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Abstract. We present a new algorithm for solving the LPN problem. The algorithm
has a similar form as some previous methods, but includes a new key step that makes
use of approximations of random words to a nearest codeword in a linear code. It
outperforms previous methods for many parameter choices. In particular, we can now
solve the (512, 1

8 )LPN instancewith complexity less than 280 operations in expectation,
indicating that cryptographic schemes like HB variants and LPN-C should increase their
parameter size for 80-bit security.

Keywords. LPN, BKW, Covering codes, LPN-C, HB, Lapin.

1. Introduction

In recent years of modern cryptography, much effort has been devoted to finding efficient
and secure low-cost cryptographic primitives targeting applications in very constrained
hardware environments (such as RFID tags and low-power devices). Many proposals
rely on the hardness assumption of Learning Parity with Noise (LPN), a fundamental
problem in learning theory, which recently has also gained a lot of attention within the
cryptographic society. The LPN problem is well studied, and it is intimately related
to the problem of decoding random linear codes, which is one of the most important
problems in coding theory. Being a supposedly hard problem, the LPN problem is a
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good candidate for post-quantum cryptography, where other classically hard problems
such as factoring and the discrete log problem fall short. The inherent properties of LPN
also make it ideal for lightweight cryptography.
TheLPN problem can be informally stated as follows.We have an LPN oracle denoted

ΠLPN that returns pairs of the form (g, 〈x, g〉 + e), where x is an unknown but fixed
binary vector, g is a binary vector with the same length but sampled from a uniform
distribution, e is from a Bernoulli distribution, and 〈x, g〉 denotes the scalar product of
vectors x and g. The (search) LPN problem is to find the secret vector x given a fixed
number of samples (oracle queries) from ΠLPN.
The first time the LPN problem was employed in a cryptographic construction was

in the Hopper-Blum (HB) identification protocol [21]. HB is a minimalistic protocol
that is secure in a passive attack model. Aiming to secure the HB scheme also in an
active attack model, Juels and Weis [22], and Katz and Shin [23] proposed a modified
scheme. The modified scheme, which was given the name HB+, extends HB with one
extra round. It was later shown by Gilbert et al. [15] that the HB+ protocol is vulnerable
to active attacks, in particularman-in-the-middle attacks, where the adversary is allowed
to intercept and attack an ongoing authentication session to learn the secret. Gilbert et al.
[13] subsequently proposed a variant of the Hopper-Blum protocol called HB#. Apart
from repairing the protocol, the constructors of HB# introduced a more efficient key
representation using a variant of LPN called Toeplitz-LPN.
Gilbert et al. [14] proposed away to useLPN in encryption ofmessages,which resulted

in the cryptosystemLPN-C.Kiltz et al. [24] andDodis et al. [10] showed how to construct
message authentication codes (MACs) using LPN. The existence ofMACs allows one to
construct identification schemes that are provably secure against active attacks. Themost
recent contribution to LPN-based constructions is a two-round identification protocol
called Lapin, proposed by Heyse et al. [20], and an LPN-based encryption scheme called
Helen, proposed by Duc and Vaudenay [11]. The Lapin protocol is based on an LPN
variant called Ring-LPN, where the samples are elements of a polynomial ring.
The two major threats against LPN-based cryptographic constructions are generic al-

gorithms that decode random linear codes (information-set decoding (ISD)) and variants
of the BKW algorithm, originally proposed by Blum et al. [3]. Being the asymptotically
most efficient1 approach, the BKW algorithm employs an iterated collision procedure
on the queries. In each iteration, colliding entries sum together to produce a new entry
with smaller dependency on the information bits but with an increased noise level. Once
the dependency from sufficiently many information bits is removed, the remaining are
exhaustively searched to find the secret. Although the collision procedure is the main
reason for the efficiency of the BKW algorithm, it leads to a requirement of an immense
amount of queries compared to ISD. Notably, for some cases, e.g., when the noise is
very low, ISD yields the most efficient attack.
Levieil and Fouque [29] proposed to use fastWalsh–Hadamard transform in the BKW

algorithm when searching for the secret. In an unpublished paper, Kirchner [25] sug-
gested to transform the problem into systematic form, where each information (key) bit
then appears as an observed symbol, perturbed by noise. This requires the adversary to
only exhaust the biased noise variables rather than the key bits. When the error rate is

1For a fixed error rate.
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Table 1. Comparison of different algorithms for solving LPN with parameters (512, 1
8 ).

Algorithm Complexity (log2)

Queries Time Memory

Levieil–Fouque [29] 75.7 87.5 84.8
Bernstein–Lange [4] 69.6 85.8 78.6
New algorithm (LF1) 65.0 80.7 74.0
New algorithm (LF2) 63.6 79.7 72.6

low, the noise variable search space is very small and this technique decreases the attack
complexity. Building on the work byKirchner [25], Bernstein and Lange [4] showed that
the ring structure of Ring-LPN can be exploited in matrix inversion, further reducing
the complexity of attacks on for example Lapin. None of the known algorithms manage
to break the 80 bit security of Lapin. Nor do they break the parameters proposed in [29],
which were suggested as design parameters of LPN-C [14] for 80-bit security.

1.1. Contribution

In this paper, we propose a new algorithm for solving the LPN problem based on [4,25].
We employ a new technique that we call subspace distinguishing, which exploits coding
theory to decrease the dimension of the secret. The trade-off is a small increase in the
sample noise. Our novel algorithm performs favorably in comparison to the state-of-the-
art algorithms and affects the security of HB variants, Lapin and LPN-C. As an example,
we attack the common (512, 1

8 )-instance of LPN and question its 80-bit security barrier.
A comparison of complexity of different algorithms2 is shown in Table 1.

Let us explain the main idea of the paper in an informal way. The BKW algorithm
will in each step remove the influence of b secret bits by colliding subvectors, at the cost
of increasing the noise. So we can model a single step as reducing an LPN problem of
dimension n and bias ε to an LPN problem of dimension n − b and bias ε2. The new
main idea is that one can remove more secret bits if we now collide subvectors (linear
combinations of secret bits) that are close in Hamming distance, but not necessarily
the same. This will leave a few secret bits in each expression, but as the secret bits are
biased and they can be considered as an additional noise term. Such a step reduces an
LPN problem of dimension n and bias ε to an LPN problem of dimension n − B, where
B is much larger than b, and the new bias is a bit smaller than ε2. It is shown that LPN
solvers that perform this new approach in the last step get an improved performance.

1.2. Subsequent Work

After the submission of this paper, a number of papers have appeared that further refine
and improve upon this work. We mention the work of [5,6,32], and [12].

2The Bernstein–Lange algorithm is originally proposed for Ring-LPN, and by a slight modification [4],
one can also apply it to the LPN instances. This modified algorithm shares several beginning steps (i.e.,
the steps of Gaussian elimination and the collision procedure) with the new algorithm, so we use the same
implementation of these steps when computing their complexity, for a fair comparison.
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To be specific, Bogos, Tramèr, and Vaudenay [5] presented a unified framework to
study the existing LPN algorithms and also a tight theoretical bound to analyze the data
complexity by using the Hoeffding bounds. Later, Zhang et al. [32] proposed a new
method to analyze the bias introduced by the concatenation of several perfect codes,
where the bias average rather than the bias conditioned on certain keys is employed.
Bogos and Vaudenay [6] further clarified the underlying heuristic approximation and
generalized the average bias analysis. They considered concrete code construction using
concatenations of perfect and quasi-perfect codes. Note that firstly we can treat search-
ing for large decodable linear codes with good covering property as a pre-computation
task, and secondly, the analysis using bias average could produce a lower complexity
estimation, which has been verified in our experiments where our bias estimation con-
ditioned on key patterns matches the experimental data but is slightly conservative. In
a recent paper [12], the idea of combining BKW and ISD was further investigated by
Esser, Kübler and May.

1.3. Organization

The organization of the paper is as follows. In Sect. 2, we give some preliminaries and
introduce the LPN problem in detail. Moreover, in Sect. 3 we give a short description
of the BKW algorithm. We briefly describe the general idea of our new attack in Sect. 4
and more formally in Sect. 5. In Sect. 6, we analyze its complexity. The results when the
algorithm is applied on various LPN-based cryptosystems are given in Sect. 7, which
is followed by a section showing the experimental results. In Sect. 9, we describe some
aspects of the covering-coding technique. Section 10 concludes the paper.

2. The LPN Problem

Wenow give amore thorough description of the LPN problem. LetBerη be the Bernoulli
distribution and let X ∼ Berη be a random variable with alphabet X = {0, 1}. Then,
Pr [X = 1] = η and Pr [X = 0] = 1 − Pr [X = 1] = 1 − η. The bias ε of X is given
from Pr [X = 0] = 1

2 (1 + ε), i.e., ε = 1 − 2η. Let k be a security parameter, and let
x be a binary vector of length k. We define the Hamming weight of a vector v as the
number of nonzero elements, denoted by wH (v), and let B2(n, w) denote the Hamming
ball which contains all the elements in Fn

2 whose Hamming weight is no larger than w.

Definition 1. (LPN oracle) An LPN oracle ΠLPN for an unknown vector x ∈ {0, 1}k
with η ∈ (0, 1

2 ) returns pairs of the form

(
g

$← {0, 1}k, 〈x, g〉 + e
)

,

where e ← Berη. Here, 〈x, g〉 denotes the scalar product of vectors x and g.
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We also write 〈x, g〉 as x · gT, where gT is the transpose of the row vector g. We receive
a number n of noisy versions of scalar products of x from the oracle ΠLPN, and our task
is to recover x.

Problem 1. (LPN) Given an LPN oracle ΠLPN, the (k, η)-LPN problem consists of
finding the vector x. An algorithm ALPN(T, n, δ) using time at most T with at most n
oracles queries solves (k, η)-LPN if

Pr
[
ALPN(T, n, δ) = x : x $← {0, 1}k

]
≥ δ.

Let y be a vector of length n, and let yi = 〈x, gi 〉. For known random vectors
g1, g2, . . . , gn , we can easily reconstruct an unknown x from y using linear algebra.
In the LPN problem, however, we receive instead noisy versions of yi , i = 1, 2, . . . , n.
Writing the noise in position i as ei , i = 1, 2, . . . , n, we obtain

zi = yi + ei = 〈x, gi 〉 + ei .

In matrix form, the same relation is written as z = xG + e, where

z = (z1 z2 · · · zn
)
, e = (e1 e2 · · · en

)
,

and the matrix G is formed as

G = (gT
1 gT

2 · · · gT
n

)
.

This shows that the LPN problem is simply a decoding problem, where G is a random
k × n generator matrix, x is the information vector, and z is the received vector after
transmission of a codeword on the binary symmetric channel with error probability η.

2.1. Piling-Up Lemma

We recall the piling-up lemma, which is frequently used in analysis of the LPN problem.

Lemma 1. (Piling-up lemma) Let X1, X2, ...Xn be independent binary random vari-
ables where each Pr [Xi = 0] = 1

2 (1 + εi ), for 1 ≤ i ≤ n. Then,

Pr [X1 + X2 + · · · + Xn = 0] = 1

2

(
1 +

n∏
i=1

εi

)
.

2.2. Complexity Estimates

The computational complexity of a given algorithm can be given in many different ways.
First, we may choose between giving asymptotic expressions or giving more explicit
complexity estimates. For example, the BKW algorithm for solving LPN in dimension
n is sub-exponential.
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In this paper, we are primarily interested in explicit complexity estimates and we will
thus try to estimate the number of operations required by an algorithm.We follow a long
tradition of counting the number of "simple" bit operations. This includes reading a bit
in memory, and it also does not have restrictions in memory size. Clearly, this model
does not match an estimation of number of clock cycles on some CPU. In general, we
expect the number of clock cycles to be less, since some word-oriented instructions can
perform many bit operations in a single instruction.

3. The BKW Algorithm

The BKW algorithm, as proposed by Blum et al. [3], is an algorithm that solves the LPN
problem in sub-exponential time, requiring 2O(k/ log k) queries and time. To achieve this,
the algorithm uses an iterative sort-and-match procedure on the columns of the query
matrix G, which iteratively reduces the dimension of G.

1. Reduction phase Initially, one searches for all combinations of two columns inG
that add to zero in the last b entries. Let

M def= {k − b + 1, k − b + 2, . . . , k} (1)

and define a filtering function φM : Fk
2 → F

b
2. Assume that one finds two columns

gT
i0
, gT

i1
such that

gi0 + gi1 = (∗ ∗ · · · ∗ 0 0 · · · 0︸ ︷︷ ︸
b symbols

), (2)

where ∗ means any value, i.e., they belong to the same partition (or equivalence
class) and fulfill φM(gi0) = φM(gi1). Then, a new vector

g(1)
1 = gi0 + gi1 (3)

is computed. Let y(1)
1 =

〈
x, g(1)

1

〉
. An observed symbol is also formed, correspond-

ing to this new column by forming

z(1)1 = zi0 + zi1 = y(1)
1 + e(1)

1 =
〈
x, g(1)

1

〉
+ e(1)

1 , (4)

where now e(1)
1 = ei0 + ei1 . It can be verified that Pr

[
e(1)
1 = 0

]
= 1

2 · (1 + ε2).

The algorithm proceeds by adding the same element, say gi0 , to the other elements
in the partition forming

z(1)2 = zi0 + zi2 = y(1)
2 + e(1)

2 =
〈
x, g(1)

2

〉
+ e(1)

2 , (5)
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and so forth. The resulting columns are stored in a matrix G1,

G1 =
(
(g(1)

1 )T (g(1)
2 )T . . . (g(1)

n−2b
)T
)

. (6)

If n is the number of columns in G, then the number of columns in G1 will be
n−2b. Note that the last b entries of every column inG1 are all zero. In connection
to this matrix, the vector of observed symbols is

z1 =
(
z(1)1 z(1)2 · · · z(1)

n−2b

)
, (7)

where Pr
[
z(1)i = y(1)

i

]
= 1

2 · (1 + ε2), for 1 ≤ i ≤ n − 2b.

We now iterate the same (with a new φ function), picking one column and then
adding it to another suitable column in Gi giving a sum with an additional b
entries being zero, forming the columns of Gi+1. Repeating the same procedure,
an additional t − 1 times will reduce the number of unknown variables to k − b · t
in the remaining problem.
For each iteration, the noise level is squared. By the piling-up lemma (Lemma 1),
we have that

Pr

⎡
⎣

2t∑
j=1

ei = 0

⎤
⎦ = 1

2
·
(
1 + ε2

t
)

. (8)

Hence, the bias decreases quickly to low levels as t increases. Therefore, we want
to keep t as small as possible.

2. Solving phase In the final step, the BKW algorithm looks for a column vector in
Gt such that only the first bit of the vector is nonzero. If the algorithm finds such
a vector, then that sample constitutes a very noisy observation the first bit x1 of
x. The algorithm stores the observation and repeats the reduction-phase procedure
with new samples from the oracle, until sufficientlymany observations of the secret
bit x1 have been obtained. Then, it uses a majority decision to determine x1. The
whole procedure is given in Algorithm 1.

3.1. LF1 and LF2 Variants

The BKW algorithm is a powerful theoretical construction and because the algorithm
operates solely on independent samples, it is possible to provide rigorous analysis using
probabilistic arguments without heuristic assumptions. However, the provability comes
at a quite high expense—the algorithm discards a lot of samples that could be used
in solving the problem. This was first pointed out by Levieil and Fouque in [29]. They
suggested that all samples should be kept after the reduction and not only the ones having
weight 1. Instead of determining the secret bit by bit using majority decision, the whole
k− t ·b bit secret may be determined usingWalsh transformation. The authors suggested
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Algorithm 1 BKW

Input: Algorithm parameters b, t, n ∈ N.

repeat
(Reduction phase) Query the oracle for n queries of the form (g, z); Create a query matrix
G = (gT1 gT2 · · · gTn

)
and an observed vector z = (z1 z2 · · · zn

)
;

for i ∈ {1, 2, . . . , n} do
S ← S ∪ (gi , zi ),

for i ∈ {1, 2, . . . , t} do
Partition S according to b · i last bits;
for each partition P ∈ S do

Pick a random (g′, z′) ∈ P and remove it from P ; Replace all remaining elements
(g, z) ∈ P with (g + g′, z + z′);

(Solving phase) Find a column vector in Gt such that only its first bit is non-zero and the
remaining positions are all-zero. Then, the observed value zi is also an observation of x1;

until sufficiently many observations have been obtained ;
Determine the secret bit x1 by majority decision;
return x1

two methods: LF1 and LF2—the methods are essentially the same, but differ in how the
columns to be merged are chosen in the reduction phase.3

– LF1 picks a column in each partition and then adds it to the remaining samples in
the same partition (entries having the same last b entries). This is identical to how
the described BKW operates in its merging steps.
The number of samples is reduced by 2b after each merge operation. Hence, after
a series of t merges, the number of samples is about

r(t) = n − t · 2b. (9)

The algorithm uses fast Walsh–Hadamard transform to determine the remaining
secret of dimension k− t ·b. Thus, no samples are discarded and the algorithm does,
in contrast to BKW, not query the oracle a multiple number of times. Therefore, a
factor 2b is lost in terms of query complexity.
The LF1 method was subsequently adopted by Bernstein and Lange in [4].

– The other method, LF2, computes all pairs within the same partition. It produces
more samples at the cost of increased dependency, thereby gaining more efficiency
in practice.
Given that there are on average n

2b
samples in one partition, we expect around

2b
(
n/2b

2

)
(10)

3One critical assumption for LF1/LF2 variants is that the samples are independent after several reduction
steps. This assumption has been verified in [29] and also during our experiments.
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Fig. 1. In the above, we illustrate t merging steps and sample count at each t with respect to BKW/LF1, r(t)
and LF2, r ′(t).

possible samples at the end of one merge step in LF2, or more generally

r ′(t) = 2b ·
(
r ′(t − 1)/2b

2

)
, (11)

after t merging steps, with r ′(0) = n. The number of samples preserves when
setting m = 3 · 2b, and this setting is verified by an implementation in [29].
Like LF1, a fast Walsh–Hadamard transform (FWHT) is used to determine the
secret. Combined with a more conservative use of samples, LF2 is expected to be
at least as efficient as LF1 in practice. In particular, LF2 has great advantage when
the attacker has restricted access to the oracle.

We have illustrated the different methods in Fig. 1.
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4. Essential Idea

In this section, we try to give a very basic description of the idea used to give a new and
more efficient algorithm for solving the LPN problem. A more detailed analysis will be
provided in later sections.
Assume that we have an initial LPN problem described by

G = (gT
1 gT

2 · · · gT
n

)

and z = xG + e, where z = (z1 z2 · · · zn
)
and

zi = yi + ei = 〈x, gi 〉 + ei .

As previously shown in [25] and [4], we may through Gaussian elimination transform
G into systematic form. Assume that the first k columns are linearly independent and
form the matrix D−1. With a change of variables x̂ = xD−1, we get an equivalent
problem description with

Ĝ = (I ĝT
k+1 ĝT

k+2 · · · ĝT
n

)
.

We compute

ẑ = z + (z1, z2, . . . , zk
)
Ĝ = (0, ẑk+1, ẑk+2, . . . , ẑn

)
.

In this situation, one may start performing a number of BKW steps on columns k + 1
to n, reducing the dimension k of the problem to something smaller. This will result
in a new problem instance where noise in each position is larger, except for the first
systematic positions. We may write the problem after performing t BKW steps in the
form

G′ = (I g′
1
T g′

2
T · · · g′

m
T
)

and

z′ = (0, z′1, z′2, . . . z′m
)
,

where now G′ has dimension k′ × m with k′ = k − bt and m is the number of columns
remaining after the t BKW steps. We have z′ = x′G′ + e′,

Pr
[
x ′
i = 0

] = 1

2
(1 + ε)

and

Pr
[
x′ · g′

i
T = zi

] = 1

2
(1 + ε2

t
).
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Nowwe explain the basics of the new idea proposed in the paper. In a problem instance
as above, we may look at the random variables y′

i = x′ · g′
i
T. The bits in x′ are mostly

zero, but a few are set to one. Let us assume that c bits are set to one. Furthermore, x′ is
fixed for all i . We usually assume that g′

i is generated according to a uniform distribution.
However, assuming that every column g′

i would be biased, i.e., every bit in a column
position is zero with probability 1/2(1 + ε′), we then observe that the variables y′

i will
be biased, as

y′
i = 〈x′, g′

i

〉 =
c∑

j=1

[g′
i ]k j ,

where k1, k2, . . . kc are the bit positions where x′ has value one (here [x]y denotes bit y
of vector x). In fact, assuming that the variables [g′

i ]k j are independently distributed,4

variables y′
i will have bias (ε′)c.

So how do we get the columns to be biased in the general case? We could simply
hope for some of them to be biased, but if we need to use a larger number of columns,
the bias would have to be small, giving a high complexity for an algorithm solving the
problem. We propose instead to use a covering code to achieve something similar to
what is described above. Vectors g′

i are of length k′, so we consider a code of length k′
and some dimension l. Let us assume that a generator matrix of this code is denoted F.
For each vector g′

i , we now find the codeword in the code spanned by F that is closest
(in Hamming sense) to g′

i . Assume that this codeword is denoted ci . Then, we can write

g′
i = ci + e′

i ,

where e′
i is a vector with biased bits. It remains to examine exactly how biased the bits

in e′
i will be, but assume for the moment that the bias is ε′. Going back to our previous

expressions, we can write

y′
i = 〈x′, g′

i

〉 = x′ · (ci + e′
i )

T

and since ci = uiF for some ui , we can write

y′
i = x′FT · uT

i + x′ · e′
i
T
.

Wemay introduce v = x′FT as a length l vector of unknown bits (linear combinations
of bits from x′) and again

y′
i = v · uT

i + x′ · e′
i
T
.

4There are various approaches to estimate the bias introduced by coding. As the main goal in this section
is to illustrate the gist of the new idea, we adopt the most straight-forward one, i.e., the one that assumes the
variables each representing noise in a position in the error vector are independent. In a later section, when
computing the algorithm complexity, a more accurate value is obtained by calculating the bias numerically
(see Proposition 1).
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Since we have Pr
[
y′
i = z′i

] = 1/2(1 + ε2
t
), we get

Pr
[
v · uT

i = z′i
] = 1

2
(1 + ε2

t
(ε′)c),

where ε′ is the bias determined by the expected distance between g′
i and the closest

codeword in the code we are using, and c is the number of positions in x′ set to one.

The last step in the new algorithm now selects about m = O
(
l/(ε2

t · ε′c)2
)
samples

z′1, z′2, . . . , z′m and for each guess of the 2l possible values of v, we compute how many
times v · uT

i = z′i when i = 1, 2, . . . ,m. As this step is similar to a correlation at-
tack scenario, we know that it can be efficiently computed using fast Walsh–Hadamard
transform. After recovering v, it is an easy task to recover remaining unknown bits of
x′.

4.1. A Toy Example

In order to illustrate the ideas and convince the reader that the proposed algorithm can be
more efficient than previously known methods, we consider an example. We assume an
LPN instance of dimension k = 160, where we allow at most 224 received samples and
we allow at most around 224 vectors of length 160 to be stored in memory. Furthermore,
the error probability is η = 0.1.

For this particular case, we propose the following algorithm. Note that for an intuitive
explanation, we assume the number of required samples to be 1/ε2tot , where εtot is the
total bias. A rigorous complexity analysis of the new algorithm will be presented later.

1. The first step is to compute the systematic form,

Ĝ = (I ĝT
k+1 ĝT

k+2 · · · ĝT
n

)

and

ẑ = z + (z1 z2 . . . zk
)
Ĝ = (0 ẑk+1 ẑk+2 . . . ẑn

)
.

Here, Ĝ has dimension 160 and ẑ has length at most 224.
2. In the second step, we perform t = 4 merging steps (using the BKW/LF1 ap-

proach), the first step removing 22 bits and the remaining three each removing 21
bits. This results in G′ = (

I g′
1
T g′

2
T · · · g′

m
T
)
and z′ = (

0 z′1 z′2 . . . z′m
)
, where

now G′ has dimension 75 × m and m is about 3 · 221. We have z′ = x′G′,

Pr
[
x ′
i = 0

] = 1

2
· (1 + ε),

where ε = 0.8 and

Pr
[〈
x′, g′

i
〉 = zi

] = 1

2
· (1 + ε16).

Hence, the resulting problem has dimension 75 and the bias is ε2
t = (0.8)16.
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3. In the third step, we then select a suitable code of length 75. In this example, we
choose a block code which is a direct sum of 25 [3, 1, 3] repetition codes,5 i.e.,
the dimension is 25. We map every vector g′

i to the nearest codeword by simply
selecting chunks of three consecutive bits and replace them by either 000 or 111.
With probability 3

4 , we will change one position and with probability 1
4 we will

not have to change any position. In total, we expect to change ( 34 · 1 + 1
4 · 0) · 25

positions. The expected weight of the length 75 vector e′
i is

1
4 · 75, so the expected

bias is ε′ = 1
2 . As Pr

[
x ′
i = 1

] = 0.1, the expected number of nonzero positions
in x′ is 7.5. Assuming we have only c = 6 nonzero positions, we get

Pr
[〈v,ui 〉 = z′i

] = 1

2
·
(
1 + 0.816 ·

(
1

2

)6)
= 1

2
· (1 + 2−11.15).

4. In the last step, we then run through 225 values of v and for each of them we
compute howoften v·uT

i = z′i for i = 1, . . . , 3·221. Again sincewe use fastWalsh–
Hadamard transform, the cost of this step is not much more than 225 operations.

5. The above four-step procedure forms one iteration of our solving algorithm, and
we need to repeat it a few times. The expected number depends on the success
probability of one iteration. For this particular repetition code, there are 
bad
events� that make the distinguisher fail. When two of the errors in x′ fall into
the same concatenation, then the bias is zero. If there are three errors in the same
concatenation, then the bias is negative. To conclude, we can distinguish success-
fully if there are no more than 6 ones in x′ and each of them falls into a distinct
concatenation, i.e., the overall bias is at least 2−11.15. The successes probability6

is thus

6∑
i=0

(
25

i

)
·
(
3

1

)i
·
(

1

10

)i
·
(

9

10

)75−i

≈ 0.28. (12)

In comparison with other algorithms, the best approach we can find is the Kirchner
[25] and theBernstein andLange [4] approaches, where one can do up to 5merging steps.
Removing 21 bits in each step leaves 55 remaining bits. Using fast Walsh–Hadamard
transform with 0.8−64 = 220.6 samples, we can include another 21 bits in this step, but
there are still 34 remaining variables that needs to be guessed.

5In the sequel, we denote this code construction as concatenated repetition code. For this [75, 25, 3] linear
code, the covering radius is 25, but we could see from this example that what matters is the average weight of
the error vector, which is much smaller than 25.

6This explains why we need a more rigorous analysis. If we would assume that the noise variables in the
error vector are independent, the success probability is about 0.37. This estimation is too optimistic, since if
two of the errors in x′ fall into the same code, the resulting zero bias totally ruin the statistical distinguishing
procedure. We use a more accurate estimation in (12), which is further illustrated in Example 1.
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Algorithm 2 New attacking algorithm in the LF1 setting

Input: Matrix G with k rows and n columns, received length n vector z and algorithm parameters
t, b, k′′, l, w0, εset

repeat1
Pick a random column permutation π ;2

Perform Gaussian elimination on π(G) resulting in Ĝ = [I|L0];3
for i = 1 to t do4

Partition the columns of Li−1 by the last b · i bits;5
Denote the set of columns in partition s by Ls ;6
Pick a vector ais ∈ Ls ;7
for (a ∈ Ls ) and (a �= ais ) do8

Li ← [
Li |(a + ais )];9

Pick a [k′′, l] linear code with good covering property;10
Partition the columns of Lt by the middle non-all-zero k′′ bits and group them by their11
nearest codewords;
Set k1 = k − tb − k′′;12

for x′
2 ∈ {0, 1}k1 with wt (x′

2) ≤ w0 do13
Update the observed samples;14

for v ∈ {0, 1}l do15
Use Fast Walsh-Hadamard Transform to compute the numbers of 1s and 0s16
observed respectively;
Perform hypothesis testing;17

until acceptable hypothesis is found18

Overall, the simple algorithm sketched above is outperforming the best previous al-
gorithm using optimal parameter values.7

4.1.1. Simulation

We have verified in simulation that the proposed algorithm works in practice, both in
the LF1 and LF2 setting using the rate R = 1

3 concatenated repetition code.

5. Algorithm Description

Having introduced the key idea in a simplistic manner, we now formalize it by stating
a new five-step LPN solving algorithm (see Algorithm 2) in detail. Its first three steps
combine several well-known techniques on this problem, i.e., changing the distribution
of secret vector [25], sorting and merging to make the dimension of samples shorter
[3], and partial secret guessing [4], together. The efficiency improvement comes from

7Adopting the same method to implement their overlapping steps, for the (160, 1
10 ) LPN instance, the

Bernstein–Lange algorithm and the new algorithm cost 239.43 and 235.50 bit operations, respectively. Thus,
the latter offers an improvement with a factor roughly 16 to solve this small-scale instance.
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Fig. 2. Here, we illustrate the different steps of the new algorithm, using the LF1 and the LF2 merging
approaches. In the figure, we only show the upper systematic part used in hypothesis testing.

a novel idea introduced in the last two subsections—if we employ a linear covering
code and rearrange samples according to their nearest codewords, then the columns in
the matrix subtracting their corresponding codewords lead to sparse vectors desired in
the distinguishing process. We later propose a new distinguishing technique—subspace
hypothesis testing, to remove the influence of the codeword part using fast Walsh–
Hadamard transform. The algorithm consists of five steps, each described in separate
subsections. These steps are graphically illustrated in Figs. 2 and 3.

5.1. Gaussian Elimination

Recall that our LPN problem is given by z = xG+ e, where z andG are known. We can
apply an arbitrary column permutation π without changing the problem (but we change
the error locations). A transformed problem is π(z) = xπ(G) + π(e). This means that
we can repeat the algorithm many times using different permutations, which very much
resembles the operation of information-set decoding algorithms.
Continuing, we multiply by a suitable k × k matrix D to bring the matrix G to a

systematic form, Ĝ = DG. The problem remains the same, except that the unknowns
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Fig. 3. After the columns have been merged t times, we have a matrix as shown above. In the upper part, we
perform the partial secret guessing. The remaining part will be projected (with distortion) into a smaller space
of dimension l using a covering code.

are now given by the vector x̃ = xD−1. This is just a change of variables. As a second
step, we also add the codeword

(
z1 z2 · · · zk

)
Ĝ to our known vector z, resulting in a

received vector starting with k zero entries. Altogether, this corresponds to the change
x̂ = xD−1 + (z1 z2 · · · zk

)
.

Our initial problem has been transformed, and the problem is now written as

ẑ = (0 ẑk+1 ẑk+2 · · · ẑn
) = x̂Ĝ + e, (13)

where now Ĝ is in systematic form. Note that these transformations do not affect the
noise level. We still have a single noise variable added in every position.

5.1.1. Time–Memory Trade-Off

Schoolbook implementation of the aboveGaussian elimination procedure requires about
1
2 · n · k2 bit operations; we propose, however, to reduce its complexity by using a more
sophisticated time–memory trade-off technique. We store intermediate results in tables
and then derive the final result by adding several items in the tables together. The detailed
description is as follows.
For a fixed s, divide the matrix D in a = � k

s � parts, i.e.,

D = (D1 D2 . . . Da
)
, (14)

whereDi is a sub-matrix with s columns (except possibly the last matrixDa). Then store
all possible values of DixT for x ∈ F

s
2 in tables indexed by i , where 1 ≤ i ≤ a. For a

vector g = (g1 g2 . . . ga
)
, the transformed vector is

DgT = D1gT
1 + D2gT

2 + . . . + DagT
a, (15)

where DigT
i can be read directly from the table.

The cost of constructing the tables is aboutO (2s), which can be negligible if memory
in the later merge step is much larger. Furthermore, for each column, the transformation
costs no more than k · a bit operations; so, this step requires
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C1 = (n − k) · k · a < n · k · a (16)

bit operations in total if 2s is much smaller than n.

5.1.2. A Minor Improvement

One observation is that only the distribution of the first k′ = k− t ·b entries in the secret
vector affects the later steps. In other words, we just need to make the first k′ entries
biased. Thus, we can ignore the Gaussian elimination processing on the bottom tb rows
of the G. More formally, let the first k columns of G be an invertible matrix G0, where

G0 =
[
G01 G02
G03 G04

]
,

then instead of setting D = G−1
0 , we define

D =
[

G−1
01 0

−G03G
−1
01 I

]
.

Then, the first k′ column of DG is of the form

[
I
0

]
.

Denote the transformed secret vector x̂ = xD−1 + z[1,...,k′] similarly. Then, we have
that ẑ = x̂Ĝ + e, where Ĝ is DG and,

ẑ = (0 ẑk′+1 ẑk′+2 · · · ẑn
) = z + z[1,...,k′]Ĝ (17)

Using the space-time trade-off technique, the complexity can be computed as:

C ′
1 = (n − k′) · k ·

⌈
k′

s

⌉
< n · k ·

⌈
k′

s

⌉
. (18)

Compared with Eq. (16), we reduce the value a from � k
s � to � k′

s �, where k′ = k− t ·b.

5.2. Merging Columns

This next step consists of merging columns. The input to this step is ẑ and Ĝ. We write
Ĝ = (I L0

)
and process only the matrix L0. As the length of L0 is typically much larger

than the systematic part of Ĝ, this is roughly no restriction at all. We then use the a
sort-and-match technique as in the BKW algorithm, operating on the matrix L0. This
process will give us a sequence of matrices denoted L0,L1,L2, . . . ,Lt .
Let us denote the number of columns of Li by r(i), with r(0) = r ′(0) = n − k′.

Adopting the LF1 type technique, every step operating on columns will reduce the
number of samples by 2b, yielding that
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m = r(t) = r(0) − t · 2b ⇐⇒ n − k′ = m + t · 2b. (19)

Using the setting of LF2, the number of samples is

m = r ′(t) = 2b ·
(
r ′(t − 1)/2b

2

)

�⇒ n − k′ ≈ 2t+1√
2(b+1)(2t+1−1) · m.

(20)

The expression for r ′(t) does not appear in [29], but it can be found in [5]. We see
that if m is equal to 3 · 2b, the number of samples preserves during the reductions.
Implementations suggest that there is no visible effect on the success of the algorithm,8

so we adopt this setting.
Apart from the process of creating the Li matrices, we need to update the received

vector in a similar fashion. A simple way is to put ẑ as a first row in the representation of
Ĝ. This procedure will end with a matrix

(
I Lt

)
, where Lt will have all t · b last entries

in each column all zero. By discarding the last t · b rows, we have a given matrix of
dimension k − t · b that can be written as G′ = (

I Lt
)
, and we have a corresponding

received vector z′ = (0 z′1 z′2 · · · z′m
)
. The first k′ = k − t · b positions are only affected

by a single noise variable, so we can write

z′ = x′G′ + (e1 e2 · · · ek′ ẽ1 ẽ2 · · · ẽm
)
, (21)

for some unknown x′ vector (here, we remove the bottom t ·b bits of x̂ to form the length
k′ vector x′), where

ẽi =
∑

i j∈Ti , |Ti |≤2t

ei j (22)

and Ti contains the positions that have been added up to form the (k′ + i)th column of
G′. By the piling-up lemma, the bias for ẽi increases to ε2

t
. We denote the complexity

of this step by C2, where

C2 =
{∑t

i=1(k + 1 − i · b) · (n − k′ − i · 2b), the LF1 setting,∑t
i=1(k + 1 − i · b) · (n − k′), the LF2 setting.

In the both cases

C2 ≈ (k + 1) · t · n. (23)

8This is first pointed out in [29].
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5.3. Partial Secret Guessing

The previous procedure outputs G′ with dimension k′ = k − t · b and m columns. We
now divide x′ into two parts:

x′ = (x′
1 x′

2

)
, (24)

where x′
1 is of length k

′′. In this step, we simply guess all vectors x2 ∈ B2(k′ − k′′, w0)

for somew0 and update the observed vector z′ accordingly. This transforms the problem
to that of attacking a new smaller LPN problem of dimension k′′ with the same number
of samples. Firstly, note that this will only work if wH

(
x′
2

) ≤ w0, and we denote this
probability by P(w0, k′ − k′′). Secondly, we need to be able to distinguish a correct
guess from incorrect ones and this is the task of the remaining steps. The complexity of
this step is

C3 = m ·
w0∑
i=0

(
k′ − k′′

i

)
i. (25)

5.4. Covering-Coding Method

In this step, we use a [k′′, l] linear code C with covering radius dC to group the columns.
That is, we rewrite

g′
i = ci + e′

i , (26)

where ci is the nearest codeword in C, and wH
(
e′
i

) ≤ dC . The employed linear code is
characterized by a systematic generator matrix

F = (I A) ∈ F
l×k′′
2 , (27)

that has the corresponding parity-check matrix

H = (AT I
) ∈ F

(k′′−l)×k′′
2 . (28)

There are several ways to select a code. An efficient way of realizing the above grouping
idea is by a table-based syndrome-decoding technique. The procedure is as follows:

1. We construct a constant-time query table containing 2k
′′−l items, in each of which

stores the syndrome and its corresponding minimum-weight error vector.
2. If the syndrome Hg′

i
T is computed, we then find its corresponding error vector e′

i
by checking in the table; adding them together yields the nearest codeword ci .

The remaining task is to calculate the syndrome efficiently. We sort the vectors g′
i

according to the first l bits, where 0 ≤ i ≤ m, and group them into 2l partitions denoted
byP j for 1 ≤ j ≤ 2l . Starting from the partitionP1 whose first l bits are all zero, we can
derive the syndrome by reading its last k′′ − l bits without any additional computational
cost. If we know one syndrome in P j , we then can compute another syndrome in the
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same partition within 2(k′′ − l) bit operations, and another in a different partition whose
first l-bit vector has Hamming distance 1 from that ofP j within 3(k′′ − l) bit operations.
Therefore, the complexity of this step is

C4 = (k′′ − l) · (2m + 2l). (29)

Notice that the selected linear code determines the syndrome table, which can be pre-

computed within complexity O
(
k′′ · 2k′′−l

)
. For some instances, building such a full

syndrome table may dominate the complexity, i.e., when k′′ · 2k′′−l becomes too large.
Here, we use a code concatenation to reduce the size of the syndrome table, thereby
making this cost negligible compared with the total attacking complexity.
We split the search space into two (or several) separate spaces by using a concatenated

code construction. As an example, let C′ be a concatenation of two [k′′/2, l/2] linear
codes. Then, the syndrome tables can be built in O

(
k′′ · 2k′′/2−l/2

)
time and memory.

Assuming that the two codes are identical and they will both contribute to the final noise.
The decoding complexity then changes to

C ′
4 = (k′′ − l) · (2m + 2l/2). (30)

5.5. Subspace Hypothesis Testing

In the subspace hypothesis testing step, we group the (processed) samples (g′
i , z

′
i ) in sets

L(ci ) according to their nearest codewords and define the function fL(ci ) as

fL(ci ) =
∑

(g′
i ,z

′
i )∈L(ci )

(−1)z
′
i . (31)

The employed systematic linear code C describes a bijection between the linear space
F
l
2 and the set of all codewords in F

k′′
2 , and moreover, due to its systematic feature,

the corresponding information vector appears explicitly in their first l bits. We can thus
define a new function

g(u) = fL(ci ), (32)

such that u represents the first l bits of ci and exhausts all points in Fl2.
The Walsh transform of g is defined as

G(v) =
∑

u∈Fl2
g(u)(−1)〈v,u〉. (33)

Here, we exhaust all candidates of v ∈ F
l
2 by computing the Walsh transform.

The following lemma illustrates the reason why we can perform hypothesis testing
on the subspace Fl2.
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Lemma 2. There exits a unique vector v ∈ F
l
2 s.t.,

〈v,u〉 = 〈x′, ci
〉
. (34)

Proof. As ci = uF, we obtain

〈
x′, ci

〉 = x′(uF)T = x′FTuT = 〈x′FT,u
〉
. (35)

Thus, we construct the vector v = x′FT that fulfills the requirement. On the other hand,
the uniqueness is obvious. �

Before we continue to go deeper into the details of the attack, we will now try to
illustrate how the subspace hypothesis test is performed. Consider the following.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
...

∗
y′
i∗
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎛
⎜⎜⎜⎜⎜⎜⎝

x ′
1
...

x ′
k′′
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

T

︸ ︷︷ ︸
Secret x′

1

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ g′
1 ∗

...
...

...

∗ g′
k′′ ∗
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Query matrix

=

⎛
⎜⎜⎜⎜⎜⎜⎝

x ′
1
...

x ′
k′′
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

T⎛
⎜⎜⎜⎜⎜⎜⎝

∗ (uF + e′
i )1 ∗

...
...

...

∗ (uF + e′
i )k′′ ∗

0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Rewrite g′
i as codeword ci = uF and discrepancy e′i

As a next step, we can separate the discrepancy e′
i from u′F, which yields

⎛
⎜⎜⎜⎜⎜⎜⎝

x ′
1
...

x ′
k′′
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

T⎛
⎜⎜⎜⎜⎜⎜⎝

∗ ∗ (uF)1 ∗
...

...
...

...

∗ ∗ (uF)k′′ ∗
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
...

∗
y′
i + 〈x′

1, e
′
i

〉
∗
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

We now see that the dimension of the problem has been reduced, i.e., x′
1F

T ∈ F
l
2, where

l < k′′. A simple transformation yields

⎛
⎜⎜⎜⎜⎜⎜⎝

(x′
1F

T)1
...

(x′
1F

T)l
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

T⎛
⎜⎜⎜⎜⎜⎜⎝

∗ ∗ u1 ∗
...

...
...

...

∗ ∗ ul ∗
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
...

∗
y′
i + 〈x′

1, e
′
i

〉
∗
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.
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Since wH
(
e′
i

) ≤ dC and wH
(
x′
i

) ≈ η · k′′ , the contribution from
〈
x′
1, e

′
i

〉
is small. Note

that e′
i is the error from the above procedure, and that we did not include the error from

the oracle and the merging procedure. Recall that the sequence received from oracle is
zi = yi + ei , that after merging the columns of G becomes z′i = y′

i + ẽi . All things
considered (all sources of error piled on the sequence), we have

z′i + 〈x′, ei
〉 = yi + ẽi + 〈x′

1, e
′
i

〉
. (36)

Given the candidate v,G(v) is the difference between the number of predicted 0’s and
the number of predicted 1’s for the bit ẽi + 〈x′, e′

i

〉
. Assume that

〈
x′
1, e

′
i

〉
will contribute

to a noise with bias no smaller then εset . If v is the correct guess, then it is Bernoulli
distributed with noise parameter

1

2
·
(
1 + ε2

t · εset

)
; (37)

otherwise, it is considered random.Thus, the best candidate vopt is the one thatmaximizes
the absolute value of G(v), i.e.,

vopt = arg max
v∈Fl2

|G(v)|, (38)

and we need approximately

4 ln 2 · l
(ε2

t · εset )2
. (39)

samples9 to distinguish these two cases.
Note that a false positive can be recognized without much cost. If the distinguisher

fails, we then choose another permutation to run the algorithm again. The procedure will
continue until we find the secret vector x.
We use the fastWalsh–Hadamard transform technique to accelerate the distinguishing

step. As the hypothesis testing runs for every guess of x′
2, the overall complexity of this

step is

C5
def= l · 2l ·

w0∑
i=0

(
k′ − k′′

i

)
. (40)

6. Analysis

In the previous section, we already indicated the complexity of each step. We now put it
together in a single complexity estimate.Wefirst formulate the formula for the possibility

9This estimation follows results from linear cryptanalysis [8,30]. In the proceeding’s version [16], we use
a too optimistic estimation on the required number of samples, i.e., using a constant factor before the term 1

ε2
.

This rough estimation also appears in some previous work.
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of having at mostw errors in j positions P(w, j), which follows a binomial distribution,
i.e.,

P(w, j)
def=

w∑
i=0

(
j

i

)
(1 − η) j−i · ηi . (41)

The complexity consists of three parts:

– Inner complexity The complexity of each step in the algorithm, i.e.,

Cone−i ter = C ′
1 + C2 + C3 + C4 + C5. (42)

These steps will be performed every iteration.
– Guessing The probability of making a correct guess on the weight of x′

2, i.e.,

Pguess
def= Pr

[
wH
(
x′
2

) ≤ w0
] = P(w0, k

′ − k′′). (43)

– Testing The probability that the constraint on the bias level introduced by coding
(i.e., no smaller than εset ) is fulfilled, denoted by Ptest.

The success probability in one iteration is P(w0, k′ −k′′) · Ptest. The presented algorithm
is of the Las Vegas type, and in each iteration, the complexity accumulates step by step.
Hence, the following theorem is revealed.

Theorem 1. (The complexity of Algorithm 2) Let n be the number of samples required
anda, b, t, k′′, l, w0, εset be algorithmparameters. For theLPN instancewith parameter
(k, η), the number of bit operations required for a successful run of the new attack,
denoted C∗(a, b, t, k′′, l, w0, εset ), is equal to

P−1
guess · P−1

test ·
{
k · n · a + (k + 1) · t · n

+
w0∑
i=0

(
k′ − k′′

i

)
(m · i + l · 2l) + (k′′ − l) · (2m + 2l)

}
,

(44)

under the condition that

m ≥ 4 ln 2 · l
(ε2

t · εset )2
, (45)

where m = n − t2b in the LF1 setting and m = n = 3 · 2b in the LF2 setting.10

Proof. The complexity of one iteration is given by C ′
1 + C2 + C3 + C4 + C5. The

expected number of iterations is the inverse of Pguess · Ptest. Substituting the formulas

10The accurate value of m should be n − k′ − t2b in the LF1 setting and n − k′ in the LF2 setting. We take
this approximation as k′ is negligible compared with n.
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into the above will complete the proof. Condition (45) ensures that we have enough
samples to determine the correct guess with high probability. �

The remaining part is to calculate the value of Ptest, which is determined by the
employed code.

6.1. Bias from a Single Perfect Code

Ifwe use a length k′′ perfect code11 with covering radius dC , the bias ε′ in e′
i is determined

by the following lemma.12

Proposition 1. (Bias from covering code [31]) If the covering code F has an optimal
covering radius, then the probability PrwH(x′

1)=c

[〈
x′
1, e

′
i

〉 = 1
]
is given by

ϕ(c)
def= |B2(k

′′, dC )|−1 ·
min(c,dC )∑

i odd

(
c

i

)
· |B2(k

′′ − c, dC − i)| (46)

where k′′ is the dimension of x′
1 and dC is the covering radius. Thus, the computed bias

ε(c) conditioned on the weight of x′
1 is

ε(c) = 1 − 2ϕ(c). (47)

Proof. Let the c nonzero positions of x′
1 represent a set of bins and the k′′ − c zero

positions another set of bins.

� � · · · �︸ ︷︷ ︸
c

∣∣∣∣ � � � � · · · �︸ ︷︷ ︸
k′′−c

Assume that a bin contains at most one ball. If there is an odd number of balls in the c
bins, then

〈
x′
1, e

′
i

〉 = 1. Suppose that there are i balls. Then, there are
(c
i

)
ways to arrange

the balls within those bins. In total, we may place up to j
def= min(c, dC ) balls, so there

remains up to j − i balls to be placed in the other set of k′′ − c bins, which counts to
|B2(k′′ − c, dC − i)| possibilities. The summation includes all odd i . �

The bias function ε(c) is monotonically decreasing. If we preset a bias level εset , all
the possible x′

1 with weight no more than c0 will be distinguished successfully, where
c0 = min{c|ε(c) ≥ εset }. We can then present a lower bound on Ptest, i.e.,

Ptest = P(c0, k
′′).

11In the sequel, we assume that when the code length is relatively large, it is reasonable to approximate a
perfect code by a random liner code. We replace the covering radius by the sphere-covering bound to estimate

the expected distance d, i.e., d is the smallest integer, s.t.
∑d

i=0
(k′′
i
) ≥ 2k

′′−l . We give more explanation in
Sect. 9.

12We would like to thank Sonia Bogos and Serge Vaudenay for pointing out this accurate bias computation.
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Note that this estimation lower bounds the success probability, which is higher in
practice as the distinguisher will still succeed with certain probability even if the bias
level introduced by coding is smaller than the one we set. We can also make use of
the list-decoding idea to increase the success probability by keeping a small list of
candidates.

6.2. The Concatenated Construction

Until now, we have only considered to use a single code for the covering code part. In
some cases, performing syndromedecodingmaybe too expensive for optimal parameters
and to overcome this, we need to use a concatenated code construction. As an example,
we will illustrate the complexity estimation for the concatenation of two codes, which
is the optimal code construction for solving several LPN instances.
As in the previous case, we set an explicit lower bound on the bias ε′ ≥ εset introduced

from the covering code part, which is attained only by a certain set Eεset of (good) error
patterns in the secret. For a concatenation of two codes, we have divided the vector into
two parts

x′
1 = (x̄1 x̄2

)
(48)

and hence,

e′
i =

(
ē(1)
i ē(2)

i

)
. (49)

The noise
〈
x′
1, e

′
i

〉
can be rewritten as

〈
x′
1, e

′
i

〉 =
〈
x̄1, ē

(1)
i

〉
+
〈
x̄2, ē

(2)
i

〉
, (50)

which implies that the bias ε′ = ε1ε2, where ε1 (ε2) is the bias introduced by the first
(second) code and can be computed by Proposition 1. We then determine all the (good)
error patterns Eεset in the secret such that the bias ε′ ≥ εset .

We can write the success probability Ptest
def= Pr

[
x′
1 ∈ Eεset

]
as

∑
(x̄1 x̄2)∈Eεset

ηk
′′/2−wH(x̄1)(1 − η)wH(x̄1) · ηk

′′/2−wH(x̄2)(1 − η)wH(x̄2). (51)

We could expect that the algorithm works slightly better in practice, as we discussed
before in Sect. 6.1.
The complexity C4 changes to that in the concatenated code case which we denote by

C ′
4, and the pre-computation of the syndrome tables has a lowered complexity since the

codes are smaller and can be treated separately. Since the pre-computation complexity

O
(
k′′ · 2k′′/2−l/2

)
must be less13 or match the total attacking complexity, the lowered

13We could make this cost negligible compared with the total complexity.



26 Q. Guo et al.

Table 2. The bias from a [3,1] repetition code.

wCi ε

0 1
1 1

2
2 0
3 − 1

2

time complexity allows for looser constraints on the algorithm parameters. Apart from
these differences, the complexity expression is the same as that for the non-concatenated
construction.
It is straight-forward to extend the above analysis to a concatenation of multiple linear

codes. As before, we choose to preset a lower bound εset for the bias and derive a formula
to estimate the probability of all the good error patterns in the secret. This type of analysis
has actually been done in the toy example from Sect. 4.1.

Example 1. In this toy example from Sect. 4.1, we concatenate 25 [3, 1] repetition
codes Ci , for 1 ≤ i ≤ 25. For each code Ci , we know that the corresponding bias ε is
related to the Hamming weight wCi of the associated subvector of the secret (as shown
in Table 2). In Sect. 4.1, we set the bound for the bias εset to be 2−6 and then obtain the
success probability14 in (12).

7. Results

We now present numerical results of the new algorithm attacking three key LPN in-
stances, as shown in Table 3. All aiming for achieving 80-bit security, the first one is
with parameter (512, 1

8 ), widely accepted in various LPN-based cryptosystems (e.g.,
HB+ [22], HB# [13], LPN-C [14]) after the suggestion from Levieil and Fouque [29];
the second one is with increased length (532, 1

8 ), adopted as the parameter of the irre-
ducible Ring-LPN instance employed in Lapin [20]; and the last one is a new design
parameter15 we recommend to use in the future. The attacking details on different pro-
tocols will be given later. We note that the new algorithm has significance not only
on the above applications but also on some LPN-based cryptosystems without explicit
parameter settings (e.g., [10,24]).

7.1. HB+

Levieil and Fouque [29] proposed an active attack on HB+ by choosing the random
vector a from the reader to be 0. To achieve 80-bit security, they suggested to adjust
the lengths of secret keys to 80 and 512, respectively, instead of being both 224. Its

14When calculating the success probability in (12), we ignore the probability that a nonzero even number
of concatenations have wCi = 3, since these events are so rare.

15This instance requires 281 bit memory using the new algorithm and could withstand all existing attacks
on the security level of 280 bit operations.
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Table 3. The complexity for solving different LPN instances in the LF2 setting.

LPN instance Parameters log2 C
∗

t a b l k′′ w0 − log2(εset ) log2 n

(512, 1
8 ) 5 4 62 60 180 2 14.78 63.6 79.64

(532, 1
8 ) 5 4 64 62 194 1 15.81 65.6 82.01

(592, 1
8 ) 5 5 70 66 206 2 18.75 71.6 89.38

security is based on the assumption that the LPN instance with parameter (512, 1
8 ) can

resist attacks in 280 bit operations. But we solve this instance in 279.64 bit operations,
indicating that the old parameters are insufficient to achieve 80-bit security.

7.2. LPN-C and HB#

Using similar structures, Gilbert et al. proposed two different cryptosystems, one for
authentication (HB#) and the other for encryption (LPN-C). By setting the random
vector from the reader and the message vector to be both 0, we obtain an active attack on
HB# authentication protocol and a chosen-plaintext-attack on LPN-C, respectively. As
their protocols consist of both secure version (random-HB# and LPN-C) and efficient
version (HB# and Toeplitz LPN-C), we need to analyze them separately.

7.2.1. Using Toeplitz Matrices

Toeplitz matrix is a matrix in which each ascending diagonal from left to right is a
constant. Thus, when employing a Toeplitz matrix as the secret, if we attack its first
column successively, then only one bit in its second column is unknown. So the problem
is transformed to that of solving a new LPN instance with parameter (1, 1

8 ). We then
deduce the third column, the fourth column, and so forth. The typical parameter settings
of the number of the columns (denoted by m) are 441 for HB#, and 80 (or 160) for
Toeplitz LPN-C. In either case, the cost for determining the vectors except for the first
column is bounded by 240, negligible compared with that of attacking one (512, 1

8 ) LPN
instance. Therefore, for achieving the security of 80 bits, these efficient versions that use
Toeplitz matrices should use a larger LPN instance.

7.2.2. Random Matrix Case

If the secret matrix is chosen totally at random, then there is no simple connection
between different columns to exploit. One strategy is to attack column by column,
thereby deriving an algorithm whose complexity is that of attacking a (512, 1

8 ) LPN
instance multiplied by the number of the columns. That is, if m = 441, then the overall
complexity is about 288.4. We may slightly improve the attack by exploiting that the
different columns share the same random vector in each round.
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7.3. Lapin with an Irreducible Polynomial

Heyse et al. [20] use a (532, 1
8 ) Ring-LPN instance with an irreducible polynomial16 to

achieve 80-bit security. We show here that this parameter setting is not secure enough
for Lapin to thwart attacks on the level of 280. Although the new attack on a (532, 1

8 )

LPN instance requires approximately 282 bit operations, larger than 280, there are two
key issues to consider:

– Ring-LPN is believed to be no harder than the standard LPN problem. For the
instance in Lapin using a quotient ring modulo the irreducible polynomial x532 +
x + 1, it is possible to optimize the procedure by further taking advantage of the
ring structure, thereby resulting in a more efficient attack than the generic one.

– The definition of bit complexity here poorly characterizes the actual computational
hardness as the computer can parallel many bit operations in one clock cycle. We
believe that a better definition should be a vectorized version, i.e., defining the
“atomic” operation as the addition or multiplication between two 64 (or 128)-bit
vectors. The refined definition is a counterpart of that in the Advanced Encryption
Standard (AES), where 80-bit security means that we can perform 280 AES en-
cryptions, not just bit operations. If we adopt this vectorized security definition, the
considered Lapin instance is far away from achieving 80-bit security.

We suggest to increase the size of the employed irreducible polynomial in Lapin for
80-bit security.

8. Experiments

We show the experimental results in this part, using a [46, 24] linear code that is a
concatenation of two binary [23, 12] Golay codes17 for the subspace hypothesis testing
procedure.

8.1. Validation of Success Rates

Starting with 225.6 LPN samples, we run two groups of simulations with k equal to 142
and 166, respectively. The noise rate η varies to achieve a reasonable success probability.
We perform 4 BKW steps with size 24 for the prior and include one more step for the
latter. Moreover, we stick to the LF2 type reduction steps for a better performance.
The comparison between the simulation results and their theoretical counterparts is

shown in Table 4. The simulated values are obtained by running about 200 trials for each
LPN instance. Meanwhile, as we always keep about 225.6 samples after each reduction
step, the number of samples for the statistical testing procedure is also approximately

16The Lapin instantiation with a reducible polynomial designed for 80-bit security has been broken within
about 271 bit operations in [17].

17Binary [23, 12] Golay codes are perfect codes with optimal covering property. The concatenation of two
Golay codes can produce a larger linear code with fairly good covering property and also efficient decoding.
Moreover, the implementation of Golay codes is simple and well studied.
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Table 4. Success probability in simulation v.s. in theory.

η (k = 166) 0.070 0.075 0.080 0.085 0.090

Simulation results 0.982 0.896 0.783 0.546 0.286
Theoretical estimation 0.959 0.872 0.694 0.443 0.265

η (k = 142) 0.115 0.125 0.135 0.145 0.155

Simulation results 0.928 0.780 0.570 0.345 0.117
Theoretical estimation 0.904 0.772 0.538 0.277 0.060

Fig. 4. Fine-grained success probability comparison .

225.6. Thus, we can compute the theoretical success probabilities according to Proposi-
tion 1, Equations (39) and (51).
We conclude from Table 4 that the adopted theoretical estimation is a conservative

estimation as discussed in Sect. 6.1, since the simulation results are almost always better
than the theoretical ones. On the other hand, the theoretical predictions are fairly close
to our experimental results. This understanding is further consolidated in Fig. 4 plotting
the success probability comparison with fine-grained choices of the noise rate η and
more accurate simulated probabilities, i.e., we run 1000 tries for each LPN instance.

8.2. The Largest Instance

We solve the (136, 1
4 ) LPN instance in 12 h on average using one thread of a server

with Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz and 256 GB of RAM. This solved
instance is slightly larger than the (135, 1

4 ) one reported in [12] requiring 64-thread
parallel computating of 13.84 days by using theWell-Pooled MMT algorithm and 5.69
days by using the Hybrid algorithm,18 on a server with 256 GB of RAM. Though it is
tricky to compare implementations of different types of algorithms, our results support
that the BKW variants are more efficient when the noise rate η is high.

In the implementation, we ask the LPN oracle for around 231.6 samples and then
perform three LF2 type BKW steps with size 30. After this step, we have zeroed out

18The Well-Pooled MMT algorithm is an ISD variant and the Hybrid algorithm combines solving ideas
from ISD and BKW.
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90 positions and do the subspace hypothesis testing on the remaining 46 positions via
employing a concatenation of two [23, 12]Golay codes.We run12 trails in approximately
48 h and succeed 4 times.

9. More on the Covering-Coding Method

In this section, we describe more aspects of the covering-coding technique, thus empha-
sizing the most novel and essential step in the new algorithm.

9.1. Sphere-Covering Bound

We use sphere-covering bound to estimate the bias ε′ contributed by the new technique
for two reasons. Firstly, there is a well-known conjecture [7] in coding theory that the
covering density approaches 1 asymptotically if the code length goes to infinity. Thus,
it is sensible to assume that the linear code has a good covering radius, when the code
length k′′ is relatively large. Secondly, we could see from the previous example that the
desired key feature is a linear code with low average error weights, which is smaller
than its covering radius. From this perspective, the covering bound brings us a good
estimation.

9.2. Attacking Public-Key Cryptography

We know various decodable covering codes that could be employed in the new algo-
rithm, e.g., table-based syndrome decodable linear codes, concatenated codes built on
Hamming codes, Golay codes and repetition codes, etc.. For the aimed cryptographic
schemes in this paper, i.e., HB variants, LPN-C, and Lapin with an irreducible poly-
nomial, the first three are efficient, but in the realm of public-key cryptography (e.g.,
schemes proposed by Alekhnovich [2], Damgård and Park [9], Duc and Vaudenay [11]),
the situation alters. For these systems, their security is based on LPN instances with
huge secret length (tens of thousands) and extremely low error probability (less than
half a percent), so due to the competitive average weight of the error vector shown by
the previous example in Sect. 4.1, the concatenation of repetition codes with much lower
rate seems more applicable—by low-rate codes, we remove more bits when using the
covering-coding method.

9.3. Alternative Collision Procedure

Although the covering-coding method is employed only once in the new algorithm, we
could derive numerous variants, and among them, one may find a more efficient attack.
For example, we could replace several steps in the later stage of the collision procedure
by adding two vectors decoded to the same codeword together. This alternative technique
is similar to that invented by Lamberger et al. [27,28] for finding near-collisions of hash
function. By this procedure, we could eliminate more bits in one step at the cost of
increasing the error rate; this is a trade-off, and the concrete parameter setting should be
analyzed more thoroughly later.
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Actually, with the help of this alternative collision idea, a series of recent papers
[1,18,19,26] have greatly reduced the solving complexity of the LWE problem, the q-
ary counterpart of LPN, both asymptotically and concretely. But we failed to find better
attacks when applying this idea to the LPN instances of cryptographic interests in the
proposed authentication protocols and LPN-C, since the noise rates are high. We believe
that this idea could be useful when the noise is relatively small and leave this problem
as an interesting scope for future research.

10. Conclusions

In this paper, we have described a new algorithm for solving the LPN problem that
employs an approximation technique using covering codes together with a subspace
hypothesis testing technique to determine the value of linear combinations of the secret
bits. Complexity estimates show that the algorithm beats all the previous approaches,
and in particular, we can present academic attacks on instances of LPN that has been
suggested in different cryptographic primitives.
There are a few obvious improvements for this new technique, one being the use of

strong distinguishers and another one being the use of more powerful constructions of
good codes. There are also various modified versions that need to be further investigated.
One such idea as described in Sect. 9.3 is to use the new technique inside a BKW
step, thereby removing more bits in each step at the expense of introducing another
contribution to the bias. An interesting open problem is whether these ideas can improve
the asymptotic behavior of the BKW algorithm.
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