)

PoOxE effects
RRS 0.53 2.57 0.21 (0.09, 0.46)
RRNS 1.88 0.85 2.22 (1.41, 3.43)

RRS/RRNS 0.28 (0.13, 0.58) 3.03 (1.45, 6.35) 0.09 (0.04, 0.24)
∗ PoO effects were estimated without stratifying on exposure. The rows corresponding to

environmental strata are therefore equal by assumption.
∗∗ GxE effects were estimated without stratifying on parental origin. The columns related to

RRM and RRF are therefore equal by assumption.
- The estimates are relative to the most frequent allele
- RRM and RRF are the relative risks depending on parental origin
- RRNS and RRS are the relative risks depending on exposure status
(non-smokers or smokers)

1 Overall allele frequencies: A 0.88; T 0.12; Europeans only
2 Overall allele frequencies: C 0.57; G 0.43; Whole sample
3 Overall allele frequencies: G 0.52; C 0.48; Europeans only
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Table 2, Paper I: PoOxE effects for cleft-palate-only example haplotypes

rs2964447-rs2964137-rs6868526, ICE1

Haplotype Stratum RRM RRF RRM/RRF

T-G-C
RRS 1.99 0.49 4.04 (1.75, 9.25)
RRNS 0.52 1.04 0.50 (0.31, 0.82)

RRS/RRNS 3.79 (1.74, 8.22) 0.47 (0.21, 1.05) 7.98 (3.07, 20.77)

T-G-G
RRS 1.30 0.24 5.35 (1.51, 18.19)
RRNS 0.68 1.30 0.52 (0.29, 0.96)

RRS/RRNS 1.89 (0.70, 5.07) 0.19 (0.06, 0.62) 10.13 (2.55, 40.19)
- Reference haplotype: A-C-C
- Overall haplotype frequencies: A-C-C 0.48; T-G-C 0.36; T-G-G 0.16;
Europeans only

- RRM and RRF are the relative risks depending on parental origin
- RRNS and RRS are the relative risks depending on exposure status
(non-smokers or smokers)
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Abstract
With case–parent triad data, one can frequently deduce parent of origin of the child's
alleles. This allows a parent-of-origin (PoO) effect to be estimated as the ratio of
relative risks associated with the alleles inherited from the mother and the father,
respectively. A possible cause of PoO effects is DNAmethylation, leading to genomic
imprinting. Because environmental exposures may influence methylation patterns,
gene–environment interaction studies should be extended to allow for interactions
between PoO effects and environmental exposures (i.e., PoOxE). One should thus
search for loci where the environmental exposure modifies the PoO effect.
We have developed an extensive framework to analyze PoOxE effects in genome-wide
association studies (GWAS), based on complete or incomplete case–parent triads with
or without independent control triads. The interaction approach is based on analyz-
ing triads in each exposure stratum using maximum likelihood estimation in a log-
linear model. Interactions are then tested applying a Wald-based posttest of parame-
ters across strata. Our framework includes a complete setup for power calculations.
We have implemented the models in the R software package Haplin.
To illustrate our PoOxE test, we applied the new methodology to top hits from our
previous GWAS, assessing whether smoking during the periconceptional period mod-
ifies PoO effects on cleft palate only.
KEYWORD S
case–parent triad, gene–environment interaction, hybrid design, imprinting, parent-of-origin, power and
sample size calculation, trios

1 INTRODUCTION

A large number of human traits can be classified as com-
plex, in the sense that they are assumed to be influenced
by multiple genes and their interactions with environmen-
tal or behavioral factors (Pasaniuc & Price, 2016). Although
thousands of genome-wide association studies (GWAS) have

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
© 2017 The Authors. Annals of Human Genetics published by University College London (UCL) and John Wiley & Sons Ltd.

been conducted since the turn of the millennium, for most
complex traits the genetic variants identified thus far explain
only a small fraction of the phenotypic variation attributed to
genetic effects (Manolio et al., 2009). This has underscored
the need to investigate disease mechanisms beyond simple
genetic effects alone. One example is gene–environment inter-
actions (GxE), where the genetic effects are modified by
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environmental exposures. For instance, Shi et al. (2007) have
shown thatmaternal cigarette smoking in the periconceptional
period can modify the association between single nucleotide
polymorphisms (SNPs) and orofacial clefts.

With access to case–parent triad data, where an offspring
and his/her parents have been genotyped, other genetic effects
such as parent-of-origin (PoO) effects can be assessed. A PoO
effect refers to the situation where the effect of a particular
allele in the child depends on whether it is inherited from
the mother or the father (Lawson, Cheverud, & Wolf, 2013;
Connolly & Heron, 2014). For example, an allele might be
protective when inherited from the mother but detrimental
when inherited from the father. One example of a PoO effect is
genomic imprinting, an epigenetic phenomenon where one of
the inherited parental alleles is expressed whereas the other
is silenced (Bartolomei & Tilghman, 1997; Reik & Walter,
2001). Although PoO effects are often used interchangeably
with imprinting (Lawson et al., 2013), we here define PoO
effects in statistical terms to mean an interaction effect; a PoO
effect occurs if the phenotypic risk varies according to the
parental origin of the variant allele.

In recent years, a growing number of studies have aimed
to identify PoO and GxE effects separately for a wide range
of diseases. However, it is reasonable to assume that the
combined interaction effect (PoOxE effect) may also play an
important role in complex traits. In our context, this means
that the observed PoO effect may vary across environmen-
tal strata, which is plausible from a biologic perspective.
A known cause of imprinting is DNA methylation in the
germline. It is possible that maternal environmental expo-
sures influencing methylation patterns might also influence
the effects of maternally and paternally inherited alleles in
unequal measures.

Conceivably, PoOxE effects may appear in different ways.
The allele in question might increase risk only when trans-
mitted from exposed mothers. A PoOxE effect may also be
observed if the allele is protective to the child onlywhen inher-
ited from unexposed mothers but with no particular effect in
the other situations. In principle, there might even be a “qual-
itative” interaction where the genetic effect is reversed. For
instance, an allele might increase risk when inherited from
exposed mothers and decrease risk when inherited from unex-
posed mothers, and concurrently decrease risk when inherited
from exposed fathers and increase risk when inherited from
unexposed fathers.

Another factor that needs to be controlled for in PoOxE
models is the possible presence of maternal genetic effects.
Maternal genetic effects occur when the genotype of the
mother affects the phenotype of the child, regardless of the
genetic material that has been transferred frommother to child
(Connolly & Heron, 2014). Alleles carried by the mother may
influence fetal development directly, for example, through
maternal metabolic factors (Guilmatre & Sharp, 2012). This

effect is distinct from PoO effects, in which we compare the
effect of alleles in the child, depending on whether they were
inherited from the mother or the father (Howey et al., 2015).
Maternal genetic effects must therefore be estimated primar-
ily from the nontransmitted allele of the mother, and appro-
priate models for PoOxE effects should allow maternal and
PoO effects to be estimated simultaneously. Clearly, mater-
nal effects are particularly important to studies of perinatal
disorders.

Wang, Yu, Miller, Tang, and Perera (2011) previously
introduced a test to screen for interactions between imprinted
genes and environmental exposures. Still, there is a need to
develop more general methods to investigate the joint effects
of PoO and GxE (Lawson et al., 2013, p. 616). To address
this gap in knowledge, we propose a novel approach that
enables a full investigation of PoOxE effects. We develop
our model for PoOxE within a flexible maximum-likelihood
framework based on log-linear models (Gjessing & Lie, 2006;
Skare et al., 2012; Jugessur, Skare, Harris, Lie, & Gjessing,
2012a), originally described in Wilcox, Weinberg, and Lie
(1998), Weinberg, Wilcox, and Lie (1998), and Gjessing and
Lie (2006). Our main study unit is the case-parent triad, but
it can be extended to include independent control children
or control triads in a hybrid design (Weinberg & Umbach,
2005). Note that control triads are optional because the non-
transmitted parental alleles implicitly serve as pseudocontrols
(Knapp, Seuchter, & Baur, 1993; Schaid & Sommer, 1993;
Cordell, Barratt, & Clayton, 2004; Cordell, 2004). Moreover,
we use an expectation maximization (EM) algorithm (Demp-
ster, Laird, & Rubin, 1977) to accommodate missing parents
in mother–offspring or father–offspring dyads. A full imple-
mentation of our models is provided in Haplin, a flexible
R package for genetic association analyses of single SNPs
or haplotypes (Gjessing & Lie, 2006). The implementation
uses parallel processing of SNPs, which makes GWAS anal-
yses feasible. Haplin performs both testing and estimation of
genetic effects. The framework also incorporates analyses of
X-chromosome SNPs in a natural way.

In statistical terms, PoO analyses are interaction analy-
ses; the effect of an allele in the child may be modified by
its parent of origin. In contrast, regular fetal-effect analyses
assume that the effect of an allele in the child is indepen-
dent of whether it is transmitted from the mother or the father,
that is, the effect is estimated without stratifying on parental
origin. Higher sample sizes are thus required for PoO analy-
ses to achieve the same statistical power as in regular fetal-
effect analyses. Accordingly, PoOxE analyses can be seen as
second-order interaction analyses. Hence, an even larger sam-
ple size is needed for a PoOxE analysis than for the corre-
sponding PoO or GxE analysis to obtain the same statisti-
cal power. We therefore provide a thorough discussion of the
power for PoOxE analyses and provide software to compute
power for all relevant scenarios.
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The article is structured as follows. In the Methods sec-
tion, we first provide relevant background information and
present the sampling and penetrance models. Next, we intro-
duce our PoOxE test and derive the statistical methodology
for single-SNP analysis, andwe also explain howPoOxE anal-
yses can be carried out for SNPs on the X-chromosome. We
conclude the Methods section by presenting a previously pub-
lished case triad study of orofacial clefts. In the Results sec-
tion, we illustrate our PoOxE approach by using Haplin to
analyze genetic triad data from the cleft study. We then assess
the operating characteristics of the PoOxE test by investigat-
ing its power and attained significance level. The appendix
includes a detailed discussion of PoOxE effects for haplotypes
(AppendixA.1). Additionally, issues pertaining to sample size
and power calculation are considered, and we present formu-
lae and algorithms for our power computations (Appendix
A.2). Haplin commands for estimating PoO, GxE and PoOxE
effects on candidate genes are provided in the Supporting
Information (S1). Statistical power calculations in Haplin are
also covered in detail.

2 METHODS

2.1 Sampling and penetrance model
The likelihood model is based on a log-linear model for the
observed triad frequencies, conditional on the child being a
case. Optionally, independent controls or control triads can be
added to improve estimation of allele/haplotype frequencies.
In this section, we describe the underlying sampling and pen-
etrance model. A more detailed derivation of the log-linear
model is provided elsewhere (Gjessing & Lie, 2006).

We consider a single, multi-allelic locus with𝐾 alleles 𝐴1,
𝐴2,… , 𝐴𝐾 , with corresponding population allele frequencies
𝑝1, 𝑝2,… , 𝑝𝐾 . The genotypes for the mother, father, and
child are denoted by 𝑀 , 𝐹 , and 𝐶 , respectively, and the full
triad as (𝑀,𝐹 , 𝐶) = (𝐴𝑖𝐴𝑗 , 𝐴𝑘𝐴𝑙, 𝐴𝑗𝐴𝑙). For notational
convenience, we assume that the second allele from the
mother and the second allele from the father are transmitted
to the child; that is, the full triad (𝑀,𝐹 , 𝐶) can thus be
described by the mating type (𝑀 , 𝐹 ) = (𝐴𝑖𝐴𝑗 , 𝐴𝑘𝐴𝑙).

The sampling model should describe the distribution of
(𝑀,𝐹 , 𝐶), conditional on the child being a case. If𝐷 denotes
the event that the child is a case, Bayes' theorem allows our
sampling model to be written as

𝑃 (𝑀,𝐹 , 𝐶|𝐷) = 𝑃 (𝐷|𝑀,𝐹 , 𝐶)𝑃 (𝑀,𝐹 , 𝐶)∕𝑃 (𝐷). (1)

The disease prevalence, 𝑃 (𝐷), cannot be observed directly
from the case triad distribution and serves as a normaliz-
ing constant only. Assuming a population in Hardy–Weinberg

equilibrium (HWE) with random mating and Mendelian
transmission, we have

𝑃 (𝑀,𝐹 , 𝐶) = 𝑃 (𝐴𝑖𝐴𝑗, 𝐴𝑘𝐴𝑙) = 𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙.

Although the HWE assumption can be avoided using a more
detailed parameterization (Weinberg et al., 1998; Gjessing &
Lie, 2006), its inclusion in the model is convenient for com-
putational efficiency and useful for reconstructing haplotypes.
However, analyses should always include a strategy for check-
ing large deviations from HWE because such deviations may
be indicative of data issues. Top hits from a GWAS analysis
should always be further investigated; Haplin performs a test
for HWE on all SNPs.

The penetrance model, 𝑃 (𝐷|𝑀,𝐹 , 𝐶), describes the prob-
ability of a child having the disease, conditional on the triad
genotype. Assigning different effects to the alleles depending
on parental origin, a penetrance model for PoO effects is

𝑃 (𝐷|𝐴𝑖𝐴𝑗, 𝐴𝑘𝐴𝑙) = 𝐵⋅RR𝑀,𝑗RR𝐹 ,𝑙RR∗
𝑗𝑙,

where RR𝑀,𝑗 and RR𝐹 ,𝑗 are the risk increase (or decrease)
associated with allele 𝐴𝑗 , relative to the baseline risk level
𝐵, depending on whether the allele is transmitted from the
mother or the father. The fraction RR𝑀,𝑗∕RR𝐹 ,𝑗 is then a
measure of the extent of the risk associated with allele 𝐴𝑗 ,
depending on parental origin. The parameter RR∗

𝑗𝑙 is includedto allow homozygous individuals to have a risk that deviates
from what would be expected from a multiplicative model
(e.g., dominant or recessive patterns). To incorporate this
deviation, we have that RR∗

𝑗𝑙 = RR∗
𝑗 when 𝑗 = 𝑙 and that

RR∗
𝑗𝑙 = 1 when 𝑗 ≠ 𝑙. Thus, if RR∗

𝑗 = 1 for all 𝑗, the pene-
trance model is purely multiplicative. Note that 𝐵 is typically
associated with the reference allele and functions only as a
normalizing constant. Moreover, this model also applies to
multi-allelic markers. The full sampling model (1) can then
be parameterized as
𝑃 (𝑀,𝐹 , 𝐶|𝐷) = 𝑃 (𝐴𝑖𝐴𝑗, 𝐴𝑘𝐴𝑙|𝐷)

= 𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙 ⋅ 𝐵⋅RR𝑀,𝑗RR𝐹 ,𝑙RR∗
𝑗𝑙∕𝑃 (𝐷).

Conditional on the child being a case, the triad type frequen-
cies follow a multinomial distribution, and the parameters
from the relevant sampling model are readily estimated by the
method of maximum likelihood. The EM algorithm can be
used to accommodate missing information, including recon-
structing unknown haplotype phase from multiple markers.
To ensure that the model is not overparameterized, one com-
monly sets 𝑅𝑅 = 1 for a reference allele. Alternatively, pop-
ulation or reciprocal references can be used (Gjessing & Lie,
2006). Notice that throughout this article we assume a multi-
plicative dose–response relationship.

An important feature of the log-linear model is the possibil-
ity to incorporate and adjust for maternal effects. Specifically,
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PoO and maternal genetic effects can be addressed simultane-
ously by the model

𝑃 (𝐷|𝐴𝑖𝐴𝑗, 𝐴𝑘𝐴𝑙) = 𝐵 ⋅ RR𝑀,𝑗RR𝐹 ,𝑙RR∗
𝑗𝑙

×RR(𝑀)
𝑖 RR(𝑀)

𝑗 RR(𝑀)∗
𝑖𝑗 ,

where RR(𝑀)
𝑖 is the relative risk associated with allele 𝐴𝑖 car-

ried by the mother, and RR(𝑀)∗
𝑖𝑗 is interpreted analogously

to RR∗
𝑖𝑗 . We thus assume that the maternal alleles have a

multiplicative effect on top of the fetal alleles. Note specifi-
cally that in a combined model, the PoO effect is estimated
essentially by contrasting allele frequencies of transmitted
alleles, depending on parental origin, whereas the maternal
effect is estimated by contrasting the frequencies of nontrans-
mitted alleles in case mothers with that of nontransmitted alle-
les in case fathers.

Note that the PoO model requires information on parental
origin, which is not available for ambiguous (uninforma-
tive) triads. However, the EM algorithm is implemented in
our software and uses maximum likelihood to account for
unknown parental origin in ambiguous triads. Additionally,
it will account for missing information on individuals, such
as when some triads are reduced to mother–child dyads due
to missing data on the father. The basic model relates to a sin-
gle multi-allelic locus. In combination with the EM algorithm
it extends directly to haplotypes over multiple loci by statis-
tically reconstructing unknown haplotype phase (Gjessing &
Lie, 2006).

2.2 Parent-of-origin-environment
interactions
Our PoOxE approach seamlessly integrates the PoO model
with that of GxE. We therefore start by presenting and inter-
preting the PoO and GxE analyses separately, before com-
bining them in the PoOxE test. The theory for PoOxE is
here derived for a single SNP, but the extension to haplo-
types is provided in Appendix A.1. We conclude the sec-
tion by illustrating how PoOxE effects can be assessed on the
X-chromosome. Relevant Haplin commands for investigating
PoO, GxE, and PoOxE effects are provided in S1.

For a single SNP, let RR𝑀 and RR𝐹 denote the relative
risks associated with the variant allele (i.e., the nonreference
allele) if it is inherited from the mother or from the father,
respectively. We define the PoO effect as the relative risk ratio
RRR = RR𝑀∕RR𝐹 . This fraction is a measure of the magni-
tude of the risk associated with the allele under study, depend-
ing on whether it is maternally or paternally derived. A ratio
larger than one indicates a higher risk when the variant allele
is inherited from the mother versus the father. If it is equal
to 1, the variant allele increases (or decreases) the risk by
the same amount regardless of parental origin, and there is

no PoO effect. For instance, if the variant allele doubles the
risk of disease independently of parental origin, this is a stan-
dard fetal association; as such, it would have been identified
in a traditional search for fetal gene effects. Note that one can
assume a priori that, for instance, the paternal allele has no
effect (i.e., RR𝐹 = 1) and try to detect a “pure” imprinting
effect RR𝑀 . This effect is, however, confounded with a stan-
dard fetal effect whenever the assumption RR𝐹 = 1 does not
hold. Accordingly, we prefer to define our PoO test as a con-
trast between maternally and paternally derived allele risks.

Under the weak assumption of independence between
exposure and child genotype conditional on parental mating
type (Shi, Umbach, & Weinberg, 2010), interactions between
genes and a categorical exposure variable can be incorporated
into the log-linear framework. Our GxE analyses fit the log-
linear model separately in each exposure stratum and con-
sequently do not assume that allele frequencies are constant
across strata. The model uses a Wald test to detect whether
the relative risk estimates differ significantly across the expo-
sure levels. In the situation of two exposure categories (1 =
unexposed, 2 = exposed), we define RR1 and RR2 as the rel-
ative risks in the unexposed and exposed strata, respectively.
The relative risk ratio RRR = RR2∕RR1 is a measure of the
extent of the risk associated with the allele, depending on the
exposure status of the case. For instance, a ratio larger than 1
implies that an exposed child carrying the variant allele has
a higher risk than the unexposed child carrying the variant
allele.

The PoO effect can be seen as a statistical interaction
between the transmitted allele and its parental origin, whereas
the GxE effect is an interaction between a main fetal effect
with an external environment. It is thus natural to consider a
PoOxE effect as a two-way interaction that takes into account
both parent of origin and environmental exposure in the same
estimate. At a locus with two alleles and a dichotomous envi-
ronmental exposure, the ratio

RRR = (RR𝑀,2∕RR𝐹 ,2)∕(RR𝑀,1∕RR𝐹 ,1) (2)

is the PoO effect in the second stratum compared with the PoO
effect in the first stratum. If RRR = 1, it means that there may
well be PoO effects, but that they, when measured on a mul-
tiplicative scale, are the same in both environmental strata.
Similarly, since Eqn (2) may also be expressed as

RRR = (RR𝑀,2∕RR𝑀,1)∕(RR𝐹 ,2∕RR𝐹 ,1),

we will have RRR = 1 if a GxE effect is the same for alle-
les of both parental origins. It is worth noting that the actual
direction of an effect (i.e., RRR > 1 or RRR < 1) depends on
which allele and exposure group are chosen as reference.
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2.2.1 The Wald test for interaction
In the log-linear model, statistical inference is performed on
log-transformed relative risks and relative risk ratios. Thus, in
the PoOxE situation, we would like to test the full interaction
hypothesis

β𝑀,1 − β𝐹 ,1 = β𝑀,2 − β𝐹 ,2 = ⋯ = β𝑀,𝑆 − β𝐹 ,𝑆 ,

where β𝑀,𝑠 and β𝐹 ,𝑠 are the log relative risks within stra-
tum 𝑠, depending on whether the allele is derived from the
mother or the father. Within each mutually exclusive expo-
sure stratum, 𝑠 = 1, 2,… , 𝑆, we calculate β̂𝑠 = β̂𝑀,𝑠 − β̂𝐹 ,𝑠,
the difference between parental relative risks estimated on
a log-scale. From the asymptotic theory of log-linear mod-
els (Christensen, 1997, Ch. 1 2.3), 𝛃̂ follows approximately a
multivariate normal distribution with mean 𝛃 and variance–
covariance matrix 𝚺,

𝛃̂ =

⎡⎢⎢⎢⎢⎣

β̂1
β̂2
⋮
β̂𝑆

⎤⎥⎥⎥⎥⎦
∼ MVN(𝛃,𝚺).

Because the strata are independent, the estimate of 𝚺 is

𝚺̂ =

⎡⎢⎢⎢⎢⎣

σ̂21 0 ⋯ 0
0 σ̂22 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ σ̂2𝑆

⎤⎥⎥⎥⎥⎦
= diag ([σ̂21, σ̂22,… , σ̂2𝑆

])
,

where σ̂2𝑠 = σ̂2𝑀,𝑠 + σ̂2𝐹 ,𝑠 − 2ρ̂𝑀,𝐹 ,𝑠σ̂𝑀,𝑠σ̂𝐹 ,𝑠, with ρ̂𝑀,𝐹 ,𝑠

being the correlation between β̂𝑀,𝑠 and β̂𝐹 ,𝑠 within stratum 𝑠.
The Wald test can then be used to conduct post-hoc infer-

ence on the β parameters, based on the asymptotic normality
(Agresti, 2013, Ch. 1.3). Let 𝑫 be an appropriate 𝑟 × 𝑆 con-
trast matrix for the β parameters, with 𝑟 ≤ 𝑆 − 1. It follows
that asymptotically,

𝑫𝛃̂ ∼ MVN(𝑫𝛃,𝚺𝑫 ),

where 𝚺̂𝑫 = 𝑫𝚺̂𝑫𝑇 . The Wald test statistic is then

𝑇 = (𝑫𝛃̂)𝑇 𝚺̂−1
𝑫 (𝑫𝛃̂).

Under the null hypothesis of 𝑫𝛃 = 𝟎, 𝑇 has an approximate
chi-squared distribution with 𝑟 degrees of freedom, χ2(𝑟).

In the PoOxE test, our null hypothesis can be seen as a test
of all strata 𝑠 = 2,… , 𝑆 against the first stratum 𝑠 = 1; that is,
the test takes the form

𝑫𝛃 =

⎡
⎢⎢⎢⎢⎣

1 −1 0 ⋯ 0
1 0 −1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
1 0 0 ⋯ −1

⎤
⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎣

β𝑀,1 − β𝐹 ,1
β𝑀,2 − β𝐹 ,2

⋮
β𝑀,𝑆 − β𝐹 ,𝑆

⎤
⎥⎥⎥⎥⎦
= 0.

Hence, the Wald test statistic has an approximate χ2 distribu-
tion with 𝑟 = 𝑆 − 1 degrees of freedom under the null hypoth-
esis of no PoOxE effect. This is an overall test for any differ-
ence in PoO effects across strata when measured on a log risk
scale.

Interactions with a continuous exposure variable can be
incorporated in our framework by categorizing the variable
into an appropriate number of categories and testing for a
trend-type association of the resulting ordinal variable. This
approach is outlined for GxE effects in Skare et al. (2012), and
a test for trend is included in Haplin.

2.2.2 PoOxE analysis of X-linked markers
Genetic association analyses of X-linked markers are espe-
cially relevant if the prevalence of a complex trait differs
systematically for males and females. Various penetrance
models in Haplin address different causal scenarios that
apply to an X-linked disease locus. The models depend
on the assumptions made regarding allele-effects in males
versus females, and might include sex-specific baseline risks,
shared or distinct relative risks for males and females, and
X-inactivation in females. A detailed description of param-
eterization models is provided in a previous study (Jugessur
et al., 2012b). Haplin also allows for PoOxE analyses of X-
linked markers. Separate PoOxE analyses on males only are
not possible; females are needed to obtain a contrast between
maternally and paternally derived X-chromosome alleles.
However, fathers and male children contribute to estimating
allele frequencies, and importantly, to facilitate haplotype
reconstruction. Relevant Haplin commands for analyzing
PoOxE effects on the X-chromosome are provided in 𝑆1.

2.3 Case triad study: Cleft palate–only data
analysis
Cleft palate only (CPO) is a common craniofacial birth defect
in humans, occurring with (nonisolated) or without (isolated)
other congenital anomalies or identifiable malformation syn-
dromes. The prevalence rate for isolated CPO is 5 per 10,000
births worldwide (Mossey & Castilla, 2003). A wide array
of genetic variants and environmental risk factors have been
reported to increase the risk of CPO (Mossey, Little, Munger,
Dixon, & Shaw, 2009; Dixon, Marazita, Beaty, & Murray,
2011; Rahimov, Jugessur, &Murray, 2012). However, as with
many other complex traits, the genetic variants discovered so
far only explain a minor fraction of the phenotypic variabil-
ity. From our previously published GWAS (Beaty et al., 2010,
2011; Shi et al., 2012), the genotypes for 1575 individuals
from 550 isolated CPO families were available, including 466
complete case–parent triads. These families were mainly of
European and Asian ancestry, but a small number of families
of other ethnicities were also present.
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We considered three SNPs from the GWAS data to illus-
trate our PoOxE approach. On these SNPs, we conducted
pooled analyses using all ethnicities, as well as separate anal-
yses for Europeans only. The environmental factor was mater-
nal cigarette smoking during the periconceptional period, that
is, from 3 months before conception until 3 months into preg-
nancy, a window of exposure of 6 months in total. In the self-
administered questionnaire of the Norway Facial Clefts Study
(https://www.niehs.nih.gov/research/atniehs/labs/epi/studies/
ncl/index.cfm), this was evaluated as a simple yes/no response
to ever having smoked during this period. The GWAS data set
is available at the dbGAP database (http://www.ncbi.nlm.nih.
gov/gap) under accession ID phs000094.v1.p1. Information
on quality control and detailed characterizations of study
participants and environmental exposure have been pro-
vided elsewhere (Haaland et al., 2017). Ethics approvals were
obtained from the respective ethics committees for all the data
in the cleft consortium. Background information on the study
is provided in the original publication (Beaty et al., 2010).

3 RESULTS

3.1 Case triad study: Illustration of PoOxE
data analysis
To illustrate our PoOxE test, we considered three SNPs from
our GWAS data on CPO (Beaty et al., 2010, 2011; Shi et al.,
2012).We only used top hits from previous studies, employing
the same genetic triad data. Hence, the examples serve only as
an illustration of our PoOxE test and not as independent repli-
cations of previous findings. Because our PoOxE approach
integrates the PoO and GxE models, we start with examples
of PoO effects (Table 1a) and GxE effects (Table 1b) before
looking at the combined PoOxE effects (Table 1c).

The SNP rs7516430, located in the gene for “chromod-
omain helicase DNA binding protein 1-like” or CHD1L on
chromosome 1, had one of the most distinct signals in a pre-
vious PoO GWAS analysis of CPO by Shi et al. (2012). We
re-analyzed the data for this SNP on Europeans only, apply-
ing a Wald test. Table 1a (first row) presents the PoO esti-
mates RR𝑀 , RR𝐹 andRRR = RR𝑀∕RR𝐹 . Themost frequent
allele, 𝐴, was used as reference. If allele 𝑇 is inherited from
the mother, it increases the risk of CPO. If, on the other hand,
𝑇 is inherited from the father, the risk of CPO is nearly halved.
As a result, RRR = 3.42. There is a qualitative PoO effect
with P-value 5.6 × 10−5. Note that the PoO effects were esti-
mated without stratifying on the exposure, smoking. Hence,
by assumption, the estimates do not differ between strata. We
still included the corresponding rows in the table to facili-
tate comparison with the following analyses. Table 1a also
includes tests for GxE and PoOxE effects for this SNP (second
and third row, respectively). However, no significant interac-
tions were found.

The SNP rs470563 is associated with a higher risk of CPO
in the presence of maternal smoking (Beaty et al., 2011). It
is located in the gene “zinc finger protein 236” (ZNF236)
on chromosome 18, and the re-analyzed GxE results are pre-
sented in Table 1b (second row). Relative to allele 𝐶 , allele
𝐺 is associated with a decreased risk of CPO among smok-
ers and an increased risk among nonsmokers. Consequently,
RRR = 0.42, and this qualitative effect has a P-value of 4.5−4.
It is important to note that althoughmaternal smoking appears
to be beneficial at first sight, this apparent risk-reducing effect
of smoking is contingent on the choice of reference allele.
Switching the reference and variant allele inverts the esti-
mated value of the RRR. Obviously, the main effect of smok-
ing cannot be assessed from case-triad designs alone, without
independent controls. Therefore, the GxE RRRmeasures only
how smoking modifies the estimated fetal genetic effects. For
rs470563, we did not detect any significant PoO or PoOxE
effects (Table 1b, first and third row, respectively). Note that
the GxE effects were estimated without stratifying on parental
origin. The columns in Table 1b, related to RR𝑀 and RR𝐹 , are
therefore equal by assumption.

In a separate study, we used the PoOxE test presented
herein to perform a GWAS analysis of PoO interactions with
maternal smoking and other exposures in Haplin (Haaland
et al., 2017). The SNP rs2964137, located in the gene “inter-
actor of little elongation complex ELL subunit 1” (ICE1), had
one of the strongest signals in our search for PoOxE effects,
and the PoO, GxE, and PoOxE results are shown in Table
1c. The risk estimates are relative to allele G, which is the
most frequent. For this SNP, there is no evidence of a PoO
effect independent of strata (first row) or of any GxE effect for
fetal genes independent of parental origin (second row). Nev-
ertheless, we found a qualitative PoOxE effect, RRR = 0.09,
with P-value 6.5 × 10−7 (Table 1c, third row). The relative
risk associated with allele C is nearly halved if derived from
exposed mothers, and it is more than doubled if derived from
exposed fathers. An opposite effect is seen in nonsmokers.

Haplin uses parallel processing of its analyses, and the
run time of a GWAS analysis is therefore manageable. Our
genome wide search for PoOxE effects was performed on
Europeans only, comprising 762 individuals from 269 case
families (mostly triads). Altogether 424,401 SNPs passed the
quality controls and were included in our PoOxE analysis. We
used eight CPU cores with 2.5 GHz per core, and the approx-
imate run time of Haplin was 58 hours.

3.2 Operating characteristics and small
sample behavior of the PoOxE test
We investigated the performance of our PoOxE test by evalu-
ating its power in various settings. Power and sample size can
be computed from the asymptotic variance–covariance struc-
ture underlying theWald test; this approach is implemented in
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TABLE 1 PoO, GxE and PoOxE effects for cleft palate-only example SNPs
a) rs7516430, CHD1L1

Test effect Stratum RR𝑀 RR𝐹 RR𝑀∕RR𝐹

PoO effects* RRS 1.79 0.52 3.42 (1.86, 6.15)
RRNS 1.79 0.52 3.42 (1.86, 6.15)
RRS∕RRNS 1 (–) 1 (–) 1 (–)

GxE effects** RRS 1.22 1.22 1 (–)
RRNS 1.06 1.06 1 (–)
RRS∕RRNS 1.15 (0.51, 2.61) 1.15 (0.51, 2.61) 1 (–)

PoOxE effects RRS 1.88 0.66 2.83 (0.90, 8.63)
RRNS 1.76 0.48 3.68 (1.80, 7.37)
RRS∕RRNS 1.07 (0.43, 2.69) 1.40 (0.40, 4.83) 0.77 (0.20, 2.91)

b) rs470563, ZNF2362
Test effect Stratum RR𝑀 RR𝐹 RR𝑀∕RR𝐹

PoO effects* RRS 0.95 1.07 0.89 (0.67, 1.17)
RRNS 0.95 1.07 0.89 (0.67, 1.17)
RRS∕RRNS 1 (–) 1 (–) 1 (–)

GxE effects** RRS 0.48 0.48 1 (–)
RRNS 1.15 1.15 1 (–)
RRS∕RRNS 0.42 (0.26, 0.68) 0.42 (0.26, 0.68) 1 (–)

PoOxE effects RRS 0.44 0.52 0.86 (0.39, 1.87)
RRNS 1.09 1.22 0.89 (0.66, 1.20)
RRS∕RRNS 0.41 (0.21, 0.79) 0.42 (0.23, 0.80) 0.96 (0.41, 2.24)

c) rs2964137, ICE13
Test effect Stratum RR𝑀 RR𝐹 RR𝑀∕RR𝐹

PoO effects* RRS 1.42 1.06 1.34 (0.90, 1.97)
RRNS 1.42 1.06 1.34 (0.90, 1.97)
RRS∕RRNS 1 (–) 1 (–) 1 (–)

GxE effects** RRS 1.16 1.16 1 (–)
RRNS 1.25 1.25 1 (–)
RRS∕RRNS 0.93 (0.54, 1.60) 0.93 (0.54, 1.60) 1 (–)

PoOxE effects RRS 0.53 2.57 0.21 (0.09, 0.46)
RRNS 1.88 0.85 2.22 (1.41, 3.43)
RRS∕RRNS 0.28 (0.13, 0.58) 3.03 (1.45, 6.35) 0.09 (0.04, 0.24)

*PoO effects were estimated without stratifying on exposure. The rows corresponding to environmental strata are therefore equal by assumption.
**GxE effects were estimated without stratifying on parental origin. The columns related to RR𝑀 and RR𝐹 are therefore equal by assumption.
- The estimates are relative to the most frequent allele
- RR𝑀 and RR𝐹 are the relative risks depending on parental origin
- RRNS and RR𝑆 are the relative risks depending on exposure status (nonsmokers or smokers)
1Overall allele frequencies: A 0.88; T 0.12; Europeans only
2Overall allele frequencies: C 0.57; G 0.43; Whole sample
3Overall allele frequencies: G 0.52; C 0.48; Europeans only

Haplin. The Haplin framework also includes a complete setup
for power calculations through simulations, which is a robust
way of checking software implementations, power, small-
sample behavior, and attained significance level. A detailed
derivation of our asymptotic approximation formulae is given
in Appendix A.2. Relevant example code for power calcula-
tions in Haplin is provided in S1.

We examined the power of the PoOxE test using the above-
mentioned asymptotic approximations. We first analyzed the

power for a single SNP at the 5% nominal significance level.
Power calculations for increasing relative risk ratios, RRRs,
are shown in Figure 1. For simplicity, we set RR𝑀,1= RR𝐹 ,1
=RR𝐹 ,2 = 1 in all scenarios so that the value of RRR in Equa-
tion (2) is equal to the value of RR𝑀,2. Moreover, we assumed
equally sized exposed and unexposed groups. The left panel of
Figure 1 shows the statistical power for an increasing number
of case–parent triads and a minor allele frequency (MAF) of
0.2. The black solid line is equal in all panels and is based on
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F IGURE 1 Single-SNP power analysis for the PoOxE test for increasing relative risk ratios (increasing values of RR𝑀,2; RR𝑀,1 = RR𝐹 ,1 =
RR𝐹 ,2 = 1) at the 0.05 nominal significance level. Equally sized exposure groups are assumed. Left panel: Increasing number of case–parent triads, and
MAF = 0.2; Middle panel: Increasing MAFs, and a total of 1500 case–parent triads; Right panel: Power comparison of the PoOxE, GxE (increasing
values of RR2; RR1 = 1), PoO (increasing values of RR𝑀 ; RR𝐹 = 1), and fetal effect (increasing values of RR) tests, MAF = 0.2, and a total of 1500
case–parent triads [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 GWAS power analysis for the PoOxE test for increasing relative risk ratios (increasing values of RR𝑀,2; RR𝑀,1 = RR𝐹 ,1 = RR𝐹 ,2 =
1) and increasing number of case-parent triads, assuming equally sized exposure groups and MAF = 0.2. Left panel: Nominal significance level 10−4;
right panel: Nominal significance level 5 × 10−8 [Colour figure can be viewed at wileyonlinelibrary.com]

a total of 1500 case–parent triads, that is, 750 case–parent tri-
ads in both exposure categories. The middle panel depicts the
power for increasing MAFs, using a total of 1500 case–parent
triads. The right panel compares the power for various dis-
ease mechanisms (PoOxE, GxE, PoO, and fetal effects), using
a total of 1500 case–parent triads and MAF = 0.2. Here, the
fetal genetic effect is the direct risk associated with the child's
allele, regardless of parent of origin or environmental expo-
sures.

The power to detect PoOxE effects for a single SNP is suffi-
cient for RRRs above 1.6–1.7 and a total sample size of 1500
case–parent triads with equally sized exposure groups. Nev-
ertheless, larger sample sizes are needed if the MAF < 0.2 or
if the ratio of exposed versus unexposed is highly skewed (the

latter result is not shown). Because the PoOxE test stratifies on
both parent of origin and exposure, detecting a PoOxE effect
requires a larger sample size than detecting a PoO effect or a
GxE effect. Naturally, greatest power is achieved in a search
for fetal effects.

We also examined the power using nominal significance
levels more relevant to GWAS settings. Figure 2 shows
power analyses for increasing RRRs (i.e., increasing values
of RR𝑀,2) with nominal significance levels 10−4 (left panel)
and 5 × 10−8 (right panel). The power is demonstrated for
an increasing number of case–parent triads using equally
sized exposure groups and a MAF of 0.2. With a nominal
significance level of 10−4, approximately 5000 case–parent
triads are required to detect RRRs of 1.6–1.7 with 80% power.
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F IGURE 3 Simulated P-values under the null hypothesis of no
PoOxE effects based on 100,000 replications of data sets. The cumulative
density plots compare the attained significance level with an expected
uniform distribution under the null hypothesis (diagonal sloping line). A
total of 1000 case–parent triads were divided into two exposure strata,
and a MAF of 0.2 was assigned throughout. The distribution of case-
parent triads in each stratumwas as follows: 100–900 (dark grey line) and
300–700 (light grey line). If no bias is present, the observed significance
levels should equal the nominal level of 0.05 (black dashed lines). The
dark and light grey dashed horizontal lines show the attained significance
levels corresponding to the simulated scenarios

With a nominal significance level of 5 × 10−8, a sample size
of 10,000 case-parent triads suffices for RRRs above 1.6.

Our PoOxE test is asymptotically unbiased. However, the
asymptotic approximations underlying log-linear models may
be suboptimal when the number of cases or controls is too
small in one or more strata. When testing for GxE and PoOxE
effects, one may occasionally encounter highly skewed expo-
sure distributions. For example, in our CPO example, only
8 women of Asian ancestry answered “yes” to the ques-
tion of maternal smoking during pregnancy, whereas the
remaining 245 answered “no.” In such situations, the nominal
significance level of the tests may be incorrect; the actual sig-
nificance level is most easily assessed through simulations.

In Figure 3, cumulative density plots were used to exam-
ine the attained significance level of our PoOxE test. We
obtained P-values from 100,000 simulated data sets under
the null hypothesis (RR𝑀,1 = RR𝑀,2 = RR𝐹 ,1 = RR𝐹 ,2 =
1). The P-values should be uniformly distributed when the
null hypothesis is true. Hence, if no bias is present, the P-
values would fall close to the diagonal line. Throughout, a
total of 1000 case–parent triads were divided into two expo-
sure groups, and an MAF of 0.2 was assigned to both strata.
Two scenarios were investigated according to the distribution
of exposed and unexposed triads. In the first scenario (100–

900), the smallest stratum comprised 100 case–parent triads.
In the second scenario (300–700), the smallest stratum com-
prised 300 case–parent triads.

As expected, we observed a small bias for the PoOxE test
when the number of cases in one exposure group was low,
obtaining larger P-values than expected. At the 0.05 nomi-
nal level, the attained significance level is 0.045 in the 100–
900 setting. For lower significance levels, typically occurring
in genome wide analyses, this bias might become substan-
tial. Each exposure group should be large enough so that the
asymptotic approximation of the estimator, 𝛃̂, is sufficiently
precise. Hence, the bias would be less pronounced for skewed
exposure distributions at larger sample sizes (such as in a
1000–9000 setting). In other words, the unbalanced exposure
design itself is not the cause of the observed deflation. The
bias is negligible in the 300–700 setting, verifying that our
PoOxE test attains the nominal significance level when the
sample size of the smallest stratum increases.

4 CONCLUDING REMARKS

In this study, we have proposed a statistical method for
detecting PoOxE effects. Postestimation in the log-linear
framework, incorporated into the Haplin software, allows us
to combine the theory on PoO and GxE effects to test for the
second-order PoOxE effect. Although PoO and GxE studies
abound, the combination has hardly been analyzed, in spite of
its obvious biological relevance. Wang et al. (2011) proposed
an interesting test to screen for interactions between imprinted
genes and environmental exposures in a more restricted set-
ting than our approach. Specifically, when testing for
imprinted genes,Wang et al. assume that either the maternally
or the paternally inherited allele is silenced so that only the
other allele has an effect. This is in contrast to our PoO effect,
which measures the difference between the effects of mater-
nally and paternally derived alleles. Although the assumption
of imprinted genes may increase testing power when it is true,
it has the drawback of being more easily confused with ordi-
nary fetal effects. For instance, if RR𝑀 = RR𝐹 = 1.5 > 1,
this would trigger a test for imprinted genes but not for PoO.

Wang et al. (2011) use conditional logistic regression to
analyze birth cohort designs with mother–offspring pairs. Our
log-linear framework is a general approach to the full hybrid
design with complete or incomplete case triads possibly com-
bined with control triads. We are therefore able to separate
the effects of maternal alleles from the effect of maternally
derived fetal alleles, which is particularly important in peri-
natal epidemiology, where the phenotype of the fetus can be
influenced by either of the two sources (Hager, Cheverud, &
Wolf, 2008). Additionally, our model provides a full maxi-
mum likelihood setup that allows us to estimate allele fre-
quencies, haplotyping of multiple SNPs, and imputation of
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missing genotypes. Ambiguous (heterozygous) mother–
offspring combinations need not be excluded as in the condi-
tional logistic setup; they incorporate naturally into the model
and provide data for the allele frequency estimation. Simi-
larly, within the Haplin framework, PoOxE effects may also
be detected on the X-chromosome, where female offspring
provide a contrast between maternally and paternally derived
alleles; fathers and male offspring contribute to allele fre-
quency estimation and precise haplotyping (Jugessur et al.,
2012b). Finally, the data handling in Haplin enables a full
genome-wide screen for PoOxE effects.

Detailed study planning typically requires calculating the
sample sizes needed to obtain sufficient power. Because
statistical power depends on multiple factors including hap-
lotype frequencies, penetrance model, and so on, published
power tables for genetic studies are typically too restrictive,
and software often covers only basic genetic models. As illus-
trated in S1, Haplin provides extensive power simulations,
even covering the complex setup of PoOxE analyses. By enter-
ing the necessary parameters, the user can easily perform
either “raw” simulations of power or use a very fast power cal-
culation based on the asymptotic distribution of the parameter
estimates.

In a GWAS analysis, the power to detect PoOxE effects
is generally low. However, a candidate gene approach would
reduce the complexity of multiple comparisons and enable a
search for PoOxE effects when the sample size is limited. Spe-
cific environmental exposures that relate directly to the puta-
tive cause of the PoO effect of a candidate gene should be
used in a PoOxE test. For example, one might assume that a
detected PoOxE effect has a better chance of revealing a causal
relationship involving genomic imprinting due to methylation
than the standard PoO or GxE searches. A selection of rel-
evant candidate genes might therefore be based on a GWAS
screen for PoO or GxE effects.

Tracking the different etiologic mechanisms underlying
complex diseases is crucial in improving diagnosis, prognosis,
and prevention. The test for PoOxE effects and the compre-
hensive framework for assessing statistical power for genetic
association analyses presented in this article are thus impor-
tant contributions in advancing our understanding of the dif-
ferent etiologic mechanisms that underlie complex traits.

5 ELECTRONIC DATABASE
INFORMATION

Haplin is implemented as a standard package in the statistical
software𝑹 (R Core Team, 2016) and can be installed from the
official R package archive, CRAN (https://cran.r-project.org).
Our website (http://folk.uib.no/gjessing/genetics/software/
haplin) provides further information.
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APPENDIX A
A.1 PoOxE effects in the haplotype situation
The majority of existing methods to investigate PoO and GxE
effects are performed using a single-marker approach inwhich
each SNP is analyzed individually. However, haplotype anal-
ysis should enhance the possibility of “bracketing” a causal
variant if the haplotype has a SNP on each side of the variant.
The theory of PoOxE effects for the single-marker setting can
easily be extended to haplotypes. We here present a detailed
derivation of the PoOxE test.
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We assume a multiplicative dose–response effect and
a reference haplotype approach. Without loss of gen-
erality, the first haplotype in arbitrary order is cho-
sen as reference. Let 𝐻 denote the number of haplo-
types and 𝑆 the number of independent exposure strata.
We define 𝛃̂𝑀,𝑠 = [β̂2,𝑀,𝑠, β̂3,𝑀,𝑠,… , β̂𝐻,𝑀,𝑠]𝑇 and 𝛃̂𝐹 ,𝑠 =
[β̂2,𝐹 ,𝑠, β̂3,𝐹 ,𝑠,… , β̂𝐻,𝐹 ,𝑠]𝑇 , the relative risk estimates on a
log-scale for each haplotype within exposure stratum 𝑠 (𝑠 =
1, 2,… , 𝑆), depending on parental origin. We calculate the
difference 𝛃̂𝑠 = 𝛃̂𝑀,𝑠 − 𝛃̂𝐹 ,𝑠 and the corresponding asymp-
totic variance–covariance estimate

𝚺̂𝑠 =
[

𝚺̂𝑀,𝑠 𝚺̂𝑀,𝐹 ,𝑠
𝚺̂𝑀,𝐹 ,𝑠 𝚺̂𝐹 ,𝑠

]
,

in which each element is a combined (𝐻 − 1) × (𝐻 − 1)
variance–covariance matrix for haplotypes 2, 3, ...,𝐻 .

We would like to test the null hypothesis
𝛃𝑀,1 − 𝛃𝐹 ,1 = 𝛃𝑀,2 − 𝛃𝐹 ,2 = ⋯ = 𝛃𝑀,𝑆 − 𝛃𝐹 ,𝑆 .

This can be reformulated as

𝑫𝛃 =

⎡⎢⎢⎢⎢⎣

𝑰 −𝑰 𝟎 ⋯ 𝟎
𝑰 𝟎 −𝑰 ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮
𝑰 𝟎 𝟎 ⋯ −𝑰

⎤⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎣

𝛃𝑀,1 − 𝛃𝐹 ,1
𝛃𝑀,2 − 𝛃𝐹 ,2

⋮
𝛃𝑀,𝑆 − 𝛃𝐹 ,𝑆

⎤⎥⎥⎥⎥⎦
= 𝟎.

Here, 𝑰 is the (𝐻 − 1) × (𝐻 − 1) identity matrix. From basic
asymptotic theory of log-linear models, we have that asymp-
totically

𝛃̂ =

⎡
⎢⎢⎢⎢⎣

𝛃̂1
𝛃̂2
⋮
𝛃̂𝑆

⎤
⎥⎥⎥⎥⎦
∼ 𝑀𝑉𝑁(𝛃,𝚺),

where
𝚺̂ = diag

([
𝚺̂1, 𝚺̂2,… , 𝚺̂𝑆

])
.

Consequently, under the null hypothesis, the Wald statistic,
𝑇 = (𝑫𝛃̂)𝑇 𝚺̂−1

𝑫 (𝑫𝛃̂), has an approximate χ2 distribution with
(𝐻 − 1)(𝑆 − 1) degrees of freedom.

A.1.1 Haplotype example
Our Haplin framework allows a straightforward PoOxE analy-
sis of haplotypes. As an illustration, we formed haplotypes by
using one SNP on each side of the previously analyzed SNP
rs2964137 in ICE1 (i.e., rs2964447-rs2964137-rs6868526).
We excluded haplotypes with frequencies below 1%, which
left us with three haplotypes for our analysis. The results are
displayed in Table 2, and the risk estimates are relative to the
reference A-C-C haplotype. The first two SNPs are in strong

linkage disequilibrium (𝑟2 = 0.996); the first SNP is there-
fore redundant and the same information can be obtained by
using only the two last SNPs (𝑟2 = 0.427). Both the T-G-
C and T-G-G haplotypes display PoOxE effects when ana-
lyzed separately against the reference, using theWald test with
one degree of freedom (P-value = 2.1 × 10−5 and P-value =
9.9 × 10−4). The PoOxE effect is stronger when both haplo-
types are analyzed jointly, with 2 degrees of freedom (P-value
= 8.5 × 10−6). The separate relative risk estimates are fairly
similar for the two haplotypes, indicating that the haplotype
risks are driven by rs2964447 and rs2964137, which have the
largest individual effect.

The joint haplotype analysis loses some power compared to
the single-SNP analysis of rs2964137 due to haplotype recon-
struction (P-value 8.5 × 10−6 versus 6.5 ⋅ 10−7). Moreover,
the Wald test statistic has 2 degrees of freedom. Nonetheless,
we do not know a priori which approach, single-marker or
haplotype, will have the best likelihood of identifying an asso-
ciation.

A.2 Statistical power
The power of a genetic association analysis depends on
numerous factors, such as significance level, allele/haplotype
frequencies, effect size, and family design. A sample size cal-
culation will typically involve computing the number of fam-
ilies needed to be genotyped to achieve a preset power for a
given effect size. For instance, one might wish to achieve 80%
power to detect a fetal effect of RR = 2. The standard simula-
tion approach to power calculations is the following. First, a
sufficiently large number of data sets is simulated with appro-
priate parameter choices, such as effect size, sample size, fam-
ily design, and so on. Then, the test is performed on each data
set, and the power is the proportion of rejected null hypothe-
ses. For a range of disease mechanisms, including PoO, GxE,
and PoOxE effects, such power simulations are readily done
in Haplin through the functions hapRun and hapPower. Rel-
evant example code is provided in S1.

“Brute-force” simulations are especially useful for small to
moderate data sets. In such situations, only simulation stud-
ies can indicate the extent and direction of the possible bias.
Nevertheless, both power and sample size can be computed
much more efficiently directly from the asymptotic distribu-
tions underlying the Wald test. Such calculations have been
implemented for a number of genetic effects in the Haplin
function hapPowerAsymp. The principles behind the asymp-
totic calculations are standard; we will in the following para-
graphs outline the specifics of our model implementations.

All tests described in this paper are performed as Wald
tests, using the asymptotic normal distribution of the log-scale
parameters. In general, the power γ of the Wald test with level
α is

γ = 1 − 𝐹𝑟,λ(χ2α(𝑟)), (A.1)
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TABLE 2 PoOxE effects for cleft palate–only example haplotypes
rs2964447-rs2964137-rs6868526, ICE1
Haplotype Stratum RR𝑀 RR𝐹 RR𝑀∕RR𝐹

T-G-C RRS 1.99 0.49 4.04 (1.75, 9.25)
RRNS 0.52 1.04 0.50 (0.31, 0.82)
RRS∕RRNS 3.79 (1.74, 8.22) 0.47 (0.21, 1.05) 7.98 (3.07, 20.77)

T-G-G RRS 1.30 0.24 5.35 (1.51, 18.19)
RRNS 0.68 1.30 0.52 (0.29, 0.96)
RRS∕RRNS 1.89 (0.70, 5.07) 0.19 (0.06, 0.62) 10.13 (2.55, 40.19)

-Reference haplotype: A-C-C
-Overall haplotype frequencies: A-C-C 0.48; T-G-C 0.36; T-G-G 0.16; Europeans only
-RR𝑀 and RR𝐹 are the relative risks depending on parental origin.
-RRNS and RR𝑆 are the relative risks depending on exposure status (nonsmokers or smokers)

where χ2α(𝑟) is the α quantile of the chi-squared distribution
with 𝑟 degrees of freedom, 𝐹𝑟,λ is the cumulative distribu-
tion function of a noncentral chi-squared distribution χ2(𝑟, λ),
and λ is the noncentrality parameter. To compute λ, consider
first the simplest situation where we estimate a single effect,
such as a fetal gene effect or a parent-of-origin effect, within
a single stratum. Let 𝑛 be the number of case children in the
stratum. As 𝑛 changes, we assume the composition of fam-
ily structures within the stratum remains the same, relatively
speaking. That is, we assume the ratio of control families to
case families, the ratio of case mother–child dyads to com-
plete case triads and so on, all remain the same. As before,
we assume β = log(RR) is the log effect size in the stratum,
and σ(𝑛) is the standard error of β̂ when estimated from all
data in the stratum, with 𝑛 case children. If the family struc-
tures are kept fixed as 𝑛 increases, observe that σ(𝑛) ≈ ω∕

√
𝑛,

where ω is the asymptotic standard error computed from the
Fisher information in the maximum likelihood model. The
value of ω is scaled to correspond to a sample with only one
case child (𝑛 = 1) in a stratum. For instance, in a setting with
200 case triad and 100 control triads, ω would, theoretically,
correspond to a stratum with one case triad and half a control
triad. Note that the ω parameter typically depends in a rela-
tively complex way on the family design and allele/haplotype
frequencies, and also on the effect sizes.

The noncentrality parameter λ is then the squared standard-
ized log effect size (Agresti, 2013, Ch. 6.6), that is,

λ =

(
log(RR)
ω∕

√
𝑛

)2

. (A.2)

When the value of ω, corresponding to the appropriate model,
has been determined, the power γ for a given sample size 𝑛 is
readily computed from Eqn (A.1), with 𝑟 = 1 and using the
λ value computed from Eqn (A.2). Equivalently, for a given
power γ, the necessary sample size can be computed by first

finding the corresponding non-centrality parameter λ from
Eqn (A.1), and then solving Eqn (A.2) for 𝑛 to obtain

𝑛 = λω2∕ log2 (RR). (A.3)
The relationship between γ and λ is illustrated in Figure 4
when 𝑟 = 1. Note that the lower significance levels are rel-
evant in situations where multiple testing must be accounted
for.

A.2.1 Sample size calculation for the PoO test
To ease the derivation of sample size estimation for the PoOxE
test, we first illustrate the approach for our PoO test. When
searching for PoO effects in a diallelic situation, the test statis-
tic has one degree of freedom. Equations (A.1), (A.2), and
(A.3) apply, with RR = RR𝑀∕RR𝐹 . To facilitate power cal-
culations “by hand” in simple situations, Table S1 provides
the values of ω for selected PoO settings. Without loss of gen-
erality, in the following examples and derivations, we let the
first allele in arbitrary order be the reference, with allele fre-
quency 1 − 𝑃 . Note that if 𝑃 > 0.5, the reference allele is the
minor allele.

Consider an example of sample size calculation for the PoO
test. Let RR𝑀 = 2, RR𝐹 = 1, and 𝑃 = 0.1. From Table S1,
we find thatω2 = 19.5. With level α = 0.05 and desired power
γ = 80%, Figure 4 yields λ = 7.85. Applying Eqn (A.3), we
need roughly 320 case–parent triads or, equivalently, 344
case–mother dyads or 404 case–father dyads (the ω2 values
for case–father dyads are not included in Table S1). Note that
the values of ω2 depend not only on the ratio RR but also on
the individual values of both RR𝑀 and RR𝐹 . These calcula-
tions can be verified directly by power calculations in Haplin,
as shown in S1.

Although a limited selection of values of RR𝑀 andRR𝐹 are
included in Table S1, several symmetry relationships allow us
to use the simple approach also in other scenarios. The power
for testing PoO effects in case–parent triads for RR𝑀 = 𝑥
and RR𝐹 = 𝑦 is the same as when RR𝑀 = 𝑦 and RR𝐹 =
𝑥. Moreover, the power for testing PoO effects in triads if
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F IGURE 4 Power, γ, as a function of the noncentrality parameter,
λ, for differing values of the nominal significance level, α. Here, λ =
( log(RR)

ω∕
√
𝑛
)2, where log(RR) is the log effect size, 𝑛 is the number of case

children, andω is the asymptotic standard error of the log-parameter. The
number of degrees of freedom is equal to 1 [Colour figure can be viewed
at wileyonlinelibrary.com]

RR𝑀 = 𝑥, RR𝐹 = 𝑦, and𝑃 = 𝑝 is identical to the powerwhen
RR𝑀 = 1∕𝑥, RR𝐹 = 1∕𝑦, and 𝑃 = 1 − 𝑝. Finally, testing for
PoO effects in case–mother dyads for RR𝑀 = 𝑥, RR𝐹 = 𝑦,
and 𝑃 = 𝑝 is equivalent to testing for PoO effects in case–
father dyads when RR𝑀 = 1∕𝑦, RR𝐹 = 1∕𝑥 and 𝑃 = 1 − 𝑝.

A.2.2 Sample size calculation for the PoOxE test
We now consider two independent strata with sample size
(number of case children) 𝑛1 and 𝑛2, respectively, where
we want to compare RR1 = RR𝑀,1∕RR𝐹 ,1 in the first stra-
tum with RR2 = RR𝑀,2∕RR𝐹 ,2 in the second stratum. The
variance of β = (β𝑀,2 − β𝐹 ,2) − (β𝑀,1 − β𝐹 ,1) is σ21 + σ22,where σ21 ≈ ω2

1∕𝑛1 and σ22 ≈ ω2
2∕𝑛2 are the variances in the

first and second stratum, respectively. The power to detect
PoOxE effects is thus fully determined by the power to
assess PoO effects in each stratum. Given power γ, signif-
icance level α, the stratum-specific effects RR1 and RR2,
and allele frequencies 𝑃1 and 𝑃2, as well as the ratio of
sample sizes in the two strata, δ = 𝑛2∕𝑛1, the PoOxE sam-
ple size calculation can be summarized in the following
procedure:

1. Calculate ω2
1 and ω2

2 for the two exposure strata.
2. Calculate the sample size in the second stratum from the

formula

𝑛2 =
λ(δω2

1 + ω2
2)

log2(RR2∕RR1)
,

where λ corresponds to the power γ.
3. Calculate the sample size in the first stratum, 𝑛1 = 𝑛2∕δ.

Note that with two exposure strata, the number of degrees
of freedom still equals one.

As an example, let RR1 = 1, 𝑃1 = 0.3, RR2 = 2.5, and
𝑃2 = 0.1, assuming RR𝐹 = 1 in both strata. For a given dis-
ease and environmental exposure, assume that it is reasonable
to recruit twice as many case-parent triads in the first stra-
tum as in the second (i.e., δ = 1∕2). From Table S1a, we find
that ω2

1 =12.1 and ω2
2 =18.6. Hence, it is sufficient to enroll

approximately 460 triads in the first stratum and 230 triads
in the second stratum to achieve 80% power at the 5% nomi-
nal significance level. The full power calculations for PoOxE
effects have also been implemented in the Haplin function
hapPowerAsymp.



S1. Haplin Commands

This section provides Haplin commands for analyzing PoO, GxE and PoOxE effects

on candidate genes. We also show how a PoOxE analysis can be done on the X-

chromosome. Relevant commands for power calculations are given, using both the

asymptotic properties of the log-linear model and simulations. Haplin outputs are

shown for selected examples. For a thorough description of the Haplin functions

and their arguments, please refer our website at http://folk.uib.no/gjessing/

genetics/software/haplin.

PoO, GxE and PoOxE Analyses on Candidate Genes

The fictive example file “data.dat” contains data on three SNPs in the native Haplin

data format, although other data formats, including standard pedigree files, can

easily be used for our analyses. Each line in the file represents a case-parent triad,

with missing data on parents coded as NA. Information on maternal smoking is

included as a covariate in the first column, followed by columns containing the

genetic data.

Our PoO examples are analyzed in Haplin using commands similar to

res.PoO <- haplin(filename = "data.dat",

markers = 2, n.vars = 1,

design = "triad", poo = T,

response = "mult", reference = "ref.cat",

use.missing = T)

We here analyze the second SNP in the data set (markers = 2), and there is

only one column in the data file to the left of the genetic data (n.vars = 1).

The standard case-parent triad design without independent controls is specified by

design = "triad". The argument poo = T enables estimation of PoO effects. A

multiplicative dose-response model is specified by response = "mult";
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reference = "ref.cat" chooses the most frequent allele/haplotype as reference.

When use.missing is set to true, Haplin uses the EM algorithm to obtain risk es-

timates, accounting for incomplete triads. Note that both PoO and maternal risks,

controlling for possible confounding with one another, are estimated simultaneously

by including maternal = T. The most relevant output is tabulated by the command

haptable(res.PoO).

The GxE effects are calculated by a two-step procedure. First, the genetic effects

in each stratum of the environmental exposure are estimated using the function

haplinStrat:

res.GxE <- haplinStrat(filename = "data.dat",

markers = 2, n.vars = 1,

strata = 1, design = "triad",

poo = F, response = "mult",

reference = "ref.cat", use.missing = T)

The exposure covariate is indicated by the argument strata. Second, the results

from all strata are compared with the Wald test using the function gxe(res.GxE).

Important output for each stratum is obtained by haptable(res.GxE).

Our PoOxE effects are estimated by similar commands to the GxE analyses.

However, the argument poo must be set to true in haplinStrat. Haplin then

computes the PoO effects within each stratum before contrasting the results through

the function gxe. We here show an example of PoOxE analysis in the haplotype

situation. The haplotypes are readily specified in Haplin through the argument

markers, which in our case is formed by the first, second and third SNP in the data.

res.PoOxE <- haplinStrat(filename = "data.dat",

markers = c(1,2,3), n.vars = 1,

strata = 1, design = "triad",

poo = T, response = "mult",
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reference = "ref.cat", use.missing = T)

gxe(res.PoOxE)

gxe.test chisq df pval

1 haplo.freq 0.6910991 2 7.078313e-01

2 poo 23.3532786 2 8.489849e-06

For each test that is performed, the output shows the Wald chi-squared test value,

degrees-of-freedom and the resulting p-value. Results for the haplotype frequency

is always displayed in the first row. We are interested in the PoOxE results, which

are here shown in the second row. Note that this is an overall test where the

haplotypes are analyzed combined. Measures of relative risk ratios for each stratum

and haplotype are obtained by haptable(res.POOxE).

PoOxE Analysis on the X-Chromosome

PoOxE analyses on the X-chromosomes are carried out in a similar manner as for

the autosomal markers, with the extension of three additional arguments. The

argument xchrom = T enables analyses on X-linked markers. The sex argument

indicates the data column containing the sex variable. In this example, we assume

that a single allele in males has the same effect as a double allele dose in females. This

corresponds to X-inactivation and is specified by comb.sex = "double". However,

if comb.sex = "single", the effect of an allele in males is assumed to equal the

effect of a single allele dose in females. PoOxE analyses on the X-chromosome can

also be conducted for females only, as indicated by comb.sex = "females".

res.PoOxE.xchrom <- haplinStrat(filename = "xchrom.dat",

markers = 1, n.vars = 2, sex = 1,

strata = 2, design = "triad",

poo = T, xchrom = T,
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comb.sex = "double", response = "mult",

reference = "ref.cat", use.missing = T)

Power Calculations

The asymptotic power can be computed directly in Haplin by the function hapPowerAsymp.

The function extracts the asymptotic standard error of the estimated log-parameter

and then uses the properties of the non-centrality parameter of the chi-squared dis-

tribution.

If the minor allele at a dichotomous locus is associated with a two-fold risk only

when inherited from the mother, the asymptotic power for 200 case-parent triads is

calculated using the command:

power.PoO <- hapPowerAsymp(nall = 2,

cases = c(mfc =200), haplo.freq = c(0.9 ,0.1),

RRcm = c(1,2), RRcf = c(1,1), RRstar = c(1,1))

The number of alleles at each locus is given by the vector nall. The allele frequencies

are specified by the argument haplo.freq, and the corresponding relative risks are

indicated by RRcm and RRcf, depending on parental origin. The family design is

given by the arguments cases and controls. The nominal significance level equals

0.05 unless otherwise specified.

The power of GxE effects might be examined by a command similar to

power.GxE <- hapPowerAsymp(nall = 2, n.strata = 2,

cases = list(c(mfc =400) ,c(mfc =200)),

haplo.freq = c(0.9 ,0.1),

RR = list(c(1,1),c(1 ,2.5)), RRstar = c(1,1))

The argument n.strata indicates the number of strata. Here, the number of case-

parent triads varies between the two exposure categories, and the least frequent
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allele is associated with disease only in the first stratum. The allele frequencies are

the same in both strata. Extensions to several exposure levels are easily incorpo-

rated by modifying or expanding the appropriate arguments, e.g., n.strata = 3,

cases = list(c(mfc=400),c(mfc=200),c(mfc=100)) and

RR = list(c(1,1),c(1,2),c(1,3)).

A power analysis for PoOxE interactions is achieved by combining the commands

for PoO and GxE power calculations:

power.PoOxE <- hapPowerAsymp(nall = 2, n.strata = 2,

cases = list(c(mfc =460) ,c(mfc =230)),

haplo.freq = list(c(0.7 ,0.3),c(0.9 ,0.1)),

RRcm = list(c(1,1),c(1 ,2.5)), RRcf = c(1,1),

RRstar = c(1,1))

power.PoOxE

$haplo.power

Haplotype RRcm.power RRcf.power RRcm_cf.power

1 1 0.94 0.05 0.8

2 2 ref ref ref

Here, there is only an effect of the maternally derived allele in the second stratum.

The power to detect this change over strata is 94% (RRcm.power). The paternally

derived allele has no effect in either stratum, so the corresponding power is 5%, i.e.,

equal to the nominal significance level. The actual PoOxE effect compares the two

over strata, and thus has a somewhat lower power (RRcm_cf.power).

The statistical power for PoO, GxE and PoOxE interactions can also be com-

puted through simulations. In Haplin, power simulations are carried out using a

two-step procedure. First, hapRun is used to perform Haplin runs on simulated

haplotype data, in which triad genotypes are generated from the multinomial distri-

bution. The multinomial probabilities are calculated by listing all possible genotype
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combinations in the triad format. It then employs the sampling model (equation 1 in

the main text), with appropriate adjustments to the relevant effect situations. The

second step feeds the simulation results to hapPower, and the power is subsequently

computed by calculating the fraction of p-values less than the nominal significance

level.

Provided that the large-sample properties of the log-linear model hold, the

asymptotic power should be comparable with that obtained from simulations. The

asymptotic power for the PoOxE analysis can be verified by the following commands:

sim.power.PoOxE <- hapRun(nall = c(2), n.strata = 2,

cases = list(c(mfc =460) ,c(mfc =230)),

haplo.freq = list(c(0.7 ,0.3),c(0.9 ,0.1)),

RRcm = list(c(1,1),c(1 ,2.5)), RRcf = c(1,1),

RRstar = c(1,1), poo = T,

hapfunc = "haplinStrat", response = "mult",

n.sim = 1000, cpus = 4)

hapPower(sim.power.PoOxE)

The arguments of hapRun are similar to those of hapPowerAsymp with a few excep-

tions. In addition to the arguments RRcm and RRcf, poo must be set to true in order

to test for PoO effects in hapRun. Also, one needs to specify which haplin function

to run, the response model and the number of simulations. The argument cpus

speeds up computations by allowing parallel processing.
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Table S1: Values of ω2, the asymptotic variance of the log-parameter for a) a
complete case-parent triad; and b) a complete case-mother dyad. The values
are scaled to a sample of n = 1 triad or dyad, respectively.

a) Case-parent triad

P

RRM RRF RRMRRF 0.1 0.3 0.5 0.7 0.9

1 1 1 24.4 12.1 10.7 12.1 24.4
1 3/2 2/3 21.2 11.3 10.8 13.3 29.3
1 2 1/2 19.5 11.0 11.1 14.6 34.2
1 5/2 2/5 18.6 10.8 11.5 15.9 39.1
1 3 1/3 17.9 10.8 11.9 17.2 44.0

3/2 1 3/2 21.2 11.3 10.8 13.3 29.3
3/2 3/2 1 17.9 10.6 11.1 14.6 34.2
3/2 2 3/4 16.4 10.4 11.5 16.0 39.1
3/2 5/2 3/5 15.4 10.3 12.0 17.4 44.1
3/2 3 1/2 14.8 10.3 12.5 18.7 49.0

2 1 2 19.5 11.0 11.1 14.6 34.2
2 3/2 4/3 16.4 10.4 11.5 16.0 39.1
2 2 1 14.8 10.2 12.0 17.4 44.1
2 5/2 4/5 13.8 10.1 12.5 18.8 49.0
2 3 2/3 13.2 10.2 13.0 20.2 53.9

5/2 1 5/2 18.6 10.8 11.5 15.9 39.1
5/2 3/2 5/3 15.4 10.3 12.0 17.4 44.1
5/2 2 5/4 13.8 10.1 12.5 18.8 49.0
5/2 5/2 1 12.9 10.1 13.1 20.3 53.9
5/2 3 5/6 12.3 10.2 13.6 21.7 58.9

3 1 3 17.9 10.8 11.9 17.2 44.0
3 3/2 2 14.8 10.3 12.5 18.7 49.0
3 2 3/2 13.2 10.2 13.0 20.2 53.9
3 5/2 6/5 12.3 10.2 13.6 21.7 58.9
3 3 1 11.7 10.3 14.2 23.1 63.8

b) Case-mother dyad

P

RRM RRF RRMRRF 0.1 0.3 0.5 0.7 0.9

1 1 1 27.7 20.3 24.0 20.3 27.7
1 3/2 2/3 25.4 21.8 23.0 19.6 32.0
1 2 1/2 24.8 22.5 21.6 19.9 36.5
1 5/2 2/5 24.7 22.6 20.7 20.7 41.3
1 3 1/3 25.0 22.3 20.2 21.7 46.1

3/2 1 3/2 23.2 17.2 23.0 24.2 34.8
3/2 3/2 1 20.5 18.7 24.4 23.5 38.6
3/2 2 3/4 19.5 20.2 24.2 23.6 42.9
3/2 5/2 3/5 19.2 21.2 23.7 24.2 47.5
3/2 3 1/2 19.1 21.8 23.4 25.1 52.2

2 1 2 21.0 15.5 21.6 27.3 42.4
2 3/2 4/3 18.2 16.8 24.2 27.0 45.5
2 2 1 17.0 18.2 25.2 27.1 49.5
2 5/2 4/5 16.5 19.6 25.5 27.6 53.9
2 3 2/3 16.3 20.6 25.5 28.3 58.5

5/2 1 5/2 19.7 14.5 20.7 30.0 50.3
5/2 3/2 5/3 16.9 15.5 23.7 30.2 52.7
5/2 2 5/4 15.6 16.9 25.5 30.3 56.3
5/2 5/2 1 15.0 18.2 26.4 30.8 60.4
5/2 3 5/6 14.7 19.4 26.9 31.5 64.8

3 1 3 18.9 13.9 20.2 32.6 58.7
3 3/2 2 16.0 14.7 23.4 33.3 60.2
3 2 3/2 14.7 15.9 25.5 33.5 63.3
3 5/2 6/5 14.0 17.2 26.9 33.9 67.2
3 3 1 13.7 18.3 27.7 34.6 71.4

- P is the frequency of the non-reference allele
- RRM and RRF are the relative risks depending on parental origin

1





Paper II

Haplin power analysis: a software
module for power and sample size
calculations in genetic association

analyses of family triads and
unrelated controls





Gjerdevik et al. BMC Bioinformatics          (2019) 20:165 
https://doi.org/10.1186/s12859-019-2727-3

SOFTWARE Open Access

Haplin power analysis: a software
module for power and sample size
calculations in genetic association analyses
of family triads and unrelated controls
Miriam Gjerdevik1,2* , Astanand Jugessur1,2,3, Øystein A. Haaland1, Julia Romanowska1,4,
Rolv T. Lie1,3, Heather J. Cordell5 and Håkon K. Gjessing1,3

Abstract

Background: Log-linear and multinomial modeling offer a flexible framework for genetic association analyses of
offspring (child), parent-of-origin and maternal effects, based on genotype data from a variety of child-parent
configurations. Although the calculation of statistical power or sample size is an important first step in the planning of
any scientific study, there is currently a lack of software for genetic power calculations in family-based study designs.
Here, we address this shortcoming through new implementations of power calculations in the R package Haplin,
which is a flexible and robust software for genetic epidemiological analyses. Power calculations in Haplin can be
performed analytically using the asymptotic variance-covariance structure of the parameter estimator, or else by a
straightforward simulation approach. Haplin performs power calculations for child, parent-of-origin and maternal
effects, as well as for gene-environment interactions. The power can be calculated for both single SNPs and
haplotypes, either autosomal or X-linked. Moreover, Haplin enables power calculations for different child-parent
configurations, including (but not limited to) case-parent triads, case-mother dyads, and case-parent triads in
combination with unrelated control-parent triads.

Results: We compared the asymptotic power approximations to the power of analysis attained with Haplin. For
external validation, the results were further compared to the power of analysis attained by the EMIM software using
data simulations from Haplin. Consistency observed between Haplin and EMIM across various genetic scenarios
confirms the computational accuracy of the inference methods used in both programs. The results also demonstrate
that power calculations in Haplin are applicable to genetic association studies using either log-linear or multinomial
modeling approaches.

Conclusions: Haplin provides a robust and reliable framework for power calculations in genetic association analyses
for a wide range of genetic effects and etiologic scenarios, based on genotype data from a variety of child-parent
configurations.
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Background
Statistical power or sample size analysis is an essential first
step in the planning of any scientific study. Such analy-
ses ensure that a study is capable of answering its stated
research questions and are a prerequisite for optimal study
design [1]. Furthermore, a power analysis is required in
most research proposals. Statistical power calculations are
particularly important in genome-wide association stud-
ies (GWAS) in order to maximize the scientific gains
from the typically high genotyping and assay costs. More-
over, GWAS are often underpowered due to the large
number of single-nucleotide polymorphisms (SNPs) being
assessed, leading to issues of multiple testing. Most effect
sizes reported from genetic association studies of com-
plex traits are small [2–4], which further limits the power.
The statistical power of a study affects the interpretation
of the results. Low power may result in a high number
of false negatives, and a power analysis might elucidate
whether negative findings were the result of the study
being underpowered.
Log-linear andmultinomial modeling are closely related

approaches that offer a flexible framework for genetic
association analysis. Both approaches enable the estima-
tion of genetic effects in addition to hypothesis testing.
Beyond the standard case-control design, they are capa-
ble of incorporating child, parent-of-origin (PoO) and
maternal effects based on genotype data from case-parent
triads, as well as a range of other child-parent configura-
tions. They can also handle incomplete triad data as well
as independent controls. Moreover, the models are read-
ily extended to haplotype analysis. Due to these appealing
features, there has been much interest in the application
of log-linear or multinomial models in genetic associa-
tion studies [5–12], and the models are implemented in
well-established software packages such as Haplin [10, 13]
and EMIM (Estimation of Maternal, Imprinting and inter-
action effects using Multinomial modelling) [11, 12].
General-purpose software tools for statistical power and

sample size analysis are not set up to handle the genetic
study designs and effect estimates available from case-
parent triads with unrelated controls. Although there are
tools that offer power calculations for some genetic asso-
ciation studies, e.g., Quanto [14–16] and Genetic Power
Calculator (GPC) [17], a comprehensive framework for
power analysis based on the full triad design is lacking.
We propose a complete setup for power calculations tai-

lored to binary disease traits, which we have implemented
as a new module in the R package Haplin [10, 13].
In the new implementations, a power analysis can be
performed based on the asymptotic variance-covariance
structure of the parameter estimator or by a simulation
procedure. The power for child, PoO, maternal, and gene-
environment (GxE) effects are easily estimated. Haplin
also enables power analyses for haplotypes, taking into

account unknown SNP phase. The calculations can be
performed for both autososomal and X-linked markers,
and a variety of study designs can be accommodated.
Our paper is structured as follows. In the “Implementation”

section, we first introduce the Haplin software and briefly
present our new power calculation approaches. We then
provide a short tutorial on power calculations for child,
PoO and maternal effects, focusing on the use of asymp-
totic approximations. In the “Results” section, we illus-
trate our power calculations for a wide range of scenarios.
We also compare our asymptotic power approximations
to the powers attained by Haplin and EMIM in simula-
tions, thus confirming the equivalent inference provided
by log-linear and multinomial modeling. In Additional
file 1, we derive the variance-covariance matrix under-
lying the asymptotic power calculations. Furthermore,
because the Haplin framework includes numerous fea-
tures for power analysis, we provide a more detailed
and extensive tutorial, including power analysis for GxE
interactions, in Additional file 2. In addition, we outline
some of the possibilities for power calculations under dif-
ferent X-chromosome models, and we also show how
the power calculations can be extended to haplotype
analysis. Finally, we show the flexibility of our simula-
tion approach, demonstrating different parameterization
models and study designs.

Implementation
Our power calculation tool has been added to the R pack-
age Haplin, which provides an extensive framework for
genetic epidemiological analyses of binary traits. The new
power calculation module has been integrated into the
original setup for genetic association analysis in Hap-
lin and is based on log-linear modeling, as previously
described by Gjessing and Lie [10]. Haplin implements a
full maximum-likelihood model for estimation and com-
putes explicit estimates of relative risks with asymptotic
standard errors and confidence intervals. It enables the
estimation of child, PoO and maternal effects, as well
as interactions between these genetic effects and cate-
gorical or ordinal exposure variables (i.e., GxE) [18, 19].
Haplin also incorporates analyses of X-linked markers in
a straightforward manner, and different X-chromosome
models may be fitted depending on the desired underlying
assumptions [20–22]. In Haplin, the main unit of study is
the case-parent triad, in which affected children and both
of their biological parents are genotyped. However, the
log-linear model can be extended to include independent
control children or control triads in a hybrid design, under
the “rare disease” assumption [23]. Note that unrelated
controls are optional but not required, because “pseudo-
controls” can be constructed from the non-transmitted
parental alleles in case-parent triads [24–27]. The expec-
tation maximization (EM) algorithm [28] is implemented
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in Haplin to account for unknown parental origin in
ambiguous (uninformative) triads. Additionally, the EM
algorithm accounts for missing information on certain
individuals, such as when some triads are reduced to
child-mother dyads due to missing data on the father.
Although the fundamental model in Haplin relates to a
single multi-allelic marker, it extends directly to haplo-
types over multiple markers by statistically reconstructing
haplotypes of unknown phase [10]. Furthermore, because
the calculations can be performed in parallel, genome-
wide association analyses are readily accommodated.
The log-linear model in Haplin assumes Hardy-Weinberg
equilibrium (HWE), Mendelian transmission and ran-
dom mating. A detailed description of the underlying
model is provided in several of our previous publications
[10, 18, 29].

Genetic effects and study designs
Within the Haplin framework, based on the log-linear
modeling approach, we have developed a new and com-
plete module for performing power calculations. The
basic calculations relate to child, PoO and maternal
effects, and our definitions of these genetic effects are
provided in Table 1. The power depends on the under-
lying penetrance models, i.e., the probability of a child
exhibiting the disease conditional on a particular genetic
composition, which we define in Table 2. A variety of
child-parent configurations are available for power anal-
ysis in Haplin, and a small selection of the possible study
designs is shown in Fig. 1. We use the following abbrevi-
ations to describe the family designs. We let the letters c,
m and f denote a child, mother and a father, respectively.
Thus, mfc denotes a case-parent triad, and mc denotes
a case-mother dyad. Moreover, mfc-mfc denotes the full
hybrid design, whereas mc-mc denotes the hybrid design
consisting of case-mother and unrelated control-mother
dyads. The possible configurations in Haplin also include

designs such as c-c (the standard case-control design), fc
(case-father dyad), mfc-mc (case-parent triad with unre-
lated control-mother dyad) and mfc-mf (case-parent triad
with unrelated control parents). The full list of supported
study designs are provided on the Haplin website [13].

Power calculations in Haplin
In this section, we demonstrate how to perform basic
power calculations in Haplin, implemented in the func-
tion hapPowerAsymp. The power is computed analyt-
ically through asymptotic approximations, scaled to the
appropriate sample size. We apply the asymptotic normal
distribution of the log-scale parameter and use the chi-
squared non-centrality parameter of the Wald test. The
variance-covariance matrix is computed from a log-linear
model which accounts for transmission ambiguities and
missing data; its derivation is provided in Additional file 1.
The theory underlying our asymptotic power calculations
is outlined in more detail elsewhere [29].
In Haplin, the asymptotic power calculations are easy

to perform. In general, one only needs to specify the
study design and its sample size, the allele frequen-
cies, and the type of genetic effect and its magnitude.
Table 3 shows example Haplin commands for estimat-
ing the power for child, PoO and maternal effects. In
all examples, we calculate the power for a diallelic SNP,
using 500 case-parent triads. The study design is spec-
ified by the arguments cases and controls, using
the notation from Fig. 1. Thus, 500 case-parent triads
are specified by the argument cases=c(mfc=500),
whereas 500 case-mother dyads would be specified by
cases=c(mc=500). A hybrid design consisting of 200
case-mothers dyads and 500 control-parent triads would
be expressed by the combination cases=c(mc=200)
and controls=c(mfc=500).
The genetic effects are determined by the choice of

relative risk parameter(s), which also specifies the effect

Table 1 Genetic effects

Effects Description

Child A variant allele may increase the risk of a disease only when carried by an individual himself/herself. We refer to this as a “child
effect” since it is frequently estimated from the offspring in a case-parent triad. However, the individual referred to as a child
might be of any age, depending on the phenotype of interest, and the same effect can also be estimated in case-control
studies.

Parent-of-origin (PoO) A PoO effect occurs if the effect of a variant allele in the child depends on whether it is inherited from themother or the father.
In statistical terms, we define a PoO effect as the interaction effect RRR = RRM,j/RRF,j , which is a measure of the risk increase
(or decrease) associated with allele Aj , when derived from themother as opposed to the father. In contrast, regular child-effect
analyses assume that the effect of an allele in the child is independent of parental origin. Note that genomic imprinting (an
epigenetic phenomenon where one of the inherited parental alleles is expressed whereas the other is silenced) may cause
PoO effects [32].

Maternal A mother’s genotype may influence fetal development directly, for example through maternal metabolic factors operating
in utero [33], and may affect health throughout life [34]. A maternal effect occurs when a variant allele carried by the mother
increases the risk of disease in her child, regardless of whether or not the allele has been transferred to the child [35]. This is
distinct from child and PoO effects, in which wemeasure the effect of alleles in the child himself/herself. Because these under-
lying genetic mechanisms lead to entirely different biological interpretations, distinguishing between the genetic effects is
particularly important in advancing the understanding of the etiology underlying a complex disease [11, 36, 37].
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Table 2 Parameterization of penetrances

Effects Parameterization of penetrances

Child B · RRjRRlRR∗
jl (1)

Parent-of-origin (PoO) B · RRM,jRRF,lRR∗
jl (2)

Child and maternal B · RRjRRlRR∗
jl · RR(M)

i RR(M)
j RR(M)∗

ij (3)

PoO and maternal B · RRM,jRRF,lRR∗
jl · RR(M)

i RR(M)
j RR(M)∗

ij (4)

B is the baseline risk level, typically associated with the (more common) reference allele; RRj is the risk increase associated with allele Aj , relative to B; RRM,j and RRF,j are the
relative risks associated with allele Aj , depending on whether the allele is transmitted from the mother or the father; the double-dose parameter RR∗

jl measures the deviation

from what would be expected in a multiplicative dose-response relationship, i.e., RR∗
jl = RR∗

j when j = l and RR∗
jl = 1 when j �= l; RR(M)

i is the relative risk associated with allele

Ai carried by the mother, and RR(M)∗
ij is the maternal double-dose parameter, interpreted analogously to RR∗

ij . To ensure that the model is not overparameterized, we set
RR = 1 for the reference allele

sizes. Corresponding to the parameterization model in
Eq. (1) (defined in Table 2), a child effect is specified
by the relative risk argument RR (Table 3a). Allele fre-
quencies are specified by the argument haplo.freq.
Note that the order and length of the specified rel-
ative risk parameter vectors should always match the
corresponding allele frequencies. All examples assume a
minor allele frequency (MAF) of 0.2. Thus, from Table 3a
we see that the power is 88% when the less frequent
allele at a diallelic marker is associated with a rela-
tive risk of 1.4, as expressed by the combination of
allele frequencies haplo.freq=c(0.8,0.2) and rela-
tive risks RR=c(1,1.4). By default, the more frequent
allele is chosen as reference (Table 3a, first row of the
Haplin output).
As illustrated in Table 3b, the power to detect a PoO

effect is computed by replacing the argument RR by
the two relative risk arguments RRcm and RRcf, denot-
ing parental origin m (mother) and f (father). Both
RRM and RRF are estimated freely, and individual tests
for the null hypotheses RRM = 1 and RRF = 1
are constructed. The corresponding power estimates are

denoted by RRcm.power and RRcf.power, respec-
tively. In addition, we are interested in testing the actual
PoO effect, estimated by comparing the maternally and
paternally derived effects by the ratio RRR = RRM/RRF .
The null hypothesis of RRR = RRM/RRF = 1 means no
PoO effect, and the power to detect the PoO effect is out-
put as RRcm_cf.power, here estimated to be 48% when
RRcm = c(1,2) and RRcf = c(1,1.5). For more
details on PoO testing and its relationship to imprinting,
see Gjerdevik et al. [29].
Since children and their mothers have an allele in com-

mon, a maternal effect might be statistically confounded
with a child or a PoO effect. Corresponding to the param-
eterization models in Eq. (3) and (4) (Table 2), the power
of a maternal effect can be analyzed jointly with that
of a child effect or a PoO effect by adding the rela-
tive risk argument RR.mat to the original child or PoO
model (Table 3c and d). The resulting power estimates
control for the possible confounding of these effects with
one another. When adjusting for the maternal effect in
Table 3c, the power to detect the child effect is 90%. Con-
versely, when adjusting for the child effect, the power to

Fig. 1 A selection of designs for genetic association studies: a Case-parent triad (mfc); b Case-parent triad with independent control-parent triad
(mfc-mfc); c Case-mother dyad (mc); d Case-mother dyad with independent control-mother dyad (mc-mc)
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detect thematernal effect is 42%. The example in Table 3d,
involving joint PoO and maternal effects, has a similar
interpretation.
In Table 3, the nominal significance level defaults

to 5%. However, other values can be specified by
using the argument alpha. The current implementa-
tion of hapPowerAsymp does not allow deviations from
the multiplicative dose-response assumption. Thus, the
double-dose parameters RR∗ and RR(M)∗ (Eq. 1-4 in
Table 2) are equal to 1 and do not need to be specified
in the Haplin command. However, we expect future ver-
sions of hapPowerAsymp to handle power calculations
for separate single- and double-dose effects.

Power simulations in Haplin
Haplin also includes an extensive setup for power cal-
culation through simulations. Simulation approaches
are robust ways of checking software implementations,
attained power, and attained significance level. They are
particularly useful for small to moderately sized datasets,
in which the asymptotic properties of the log-linear model
might not hold true. In these situations, the extent and
direction of the possible bias can best be assessed using
simulations. In Haplin, power simulations are carried
out using a two-step approach, by applying the func-
tions hapRun and hapPower. First, hapRun simulates
haplotype data, in which triad genotypes are gener-
ated from the multinomial distribution. The multinomial
probabilities are computed by listing all possible geno-
type combinations in the triad format and then apply-
ing the sampling model described in Gjessing and Lie
[10]. hapRun then performs Haplin runs, i.e., statisti-
cal inference, on the simulated data. To speed up these
calculations, hapRun allows for parallel processing. In
the second step, the simulation results from hapRun are
submitted to hapPower, which computes the power by
calculating the fraction of p-values less than the nominal
significance level.
Clearly, the asymptotic power approximation is much

more time-efficient than brute-force simulations; in its
current implementation, however, it is somewhat more
restricted. The simulation approach is completely gen-
eral; it enables power calculations for a wider range of
parameterization models, such as deviations from the
multiplicative dose-response assumption. The simulation
approach also handles a wider array of child-parent con-
figurations and allows for missing individuals to be gener-
ated at random. Examples and relevant Haplin commands
are provided in Additional file 2.

Results
Examples of asymptotic power calculations
Weillustrate theuse ofourpower function hapPowerAsymp
by plotting power curves for different scenarios, as shown

in Fig. 2. Power calculations for child effects are shown
in panels a and b, and power calculations for PoO effects
are shown in panels c and d. For the PoO effects, we set
RRF = 1, so that the value of RRR = RRM/RRF is equal
to the value of RRM. In the left panels (a and c), we used
varying numbers of case-parent triads and a MAF of 0.2.
In the right panels (b and d), the power was calculated
using varying MAFs and a total of 500 case-parent triads.
We used a nominal significance level of 5% throughout.
In all panels, the green, solid line represents scenarios

in which 500 case-parent triads and a MAF of 0.2 were
used. For child effects, we have 80% power to detect an
RR of 1.35. However, using 250 case-parent triads, the cor-
responding power decreases to 51% (panel a). Moreover,
with 500 case-parent triads and a MAF of 0.1, the power
to detect an RR of 1.35 is 57% (panel b). The PoO analysis
can be viewed as a statistical interaction. Compared with
the child-effect analysis, a higher sample size is therefore
required for the PoO analysis to reach the same statistical
power for a similar effect size. Approximately 1200 case-
parent triads are needed to detect an RRR of 1.35 with
80% power and a MAF of 0.2 (panel c). With 500 case-
parent triads and a MAF of 0.2, we have approximately
80% power to detect an RRR of 1.6. Using a MAF of 0.1,
the corresponding power is 64% (panel d).
Note that sample size and power are directly related

measures. For given relative risks, power curves similar to
Fig. 2 can be made with sample size on the x-axis.

Comparison of the asymptotic power approximations to
the simulated power in Haplin and EMIM
Similar to Haplin, the command line software PRE-
MIM and EMIM are easy-to-use tools for the estima-
tion of child, PoO and maternal effects based on geno-
type data from a number of different study designs
[11, 12]. PREMIM generates required input files for
EMIM by extracting the required genotype data from
standard-format pedigree data (PLINK) files [30], and
EMIM performs the subsequent statistical analyses. PRE-
MIM and EMIM are written in C++ and FORTRAN
77, respectively, and are therefore considerably faster
than R implementations. EMIM allows a variety of
different parameterization models, which makes it an
appealing software for power comparisons with Haplin.
Because EMIM uses multinomial modeling, its infer-
ence should be similar to that of Haplin [31]. How-
ever, to account for unknown parental origin in ambigu-
ous (uninformative) triads or dyads, EMIM maximizes
the multinomial likelihood directly (via a direct search
algorithm), whereas Haplin maximizes the likelihood
using the EM algorithm.
We compared the asymptotic power calculations in

Haplin to the power attained by Haplin and EMIM in
data simulations. The asymptotic power was computed
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Fig. 2 Power analysis using the Haplin function hapPowerAsymp. a Child effects for varying numbers of case-parent triads, using a MAF of 0.2; b
Child effects for varying values of MAFs, using a total of 500 case-parent triads; c PoO effects for varying numbers of case-parent triads, using a MAF
of 0.2; d PoO effects for varying values of MAFs, using a total of 500 case-parent triads. For the PoO effects, RRF = 1, so that the value of RRM/RRF is
equal to RRM . A nominal significance level of 0.05 was used throughout. The power was calculated at relative risks/relative risk ratios of
1, 1.05, 1.10, . . . , 2. Intermediate values correspond to line segments joining two adjacent points

using the function hapPowerAsymp, whereas the simu-
lated power in Haplin was calculated using hapRun and
hapPower. EMIM performs genetic association analyses,
but corresponding power calculations are not imple-
mented. To calculate the power attained by EMIM, we
first used the Haplin function hapSim to simulate the
genotype data. The data was then converted to the stan-
dard PLINK-format files, which were subsequently fed
into PREMIM and EMIM. Given that the power calcu-
lations in Haplin are based on the Wald test, we also
used the Wald test for inference in EMIM. Lastly, we
calculated the fraction of p-values less than the nominal
significance level. We analyzed child, PoO and mater-
nal effects employing the parameterizations presented in
Table 2, assuming a multiplicative dose-response model.
We simulated data for a variety of child-parent configura-
tions (mfc, mc, mfc-mfc, mc-mc), with effect sizes ranging
between 1.0 and 2.0, and a MAF of 0.2. We based the
power comparisons on 500 case families in each design,
i.e., 500 case-mother dyads or 500 case-parent triads,

reflecting that the number of case children available is
often a constraint when designing a study. For the hybrid
designs, we added an equal number of unrelated control
families. The simulations were based on 10,000 repli-
cates of data for a single SNP, and we used a nominal
significance level of 0.05. HWE and random mating were
assumed throughout.
The results are shown in Fig. 3. Child effects are dis-

played in panels a and b, and PoO effects are displayed in
panels c and d, with panels b and d showing the results
obtained when the child and PoO effects were calculated
while adjusting for possible maternal effects (even though,
in the simulation model, we did not assume maternal
effects, i.e., we set RR(M) = 1). For the PoO effects, we
set RRF = 1, so that the value of RRM/RRF is equal to
the value of RRM. Panels e and f show the power to detect
maternal effects, while adjusting for possible child or PoO
effects (simulated under models where no such child or
PoO effects existed, i.e., RR(M) > 1 and RR = 1, and
RR(M) > 1 and RRM = RRF = 1, respectively).
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Fig. 3 (See legend on next page.)
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Fig. 3 (See figure on previous page.)
Comparison of the asymptotic power calculations with the power attained by Haplin and EMIM in data simulations. The power was calculated for
different child-parent configurations, assuming a MAF of 0.2 and a nominal significance level of 0.05. The results were based on 500 case families
and, when applicable, 500 unrelated control families. All simulations were based on 10,000 replicates of data for a single SNP. Asymp: Power
calculations in Haplin, based on asymptotic approximations (Haplin function hapPowerAsymp); Haplin: Power calculations in Haplin, based on
data simulations. The power is the proportion of tests rejected by Haplin (Haplin functions hapRun and hapPower); EMIM: Power calculations
based on data simulations in Haplin (Haplin function hapSim). The power is the proportion of tests rejected by EMIM. a Child effects (RR > 1); b
Child effects, adjusting for maternal effects (RR > 1 and RR(M) = 1); c PoO effects (RRM/RRF > 1 and RRF = 1); d PoO effects, adjusting for maternal
effects (RRM/RRF > 1 and RRF = RR(M) = 1); eMaternal effects, adjusting for child effects (RR(M) > 1 and RR = 1); fMaternal effects, adjusting for
PoO effects (RR(M) > 1 and RRM = RRF = 1). The power was calculated at relative risks/relative risk ratios of 1, 1.1, 1.2, . . . , 2. Intermediate values
correspond to line segments joining two adjacent points. Note that for all study designs, the power was calculated based on asymptotic
approximations in Haplin, as well as simulations where both Haplin and EMIM were used to analyze the genetic data. The lines for Asymp, Haplin
and EMIM are nearly overlapping, demonstrating consistent results

Note that panels b and e are equivalent because the
power to detect a given child or maternal effect is iden-
tical when adjusting for possible confounding of the
effects with one another. However, this symmetry depends
on the study design and will not necessarily hold if
case-mothers are unavailable for genotyping (results not
shown). PoO effects are essentially estimated in case fam-
ilies, by contrasting the frequencies of alleles transmitted
from mother to child with those of alleles transmitted
from father to child. Thus, unrelated control families
do not add extra power to the case-parent triad design,
as can be seen from the overlapping results of the mfc
and mfc-mfc designs in panel c. Note that we excluded
the mc design from the joint PoO and maternal effect-
analyses (panels d and f) because the penetrance model
in Eq. (4) (Table 2) would become overparameterized.
Overall, Fig. 3 shows that the results are highly consis-
tent between the asymptotic power approximations and
the simulated power in Haplin and EMIM, demonstrating
that the asymptotic power function performs well when
the asymptotic properties underlying the log-linear model
hold true. Furthermore, the consistency between Haplin
and EMIM across a wide spectrum of genetic scenar-
ios confirms the computational accuracy of the inference
methods used in both programs. Altogether, the results
indicate that Haplin provides a robust and reliable frame-
work for power calculations in genetic association studies
when the genetic analyses are based on either log-linear or
multinomial modeling.

Conclusions
To our knowledge, a comprehensive software for power
analysis based on the full triad design has been lack-
ing. Here, we have developed and showcased exten-
sive, new and easy-to-use functionalities for statistical
power analyses based on log-linear modeling, incorpo-
rated in the R package Haplin. In Haplin, power analy-
sis can be carried out analytically using the asymptotic
variance-covariance structure of the parameter estimator,

or, by a straightforward simulation procedure. The two
approaches for power calculations complement each
other, balancing time efficiency against generality. Hap-
lin enables power calculations to be performed for child,
PoO, maternal and GxE effects, based on genotype data
from a variety of family-based study designs. An inherent
strength of the Haplin framework is its ability to com-
pute power for both single SNPs and haplotypes, either
autosomal or X-linked. We plan to continue to expand
the present framework for power analysis, adding new
features for power calculations as additional methods for
genetic association analysis are developed and incorpo-
rated into the Haplin software.
To facilitate power analysis in Haplin, we have provided

relevant example commands in Table 3. In addition, an
extended tutorial is provided in Additional file 2, demon-
strating power analysis for GxE interactions, X-linked
models and haplotype effects, as well as our simulation
functions hapRun and hapPower. Researchers can eas-
ily apply our functions using arguments and parameter
values relevant to their own data.
The standard Haplin implementation assumes

haplotype-frequency parameters under HWE instead
of a model with all mating-type parameters [5, 6]. This
improves power and facilitates haplotype reconstruction.
The triad design itself protects against population strat-
ification, but some of that benefit is lost if HWE is not
fulfilled. However, top hits from a GWAS analysis can be
checked retrospectively for HWE. As for power calcula-
tions, a full set of mating-type frequencies will seldom
be available prior to study start, and a HWE assumption
simplifies the calculations.
We conducted a thorough comparison of the asymptotic

approximation approach with the power attained by Hap-
lin and EMIM in data simulations. Child, PoO and mater-
nal effects were assessed. The concordant results obtained
confirm the computational accuracy of the inference
methods used in both programs. They also demon-
strate that power calculations in Haplin are applicable
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to genetic association studies analyzed by either log-
linear or multinomial modeling approaches. Thus, Hap-
lin provides a robust and reliable framework for power
calculations in genetic association analyses for various
genetic effects and etiologic scenarios, based on geno-
type data from a wide range of different child-parent
configurations.

Availability and requirements
Project name: Haplin
Project home page: https://people.uib.no/gjessing/gene-
tics/software/haplin
Operating system(s): Platform independent
Programming language: Haplin is implemented as a
standard package in the statistical software R. It is avail-
able from the official R package archive, CRAN (https://
cran.r-project.org).
Other requirements: None
License: GPL (>= 2)
Any restrictions to use by non-academics: None
Information on EMIM and PREMIM is available from
https://www.staff.ncl.ac.uk/richard.howey/emim.
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Additional file 1 — An asymptotic
approximation of Σ
Likelihood model Assume a locus has l different alleles. Typically, l = 2 at
a single SNP. With k SNPs, there are l = 2k different possible haplotypes, each
considered an allele at the locus, assuming no recombination between SNPs.
For a mother-father-child triad, the genotype of the triad can be written as
(AM1AM2, AF1AF2, AC1AC2), where AM denotes the maternal alleles, AF de-
notes the paternal alleles, and AC denotes the alleles of the child. Assume
that the parental alleles are ordered in such a way that the second allele is
transmitted to the child; i.e., we have AC1 = AM2 and AC2 = AF2. This
permits a more compact notation with the full triad as an ordered quadruplet
(AM1, AM2, AF1, AF2).

To list all possible triad genotypes, we construct a 4-column matrix G with
one column for each of the parental alleles, including all possible allele combi-
nations. For instance, for a diallelic SNP with alleles 1 and 2,

G =




AM1 AM2 AF1 AF2

1 1 1 1
2 1 1 1
1 2 1 1
2 2 1 1
1 1 2 1
2 1 2 1
...

...
...

...
2 2 2 2




.

The matrix G has dimensions q × 4, where q = l4. In particular, q = 24k when
considering a locus with k diallelic SNPs, where the alleles are the 2k possible
haplotypes at the locus.

Assuming the full genotype of all triads could be observed, the log-linear
model assumes that the number of triads n = [n1, . . . , nq], corresponding to the
rows of G, can be described by independent Poisson distributions, where

m = exp(Xβ)

is a q × 1 vector of the expected number of triads in each row, β is a p × 1
parameter vector, X is a q × p design matrix (described in more detail below),
and the exponential function is computed elementwise. We assume that 1 ∈
colspace(X), where 1 = [1, . . . , 1]T . If β̂ is the maximum likelihood estimator
derived from this model, and m̂ = exp(Xβ̂), the condition

m̂T1 = nT1

holds [1, Chapter 10], i.e., the sum of the expected number of triads is equal to
the sample size N = nT1. Let m. =mT1, and define p = m/m., i.e., the cell
probabilities.

1



Each row in G corresponds to a fully observed triad genotype, that is, a
triad can be associated with a specific row of G only if the alleles of the mother,
father, and child are all fully known. From observed data, however, one will
often obtain triads where, for instance, the genotypes of the father is lacking.
Also, since the alleles at the locus will typically consist of haplotypes derived
from a sequence of SNPs, the unknown phase of the SNPs will represent an
ambiguity regarding the triad alleles. For any observed triad j, we define aj to
be the q×1 “ambiguity vector” for triad j. To determine aj for a given triad, we
first identify all rows of G that are compatible with the observed genotype of
the triad. For instance, at a SNP, if we observe a mother with genotype (1 2),
a child with the genotype (2 2), and the father is missing, the full triad could
be either (1 2, 1 2, 2 2) or (1 2, 2 2, 2 2), which correspond to rows 11 and 15,
respectively, in the G matrix. The ambiguity vector aj is then a vector with
ones at positions 11 and 15, and zeros otherwise. Similarly, with two or more
SNPs, unknown haplotype phase introduces ambiguities which are incorporated
in the ambiguity vector aj .

Let A be the set of all possible ambiguity vectors, i.e., those corresponding to
all observed genotypes. Note that aj is a many-to-one mapping from the rows
of G into A, and thus P (aj = a) = aTp, i.e., the sum over all row probabilities
compatible with the observed genotype.

Design matrix Using G as the starting point, the corresponding q×p design
matrixX for a log-linear model can be derived, including columns for estimating
allele frequencies, child allele dose effects, etc. The form of X will depend on
what model is being estimated in a given instance. For example, to estimate
the child relative risk RR2 associated with allele 2, we first create two dummy
vectors 1M and 1F . The dummy 1M is set to one when the AM2 column of
G is equal to 2, and zero otherwise. Similarly, 1F is set to one when the AF2

column is 2, and zero otherwise. That is, 1M and 1F indicate whether the child
inherited allele 2 from the mother and/or the father, respectively. The design
matrix X should then contain a column equal to 1M + 1F , and R̂R2 = exp(β̂),
where β̂ is the estimated parameter corresponding to this column. This choice
would entail RR1 = 1 and RR∗

2,2 = 1, i.e., a multiplicative response model with
allele 1 as the reference allele. If the model should allow deviations from the
multiplicative response, including 1M · 1F in the X matrix would provide an
estimate of RR∗

2,2. By similar constructions, all models described in this paper
are covered. The exact form of the X matrix is not important for the likelihood
derivation below.

The asymptotic variance-covariance matrix In our likelihood model, we
write lN (β) = log(LN (β)) for the log-likelihood based on N triads. Let β̂N

be the corresponding maximum likelihood estimator of the p × 1 parameter
vector β. As described above, the β parameter vector contains information
about haplotype frequencies and relative risks; typically, βi = log(RRi) for
some component i of the vector, where RRi is the relative risk associated with
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haplotype hi. We denote the asymptotic p × p variance-covariance matrix by
Σ. From standard likelihood theory,

√
N(β̂N − β)

d−→ N (0,Σ)

as N →∞ [1, Chapter 10]. The matrix Σ is given as the inverse of the expected
information matrix, I(β), with element (i,j) defined as

−E
{
∂2l(β)

∂βi∂βj

}
,

where l(β) is the log-likelihood function [2].
If N is the total number of observed triads, then N is Poisson distributed

with expected value equal to the sum over all rows, i.e., m.. Conditional on N ,
the number of triads corresponding to a row in G (if they were fully observed)
follows a multinomial distribution with cell probabilities p. Hence, the likelihood
contribution from a single observed (possibly ambiguous) triad j is aT

j p, and
the full likelihood, accounting for ambiguities, is

L(β) ∝ m.Ne−m.
N∏

j=1

aT
j p.

The corresponding log-likelihood function is then

l(β) =
∑

j

(log(aT
j m))−m..

Applying the rules for vector differentials [3], we have that

∂l(β) = (
∑

j

bTj −mT )X∂β,

where
bj =

diag(aj)m

aT
j m

.

Furthermore, the second derivative of the log-likelihood function is

∂2l(β) = (∂β)TXT


diag(

∑

j

bj)−
∑

j

bjb
T
j − diag(m)


X(∂β).

Consequently, the observed Fisher information matrix is

IN (β) =XT


diag(m)− diag(

∑

j

bj) +
∑

j

bjb
T
j


X,

and as N →∞,

1

N
IN (β) ∼XT

(
diag(p)− diag(E(b)) + E(bbT )

)
X.

3



It follows that the asymptotic variance-covariance matrix of β̂N is

Σ =
[
XT

(
diag(p)− diag(E(b)) + E(bbT )

)
X
]−1

,

and thus
var(β̂N ) ∼ 1

N
Σ.
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Additional file 2 — Power and sample size
calculations in Haplin
Haplin includes a complete setup for power calculations, extending beyond the single-SNP anal-
yses of child, PoO and maternal effects. Here, we provide an extensive tutorial and illustrate
power analyses for a range of relevant genetic and etiologic scenarios. Nevertheless, this tutorial
is not intended as an exhaustive documentation of the power framework and its functions. We
therefore strongly recommend consulting the R help page, which includes detailed and up-to-
date information on the power functions and all their arguments. As we continue to expand our
framework for power analysis, changes to the presented commands may occur. Such updates
will be documented on the Haplin website at https://people.uib.no/gjessing/genetics/
software/haplin, as well as on the R help page.

The supplementary material is structured as follows. We start with an introduction of the
asymptotics-based functions snpPower and snpSampleSize, before continuing with an extended
tutorial of hapPowerAsymp. The two last sections are devoted to hapRun and hapPower, which
calculate the power by using simulations.

snpPower and snpSampleSize

For single-SNP analyses of child effects, statistical power and sample size calculations are most
easily done with the Haplin functions snpPower and snpSampleSize. snpPower computes the
power for a single SNP by counting the number of “real” case alleles (transmitted alleles from
case triads), “real” control alleles (all alleles from control triads) and pseudo-control alleles (non-
transmitted alleles from case families). A multiplicative dose-response relationship is assumed.
snpPower calculates the power by using the asymptotic normal approximation for the natural
logarithm of the odds ratio (the relative risks and odds ratios are used interchangeably due to the
“rare disease assumption”). It computes the power for a given number of case families, control
families, relative risks, minor allele frequencies (MAFs) and type I error rates. For example, to
compute the power for 200 case-parent triads and 100 control children, assuming a relative risk
of 1.4, a minor allele frequency of 0.2, and a nominal significance level of 5%, use the command

snpPower(cases=list(mfc=200), controls=list(c=100), RR=1.4, MAF=0.2, alpha=0.05).

In snpPower, the power can be calculated for a mixture of different family designs and for
several combinations of the input variables simultaneously. Please refer to the R help page and
the Haplin website for an explanation of the arguments and its options.

Note that most of the functionality of snpPower is covered by the more flexible Haplin
function hapPowerAsymp, which also extends to power analyses of haplotype effects, parent-
of-origin (PoO) effects, maternal effects, gene-environment interactions (GxE), etc. However,
snpPower is somewhat easier to apply and is therefore useful for simple power calculations of
single-SNP child effects.

snpSampleSize is the inverse function of snpPower. For child effects, it computes the number
of case and control families required for a single SNP to attain the desired power for specified
family designs and given values of relative risks, minor allele frequencies and type I error rates.
Examples and documentation are given on the R help page and on the Haplin website.
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hapPowerAsymp: Extensions to X-linked markers,
gene-environment interactions and haplotype effects
Basic power calculations of child, PoO and maternal effects using hapPowerAsymp are described
in the main article. Here we show how to extend power analyses to X-linked markers, GxE, and
haplotype effects.

X-linked markers
Genetic association analyses of X-linked markers might be of particular relevance if the preva-
lence of a complex trait or disease is systematically different for males versus females. Various
X-chromosome models are implemented in Haplin. The models depend on the underlying as-
sumptions regarding allele-effects in males versus females, which may include sex-specific base-
line risks, shared or distinct relative risks for males and females, as well as X-inactivation in
females. A detailed description of the parameterization models is provided in our previous
studies [1, 2, 3]. Corresponding power analyses are readily available in hapPowerAsymp, and an
example of X-chromosome power analysis is shown in Table S1a. In addition to the arguments
needed to perform power calculations of child, maternal or PoO effects on autosomal markers,
three arguments are required to specify an X-linked penetrance model. The argument xchrom
must be set to TRUE, which indicates power analysis of X-chromosome markers. Furthermore,
the argument sim.comb.sex specifies how to deal with sex differences on the X-chromosome.
We have used the option single, which means that the effect of one (single) allele in males
equals the effect of a single allele dose in females. However, the default value is double, which
corresponds to X-inactivation; a single allele in males has the same effect as one of the two alleles
in homozygous females, assuming that the other allele is inactivated. The argument BR.girls
gives the ratio of baseline risk for females relative to males. In the example of Table S1a, we
assumed a ratio of 1, i.e., the same baseline risk in females and males.

Gene-environment interactions
A gene-environment interaction occurs when a genetic effect is modified by an environmental
exposure. For example, maternal alcohol consumption, cigarette smoking or vitamin intake in
the periconceptional period might modify the association between SNPs and a birth defect [4, 5].
The genetic effect in question might be a child, PoO or maternal effect. In Haplin, interactions
between a genetic effect and a categorical exposure variable are incorporated into the log-linear
framework by fitting the log-linear model separately for each exposure stratum. We then apply
a Wald test to assess whether the relative risk estimates differ significantly across exposure
levels [6, 7]. In hapPowerAsymp, the power to detect a GxE effect is automatically computed
when the number of strata is larger than 1, specified by the argument n.strata. Each of the
stratum-specific arguments cases, controls, haplo.freq, RR, RRcm, RRcf and RR.mat are given
as lists. Their lengths should be equal to the number of strata, and each element of the list
specifies the argument for one stratum. An example of GxE power analysis of child effects and
two exposure strata is given in Table S1b. We used 500 case-parent triads in the first stratum
and 300 case-parent triads in the second (cases = list(c(mfc=500),c(mfc=300))). The list
format is, however, only needed for arguments that vary across strata. Here we assumed that
the allele frequencies are the same in both strata, and the list format is therefore redundant
(haplo.freq = c(0.8,0.2)). There are no associations in the first stratum, whereas the minor
allele is associated with the disease in the second stratum (RR = list(c(1,1),c(1,1.4))).
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Haplotypes
By default, hapPowerAsymp performs power calculations for a diallelic SNP. However, the exten-
sion to haplotypes is straightforward but requires a basic understanding of how the haplotypes
are generated in Haplin. The number of markers and haplotypes is determined by the vector
nall, where the number of markers is equal to length(nall), and the number of different
haplotypes is equal to prod(nall). Thus, two diallelic markers are denoted by nall = c(2,2),
whereas a single marker with four alleles is denoted by nall = 4. The haplotypes are deter-
mined by creating all possible haplotypes from the given markers, in a sequence where the first
marker varies most quickly. For instance, if nall = c(3,2), there are six haplotypes in to-
tal. Taken in order, the haplotypes are 1-1, 2-1, 3-1, 1-2, 2-2, and 3-2. If haplo.freq =
c(0.3,0.05,0.1,0.1,0.2,0.25) and RR = c(1,2,1,1,1,1), haplotype 2-1 has a twofold risk
compared to the rest of the haplotypes. Table S1c shows a haplotype example with two diallelic
markers. Compared with the reference (by default the most frequent haplotype), all haplotypes
are associated with an increased risk of disease. The power to detect the effect of an individual
haplotype is calculated by analyzing that specific haplotype separately against the reference,
using the Wald test with one degree of freedom. Here, the individual power estimates range be-
tween 63% and 74%. We also calculate the overall power, i.e., the power to detect any difference
among the haplotypes, by analyzing the haplotypes jointly. With a total of four haplotypes, the
Wald test has three degrees of freedom, and the power is approximately 84%.

The power calculations can be extended to three or more markers at a locus in a similar
manner. An example of three diallelic SNPs (eight haplotypes) is provided in Table S1d.

Other effects
The power analyses in Table S1 were calculated for child effects. However, the power to detect
PoO effects is readily computed by replacing the relative risk argument RR by RRcm and RRcf,
similar to the example in Table 3b of the main article. For instance, in the GxE example (Table
S1b), replacing RR with RRcm=list(c(1,1),c(1,1)) and RRcf=list(c(1,1),c(1,2)) would
mean that there is no risk associated with the allele transmitted from the mother in either
stratum, whereas the paternally derived allele is associated with the disease only in the second
stratum. Maternal effects are included by adding the argument RR.mat (see Table 3c and d of
the main article for examples).
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Introduction to hapRun and hapPower

The function hapRun simulates genotype data and performs the subsequent statistical inference.
The results can then be fed to hapPower, which calculates the actual power. Because hapRun
performs both the simulations and the subsequent statistical inference, the aimed target effects
must be specified in addition to the simulation-specific parameters. The commands therefore
require knowledge of the functions haplin and haplinStrat, which perform the statistical
inference within hapRun.

We demonstrate the power simulation functions hapRun and hapPower by using the same
scenarios as in Table 3 of the main article, in addition to the GxE example in Table S1. The
examples are shown in Table S2. Additional to the arguments provided in hapPowerAsymp,
hapRun requires the arguments nall, RRstar and response to be specified (RRstar.mat must
also be specified in order to simulate maternal effects). The vector nall specifies the num-
ber of markers and haplotypes. In hapPowerAsymp, nall has the default value 2, whereas
in hapRun the argument must be given explicitly. Moreover, hapRun handles deviations from
the multiplicative dose-response relationship. Such deviations can be simulated by the ar-
guments RRstar and RRstar.mat, which correspond to the parameters RR∗ and RR(M)∗ in
Eq (1-4) from Table 2 in the main article. The target effect is specified by the haplin ar-
gument response, which has the option "mult" for estimating a multiplicative dose-response
relationship, and the option "free" for estimating separate single-dose and double-dose ef-
fects. In Table S2, we simulate and test a multiplicative dose-response relationship throughout
(RRstar = c(1,1), RRstar.mat = c(1,1) and response = "mult"). However, if one were to
forget response = "mult", the simulated data (following a multiplicative dose-response rela-
tionship), when fed to haplin, would be used to estimate separate single-dose and double-dose
effects, corresponding to the haplin default value "free".

In hapRun, the arguments RRcm and RRcf must be specified in order to simulate PoO effects.
However, to test for PoO effects, one also needs to specify poo = TRUE in hapRun (Table S2b).
It is thus possible to simulate PoO effects without actually testing them. The same is true for
maternal effects (Table S2c and d); the arguments RR.mat and RRstar.mat enable simulations
of maternal effects, but this effect is not tested unless maternal = TRUE in hapRun.

The argument hapfunc specifies which Haplin function to run on the simulated data in
hapRun. Because most genetic association analyses are conducted using the function haplin,
hapfunc = "haplin" is the default value. However, GxE effects are analyzed using haplinStrat,
as shown in Table S2e. We recommend consulting the R help files for a thorough description of
these Haplin functions and for further information on the target effects and the arguments to
be passed onto haplin and haplinStrat.

Right now the output of hapPower contains more information than the output of hapPowerAsymp.
The first result column, overall.power, displays the power for detecting an overall difference
between the null model (no effects) and the full model. Whereas the other results of hapPower
are based on the Wald test, the overall result is based on the likelihood ratio test. RRdd.power
and RRmdd.power show the power to detect a double-dose child effect or a double-dose maternal
effect, respectively. Because we have assumed a multiplicative dose-response relationship, the
power to detect a double-dose child or maternal effect equals the power to detect a single-dose
effect. The multiplicative double-dose PoO effect is interpreted analogously to the multiplicative
double-dose child effect but is estimated by stratifying on parental origin.
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Extended family designs and missing individuals
The simulation procedure handles a variety of child-parent configurations. As shown in Table
S3a, designs such as case-parent triads and case-mothers dyads may be combined. The argu-
ment controls can be extended in a similar manner. Moreover, if genotype data are missing
at random, e.g., due to failed genotyping, missing case or control individuals can be gener-
ated at random through the arguments gen.missing.cases and gen.missing.controls. If
the arguments are single numbers between 0 and 1, missing data are generated at random
with these proportions for all case and controls individuals. In Table S3b, 10% of all case in-
dividuals (mothers, fathers and children) are missing. If the arguments are vectors of length
equal to the number of markers, missing data are generated at random with the correspond-
ing proportions for each marker. The arguments can also be matrices with the number of
rows equal to the number of markers and three columns. Each row corresponds to a single
marker, and the columns correspond to mothers, fathers and children, respectively. Thus,
gen.missing.cases = matrix(c(0,0.2,0),nrow=1) simulates haplotype data in which 20%
of the case fathers are missing at random. To ensure that the data are simulated correctly,
it might be worthwhile to look at the simulated files. The argument dire = "sim" saves the
simulated files to the given directory. If there is a large number of simulated files, a test run
should be performed with a small number of data replicates (specified by the argument n.sim).
We also note that the function hapSim can be used to simulate genotype data in Haplin format,
without performing the actual testing.
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Abstract
Selecting the best design for genetic association studies requires careful delib-
eration; different study designs can be used to scan for different genetic effects,
and each design has its own set of strengths and limitations. A variety of family
and unrelated control configurations are amenable to genetic association analy-
ses, including the case-control design, case-parent triads, and case-parent triads
in combination with unrelated controls or control-parent triads. Ultimately, the
goal is to choose the design that achieves the highest statistical power using the
lowest cost. For given parameter values and genotyped individuals, designs can
be compared directly by computing the power. However, a more informative
and general design comparison can be achieved by studying the relative effi-
ciency, defined as the ratio of variances of two different parameter estimators,
corresponding to two separate designs. Using log-linear modeling, we derive the
relative efficiency from the asymptotic variance of the parameter estimators and
relate it to the concept of Pitman efficiency. The relative efficiency takes into
account the fact that different designs impose different costs relative to the num-
ber of genotyped individuals.We show that while optimal efficiency for analyses
of regular autosomal effects is achieved using the standard case-control design,
the case-parent triad design without unrelated controls is efficient when search-
ing for parent-of-origin effects. Due to the potential loss of efficiency, maternal
genes should generally not be adjusted for in an initial genome-wide associa-
tion study scan of offspring genes but instead checked post hoc. The relative
efficiency calculations are implemented in our R package Haplin.

KEYWORD S
case-parent triad, Haplin, parent-of-origin effects, power and sample size, relative (Pitman)
efficiency

1 INTRODUCTION

Optimizing the design of a genetic association study requires careful consideration because (among other things) there are
several factors to assess (eg, recruitment costs, genotyping costs, phenotypic costs, statistical power, and design-induced
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.
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2 GJERDEVIK et al.

biases). The most common design for genetic association analysis is the standard case-control design in which
individuals with and without the disease in question are genotyped. By contrast, if case-parent triad data are collected
by genotyping cases and their biological parents, parent-of-origin (PoO) effects or direct effects of the maternal genome
during fetal development (ie, maternal effects) can also be investigated.1-4 Case-parent triads can also be combined
with unrelated control-parent triads in a hybrid design.5-9 Although the case-parent triad design is mostly used when
the outcome occurs early in life, this design can be used for any condition, provided that parents are available for
genotyping.

The statistical power is an important aspect of design comparison. Frequently, study designs are compared directly
through a power analysis without considering the total number of individuals that needs to be genotyped. For example, a
fixed number of complete case-parent triads could be compared with the same number of case-mother dyads. However,
this approach ignores the costs of data collection. In this article, our objective is to present comparisons that enable the
highest statistical power to be achieved using the smallest sample collection and assay costs. We assess this through the
quantity known as relative efficiency, defined as the ratio of variances of estimators for the same parameter computed
from two different designs, or equivalently, the ratio of the sample sizes needed for each of the two designs to achieve the
same significance level and power. We demonstrate how the relative efficiency measures relate to the concept of Pitman
efficiency.10

We have previously developed an extensive framework for genetic epidemiological analyses of binary traits based
on log-linear modeling, implemented in the R package Haplin.4,11-13 Haplin includes a complete setup for power and
sample size calculation,14,15 which is useful in study planning and in interpreting findings from a genome-wide associ-
ation study (GWAS). In this article, we present a structured overview of different genetic effects and etiologic scenarios
that are applicable to diseases with onset throughout the lifespan, along with appropriate choices of study designs.
Our primary focus is on estimating the relative efficiency, which is readily assessed within the power calculation
framework of Haplin.

The article is structured as follows. First, we introduce the relevant genetic effects and the family-based designs that
are the focus of this article. Second, we describe our sampling and penetrance models, explain the concept of relative effi-
ciency, and illustrate its association with statistical power. Finally, we study the relative efficiency of different designs for
different genetic effects, both for single-nucleotide polymorphisms (SNPs) and for haplotypes, that is, the combinations of
alleles from several SNPs within a locus. Although we focus on autosomal markers, the methodology presented is readily
applicable to SNPs or haplotypes on the X chromosome. A discussion of relative efficiency is provided in Appendix A. In
Appendix B, we provide a heuristic derivation of the relative efficiency for regular autosomal effects. To facilitate analysis
of other genetic mechanisms, study designs, and input parameters, we provide Haplin commands for various scenarios
on the Haplin website at https://people.uib.no/gjessing/genetics/software/haplin.

2 BACKGROUND

The R package Haplin is a comprehensive framework for genetic association analyses of binary traits based on log-linear
modeling.4 It implements a full maximum-likelihood model for estimation and calculates explicit estimates of relative
risks with asymptotic standard errors (SEs) and confidence intervals. Haplin enables the estimation of regular autoso-
mal effects, PoO effects, and maternal effects, as well as interactions between genetic effects and categorical or ordinal
exposure variables.11,13 It allows for parallel processing of analyses as well as data structure for handling GWAS data. In
Haplin, themain unit of analysis is the case-parent triad. However, the log-linearmodel can readily incorporate unrelated
controls or control triads that are population-based (ie, of unknown disease status), or, under the rare disease assumption,
unaffected controls or control triads.7,16,17 Note that unrelated controls are optional since “pseudocontrols” in princi-
ple can be derived from the nontransmitted parental alleles in case-parent triads.18-21 To account for unknown parent
of origin in ambiguous (uninformative) triads, for example, when the mother, father, and child are all heterozygous for
the same two alleles, Haplin uses the expectation maximization (EM) algorithm.22 The EM algorithm also accounts for
individuals that are missing “by design,” such as when case-parent triads are reduced to case-mother dyads due to miss-
ing data on fathers, assuming that the missingness is random, that is, independent of genotype. The log-linear model in
Haplin assumes Mendelian transmission, Hardy-Weinberg equilibrium (HWE), and randommating, although moderate
deviations from HWE are unlikely to cause bias.23 A detailed description of the underlying model is provided in several
of our previous publications.4,11,13 For applications of Haplin to GWAS data, readers are referred to some of our previous
publications.24-29
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TABLE 1 Overview of
genetic effects available in
Haplin

Effects Description

Regular autosomal A regular autosomal effect is a standard effect of the offspring's own genes. It
occurs when a variant allele inherited from one or both parents increases
or decreases the risk of a condition.

PoO A PoO effect occurs if the effect of a variant allele in an individual depends
on whether it is inherited from the mother or from the father.
Hypothetically, an allele might be protective when inherited from the
mother but detrimental when inherited from the father. In statistical
terms, we define a PoO effect as an interaction since the effect of an allele
is modified by its parent of origin. In contrast, analyses of regular
autosomal effects assume that the effect of an allele in an individual is
independent of whether it is transmitted from the mother or the father.
Note that genomic imprinting may cause PoO effects.42,59 Imprinting is an
epigenetic phenomenon where one of the inherited parental alleles is
expressed whereas the other is silenced.

Maternal A maternal genetic effect occurs when a variant allele carried by the mother
increases or decreases the risk of a phenotype in her child, regardless of
whether the allele has been inherited by the child or not.34 It is expected to
operate mainly via mechanisms in the intrauterine environment.60 This is
different from regular autosomal and PoO effects, where we estimate the
effects of the child's own alleles. The relevance of maternal effects was
recently demonstrated for an individual's educational attainment,61 but
may be particularly relevant for conditions that depend directly on fetal
development.

Note: Adapted from Gjerdevik et al.14
Abbreviation: PoO, parent-of-origin.

2.1 Genetic effects

A GWAS scans the entire genome for common variants agnostically, without any prior information about the biological
significance of a gene for the trait or disease under investigation. Hence, the selection of an appropriate design for a
GWAS requires careful planning and depends heavily on the genetic effect being studied. Haplin enables the estimation
of several genetic effects, and we focus here on regular autosomal, PoO, and maternal effects. Table 1 (adapted from
Gjerdevik et al14) provides an explanation of the genetic effects.

2.2 Study designs

2.2.1 The case-control design

Similar to classic epidemiological studies of environmental and behavioral risk factors, the case-control design is often
used in genetic association analyses (Figure 1A). The allele frequencies of cases and controls are contrasted to identify
variants associated with the trait or disease, and familiar methods such as logistic regression and chi-squared tests can be
used to discover associations.30 The case-control design is efficient in uncovering regular autosomal effects and their inter-
actions with exposure or stratification variables such as environmental risk factors, study sites, and ethnicity. However,
population stratification might lead to spurious associations if not controlled for.

2.2.2 The case-parent triad and dyad designs

The case-parent triad design involves genotyped cases and their biological parents and is based on the observation that
parental genotypes of affected offspring could be used to study associations between a disease and allelic variants.31,32
For regular autosomal effects, the frequencies of alleles transmitted to cases are compared to the frequencies of
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F IGURE 1 A selection of designs for
genetic association analyses: (A) case-control
design (c-c); (B) various case-parent designs: (i)
case-parent triad (mfc); (ii) case-mother dyad
(mc); (iii) case-father dyad (fc); (C) a selection of
hybrid designs: (i) case-parent triad with
independent control (mfc-c); (ii) case-parent
triad with independent control-mother dyad
(mfc-mc); (iii) case-mother dyad with
independent control-mother dyad (mc-mc); (iv)
case-parent triad with independent
control-parent triad (mfc-mfc)

non-transmitted (pseudocontrol) alleles. Hence, the case-parent triad design does not rely on independent controls and
is protected against population stratification since the relevant information is extracted from within-family contrasts.
Since Spielman et al33 proposed the transmission disequilibrium test (TDT) for genetic association testing, exploring
family-based designs and their utility for studying different types of genetic effects has been an intense area of research
for several decades. Truncated versions of the case-parent triad design have been introduced, with the case-mother and
case-father dyad designs comprising genotyped cases and their biological mothers or fathers, respectively. The vari-
ous constellations are illustrated in Figure 1B. With information on parental genotypes, the case-parent triad and dyad
designs allow the estimation and testing of PoO or maternal effects. For PoO and maternal effects, Connolly and Heron34

reviewed different statistical methodologies and compared them according to statistical power and their suitability for
studying different etiologic scenarios. Methods for testing PoO effects include extensions of the TDT approach, such as
the transmission-asymmetry test (TAT) and the parental-asymmetry test (PAT),3 conditional logistic regression,20,21 and
log-linear1-4 and multinomial modeling.17,35,36 With the exception of TAT and PAT, these approaches can also account for
maternal effects.34 Despite the inherent strengths of the case-parent triad and dyad designs, there are also some draw-
backs. One such drawback is that they rely on Mendelian transmission. Another limitation is that, without independent
controls, it is impossible to estimate themain effect of an environmental exposure. Theremight also be practical concerns,
such as obtaining DNA from parents if the disease in question is late onset.

2.2.3 The hybrid design

To combine the advantages of the case-control and the family-based designs, joint analyses of various combinations of
case-parent triads and unrelated controls in a hybrid design have been proposed.5-7,17,37 An overview of hybrid designs has
been provided by Infante-Rivard et al,38 and different configurations are illustrated in Figure 1C. The full hybrid design
comprises complete pairs of case-parent triads and control-parent triads, but truncated versions may include case-parent
triads supplemented by control-mother dyads9 or case-mother dyads supplemented by control-mother dyads.8,39 Analy-
sis methods such as log-linear and multinomial modeling approaches are particularly appealing as they can readily be
adapted to accommodate the broad spectrum of various hybrid designs as well as a wide array of causal scenarios and
genetic effects.11,13,17,24,27,29,35,40 As an example, they can easily be extended to include thematernal-fetal genotype incom-
patibility test.41 Nevertheless, although the hybrid design combines the merits of both the case-control and case-parent
designs, a straightforward combined analysis may still be influenced by population stratification or non-Mendelian
transmission.
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2.2.4 Notation

Weuse the abbreviations provided in Figure 1 to describe the study designs. The letters c,m, and f denote the child (case or
control), mother, and father, respectively. The left side of the hyphen denotes case families, whereas the right side denotes
control families. For instance, mfc denotes the case-parent triad, whereas mfc-c denotes a hybrid design consisting of
case-parent triads and unrelated controls (ie, the control parents have not been genotyped). We will use the term hybrid
design to describe all constellations of study designs consisting of case families and independent control families, except
for the straightforward c-c design. Although a case together with a control dyad or control triad can be seen as a hybrid
design, these designs are rare in practice and will not be discussed.

3 METHODS

3.1 Parameterization of penetrances

We have developed a complete setup for power and sample size calculations in Haplin.14 The calculations can be per-
formed analytically using the asymptotic variance-covariance structure of the parameter estimator or by a straightforward
simulation procedure. Relative efficiency is easily assessed within this framework, and the basic calculations are for reg-
ular autosomal, PoO, and maternal effects, with the results depending on the underlying parameterization models. The
penetrance models, that is, the probability of a child having the disease conditional on a specific genetic composition,
are defined in Table 2 (adapted from Gjerdevik et al14). For regular autosomal effects, the penetrance model is parame-
terized as B ⋅ RRjRRlRR∗

jl, where B serves as a baseline parameter, and RRj is the relative risk associated with allele Aj.
The double-dose parameter RR∗

jl measures the deviation from what would be expected in a multiplicative dose-response
relationship, that is, RR∗

jl = RR∗
j when j = l and RR∗

jl = 1 when j ≠ l. The double-dose estimates provide information
about the effect of allele dose on risk. For a diallelic SNP with reference allele A1, the penetrance model can written as
P(D|A1A1) = B, P(D|A1A2) = B ⋅ RR and P(D|A2A2) = B ⋅ RR2RR∗ = B ⋅ R̃R. A recessive effect of A2 would then be seen
as RR = 1 and R̃R ≠ 1, a dominant effect would mean that RR = R̃R ≠ 1, and a multiplicative dose-response relationship
would be seen as R̃R = RR2 (see Gjessing and Lie).4

Since a mother and her child have one allele in common, maternal effects might be statistically confounded with reg-
ular autosomal or PoO effects of the child's own genes.42,43 An important feature of the log-linear model is, therefore, the
possibility of incorporating and adjusting for maternal effects. Specifically, maternal effects can be addressed simultane-
ously with regular autosomal or PoO effects by including thematernal risk parameters, as outlined in Table 2. Statistically,
we are thus able to separate the effects of maternal alleles from the effect of maternally-derived alleles carried by the
offspring.

TABLE 2 Parameterization of penetrances Effects Parameterization of Penetrances

Regular autosomal B ⋅ RRjRRlRR∗
jl

PoO B ⋅ RRM,jRRF,lRR∗
jl

Regular autosomal and maternal B ⋅ RRjRRlRR∗
jl ⋅ RR

(M)
i RR(M)

j RR(M)∗
ij

PoO and maternal B ⋅ RRM,jRRF,lRR∗
jl ⋅ RR

(M)
i RR(M)

j RR(M)∗
ij

Note: B is the baseline risk level associated with the (more frequent) reference allele.
RRj is the risk increase or decrease associated with allele Aj, relative to B.
RRM,j and RRF,j are the relative risks associated with allele Aj, depending on whether the
allele is derived from the mother or the father, respectively. Here, we define a PoO effect as the
relative risk ratio RRRj = RRM,j∕RRF,j, which is a measure of the risk increase (or decrease)
associatedwithAj when the allele is transmitted from themother as opposed to from the father.
RR∗

jl estimates deviations from the risk that would be expected in a multiplicative
dose-response relationship, that is, RR∗

jl = RR∗
j when j = l and RR∗

jl = 1 when j ≠ l.
RR(M)

i is the relative risk associated with allele Ai carried by the mother, and RR(M)∗
ij is the

maternal double-dose parameter, with an interpretation analogous to RR∗
ij.

We set RR = 1 for the reference allele to ensure that the model is not overparameterized.
Adapted from Gjerdevik et al.14
Abbreviation: PoO, parent-of-origin.
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We consider a multiplicative dose-response relationship throughout this article, that is, RR∗
j is kept fixed at 1 for all j

and only RRj is estimated (an analogous interpretation applies for the parameterizations of PoO and maternal effects in
Table 2). The estimation of RR∗

j is possible and would allow other response models, for example, recessive or dominant,
but these situations are not explored herein.

The statistical inference of the log-linear model in Haplin is based on log-transformed relative risks and relative risk
ratios using the Wald test. We calculate the relative efficiency based on the asymptotic variance-covariance structure of
the parameter estimator, and a derivation of the asymptotic variance-covariancematrix is given by Gjerdevik et al.14 How-
ever, the simulation procedure in Haplin is equally applicable and has been shown to provide similar results within the
range of sample sizes and allele frequencies usually studied.14 For external validation, the power calculation modules
in Haplin have previously been compared with the power attained in data simulations by EMIM (Estimation of Mater-
nal, Imprinting, and interaction effects using Multinomial modelling),17,35,36 which is another well-established tool for
the estimation of various genetic effects based on genotype data from a number of different child-parent configurations.
The consistency observed between Haplin and EMIM for regular autosomal, PoO, and maternal effects demonstrates
the computational accuracy of the inference methods used in both programs and suggests that power and relative effi-
ciency calculations in Haplin are applicable to genetic association studies based on either log-linear or multinomial
modeling.14

3.2 Asymptotic relative efficiency

Power analysis allows for a comparison of different designs when all parameter values have been specified. It demon-
strates the possible scope of a study, that is, what is feasible logistically, and should, therefore, be an essential part of study
planning. However, for “global” comparisons of statistical tests, relative efficiency is a more useful measure. In statisti-
cal terms, the relative efficiency of two designs is defined as the ratio of sample sizes required for each of the designs
to attain the same significance level and power. This is equivalent to the ratio of variances of two different parameter
estimators, corresponding to two separate study designs, taking into account that different designs require a different
number of individuals to be genotyped. Figure 2 illustrates the relationship of relative efficiency to sample size and power.
For regular autosomal effects, the efficiency of the c-c design is approximately 1.5 relative to the mfc design, which is
well known from other studies.44 For instance, if 1200 individuals (600 cases and 600 controls) are needed to reach a
power of 0.8 with the c-c design, 1800 individuals (600 case-parent triads) are required with the mfc design to achieve the
same power.

For the purpose of this article, we aim to compare tests asymptotically. Consider the problemof testing the null hypoth-
esisH0 ∶ 𝛽 = 0 versus the alternativeH1 ∶ 𝛽 ≠ 0 for a fixed nominal level, 𝛼, where 𝛽 is the log relative risk. With a given
sample size N, the power of the test converges to 1 as |𝛽| → ∞. Similarly, when 𝛽 is fixed, the power converges to 1 as
N → ∞. The limiting power functions are identical for all reasonable tests, and such an approach is, therefore, unhelpful.
WhenN increases, theminimumdetectable effect size decreases. Tomake an informative comparison of different designs,

F IGURE 2 Relative efficiency derived from power and sample size. Here,
we compare the efficiency of the c-c design relative to the mfc design for regular
autosomal effects. The power is calculated for a diallelic SNP at the 5% nominal
significance level, using a MAF of 0.2 and an RR of 1.3. The sample size N is
defined as the total number of individuals, that is, N = 1800 means either 900
cases and 900 controls or 600 case-parent triads. If N = 1200, the power is nearly
0.8 for the c-c design. However, approximately N = 1800 individuals are
required for the mfc design to reach the same power. Similarly, we need N = 800
individuals for the c-c design to attain an approximate power of 0.6, whereas
N = 1200 individuals are required for the mfc design. Hence, the efficiency of
the c-c design is 1.5 compared with the mfc design
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we, therefore, examine the power at alternatives that approach the null hypothesis, that is, we shrink the alternative asN
increases, making it harder to discriminate between the null and alternative hypotheses as the number of observations
increases. This is known as the Pitman efficiency,10 and an explanation of this concept is provided in Appendix A. Most
effect sizes reported from genetic association studies of complex traits are small, and empirical studies show that individ-
ual relative risks of disease are commonly below two.45-48 Intuitively, the Pitman efficiency is thus a reasonable measure
of the asymptotic relative efficiency in our setting.

3.3 Analyses

We define k ∶ 1 as the ratio of control families to case families, regardless of the number of individuals within each
family. If k = 0.5, we have twice as many case families as control families. For example, for the mfc-mc design, we
might have 100 control-mother dyads and 200 case-parent triads. Our main results pertain to the relative efficiency,
and we present it here as a function of k on the log-scale. The efficiencies of various study designs are compared
with that of the case-parent triad design (mfc), that is, we use the case-parent triad design as a “reference design.” As
mentioned previously, the relative efficiency will take into account the total number of genotyped individuals within
each design. For example, 150 case-mother dyads are compared with 100 case-parent triads. If k = 1, a hybrid design
with 50 case-parent triads and 50 control-parent triads is compared with 100 case-parent triads, and if k = 2, a hybrid
design with 50 case-parent triads and 100 control-parent triads is compared with 150 case-parent triads. Only the ratio
of control families to case families, not the actual number of control and case families, affects the relative efficiency
estimates.

In genetic association studies, it makes sense to integrate data collection and assay costs with the concept of relative
efficiency. For example, if the recruitment of case children occurs at a hospital where parents are likely to be present,
parental pseudocontrols would be less expensive than independent controls. However, when studies are nested within a
cohort that has already been sampled, the costs of genotyping DNA samples are typically considered equal for all indi-
viduals. Hence, for the majority of this article, the data collection costs are simply defined as the number of genotyped
individuals. That is, we assume the same costs for all individuals, independent of the individual being a child, mother or
father, case or control. However, differential costs of data collectionmay occur if, for instance, publicly available reference
samples (eg, from catalogs such as the Wellcome Trust Case Control Consortium,49 the UK Biobank,50 and the Norwe-
gianMother, Father and Child Cohort Study51,52) are included in the study. As a special scenario, we analyze situations in
which controls or control families are available without additional costs. For all analyses, we consider well-defined and
clinically verified phenotypes, thus ignoring the costs of phenotyping.

The analyses were performed using the Haplin relative efficiency calculator hapRelEff. The results were obtained
under the null hypothesis, corresponding to the Pitman efficiency.10 However, we note that relative efficiency esti-
mates in Haplin can also be obtained under alternative (nonnull) hypotheses, and investigators can readily apply our
functions to study how alternative effect estimates relevant to their own research question would affect the relative
efficiency values.

4 RESULTS

4.1 Regular autosomal effects

Figure 3 illustrates the relative efficiency for regular autosomal effects as a function of k, using two different values of
the minor allele frequency (MAF). We used the mfc design as the reference, to which the other designs were compared.
Unless the ratio of controls to cases is highly skewed, we see that the c-c design provides the best results. The optimal
relative efficiency is achieved when k = 1. Moreover, we observe that the mfc design is more efficient than the mc or fc
design. This result is independent of k, as no control families are sampled. Note that the contribution of a case mother
or control mother is equal to the contribution of a case father or control father, respectively. We also see that the relative
efficiencies of the hybrid designs decrease when two or three individuals are included in the control family. This is also
observed when k becomes sufficiently large. Furthermore, for designs consisting of case dyads or control dyads, that is,
mc, fc, mc-mc, fc-fc, mfc-mc, and mfc-fc, the relative efficiency is influenced by the MAF. The MAF does not affect the
relative efficiency of the c-c, mfc-c, and mfc-mfc designs.
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F IGURE 3 Relative efficiency of regular autosomal effects for a given ratio of control families to case families (k). The efficiency of
different study designs is compared with that of the case-parent triad design (mfc) under the null hypothesis of RR=1. The equality sign (eg,
mc=fc) denotes that the two designs are interchangeable in terms of relative efficiency [Color figure can be viewed at wileyonlinelibrary.com]

A heuristic formula for the relative efficiency of regular autosomal effects is derived in Appendix B. Equation (B1) ver-
ifies the results of Figure 3, and an inspection of the formula provides a better understanding of the observed relationships
between the different study designs and each genotyped individual.

4.2 PoO effects

Figure 4 shows the relative efficiency for PoO effects as a function of k. Again, we compared the relevant study designs
with themfc design under the null hypothesis of RRR= RRM = RRF = 1. When theMAF is 0.1 (left panel), the mc and fc
designs aremore efficient than themfc design. However, this relationship reverses when theMAF is 0.3 (right panel). PoO
effects are primarily estimated in case families, by comparing the frequency of alleles transmitted from mother to child
with the frequency of alleles transmitted from father to child. Hence, the relative efficiency decreases when k increases
or when the number of genotyped individuals within a control family increases. Moreover, the relative efficiencies of the
mfc-c, mfc-mc, mfc-fc, and mfc-mfc designs are not influenced by the MAF.

4.3 Maternal effects

A putative maternal effect detected in a genome-wide scan may, at closer inspection, turn out to be caused by alle-
les carried by the offspring.42,43 In Haplin, maternal effects are therefore assessed while accounting for the effects of
the offspring's own alleles (see Table 2). Figure 5 shows the relative efficiency for maternal effects as a function of k
while adjusting for possible regular autosomal effects (left panel) and PoO effects (right panel). The results were cal-
culated under the global null, that is, all relative risks are equal to one, using a MAF of 0.1. Overall, the mfc design is
a good choice when adjusting for regular autosomal effects. However, when adjusting for PoO effects, a hybrid design
generally performs better for small values of k. In both panels, the relative efficiency of the hybrid designs decreases
when the number of genotyped individuals within a control family increases, as well as when k becomes sufficiently
large. This was also seen in the above analyses of regular autosomal and PoO effects. Note that we excluded the
mc, fc, and fc-fc designs when adjusting for PoO effects because the models based on these designs would become
overparameterized.
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F I GURE 4 Relative efficiency of PoO effects for a given ratio of control families to case families (k). The efficiency of different study
designs is compared with that of the case-parent triad design (mfc) under the null hypothesis of RRR=RRM=RRF=1. The equality sign (eg,
mc=fc) denotes that the two designs are interchangeable in terms of relative efficiency [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Relative efficiency of maternal effects for a given ratio of control families to case families (k). The efficiency of different
study designs is compared with that of the case-parent triad design (mfc) under the global null (ie, all RRs are equal to 1). We assumed a MAF
of 0.1. The equality sign (eg, mfc-mc=mfc-fc) denotes that the two designs are interchangeable in terms of relative efficiency [Color figure
can be viewed at wileyonlinelibrary.com]
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F IGURE 6 Relative efficiency when adjusting for maternal effects for a given ratio of control families to case families (k). For each
design, we first adjusted for maternal effects under the global null (ie, all RRs are equal to 1). We then repeated the analysis without adjusting
for maternal effects and compared the results. The unadjusted analyses were used as references. We assumed a MAF of 0.1. The equality sign
(eg, mfc-mc=mfc-fc) denotes that the two designs are interchangeable in terms of relative efficiency [Color figure can be viewed at
wileyonlinelibrary.com]

4.4 Relative efficiency when adjusting for maternal effects

Including a search for maternal effects in a full GWAS analysis is likely to reduce the power to detect regular autosomal
or PoO effects. Figure 6 demonstrates this loss of efficiency as a function of k for regular autosomal effects (left panel) and
PoO effects (right panel). We used a MAF of 0.1 in both panels. For each design, we first adjusted for possible maternal
effects (even though we did not assume maternal effects in the parameterization model in Table 2, ie, we set RR(M) = 1).
We then repeated the analysis without adjusting for maternal effects and compared the results. The unadjusted analyses
were used as references, and the mfc design is thus no longer a global reference. For regular autosomal effects, adjusting
for maternal effects generally decreases the efficiency. However, no loss in efficiency is observed for the mfc design.
Although the genotypes of individuals and their mothers are correlated in the population, their contributions to the mfc
analysis are close to orthogonal.1,2 That is, the estimation of maternal parameters does not affect the estimation of regular
autosomal parameters or their SEs, and little bias is introduced for the mfc design (results not shown). When searching
for PoO effects, adjusting for maternal effects causes a substantial loss of power for all designs. The efficiency is more
than halved for the mfc design.

4.5 Haplotype reconstruction

The fundamental model in Haplin relates to a single multiallelic locus but extends directly to haplotypes, that is, the
sequence of alleles from several closely linked markers within a locus, by statistically reconstructing unknown haplotype
phase using the EM algorithm.4 A haplotype analysis should enhance the possibility of enclosing a causal variant if the
haplotype has a SNP on each side of the variant. However, this analysis might lose power due to haplotype reconstruction
and an increased number of degrees of freedom.

In order to assess the relative efficiency when haplotype reconstruction is performed, we considered a situation
where one marker with four alleles was compared with two diallelic SNPs. In both scenarios, there were four possible
haplotypes (alleles 1, 2, 3, and 4 and SNP-haplotypes 1-1, 2-1, 1-2, and 2-2), with haplotype frequencies 0.1, 0.3, 0.3,
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F I GURE 7 Relative efficiency when haplotype reconstruction is performed for a given ratio of control families to case families (k). We
constructed four alleles (haplotypes) from a single marker (alleles 1, 2, 3, and 4), and four haplotypes from two diallelic SNPs (haplotypes 1-1,
2-1, 1-2, and 2-2), both with haplotype frequencies 0.1, 0.3, 0.3, and 0.3, respectively, under the global null. A comparison of the solid (single
marker, known phase) and dashed (haplotypes from two diallelic SNPs) lines demonstrates the loss of efficiency for the least frequent
haplotypes due to haplotype reconstruction, relative to themfc design. Allele 4 and haplotype 2-2 were used as references. The equality sign (eg,
mc=fc) denotes that the two designs are interchangeable in terms of relative efficiency [Color figure can be viewed at wileyonlinelibrary.com]

and 0.3, respectively. The alleles are directly observed when derived from a single multiallelic marker, and a haplotype
reconstruction is only needed in the analysis of haplotypes from multiple markers. In Figure 7, we considered the effi-
ciency of the least frequent haplotype in all designs, relative to the mfc design, and assessed both regular autosomal
and PoO effects. Allele 4 and haplotype 2-2 were chosen as references, respectively. As phase is unknown, haplotype
reconstruction for the c-c design is purely a statistical reconstruction. However, if the data from an individual and one
or both parents are available at a single locus, the parent of origin can be deduced directly unless all individuals are
heterozygous for the same two alleles, such that the EM algorithm is only needed for these ambiguous dyads or triads.
Designs that include case-parent triads are, therefore, less vulnerable to unknown phase than the c-c, mc, fc, mc-mc,
and fc-fc designs. These findings are in general agreement with those of Douglas et al53 and Schaid.54 Note that, in
general, the results depend on the haplotype frequencies and also on the reference haplotype (results not shown). The
haplotype frequencies used in the example deviate little from their values under linkage equilibrium (r2 = 0.0625). Thus,
our analysis demonstrates a larger loss of efficiency than what would be expected when the SNPs are in close linkage
disequilibrium. Moreover, haplotype reconstruction in Haplin depends partly on the HWE assumption. Deviations
from this assumption can be assessed within the Haplin framework, but such investigations are beyond the scope of
this article.

4.6 The use of external control samples

It has become increasingly common to utilize data from external and publicly available reference or control samples.49-52
Figure 8 illustrates the gains in relative efficiency when external controls or control families are added to the mfc design.
The efficiency of the different hybrid designs is comparedwith that of themfc design, and the controls are here considered
to be free of cost. For regular autosomal effects, we see that the use of freely available control samples increases the
efficiency. For PoO effects, however, it has been shown elsewhere that unrelated control samples would not increase the
power attained by the mfc design alone.14 Thus, the relative efficiency of the mfc-c, mfc-mc, mfc-fc, and mfc-mfc designs
is equal to 1 for all values of k.
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F IGURE 8 Relative efficiency of regular autosomal effects for a given ratio of control families to case families (k). The efficiency of
different hybrid designs is compared with that of the case-parent triad design (mfc) under the null hypothesis of RR=1. We consider the
control samples to be free of charge, that is, without any sampling or genotyping costs. The equality sign (mfc-mc=mfc-fc) denotes that the
two designs are interchangeable in terms of relative efficiency [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Application of relative efficiency to cleft palate data

Variance
Effects SNP MAFa Case-mother dyads Case-parent triads

Empirical Relative
Efficiencyb

Theoretical Relative
Efficiencyb

Regular autosomal rs2274616 0.1 0.0387 0.0370 0.96 0.94

rs12119556 0.3 0.0184 0.0154 0.84 0.85

PoO rs12137004 0.1 0.0649 0.0868 1.34 1.32

rs2357649 0.3 0.0399 0.0364 0.91 0.89
aApproximate estimates.
bThe case-parent triad design is used as reference.
Abbreviations: MAF, minor allele frequency, PoO, parent-of-origin; SNP, single-nucleotide polymorphism.

4.7 Application of Haplin to cleft palate only data

Cleft palate only (CPO) is a common craniofacial birth defect in humans, typically classified as to whether the cases occur
with (nonisolated) or without (isolated) other congenital anomalies or identifiable malformation syndromes. The overall
prevalence of isolated CPO is 5.0 per 10 000 births.55 From our previously published GWAS,56,57 genotype data from 550
isolated CPO families were available, including 466 complete case-parent triads. These families were primarily of Euro-
pean and Asian ancestry, although other ethnicities were also present in the data. The GWAS data set is available at the
dbGaP database (https://www.ncbi.nlm.nih.gov/gap) under accession ID phs000094.v1.p1, and information on quality
control and detailed characterizations of study participants have been provided elsewhere.25 Background information on
the study is given in the original publication,56 and ethics approvals were obtained from the respective ethics committees
for all the data in the cleft consortium.

To illustrate what the relative efficiencies may amount to with typical MAFs and effect sizes from our example data,
we selected a total of 450 complete case-parent triads and chose SNPs with varying MAFs and effect estimates (RR or
RRR) close to one for both regular autosomal and PoO effects. For case-mother dyads, the fathers were simply set to
missing. To ensure an equal number of genotyped individuals for each design, 300 case-parent triads were randomly
drawn from the 450 families using bootstrapping with 101 repetitions. The empirical relative efficiency was then calcu-
lated by dividing the median variance of the 101 case-parent triad replicates by the variance of the case-mother dyads.
The results are displayed in Table 3, and the findings are in general agreement with the asymptotic calculations shown in
Figures 3 and 4.
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5 ADDITIONAL CONSIDERATIONS

5.1 Gene-environment interactions

A gene-environment interaction (GxE) occurs when a genetic effect is modified by an environmental exposure or a
stratification factor such as ethnicity. For example, maternal exposures such as alcohol consumption, smoking, or vita-
min intake during the periconceptional period might modify the association between SNPs and a birth defect.25,28,29
Interactions between genetic effects and categorical exposure variables are incorporated into the log-linear frame-
work of Haplin by fitting the log-linear model separately for each exposure stratum. A Wald test is then applied to
detect whether the relative risk estimates differ significantly across exposure levels.11,13 The genetic effect in question
might be a regular autosomal, PoO, or maternal effect. Thus, GxE effects can be estimated for all study designs but
are restricted to the genetic effects enabled by that design. Note, however, that the main effects of an environmen-
tal exposure cannot be estimated from the case-parent triad or dyad design alone without the addition of independent
controls.

Because the GxE test stratifies on exposure levels, detecting a GxE effect requires a larger sample size than detect-
ing the genetic effect alone. The SE of a GxE effect is determined by the standard errors of the individual genetic effects
in the unexposed and exposed strata.13 Provided that the same study design and parameter values are used in each stra-
tum, the relative efficiency estimates are, therefore, directly transferable to GxE effects. Calculated under the global null,
that is, RRR = RRexposed = RRunexposed = 1, Figures 3-5 would also apply to the relative efficiency for GxE effects in these
situations.

5.2 X-chromosome analysis

Haplin allows for analyses of X-linked markers, with corresponding PoO, maternal, and GxE effects. Genetic association
analyses of X-linked markers are especially relevant if the prevalence of a complex trait differs systematically between
males and females. In Haplin, different X-chromosome models may be fitted depending on the underlying assump-
tions, including sex-specific baseline risks, shared or different relative risks for males and females, and X-inactivation in
females.24,40 The methodology presented herein on relative efficiency is readily transferable to genetic effects on X-linked
markers. Nevertheless, a discussion regarding sex effects is needed. For instance, when searching for X-linked PoO effects,
females are needed to be able to compare maternally- and paternally-derived X-chromosome alleles. However, male indi-
viduals and fathers contribute to estimating allele frequencies.13,27 They also facilitate haplotype reconstruction because
phase can be deduced directly from fathers.

6 CONCLUDING REMARKS

Statistical power is often a limiting factor for genetic association studies, and no comprehensive software has been avail-
able for the full assessment of power and comparison of study designs in such analyses to date. In this article, we provided
insights into how relevant designs compare in terms of relative efficiency for a wide range of genetic effects and etiologic
scenarios. Furthermore, we illustrated the methodology with extensive analyses and presented results for regular auto-
somal, PoO, and maternal effects. To facilitate the analysis of power and relative efficiency, the calculations have been
implemented in our R package Haplin.15

The results herein relate to power and efficiency considerations only. Using either a single-SNP or a haplotype
approach, the c-c design is recommended when the aim is to search for regular autosomal effects. An equal number of
cases and controls maximizes the efficiency. However, additional correction for population stratification may be neces-
sary for the c-c design. For a PoO analysis, the mfc design would be an overall good choice. Note that unrelated control
families would not improve the power obtained by the case-parent triad design, as PoO effects are primarily estimated
in case families by comparing the frequencies of alleles transmitted from mother to child with the frequencies of alleles
transmitted from father to child.14 Nonetheless, inferences based on the case-parent triad design rely on key assumptions
that cannot be fully checked or corrected for without the inclusion of unrelated control families. For maternal effects, the
mfc design is appropriate when adjusting for regular autosomal effects, whereas the mfc-c or mc-mc design would be a
good choice when adjusting for PoO effects.
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Due to the potential loss of power, we do not generally recommend including maternal effects in a full GWAS
investigation of regular autosomal or PoO effects. Instead, we suggest additional post-scan analyses to control for
possible confounding from maternal effects. As a matter of routine, the most promising SNPs from a GWAS analy-
sis should be further examined for maternal effects.25 However, we note that complex but less likely scenarios where
maternal effects cancel out regular autosomal or PoO effects may go undetected by this strategy.

When analyzing real data, one would typically use a combination of several study designs. For example, the data
can consist of case-parent triads supplemented by unrelated cases and controls.37,38 Such mixture designs are read-
ily handled in Haplin, both in the analysis module and in the power simulation module, but were not illustrated in
this article.

The relative efficiency depends onmultiple factors, such as the genetic effect in question, theMAF of a given SNP, and
the study design. The results are, therefore, hard to summarize. Moreover, the most efficient design to test one hypothesis
(ie, casual scenario) is not necessarily the best for testing another hypothesis. If different hypotheses about the modes
of inheritance are to be tested, one may prefer a design that is reasonably efficient for a majority of hypotheses rather
than the optimal design for a single hypothesis. Hence, since the mfc design is reasonably efficient for the genetic effects
studied herein, it may be considered an overall optimal design. The importance of sampling case-parent triads is further
strengthened since unrelated, ethnically matched controls have becomemore easily accessible through publicly available
reference samples.49-52

The concluding recommendations in this article are subject to the log-linear model with the given assumptions, the
investigated parameter values, and study designs; they should, therefore, not be interpreted as universal guidelines. Fur-
thermore, practical issues should always be considered, such as the availability of case-parents or suitable controls, as
well as recruitment and phenotyping costs. Nevertheless, the methodology presented herein is a useful approach toward
optimizing the statistical power using the lowest sample collection and assay cost, and a careful assessment of possible
study designs should be routinely performed prior to conducting a GWAS.
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APPENDIX A
A1 Relative efficiency
For comparisons of statistical tests, the asymptotic relative efficiency is a useful measure.62 The asymptotic relative effi-
ciency is defined as the ratio of the asymptotic variances of two different estimators of the same parameter. Under general
conditions (see Theorem 14.19 of Reference 63), this ratio corresponds to the ratio of sample sizes needed to achieve the
same precision from the two different estimators, or the ratio of sample sizes needed to achieve the same significance level
and power for two hypothesis tests about the parameter. In our setting, we compare the variances of the estimators of the
same parameter computed from two different study designs, weighted by the number of genotyped individuals within
each design. The weights allow us to compare the relative efficiency of the two different designs, subject to the constraint
that each design contains the same number of genotyped samples. The relative efficiency thus refers to a ratio of the num-
ber of genotyped individuals, not a ratio of the number of families. Let n denote the number of family structures with a
case child. As n varies, we assume the composition of family structures remains the same, relatively speaking. That is, we
assume, for instance, that the ratio of case-parent triads to control-mother dyads remains the same, likewise for the ratio
of case-mother dyads to complete control-parent triads, and so on.

A1.1 The asymptotic SE of the log-scale parameter estimator
In Haplin, we use the Wald test to conduct post-hoc inference on the log-transformed relative risk parameters, based on
asymptotic normality (see Chapter 1.3 of Reference 64). The main univariate outcome measure is the log relative risk
of the relevant genetic effect, that is, 𝛽 = log(RR). For PoO effects, the parameter of interest is the ratio of two relative
risks, which means looking at the difference between the corresponding 𝛽 values, so the theory is the same. Based on the
standard maximum likelihood theory, Haplin computes the SE 𝜎n(𝛽) of 𝛽 from the observed Fisher information, using
all available data, that is, with n cases. If the composition of family structures is kept fixed as n increases, we have that√
n𝜎n(𝛽) ≈ 𝜔(𝛽), where𝜔(𝛽) is the asymptotic SE of 𝛽 computed from the Fisher information in themaximum likelihood

model.14 The value of𝜔(𝛽) can thus be seen to represent a samplewith only one case (n = 1). For instance, in a settingwith
200 case-parent triads and 100 control-parent triads, 𝜔(𝛽)would, theoretically, correspond to a family structure with one
case triad and half a control triad. The derivation of the asymptotic multivariate variance-covariance matrix is provided
in a previous article.14

A1.2 Asymptotic relative efficiency
The asymptotic SE is characteristic of the design used in the estimation.When comparing two designs 0 and 1, with design
0 as reference, the asymptotic relative efficiency of design 1 over design 0, that is, using design 0 as reference, is

{
𝜔(0)(𝛽)∕𝜔(1)(𝛽)

}2
⋅
m0
m1

, (A1)

where m0 and m1 are the number of individuals to be genotyped in designs 0 and 1, respectively. For instance, the
asymptotic relative efficiency of the case-control design over the case-parent triad design uses m0 = 3 and m1 = 2 (the
case-parent triad design is used as reference). Note that a ratio larger than one favors design 1.

Comparing the asymptotic variances of estimators of the same parameter from different designs provides an intuitive
understanding of relative efficiency. Alternatively, one can consider relative efficiency in terms of hypothesis testing.
Consider the problem of testing the null hypothesisH0 ∶ 𝛽 = 0 versus the alternativeH1 ∶ 𝛽 ≠ 0 for a fixed nominal level.
Let 𝛾n(𝛽) be the power of the Wald test based on n cases (ie, n family structures with one case child in each). Clearly, for a
fixed alternative 𝛽 ≠ 0, limn→∞𝛾n(𝛽) = 1. That is, with enough data, a relative risk RR different from one will eventually
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be detected by increasing the sample size sufficiently. To make an informative asymptotic comparison of two tests, that
is, of tests for the same null hypothesis but based on two different designs, it is better to compare the efficiency of the tests
when testing steadily decreasing effect sizes as the sample size increases. Here, we let the alternative to be tested for be
𝛽n = h∕

√
n, where h is a fixed constant. Under general conditions,

lim
n→∞

𝛾n(𝛽n) = 𝛾(h),

where 𝛾(h) is the so-called local limiting power function (see Theorem 14.7 of Reference 63). In our setting, the limiting
power function 𝛾 of the Wald test with level 𝛼 can be written

𝛾(h) = 1 − F𝜆(h)(𝜒2
𝛼 ),

where 𝜒2
𝛼 is the upper-𝛼 quantile of the chi-squared distribution with one degree of freedom and F𝜆 is the cumulative

distribution function of a one degree of freedom non-central chi-squared distribution, with 𝜆 = 𝜆(h) as the noncentrality
parameter. The noncentrality parameter can be expressed as 𝜆(h) = (h∕𝜔(0))2, where𝜔(0) is the asymptotic SE of 𝛽 under
the null hypothesis. Hence, comparing two parameter estimators corresponding to different study designs is equivalent
to comparing the locally attained power of the Wald test. That is, the asymptotic relative efficiency of two designs when
testing the null hypothesis can be found from Equation (A1) by setting 𝛽 = 0. Note that Equation (A1) is independent of
𝛼 and h when 𝛽 = 0 (see Theorem 14.19 of Reference 63). This type of asymptotic relative efficiency for hypothesis tests
is referred to as the Pitman efficiency.10

APPENDIX B
B1 An explicit formula for the asymptotic relative efficiency of regular autosomal effects for a diallelic SNP
underH0
For regular autosomal analyses of a diallelic SNP underH0, a formula for the relative efficiency is easily derived by heuris-
tic arguments. We quantify the statistical contribution of a genotyped individual by its “design factors” and count the
effective number of cases and controls while assuming a multiplicative dose-response relationship. The case (affected
individual) forms the basis of the family-based designs and is always assumed to be genotyped. We, therefore, define the
effective number of cases as n1 = 1. The total effective number of controls can be written as n0 = d1 + kd0, where d1 is the
effective number of controls from a case family, d0 is the effective number of controls from a control family, and k ∶ 1 is
the ratio of control families to case families.

A single case or control (without their genotyped parents) identifies only two case or control alleles, respectively.
Hence, the design factors are d1 = 0 and d0 = 1. However, a single case-parent triad encompasses four alleles, two of
which are inherited by the case child, two of which are not. The nontransmitted parental alleles form the so-called
pseudocontrols.20,21 Effects are seen as a contrast between the alleles of the pseudocontrols and the cases, similar to the
approach used with a regular case-control design. A case-parent triad thus represents one case and one control (d1 = 1).
Conversely, a complete control-parent triad adds a single control offspring.Moreover, a pseudocontrol can also be formed,
effectively resulting in two controls (d0 = 2). Because these two controls together carry the same alleles as their parents,
there is no need to genotype the original control child when both control parents have been genotyped.7

The issue of determining the design factor gets more complex when case dyads or control dyads are genotyped. If the
case and only one of his/her parents are available, there are two case alleles and one control allele. However, deciding
which of the parent's two alleles should be the control allele is not always possible when the other parent is missing. This
results in a loss of efficiency, which leads to a design factor d1 < 1∕2, depending on theminor allele frequency (MAF).65 If
only one of the control parents is available for genotyping, genotyping the control offspring and his/her parent produces
three control alleles. However, similar to the case-dyad scenario, if both the control offspring and his/her parent are
heterozygous, one cannot distinguish which allele has been transmitted from the genotyped parent. Again, this leads to
a loss of efficiency and a design factor d0 < 3∕2. The results are summarized in Table B1.

B1.1 An explicit formula
The total (actual) number of genotyped individuals is equal to G = l1 + kl0, where l1 and l0 are the number of genotyped
individuals within a case and control family, respectively, with the possible values 0, 1, 2, or 3. Under H0, the SE of the
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TABLE B1 Design factors for
regular autosomal effects under H0
in the single-SNP situation

Control Family Case Family

d0 l0 d1 l1
MFC 2 3 1 3

MF 2 2 — —

MC or FC (3 −MAF ⋅ (1 −MAF))∕2 a 2 (1 −MAF ⋅ (1 −MAF))∕2 a 2

M or F 1 1 — —

C 1 1 0 1

Note: d0 is the effective number of controls from a control family; l0 is the number of genotyped individuals
within a control family; d1 is the effective number of controls from a case family; l1 is the number of genotyped
individuals within a case family.
Abbreviations: MAF, minor allele frequency.
aThe effective number of controls is derived by subtracting the subset of ambiguous dyads.

difference between cases and controls is expected to be proportional to
√
1∕n0 + 1∕n1. Becausen1 = 1, the effective sample

size for design i can be written as

Ni ∝
1

SE2
i
∝ n0

n0 + 1 .

Relative to the number of genotyped individuals, the effective sample size for design i is

Ni
Gi

(k) = d1 + kd0
(d1 + kd0 + 1)(l1 + kl0)

.

In this article, the case-parent triad design (mfc) is used as the reference, and we have that Nmfc
Gmfc

(k) = 1
6 . Under H0, the

efficiency of design i relative to the mfc design is thus

Ni∕Gi

Nmfc∕Gmfc
(k) = 6(d1 + kd0)

(d1 + kd0 + 1)(l1 + kl0)
. (B1)

When k = 1, we see that the relative efficiency is 3/2 for the case-control (c-c) design and 3/4 for the full hybrid
(mfc-mfc) design, independent of the MAF. This corresponds to the results of Figure 3 in this article.
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