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Abstract 
 
Background: In normal gait, the ankle plantar flexors provide most propulsive energy during 

push-off, with smaller contribution of hip flexors. However, the interplay between these two 

joints remains unclear in spastic cerebral palsy. The objective of this study was to evaluate the 

kinetic relationship between the ankle plantar flexor and hip flexor power in late stance of gait 

(A2/H3) in mildly affected adults with spastic cerebral palsy. By implementing a ballistic 

strength training program, it was hypothesized that these exercises would exaggerate ankle 

plantar flexor power so the need for hip flexor power compensation would decrease, and 

thereby result in an increased A2/H3 ratio. 

 

Method: Ten adults (35.7±12.6) with spastic hemiplegic and diplegic cerebral palsy, Gross 

Motor Function Classification System I-II, was recruited to attend an eight week ballistic 

strength training program mainly prescribed to most paretic limb. Three-dimensional gait 

analysis with a force plate was used to investigate the impact on ankle and hip power 

generation in push-off before, during and after intervention. At least three gait trials at self-

selected speed was analyzed for each limb to calculate peak ankle and hip flexor power in the 

sagittal plane and relationship between them (A2/H3 ratio). 

 

Results: 7 participants completed the study protocol. 6 out of these 7 participants increased 

A2/H3 ratio on the most paretic limb, while 5 increased on uninvolved limb. As expected, the 

change was more evident on the most paretic limb compared to the uninvolved limb. 

 

Conclusion: Findings from this study provide a better understanding of the interplay between 

power patterns in the ankle and hip joint in spastic cerebral palsy with a possible implication 

to clinical practice. However, the results cannot direct any casual relationships between 

change in A2/H3 ratio and ballistic strength training. Until evidence is found, we assume that 

ballistic strength training is feasible to alter A2/H3 ratio in adults with spastic cerebral palsy, 

yet further analytic investigation is needed. 

 

Keywords: Spastic cerebral palsy, adults, ankle/hip power ratio, ballistic strength training, gait 
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Definition of concepts  
 
A1   Ankle plantar flexion power absorption at mid-stance. 

A2   Ankle plantar flexion power generation during late stance. 

A2/H3  Relationship between proportions of ankle plantar flexion (A2) and hip 

flexion (H3) during the push-off phase. 

Cerebral palsy Cerebral palsy describes a group of permanent disorder of the 

development of movement and posture, causing activity limitation, that 

are attributed to non-progressive disturbances that occurred in the 

developing fetal or infant brain. The motor disorders of cerebral palsy 

are often accompanied by disturbances of sensation, perception, 

cognition, communication, and behavior, by epilepsy, and by secondary 

musculoskeletal problems (1). 

Concentric activity Muscle length is shortening while generating positive power, 

accelerating the center of mass. 

Coronal plane Divides the body into posterior and anterior portions. 

Eccentric activity Muscles absorbs negative power through lengthening in an eccentric 

muscle contraction. 

Gait   The manner in which walking is performed. 

H1   Hip extension power generation in first half of stance. 

H2   Hip flexion power absorption in mid-stance. 

H3   Hip flexion power generation in late stance/initial swing. 

Power   The product of the joint moment and joint angular velocity. It is 

measured in watts normalized to body weight. It determines the 

propulsive forces of the body. 

Sagittal plane Divides the body into left and right (longitudinal). 

Transverse plane Divides the body into cranial and caudal portions (horizontal). 
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Theoretical background 
 

The ultimate goal in gait rehabilitation is to understand functional abilities in relation to 

limitations with the purpose of enhancing performance. In normal gait, most power is 

generated by the ankle plantar flexors during the late stance phase of gait, with smaller 

contribution of hip flexors at push-off (2–4). Yet, the interplay between these two joints are 

less recognized when applied to gait in spastic cerebral palsy (SCP). The hip flexors appears 

to be more active during the gait cycle in this population group due to reduced ankle plantar 

flexor power output (2,5–7). This suggest a complex gait pathology with compensatory 

tradeoff mechanisms between the hip and ankle which may progress to worse deficiencies 

with age. Alteration of ankle power generation has been recommended in several neurological 

disorders to improve functional capacity for walking (2,8–10). With this theoretical 

background, it is thought that adults with cerebral palsy (CP) may benefit from a training 

regime targeting the ankle plantar flexors on higher velocity to improve power generation 

(8,11). 

 

In order to understand the neuromuscular and musculoskeletal gait pathology associated with 

SCP, it is fundamental to recognize the precise structure of joint- and limb biomechanics 

during normal gait. This thesis is structured into several chapters with smaller sub-sections 

explaining this phenomenon. The first chapter describes normal gait cycle mechanisms and 

clinical gait analysis with a detailed description of kinetic expressions of ankle and hip power 

and management of gait deviations. The second chapter contains a description of gait in SCP, 

with primary focus on reduction in ankle power output and A2/H3 ratio. The third chapter 

describes the rationale and aim with the project, followed by material and methodology in 

chapter four. In this section, study design and ethical considerations are presented. Further, 

the protocol for exercise intervention is described in detail followed by instrumentation for 

gait testing and procedure for data analysis. The scientific article is presented in chapter five. 

Additional findings that can possible be contributing causes of the results, yet not included in 

the scientific article are presented in chapter six. Lastly, chapter seven is methodological 

considerations and conclusion, followed by references and appendices in chapter eight and 

nine.  
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Chapter 1: Normal gait  
 
1.1 Normal gait cycle  
 

Gait is a complex repetitious motor skill of the lower limbs resulting in forward progression 

of the center of mass (COM) (12). The gait cycle is commonly divided into a number of 

distinct phases (figure 1), characterized by periods of loading and unloading. In general, the 

gait cycle is normalized to 100%, where the stance and swing phase last on average for 60% 

and 40%, respectively (13). The stance phase is defined as a period from heel contact to toe-

off, where the reference limb is constantly in contact with the ground (12). It is normally 

subdivided into five phases of initial contact, loading response, mid-stance, terminal stance, 

and push-off (14). During stance phase, two important tasks of weight acceptance and single 

limb support is accomplished. The remaining 40% is the swing phase and is defined from toe-

off to heel contact. In this phase, the reference limb is advancing forward without being in 

contact with the ground. The swing phase contains initial swing, mid-swing, and terminal 

swing (14). An efficient gait cycle requires dynamic stability in stance, pre-positioning of the 

foot, sufficient foot clearance during swing, adequate step length and energy conservation 

(15,16). The gait cycle and functional level of lower extremities in forward ambulation can be 

assessed in several ways. In clinical practice, visual observation is often used to evaluate 

movement disabilities and making subjective decisions regarding treatment management. 

However, an accurate objective quantification is usually required in research to identify and 

enhance gait pattern. Clinical evidence and literature support the efficacy of three-

dimensional gait analysis (3DGA) as a valid and reliable assessment tool to verify 

repeatability, consistency and variability in gait (17). The method enables comparison of 

treatment outcomes and movement before, during and after intervention (14). By providing 

information of different gait parameters, it assists in a better 

understanding of gait deviations to make clinical decision for 

treatment strategies and exercise prescription (18,19). In a 

biomechanical perspective, the gait cycle is usually described in 

terms of distance and timing events (spatiotemporal data), muscle 

activation (electromyography), joint angles (kinematics) and ground 

reaction forces, joint moments and power (kinetics) (20). The 

analysis is based on the human body being modelled as series of 

rigid body segments, linked together by joint rotation centers (4,21). 
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The joint rotation centers required for lower limb analysis is pelvis, hip, knee, and ankle. Each 

rigid body segment is defined by assigning a local three-dimensional coordinate system to it 

(18). The orientation of the coordinate system within one segment compared to another 

segment defines the relative movement between them. Every segment has three planes used in 

the description of gait pattern (22). X is referred as sagittal-, Y is coronal-, while Z is referred 

as transverse plane. Although the largest joint rotations and the major portion of work occurs 

in the sagittal plane in normal gait, three-dimensional data can highlight more complex 

interaction occurring in the coronal and transverse plane compared to subjective evaluation 

(23).  

 

 
 

Figure 1 – Stance period: Initial contact and loading response refers to contact of forefoot 

with the ground, acceptance of weight onto standing limb and shock absorption (eccentric 

muscle contraction). Mid-stance is a phase of forward progression of the limb over standing 

foot (eccentric muscle contraction). Terminal stance is forward propulsion (concentric 

muscle contraction). Swing period: Initial swing is the period of acceleration of the swinging 

limb. Mid swing is a transitional period from acceleration to declaration of the swinging 

limb. Terminal swing is a period of declaration of the swinging limb. Copied from Prokinetics 

(24).  
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1.1.1 Spatiotemporal gait parameters 
 

Spatiotemporal parameters refers to distance and timing of gait events (16). Definition of 

these parameters allows objective reports of when, where, how long, and how rapidly the limb 

is in contact with the ground (14). They include speed, cadence, stance time, step width, stride 

length and step length (13). Step length is described as the distance between two sequential 

heel contact, whereas stride length is the distance between two sequential heel contacts of the 

same foot (12). Step width is the medio-lateral displacement between the center points of the 

heels, whereas cadence is commonly defined as the number of steps per minute (25). The 

selected gait speed is normally measured in meter per second (m/s) (12). Humans prefer to 

walk at speeds that minimize the metabolic cost of transport, which usually rage between 1.2-

1.4 m/s (26). Gait speed is a well-known indicator of overall gait performance and is 

commonly used to evaluate the effects of treatment (27). Unfortunately, when used alone, gait 

speed neither assists in understanding the nature of the gait deficiencies or is it helpful in 

directing training programs (27). However, it is important to be aware of how neuromotor 

patterns adapt to changes in gait speed and how it complicates the potential increase of elastic 

energy storage and recovery in tendons.  

 

1.1.2 Joint gait kinematics  
 

Kinematic analysis refers to angular variations of joints during movement and is used to 

identify gait cycles by describing angles and position of body segments in relation to space 

(28). It is the study of spatiotemporal aspects of motion such as velocities, accelerations and 

displacements. Joint angles between the proximal and distal segments of the relevant joint can 

be estimated using a three-dimensional model (21). However, they are limited in explaining 

causes of motion and the consequences for the musculoskeletal system. Table 1 presents 

clinical conventions used to describe the joint range of motion around the pelvis, hip, knee 

and ankle joint in three anatomical planes during gait laid out in rows and columns. Columns 

represent the three different anatomical planes, while rows represent the different joints 

levels. 
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Table 1 - Clinical conventions of joint angles in sagittal-, coronal-, and transverse plane. 

 

1.1.2.1 Pelvis joint kinematics 
 

The clinical conventions for kinematic joint angle of the pelvis segment is described in terms 

of rotations around the sagittal-, coronal-, and transverse plane (29). During normal gait, the 

pelvis has motion about all three axes. In adults, the pelvic range of motion (ROM) ranges 

from 5o to 15o (30). The magnitude of these motions is dependent on gait speed, with larger 

motions occurring at faster gait speeds (31). Pelvic tilt refers to the rotation of the pelvis about 

a line through both hip joints in sagittal plane around the mediolateral axis. In the three-

dimensional coordinate system, anterior pelvic tilt is defined as positive excursion (+), while 

posterior pelvic tilt is negative (-). Second, pelvic obliquity refers to coronal plane motion 

around the anterior-posterior axis. Positive pelvic oblique excursion angle is defined as pelvis 

up (+), while negative angle is pelvis down (-). Last, pelvic rotation refers to transverse plane 

motion, the rotational movement of the pelvis through caput femoris around the midline of the 

body, longitudinal axis. Pelvic forward rotation is positive excursion rotation angle (+), in 

contrast to pelvic backward rotation which is defined as negative (-).  

 
1.1.2.2 Hip joint kinematics 
 

Hip joint movement is defined around three main axis, medial-lateral, anterior-posterior and 

longitudinal axis (32). The movement are restricted due to the size of the joint surfaces, 

tightness and the attachment of the capsule ligaments (33). Around the medial-lateral axis, 

sagittal plane motion of flexion and extension occurs. Hip flexion angle is defined as positive 

excursion angle (+), while extension is defined as negative angle (-). Maximum hip flexion of 

30-35o occurs in late swing phase around 85-90% of gait cycle, while maximum extension of 

10o is reached near toe-off at approximately 50% of the gait cycle (30). The movements 

around the anterior-posterior axis, coronal plane motion of abduction (ABD) and adduction 

(ADD) occur, respectively side bending of the pelvis with the upper body. ADD is defined as 

Joint Sagittal plane (X) Coronal plane (Y) Transverse plane (Z) 

Positive (+) Negative (-) Positive (+) Negative (-) Positive (+) Negative (-) 

Pelvis Anterior tilt Posterior tilt Up Down Forward  Backward  

Hip Flexion Extension Adduction Abduction Internal rotation External rotation 

Knee Flexion Extension Varus Valgus Internal rotation External rotation 

Ankle Dorsiflexion Plantar flexion Eversion Inversion Internal rotation External rotation 
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positive excursion (+) hip angle, while ABD is negative (-) (24–28). ADD occurs throughout 

early stance and reaches a maximum at 40% of the cycle, while hip ABD of 5-7o occurs in 

early swing phase. Third, transverse plane motion of internal and external rotation occurs 

around the longitudinal axis. Internal hip rotation is referred to as positive excursion (+) 

rotation angle, and external rotation is negative (-). In addition to these three major axes, 

movements can be performed around all axes between the transverse and sagittal axes, and 

combine them into a circular induction (16). 

 

1.4.3.3 Knee joint kinematics 
 

The movements of the knee joint occur around two main axes. Movement in sagittal plane is 

defined as flexion/extension around medial-lateral axis, where knee flexion angle is defined 

as positive excursion (+) and extension angle is negative (-). Peak flexion is achieved at 

around 15% of the gait cycle when the entire body weight is accepted during single stance. 

This action is controlled by an eccentric contraction of the vastus lateralis, medialis and 

intermedius (16). The second peak flexion is produced at around 70% of the gait cycle. This 

shortens the limb when entering the swing phase which assists with toe clearance. Initially 

this action is produced by the concentric contraction of the gastrocnemius. Secondly, coronal 

plane motion of varus (ADD)/valgus (ABD) occurs around the anterior-posterior axis. ADD 

angle is defined as positive excursion (+), while ABD angle is negative (-). Third, transverse 

plane motion of internal/external rotation occurs around the longitudinal axis. Internal rotation 

angle is defined as positive excursion (+), while external rotation is defined as negative (-).  

 

1.2.3.1 Ankle joint kinematics 
 

The structures of the ankle are complex. It permits movements of dorsiflexion (DF) /plantar 

flexion (PF) and eversion (EV)/inversion (INV) in the sagittal, coronal and transverse plane. 

The ankle joint, art. Talocrualis is classified as a hinge joint with one degree of freedom. It 

allows motions in all three anatomic planes. In the sagittal plane motion occurs around 

medial-lateral axis (YZ plane) which permit movement mainly in PF and DF. DF is given 

positive excursion angle (+), while PF is given negative excursion (-). Peak DF occurs at 

around 50% of the gait cycle. The motion is controlled by eccentric contraction of the ankle 

plantar flexors around MS. The maximum peak of plantar flexion is achieved around 62% of 

the gait cycle near toe-off (3). A second DF is achieved at around 80% of the gait cycle.  
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1.1.3 Joint gait kinetics 
 

Kinetic data analysis is the most accurate method to identify gait events regarding the forces 

that causes motion (4). It can reveal decreased muscle power in the gait cycle, and might be 

the key to establish a complete understanding of compensatory mechanism in pathologic 

movement patterns (4). To recognize the concept of kinetics, it is important to have 

knowledge of some fundamental terms. Different structures of the musculoarticular complex, 

fascicles, aponeurosis, tendons, joints and skeletal muscles are involved in production of joint 

motion (33–37). The two main functions of skeletal muscles is to generate movement and 

produce force (33,36,38,39). Force is generated by the muscle contractile elements to create 

torques/moments around an axis of rotation at joints, which predicts how a muscle operate 

during gait (40). A moment or torque is defined as the product of magnitude of force and 

perpendicular distance from the axis of rotation (41). According to Newton´s third law, the 

ground produces a reaction force equal and opposite to the body weight while standing still 

(36). This is called ground reaction force and acts on the center of pressure.  

In the context of gait kinetics, power is described in terms of generation and 

absorption of energy (2,12,42). The ability of a muscle to generate power is influenced by the 

type of muscle action involved and the velocity sustained (43). Power is the product of the 

joint moment and joint angular velocity (w), and is measured in watts (W) normalized to body 

weight (42). It is defined by the force-velocity relationship, determined by the architecture 

index of a muscle. It includes physiological and anatomical cross-sectional areas, fiber type, 

muscle thickness, motor neuron recruitment, firing rate and length and angle of fibers. 

Efficient power generation and absorption for forward propulsion occurs on high angular 

speed recruiting mostly fast-twitch muscle fibers (Type II) (25). They are capable of 

concentric-, eccentric and isometric contractions during gait (5). The muscle length is 

shortening while generating positive power through concentric activity (44). In contrast, the 

muscle is lengthening while absorbing negative power through eccentric muscle contractions 

as it contacts the ground and exerts a braking force (9). Irrespective of equivalent muscle 

lengths and velocity, more forceful contractions are produced eccentric compared to 

concentric (45). Yet, concentric muscle work in the sagittal plane is considered to be 

responsible for the power propulsion during gait (46).  
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1.2 Kinetic analysis during in gait 
 
1.2.1 Ankle joint structure and power generation 
 
The ankle joint is made up by a fork-shaped joint surface at the talus for the distal tibia and 

fibula (47). Several muscle groups are acting in this joint, yet the ankle dorsal- and plantar 

flexors are the main contributors (33). Tibialis anterior is known as the most powerful 

dorsiflexor (33). However, the plantar flexors gastrocnemius and soleus, also known as 

triceps surae, are more than four times as powerful as the dorsal flexors (48–50). Their 

biological muscle architecture with short pennate fascicles, long tendons and aponeuroses 

make them well suited for force and power generation during ankle push-off (51,52). In fact,  

triceps surae represents about four-fifths of the total plantar flexion moment (3,30). They are 

particularly important for forward ambulation, trunk stabilization and leg swing initiation, 

serving to modulate step length and gait speed (3,53,54). Due to their similar activation 

profiles and distal insertion onto the Achilles tendon, it is traditionally assumed that 

gastrocnemius and soleus have similar function during gait. However, gastrocnemius is a 

biarticular muscle with two heads crossing both the ankle and knee joint. For that reason, it is 

capable of generating knee flexion moment that is unique from soleus (55,56). On the other 

hand, soleus is a monoarticular muscle that originates from the proximal fibula and proximal 

medial border of the tibia, and inserts into the calcaneus (49). Soleus is a major contributor to 

the ankle plantar flexion in late stance and is crucial in propelling the body forward (49).  

 

Figure 2 gives insight to ankle power pattern in the sagittal plane in normal gait. In 

fact, around 93% of the mechanical work is produced in the sagittal plane (4). The largest 

power output in the gait cycle is generated by the ankle joint during push-off, approximately 

50% of the gait cycle (47,57). During the first 40% of the gait cycle, the ankle moment at heel 

contact absorbs negative power by contracting eccentrically (A1) to control the shank as it 

rotates over the ankle (4). This phase is followed by a region of positive power by concentric 

ankle plantar flexion activity throughout mid- and late stance phase of gait (60%) (A2), 

propelling the body over the leading stance limb (58). This second phase is mainly produced 

by the release of elastic energy stored in the Achilles tendon during A1 absorption period 

(59). A2 power is known as a strong predictor for modulating step length and gait speed (55–

58).  
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Figure 2 - Average power patterns of ankle in sagittal plane for 19 health subjects walking at 

mean natural cadence of 105 steps/min showing M and SD. Redrawn from Winter (3,42). 

 

1.2.2 Hip joint structure and power generation 
 

The hip joint is surrounded by a complex ligamentous structure and a solid joint capsule (64). 

The joint capsule has a protective function to restrain the movement of the femur articulating 

around the acetabulum and to prevent dislocation. Strength and coordination provided by both 

hip flexors and extensor muscles are active and important during distinct periods of the gait 

cycle (43). As a function of the large physiological cross-sectional area, the muscles crossing 

the hip have a higher potential of force generation than the knee and ankle muscles. Out of the 

muscles acting as extensors in the hip joint, the gluteus maximus is known as the most 

powerful. Iliopsoas is the most important flexor in the hip joint and has an important 

stabilizing effect to the upright posture (33).  

 

 



    

 
20 

While walking, a large proportion of work is produced by the hip joint (4). Figure 3 

gives insight to the hip power pattern in the sagittal plane in normal gait. The hip power 

pattern can be subdivided into three phases. The first phase (H1) of concentric activity during 

initial contact is produced by the hip extensors. The hamstrings and gluteus maximus have the 

primary responsibility and serves three main functions. They prevents collapse of the body 

during single support, generate motion as the stance phase begins and controls trunk 

inclination through active hip extension (4,65,66). The second peak joint power (H2) is 

produced eccentrically by rectus femoris in the transition from stance to swing. Both adductor 

longus and adductor brevis eccentrically contract negative power in stance to attenuate hip 

abduction. These muscles act to absorb some of the mechanical energy generated in H1. H2 

slows the backward rotation of the thigh and produce forward inclination of the trunk (4). 

This peak joint power allows storage of elastic energy that is utilized at the end of stance (66).  

At the end of stance (H3), a third joint peak positive power is generated by concentric action 

of hip flexors iliopsoas and sartorius (67–69). This contraction velocity propel the leg into the 

swing phase (70) by adding mechanical energy to the limb (4). Moreover, it has an important 

stabilizing effect to the upright posture. Sometimes, a very small concentric phase by 

extensors at the termination of the swing phase (H4) is identifiable. This phase function to 

facilitate the preparation for the next gait cycle (23,71).  

 
 

Figure 3 - Average power patterns of the hip in sagittal plane for 19 health subjects walking 

at mean natural cadence of 105 steps/min showing M and SD. Redrawn from Winter (3,42). 
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1.2.3 Ankle-hip ratio (A2/H3) 
 

In general, most of the positive work in normal gait is produced by the ankle plantar flexors 

during the late stance phase of gait (A2) with a smaller contribution of the hip flexors at push-

off (H3) (2). However, there is an complementary relationship between these joints in 

propulsive force generation (72,73). The ankle-hip power ratio (A2/H3) characterizes the 

relationship between proportions of ankle plantar flexion and hip flexion during the push-off 

phase. It is the region of positive power produced by the concentric plantar flexor activity 

during late stance, divided on positive power produced by concentric activity in the hip 

flexors during late stance (5,6). According to Winter and Olney (2,3,27), normal A2/H3 

power is 6.8W/kg, range 4.89-8.0. A higher ratio indicates a higher proportion of ankle 

involvement compared with hip.  

 

1.3 Management of gait deviations to improve ankle power generation in late stance 
 

The ability to sustain walking capacity is a crucial feature to maintain independence in the 

society and everyday life (74). Rehabilitation appears to be most effective when it is task 

specific (75). The primary focus is to reflect the goal of treatment and identify factors limiting 

gait performance (10,63). With other words, the prescription should reflect how the muscles 

act during walking. It is critical to consider the relevant muscle groups, required velocity, 

intensity, repetitions and individual factors to achieve results effectively (8). Moreover, the 

decision is influenced by functional status, musculoskeletal deformities, age and requires 

identification and understanding of the impairment. Repeated efforts and several treatment 

modalities are investigated to develop a general rehabilitation program. Regular clinical 

interventions include orthopedic surgery to restore muscle-tendon length to improve bony 

alignment, neurosurgical techniques to reduce spasticity, use of orthotic devices and physical 

therapy to address muscle length, body positioning and mobility (45). Although reduced ankle 

power generation and hip compensatory actions is a well-known phenomenon in several 

neurological gait conditions, strategies targeting the plantar flexor muscles power generation 

have received little attention (76–78). There are currently few rehabilitation programs 

assessing this deviation (3,25,67,79), and the optimal guidelines to increase A2/H3 ratio have 

not yet been established (80). 
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1.3.1 Ankle foot orthosis 
 

Ankle foot orthosis (AFO) is considered as a conservative treatment option (81). They are 

primary designed to provide joint stability and to keep tight muscle stretched while preventing 

excessive plantar/dorsiflexion flexion (17,81,82). The main objective is pre-position of the 

foot in initial contact, allow heel contact and correct the foot angle in swing phase (81,82). 

AFO is a relatively common treatment option, used both in activity and rest. Several types 

with different functions have been developed to meet the various gait pattern and muscle 

deformities in cerebral palsy. Reported benefits are reduced spasticity, free movement and a 

more stable COM. Despite the benefits, AFO fails to reduce deformity and have not exposed 

to improve ankle power output in the late stance of gait.  

 
1.3.2 Botulinum toxin type A 
 

Intramuscular injections of Botulinum Toxin type A (BTX-A) has been clinically used for 

many decades and have reviled positive outcomes on spastic muscles (83). There are seven 

types of neurotoxins (A-G), however only A and B are available for clinical use (83). When 

BTX-A is injected focal into muscles, the release of Acetylcholine is inhibited in 

neuromuscular synapses, and thereby reduces spasticity (17,83). The dose varies individually 

based on the degree of spasticity and body weight (84,85). The main objective is to improve 

movement patterns and energy consumption. Previous studies has illustrated significant 

improvement in ankle kinematics and kinetics (83,84). The treatment outcomes includes 

reduced spasticity of the plantar flexors, improved dorsal flexion and increased force 

generation in the push-off phase (17,84). However, the treatment effect is reversible, and 

some side effects have been reported, but they are rare.  

 

1.3.3 Surgical treatment 
 
Surgery is commonly used to address bony deformities, correct alignment, muscle 

contracture, reduce spasticity and improve function (86). Interventions such as muscle tendon 

lengthening surgery can change a toe-gait pattern to heel-toe pattern by reducing the 

persistent stance phase loading of the plantar flexors. This may serve to reduce the degree of 

eccentric lengthening of the gastrocnemius. However, orthopedic surgery involving muscle-

tendon lengthening procedures is known to reduce muscle strength, particularly in the 

presence of pre-exciting weakness. Additionally, it may decrease the ability to generate 
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moment and power output of the muscle groups. Surgical decisions are therefore particularly 

crucial in slow-walking individuals with low power generating abilities (2). 

 

1.3.4 Traditional resistance training 
 

The rationale of physiotherapy in gait rehabilitation may be to maintain range of motion with 

adequate muscle length, to preserve strength, and to improve balance and coordination 

(17,87). The intervention includes passive muscle stretching. Although interventions 

including traditional resistance exercise is quite common, they have only shown weak 

correlations with gait functionality improvements and generation in forward ambulation (88). 

Preview studies have focused mostly on strengthening knee flexors, knee extensors and hip 

abductors (77,78). Despite modest increase in muscle strength in proximal parts of the lower 

extremity, the improvements in muscle strength is apparently not transferred to power 

generation and walking ability (8,75,76,89). If a muscle contractions are performed at very 

slow velocities, only a few cross-bridges have time to shorten and reduce the net tension 

recorded in response to the stretch (40). Moreau et al. (76,90) argued that the majority of 

exercise prescription may need to prioritize the elastic function of the Achilles tendon and the 

stretch-shortening cycle on higher movement velocities to maintain functionality. By 

addressing the imbalance between hip and ankle, strengthening the weaker muscle may 

preserve muscle length (75,90).  

 

1.3.5 Ballistic strength training  
 

It is though that A2 power is produced by both concentric muscle contraction and return of 

elastic energy stored in the Achilles tendon (49,53). During the stance phase of normal gait, 

the calf muscle fascicles barely lengthen, which allows elastic energy storage and release in 

the Achilles tendon (51,92). This is not the case in several neurological gait disorders. In 

order to improve power generation for walking in neurologic populations with muscle paresis, 

prescription may need to target higher velocities as well as higher force (25). Ballistic 

strength training is a rehabilitation option inspired from sprint which emphasize to increase 

explosive ankle power generation at pull-off (90,93). By performing loaded exercises at 

higher velocity, the plantar flexors is undergoing an eccentric activation followed by 

immediate concentric contraction (94–96). It is thought that this stretching and eventual 

breaking of the actin-myosin complex generates a higher rate of force development, power 
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output and motor-unit recruitment when compared to traditional, non-ballistic alternatives 

(90). Moreover, it produces a higher firing frequency greater force, velocity, power and 

muscle activation. Although the application is relatively novel and not yet supported in 

randomized controlled studies (RCT) or in clinical practice, it has revealed positive outcomes 

in several studies and population groups. Lewies et. al (72) demonstrated that healthy children 

instructed to increase ankle push-off during gait, had lower hip flexion and extension moment 

as well as decreased hip power in the late stance (6). By exaggerating the ankle strategy, this 

pushing of the center of mass decrease the need for a hip extension moment action on the 

stance leg to pull the center of mass forward (97,98). Van Vulpen et al. (99,100) implemented 

functional power training in mildly affected children with SCP. Significant improvements 

were obtained in leg muscle strength, gait distance, and running speed. According to Jonkers 

et al. (101), higher functioning post-stroke subjects increase plantar flexor power generation 

(A2) of the paretic limb. For the non-paretic limb, a similar trend was found. Preliminary 

evidence suggest that ballistic strength training may be safe and feasible, having a positive 

effect for several neurological disorders (14,17,19–23). Hendrey et al. (8) reported feasibility 

of ballistic strength exercises compared with usual care after stroke. Moreover, they indicated 

greater peak jump height, peak propulsive velocity and significantly faster gait speed in the 

ballistic group. Williams et al. (10,11) found by significantly greater performance in peak 

jump velocity, height and force production after  training ballistically compared to seated leg 

press and leg extension performed non-ballistically in TBI (traumatic brain injury). They 

hypnotized that performing higher-level mobility task would improve ankle power output 

during the push-off phase and may further reduce the need for excessive hip power generation 

(102–104). However, it is still unknown whether these hypothesis of training principles 

relative to kinetic relationships hold true in SCP. To our knowledge, no study has yet 

determined the influence on ballistic strength training on functional gait capacity and power 

generation adults with SCP.  
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Chapter 2: Spastic cerebral palsy and gait characteristics 

2.1 Pathology of spastic cerebral palsy 

 

Spastic Cerebral Palsy (SCP) describes a heterogenous group of a complex motor disability,  

originating from a nonprogressive lesion to the central nervous system in the developing fetal 

or infant brain (17,74,87,105). The motor disorder is lifelong, with a prevalence of 

approximately 1 in 500 live births (1,106). Prenatal events account for around 75% of cases, 

while lack of oxygen, extreme premature birth, low birth weight or childhood illness are other 

causes. The clinical features are multifactorial, often accompanied with disturbances of 

sensation, perception, cognition, communication and behavior (74). Although the brain lesion 

is static, the chronic impairment affects the development growth of muscles and bones. In 

other words, individuals with SCP has a progressive neuromusculoskeletal pathology 

associated with delay in onset of walking and an abnormal gait pattern compared to typically 

developed peers (107–109). The present of skeletal muscle spasticity and contracture is 

considered as the major obstacle to motor function, which occurs secondary to upper motor 

neuron lesions as a result of improper or absent motor command from the brain (76,87,110). 

Spasticity is presented as intermittent or persistent involuntary activation of muscles and 

diminished selective motor control (37). In particular, these deficiencies prohibit a muscle 

from achieving an operative length on high velocity (45,91,111,112), which serves to limit 

torque production in the agonist muscle (113), restrictions to relax the muscles, difficulties to 

move in alternating directions and muscle weakness in affected extremities. Constant 

spasticity eventually increases energy consumption and produces pain which progressively 

lead to worse deformities of bone structure around the tightened musculature (114–116). 

Further, it increases the likelihood for secondary conditions (5). These factors suggest that 

adults with SCP may experience continuous deterioration in gait function and marked 

functional restrictions of movement associated with increased pain frequency and physical 

fatigue (74,116,117). Besides, since organized health care often confines when reaching 

adulthood, this population are facing even greater challenges to achieve adequate levels of 

physical activity, social participation and sustain quality of life (QoL) compared to the general 

population (87,108,118–121).  
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2.2.1 Gross motor function classification system 
 

Generally, classification of CP often differ between unilateral hemiplegia and bilateral 

diplegia, with 39% and 38% of cases (17,87). Depending on the degree of the neurological 

severity sustained, individuals with CP experience functional limitations, ranging from minor 

impairment to being completely physically dependent on health professionals (122,123). 

Gross Motor Function Classification System (GMFCS) is a clinical assessment tool used to 

distinguish the functional capacity level of individuals with CP from I-V (124,125). This scale 

evaluates the extent to which patients are able to walk and perform motor tasks based on 

topography and impact level of impairment. It has been shown that even mildly affected 

adults with CP have significantly reduced isometric strength in all major lower extremity 

muscle groups required for mechanical power production during gait compared to age-

matched pears (7,91,126–128). Recent findings from Williams and collogues (9) indicates 

that these mainly include the hip extensors, ankle plantar flexors and hipflexors (129). The 

individuals express various gait deviations with a lack of ability to provide push-off power 

with the paretic limb from mid-stance phase to the initial swing phase during gait (17). From 

these patterns, it is important to distinguish the primary gait deviations which are a direct 

consequence of the underlying deficits associated with the compensatory strategies which are 

deviations due to the biomechanics constraints and pathology (123). An illustration of 

common abnormal gait patterns following CP is illustrated in figure 4. 

Figure 4 - DF weakness; A) toe drag, B) high steppage gait, C) hip hiking, D) circumduction. 

Excessive DF is represented by: E) prolonged heel contact, F) excessive knee flexion 

(17,130).  
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2.2.2 Spastic hemiplegic cerebral palsy 
 

The most widely accepted classification of gait in spastic hemiplegia is based on sagittal plane 

kinematics reported by Winter et al. (131). It is primary associated with unilateral motor 

involvement. A typical feature is weaker, smaller and shorter muscle volume and leg length 

on affected limb, resulting in abnormal movement of the non-pathological limb during gait 

(130). Stance time on the unaffected side is greater than stance time on the affected side 

(132,133), which results in a measurable asymmetry (134,135). Joint-angle disturbances of 

the affected side include reduction of knee flexion phase in stance, reduction of knee flexion 

range during the swing phase, occasional loss of dorsiflexion of the ankle in swing phase and 

at initial contact, and generally reduced excursions. As a consequence of excessive plantar 

flexion, the individuals land with a foot flat or toe contact, leading to loss of stability during 

stance (136). The swing phase is associated with the affected limb being circulated due to foot 

drop. Further, Riad et al. (137) reported significantly lower concentric muscle work on the 

hemiplegic side compared to the noninvolved side for the ankle plantar flexors, knee 

extensors, hip flexors and hip extensors (46,137). This is mainly due to increased restraint 

from stretch reflexes from a spastic antagonist muscle that is lengthening during a maximal 

concentric exertion in the agonist.  

 

2.2.3 Spastic diplegic cerebral palsy 
 

The second most common type of CP among preterm infants is spastic diplegia (138). With 

both lower limbs affected, their gait pattern are often highly variable as a consequence of calf 

spasticity, equinus, contractures and overlengthened triceps surae muscle (109,131). These 

individuals commonly express hip extensor weakness, which may be compensated with a 

tendency of excessive hip- and knee flexion, hip adduction and anterior pelvic tilt in the swing 

phase to clear the foot from the ground (139). During stance, a limited dorsiflexion in the 

ankle joint has been associated tibial internal rotation and foot pronation. Toe-gait gives rise 

to increased mean plantar flexor moments in stance when compared to heel-toe gait. Further, 

a jump gait pattern is commonly seen in diplegia, expressed with spasticity in the hamstrings, 

hip flexors and plantar flexors.  

 

 

 



    

 
28 

2.2 Gait cycle in spastic cerebral palsy 
 
2.2.1 Spatiotemporal gait parameters 
 

Spatiotemporal deviations regarding gait pattern in SCP is characterized by decreased 

duration of stance phase in single support, increased double support, delayed heel rise during 

stance phase and shorter steps (27). Several studies assessing subjects with SCP have reported 

generally slower self-selected speed with the percent of stance time longer on the unaffected 

limb over the affected limb compared to populations without gait pathology (101). Slow gait 

speed was originally thought to be an adopted safety strategy related to poor balance and 

postural instability. Alternatively, it is likely that postural instability with deterioration of the 

fine motor control is a consequence of impaired muscle strength and reduced ability to push-

off in late stance phase (140). Since weakness is particularly pronounced in the distal muscles 

of involved lower limb, it is proposed that weakness of the plantar flexors could limit the 

maximal plantar flexion moment and power required to walk rapidly (59). Reduced power 

output during gait are regularly accompanied by shorter steps, slower speeds and reduced gait 

economy following aging, stroke and TBI compared to age-matched controls (30,63,65,141).  

 

2.2.2 Joint gait kinematics  
 
The evidence on kinematic parameters for spastic gait are plural yet varies. Frequent 

kinematic deviations and associated impairments with CP is early ankle plantar flexion due to 

overactivity in plantar flexors (17). Increased ankle dorsiflexion in stance is a result of soleus 

weakness and increased knee flexion in mid-stance. Increased hip flexion is due to contracture 

or hip extensor weakness. While lack of hip extension is caused by reduced ROM and anterior 

pelvic tilt. Increased hip adduction is caused by abductor weakness or overactivity of hip 

adductor.  
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2.2.3 Joint gait kinetics 
 

Neurophysiological and biomechanical bases for kinetic force in SCP remain poorly 

understood (99). However, it is well accepted that this population often have longer Achilles 

tendons and reduced muscle belly volume of gastrocnemius, cross-sectional area, thickness 

and fascicle length compared to age-matched peers (142–144). This abnormality reduce the 

capacity to generate muscle power during gait (142–146). The reason is that fascicle length 

determines the range which muscles can develop force and power, maximum shortening 

speed, and length at which passive forces are developed (38,144). Besides, since 

predominance of type I fibers is reported in CP and additional loss of type II fibers in the 

plantar flexor muscles is a concern when ageing (147), it may and contribute to decreased rate 

of force development as shortening velocity of slow twitch fibers (I) is 25% less than that of 

fast twitch (II) (148). Long-term consequences are inefficient gait pattern, shorter stride 

length, reduced gait speed, increased energy expenditure and difficulties performing 

movements out of synergy (91,137,149,150).  

 
2.3 Kinetic analysis in spastic cerebral palsy during gait 
 
2.3.1 Ankle power generation 
 

Pathological populations with CP appear to generate less power with the ankle in late stance 

of gait (A2) compared to non-pathological population (7,59,91) caused by greatly reduced 

plantar flexor musculature volume and strength (5,6,67). Olney (2) and Eek (7) reported that 

the ankle plantar flexors on hemiplegic side produced approximately a third of the power 

generation instead of the normal two thirds. As illustrated in figure 5, the ankle plantar flexion 

negative work (A1) was small in the group with cerebral palsy, followed by small positive 

burst during stance that does not occur in the general population (2). It is highly likely that 

these factors reduce the capacity to store elastic energy during A1 peak power absorption 

(3,151). 
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Figure 5 – Ankle joint power graphs for 10 children with CP showing mean and standard 

deviation. Mean cadence was 131 steps/min. Illustration: Olney (2). 

 
2.3.2 Hip power generation 
 

Non-affected muscles tends to compensate for weakness in other muscle group (46,152). 

Since proximal muscle strength may be less diminished than distal muscle strength in 

populations with SCP, engaging hip flexor power (H3) during push-off to pull the leg into 

swing has emerged as a potential compensation strategy for reduced ankle power output (A2) 

to maintain postural stability (52,59,63,153,154). According to figure 6 presented by Olney 

(2) and Eek (7), large positive work performed by the hip extensors in early stance (H1) 

continued late into stance in children with CP. The positive phase of hip flexors (H3) which 

occurred during late stance was also large. This case also applied in the final burst of positive 

work before initial contact (H4) produced by the hip extensors (2).  
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Figure 6 - Hip joint power graphs for 10 children with CP showing mean and standard 

deviation. Mean cadence was 131 steps/min. Illustration: Olney (2). 

 

2.3.3 Ankle-hip ratio (A2/H3) 
 

As mention in chapter 1, most of the positive work of normal gait is generated by the ankle 

plantar flexors during the late stance phase of gait (A2) with smaller contribution of the hip 

flexors at push-off (H3) (2). However, individuals with SCP tends to compensate with hip 

power due to reduced ankle power output (2,5–7,27). This idea suggest that the functional 

role of iliopsoas to accelerate the leg into swing becomes more important as the contribution 

of gastrocnemius decreases (6,67,73). However, such proximal compensatory strategy to 

maintain forward ambulation may be unfavorable and lead to overuse of the hip musculature 

and increased metabolic cost during gait (46,63,127,154–156). Additionally, it may have an 

impact on the kinetic relationship between power generation in the ankle and hip joint 

(A2/H3) for forward ambulation. In a pilot study, Ishiara and Higuchi evaluated the kinetic 

relationships between the ankle and hip joints during gait in children with SCP (6). They 

found that the A2/H3 ratios on both the hemiplegic and uninvolved side was lower than those 

of the healthy control (6). The peak flexion moments generated of the hip was significantly 

higher, and the ankle did not provide a sufficient force during gait compared to age-matched 

peers (6). Compared to normal gait, Olney et al. (2) also found less contribution of the ankle 

compared to the hip in a group of 10 children with CP. A2/H3 was 1.5 (1.0-1.67) compared to 

6.8 (4.89-8.0). in the healthy control. This trade-off relationships between the hip joint and 

ankle have also been studied in TBI and stroke (8–10,27,150,157). However, to our 

knowledge, there are currently no data on A2/H3 ratio in adult’s SCP. 
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Chapter 3: Rationale and aims  
 

3.1 General aim 
 

It is well recognized that plantar flexor power output at push off (A2) in gait is remarkable 

affected in high-functioning adults with SCP (2,6,7). Previous findings indicates that 

increased hip power generation (H3) and metabolic energy cost are compensatory 

biomechanical causes of weak plantar flexors power output (A2) (59,140,154). However, the 

mechanisms underlying A2/H3 ratio are not completely understood. It is needed to investigate 

the association between joint power generation at the ankle and hip joints while walking in 

this population group (91). Specific treatment is seldom prescribed, partly because the 

impairment is mild and partly because effective treatment options are limited. It is considered 

essential to focus on specific muscle group when prescribing exercise to maintain walking 

ability, motor functions and quality of life. Ballistic strength training is a rehabilitation option 

which emphasize to increase explosive ankle power generation at pull-off. Although the 

application is relatively novel and is not yet supported by randomized controlled studies 

(RCT), it may be task specific for altering ankle power and functional walking capacity in 

adults with SCP. For that reason, the motive of this research is to explore if eight weeks of 

ballistic strength training improves power generation of ankle plantar flexors and kinetic ratio 

between the ankle and hip joint in the late stance of gait (A2/H3) in mildly affected adults 

with SPC. Knowledge of power patterns gained from this study might provide important 

implications in clinical practice, give a biomechanical explanation of compensatory actions 

and generate hypothesis to future analytic studies. 

 

3.2 Hypotheses  
 

Based on previous findings from Williams and Schache (150) and Ishiara and Higuchi (6), a 

few hypotheses was conducted:   

1. High-functioning adults with spastic hemiplegic and diplegic cerebral palsy has 

reduced ankle power generation (A2) in late stance of gait and compensate with 

generating more hip flexor power generation (H3) for forward ambulation. 

2. A ballistic strength training program for the plantar flexors increases ankle power 

output during push-off (A2) at self-selected gait speed. Consequently, hip flexor 

power (H3) decreases, resulting in altered A2/H3 ratio. 
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Chapter 4: Material and methodology 
 

4.1 Case series study 
 

Case series are a descriptive and observational study designs often used to describe general 

disease characteristics related to person, time and place (158). Such design can prospectively 

explore change over a given period of time with objective measurement methods. It is 

relatively economically advantageous and are considered suitable as it avoids several ethical 

issues. However, case series design is rated as level IV in the hierarchy of evidence (159). 

The main reason is the lack of randomization and comparison group, which means that no 

casual relationships or absolute conclusions considering whether the outcomes are attributed 

to the treatment or other patient characteristics can be stated. Despite the methodological 

limitations, the study design was considered convenient to answer the research question in 

this study since there exist little knowledge on the topic. The findings can be used to generate 

new hypothesis of treatment efficacy for a further analytic study (26). Moreover, the approach 

is better applied to clinical practice and was therefore considered highly relevant (160).  

 

4.2 Ethical considerations 
 
It is fundamental in research to aim for good outcomes regarding the population being studied 

(161,162). We confirm that this project was not a burden to the society and did not harm the 

participants in a negative way. To ensure safety of all participants, an acceptance of protocol 

from Regional Committees for Medical and Health Research Ethics (REC) (2018/349) and 

some precautions from Helsinki Declarations was fulfilled. The recruited sample got 

adequately information prior to the project. It included receiving an information letter and 

statement of consent (appendix 3) containing the purpose of the study, time perspective, 

method and responsible persons. The informants were aware of their right to terminate the 

study at any time without the need for giving a reason. The data material was treated 

confidentially, personal data was anonymized and stored in accordance to guidelines. All 

analyzed data and complete results is presented in this study regardless of whether they 

contradict the presumed hypothesis (161,163). 
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4.3 Inclusion and exclusion criteria 
 

Prior to project start, written information (appendix 2) regarding the study was made available 

at a Norwegian training center for adults with CP and the regional hospital. Further, a 

recruitment video was published online and shared 105 times on Facebook to reach a wide 

range of adults diagnosed with mild CP GMFCS I-II living in or nearby Bergen. Participants 

were selected based on inclusion and exclusion criteria listed in table 2 to ensure that the 

project hypothesis were tested. In this research project, only high-functioning adults with SCP 

were included since they often fall out of rehabilitation, and since there exist few kinetic gait 

data on this group. The participants were inspected with a neurological examination, sensory 

testing, motor function test and reflex test prior startup. At this point, the most paretic limb 

was identified to be focused on in the training intervention.  

 

Table 2 - Inclusion and exclusion criteria. 

Inclusion criteria Exclusion criteria 

Adults >18 years old  Treatment with surgery 6 months before project 

Diagnosed with SCP Patients not able to walk without walking aid 

Patients with hemiplegia or diplegia Patients not able to understand instructions 

GMFCS level I-II Severe joint contracture, hypertension, spasticity 

Tolerate physical strain Not completed secondary school 

Citizens near Bergen  

 
 
4.4 Study setting and sample 
 
Ten grown up citizens with SCP (35.7±12.6) were recruited to participate in this study. All 

subjects were fully independent and unassisted ambulators, primarily graded as GMFCS level 

I and II (122). At start-up, the study sample was registered with an individual identifying 

number in order to collect personal information while assuring anonymity. Data material was 

conducted in the rehabilitation laboratory “SimArena”, at Western Norway University of 

Applied Sciences in Bergen. Baseline measurements were established in March 2019, with a 

three-month perspective. The data collection for all participants was complete in May 2019.  
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4.5 Ballistic “Leg sled hop” intervention 
 

Guidelines of ACSM (American College of Sports Medicine) claim that “the most effective 

strength training programs are those who are specific to muscle requirements and task” (93). 

In this thesis a ballistic strength program was considered task specific to increase power 

output in the ankle in order to alter A2/H3 ratio. By isolating the plantar flexors and 

performing strength training explosively on higher angular velocities, it was thought that this 

exposure would optimize the mechanical function of the calf during gait (9). Figure 7 and 

appendix 4 illustrate three different ballistic strength exercises prescribed for eight weeks 

performed on a Power Tower (Total Gym RS Encompass, CA, USA) according to the 

protocol described by Hendrey et al. (99). Leg sled hop are performed in an inclined 

supported position on the affected lower limb with the knee relatively straight (8). The subject 

lands briefly on the forefoot and pushes off again to generate a flight phase. Since the 

functional impairments is remarkable different within this population group, it was considered 

advantageous that the intervention can be tailored individually. By adjusting the slope on the 

slide board, a proportion of body-weight can be decreased to accommodate weak muscles on 

the affected leg (8,9). Moreover, the load can be manipulated in the mid-point of 30-80% of 

1RM where power is best developed. The outcome is likely to be individual in terms of 

previous experience with training, body characteristics, mental factors, muscle strength and 

ROM (25). The recruited sample received 2 center-based training sessions every week 

consisting of a small chat, 10 minutes of warm-up on bike or treadmill, and 15 minutes with 3 

different power exercises on the led sled lasting for 5 minutes each. Altogether, giving a total 

of 160 minutes of warm-up and 240 minutes of high intensity ballistic strength training. In 

between each exercise, the participants were offered a resting period of approximately 1 

minute. Number of breaks, jumps, slope and a general comment were noted for each exercise.  

 
Figure 7 – The positions preforming three different ballistic strength training exercises on the 

leg sled - exercise 1, 2 and 3 respectively. 
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4.5.1. Exercise 1: Jump Squats on the leg sled 
 
The aim was to target the ankle plantar flexor and hip extensor power with a focus on speed 

and height of the jump. The participants were placed supine on the leg sled with hips at 30o 

flexion and feet on the footplate. The resistance was determined individual by the level at 

which the participants could achieve bilateral ankle plantar flexion and inner range knee 

extension on push-off while maintaining ankle alignment to prevent excessive ankle inversion 

or knee hyperextension. 

 

4.5.2 Exercise 2: Single leg hopping on the paretic leg 
 

The aim was to isolate plantar flexors power with focus on speed and jump height. The 

participants were placed supine on the leg sled with only the paretic foot on the footplate with 

hip and knee extended. The non-paretic leg was not considered to be trained in this study 

protocol and was bent up on the platform to maintain stability. The leg sled resistance was 

determined by the slope each participant was able to achieve flight phase ideally through his 

or her paretic leg. After performing the exercise, the participant was asked to rate the 

subjective impression of fatigue in the leg on Borg Scale from 6-20. 6 equals rest, while 20 is 

maximum effort (Appendix 5).  

 

4.5.3 Exercise 3: Bounding on altering legs (jogging) 
 
The aim was to target the coordination and power production of alternating hip flexion, hip 

extension, and ankle plantar flexion through quick and fast jogging. The participant was 

placed supine on the leg sled with hips bent to 30o flexion. One leg is in contact with the 

footplate, while the other is held in hip flexion. The leg sled resistance was determined by the 

level at which participant can achieve flight phase bilaterally with good control and 

coordination. After performing the exercise, the participant was asked to rate the subjective 

feeling of fatigue in the leg and general exhaustion on Borg Scale from 6-20.  

 
4.6 Experimental protocol 
 

It is important to note that this project is a part of the Doctor of Philosophy project (PhD) 

“Functional Capacity for Walking in Adults with Cerebral Palsy (FUNCAP-CP)”. For that 

specific reason, the participants attended a comprehensive experimental testing protocol 

lasting for about 4 hours (74,117). An overview of the prospective timespan process for 
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intervention, specific screening, questionnaires and test protocols conducted in this study is 

illustrated in figure 8. However, in this thesis, only analysis of kinetic data was considered 

relevant in accordance with the hypothesis. 3DGA were performed at baseline, after six 

weeks and at week eight when intervention was completed to explore the A2/H3 ratio during 

late stance of gait, and to evaluate if the exercises had impact on power output relative to 

baseline (17). Gait data was collected using a motion capture system, (Qualisys AB, 

Gothenburg, Sweden) with eight high-resolution infrared cameras and a force plate device 

(Kistler Nordic AB, Jonsered, Sweden). The Qualisys Track Manager software (QTM) was 

used for the synchronized capture kinematic data at a sampling rate of 150Hz. 

 
Figure 8 - Experimental protocol. 
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4.6.1 Kinematic measures 
 
4.6.1.1 Marker placement 

In order to calculate joint rotation angles during walking, the lower extremity must be 

modelled as a series of linked segments. Each body segment is defined by reflective markers 

attached in an accurate standardized position relative to anatomical landmarks on the skin. A 

minimum of three markers is required to define each body segment. The motion analysis 

system measures the center of the marker. If the marker is visible for two or more cameras, it 

is possible to reconstruct its position in the room. Therefore, precise marker placement is 

critical to obtain accurate data. The placement of the markers is dependent on the model used 

to compute the joint kinematics. In this project, kinematic data was measured using the “CGM 

lower-body marker set”, whereas the underlying skeletal model was scaled behalf of 

anthropometric data (123,164,165). Twenty 14mm reflective markers were attached to 

following anatomical segments; anterior superior iliac spine (ASIS), posterior superior iliac 

spine (PSIS), thigh, lateral femoral condyle, lateral tibia, lateral malleoli, head of 2nd 

metatarsal, head of 5th metatarsal, base of 2nd metatarsal, calcaneus on both left and right limb 

in the dynamic gait trials. A pencil was used to mark the location of the expected center of 

marker placement on the standing subject. If a marker where fell off, it was easily placed at 

the same location. Yet, in the static measurement, an additional marker was placed on the 

medial femoral condyle and at the medial malleoli, giving a total of 24 reflective markers. 

Complete marker placement is listed in appendix 8.  

4.6.1.2 Defining pelvis segment 
 
The pelvis forms a rigid triangular segment created by the left and right ASIS, and the left and 

right PSIS (33). Origin of pelvis segment is midway between left and right ASIS. A special 

vector in the pelvic coordinate axis system defines location of hip joint center using pelvis 

size and leg length (36). 

 
4.6.1.3 Defining hip segment 
 

The thigh forms a three-dimensional rigid body segment created by the hip joint center, a 

marker on the lateral thigh and a marker on the lateral femoral condyle (33). Origin of thigh 

segment is knee joint center. The knee is a distance of knee offset from lateral femoral 

condyle in direction of segment plane (36).  
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4.6.1.4 Defining knee segment 
 
The lower leg forms a rigid segment created by the knee joint center, a marker on the lateral 

lower leg and a marker on the lateral malleolus (33). During static calibration, a marker was 

placed on the medial epicondyle to create the knee joint center. Origin of tibia segment is 

ankle joint center. Ankle is at a distance of ankle offset from lateral malleolus in direction of 

segment plane (36).  

 

4.6.1.5 Defining the ankle segment 
 

The foot forms a rigid segment created by the ankle joint center, a marker on the calcaneus 

and a marker on the 2nd metatarsal (33). Origin of foot segment is 2nd metatarsal (36).  

 

4.6.1.6 Anthropometric Measures  
 
In order to estimate joint center locations and define segment coordinate axis systems for each 

subject, it is necessary to obtain some anthropometric measurements of the subject. These 

parameters include height, weight, tibial length, distance between the femoral condyles, 

distance between the malleoli, and distance between the ASIS (4,21). 
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4.6.2 Kinetic measures  
 

With a force plate device, calculations of ground-reaction forces, joint moments and powers 

of each joint can be conducted to estimate gait events such as “Right on, and right off” (4). 

Ground reaction force data was captured with one force plate integrated in the middle of a 7-

meter walkway, capable of capturing X, Y and Z force components sampling on 2100 Hz. 

Threshold for activation of the force plates was set to 10 N. 

 
4.6.3 Calibration 
 

Two types of three-dimensional calibration of capture volume was conducted prior collection 

of gait data each test day. First, a dynamic calibration was conducted to establish locations 

and orientations of cameras within the capture volume and the size of the measurement units. 

This was accomplished by waving the calibration wand around the L-frame positioned on the  

force plate up to estimated ASIS which is the highest marker on the subject (166). The 

calibration time was set to a period of 60 seconds to ensure an approved capture volume. 

Secondly, a static calibration was conducted prior the gait analysis. Participants were asked to 

adopt upright standing position to establish position of a global coordinate axis system within 

the capture volume, location of the origin (0, 0, 0) and direction of three orthogonal 

coordinate axes (x, y, z).  

 

4.6.4 Performing gait trials 
 

Before recording experimental trials, participants performed a few gait trials to ensure they 

were comfortable walking barefoot on the walkway. All participants were asked to walk in 

preferred gait speed to allow natural gait strategies, freely adjust step length, step width and 

cadence. In order to gain a representative sample of all participants gait pattern, 

spatiotemporal, kinematic, and kinetic data from three trials at each limb was captured, 

checked and considered for the analysis.  
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4.7 Analysis of gait data 
4.7.1 Calculation of joint kinematics 
 
Variables extracted from the kinematic analyses were ankle and hip joint angles during gait. 

The midpoint of the reflective markers attached to the subjects were used to calculate the 

connecting line between different segments. The markers were labelled and their trajectory 

for each recording was examined in QTM. Intermittent trajectories were automatically gap 

filled up to 30 frames and manually assessed in order ensure they represented the correct path. 

In total, 150 dynamic gait trials and 25 static trials were analyzed. All data were exported to 

.c3d-files for further analysis in Visual3D (C-Motion Inc, Rockville, MD, USA) when the 

processing was finished.  

 
4.7.2 Calculation of joint kinetics  
 

Gait events were estimated based on the ground reaction forces. Initial contact was identified 

as the first frame which ground reaction force exceeded 10N, while “foot off” was the first 

frame which the ground reaction force was less than 10N. The mid-stance phase was 

identified as the frame corresponding to a midpoint between the “foot-on” and “foot-off” 

events. In these analyses, trials were excluded if a foot did not make a clear hit on the force 

plate, easily discovered when the foot was outside the plate. Trials were also excluded if the 

impact peak on the vertical ground reaction force signal was larger than the active peak. After 

selecting three approved gait cycles from the kinetic analyses, the data collection was ready 

for calculation of power generation in the sagittal plane using Microsoft Office Excel 2016 

(Microsoft Cooperation, Redmond, WA, USA) (167). The main interest was especially peak 

power at push-off in the ankle (A2) and hip joint (H3) to describe the ankles ability to propel 

the body forward in relation to the hip (A2/H3 ratio). The power values was labeled according 

to the protocol of Eng and Winter (4). H1 describes hip extensors power generation during 

early stance phase, H2 is hip joint power absorption, while H3 is hip flexors power generation 

during late stance. Further, A1 is ankle plantar flexor power absorption, while A2 is ankle 

plantar flexor power generation during late stance. To assess the relative power of the ankle to 

the hip in the late stance (A2/H3 ratio), ankle plantar flexor power generation (A2) was 

divided on hip flexor power (H3) (46). The values for power (W) was normalized with respect 

to the participants body weight (kg) to determine the total amount of positive work done by 

each joint (1). All graphs obtained from gait analysis were normalized in time for % of gait 

cycle.  
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5.0 Manuscript following guidelines for authors of Elsevier Gait & Posture 
___________________________________________________________________________ 
Ballistic strength training changes the kinetic relationship between the ankle and 
hip joint in late stance of gait in mildly affected adults with spastic cerebral palsy 

A case series of plantar flexor training primarily prescribed to most paretic limb 
 

Silje Marie Rydningen Torberntsson  
Bergen University, Kalfarveien 31, 5018 Bergen, Norway 

Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway 
 

Highlights: 
• Adults with spastic hemiplegic and diplegic cerebral palsy increase hip flexor power 

to compensate for reduced ankle plantar flexor power in late stance of gait 
• Ballistic strength training appears to alter power output in the ankle plantar flexors  
• A2/H3 ratio seems to increase among adults with spastic cerebral palsy following 

ballistic strength training, suggesting a more efficient gait pattern with less hip 
flexor compensation 

 
Abstract: 
Background: In normal gait, the ankle plantar flexors provide most propulsive energy during 
push-off with smaller contribution of hip flexors. Yet the interplay between these two joints 
remains unclear in spastic cerebral palsy. The objective of this study was to evaluate the 
kinetic relationship between the ankle and hip joint in late stance of gait (A2/H3) in mildly 
affected adults with spastic cerebral palsy. A ballistic strength training program was 
prescribed to explore whether this exercise program would exaggerate ankle plantar flexor 
power so the need for hip flexor power compensation would decrease, and thereby result in an 
increased A2/H3 ratio. 
 
Research question: In relation to ballistic strengthening program, will A2/H3 ratio change and 
promote a more efficient gait pattern in mildly affected adults with spastic cerebral palsy? 

Methods: 2 male and 5 women with hemiplegic and diplegic spastic cerebral palsy, GMFCS I 
and II completed eight-weeks with ballistic strength training mainly prescribed to most paretic 
limb. Three-dimensional gait analysis with a force plate device was used to investigate the 
impact on ankle and hip power generation in push-off before, during and after intervention. At 
least three gait trials at self-selected speed was analyzed for each limb to calculate peak ankle- 
and hip flexor power in the sagittal plane and relationship between them (A2/H3 ratio). 

Results: 6/7 participants increased A2/H3 ratio on paretic limb after intervention. As 
expected, the change was more evident on the most paretic limb compared to uninvolved. 
 
Significance: Findings from this study provide a better understanding of the interplay between 
power generation in the ankle and hip joint in spastic cerebral palsy with possible implication 
to clinical practice. However, the results cannot direct any casual relationships between 
change in A2/H3 ratio and ballistic strength training. Until evidence is found, we assume that 
ballistic strength training is feasible to alter A2/H3 ratio in spastic cerebral palsy, yet further 
investigation is needed. 
 
Keywords: Spastic cerebral palsy, adults, ankle/hip power ratio, ballistic strength training, gait 
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1.0 Background and objectives  
Spastic Cerebral Palsy (SCP) describes a heterogenous group of complex motor disabilities, 

originating from a nonprogressive lesion to the central nervous system in early development 

(1–3). The presence of skeletal muscle spasticity and contractures is considered the major 

obstacle to motor function, which occurs secondary to upper motor neuron lesions as a result 

of improper or absent motor command from the brain (4–7). Although the brain lesion is 

static, individuals with SCP has a progressive musculoskeletal pathology (8), indicating that 

even mildly affected adults have significant reduced strength in all major lower extremity 

muscle groups compared to age-matched pears (6). There is general agreement in the 

literature that power generation at push-off appears to be dependent on the hip rather than the 

ankle during late stance of gait in self-selected gait speeds in SCP (3,9–11). Increased hip 

joint forces may lead to an overuse injury of the hip musculature and deterioration in walking 

(11). In a pilot study, Ishiara and Higuchi evaluated the kinetic relationship between the ankle 

and hip (A2/H3 ratio) joint during push-off phase in children with SCP (12,13). They found 

that the A2/H3 ratios on both the hemiplegic and uninvolved side was lower than those of the 

healthy control. A lower A2/H3 ratio indicates a higher proportion of hip involvement 

compared with ankle in late stance of gait (10,11). The peak flexion moments generated of the 

hip was significantly higher, and ankle power generation was significantly lower compared 

with the healthy controls (9–11). However, it appears that no study has yet determined the 

interplay between ankle and hip in adults with SCP. For that reason, the motive of this 

research was to explore kinetic relationships between the ankle and hip joint in the late stance 

of gait (A2/H3) in mildly affected adults with hemiplegic and diplegic SCP. An eight-week 

ballistic strength training program was prescribed to increase explosive power by performing 

functional loaded exercises on high movement velocity. By successfully isolating muscle 

force exerted by gastrocnemius, preventing no or less involvement of the knee and hip during 

exercise, desired outcome was a more efficient gait pattern with less compensatory actions 

(14). We expected the largest adaptions in power output to occur in the ankle on most paretic 

leg during the stance phase (A2), as the exercises mainly focused on the plantar flexors in 

affected limb (15). In contrast, we expected no or less change in hip power generation (H3) 

following the intervention. By evaluating the participants ratio before, during and after 

undergoing eight weeks of ballistic strength training, new knowledge of the interplay between 

these two joints can be generated. 
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2.0 Methods 
2.1 Study design and participants 

Ten adults diagnosed with SCP were recruited to attend a prospective case series study in 

Bergen, Norway from March to June 2019. Prior the project start, the experimental protocol 

was approved by Regional Committees for Medical and Health Research Ethics (REC West 

Norway) (2018/349) in conformity with the Declaration of Helsinki. To participate, it was 

required to fulfill the following inclusion criteria: [1] adult >18 years, [2] diagnosed with 

spastic unilateral hemiplegic or bilateral diplegic cerebral palsy and [3] high-functioning, 

Gross Motor Functional Classification System (GMFCS) I-II. Participants were excluded if 

they had [1] treatment with surgery or botulinum toxin injection less than 6 months before 

entering the project, [2] if they were not able to walk indoor without walking aid, or [3] if 

they did not complete primary and secondary school. All participants were given oral and 

written explanations regarding the objective of the study and gave their written consent.  

 

2.2 Procedure 

Both intervention and testing were performed in the Rehabilitation Laboratory SimArena at 

Western Norway University of Applied Sciences. The intervention was an eight-week 

ballistic strengthening program performed on a leg sled (Total Gym RS Encompass, CA, 

USA) inspired by Hendrey et al. (16). It involved three different exercises mainly prescribed 

for the plantar flexors on most paretic limb to improve ankle power output in late stance of 

gait (16). All subjects were offered 16 center-based workouts. Briefly, duration of a session 

was 30 minutes, including a short chat, warm-up for 10 minutes and three exercises lasting for 

5 minutes each, described in appendices. Repetitions, load and breaks was tailored to each 

participant. In addition to the center-based ballistic program, each participant performed a 

homebased program 3-4 times a week two times a week. Training or other physiotherapy 

treatment outside the rehabilitation laboratory was allowed yet registered (appendix 6). 
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2.3 Instrumentation 

Kinetic ankle and hip power data was obtained by using three-dimensional gait analysis 

system (Qualisys AB, Gothenburg, Sweden) with eight high-resolution cameras sampling at a 

rate of 120 Hz (3). Twenty 14-mm diameter reflective markers were mounted on the skin at 

specific locations on both lower limbs according to Conventional Gait Model (CGM) protocol 

(17). Ground reaction force data was captured on 2100 Hz with one force plate (Kistler 

Nordic AB, Jonsered, Sweden), capable of capturing X, Y and Z force components. 

Participants initially performed a standing static calibration trial to define joint center 

locations and anatomical coordinate systems. Thereafter, they were asked to walk barefoot in 

their preferred gait speed across a 7-meter walkway. In order to gain a representative sample 

of each participants gait pattern, at least three gait trials for both limbs were recorded, 

checked and considered for the analysis. Each subject was evaluated before, during and after 

eight-weeks of ballistic strength program to generate objective information related to change 

in plantar flexor power and A2/H3 ratio during late stance in gait. 

 

2.4 Data analyses 

Visual 3D (C-Motion Inc, Rockville, MD, USA) was used to calculate peak ankle and hip 

power and A2/H3 ratio in the sagittal plane. All graphs obtained from the gait analysis are 

presented in percent of gait cycle (%). Kinetic power (W) data are normalized for individual 

body weight (kg) and labelled according to Eng and Winter (18). H3 indicates hip flexor 

power generation while A2 indicates ankle plantar flexor power generation during late stance 

(18). To further assess the ratio between ankle and hip power generation (A2/H3), peak ankle 

power was divided on hip peak value using Microsoft Office Excel 2016 (Microsoft 

Cooperation, Redmond, WA, USA). A2/H3 ratio represents the proportions of ankle plantar 

flexion and hip flexion during the push-off phase, where a higher ratio indicates a greater 

proportion of ankle involvement compared to the hip. 
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3.0 Results  
3.1 Included participants 

Several individuals reported interest in participating in this project. 10 of these potential 

subjects were recruited based on inclusion and exclusion criteria. One hemiplegic man 

dropped out before baseline testing because of the timespan of the project. A woman dropped 

out after 7 sessions with ballistic strength training because of a foot inflammation. One 

diplegic man was not able to attend at mid-term testing due to sickness. However, his data 

collected at baseline and after intervention are presented in the results. Due to technical 

issues, 7 participants were available for analysis. The recruited study sample characteristic 

before any dropouts are shown in table 1. The average of completed training sessions for the 

10 recruited participants were 12.7±5.3. On the first exercise “Jump squats”, mean number of 

repetitions were 202.4±18.76 with a slope on 12.5±2.47 o. On exercise 2 “Single jump on 

paretic leg” mean number of repetitions were 264.3±25.86, with a slope on 8.1±10.36 o, 

resulting on a subjective leg fatigue of 13.7±2.01 on Borg scale 6-20. On the last exercise 

“Jogging on altering legs” mean number of repetitions were 352.35±80.42, with a slope on 

12.2±2.90 o, resulting in a subjective leg fatigue of 14.5±1.73 on Borg scale 6-20.  

  

Table 1 - Included participants, characteristics, anthropometric measurements and diagnosis 

description. 

 
Kilos (kg), height (cm), number (n). 
 
 
 

ID 
(n) 

Gender Age 
(years) 

Weight 
(kg) 

Height 
(cm) 

Diagnosis 
 

(most) 
Paretic side 

GMFCS 
 

Completed 
sessions (n) 

FP1 Woman 27 49 167 Hemiplegia Right I 13 
FP2 Woman 51 64 168 Hemiplegia Left I 15 
FP3 Woman 28 78 170 Hemiplegia Left I 16 
FP4 Woman 30 67 165 Hemiplegia Left I 7 
FP5 Man 53 97 179 Diplegia Right II 15 
FP6 Man 34 80 168 Diplegia Left II 13 
FP7 Woman 24 57 154 Hemiplegia Left I 16 
FP8 Man 24 76 178 Hemiplegia Right 1 0 
FP9 Woman 30 98 160 Hemiplegia Left I 16 
FP10 Man 56 95 183 Hemiplegia Right II 16 
10 4/6 35.7±12.6 76.1±17.1 169.2±8.9 2/8 4/6 3/7 12.7±5.3 
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3.2 Change in A2/H3 ratio following ballistic strength program 

Although there was no control group in this study, the results have been compared with 

previous findings on healthy individuals (18,19). The results illustrated in table 2 indicate that 

A2/H3 ratio of adults with SCP are lower than the general healthy population, meaning that a 

higher propulsion of power is generated by the hip compared to the ankle during walking. 

After completed intervention, 6/7 participants increased A2/H3 ratio on paretic limb at either 

midterm, post-test or both compared to baseline. Mean values for the paretic leg at start-up 

was 1.91±0.84, during the intervention it was 2.00±0.72 and after it was 2.40±1.07. To 

compare, 5/7 participants increased A2/H3 ratio at either midterm, post-test or both compared 

to baseline on uninvolved limb. Mean values at start-up was 1.93±1.06, during intervention it 

was 2.02±0.57 and after it was 1.93±0.70.  

 

Table 2 - Peak ankle and hip ratio (A2/H3 ratio) on both most paretic and uninvolved limb 

before, during and after ballistic strength training of the ankle plantar flexors.  

 Subject Before training During training After training 
 
 
 
A2/H3 ratio (W/kg) 
most paretic limb 

FP1 1.56 1.39 1.91 
FP2 2.37 2.02 3.18 
FP3 1.01 1.62 1.88 
FP5 1.48 - 1.63 
FP6 2.22 3.35 4.44 
FP7 1.25 1.49 1.41 
FP10 3.45 2.14 2.34 

M(SD)  1.94±0.78 2.00±0.72 2.40±1.07 
 
 
 
A2/H3 ratio (W/kg) 
uninvolved limb 

FP1 1.74 1.49 1.92 
FP2 1.92 1.88 2.19 
FP3 2.37 2.51 2.26 
FP5 1.03 - 0.96 
FP6 1.26 1.45 0.99 
FP7 4.08 2.88 2.80 
FP10 1.13 1.91 2.37 

M(SD)  1.93±0.98 2.02±0.57 1.93±0.70 
 

A2/H3 power ratio represents the ratio of A2 to H3. 

All data are presented as mean (SD). 
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3.3 Self-selected gait speed 

Gait speed is a well-known indicator of overall gait performance, and reduced power output 

during gait are accompanied by shorter steps, slower speeds and reduced gait economy (20–

23). As presented in table 3, the recruited sample in this study walked on average with slower 

self-selected speed compared to 1.2-1-4m/s in the general healthy population. However, the 

self-selected gait speed increased on average from 1.07m/s to 1.16m/s and 1.13m/s during and 

after intervention. 

 

Table 3 - Self-selected gait speed before, during and after ballistic strength training. 

 Subject Before training During training After training 
 
 
 
Gait speed (m/s) 

FP1 1.204 1.185 1.180 
FP2 1.110 1.347 1.373 
FP3 1.246 1.275 1.239 
FP5 0.924 - 0.939 
FP6 1.202 0.923 0.984 
FP7 0.975 1.389 1.402 
FP10 0.796 0.823 0.808 

M(SD)  1.07±0.17 1.16±0.23 1.13±0.23 
All data are presented as mean (SD) 

 

4.0 Discussion  
This study found that mildly affected adults with spastic hemiplegic and diplegic cerebral 

palsy generates increased hip flexor power to compensate for reduced ankle plantar flexor 

power in forward ambulation. However, after attending eight-week ballistic strength program, 

the power output in the ankle plantar flexors were altered, suggesting less compensation with 

hip flexors. Corresponding to the hypothesis where we expected larger adaptions on paretic 

limb, 6/7 individuals increased peak A2/H3 ratio on paretic limb and 5/7 on uninvolved limb.  

 

4.1 Interpretation of change in A2/H3 ratio 

In addition to study design and methodological limitations, there are several reasons why 

there is challenging to give a clear conclusion regarding the change in A2/H3 ratio. To 

generate the results, additional multifactorial analytic studies should be initiated. In the 

following sections, the change in A2/H3 will be discussed in relation to spatiotemporal-, 

kinematic- and kinetic parameters in relation to ballistic strength training. 
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4.1.1 Spatiotemporal parameters  

Since gait speed is known to have an impact on nearly all gait variables in the lower limbs, 

including muscle power requirements (24–28), it was considered relevant to include each 

participant self-selected speed in relation to change in A2/H3 ratio when interpreting the 

results. Power is the product of force and velocity (16), and it is consequently possible that if 

the participants increased gait speed, it is a contributing cause for altering power generation in 

push-off (16). In fact, 5/7 increased gait speed during or after intervention An increased gait 

speed demand higher hip and ankle power generation in at push-off (29) which contribute to 

an overall increase in step length and potentially reduce asymmetry (30). Corfe et al. (31) and 

Chen et al. (32) found that peak hip power generation had an influence on gait speed in ageing 

adults. When power output increased with 14%, gait speed also increased from 1.3m/s to 

1.4m/s. Similarly, whereas as gait speed reduced from 1.3m/s to 1.2m/s these measures fell by 

13%. The participants in this study were asked to walk in preferred speed during gait analysis. 

Compared to a healthy population, this study sample with SPC walked slower at self-selected 

gait. Conversely, walking at slower speeds may be mechanically less efficient and less 

conductive to the storage and recovery of elastic energy in the musculotendon complex (15). 

However, Brændvik et al. (27) reported that additional factors, especially reduced spasticity 

and increased muscle strength alter gait speed and step length. Some muscle groups are more 

sensitive to modifications in gait speed (19,33–36). The fiber work from soleus and gluteus 

maximus in stance, and tibialis anterior, iliopsoas and hamstrings in swing change the most 

with increasing speed (15). The fact that no studies has controlled gait speed during three-

dimensional gait analysis in SCP may be a reason for the lack of knowledge about A2/H3 

ratio and compensatory actions. When the speed varies in between trials, it makes it difficult 

to compare calculations of joint power across subjects and studies. However, there exist 

several disadvantages with controlling gait speed, especially in populations with neurological 

pathology where the gait pattern is rather variable regarding speed, stride width and step 

length (27). By controlling gait speed, it would perhaps influence the results in a way that it 

cannot be transferred to their everyday ambulation. Some of the included participants would 

even been unable to walk safely at a faster speed, yet some would have the ability to do so.  
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4.1.2 Kinematic parameters 

After finding an altered ankle power generation (A2) and improved A2/H3 ratio in adults with 

SCP, it raised a new hypothesis how this may affect the kinematics. Although only a few 

studies have evaluated power in relation to gait kinematics, it seems reasonable that an 

improved A2/H3 ratio will alter the ROM in the ankle joint, and thereby result in a more 

efficient gait pattern. In fact, Moreau et al. (37) found a significant increase in the ankle ROM 

after power training. Although the change was too small to have clinical relevance, it could 

direct important hypothesis for understanding the changes in muscle morphology after 

strength training. Increased muscle length can be explained by muscle fiber hypertrophy, 

which could lead to increased muscle length of gastrocnemius. These facts indicate that power 

training may have a positive effect on muscle length and ROM of the ankle joint. Improved 

coordination can also be expected as a result of the repetitiveness of the functional exercises. 

Since the majority of participants in this study both improved A2/H3 ratio and A2 output after 

the ballistic strength program, it is to believe that these certain exercises altered the shortening 

velocity and perhaps affected the muscle architecture. Hypertrophy in a muscle may be due to 

an increase in muscle fiber cross section, more myofibrils in parallel and increased maximal 

force, or increased maximal shortening speed. Alternatively, better walking performance can 

be expected to occur over time when exercising. However, without analyzing the ultrasound 

data, it is impossible to assume if this improvement is due to increased number of sarcomeres 

in series, parallel, fiber type or fascicle length (38).  

 

4.1.3 Kinetic parameters 

A decreased ankle power output and an increased hip power output was prior the project 

valued as the most undesirable outcome following the intervention. This outcome occurred in 

one hemiplegic subject (FP10) on paretic limb. Such outcome may indicate that plantar 

flexors were not isolated, and the hip flexors were trained additionally. Previous findings 

suggest that training programs focusing on strengthening the weaker muscle is prevented by 

compensation of other less affected muscle groups. (39–41). This participants baseline A2/H3 

ratios on most paretic and uninvolved limb was 3.45W/kg and 1.13W/kg respectively. 

Interestingly, by comparing his ratios post intervention, the A2/H3 ratios was almost similar 

and change to 2.34W/kg and 2.37W/kg. Equally, one other hemiplegic subject had a similar 

change (FP1). Prior intervention her values on both limbs were 1.56W/kg and 1.74W/kg, and 
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after ballistic strength training it increased to 1.91W/kg and 1.92W/kg. Hypothetically, a 

similar power output suggests a more symmetrical and efficient gait pattern per stride 

compared to baseline. In such cases, increasing hip power was perhaps not a disadvantage for 

gait functionality anyway. According to a previous study on children with CP training muscle 

strength and gait analysis, increased hip strength improves the plantar flexor power at push-

off (42). Further, according to Ross and Engsberg (43) the largest variance in gait and gross 

motor function in a group children with CP was explained by the hip abductors followed by 

ankle plantar- and dorsiflexors muscle groups. These facts propose that it may be important to 

increase both ankle and hip power generation to maintain functional walking (44–46), 

although such training regime will not result in an increased A2/H3 ratio (32,42). 

Even though the plantar flexors in the most paretic limb was the main focus, we 

expected some transfer to the uninvolved limb following ballistic strength training. After 

eight weeks of intervention, four participants increased A2 output on uninvolved limb, and 

interestingly in a greater extent compared to the paretic limb. Although two out of three 

exercises were targeting both limbs, this outcome was surprising since the task with the 

highest relevance only focused on the most paretic limb. However, a possible explanation 

may be the fact that dysfunction on the affected side tends to be compensated for by altering 

power non-affected side. 

 
5.0 Conclusions and significance 
To our knowledge, this is the first study investigating the impact of ballistic strength training 

and the relationship between power generation in the ankle and hip in adults with spastic 

cerebral palsy. In conclusion, this study displays possible advantages with this rehabilitation 

program to alter A2/H3 ratio. However, due to some methodological limitations, small study 

sample and a lack of control group, these results can only direct hypothesis for a future 

analytic study. In order to generalize the results, further investigation with high level of 

evidence should commence. They should recruit a larger study sample with different GMFCS 

levels and evaluate effect over extended periods of time. In addition, studies should include 

whether pathological differences between hemiplegia and diplegia require different treatment. 

It will also be interesting to assess the optimal time interval, frequency and intensity of 

ballistic strength training. 
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Appendix: Table with graphs of ankle and hip power generation 

All graphs presented in the table below are made in Visual 3D, presented in rows and 

columns. The rows represent each participant in order of ID-number and their hip and ankle 

power output, while the columns represent outcome at baseline testing, during, and after 8 

week of ballistic strength training. 

 

Table 4- Kinetic graphs of ankle and hip power generation normalized for 100% of gait cycle 

for both right and left limb. 
Subject Baseline During intervention After intervention 
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Subject Baseline During intervention After intervention 
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Subject Baseline During intervention After intervention 
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Chapter 6: Additional findings  
 

When using 3DGA to explore A2/H3 ratio in a population with SCP, several gait parameters 

can contribute to explain a change in gait and compensatory actions. These include kinetic-, 

kinematic- and spatiotemporal gait parameters. Yet not included in the scientific article, 

additional findings listed in this chapter can possible be supply causes of the results and 

contribute to new hypothesis. Figure 9 illustrate how much each participant change A2/H3 

ratio on most paretic limb after 8-weeks of ballistic strength training.  

 
 

Figure 9 - Each participant individual change in A2/H3 ratio on paretic limb after 8-weeks of 

ballistic strength training  

 

6.1 Peak ankle and hip power in late stance of gait 
 

Although there was a remarkable difference in power output between paretic and uninvolved 

limb in the study population at baseline, we found larger improvements in ankle plantar flexor 

power generation (A2) in most affected limb compared to less affected limb after 

intervention. Table 3 presents the power output before, during and after ballistic strength 

training. On average in most paretic leg, A2 increased with 0.24W/kg, and H3 decreased with 

0.15W/kg from baseline to post test. A2 on the uninvolved limb increased with 0.15W/kg, and 

H3 decreased with 0.01W/kg from baseline to post test.  
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Table 3 - Peak ankle plantar flexor (A2) and hip flexor (H3) power generation values in the 

late stance phase of gait. 

 

A2 represents ankle plantar flexion power generation during late stance. 

H3 represents hip flexion power generation. 

All data are presented as mean (SD) 

 
 
 

 

 Subject Before training During training After training 
 
 
A2, peak power 
(W/kg) affected limb 

FP1 1.94 1.63 1.70 
FP2 2.74 3.09 3.31 
FP3 1.94 2.43 1.89 
FP5 2.35 - 2.07 
FP6 2.53 2.15 2.81 
FP7 5.31 6.69 6.44 
FP10 2.31 2.27 2.94 

M(SD)  2.04±0.85 2.28±0.53 2.28±0.64 
 
 
A2, peak power 
(W/kg) uninvolved 
limb 

FP1 3.86 3.17 3.40 
FP2 2.89 3.79 3.85 
FP3 4.67 5.35 4.69 
FP5 2.10 - 2.28 
FP6 1.46 1.27 0.96 
FP7 1.73 2.53 2.58 
FP10 2.00 1.83 1.59 

M(SD)  3.36±1.37 3.76±1.99 3.51±1.75 
 
 
H3, peak power 
(W/kg) affected limb 

FP1 1.24 1.18 0.89 
FP2 1.16 1.53 1.04 
FP3 1.92 1.50 1.00 
FP5 1.59 - 1.26 
FP6 1.16 0.88 0.98 
FP7 1.30 2.88 2.30 
FP10 0.58 0.86 0.68 

M(SD)  1.30±0.39 1.24±0.42 1.05±0.41 
 
 
H3, peak power 
(W/kg) uninvolved 
limb 

FP1 2.21 2.13 1.77 
FP2 1.50 2.02 1.76 
FP3 1.97 2.13 2.08 
FP5 2.03 - 2.38 
FP6 1.14 0.64 0.63 
FP7 1.38 1.70 1.83 
FP10 2.04 1.19 1.24 

M(SD)  1.80±0.42 1.87±0.72 1.79±0.52 
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6.2 Exercise log of ballistic strength training  
 

Table 4 illustrate mean number of repetitions, slope and subjective experience of fatigue for 

the study sample. The slope on the led sled when exercising “Jumping squats” was on average 

12.5±2.47 degrees and 202.4±18.76 repetitions among the participants. On “Single leg jump 

on paretic leg”, the average repetitions were 264.3±25.86 repetitions, and a slope on 

8.1±10.36 degrees. On the last exercise, “Jogging on altering legs”, the average was 

352.35±80.42 repetitions with a slope on 12.2±2.90 degrees. Borg Scale was 13.7±2.01. 

 

Table 4 - Mean number of repetitions, slope and Borg scale (6-20) the participants expressed 

after each session with three different ballistic strength exercises. 

Exercise Subject M Repetitions (n) M slope (o)  
 
 
 
Jump squats 

FP1 188.7 11.2  
FP2 222.2 10.9  
FP3 204.2 13.2  
FP4 214.1 17.8  
FP5 204.4 12.6  
FP6 170.3 11.8  
FP7 192.4 10.7  
FP9 196.2 14.6  
FP10 229.3 9.6  

M(SD)  202.4±18.76 12.5±2.47 Borg Leg 6-20 
 
 
 
Single jump 
on paretic 
leg 

FP1 312.4 6.6 10.5 
FP2 240.5 8.3 11.5 
FP3 250.3 9.9 12.6 
FP4 244.4 9.8 16.2 
FP5 257.2 6.6 14.5 
FP6 242.5 7.6 16.6 
FP7 275.6 7.6 15.3 
FP9 257.4 11.0 14.5 
FP10 298.6 5.1 13.9 

M(SD)  264.3±25.86 8.1±10.36 13.7±2.01 
Borg leg Borg body 

 
 
 
Jogging on 
altering legs 

FP1 365.6 10.3 13.5 13.1 
FP2 327.0 9.9 12.7 12.9 
FP3 329.3 13.3 12.0 12.4 
FP4 381.0 18.6 14.8 14.8 
FP5 428.8 12.6 16.0 16.2 
FP6 262.2 10.6 14.5 16.9 
FP7 352.6 12.9 15.7 14.6 
FP9 312.8 13.0 15.5 14.5 
FP10 411.9 8.7 13.9 15.1 

M(SD)  352.35±80.42 12.2±2.90 14.47±1.73 14.46±1.61 
All data are presented as mean (SD) 
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Chapter 7: Methodological and process considerations  
 

There are several reasons why it is challenging to reach a clear conclusion about the outcome 

regarding the relationship between power generation in hip and ankle before and after 

undergoing ballistic strength training. In this chapter, methodological issues will be discussed 

related to research design, study sample, confounding variables, exposure and analysis. 

 

7.1 Case series study design 
 
It is important to state that the findings in this study are preliminary to generate conclusions 

regarding treatment efficacy of ballistic strength training on A2/H3 ratio due to the choice of 

research design. An exploratory case series design is rated lowest in the pyramid of validity 

(159,168). When a study lacks a control group, no causal relationships can be drawn between 

treatment and outcome as it is impossible to determine whether the outcomes can be attributed 

to treatment or patient characteristics (161,163). Additionally, short intervention time and a 

small and varied study sample may influence the results in this study. In the hierarchy of 

evidence, blinded randomized controlled trials are considered as gold standard for quantifying 

efficacy of specific treatment compared to a control group. For instance, it would have been 

interesting to compare the results from ballistic strength training to a match group training 

traditional strength training as it is the most prescribed approach in clinical practice. Although 

RCTs minimize the role of confounding bias and optimizing internal validity, such 

experimental studies are expensive, time-consuming, demanding to administer, and associated 

with ethical issues. Despite the methodological limitations in case series, such research design 

was considered relevant to generate hypothesis of the kinetic interplay between the ankle and 

hip joint for a future analytic study. Moreover, it is a convenient approach when there is little 

knowledge about the ballistic strength program and when the aim is to investigate the 

outcome of a small, heterogenic group with numerous of neuromuscular impairments 

prospectively.  
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7.2 Study setting and sample 

 

In clinical research, the intention is to generate new knowledge. By including a wide range of 

individuals, the study sample is more likely to fit the representative interest. The study sample 

should be representative for the general population and recruited without selection bias. 

Selection bias occurs when only subjects who are able to participate for the required time 

period are included, or only those who are reached (163). This study had some limitations 

regarding the study sample. A recruitment video was posted online and shared 105 times on 

Facebook to reach adults with GMFCS I-II living in or nearby Bergen. Although a lot of 

individuals reported interest, a maximum number of 10 individuals were permitted to 

participate. By having a maximum limit, potential participants who did not see the video or 

reported interest to late was not considered to participate. Moreover, 10 participants are a 

relatively small number of subjects, where dropouts may have large consequences for the 

result. In this study the response rate on training was 80%, where only 70% was ready for 

analysis. In order to generalize the results as the common characteristics of adults with SCP, it 

is necessary to study an increased, randomized number of subjects (159,163). Furthermore, 

detecting gait deviations based solely on data from high-functioning patients without no 

control group have limitations. As mention earlier, GMFCS system is commonly used by 

clinicians to manage treatment programs to group gait deviations (169). There tends to be a 

common assumption that especially spasticity is strongly related to gait and gross motor 

development. However it has been proposed that muscle weakness can explain up to 69% of 

the variance in ambulation of children with CP, while spasticity only have a minimal 

relationship with motor function (169). Yet, it appears that not all patients fit into a score 

according to the system (46). Even CP patients with the same score display large variety of 

gait deviations. When the participants in this study were asked about their GMFCS level, they 

were not aware of which score they had. In a future study it is therefore desirable to perform 

analyze of a control group to allowing comparison of differences in the treatment. 
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7.3 Confounding variables 
 

Confounding variables is another important issue to consider. In a prospective case series 

design, there is no guarantee that all relevant covariates or confounding variables are included 

in the analysis (159). Reduction or decrease in spasticity was not evaluated in relation to 

A2/H3 ratio in this study. Authors of earlier investigations have reported reduction in 

spasticity after different treatment options (84,85,135,170). By implying the modified 

Ashworth Scale (171,172) before, during and after intervention, it would be possible to 

evaluate how this variable is affected by the ballistic strength regime and if there is any 

impact on the A2/H3 ratio.  

 

7.4 Outcome measures 

 
Although only kinetic data from the 3DGA are included in this study, it is important to keep 

in mind that the participants went through a large test protocol that possible can affected the 

participants performance in the gait analysis. A test day contained approximately four hours 

with a lot of concentration, new inputs in the laboratory and physical strain which may have 

caused fatigue and in that way affect gait performance.   

 

7.4.1 Three-dimensional gait analysis 

Even though 3DGA is valued as a reliable assessment tool, the approach has some 

disadvantages when evaluating gait (4,21). First, gait trials were preformed indoors on a 7-

meter straight, flat and quite narrow walkway. Such a gait condition does not necessarily 

reflect everyday walking where many directional changes, starting, stopping, and obstacle 

avoidance strategies are required. Due to the short distance, some participants may not 

achieve normal and comfortable gait speed because of the need to balance. Secondly, the 

walkway in the laboratory only contained one force plate. This was considered as an 

unfortunate component as the study sample had to walk twice as many times back and 

forward to get three approved gait trials on each limb. Further, all the participants walked 

barefoot during the gait analysis. Some of them was displeased with this decision and argued 

that they always walk with shoes both indoors and outdoors. For that reason, the result may 

not even match the way they walk normally. Walking with and without shoes were not 

compared, which could have made a difference to the stability of the foot and ankle and 

possibly influenced the power generation (166,173).  
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7.4.2 Measurement error and considerations 
 

In spite the fact that 3DGA is validated as gold standard to measure gait parameters, it is quite 

time consuming and could be considered as an obstacle for clinical use  (1,2). Additionally, a 

ration of measure errors can arise before and during the measurement. First, measure errors 

can occur already in the QTM software regarding the equipment. Even if the manual 

calibration was approved to ensure a sufficient volume was examined during analysis, the 

volume may have differed each time and could have some impact to obtain accurate data. 

Since the 3DGA system measures motion based on the center of the marker, precise marker 

placement was considered critical and was always doubled-checked. However, there is always 

a concern that the markers could been placed incorrect due artificial skin and move relative to 

the underlying bone (21). It appeared challenging to place pelvis markers on obese subjects 

due to excessive tissue. A solution was to move ASIS markers laterally to ensure the cameras 

could capture the location (174,175). Even with these precautions in mind, this issue resulted 

in that only seven participants trials were complete and analyzed although eight subjects 

completed all gait trials. Moreover, the CGM-lower body marker set contains recognized 

simplifications due to the use of manufacturer specific anthropometric regression equations 

(165,176). With this in mind, some variability of the results between baseline, midterm and 

posttest could be expected. In this study with did not include any upper body markers. It 

makes it impossible to analyze any potential compensatory actions produced by the lower 

back and trunk, which may have affected pelvic and hip motion kinetics.  

Further, when transferring the data from Qualisys to Visual 3D, the defining of gait 

events could possibly been mistaken relative to the marker placement. It appeared challenging 

to define heel-strike in subjects with toe-gait. Moreover, only ankle and hip kinetics in the 

sagittal plane was analyzed. The sagittal view provides only part of the information, 

particularly at the hip joint where hip abductors are critical for the balance control of the trunk 

in the coronal plane. A majority of individuals with SCP also have coronal plane and 

transverse plane abnormalities (131). The transvers plane is the most difficult to appreciate on 

visual inspection and 3DGA is required. 3DGA in combination with EMG recordings have 

potential to enhance the understanding of pathological movements and the spastic component 

during walking. It records the sum of multiple motor unit action potential and can reveal 

additional information about timing of muscle activity (177). However, since EMG not 

include any further information about power generation, this data was considered not relevant 

to include hence to the research question in this master project.   
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7.5 Ballistic strength training 

 

It appears challenging to provide treatment considerations due to multiple combinations of 

gait deviations and a range of variety in movement patterns across the population group with 

SCP (46). The brain injury is static and there are currently no biological therapy to correct the 

brain lesion (17). However, in this research project the main objective was not to treat the 

cerebral palsy itself, but to improve functional capacity of the plantar flexors during late 

stance of gait (A2) and alter A2/H3 ratio (55). Previous findings from Häkkinen and komi 

(178) inclines that traditional resistance training is superior to improve maximum force 

production, whereas ballistic strength exercises are superior for muscle power and rate of 

force development in gait. An eight-week ballistic strength training program was therefore 

prescribed and considered relevant to possible enhance power generation in late stance of gait. 

 

7.5.1 Relevance of the exercises  
 

Although the ballistics strength training program has previously revealed positive outcomes 

on power output in late stance of gait in population groups with TBI and stroke, the results are 

preliminary (8,10,11,179). It has been questioned if ballistic strength exercises truly are 

functional for gait since they are performed when lying on a slide board (8). However, these 

three exercises were mainly prescribed to alter power output in plantar flexors during late 

stance of gait. With the right technique, nearly all movement should have been generated by 

the ankle plantar flexors. Therefore “Single leg jump on paretic leg” was expected to be the 

most task specific exercise to improve ankle power output for both hemiplegia and diplegia 

since no knee or hip flexion was allowed. However, some individuals also increased power 

output in the hip in addition to the ankle which resulted in a reduced A2/H3 ratio. Some even 

increased power output on uninvolved limb although the primary focus in the training 

protocol was the limb considered the most paretic identified in clinical testing. In spite the 

fact that hemiplegic subjects are asymmetrical by definition (5), it was expected that the 

plantar flexors on uninvolved side were significantly stronger than those on the collateral 

affected side. With one exception, all individuals with hemiplegia had a higher A2/H3 ratio at 

the uninvolved limb compared to the paretic limb at baseline and at posttest. However, their 

ratio were significant lower compared to what we expect in the general population (131). This 

might be explained by potential power generation from the uninvolved ankle was not fully 

used. Although it is often though that hemiplegic individuals have one healthy and one paretic 
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limb, these finding raises the question of whether there truly exist an “uninvolved” side. If 

not, it raises questions if it was the right decision to only train the most paretic leg on the 

exercise “Single leg jump on paretic leg”. In retrospect, both limbs should have been trained 

on this task. Moreover, because of the leg length discrepancies in the hemiplegic group, 

potential power in the affected limb was possibly not fully trained on “jumping squats”. This 

may explain why the hemiplegic group had large improvements in both ankle power output 

and A2/H3 ratio in the uninvolved limb as well. Referring to the group with diplegia where 

both limbs are affected, only one leg was identified as the most paretic and focused on during 

training. Bearing in mind their diagnosis, this was an interesting decision since they express 

weakness and reduced power output in both limbs. Since both limbs are affected, it can be 

assumed that “jump squats” was the most task specific. This exercise is also less load-

demanding and therefore less susceptible to cause injuries.  

 

7.5.2 Familiarization and time interval  
 

Although some cognitive issues and difficulties in movement coordination is associated with 

the diagnose of SCP (76,87), we experienced that the participants used longer time to adapt to 

the exercise exposure than estimated before startup. A possible explanation is that their eye-

foot coordination is limited. In retrospect, it would be convenient to include a period of 

learning to ensure right technique and understanding among the participants. In that way the 

participants could adapt to the training exposure individually, ensure safety and avoid injuries. 

Another important aspect of the strength exercise implementation was how the intensity and 

load progressed. To our knowledge, there are currently no standardized protocol, and optimal 

loads are unknown for a population with SPC. However, when the goal is to improve the rate 

of force development or muscle power, ACSM recommend ballistic exercises to replicate the 

high angular velocities attained during walking (93). In this project, load was lowered initially 

to achieve higher angular velocities during training. Once a participant achieved higher 

angular velocities in the exercises, the load increased respectively. Although the protocol of 

Hendrey et al. (8) was used to implement the exercises, the effect of ballistic training may 

vary individually among the participants influenced by different motivation, personal factor 

and approach of eight different instructors involved in this project. It is necessary to 

implement longer intervention time and a follow-up period to observe if the changes in A2/H3 

ratio is permanent or reversible. 
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7.5.3 Side-effects  
 
In this study, 8/9 participants completed the study protocol without any negative side-effects 

in relation to the intervention. However, one hemiplegic participant (FP4) dropped out of the 

study after 7 sessions due to a foot inflammation. It was unexpected, since she was young, 

GMFCS I, was exercising on regular basis and considered to be in a good shape. However, 

when looking at the notes from the training program, there might be a possible explanation. 

This participant had on average more repetitions, higher load on the exercises and reported 

higher numbers on Borg Scale. Looking at these numbers, a higher slope indicates risk of 

injury, and she was perhaps over trained. Ballistic strength training involves a component of 

eccentric training, which mainly recruits type II fibers (8,40). An unfamiliar amount of 

exposure to eccentric work can be a huge strain on the muscles and lead to stiffness. In 

untrained individuals exercising for the first time or individuals performing novel tasks, some 

limited muscle dysfunction can be seen immediately after the exercise is completed. A 

population group with SCP is particularly vulnerable with varied sensory, motor and 

psychological loss (11). To avoid injuries when performing ballistic strength training in future 

implementation, an important concern is to carefully adapt the load and intensity to each 

individual and provide necessary conditions for energy storage and release in the Achilles 

tendon (180). 

 

7.6 Clinical perspectives to future research  
 
There exist numerous of rehabilitation options developed for spastic cerebral palsy. Ballistic 

strength training has previously reveled feasibility in several neurological impairments (8–

10,90,181), and showed to alter A2/H3 ratio in a small sample of adults with spastic cerebral 

palsy. In general, studying only one treatment option alone provides an understanding of 

possible treatment outcomes, but cannot direct any conclusion on actual effect. Further 

investigation should also emphasize qualitative aspects of how both patients and clinicals 

experience the training regime. This may provide an insight to how it affects QoL, 

participation in social community or potential long-term side-effects. Moreover, it is desired 

to investigate if this training regime is feasible to include in clinicals daily practice. It may 

give the opportunity to assess optimal loads, frequency and repetitions of ballistic strength 

training and whether there exist pathological differences between hemiplegia and diplegia.   
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7.7 Summary and conclusion  
 
Based on the findings of current study, the results provide additional information and a better 

understanding of how ballistic strength training might contribute to alter A2/H3 ratio in high-

functioning individuals with spastic cerebral palsy. This case series study provides potential 

intervention outcomes but cannot determine if the treatment was effective since there was no 

control group and the intervention time was relatively short. Further analytic studies 

comparing ballistic strength training to traditional strength training is needed to improve 

knowledge of the clinical value of ballistic strength training in adults with SCP.  
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Chapter 9: Appendices  
 

Appendix 1: Approval – REK 
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Appendix 2: Recruiting film and poster 
 
https://www.youtube.com/watch?v=wNEh6s_dmPI  
 
 

Funksjonell kapasitet for gange hos voksne med CP 
– med spesielt fokus på muskelfunksjon, muskelarkitektur og styrke 

 

Har du Cerebral Parese og redusert gangfunksjon? 
Høgskulen på Vestlandet skal gjennomføre en studie der hensikten er å undersøke om et 

treningsprogram kan forbedre gangfunksjon for voksne med cerebral parese.  

 

For å kvalifisere til studien må du oppfylle følgende kriterier: 

o Være diagnostisert med spastisk cerebral parese 

o GMFCS I-II 

o Ha fullført grunnskole 

o Yrkesaktiv alder 

o Bo i nærheten av Bergen 

 

Hva innebærer deltakelse i denne studien? 

o Åtte uker studielengde ved Høgskulen på Vestlandet 

o Ballistisk styrketrening 2-3 ganger i uken med autorisert helsepersonell 

o Utfylling av et spørreskjema om dine erfaringer med treningen 

o Det vil være umulig å identifisere deg i resultatene når studien publiseres 

o Deltakelsen er frivillig, og du kan trekke deg når som helst uten å oppgi grunn 

 

 

Ta gjerne kontakt dersom du ønsker mer informasjon eller ønsker å delta i prosjektet. 

 

Kontakt person: Beate Gjesdal Eltarvåg 

Stilling:  Doktorgradsstipendiat, Høgskulen på Vestlandet 

Telefon:   +47 952 72 894 

Epost:   Beate.Eltarvag.Gjesdal@hvl.no 
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Appendix 3: Information letter and consent 
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Appendix 4: Ballistic strength exercises 
 
Frekvens:  2-3 ganger i uken 

Intensitet:  Intensitetsnivået er individualisert og avgjøres av det maksimale nivået 

en deltaker kan utføre øvelsen med rett teknikk 

Tidsaspekt:  8-ukers styrketreningsprogram 

Dose:  Hver øvelse utføres i 5 minutter, der deltaker kan ta pause etter eget 

behov. Treningsinstruktør kan initiere i pauser dersom teknikken eller 

koordinasjonen forverres i løpet av økten. Denne tiden noteres. 

Progresjon: Øk hastighet når deltaker har kontroll på øvelsen og riktig muskulatur 

anvendes. Helningen på sleden økes individuelt. Helningen noteres. 

Kommentar: Eventuelle spesielle hendelser skal noteres. Dette innebærer smerte, 

lokasjon, fatigue, muskeltrøtthet eller andre symptomer. 

Referanse: Treningsprogrammet er inspirert av artikkelen: «Feasibility of Ballistic 

Strength Training in Subacute Stroke: A Randomized, Controlled, 

Assesor-Blinded Pilot Study» publisert av Hendrey et al. (8). 
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ØVELSE 1: JUMP SQUATS 

Formål: Å trene kraftutviklingen i ankel plantarfleksorer og hofteekstensorer 

ved hovedfokus på hastighet og høyden på hoppet  

Utstyr: Sleden (Power Tower), stoppeklokke, hodepute 

Utgangsstilling: Deltaker ligger supinert med hofter i 30o fleksjon og fotbladene plassert 

på platen. Armer plasseres i kryss over brystes, alternativt kan deltaker 

holde i sleden. Påse at fingrene ikke blir klemt Øvelsen illustreres i 

bildene nedenfor 

Helning: Sledens helning bestemmes ut ifra i den grad deltakeren kan 

vedlikeholde bilateral ankel plantarfleksjon og kneekstensjon ved 

fraspark 

Assistent: Manuell støtte til ankelen ved å gi mediolateral stabilitet og/eller støtte i 

kneet er tillat 

Instruksjon: «Forestill at du hopper på stedet. Spark fra med tærne og rett ut knærne 

i hoppet. Du skal lande på tærne igjen. Utfør bevegelsen med maksimal 

hastighet, så høyt du kan. Pauser er tillatt når du ønsker» 

Progresjon: Øk helningen med en enhet markert om gangen. Antall grader noteres. 

Bilde: Illustrasjon av «Jump Squasts»    
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ØVELSE 2: SINGLE LEG HOPPING ON THE PARETIC LEG 

Formål: Å isolere plantarfleksorer med fokus på hastighet og hopphøyde  

Utstyr: Sleden (Power Tower), stoppeklokke, hodepute 

Utgangsstilling: Deltaker ligger supinert med paretisk ben ekstendert mot fotplaten.  

Funksjonsfrisk fot plasseres på sleden. Armer plasseres i kryss over 

brystes, alternativt kan deltaker holde i sleden. Påse at fingrene ikke blir 

klemt. Øvelsen illustreres i bildet nedenfor 

Helning: Sledens helning bestemmes ut ifra i den grad deltakeren kan oppnå 

«fly-fasen» ideelt 

Assistent: Sørg for at aktiviteten isoleres til leggmuskulaturen ved å sikre at hofte 

og kne er ekstendert. Manuell støtte til ankelen ved å gi mediolateral 

stabilitet og/eller støtte i kneet er tillat 

Instruksjon: «Hopp så høyt og fort du kan ved å sparke fra med forfoten. Pass på at 

kneet er strakt. Pauser er tillatt når du ønsker» 

Progresjon: Øk helningen med en enhet markert om gangen. Antall grader noteres. 

Bilde: Illustrasjon av «Single leg hopping on paratic leg» 
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ØVELSE 3: JOGGING ON ALTERING LEGS 

Formål: Å koordinere kraftutvikling i hoftefleksorer, hoftekstensorer og 

plantarfleksorer ved hurtig jogging   

Utstyr: Sleden (Power Tower), stoppeklokke, hodepute 

Utgangsstilling: Deltaker ligger supinert med hofter i 30o fleksjon. Armer plasseres i 

kryss over brystes, alternativt kan deltaker holde i sleden. Påse at 

fingrene ikke blir klemt Illustrert i bildene nedenfor 

Helning: Sledens helning bestemmes ut ifra i den grad deltakeren kan koordinere 

«fly-fasen» bilateralt med god kontroll. 

Assistent: Manuell støtte til ankelen ved å gi mediolateral stabilitet og/eller støtte i 

kneet er tillat 

Instruksjon: «Forestill deg at du jogger lett på tå. Fokuser på raske skift mellom hver 

gang tåen treffer platen. Pauser er tillatt når du ønsker» 

Progresjon: Øk helningen med en enhet markert om gangen. Antall grader noteres. 

Bilde: Illustrasjon av «Jogging on altering legs» 
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Appendix 5: Borg Scale 6-20 
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Appendix 6: Training diary 
 

Økt FP1 FP2 FP3 FP5 FP6 FP7 FP9 FP10 
1   løping 

mølle  Fysio   
  

2  basisball, 
Zumba 

40 min 
roing   Jogge 

  

3  Roing og 
styrke 1 økt     Lett tur  

4  

 Løping  Fysio  
joggetur, 
tur  

Fløyen, 
trapper, 
tur 

5  Step/styrke, 
Zumba 

Løping, 
gåtur   Tur   Fløyen  

6  

Svømming, 
styrke 

Elipse 
maskin, 
styrke, 
Løping, 
skitur, 
gåturer  2 timers tur  Trente  

Ulrikke
n  

7  Bootcamp, 
Zumba 
øvelser   tur  

Turer til 
fots  

8  

 
Gått 
mye  egentrening 

rolig 
jogging, 
spinning 

Fjelltur 
tirsdag  

9  

  Svømme Egentrening   

Svømm
ezumba, 
styrke   

10  3 økter siden 
sist Ellipse  egentrening    

11  Basisball, 
step/styrke, 
øvinger fra 
Beate Løping  egentrening  

Basistre
ning  

12  
 

fjelltur, 
løpetur basseng  

hjemmetr
ening Crossfit  

13  

Svømming, 
step/styrke, 
tilsendte 
øvelser 

5 km 
løp    

svømme 
basisball
aerobic, 
zumba, 
styrke, 
egentren
ing 

Uteaktivi
teter 

14  Basisball, 
tur, 
egentrening fjelltur 

Basseng, 
egentreni
ng i vann 

jogging, 
egentrening 

 

 
byfjellen
e 

15  Svømming, 
egentrening 
i basseng 

løping     Fløyen 

Basiasb
all, 
egentren
ing, 
fjelltur  

16       Styrke, 
crossfit  
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Appendix 7: Organization of test days  
Uke 14/15 Pretest 

F317 Oppdatert samtykke 

Ultralyd 

 

F317/F318 Kliniske tester  

F327 EMG 

Akselerometer 

Markører 

Ganganalyse 

 

F338 6MWT 

Con-Trex 

HiMAT 

 

 

Uke 14 – Trening 

Bruker EMG og kraftdata under den andre treningen. EMG markører på m. gastrocnemius 

mediale, bilateralt. Kraftdata er på platen. 

 

Uke 15 Blodprøver 

Blodprøve 1 + trening Blodprøve 30 min før økt 

Contrex 

Trening 

Blodprøve 5 min etter test 

Blodprøve 1h etter test 

Contrex: 

 

Trening: 

Blodprøve 2 + con-trex Blodprøve 

Con-trex 

Con-trex: 

Blodprøve 3 + trening Blodprøve 48h 

Con-trex 

Trening 

Con-trex: 

 

Trening:  
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Uke 17 Ultralyd + trening 

Først ultralyd på F318, så trening på F327. 

Blodprøve 1 + trening Blodprøve 30 min før økt 

Contrex 

Trening 

Blodprøve 5 min etter test 

Blodprøve 1h etter test 

Contrex: 

 

Trening: 

 

Uke 18 6MWT + trening 

6MWT + trening 6MWT: Akselerometer + 

EMG 

Trening med kraftdata 

6MWT: 

 

Trening: 

 

Uke 19 3D + trening 

3D + trening 3D: EMG + markører 

Trening 

3D: 

 

Trening: 

 

Uke 21 – Trening 

Bruker EMG og kraftdata under den andre treningen. EMG markører på m. gastrocnemius 

mediale, bilateralt. Kraftdata er på platen. 

 

Uke 22 Posttest 

 

F317 Ultralyd  

F317/F318 Kliniske tester  

F327 EMG 

Akselerometer 

Markører 

Ganganalyse 

 

F318 6MWT 

Con-Trex 

HiMAT 
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Appendix 8: CGM lower body marker set 
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Appendix 9: Gait analysis protocol 
 
Denne ganganalysen skal utføres med EMG og markører. 

Før personen kommer må utstyret kalibreres. 

 

1) Kalibrere utstyr 

2) Åpne QTM 

 

Kameraplassering 

1) Kontroller i Qualisys Track Manager (QTM) at kamerarekkefølgen stemmer og 

korriger om nødvendig. (Ctrl+N, velg «2D» i menyen på venstre side) 

  

Kraftplate + EMG 

1) Sjekk i innstillinger at kraftplaten (Kistler 569x DAQ) er lagt til (Innstillinger - Input 

Devices). 

Noraxon 

 
  

  

Ctrl + D 

Sjekk Kistler og EMG  



    

 
95 

Kalibrering ved bruk av kraftplate i gangbane 

L-ramme og kalibreringsstav ligger i Qualisyskassen. Påse at du ikke har på deg klær eller sko 

med tydelige reflekser. Dette kan kontrolleres ved å gå i opptaksvolumet og observere i QTM. 

  
 

Venstre: Qualisyskassen. Høyre: Plassering av L-ramme på gangbanen 

  

L-ramme plasseres med den korte armen i retning mot vinduene og den lange armen i retning 

vekk fra kontrollbordet. Armene settes på kraftplaten, i flukt med X og Y-retning. Kontroller 

at alle åtte kameraene registrerer de fire markørene på L-rammen.  

  

Gjennomfør et kalibreringsopptak på 45 sek (Lengre om nødvendig for å dekke ønsket 

opptaksvolum). Kalibreringsstaven føres rundt i hele det ønskede opptaksvolumet.  

  

For ganganalyse: Ved gange på gangbanen er det nok å dekke området mellom de to hvite 

merkene på siden (ca. 1,5m fra kraftplaten i hver retning). Pass på å få med så nært bakken 

som mulig, men ikke la markørene skrape borti gulvet.  

  

Etter 60 sek kommer «Calibration results» opp på skjermen. «Average Residual» bør ligge 

under 1.0 mm på alle kameraene. Deretter skal kalibreringsvolumet kontrolleres visuelt. Om 

«Average Residual» eller kalibreringsvolumet ikke er tilfredsstillende må kalibrering 

gjennomføres på nytt.  

  

 
Venstre: Her startes kalibrering i QTM. Midten: Calibration results og Average Residual. 

Høyre: Visuelt kalibrert volum.  
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2.6 Kalibrering av kraftplate - kun når kraftplate ikke er lokalisert i origo 

Ettersom kraftplaten er mobil må lokaliseringen kalibreres før bruk. Det gjøres på følgende 

måte: 

1. Plasser en markør i hvert hjørne av kraftplaten. 

2. Gjør et kort opptak i QTM (1-2 sek) 

3. Label markørene 1, 2, 3 og 4 

4. Lagre opptak 

5. Gå til "Project Option - Force Data – Force-plate 1" 

6. Trykk på "Generate". Om denne ikke lar seg trykke på, kontroller punkt 1-3. 

7. QTM finner to mulige løsninger. Trykk OK og velg den som stemmer overens med 

markører
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1.1 Personer det blir utført målinger på (heretter testperson) skal på forhånd være informert 

om korrekt bekledning (shorts og evt sports-BH uten reflekser) og være gjort kjent med at 

opptak kan bli brukt i senere studier. Alle testpersoner skal signere skjemaet "Testing i 

rehabiliteringslab", i tillegg til evt. eget skjema for spesifikt prosjekt. 

 

 

Før opptak: 

 

r Når opptaksvolumet er kalibrert - sjekke at kraftdata og EMG signal registreres – se 

labens protokoll 

r Finn frem EMG elektroder – 12 stk  

r Gjøre klare refleksmarkører 

 

 

3.1 Antropometriske mål 

Følgende mål må registreres og legges inn som notat i testpersonens mappe i prosjektet; 

Vekt 

Høyde 

Benlengde (V og H) målt fra SIAS til laterale maleol.  

Knebredde (V og H) målt på det bredeste uten press mot bløtvev 

Ankelbredde (V og H) målt på det bredeste (maleoler 
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Appendix 10: 3D capture – Registration form 
 
FP_______ Dato:________ Test: T0 / T1 / T2 
 
 

 
 
 
 
 

 
 
  
 
ASIS, bendlengde, knebredde og ankelbredde måles på de kliniske testene. 
Kjønn      
Alder    Venstre Høyre 
Vekt   Benlengde   
Høyde  Knebredde   
ASIS  Ankelbredde   

 
 
  
Kommentar/Notat;  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tid:   
Utført av:  
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Opptaksnotat: 
NB! Hælslipp før ganganalyse – skriv inn tidspunkt på akselerometer-arket 

Statisk opptak 

r Utgangsposisjon 
- Instruks: tær pekende rett frem, hoftebreddes avstand, vær obs på hyperekstenderte knær. 

Navngigning: FUNCAP_FPx_T0_Stat   / FUNCAP_FPx_T0_Dyn_x    

Dynamisk opptak – 3 godkjente høyretreff og 3 godkjente venstretreff 

r Foretrukket ganghastighet  

Opptak L R  Opptak L R  Opptak L R 

 1 
  

 21    41   

2 
  

 22    42   

3 
  

 23    43   

4 
  

 24    44   

5 
  

 25    45   

6 
  

 26    46   

7 
  

 27    47   

8 
  

 28    48   

9 
  

 29    49   

10 
  

 30    50   

11 
  

 31    51   

12 
  

 32    52   

13 
  

 33    53   

14 
  

 34    54   

15 
  

 35    55   

16 
  

 36    56   

17 
  

 37    57   

18 
  

 38    58   

19 
  

 39    59   

20 
  

 40    60   
NB!! Hælslipp etter ganganalyse – skriv inn tidspunkt på akselerometer-arket 

 

Opptaksnotat: 


