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1. Introduction 

Growth and development are pivotal outcomes for children. Child growth and 

development reflect an image of the individual’s health status [1]. Moreover, it is also 

recognized as an indicator for health system performance, nutritional status and health 

in populations [1, 2]. The periods before pregnancy, during pregnancy and early 

childhood are suggested to be critical for growth and development [3], having 

profound influence on the individual’s later development [4-6]. Sub-optimal child 

growth is associated with an increased risk of morbidities and mortality [7, 8], thus 

having a huge impact on the development of society and countries as a whole. Today, 

malnutrition constitutes a considerable part of the burden of disease in the world, 

especially affecting low- and middle-income countries [9, 10]. 

Malnutrition is one of the common risk factors for many leading causes of deaths 

among the under-5 children, contributing to more than 45% of deaths among them 

[11]. The UN sustainable development goals (SDGs) were negotiated internationally 

keeping in view the interests of low- and middle-income countries at the full-term of 

the Millennium Development Goals in 2015 with an aim to transform the world. SDG 

2 “to end hunger, achieve food security and improved nutrition, and promote sustainable 

agriculture” was adopted recognizing the importance of nutrition for optimal growth 

and development, with target 2.2 as “to end all forms of malnutrition” by 2030 [12]. 

Further, this emphasis was taken forward by the UN Decade of Action on Nutrition 

2016-2025, adopted by UN member states with a commitment to undertake 10 years of 

sustained and coherent implementation of policies, programs and increased 

investments to achieve SDG target 2.2, everywhere, leaving no one behind [13]. 

This introduction includes a section on malnutrition, describing common indices used 

to assess its various forms along with outlining their related consequences. To 

complete this section, the burden of malnutrition is described and an overview over 

important determinants of malnutrition with help of a conceptual framework for 
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optimal growth is presented. In section 1.2, the importance of amino acids is 

summarized concentering focus on cysteine, its metabolic pathways and its role 

during the periods of pregnancy and child growth. In this thesis, the use of term ‘child 

growth’ and its related concepts are restricted to children under 5 years of age.  

1.1 Malnutrition 

Malnutrition can be defined as a physical condition in which the body does not receive 

adequate amount of nutrients for its proper functioning [14]. It can be result of an 

improper diet, or from physical incapability to assimilate or metabolize nutrients [15]. 

Malnutrition manifests itself in many forms. One is ‘undernutrition’ – which includes 

stunting (low height-for-age), wasting (low weight-for-height), underweight (low 

weight-for-age) and micronutrient deficiencies or insufficiencies. The other is 

overweight and obesity. Suboptimal diet is a common cause of malnutrition across all 

its forms [16]. In this thesis, I use the terms ‘malnutrition’ and ‘undernutrition’ 

interchangeably and do not consider overweight and obesity. 

1.1.1 Assessment of malnutrition and its related consequences 

Stunting 

The indices used to describe stunting are based on length-for-age (for birth to 2 years) 

or height-for-age (for 2 to 5 years) [2, 17]. Children are defined as stunted if their 

length/height is at least two standard deviations lower than the average for their age 

in a reference distribution. Stunting is commonly classified as moderate when Z-score 

is ≤ -2 and severe when the Z-score is ≤ -3. It is described as a form of growth failure 

which develops over a long period of time in children when grown with limited access 

to food, health and care. Thus, it is also referred as ‘chronic malnutrition’ [9]. However, 

the process of stunting can start immediately after acute nutrient stress, with physical 

signs of stunting becoming noticeable several months later [18].  
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Stunting is often found to be associated with short term consequences impacting on 

the child’s health and long term consequences such as delayed mental development, 

poor school performance, and reduced intellectual capacity, which in turn affects 

economic productivity [4-6]. Stunted mothers are at greater risk for obstetric 

complications because of a smaller pelvis, increasing the risk of perinatal and neonatal 

deaths [1]. Small statured/malnourished mothers are at greater risk of delivering 

infants with low birth weight, contributing to the intergenerational cycle of stunting, 

as infants born with low birth weight to malnourished mothers tend to be 

smaller/malnourished as adults who later become small statured/malnourished 

mothers to stunted infants [1, 19].  

Wasting 

The nutritional indices commonly used to describe wasting are based on weight-for-

length (for children < 2 years) or weight-for-height (for children 2 to 5 years) [2, 17]. 

Children are defined as wasted if their weight-for-length/height is at least two 

standard deviations below a reference distribution. Wasting is commonly classified as 

moderate when Z-score is ≤ -2 and severe when the Z-score is ≤ -3. It is characterized 

by a rapid deterioration in nutritional status over a short period of time which can be 

due to acute food shortages or disease. Thus, it is also referred as ‘acute malnutrition’ 

[1, 9]. However, studies have shown that both moderate and severe wasting can last 

for several months/years if untreated [20, 21].  

Wasting often jeopardizes the immune system performance and can trail to increased 

severity, duration and receptivity to infectious diseases [1]. These infections 

potentially can result in loss of appetite, thus confirming a cyclical relationship 

between infection and wasting, further increasing vulnerability to death [22].  

Evidence found in the studies by Golden [18], Garenne et al. [20] and Isanaka et al. [21] 

do not relate wasting and stunting to the usual meaning of terms “acute” and 

“chronic”, respectively. Moreover, the co-occurrence of wasting and stunting in the 
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same child is also identified in many children across the world. Thus, the terms ‘acute’ 

and ‘chronic’ malnutrition for wasting and stunting respectively, have recently been 

argued to be misleading [8]. 

Underweight 

The index used to define underweight is based on weight-for-age [2, 17]. However, 

weight-for-age Z-scores are not able to differentiate between wasting and stunting 

[23]. Children are defined as underweight if their weight is at least two standard 

deviations below a reference distribution of the same age and sex. The mortality risk 

is evinced to be high in mildly underweight children and even higher in severely 

underweight children [1].        

Birth weight has been another commonly used index. Low birth weight (LBW) has 

been defined as weight at birth < 2500 grams (5.5 pounds), regardless of gestational 

age. Further, birth weight < 1500 grams is categorized as very low birth weight (VLBW) 

and < 1000 grams as extremely low birth weight (ELBW) [24]. LBW is closely related 

with fetal and neonatal mortality and morbidity, suppressed cognitive growth and 

development, and chronic diseases in adulthood [1].   

Micronutrient deficiencies 

Micronutrient deficiency is a suboptimal nutritional status, developed as a result of 

inadequate dietary intake or absorption, or higher physiological needs of one or more 

vitamins and/or minerals [9]. Micronutrient status is examined by biochemical 

assessment of blood/urine sample(s) in the laboratory or by clinical examination [1]. 

Although any individual can experience micronutrient deficiency, pregnant women 

and children are at high risk because pregnancy and childhood development often 

increase the demand for specific vitamins and/or minerals [25]. 

Deficiency of micronutrients may cause poor physical and mental development in 

children, vulnerability or exacerbation of a disease, mental retardation, blindness and 
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general loss in productivity and potential [25]. Keeping these human consequences in 

mind, communities worldwide have focused on several micronutrients including iron, 

zinc, vitamin A, folate and iodine, as these may be difficult to satisfy without diverse 

diets [26-29]. However, the reviews by Ramakrishnan et al. [27] and Mayo-Wilson et al. 

[29] have found small positive effects of zinc supplementation only on wasting status 

in children under 5 years and on linear growth in children aged 6 months to 12 years, 

respectively. 

1.1.2 Prevalence of malnutrition  

Malnutrition is a universal problem holding back development with inadmissible 

human consequences. According to the latest reports, 149.0 million children under 5 

years are stunted (21.9% of under-5 children) and 49.5 million are wasted (7.3% of 

under-5 children) worldwide [10]. Moreover, there is evidence shown by Richard et al. 

[30] and Schoenbuchner et al. [31] that children who are wasted are more likely to 

become stunted and children who are stunted are more likely to become wasted. 

Globally, 15.95 million children under 5 years (3.62% of under-5 children) are both 

stunted and wasted [32]. Annually, 20.5 million babies are born low birth weight [10] 

and more than 2 billion people suffer from micronutrient deficiency worldwide [9].  

The prevalence of stunting and wasting among children under 5 years is found to be 

the highest in South Asia (33.3% and 15.3%, respectively) [9, 32]. In the 1990s, Nepal 

had some of the highest levels of undernutrition globally, with almost two-thirds of 

under-5 children being stunted. The prevalence of stunting among under-5 children in 

Nepal has markedly decreased, from 57% in 1996 to 36% in 2016, indicating decline of 

14%, 16% and 12% between the periods 2001-2006, 2006-2011 and 2011-2016, 

respectively [33]. However, the decline in the prevalence of wasting during the same 

period was minimal, with 10% of children under-5 being wasted according to Nepal 

Demographic and Health Surveys (NDHS) – 2016 [33].  
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During states of deficit in caloric intake, different physiological adjustments take place 

in the body by utilizing body’s nutritional reserves, mainly fat and muscle stores, to 

ensure adequate fuel supply for survival [34]. Wasting and stunting if untreated, are 

associated with a decrease in muscle and fat mass, which if severe, compromise the 

adequate fuel supply to vital organs of the body and further lead to death [8]. Estimates 

have shown that among the 5.3 million under-5 deaths annually [10], over one million 

deaths are attributable to stunting and approx. 800 000 deaths to wasting [35, 36]. The 

risk of death increases as a child becomes more wasted and the same is true for 

stunting. Results from a meta-analysis done by McDonald et al. [7] showed 1.5, 2.3 and 

2.5 times increased risk of mortality being stunted, wasted and underweight, 

respectively, compared to the group of children without deficits. Severe wasting and 

severe stunting carried a 12 times and 5 times higher risk of death respectively, 

compared to non-wasted or stunted child [36]. It also concluded that risk of mortality 

increases significantly even further if two or more anthropometric deficits are present 

in same child [7].    

The World Health Assembly (WHA) Global Nutrition Targets 2025 endorsed by the 

world’s governments, including one to reduce the number of stunted children under 

5 years by 40% (i.e. to reduce the number to 100 million) by 2025 and another to reduce 

and maintain childhood wasting to less than 5% along with reducing number of 

infants born with weight lower than 2500 grams by 30% by 2025, have been enshrined 

within SDG 2, target 2.2 [37, 38]. Despite the efforts, there has been some progress in 

reducing malnutrition, but it has been too slow to meet the WHA targets set for 2025 

and the SGD targets set for 2030. According to reports, the required average annual 

rate of reduction (AARR) of stunting is 3.9% for reaching the WHA target by 2025 [39] 

compared to 2.2%, the current AARR [10]. The global prevalence for wasting was 7.3% 

in 2018, compared to 7.9% in 2012, indicating negligible progress towards the 5% WHA 

target by 2025 [10]. Thus, in aggregate, the global burden of malnutrition has been 

unsatisfactorily high, and progress unsatisfactorily low. 
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1.1.3 Determinants of malnutrition  

In 1991, UNICEF first published a conceptual framework summarizing the main 

determinants of malnutrition, which describes them on three different levels 

emphasizing the multi-sectoral nature of malnutrition problem. The three levels 

include – immediate, underlying and basic causes. The framework was adapted 

further in the Lancet series 2013, with addition of possible interventions at various 

levels [5] (Figure 1). On the immediate level, inadequate dietary intake and disease 

burden are recognized as the main determinants of malnutrition. These are described 

as results of underlying causes, which are grouped as access to food (food security), 

feeding and care giving resources, and access to health care and a healthy 

environment. Further, these underlying causes are influenced by basic causes of 

malnutrition, which relate to wider political, social, economic and cultural constructs 

[5, 40].  

 

Figure 1: Conceptual framework for determinants of child malnutrition, reproduced from Black et al. [5] 

with permission from Elsevier 

Factors that directly contribute towards stunted growth and development include 

poor maternal health and nutrition, inadequate infant and young child feeding 
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practices, and infections. The maternal specific factors contributing to stunting include 

intrauterine growth restriction (IUGR) and small stature due to maternal 

undernutrition along with short birth spacing and adolescent pregnancy [41-43]. 

Wasting is usually a direct result of a combination of infection and nutritionally 

inadequate diets with the main underlying causes include – poor access to appropriate, 

timely and affordable health care, inadequate caring and feeding practices, lack of food 

security both in terms of food quantity and diversity, and lack of a sanitary 

environment [22].    

It is noted that the process underlying wasting and stunting involves multiple 

common risk factors and the interactions between these risk factors can change over 

time [44]. Many of the determinants of wasting and stunting are the same [45], but they 

may vary in combination and magnitude, leading to different trends [44]. In addition, 

findings showed that periods of being wasted, or having fluctuating weight, increase 

the risk of becoming stunted later [30, 31]. Other findings indicate that during a period 

of being treated for severe wasting, child growth in height slows down until their 

weight has recovered [46]. This pattern was also described in relation to seasonality 

[44]. However, causal pathways for a direct link between wasting and stunting have 

not yet been fully understood [8].  

An analysis examining the drivers of maternal and child nutrition success from the 

mid-1990s to 2010s in Nepal by Cunningham et al. [47], showed that the success is 

result of various nutrition-specific and nutrition-sensitive interventions. The 

improvements in length-for-age Z-score (LAZ) among children under 2 years in Nepal 

have been sustained over the entire 1996-2011 period and were associated with 4 or 

more antenatal care (ANC) visits, child born in health facility and child being 

vaccinated, followed by an asset index, maternal education and toilet use. The 

improvements of weight-for-height Z-score (WHZ) for children under 5 years were 

not rapid during 1996-2011, where toilet use was a much more important factor, 
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followed by 4 or more ANC visits, child born in health facility, child being vaccinated 

and the asset index [47]. 

Evidence from several studies has led to the agreement that most stunting happens 

during the first 1000 days - starting from conception up to the 2nd birthday of the child 

[3, 5], although stunting can still happen after the first two years of life [48]. Moreover, 

a significant proportion (20-30%) of wasting and stunting is found to originate in utero, 

emphasizing the importance of maternal health before and during pregnancy for the 

prevention of wasting and stunting [44]. This accentuates that the nutritional status of 

pregnant women is not only relevant for her own health, but also has important 

consequences for the growth and development of her fetus/child.  

1.2 Amino acids 

A diverse diet is a key to meet the requirements for all necessary nutrients, especially 

among vulnerable populations such as growing children and pregnant women [25]. 

Macronutrients, which include carbohydrates, proteins and fats, are consumed in large 

but varied proportions across different populations. Since cereal, rice and cassava 

(poor in protein content) are less expensive than food commodities rich in proteins 

(like pulses, beans, meat, fish, dairy, nuts), poorer households tend to usually have a 

more monotonous cereal and/or rice based diet lacking dietary diversity required to 

meet adequate requirements [49, 50]. Research has been carried out to explore the role 

of macronutrients and its precursors in child growth. High quality protein intake has 

been shown to promote child growth with a suggested pathway via insulin-like 

growth factor - 1 (IGF - 1) production [51] and stunting has been reported as a 

manifestation of protein deficiency [52(p.512), 53]. 

Amino acids (AAs) are the building blocks of proteins. During the anabolic process of 

growth, there is a net deposition of proteins, despite an increased rate of both protein 

synthesis and breakdown. Large quantities of broken-down proteins get reused for its 

own synthesis. This process is not completely efficient, which makes AAs in diet 
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crucial [54]. Moreover, deficiency of AAs has found to suppress cell and organismal 

growth via the mechanistic target of rapamycin complex 1 (mTORC1) sensing 

pathway [55]. 

AAs have traditionally been categorized as nutritionally essential AAs (EAAs) or non-

essential AAs (NEAAs) in humans. EAAs are defined as either those AAs whose 

carbon skeletons cannot be synthesized de novo in humans or those that normally are 

insufficiently synthesized de novo relative to its various needs for growth in humans. 

In contrast, NEAAs are those AAs which are produced de novo in adequate amounts 

to meet the various requirements in humans and which do not need to be provided in 

the diet [56]. Some NEAAs are considered conditionally essential in specific situations 

like in preterm infants, during periods of rapid growth [57], and in states of catabolic 

stress [58-60], thus considering them as semi-EAAs. 

With the categorization based on nitrogen balance and protein synthesis, listed EAAs 

are histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, 

tryptophan and valine. NEAAs are listed as alanine, arginine, asparagine, aspartate, 

cysteine, glutamate, glutamine, glycine, proline, serine, taurine, and tyrosine [56, 61]. 

It is reported that cysteine [57, 62, 63], tyrosine [63], arginine and taurine [54, 64] are 

semi-EAAs in infants. It is also found that infants while being in the period of rapid 

growth require greater amounts of EAAs than healthy adults [65]. 

Wu et al. [66] argued that AAs should be classified as EAAs or NEAAs not only based 

on the nitrogen balance, but that functional needs for AAs should be included as a 

major criterion. Until lately, the concept of ‘nutritional non-essentiality’ and an 

incomplete understanding of AA biochemistry, nutrition, and physiology has led to 

the ignorance of the importance of NEAAs in the practice of nutrition [56]. This 

argument by Wu et al. [66] found support from evidence shown in healthy adults by 

Meléndez-Hevia et al. [67] and in preterm infants by Sevastiadou et al. [68], proving 

that endogenous synthesis of NEAAs was insufficient to meet physiological needs. 
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This new nutritional concept of functional AAs, which is defined as those AAs that 

participate in and regulate key metabolic pathways in humans [69], has led to the 

recognition of dietary essentiality of nutritional NEAAs [70].   

1.2.1 Cysteine  

Cysteine is a proteinogenic sulfur-containing AA. The presence of sulfur makes 

cysteine to form disulfide linkages, which in turn control protein structure and 

stability [71]. Free (non-protein bound) cysteine in plasma often exists in homogeneous 

(cystine) or mixed disulfide (homocysteine-cysteine) forms. Plasma cysteine measures 

are often reported as total cysteine which refers to all circulating forms including free, 

disulfide, and albumin-bound cysteine [72]. The cysteine pool is a function of dietary 

intake, protein turnover, and endogenous synthesis. Like other AAs, cysteine is found 

in foods having high protein content i.e. beef, fish, poultry, lentils, dairy and nuts. The 

recommended daily intake of cysteine in adults is 4.1 mg/kg body weight [73]. 

Cysteine, although classified as NEAA as it is synthesized by recycling from 

methionine and serine, is considered to be conditionally EAA for infants [57, 59, 60]. 

Cysteine is synthesized by transsulfuration from homocysteine, a product of the 

essential sulfur AA, methionine. The first transsulfuration reaction is catalyzed by 

cystathionine -synthase where homocysteine condenses with serine to form 

cystathionine, which is further cleaved by cystathionase (or cystathionine -lyase), 

releasing cysteine (Figure 2) [56, 71]. Because of the biochemical immaturity of the 

enzyme cystathionase in fetal liver tissues [57, 62], cysteine is considered conditionally 

EAA in infants. The activity of cystathionase is found to increase postnatally [74].  

Cysteine plays several important functions in the body. Besides its involvement in 

protein synthesis, it is a component of glutathione (having antioxidant properties) and 

a precursor of taurine and sulfate. Because of the antioxidative, anti-inflammatory, 

mucolytic and anti-apoptotic effects, N-acetyl cysteine (NAC) - a supplement of 

cysteine, is being used for the treatment of polycystic ovary syndrome (PCOS), chronic 
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bronchitis, ulcerative colitis, asthma, neurodegenerative disorders (Alzheimer and 

Parkinson disease), and as a prophylactic to prevent premature birth and recurrent 

pregnancy loss [75]. NAC evinced to improve placental functions in various animal 

studies by upregulating placental antioxidant activity and placental growth factors, 

thus preventing placental oxidative stress [76-78]. NAC supplementation showcased 

to ameliorate IUGR in guinea pigs [76] and cadmium-induced fetal growth restriction 

in mice [77]. Also, a recent study demonstrated longitudinal bone growth in mice 

through upregulation of IGF – 1 after supplementing cysteine [79]. 

 

Figure 2: Cysteine - metabolic pathways1 

Since a long time, there has been a controversy regarding the use of cysteine as a 

supplement for premature newborn infants. Snyderman [80] showed that 

 
1 Adapted from: 

1. Brosnan, J.T.; Brosnan, M.E. Sulfur-Containing Amino Acids: An Overview. The Journal of Nutrition 2006, 136, 

1636S-1640S, doi:10.1093/jn/136.6.1636S. 

2. Elshorbagy, A.K.; Smith, A.D.; Kozich, V.; Refsum, H. Cysteine and Obesity. Obesity 2012, 20, 473, 

doi:10.1038/oby.2011.93. 
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supplementing cysteine enterally has positive effects on nitrogen retention and weight 

gain in preterm infants. Pohlandt [81] argued for adding cysteine as a supplement in 

preterm infants receiving total parenteral nutrition by showing that plasma half-

cysteine concentrations did not increase when adequate methionine was provided, 

whereas Zlotkin and team casted a doubt on the essential nature of cysteine by 

observing that infants who received cysteine supplemented to total parenteral 

nutrition failed to retain nitrogen and to gain weight better than those who had not 

received it [82]. Some studies challenged the notion of cysteine being non-essential, 

and supported the findings of Snyderman [80] and Pohlandt [81], indicating very 

limited endogenous synthesis of cysteine from methionine, showing five times lower 

level of plasma cysteine concentrations [83] and higher plasma cystathionine 

concentrations [84] in preterm infants than in term infants.  

On the contrary, a study by Malloy et al. [85] supported the results shown by Zlotkin 

and team. Later, some studies also came up with the same findings as Zlotkin and 

team, using different techniques to determine the requirements of cysteine in LBW 

preterm infants older than 32 weeks of gestation [86, 87]. Also, a study assessing the 

cysteine synthesis in VLBW neonates [88], concluded that cysteine is probably not a 

conditionally EAA in these infants providing their methionine intake is adequate. 

Studies have also highlighted the presence of cystathionase activity in extrahepatic 

tissues (kidneys and adrenals) [74], whose activity by the second trimester is reported 

to reach two-thirds the levels of the mature controls [89]. This strengthens even further 

the evidence provided by Zlotkin and team and suggests that the activity of 

cystathionase is sufficient to produce cysteine even in preterm infants, if provided with 

adequate methionine [82]. 

In addition, a cysteine kinetics study showed a reduced cysteine production because 

of decreased protein breakdown in children with severe childhood undernutrition 

[59], and greater dietary cysteine requirements of children with severe acute 
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malnutrition (SAM), which thus commenced the argument to give cysteine as a 

supplement in children with SAM [60]. 

Küster et al. [90] observed low cysteine levels in mothers for infants born preterm, and 

demonstrated strong correlation between maternal cysteine concentration and 

cysteine (and glutathione) concentration in the offspring. Furthermore, because of 

structural similarity and metabolic linkage to homocysteine, cysteine is suspected to 

cause endothelial dysfunction and thus a risk factor for vascular diseases [91]. Plasma 

cysteine levels were found to strongly associate with cerebrovascular and peripheral 

vascular disease in a U-shaped manner, whereas there was a weak positive association 

of cysteine levels with coronary heart disease [91]. The potential endothelial 

dysfunction of cysteine is further speculated to provoke placental vascular 

dysfunction and thus causing pregnancy-related complications [92]. The findings by 

El-Khairy et al. [93] showcased that high maternal plasma cysteine levels were strongly 

associated with higher risks of pre-eclampsia, premature delivery and LBW. However, 

in this study plasma cysteine levels were measured years after the outcome assessment 

(i.e. pregnancy-related complications), making it difficult to rule out other factors 

affecting this association. Despite the dependence of growing fetus on placental 

circulation for its nutritional needs, the potential transgenerational influence of 

cysteine on growth in infants has not been studied considerably.  
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2. Rationale 

The purpose of this research is to gain a better understanding of the growth of infants 

in relation to the maternal plasma levels of cysteine, which has not been studied 

extensively.  

Stunting, a manifestation of chronic undernutrition, and wasting, a consequence of 

acute undernutrition, have a multidimensional origin and have an impact at the 

individual, community, and national levels in both short- and long-term [6, 94]. The 

recent success of tremendous decrease in the prevalence of stunting among children 

under 2 years in Nepal is the outcome of upturn in access to health services 

(particularly during pregnancy), coverage and use of toilets, levels of education 

(particularly among mothers) and wealth accumulation. However, the improvements 

in terms of adequate dietary intake are still not up to the mark [47]. 

Cunningham et al. [47] emphasized on the scope of improvements in infant and young 

child feeding practices in Nepal. There are still many gaps in knowledge regarding the 

causes of undernutrition, and understanding these gaps are important. The causes 

affecting nutritional status of women which are fundamental for her own health, but 

also closely related to child growth and development have not been geared on 

comprehensively. 

Findings from recent trials on mice [77, 79], guinea pigs [76] and those from El-Khairy 

et al. [93], have raised speculations that transgenerational influence of cysteine can 

prove to be an important component answering some questions related to child 

malnutrition. Moreover, our piece of research is fortunate to have access to data where 

the maternal plasma levels of cysteine (exposure) is measured before the outcome 

assessment (i.e. LBW), which can address one of the limitation of the study by El-

Khairy et al. [93].     
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Leroy et al. [48] found that 70% of the growth deficit among the under-5 children in 

low- and middle-income countries can be attributed to stunting occurring in the first 

1000 days of life. Practices of poor mother’s nutrition before and during the gestational 

period are still prevalent in many low- and middle-income countries and these have 

not given importance to the extent needed. Similarly, the importance of the maternal 

plasma levels of cysteine and its relation to growth in infants is not taken into 

consideration until now. Today, a substantial increase in efforts will be required to 

break the global status of inertia in terms of the prevalence of stunting and wasting, 

and to lower the rate in the direction of WHA targets by 2025 [9, 10]. Thus, studying 

the association between the maternal plasma levels of cysteine and growth in infants 

can prove to be suggestive of an important relationship between them, which if taken 

into consideration, can help the low- and middle-income countries overcome the 

prevailing burden related to stunting and wasting, and its associated consequences.  
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3. Aim and objectives 

3.1 Aim 

To gain a better understanding of the growth of infants in relation to maternal plasma 

levels of cysteine. 

3.2 Specific objectives 

a) To study the association between plasma total cysteine (tCys) concentration 

in pregnant women and birth weight; 

b) To study the association between tCys concentration in pregnant women 

and post-natal linear growth (i.e. length-for-age Z-score) in children 6 

months’ postpartum; and 

c) To study the association between tCys concentration in pregnant women 

and ponderal growth (i.e. weight-for-length Z-score) in children 6 months’ 

postpartum. 
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Abstract: Cysteine is a conditionally essential amino acid that has been positively associated with 21 
growth in children. However, transgenerational effects remain unclear. The aim of this analysis was 22 
to assess whether maternal plasma total cysteine (tCys) concentration is associated with various 23 
growth indicators in infants living in peri-urban settings in Bhaktapur, Nepal. We used data from 24 
the 561 mothers enrolled in an ongoing randomized controlled trial. We built linear regression 25 
models to evaluate the association between maternal tCys and birth weight, length-for-age Z-scores 26 
(LAZ) and weight-for-length Z-scores (WLZ) at birth and 6 months of age. Maternal tCys was 27 
inversely associated with birth weight among boys after adjusting for confounders (p < 0.05). There 28 
was a negative association between maternal tCys and LAZ at birth among boys (p < 0.01). No 29 
associations between maternal tCys and WLZ at birth or WLZ/LAZ at 6 months of age were found 30 
significant, although there was a trend for maternal tCys to be associated positively with WLZ at 31 
birth among girls (p < 0.10). This is a first study evaluating transgenerational relation of tCys on 32 
growth in infants. Further, larger and more comprehensive studies are needed to determine if and 33 
how maternal tCys alters child growth. 34 

Keywords: amino acid; metabolism; tCys; malnutrition; weight; length; child; stunting; wasting; 35 
Asia 36 

 37 

1. Introduction 38 

Malnutrition is a wide-spread health problem leading to profound short- and long-term 39 
consequences for child growth and development [1-3], as well as for survival [4]. It is estimated that 40 
more than 45% of all deaths globally among children under the age of 5 years have malnutrition as 41 
an underlying risk factor, and it is a leading cause of the burden of disease in the world [5].  42 

Evidence from several studies on fetal and child growth has shown the importance of the first 43 
1000 days – starting from conception up to the 2nd year after birth [2, 6]. A significant proportion (20-44 
30%) of wasting and stunting is found to originate in utero [7]. These observations reinstated the fact 45 
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that nutritional status of pregnant women is not only relevant for her own health but also affects her 46 
growing fetus/child.    47 

Although there are many risk factors associated with malnutrition [2, 8-10], a diverse diet, rich 48 
in all necessary nutrients is very important especially among vulnerable populations such as growing 49 
children and pregnant women [11]. High quality protein intake has been shown to promote child 50 
growth [12], possibly via enhancing insulin-like growth factor – 1 (IGF - 1) production [13].  51 

Amino acids are the building blocks of proteins. Deficiency of amino acids was found to 52 
suppress cell and organismal growth via the mechanistic target of rapamycin complex 1 (mTORC1) 53 
sensing pathway [14]. Cysteine, a sulfur containing proteinogenic amino acid, controls structure and 54 
stability of proteins [15] and is also the limiting precursor of the major intracellular antioxidant 55 
glutathione (GSH) [16]. Cysteine is considered conditionally essential for newborns because of an 56 
immaturity of the enzyme cystathionase (or cystathionine -lyase) which is required for the final step of 57 
transsulfuration pathway in the recycling of methionine and serine to cysteine [17, 18]. 58 

N-acetyl cysteine (NAC) is a supplement of cysteine shown to improve placental functions in 59 
various animal studies by upregulating placental antioxidant activity and placental growth factors, 60 
thus preventing placental oxidative stress [19-21]. NAC supplementation ameliorated intrauterine 61 
growth restriction in a study on guinea pigs [19] and cadmium-induced fetal growth restriction in a 62 
study on mice [20]. The anti-oxidative properties of NAC has led to its use as prophylaxis to prevent 63 
premature birth and recurrent pregnancy loss in pregnant women [22]. 64 

 Plasma total cysteine (tCys) was associated positively with anthropometric status in a study 65 
among 6-30 months old Indian children [23]. Küster et al. [24] demonstrated a strong correlation 66 
between maternal cysteine concentration and cysteine (and GSH) concentration in the offspring. To 67 
the best of our knowledge, there has been very little emphasis on transgenerational influence of tCys 68 
on growth in infants. With this piece of research, we aim to assess how maternal tCys concentration 69 
is associated with postnatal anthropometric status in infants in Bhaktapur, Nepal. 70 

2. Materials and Methods  71 

2.1 Original study 72 

This is a secondary analysis of data from an ongoing randomized controlled trial (RCT) 73 
registered at www.clinicaltrials.gov with ID NCT03071666, which is taking place in Bhaktapur, 74 
Nepal. The trial aims to measure the effect of vitamin B12 supplementation during pregnancy and 75 
postpartum on growth and neurodevelopment in early childhood. Details on the original study 76 
procedures have already been published [25]. In brief, the trial will enroll 800 pregnant Nepalese 77 
women (not later than 15 weeks of pregnancy) aged 20-40 years old and residing in Bhaktapur 78 
municipality and surrounding areas. Exclusion criteria includes no informed consent, taking dietary 79 
or multi-vitamin supplements containing vitamin B12, known cases of any chronic disease under 80 
treatment (such as tuberculosis, diabetes, hypertension, hypo or hyperthyroidism, pernicious anemia 81 
and Crohn’s disease) or current users of anticonvulsant drugs, severe anemia (hemoglobin 82 
concentration < 7 g/dL), suffering from any condition that requires treatment with vitamin B12, and 83 
strict vegans. In addition to vitamin B12 (50 g) or placebo, all pregnant women were also given folic 84 
acid (0.4 mg) for the first 2 months of pregnancy followed by iron (60 mg elemental iron) and calcium 85 
supplements (500 mg) until 45 days after delivery according to WHO guidelines. 86 

Ethical approval for the trial was obtained from Nepal Health Research Council (NHRC; 87 
registered number 253/2016) and the Regional Committee for Medical and Health Research Ethics of 88 
Western Norway (REK vest; reference number 2016/1620). This study was conducted in accordance 89 
with the Declaration of Helsinki. 90 

2.2 Laboratory assessment and anthropometric measurements 91 

Maternal blood samples (3 mL) were collected into vials containing ethylenediaminetetraacetic 92 
acid (EDTA) as anticoagulant, at the time of enrollment into the trial. The plasma was centrifuged at 93 
approximately 700 g at room temperature for 10 minutes, separated and transferred into storage vials, 94 

http://www.clinicaltrials.gov/
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and stored at -70 before analyses. Plasma total cysteine (tCys) concentration was measured using a 95 
modified gas chromatography-mass spectrometry method based on ethyl chloroformate 96 
derivatization [26]. Concentrations of plasma cobalamin (or vitamin B12) and plasma folate were 97 
estimated by microbiological assays using a chloramphenicol-resistant strain of Lactobacillus casei 98 
and colistin sulfate-resistant strain of Lactobacillus leichmannii, respectively [27, 28].  99 

Birth weight of infants were measured by hospital staff and records were gathered. 100 
Anthropometric measurements of the infants were taken in their homes at birth (or immediately after 101 
birth) and at 6 months of age by the study staff. Length was measured according to standard 102 
guidelines using portable board (Seca). Weight was measured with portable electronic scale (Seca) 103 
that measures to the nearest 0.01 kg.  104 

The study staff had received training before initiation of the trial and supervisors monitored all 105 
fieldwork activities. The supervisors monitored 5% of measurements taken by field workers. Data 106 
was double entered into a database and checked for consistency by a supervisor.  107 

2.3 Data management and analysis 108 

Statistical analyses were done using Stata 16.0 (Stata Corp. 2019, College Station, TX) and R 109 
version 3.6.2 (R Foundation for Statistical Computing, Vienna, Austria). All analyses in the present 110 
study were restricted to the group of 561 mother-infant dyads where maternal tCys concentration 111 
and anthropometric measurements of their children at birth and 6 months of age were available.  112 

Birth weights gathered from hospital records were in grams and used as such in our analyses. 113 
Z-scores for length-for-age (LAZ) and weight-for-length (WLZ) for infants were calculated according 114 
to WHO Child Growth Standards [29]. A WAMI-index was calculated to represent household 115 
socioeconomic status (SES) using the indicators: water and sanitation access, household wealth 116 
(assets), maternal education, and income. Calculations were adapted from Psaki et al. [30] with each 117 
of the indicators equally contributing to the index. The WAMI-index is between 0 and 1 with a higher 118 
index indicating a higher SES. Mean (SD; standard deviation) or median (IQR; inter-quartile range) 119 
were calculated for continuous variables and proportions for categorical variables.  120 

We built linear regression models in order to understand the association between maternal tCys 121 
concentration (predictor variable) and birth weight or anthropometric status (LAZ and WLZ scores) 122 
in infants at birth and at 6 months of age (predicted variables). Birth weight, LAZ, WLZ and maternal 123 
tCys concentration were used as continuous variables. As there is no established cut-off for tCys, we 124 
additionally categorized maternal tCys into < 25th percentile, 25th-75th percentile and > 75th percentile 125 
and used this variable in separate models. We performed purposeful selection of covariates for 126 
adjustment into our models [31]. The covariates that we checked for as our potential confounders in 127 
each model include maternal age, BMI, parity, years of education, household SES, infant’s gender, 128 
maternal plasma cobalamin (or vitamin B12) and folate concentrations. First, univariate analyses of 129 
each potential covariate were done, using the significance level of 0.25 as a screening criterion for 130 
initial variable selection. Second, a multivariable analysis with the selected covariates for each 131 
predicted variable was done. All covariates not significant at a level of 0.05 were taken out one by 132 
one from the multivariable model and removed if the coefficient for predictor variable did not change 133 
by ≥ 15%. Third, each of the covariates that had been screened out in step 1 were added back to the 134 
models one by one and retained if it changed the coefficient of the predictor variable by ≥ 15%. Lastly, 135 
each of the final models were checked for its interaction by gender. A p-value ≤ 0.05 was considered 136 
statistically significant. 137 

In addition, generalized additive model (GAM) analyses were performed to explore any non-138 
linear associations between maternal tCys and birth weight or anthropometric indices (LAZ and 139 
WLZ) at birth and at 6 months of age. All confounders identified in the linear regression models were 140 
adjusted for and values < 2.5th percentile and ≥ 97.5th percentile for maternal tCys were excluded to 141 
avoid overfitting at the extremes. 142 

3. Results 143 
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3.1 Population characteristics 144 

Maternal characteristics were available for 561 enrolled mothers, and birth weight and 145 
anthropometric measurements at birth (or immediately after birth) were available for 521 infants. The 146 
data for the current analyses was used from the ongoing study, therefore anthropometric 147 
measurements at 6 months were available for 376 infants (Figure S1). Demographic, nutritional and 148 
socio-economic indices of the available mother-infant dyads are summarized in Table 1. On average, 149 
mothers were 27.5 years old at enrollment, with 48.0% (269) mothers being nulliparous. The mean (± 150 
SD) maternal tCys concentration was 207.3 (± 24.6) mol/L. The median age (IQR) of infants at two 151 
anthropometric assessments by study staff was 3 (2-5) days and 182 (181-184) days. For 18 152 
observations, WLZ score at birth was outside the reference range of WHO Child Growth Standards. 153 
There was improvement in mean LAZ and WLZ scores for infants at 6 months of age relative to 154 
assessment done at birth. 155 

Table 1: Characteristics of study population 156 

Maternal characteristics (n = 561) 

Mean age (SD), years 27.5 (3.8) 

Mean gestational age (SD) at enrollment by LMP1, weeks 10.2 (3.0) 

Mean weight (SD), kgs 55.3 (7.7) 

Mean height (SD), cms 152.8 (5.3) 

Mean BMI (SD), kgs/m2 23.7 (3.0) 

Parity, % (n) 

0 

≥1 

 

48.0 (269) 

52.0 (292) 

Mean education (SD), years 11.0 (3.5) 

Mean plasma cysteine levels (SD), mol/L 207.3 (24.6) 

Median plasma folate concentration (IQR), nmol/L 57.3 (33.0 - 76.4) 

Mean plasma cobalamin concentration (SD), pmol/L 204.5 (78.5) 

Mean WAMI-index score (SD)2 0.65 (0.14) 

Infant characteristics (n = 521)3 

Gender, % (n) 

Male 

 

53.6 (279) 

Mean birth weight (SD) measured at hospital, grams 3009 (428) 

Median age (IQR) for assessment at birth, days 3 (2 - 5) 

Median age (IQR) for assessment at 6 months4, days 182 (181 - 184) 

Mean LAZ score (SD) at birth - 0.85 (1.07) 

Mean LAZ score (SD) at 6 months4 - 0.56 (0.90) 

Mean WLZ score (SD) at birth5 - 0.80 (1.11) 

Mean WLZ score (SD) at 6 months4 0.26 (1.03) 
1 Missing value of 1 observation thus n = 560 
2 Missing values of 7 observations for variables used in WAMI-index score calculations thus n = 554 
3 Infants reported as dropped-out = 40  
4 Out of 521 infants, variables at 6 months of age were available for 376 infants  
5 WLZ score at birth (or immediately after birth) for 18 observations were outside the reference range of WHO 

Child Growth Standards (n = 503) 

BMI: Body mass index; IQR: Inter-quartile range; LAZ score: Length-for-age Z-score; LMP: Last menstrual 

period; SD: Standard deviation; WLZ score: Weight-for-length Z-score 

3.2 Maternal cysteine and infant growth 157 

Table 2 shows the association between maternal tCys concentration and the selected growth 158 
indicators. For the birth weight model, the interaction between maternal tCys and gender was 159 
significant (results not shown here). On sub-grouping by gender, maternal tCys concentration was 160 
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negatively associated with birth weight among boys [ß = -2.611, 95% CI: -4.547, -0.676] after adjusting 161 
for relevant confounders and the interaction term (p < 0.05). The birth weight decreased on average 162 
by approx. 105 grams among boys across the highest quartile compared to middle half of maternal 163 
tCys concentration (Table S1). Maternal tCys concentration was also inversely associated with LAZ 164 
score at birth [ß = -0.005, 95% CI: -0.009, -0.001] (p < 0.01). However, stratified analyses revealed that 165 
latter association was significant among boys only (Table S2).  166 

Table 2: Multivariate linear regression models for anthropometric measurements and maternal 167 
plasma total cysteine (tCys) concentration (in mol/L) 168 

 

 

n Crude tCys  

Estimate (95% CI) 

Adjusted tCys  

Estimate (95% CI) 

Birth weight1, grams 521 -1.072 (-2.579, 0.434) - 

Boys  - -2.611 (-4.547, -0.676)* 

Girls  - 0.502 (-1.792, 2.796) 

LAZ score at birth 521 -0.005 (-0.009, -0.001)** -0.005 (-0.009, -0.001)** 

WLZ score at birth2 503 0.003 (-0.001, 0.007) 0.003 (-0.002, 0.007) 

LAZ score at 6 months3 376 -0.002 (-0.006, 0.001) -0.001 (-0.005, 0.003) 

WLZ score at 6 months4 376 0.002 (-0.002, 0.006) 0.001 (-0.003, 0.005) 
1 Adjusted for maternal BMI, infant’s gender and interaction between tCys and infant’s gender 
2 Adjusted for maternal BMI, education and parity 
3 Adjusted for maternal BMI, parity, WAMI, plasma cobalamin and folate concentrations (n = 371 for adjusted 

tCys because of missing WAMI-index values) 
4 Adjusted for maternal BMI, parity and plasma cobalamin concentration 

* p-value < 0.05 

** p-value < 0.01 

BMI: Body mass index; CI: Confidence interval; LAZ score: Length-for-age Z-score; WLZ score: Weight-for-

length Z-score 

 169 
Multivariable linear regression models did not show any significant associations between 170 

maternal tCys concentration and WLZ score at birth [ß = 0.003, 95% CI: -0.002, 0.007] or LAZ score at 171 
6 months of age [ß = -0.001, 95% CI: -0.005, 0.003] or WLZ score at 6 months of age [ß = 0.001, 95% CI: 172 
-0.003, 0.005]. However, there was an indication for maternal tCys concentration to be positively 173 
related with WLZ at birth among girls (p < 0.10) (Table S2). Results from multivariable linear 174 
regression models using maternal tCys as categorical variable can be found in the supplementary 175 
material (Table S1). 176 

Figure 3 shows GAM plots for the relation between maternal tCys and various growth indicators 177 
after restricting values < 2.5th percentile and ≥ 97.5th percentile for maternal tCys. The GAM plots 178 
between maternal tCys and birth weight were sub-grouped among boys and girls, and the 179 
associations appeared close to linear. The associations between maternal tCys and LAZ at birth or 180 
WLZ at birth or WLZ at 6 months of age also appeared close to linear. An inverted U-shaped 181 
relationship was suspected between maternal tCys and LAZ at 6 months of age that appeared to be 182 
distributed symmetrically around the mean maternal tCys concentration.  183 

4. Discussion 184 

The current analyses were undertaken to elucidate whether maternal tCys can have an impact 185 
on growth in infants until 6 months of age. In the past, there has been much debate regarding use of 186 
cysteine in premature infants, but the effects of cysteine supplementation have been found to be 187 
inconclusive [32-34]. A recent study done on 2102 children aged 6 – 30 months in New Delhi, India 188 
showed that tCys was positively associated with height-for-age Z-score (HAZ) and weight-for-height 189 
Z-score (WHZ) [23]. Although a correlation between maternal tCys concentration and cysteine 190 
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concentration in the offspring has been shown [24], it is not clear whether maternal tCys has any 191 
influence on growth in infants. 192 

Figure 3: Generalized additive model (GAM) plots showing the relation of maternal plasma total 

cysteine (tCys) concentration (in µmol/L) with birth weight (in grams) sub-grouped among boys (A) 

and girls (B), length-for-age Z-score (LAZ) at birth (C), weight-for-length Z-score (WLZ) at birth (D), 

LAZ score at 6 months of age (E) and WLZ score at 6 months of age (F) after restricting values < 2.5th 

percentile and ≥ 97.5th percentile for maternal tCys. Values for all the growth indicators are centered 

around their respective median. 
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Our study indicated that maternal tCys was inversely associated with birth weight among boys 193 
and LAZ at birth where each unit increase in maternal tCys (in mol/L) the birth weight and LAZ at 194 
birth decreased by 2.6 grams and 0.005 Z-scores, respectively. Also, across the highest quartile of 195 
maternal tCys concentration, the birth weight decreased on average by > 100 grams among boys 196 
compared to middle two quartiles. On stratification by gender, the latter association was found 197 
significant among boys only. We did not find any statistically significant associations between 198 
maternal tCys and WLZ at birth or LAZ at 6 months of age or WLZ at 6 months of age. 199 

There is no established reference range for tCys concentrations in adults [35]. Although studies 200 
in the past used different techniques to evaluate tCys [35-37], they all found cysteine to be the most 201 
abundant aminothiol in healthy subjects, with total concentration approximately 250 mol/L [38]. A 202 
cross-sectional study involving 8585 healthy women and 7591 healthy men from three age groups in 203 
the Hordaland county of western Norway has shown the mean (2.5-97.5 percentile) tCys 204 
concentration to be 253.1 (202.1-317.1) mol/L for women and 273.1 (218.6-338.4) mol/L for men aged 205 
40-42 years; 275.8 (215.4-347.2) mol/L for women and 279.5 (225.6-332.8) mol/L for men aged 43-64 206 
years; and 296.3 (233.5-360.5) mol/L for women and 296.4 (232.9-362.2) mol/L for men aged 65-67 207 
years [39]. In our study, we observed mean (± SD) tCys concentration in mothers enrolled to be 207.3 208 
(± 24.6) mol/L. This relatively lower tCys concentration might be due to higher utilization of cysteine 209 
[40], hemodilution effect during pregnancy [41], potentially younger age of our enrolled population 210 
relative to other studies [39] or low intake of animal products commonly seen among women of 211 
reproductive age in Nepal [42]. 212 

Our study used data from an ongoing RCT where women in the intervention arm were given 50 213 
g of vitamin B12 [25]. The maternal blood samples for tCys evaluation in our analysis were taken at 214 
enrollment of mothers into the original study and prior to supplementation with vitamin B12 or 215 
placebo. Moreover, no human study so far has established evidence on the effect of vitamin B12 216 
supplementation during pregnancy or postpartum on growth outcomes in early childhood. 217 
However, cobalamin (or vitamin B12) and folate are important cofactors involved in the remethylation 218 
of homocysteine to methionine, and their deficiencies are associated with elevated plasma 219 
homocysteine levels and reduced transsulfuration [15]. Thus, both maternal plasma cobalamin and 220 
folate concentrations were examined as potential confounders in our models.  221 

4.1 Maternal cysteine and birth weight 222 

In the study on newborns by Küster et al. [24], the mothers to infants born preterm were found 223 
to have low cysteine levels, possibly because of a higher requirement of cysteine due to oxidative 224 
stress associated with prematurity. In animal studies, supplementing NAC during pregnancy 225 
prevented pregnancy related complications probably through its placental anti-oxidative effect [19-226 
21]. This is also one of the reasons for its use as a prophylaxis to prevent premature birth and recurrent 227 
pregnancy loss in pregnant women [22]. Nonetheless, a large study by El-Khairy et al. [43] assessed 228 
the outcomes of 14492 pregnancies among 5883 women in Norway and showed that high maternal 229 
tCys concentration (tCys ≥ 304 mol/L) was associated with higher risks of preeclampsia, premature 230 
delivery, and very low birth weight, even though the maternal tCys was measured years after the 231 
outcomes had occurred. Indeed, cysteine is speculated to provoke placental vascular dysfunction due 232 
to its effect on endothelial function, which in turn causes various pregnancy related complications 233 
[44]. Our findings predicted a significant association between maternal tCys and birth weight among 234 
boys where with each unit of maternal tCys (in mol/L) the birth weight decreased by 2.6 grams 235 
despite low overall maternal tCys concentration in our study population. This difference in gender 236 
has not been observed before and mechanism remains unclear.  237 

4.2 Maternal cysteine and linear growth 238 

Cysteine supplementation in mice resulted in increased growth plate thickness through 239 
upregulation of IGF – 1 [45], thus making a probable effect of cysteine on linear growth convincing. 240 
Despite the evidence from this animal study, the role of cysteine on linear growth in humans has not 241 
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been investigated. A positive association shown by Schwinger et al. [23] between tCys and HAZ in 242 
children at 6 – 30 months of age did not take into account the possible influence of maternal tCys on 243 
linear growth in infants at birth and thereafter. Ours is the first study to evaluate the association 244 
between maternal tCys concentration and linear growth during infancy. Surprisingly, we found a 245 
negative association between maternal tCys and linear growth during early infancy (i.e. at birth or 246 
immediately after birth) among boys only. The mechanism underlying this association is not known, 247 
and to our knowledge, no other studies have been published in infants.    248 

4.3 Maternal cysteine and ponderal growth  249 

Studies on cysteine in children with severe acute malnutrition suggested reduced cysteine 250 
production [46] and greater dietary cysteine requirements [47] to combat for oxidative stress, poor 251 
immune response and impaired gut function associated with severe acute malnutrition. Indeed, a 252 
study in preterm infants showed positive effects of supplementing cysteine enterally on weight gain 253 
[32]. A recent study by Schwinger et al. [23] found a positive association between tCys and WHZ in 254 
children at 6 – 30 months of age. Moreover, human [48, 49] and rodent [50] studies exhibited that 255 
tCys concentration was positively and independently associated with body fat mass and obesity. 256 
Elevated cysteine was suggested to be a cause rather than a consequence of obesity, by promoting 257 
lipogenesis, inhibiting lipolysis, decreasing energy expenditure and decreasing insulin sensitivity, 258 
thus favouring lipid storage via unspecified pathways [51]. However, tCys in children aged 4 - 19 259 
years was significantly associated with body fat only within an overweight/obese subgroup but not 260 
in normal weight children [52]. None of these studies have taken into account the possible 261 
transgenerational influence of tCys on ponderal growth in infants at birth and thereafter. Although 262 
our study population sustains the concept of approximately linear relationship between maternal 263 
tCys and WLZ at birth or 6 months of age, our findings fail to show any significant associations 264 
between them. 265 

4.4 Limitations and strength 266 

Our analyses were based on the sample size of 521 and 376 infants at birth and 6 months of age, 267 
respectively. These moderate sample size might have limited our statistical power to detect an 268 
association. This piece of research is a prospective cohort study. Data comes from an RCT which 269 
might limit the generalizability of our findings. Although we adjusted our models for several relevant 270 
confounders, we still cannot exclude residual confounding. According to the recent reports by Nepal 271 
Demographic and Health Surveys (NDHS) – 2016 , 13.5% and 15.2% of infants < 6 months were 272 
stunted and wasted, respectively compared to 17.6% and 21.3%, respectively for infants 6-8 months 273 
of age [53]. In our study population, 12.3% and 12.5% of infants were stunted and wasted, 274 
respectively at birth (or immediately after birth) compared to only 5.3% and 1.9%, respectively at 6 275 
months of age. This relatively lower prevalence of stunting and wasting in our population might be 276 
because of peri-urban setting of our study. However, we do not expect the lower stunting and 277 
wasting prevalence would have affected our findings. 278 

All the pregnant women enrolled were given iron, folic acid and calcium supplements as per 279 
WHO guidelines. We cannot exclude if these co-interventions would have affected our findings. In 280 
addition, we limited our research by focusing on measures of maternal total plasma cysteine 281 
concentration, and we did not take into account maternal dietary intakes into these analyses. 282 
Compared to other studies mostly done in high income countries [35-37, 43], the tCys concentration 283 
in our study population appeared to be on the low side. We cannot exclude that low tCys 284 
concentration is an indicator of poor nutrition in general. The use of high-quality data collected under 285 
supervision by trained field workers for our analyses, was one of the strengths of our study. 286 

5. Conclusions 287 

In conclusion, the Nepalese women with a high plasma total cysteine concentration had an 288 
increased tendency of giving birth to low birth weight and short statured boys. The mechanism 289 
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behind these associations and difference based on gender remain undecipherable. Further, larger and 290 
more comprehensive studies with those involving detailed dietary nutrient intake evaluation are 291 
required to verify these findings in Nepalese and other populations. 292 
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