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Extrasynaptic NMDA Receptors on Rod Pathway Amacrine
Cells: Molecular Composition, Activation, and Signaling
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In the rod pathway of the mammalian retina, axon terminals of glutamatergic rod bipolar cells are presynaptic to AIl and A17 amacrine
cells in the inner plexiform layer. Recent evidence suggests that both amacrines express NMDA receptors, raising questions concerning
molecular composition, localization, activation, and function of these receptors. Using dual patch-clamp recording from synaptically
connected rod bipolar and AII or A17 amacrine cells in retinal slices from female rats, we found no evidence that NMDA receptors
contribute to postsynaptic currents evoked in either amacrine. Instead, NMDA receptors on both amacrine cells were activated by
ambient glutamate, and blocking glutamate uptake increased their level of activation. NMDA receptor activation also increased the
frequency of GABAergic postsynaptic currents in rod bipolar cells, suggesting that NMDA receptors can drive release of GABA from A17
amacrines. A striking dichotomy was revealed by pharmacological and immunolabeling experiments, which found GluN2B-containing
NMDA receptors on AIl amacrines and GluN2A-containing NMDA receptors on A17 amacrines. Immunolabeling also revealed a clus-
tered organization of NMDA receptors on both amacrines and a close spatial association between GluN2B subunits and connexin 36 on
AIl amacrines, suggesting that NMDA receptor modulation of gap junction coupling between these cells involves the GluN2B subunit.
Using multiphoton Ca*" imaging, we verified that activation of NMDA receptors evoked an increase of intracellular Ca** in dendrites of
both amacrines. Our results suggest that AIl and A17 amacrines express clustered, extrasynaptic NMDA receptors, with different and
complementary subunits that are likely to contribute differentially to signal processing and plasticity.
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Glutamate is the most important excitatory neurotransmitter in the CNS, but not all glutamate receptors transmit fast excitatory
signals at synapses. NMDA-type glutamate receptors act as voltage- and ligand-gated ion channels, with functional properties
determined by their specific subunit composition. These receptors can be found at both synaptic and extrasynaptic sites on
neurons, but the role of extrasynaptic NMDA receptors is unclear. Here, we demonstrate that retinal AIl and A17 amacrine cells,
postsynaptic partners at rod bipolar dyad synapses, express extrasynaptic (but not synaptic) NMDA receptors, with different and
complementary GluN2 subunits. The localization of GluN2A-containing receptors to A17s and GluN2B-containing receptors to
Alls suggests a mechanism for differential modulation of excitability and signaling in this retinal microcircuit. j

ignificance Statement

Introduction

When neurotransmitter molecules are released from a neuron,
they can bind to and activate heterogeneous populations of
ligand-gated ion channels, typically formed by different combi-
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nations of receptor subunits. This receptor heterogeneity can be
expressed within a single postsynaptic density, at different syn-
apses received by a single neuron, and at synapses made by the
same neuron with different postsynaptic targets (Shepherd and
Grillner, 2018). Within a receptor family, individual receptors
can differ in agonist affinity, single-channel conductance, kinet-
ics, selectivity and permeability for specific ions, and influence on
downstream signaling pathways; thus, the subunit composition
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of a given receptor channel is of critical importance for the spe-
cific functional and signaling properties (Traynelis et al., 20105
Smart and Paoletti, 2012). Considerable attention has therefore
been devoted to investigate how expression and regulation of
receptors and receptor subunits are adapted to and contribute to
the specific signal processing taking place in different microcir-
cuits and networks.

The microcircuit formed in the mammalian retina by the rod
bipolar cell and its dyad postsynaptic partners, the AIl and A17
amacrine cells, is structurally and functionally well defined, plays
a crucial role in visual processing (for review, see Demb and
Singer, 2012), and has been identified as a target for molecular
pathologies in early diabetes mellitus (Castilho et al., 2015;
Moore-Dotson et al., 2016). The cellular elements of this micro-
circuit are easily identifiable in slice preparations; and, as such,
the microcircuit provides a unique model to investigate neu-
rotransmitter interactions. Glutamate is released from axon ter-
minals of rod bipolar cells at specialized active zones called
ribbons, with each ribbon typically presynaptic to one AIl process
and one A17 process (Strettoi et al., 1990). AIl amacrines provide
outputs to ON- and OFF-cone bipolar cells, via electrical and
chemical (glycinergic) synapses, respectively (Strettoi et al., 1992,
1994), whereas A17 amacrines provide GABAergic feedback to
the axon terminals of rod bipolar cells from which they receive
input (reciprocal synapses) (for review, see Diamond and Grimes,
2014). Glutamate from rod bipolar cells activates non—-NMDA-
type glutamate receptors on both AIl and A17 amacrines (Hart-
veit, 1999; Singer and Diamond, 2003; Veruki et al., 2003; Chévez
etal.,, 2006), and it was originally assumed that these cells did not
express NMDA receptors (Boos et al., 1993; Menger and Wissle,
2000). There is increasing evidence, however, that both AIl and
A17 amacrines express functional NMDA receptors (Hartveit
and Veruki, 1997; Zhou and Dacheux, 2004; Kothmann et al.,
2012; Zhou et al., 2016), raising questions concerning the molec-
ular identity, localization, and function of these receptors.
NMDA receptors, comprised of obligatory GluN1 subunits and
either GIuN2 or, less commonly, GluN3 subunits, operate as both
voltage- and ligand-gated ion channels. Four different GluN2
subunits (GluN2A-D) have a strong influence on the functional
properties of NMDA receptors (Monyer et al., 1994; Paoletti et
al., 2013); thus, the different expression patterns of GluN2 sub-
units, within neurons and microcircuits, are expected to reflect
different spatial and temporal requirements of glutamatergic sig-
naling (Swanger and Traynelis, 2018).

Here, we used a combination of patch-clamp electrophysiol-
ogy, pharmacology, immunocytochemical labeling, and mul-
tiphoton excitation (MPE) Ca®" imaging to investigate the
NMDA receptors expressed by Al and A17 amacrine cells in rat
retina. Our results suggest that NMDA receptors on both ama-
crines have a clustered, extrasynaptic location and do not con-
tribute to the synaptic response evoked by input from rod bipolar
cells. Instead, NMDA receptors in both cell types are activated by
ambient glutamate, with increased activation following block of
glutamate uptake. Furthermore, activation of NMDA receptors
evokes an increase of intracellular Ca** within dendritic pro-
cesses of both cell types and increases the frequency of discrete
postsynaptic currents in rod bipolar cells. Most strikingly, the
amacrine cells express NMDA receptors with different and com-
plementary subunits, with Alls expressing GluN2B subunits and
A17s expressing GluN2A subunits. The complementary subunit
composition of NMDA receptors in these amacrine cells within
the same microcircuit suggests a mechanism for differential con-
tributions to excitability, signaling, and plasticity.
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Materials and Methods

Retinal slice preparation and visual targeting of neurons. General aspects of
the methods have previously been described in detail (Zhou et al., 2016).
Female rats (Wistar HanTac; 4—7 weeks postnatal; Taconic Bioscience)
had ad libitum access to food and water and were kept on a 12/12 light/
dark cycle. The use of animals in this study was performed under the
approval of and in accordance with the regulations of the Animal Labo-
ratory Facility at the Faculty of Medicine at the University of Bergen
(accredited by AAALAC International). Animals were deeply anesthe-
tized with isoflurane (IsoFlo vet 100%; Abbott Laboratories) in 100% O,
and killed by cervical dislocation. After dissecting out the retina, vertical
slices were cut at ~100 to ~150 wm and visualized with a 40X or 60X
water-immersion objective and infrared differential interference con-
trast (IR-DIC) or IR Dodt gradient contrast (Luigs & Neumann) video-
microscopy (Axioskop FS2, Carl Zeiss; BX51 WI, Olympus). For
experiments with MPE microscopy, the slices were visualized using a
custom-modified Movable Objective Microscope (Sutter Instrument)
with a 20X water-immersion objective (0.95 NA; Olympus) and IR (780
nm LED, M780L2; Thorlabs) Dodt gradient contrast videomicroscopy.
Most recordings were performed at room temperature (22°C-25°C).
Some experiments were performed at an elevated temperature of 32.3 =
0.1°C, using an automatic temperature control unit that continuously
monitored and regulated the temperature at the recording site by heating
both the perfusion solution and the recording chamber (ATR-4, Quest
Scientific).

Solutions and drugs. The standard extracellular perfusing solution was
continuously bubbled with 95% O,/5% CO, and had the following com-
position (in mm): 125 NaCl, 25 NaHCOj;, 2.5 KCl, 2.5 CaCl,, 1 MgCl,, 10
glucose, pH 7.4. In some experiments, MgCl, was omitted from the
extracellular solution (with no replacement of the divalent cations; re-
ferred to later as Mg>*-free bath solution) to relieve the voltage-
dependent block of NMDA receptors (Nowak et al., 1984). For these
recordings, we switched to the Mg?>" -free solution at least 10 min before
establishing the whole-cell mode. p-Serine, a coagonist of the NMDA
receptor (Kleckner and Dingledine, 1988; Stevens et al., 2003), was added
to the extracellular solution (200 um; Sigma-Aldrich) as indicated, to
ensure adequate levels of coagonist in the presense of AMPA receptor
blockers that can reduce the release of p-serine in the retina (Sullivan and
Miller, 2012). In some experiments, the extracellular solution contained
20 mM tetraethylammonium (TEA) chloride (replacing an equimolar
concentration of NaCl) and 0.1 mm 3,4-diaminopyridine (3,4-DAP) to
block voltage-gated K* channels.

In most recordings of amacrine cells (including paired recordings),
recording pipettes were filled with the following (in mm): 125
K-gluconate, 8 NaCl, 10 HEPES, 1 CaCl,, 5 EGTA, 4 magnesium aden-
osine 5'-triphosphate (MgATP), and 2 QX-314 (pH adjusted to 7.3 with
KOH). In some experiments, Alls were filled with the following (in mm):
125 K-gluconate, 8 KCl, 5 HEPES, 1 CaCl,, 1 MgCl,, 5 EGTA, 4 disodium
adenosine 5’-triphosphate (Na,ATP), and 2 QX-314 (pH adjusted to 7.3
with KOH). For experiments with voltage ramps and stationary noise
analysis, recording pipettes were filled with the following (in mm): 125
CsCH,;S0O3, 8 NaCl, 10 HEPES, 1 CaCl,, 5 EGTA, 15 TEA-CI, 4 MgATP
(pH adjusted to 7.3 with CsOH). In some voltage-ramp recordings, pi-
pettes were instead filled with 125 CsCl, 8 NaCl, 10 HEPES, 1 CaCl,, 5
EGTA, 15 TEA-CI, 4 MgATP (pH adjusted to 7.3 with CsOH). For paired
recordings, pipettes for rod bipolar cells were filled with the following (in
mM): 100 CsCH;SO3, 20 TEA-CI, 10 glutamic acid, 20 HEPES, 0.2 EGTA,
4 MgATP, 0.4 Na;GTP (pH adjusted to 7.3 with CsOH). For measuring
IPSCs in rod bipolar cells, recording pipettes were filled with the follow-
ing (in mm): 130 KCI, 8 NaCl, 1 CaCl,, 10 HEPES, 5 EGTA, 4 MgATP,
0.05 DL-threo-B-benzyloxyaspartic acid (TBOA; pH adjusted to 7.3 with
KOH). For visualization of complete cellular morphologies with fluores-
cence microscopy after the recording, Lucifer yellow (1 mg/ml;
Sigma-Aldrich), AlexaFluor-488 (50 um), or AlexaFluor-594 (40 uwm;
Invitrogen; Thermo Fisher Scientific) was included in the intracellular
solutions. For MPE microscopy and Ca*" imaging, pipettes were filled
with the following (in mwm): 125 K-gluconate, 5 KCI, 8 NaCl, 10 HEPES,
4 MgATP, Na;GTP, 0.2 Oregon Green 488 BAPTA-1 (OGB-1; Invitro-
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gen; Thermo Fisher Scientific), and 0.04 AlexaFluor-594. The data acqui-
sition software (Patchmaster; HEKA Elektronik) corrected all holding
potentials (V,,4) for liquid junction potentials online. Theoretical liquid
junction potentials were calculated with JPCalcW (Molecular Devices).

In experiments with puffer pipette application, NMDA (1 mm) was
dissolved in HEPES-buffered, Mg“—free extracellular solution contain-
ing the NMDA receptor coagonist b-serine (200 um), and was applied via
pressure for 1 s (for details, see Zhou et al., 2016). The puffer pipette was
similar in size and shape to the patch pipettes described below. For the
pharmacological experiments, we first sampled baseline NMDA-evoked
responses by repeated puffer pipette application of NMDA (V, ;4 = —60
mV). To avoid time- and agonist-dependent response suppression, we
limited the application of NMDA to once every 60 s and could observe
stable response amplitudes for at least 20—30 min for both types of cells
(compare Zhou et al., 2016). After a stable baseline had been established,
the antagonist was added to the extracellular bath solution, and we con-
tinued to apply NMDA (at 60 s intervals). In experiments with bath
application, NMDA was added to the extracellular solution at a concen-
tration of 50 or 100 uM (with 200 uM D-serine). Neurotransmitter recep-
tor antagonists and ion channel blockers were added directly to the
extracellular solution at the following concentrations (supplied by Tocris
Bioscience, unless otherwise indicated): 1 um strychnine (Research Bio-
chemicals); 10 um (-)-bicuculline methochloride; 0.3 um TTX; 10 um
CNQX; 20 um (RS)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic
acid (CPP); 50 um TBOA; 25 nm [[[(1S)-1-(4-bromophenyl)ethyl]amino]
(1,2,3,4-tetrahydro-2,3-dioxo-5-quinoxalinyl)methyl] phosphonic acid
tetrasodium hydrate (PEAQX tetrasodium hydrate, synonymous with
NVP-AAMO77 tetrasodium hydrate; Sigma-Aldrich); 10 um ifenprodil;
1 uM (aR,BS)-a-(4-hydroxyphenyl)-B-methyl-4-(phenylmethyl)-1-
piperidinepropanol maleate (Ro 25—-6981); 10 um 5-(4-bromophenyl)-
3-(1,2-dihydro-6-methyl-2-oxo0-4-phenyl-3-quinolinyl)-4,5-dihydro-
y-ox0-1 H-pyrazole-1-butanoic acid (DQP-1105); and 10 um 4-[6-
methoxy-2-[(1 E)-2-(3-nitrophenyl)ethenyl]-4-oxo0-3(4 H)quinazolinyl]
benzoic acid (QNZ46). For some experiments, 2 mm MK-801 was added
to the intracellular solution.

When we tested the effect of extracellular Zn?" on NMDA-evoked
responses, we added 10 mw tricine (Sigma-Aldrich) to the extracellular
solution to chelate trace amounts of contaminating Zn>". To test the
effect of Zn>" as such, we added ZnCl, (Sigma-Aldrich) to the extracel-
lular solution containing tricine. The relationship between the total con-
centration of Zn>* added to the extracellular solution ([Zn**]_44.q) and

the concentration of free (nonchelated) Zn*" ([Zn*"];..) was calcu-
lated by the following equation (Fayyazuddin et al., 2000):
[Z0* ] ree = [Z0°* ] 144ea/ 200 (1)

When measuring IPSCs in rod bipolar cells, we acquired baseline data for
5-10 min (with strychnine and TTX in the bath solution). We then
changed to a Mg " -free bath solution with 50 um NMDA and 200 pum
D-serine and recorded for an additional 10 min. To reduce membrane
noise related to glutamate transporter activity in the rod bipolar cells
from which we recorded, we added TBOA (50 um) to the intracellular
solution (Veruki et al., 2006; Ichinose and Lukasiewicz, 2012). Drug
solutions were either made up freshly for each experiment or were pre-
pared from concentrated aliquots stored at —20°C.

General aspects of electrophysiological recording and data acquisition.
Patch pipettes were pulled from thick-walled borosilicate glass (BF150—
86-10; Sutter Instrument) to obtain an open-tip resistance that ranged
from 5 to 8 M() when filled with intracellular solution. Whole-cell
voltage-clamp recordings were performed with an EPC9-dual, an
EPC10-USB-dual, or an EPC10-triple amplifier (HEKA Elektronik) and
controlled with Patchmaster software. In all experiments, rod bipolar
cells and AIl amacrine cells were held at a membrane potential of —60
mV, and A17 amacrine cells were held at —70 mV, unless otherwise
indicated. For whole-cell recordings, series resistance (R,) was moni-
tored throughout the recording (for details, see Castilho et al., 2015).
Cells with R, > 50 M€ or with changes of R, > 30% were not included in
the final material. For Ca®" imaging experiments, R, values =< 60 m{)
were accepted. The sampling interval was set between 50200 us; and
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before sampling, signals were low-pass filtered (analog 3- and 4-pole
Bessel filters in series) with a corner frequency (—3 dB) of 2-5 kHz. For
stationary noise analysis (see below), the sampling interval was set to 500
us, and the corner frequency was set to 952.4 Hz (corresponding to a
ratio of 2.1 between the sampling and corner frequencies). In addition,
the filter characteristics were changed to Butterworth instead of Bessel.

Data analysis. Electrophysiological data were analyzed with Fitmaster
(HEKA Elektronik; RRID:SCR_016233), IGOR Pro (WaveMetrics;
RRID:SCR_000325), AxoGraph X (AxoGraph Scientific), Excel (Mi-
crosoft), and Prism (GraphPad Software; RRID:SCR_002798). The peak
amplitude of NMDA-evoked currents was measured as the mean ampli-
tude between two vertical cursors positioned close to the peak current
response as identified by eye. Percent change was calculated using the
following equation:

(INMI)A,amrmI - INMDA,test)

X 100% (2)

INMDA,commI

with Iyyvpa, control @S the average of three to five NMDA-evoked re-
sponses in the control condition (before application of antagonist)
and Iyypa, rest a8 the average of three to five NMDA-evoked current
responses in the test condition (after application of antagonist in the bath
solution for at least 5 min to ensure equilibration).

For analysis of responses evoked by voltage-ramp stimuli, we first
performed a linear leak subtraction for each current response by fitting a
line between ~—90 mV and —60 mV and subtracting the corresponding
function from the ramp current across the entire ramp voltage. The
amplitude of the resulting current response was estimated as the average
current in a window corresponding to the interval between 35 and 45
mV. When comparing responses evoked in the control condition and in
the presence of TBOA, percent change was calculated using the following
equation:

(ITBOA - Icunrml) % 100% (3)

Ictmtrul

with I, ..o s the average of three to five ramp-evoked net current re-
sponses (after linear leak subtraction) in the control condition (in the
window corresponding to the interval between 35 and 45 mV; before
application of TBOA) and Iz, as the average of three to five ramp-
evoked net current responses (after linear leak subtraction) in the test
condition (after application of TBOA in the bath solution for at least 5
min to ensure equilibration).

When we examined membrane noise and its sensitivity to NMDA
receptor channel antagonists, we measured noise as the variance of the
membrane current recorded in the whole-cell voltage-clamp configura-
tion. For each condition, current variance was calculated for epochs of
30 s duration (after digital low-pass filtering at 1 kHz; —3 dB) and four
such epochs were averaged. Stationary noise analysis (Neher and Stevens,
1977) was applied to current records without significant changes of
steady-state channel activity over time and was performed as described
by Merkve et al. (2002). Current was sampled for 20 or 50 s epochs
(sampling interval 500 ws), both in the control condition (with 1 mm
Mg?") and during application of NMDA (50 um; with 200 v D-serine)
in Mg?" -free bath solution. For conditions with low channel open prob-
ability (<0.1), the apparent unitary (single-channel) current can be cal-
culated by dividing the variance by the mean steady-state agonist-evoked
current. In all cases analyzed here, however, the data points spanned a
larger range of values for open probability. Accordingly, current variance
was plotted against mean steady-state current for the different epochs
and the data points were fitted with the following parabolic function:

o*() =il — /N + o? (4)

where i is the apparent single-channel current, I is the mean steady-state
current, and N is the number of available channels in the membrane
(oy, 2 the variance of the background noise, had been subtracted out so
the fitted curve was constrained to go through the origin).

MPE fluorescence microscopy and Ca’* imaging. Red (from Alexa-594)
and green (from OGB-1) fluorescence for structural and functional im-
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Table 1. Primary antibodies’
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Antibody name Immunogen Source, catalog #, RRID Antibody type Dilution
GIuN2A C-terminal fusion protein of rat NMDAR2A, amino acids 12531391 Millipore, AB-1555P, AB_90770 Rabbit, polyclonal 1:100
GluN2B C-terminal fusion protein of rat NMDAR2B Millipore, AB-1557P, AB_90772 Rabbit, polyclonal 1:100
x36 Synthetic peptide derived from C-terminal region of rat and mouse Thermo Fisher Scientific, 37-4600, AB_2533320 Mouse, monoclonal 1:2000

Connexin36 protein

“RRID, Research Resource Identifiers (for details, see the Resource Identification Portal: https://scicrunch.org/resources). The specificity of the rabbit antiserum against the NMDA receptor subunit GluN2A was demonstrated by the
manufacturer. The antibody detects a single band of ~180kDa in Western blots of rat brain membranes and has no reactivity to GluN2B or GluN2C. The same antibody has been used in a number of studies performed in the mammalianretina
(e.g., Fletcher etal., 2000; Zhang and Diamond, 2009). The specificity of the rabbit antiserum against the NMDA receptor subunit GluN2B was demonstrated by the manufacturer. The antibody detects a single band of ~180 kDa in Western
blots of rat brain membranes and has no reactivity to GIuN2A or GIuN2C. The same antibody has been used in a number of studies performed in the mammalian retina (e.g., Fletcher et al., 2000; Zhang and Diamond, 2009). The specificity
of the mouse antibody against (x36 has been characterized by the manufacturer. The antibody has been used in numerous studies throughout the CNS, including the retina, to detect (x36 (Ciolofan et al., 2006; Hilgen etal., 2011; Meyer et

al., 2016).

aging, respectively, were imaged with the Movable Objective Microscope
equipped with a Ti:sapphire laser (Mai Tai DeepSee; SpectraPhysics)
tuned to 810 nm. For cellular morphology, image stacks were acquired as
a series of optical slices (typically 1024 X 1024 pixels; 2 frames/slice) at
focal plane intervals of 0.4 um. For imaging intracellular Ca** dynamics
in processes of AIl and A17 amacrine cells, we sampled fluorescence at
constant focal planes in frame-scan mode (256 X 256 or 512 X 512
pixels) at intervals of ~20 s with three channels for each frame. The first
two channels corresponded to green fluorescence from OGB-1 and red
fluorescence from Alexa-594. The third channel captured an infrared
laser scanning gradient contrast image. MPE microscopy and image ac-
quisition were controlled by ScanIlmage software (version 3.8.1) (Polo-
gruto et al., 2003).

After establishing the whole-cell configuration, we waited 10-15
min for AIl amacrines and 30 min for A17 amacrines before starting
Ca’" imaging to allow for maximal indicator loading. We first used
MPE structural imaging of a cell to select a focal plane with a relatively
large number of visible processes. Next, we acquired frame scans at
the selected focal plane with an interframe interval of 20 s. After
acquiring baseline image data for ~5 min (with TTX, strychnine,
bicuculline, and CNQX in the bath solution), we changed to a Mg?™ -
free bath solution with 50 or 100 umM NMDA and applied NMDA for
4-6 min. Image acquisition was performed continuously throughout
the NMDA application and for up to 30 min after changing to a
drug-free bath solution with normal Mg?. After Ca*" imaging, a Z
stack that sampled as much as possible of the complete morphology of
the cell was acquired, using the red fluorescence (Alexa-594). The
images were sampled at a rate close to or higher than the ideal Nyquist
rate (for details, see Zandt et al., 2017). For analysis of Ca*" imaging
data, the different channels of each frame were first deinterleaved for
all frames in the series and compiled as separate time-series stacks in
IGOR Pro. To compensate for drift and mechanical instabilities, the
images in each stack (channel) were aligned along the virtual z axis
(here corresponding to time) using the IGOR Pro ImageRegistration
operation as implemented in the SARFIA RegisterStack routines (Dor-
ostkar et al., 2010). Frame-scan Ca®" imaging data were analyzed by
custom routines developed under IGOR Pro. Background fluores-
cence (F,) was measured as the average signal from a rectangular area
close to the regions of interest (but without contamination from dye
spilled extracellularly when the whole-cell recording was established).
The relative change in fluorescence related to a change in Ca?* was
calculated as the ratio of green fluorescence ( G) over red fluorescence
(R), and changes in Ca®" were measured as the difference between
G/R for a given point in time and G/R averaged for the baseline
period, for simplicity referred to as AG/R. Because the red fluores-
cence from Alexa-594 is considerably brighter than the green fluores-
cence from OGB-1, AG/R is considered a more robust measure of
Ca’" dynamics than AF/F (Yasuda et al., 2004) (e.g., in relation to
movement artifacts which can be a problem with longer-lasting frame
scanning as used here).

Cell injection, immunocytochemical labeling, and confocal micros-
copy. Visually targeted AIl and A17 amacrine cells in retinal slices,
visualized with a 60X water-immersion objective and Dodt gradient
contrast on an Olympus BX51 WI microscope, were impaled with

sharp microelectrodes filled with 5 mm Alexa-488 dissolved in 200 mm
KCI (for details, see Hartveit et al., 2018). Following injection, slices
were fixed at room temperature for 10 min in 4% PFA in 0.1 M
phosphate buffer. For details of the antibody labeling, see Hartveit et
al. (2018). Primary antibodies used in the present study are listed in
Table 1and have all been used before in retina and other CNS tissues
(Fletcher et al., 2000; Ciolofan et al., 2006; Zhang and Diamond, 2009;
Hilgen etal., 2011; Meyer et al., 2016). Secondary antibodies included
goat anti-mouse and goat anti-rabbit coupled to AlexaFluor-555 or
AlexaFluor-647 (Invitrogen; Thermo Fisher Scientific) and were used
at a dilution of 1:500. The methods for confocal microscopy and
image acquisition have previously been described in detail (Hartveit
etal., 2018). Briefly, retinal slices were imaged on a TCS SP5 confocal
microscope (Leica Microsystems) equipped with a 63X oil-
immersion objective (HCX PL APO CS UV, 1.4 NA; Leica Microsys-
tems). For fluorescence imaging, we used the following lasers and
laser lines: Argon 488 nm (for Alexa-488 in the first channel), DPSS
561 nm (for Alexa-555 in the second channel), and HeNe 633 nm (for
Alexa-647 in the third channel).

Image processing, deconvolution, and analysis. For the morphologi-
cal Z stacks sampled with MPE and confocal microscopy, Huygens
Essential (version 14-16, 64 bit, Scientific Volume Imaging; RRID:
SCR_014237) was used to digitally deconvolve each channel in the
image stack to remove noise (effectively increasing the SNR) and
decrease axial and lateral blurring (for details, see Zandt et al., 2017;
Hartveit et al., 2018). We visually identified immunolabeled punctae
that overlapped dye-filled processes of amacrine cells in the XY plane.
Punctae with overlap in the XY plane were then verified by examining
the overlap and separation in the XZ and YZ planes to ensure that the
apparent overlap was not caused by the lower axial (z axis) resolution.
If, as in some cases, overlap in the XY plane was due to “smear” along
the z axis, a relatively large separation between the visually estimated
center of mass (CM) of the immunolabeled punctum and that of the
dye-filled process was discernible. These punctae were not included as
overlapping. The procedures for quantitative analysis of dye-filled
neurons and immunolabeled punctae have previously been described
in detail (Hartveit et al., 2018).

Experimental design and statistical analysis. Data are presented as
mean = SEM (n = number of cells) with ranges either displayed by
individual data points in bar graphs or stated explicitly. A minimum
of three cells were used per experimental group. Statistical analyses
were performed using Student’s two-tailed ¢ tests (paired, ratio or
unpaired) as indicated or one-way ANOVA, followed by multiple-
comparison tests (as indicated) to obtain adjusted p values (Prism).
Differences were considered statistically significant at the p < 0.05 level.
Exact p values are given in figure legends or in the text. Unless otherwise
noted, the current traces shown in the figures represent individual traces.
The number of individual traces included in averaged current traces in
the figures is stated for each case. For illustration purposes, most raw data
records were either low-pass filtered (—3 dB; digital nonlagging Gaussian
filter at 0.5-1 kHz) or smoothed by a binomial smoothing function
(IGOR Pro) to emphasize the kinetics of the response. Together, we
recorded from or filled ~115 AIl amacrines, 83 A17 amacrines, and 18
rod bipolar cells.


https://scicrunch.org/resolver/SCR_014237
http://antibodyregistry.org/AB_90770
http://antibodyregistry.org/AB_90772
http://antibodyregistry.org/AB_2533320
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Figure 1.  Identification of microcircuit with presynaptic rod bipolar cells and postsynaptic

All and A17 amacrine cells in the rat retinal slice preparation. 4, IR-DIC videomicrograph of a
retinal slice with cell body (arrow) and apical dendrite of an All amacrine cell. Scale bar: A, B, 10
um. B, Wide-field fluorescence image of All amacrine cell filled with Alexa-594 via patch
pipette (MIP of image stack after deconvolution). C, Wide-field fluorescence image of rod bipo-
lar cellfilled with Alexa-594 via patch pipette (MIP of image stack after deconvolution) overlaid
on IR-DIC videomicrograph of retinal slice. Scale bar, 10 wm. D, IR-DIC videomicrograph of a
retinal slice with cell body (arrow) of an A17 amacrine cell. Scale bar: D, E, 10 um. E, Wide-field
fluorescence image of A17 amacrine cell filled with Alexa-594 via patch pipette (MIP of image
stack after deconvolution). F, G, NMDA receptors do not contribute to synaptic input from rod
bipolar cells to All (F) or A17 (G) amacrine cells. F, Schematic figure of experimental configura-
tion with simultaneous dual whole-cell voltage-clamp recording of presynaptic rod bipolar cell
(blue) and postsynaptic All amacrine cell (magenta) in rat retinal slice (top). Top, Voltage com-
mand applied to rod bipolar cell with depolarization (100 ms) from —60 to —10 mV. Three
bottom traces represent current measured in All amacrine cell in response to rod bipolar cell
depolarization in the following conditions: during control (average of three traces), during
application of the non-NMDA receptor antagonist CNQX (10 wum; average of five traces), and
afterwashout of CNQX (average of four traces). Note the transient inward current in response to
depolarization of rod bipolar cell in control condition, complete block by CNQX, and partial
recovery after washout of CNQX. In this and subsequent figures, the nominal concentration of
Mg** in the extracellular solution was zero (unless otherwise indicated), and the bath also
contained TTX (300 nw) to block voltage-gated Na ™ channels, bicuculline (10 um) to block
GABA, receptors, strychnine (1 wm) to block glycine receptors, and the NMDA receptor coago-
nist o-serine (200 wm). G, Schematic figure of experimental configuration with simultaneous
dual whole-cell voltage-clamp recording of presynaptic rod bipolar cell (blue) and postsynaptic
A17 amacrine cell (green) in rat retinal slice (top). Top, Voltage command applied to rod bipolar
cell with depolarization (100 ms) from —60 to —10 mV. Three bottom traces represent
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Results

Identification of AIl and A17 amacrine cells and rod bipolar
cells in retinal slices

The cellular elements and basic synaptic connectivity of the rod
bipolar cell-AII-A17 microcircuit are illustrated in Figure 1. As
reliable identification of the two types of amacrine cells, both
with respect to each other and with respect to other types of
amacrine cells, is important for the conclusions of this study, we
emphasize the procedure followed for the visual targeting, re-
cording, and identification of these cells in retinal slices. The
primary targeting criterion was the shape and location of the cell
bodies at the border between the inner nuclear layer and the inner
plexiform layer (Fig. 1A,D). The AIIl amacrine cell is a bistrati-
fied, narrow-field amacrine cell with a cell body that spans the
border between the inner nuclear and the inner plexiform layer,
and a thick apical dendrite that tapers as it descends into the inner
plexiform layer (Fig. 1B). In contrast, the A17 amacrine cell is a
diffuse, wide-field amacrine cell with a dome-shaped cell body
and long, thin processes that carry distinct varicosities and termi-
nate near the ganglion cell layer of the retina (Fig. 1E). For dual
recordings between rod bipolar cells and either AIl or A17 ama-
crines, rod bipolar cells were targeted based on the location of a
cell body at the distal end of the inner nuclear layer, close to the
outer plexiform layer. For unequivocal identification, all re-
corded cells were visualized with fluorescence microscopy fol-
lowing the recording. For AIl amacrine cells, this allowed us to
verify their narrow-field bistratified morphology (Fig. 1B) and
for A17 amacrine cells we could identify their long, thin processes
that carry varicosities and terminate near the ganglion cell layer of
the retina (Fig. 1E). Rod bipolar cells have a single long axon that
terminates with a number oflarge axon terminals in the proximal
part of the inner plexiform close to the ganglion cell layer (Fig.
1C).

NMDA receptors do not contribute to EPSCs in AIl and A17
amacrine cells evoked by depolarization of rod bipolar cells
There is evidence for the expression of NMDA receptors by both
All and A17 amacrine cells (Hartveit and Veruki, 1997; Zhou and
Dacheux, 2004; Kothmann et al., 2012; Zhou et al., 2016), but it is
less clear whether the receptors contribute to mediating glutama-
tergic synaptic input from rod bipolar cells. To investigate the
potential involvement of NMDA receptors, we performed simul-
taneous dual patch-clamp recordings between pairs of rod bipo-
lar cells and AIT amacrine cells and between pairs of rod bipolar
cells and A17 amacrine cells (Fig. 1 F, G). For both sets of record-
ings, the bath solution was changed to a Mg>*-free solution (in-
cluding 200 um of the NMDA receptor coagonist D-serine), at
least 10 min before breaking into the cells, to eliminate the
voltage-dependent Mg>" block of NMDA receptors.

In dual recordings from pairs of rod bipolar cells and AIl
amacrine cells, with both cells in the whole-cell voltage-clamp
configuration (V.4 = —60 mV for both cells), we first verified
that the cells were synaptically connected by applying a depolar-
izing voltage step to the rod bipolar cell (to —10 mV). In the
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current measured in A17 amacrine cell in response to rod bipolar cell depolarization in the
following conditions: during control (average of four traces), during application of the non-
NMDA receptor antagonist CNQX (10 um; average of four traces), and after washout of CNQX
(average of two traces). Note the transient inward current in response to depolarization of rod
bipolar cell in control condition, complete block by CNQX, and partial recovery after washout of
CNQX.
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presence of a synaptic connection, the depolarization evoked a
large transient inward current in the AIl amacrine cell (Fig. 1F),
corresponding to an EPSC (Singer and Diamond, 2003; Veruki et
al., 2003; Trexler et al., 2005). Next, the bath solution was ex-
changed to include 10 uM CNQX to block non-NMDA receptors
and potentially reveal a non-NMDA receptor-independent com-
ponent of the EPSC. In all cases, however, application of CNQX
completely blocked the rod bipolar cell-evoked EPSC in AIl ama-
crine cells (Fig. 1F; n = 6 cell pairs). In the control condition, the
average peak amplitude (relative to baseline) was 116 * 20 pA
and in the presence of CNQX the average was 3.2 = 1.0 pA. The
current in the presence of CNQX was indistinguishable from
baseline membrane noise. For three rod bipolar-AlI cell pairs, we
observed not only a block of the EPSC in the presence of CNQX,
but also a partial recovery of the EPSC after washout of CNQX
(Fig. 1F), suggesting that rundown of transmitter release was not
the reason for the lack of response.

We next performed the same type of experiment for synapti-
cally connected pairs of rod bipolar cells and A17 amacrine cells.
In contrast to the synapse between a rod bipolar cell and an AIl
amacrine cell, depolarization of a rod bipolar cell (to —10 mV)
evoked a much smaller EPSC in an A17 amacrine cell (Fig. 1G).
For seven synaptically connected cell pairs, the average peak am-
plitude of the depolarization-evoked EPSC in the control condi-
tion was 8.2 = 1.2 pA (range 5.3-15 pA). In the presence of
CNQX, the average peak response in the same A17 amacrines was
2.1 £ 0.5 pA (range 0.2-3.8 pA). Similar to AIl amacrine cells, the
current in the presence of CNQX was indistinguishable from the
baseline noise. After washout of CNQX, recovery (partial) was
observed in three of the paired recordings (Fig. 1G). Together,
our results suggest that NMDA receptors do not contribute di-
rectly to synaptic transmission between rod bipolar cells and ei-
ther A17 or AIl amacrine cells. In the case of the AlI, these results
corroborate earlier studies by Singer and Diamond (2003) and
Trexler et al. (2005).

Whereas A17 amacrines receive glutamatergic input only
from rod bipolar cells, AIl amacrines are likely to receive gluta-
matergic input from at least some types of OFF-cone bipolar cells
(Veruki et al., 2003; Graydon et al., 2018). However, it is unlikely
that NMDA receptors are expressed at the OFF-cone bipolar cell
to All synapse. First, EM immunolabeling for the GluN1 subunit
suggests that only one of the two profiles postsynaptic to OFF-
cone bipolar cell ribbons (presumably one ganglion cell and one
amacrine cell) expresses NMDA receptors (Fletcher et al., 2000).
This profile most likely belongs to a ganglion cell, as a synaptic
NMDA component has consistently been identified in OFF-
ganglion cells (e.g., Manookin et al., 2010; Buldyrev et al., 2012;
Stafford et al., 2014). In addition, no NMDA component was
revealed in the synaptic input to AIl amacrines from Type 2 OFF-
cone bipolar cells (that mediate the predominant input from
OFF-cone bipolar cells to Alls) (Graydon et al., 2018). For these
reasons, we did not further test for synaptic NMDA receptors at
OFF-cone bipolar cell to AII synapses in this study.

Ambient glutamate can activate NMDA receptors on both AII
and A17 amacrine cells

That NMDA receptors are expressed by All and A17 amacrines,
but not activated directly after neurotransmitter release from
presynaptic rod bipolar cells, suggests that the receptors are lo-
cated outside the postsynaptic density of the dyad synapses, at an
extrasynaptic location. In the present context, extrasynaptic
could mean perisynaptic (i.e., outside but in the immediate vicin-
ity of the synapse) or further away. In a previous study, our lab-
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oratory provided physiological evidence that few, if any, NMDA
receptors are located at the cell bodies of AIl and A17 amacrine
cells, and therefore are unlikely to be responsible for the re-
sponses evoked in either cell type by application of NMDA (Zhou
etal., 2016). Regardless of the exact location of the NMDA recep-
tors, we can propose two different mechanisms for their potential
activation under physiological conditions. One mechanism in-
volves direct spillover of synaptically released glutamate, and the
other mechanism involves activation by ambient glutamate.
With respect to the first mechanism, there is evidence that gluta-
mate spillover at the rod bipolar cell axon terminal can activate
glutamate transporters on the same and neighboring axon termi-
nals (Veruki et al., 2006; Wersinger et al., 2006). Depending on
their exact location, this suggests that NMDA receptors on All
and A17 amacrine cells under certain conditions could be acti-
vated by spillover of glutamate from rod bipolar cells after syn-
aptic release. With respect to the second mechanism, there is
evidence that the concentration of ambient glutamate (of neuro-
nal and/or glial origin) in the extracellular environment of the
CNS is sufficiently high to activate different extrasynaptic recep-
tors (Chen and Diamond, 2002; Cavelier et al., 2005; Tzingounis
and Wadiche, 2007).

If activation of NMDA receptors contributes to membrane
noise under baseline conditions, it should be possible to block
their contribution by blocking the receptors. To test this hypoth-
esis, we recorded membrane noise for ~10 min before adding the
NMDA receptor antagonist CPP (20 um) to the bath solution.
The bath solution was Mg**-free and contained CNQX, bicuc-
ulline, strychnine, and TTX (to block non-NMDA, GABA,, and
glycine receptors, and voltage-gated Na * channels, respectively),
as well as D-serine. We analyzed the membrane noise by calculat-
ing the variance of the membrane current recorded during a 2
min period in the control condition and a 2 min period in the
presence of CPP. For the AII amacrine cell illustrated in Figure
2A, the addition of CPP markedly decreased the membrane noise,
from an average variance of 31 pA? in the control condition to 8.0
pA? in the presence of CPP. This suggested that gating of NMDA
receptor channels contributed substantially to membrane noise
in our baseline condition. That the membrane noise was sup-
pressed by the competitive antagonist CPP also suggests that the
channel gating was driven by the presence of an endogenous
agonist of the NMDA receptor, which is likely to be glutamate.
For AIl amacrine cells tested in this way, the average variance in
the control condition was 20.0 = 3.9 pA?; and in the presence of
CPP, it was 7.3 = 1.2 pA* (p = 0.0395, paired  test; n = 4 cells),
corresponding to an average reduction of 60 * 8% (Fig. 2A).

Similar results were seen for A17 amacrine cells tested the
same way. For the cell illustrated in Figure 2B, the membrane
noise was reduced from 4.4 pA? in control to 3.1 pA? in the
presence of CPP. For all A17 amacrines tested, the membrane
noise was reduced from 6.3 = 0.9 pA”in control to 3.2 = 0.2 pA>
in the presence of CPP (p = 0.0169, paired t test; n = 6 cells),
corresponding to an average reduction of 46 * 6% (Fig. 2B).
These results suggest that, for both AIl and A17 amacrine cells,
ambient levels of glutamate are sufficiently high to gate NMDA
receptor channels.

We next examined whether the increased activity of glutamate
transporters at a more physiological temperature would reduce
the level of ambient glutamate and/or prevent spillover of synap-
tic glutamate (Wadiche et al., 1995; Asztely et al., 1997; Rauen et
al., 1998) and thus reduce or eliminate the observed NMDA
receptor-mediated membrane noise. When we repeated these ex-
periments for AIl amacrine cells at 32°C, the average variance in
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Figure2. Activation of NMDA receptors by ambient glutamate generates membrane current noise in All and A17 amacrine cells.
A, Continuous current recorded from an All amacrine cell in whole-cell voltage clamp in control condition (top) and during
application of CPP (20 wum) in the extracellular bath to block NMDA receptors (bottom). Note the reduction of membrane current
noise in the presence of CPP, suggesting activation of NMDA receptors by ambient glutamate in the control condition. Here and
later, the identity of the cell from which the recording was performed is indicated by the schematic (left), with color and shape as
in Figure 1. Bar graphs (right) represent membrane current noise measured as variance (here and later, bars represent mean =
SEM) in All amacrine cells (n = 4 cells) in control (without CPP; left bar) and in the presence of CPP (right bar). For each cell (here
and below), current variance was averaged over 2 min. Here and later, data points for the same cell are connected by lines.
Statistical comparisons between averages: n.s., No significant difference (p > 0.05). *p << 0.05. B, Continuous
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the control condition was 57.7 * 15.4
pA?% and in the presence of CPP, it was
39.3 + 11.7 pA* (p = 0.0223, paired ¢ test;
n =5 cells; Fig. 2C), corresponding to an
average reduction of 33 * 9%. This sug-

<«

current recorded from an A17 amacrine cell in whole-cell volt-
age clamp in control condition (top) and during application of
CPP (20 pum) in the extracellular solution to block NMDA recep-
tors (bottom). Note the reduction of membrane current noise
in the presence of CPP, suggesting activation of NMDA recep-
tors by ambient glutamate in the control condition. Bar graphs
(right) represent membrane current noise measured as vari-
ance in A17 amacrine cells (n = 6 cells) in control and in the
presence of CPP. C, Continuous current recorded from an All
amacrine cell in whole-cell voltage clamp at 32°Cin control
condition (top) and during application of CPP (20 wum) in the
extracellular solution to block NMDA receptors (bottom). Note
the reduction of membrane current noise in the presence of
(PP, suggesting activation of NMDA receptors by ambient glu-
tamate in the control condition at 32°C. Bar graphs (right) rep-
resent membrane current noise measured as variance in All
amacrine cells (n = 5 cells) at 32°Ciin control and in the pres-
ence of CPP. D, E, No effect of CPP on membrane current noise
when the NMDA receptors are blocked by the open-channel
blocker MK-801 (2 mm) in the intracellular solution. D, Contin-
uous current recorded from an All amacrine cell in whole-cell
voltage clamp in control condition (top) and during applica-
tion of CPP (20 rum) in the extracellular solution to block NMDA
receptors (bottom). Note thatincluding MK-80T intracellularly
blocks the effect of CPP on membrane current noise, suggest-
ing that the noise is generated by activation by ambient glu-
tamate of NMDA receptors in the All amacrine cell itself. Bar
graphs (right) represent membrane current noise measured as
variance in All amacrine cells (n = 5 cells; MK-801 in the in-
tracellular solution) in control and in the presence of CPP. E,
Continuous current recorded from an A17 amacrine cell in
whole-cell voltage clamp in control condition (top) and during
application of CPP (20 um) in the extracellular solution to
block NMDA receptors (bottom). Note that including MK-801
intracellularly blocks the effect of CPP on membrane current
noise, suggesting that the noise is generated by activation by
ambient glutamate of NMDA receptors in the A17 amacrine
cell itself. Bar graphs (right) represent membrane current
noise measured as variance in A17 amacrine cells (n = 4 cells;
MK-801inthe intracellular solution) in control and in the pres-
enceof CPP. F, G, Effect of blocking glutamate uptake on mem-
brane noise. F, Continuous current recorded from an All
amacrine cell in whole-cell voltage clamp in control condition
(top), during application of the glutamate transporter blocker
TBOA (50 pum; middle), and during combined application of
TBOA and CPP (20 um; bottom). Note that membrane current
noise is reduced by TBOA and further reduced by CPP. Bar
graphs (right) represent membrane current noise measured as
variance in All amacrine cells (n = 4 cells) in control (without
TBOA and CPP; left bar), in the presence of TBOA, and in the
presence of TBOA+CPP. G, Continuous current recorded from
an A17 amacrine cell in whole-cell voltage clamp in control
condition (top), during application of the glutamate trans-
porter blocker TBOA (50 wm; middle), and during com-
bined application of TBOA and CPP (20 wm; bottom). Note
that membrane current noise is increased by TBOA and
reduced by CPP. Bar graphs (right) represent membrane
current noise measured as variance in A17 amacrine cells
(n = 3 cells) in control, in the presence of TBOA, and in the
presence of TBOA+CPP.
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gested that, even at more physiologically relevant temperatures,
with enhanced glutamate transporter activity, the level of ambi-
ent glutamate is sufficiently high to activate NMDA receptors.

The reduction of membrane noise in AIl and A17 amacrines
by CPP does not demonstrate conclusively that the NMDA re-
ceptor channels are located on these amacrine cells, as the reduc-
tion of noise could be due to transsynaptic effects. To explore this
possibility, we performed experiments identical to those above
but included the NMDA receptor antagonist MK-801 in the in-
tracellular pipette solution. MK-801 acts as an open-channel
blocker and can also block NMDA receptors from the intracellu-
lar side (Wong et al., 1986; Huettner and Bean, 1988). If intracel-
lularly applied MK-801 reduces the effect of extracellularly
applied CPP on the membrane noise, this would verify that the
membrane noise must include gating of NMDA receptor chan-
nels on the All and A17 amacrine cells themselves, and cannot be
explained by gating of NMDA receptors exclusively located else-
where in the network of neurons. For AIl amacrine cells with 2
mM MK-801 in the recording pipette, the average variance was
13.4 + 2.4 pA? in the control condition, not significantly differ-
ent from 12.9 + 1.9 pA? in the presence of CPP (p = 0.41, paired
t test; n = 5 cells; Fig. 2D). For A17 amacrine cells (with 2 mMm
MK-801 in the recording pipette), the average control variance
was 6.6 * 1.8 pA?, not significantly different from 7.1 * 1.8 pA*
in the presence of CPP (p = 0.385, paired t test; n = 4 cells; Fig.
2E). These results suggested that the NMDA receptor-mediated
membrane noise observed in both AIl and A17 amacrine cells,
activated by ambient glutamate, is generated predominantly
(even exclusively) by receptors located in the membrane of the
recorded cells themselves and does not depend on potential
transsynaptic effects.

Increasing glutamate spillover can increase activation of
NMDA receptors on AIl and A17 amacrine cells

In the retina (Rauen et al., 1998), like elsewhere in the CNS (for
review, see Danbolt, 2001), the concentration of glutamate in
different extracellular environments is a result of the balance be-
tween release, synaptic and nonsynaptic from neurons and po-
tentially from glial cells, and uptake, primarily into glial cells, but
also into neurons. We therefore hypothesized that pharmacolog-
ically blocking uptake mediated by glutamate transporters in glial
cells and neurons could increase glutamate spillover and ambient
glutamate and subsequently the level of activation of NMDA re-
ceptors on All and A17 amacrine cells. To investigate this, we
performed experiments where we used the specific, but nonselec-
tive, nontransported glutamate transporter blocker TBOA (Shi-
mamoto et al., 1998) to increase extracellular glutamate.

In the first set of experiments, we examined whether applica-
tion of TBOA (50 uMm) increased membrane noise, measured as
the variance of the membrane current recorded in whole-cell
voltage clamp (see above), and whether a TBOA-evoked increase
was mediated by activation of NMDA receptors. For the All ama-
crine cell illustrated in Figure 2F, however, the effect of TBOA
was opposite of that hypothesized. The total current variance
decreased from 23 pA? in the baseline condition to 17 pA? in the
presence of TBOA. As in the experiments presented above, non-
NMDA receptors, GABA, receptors, glycine receptors, and
voltage-gated Na ™ channels were blocked pharmacologically and
D-serine was added to the bath solution. When we added CPP (20
uM) to block NMDA receptors, in the maintained presence of
TBOA, the membrane noise was further reduced to a level of 8.7
pAZ. For all ATl amacrine cells tested in this way, adding TBOA
decreased the membrane noise from 22.9 = 2.2 pA®to 13.5 = 2.5

Veruki et al. @ NMDA Receptors on All and A17 Amacrine Cells

pA? (p = 0.03, adjusted p value, one-way ANOVA, followed by
Holm-Sidak’s multiple-comparisons test) and adding CPP fur-
ther reduced the noise to 6.1 * 1.2 pA* (p = 0.043, adjusted p
value, one-way ANOVA, followed by Holm-Sidak’s multiple-
comparisons test; n = 4 cells; Fig. 2F). The reduction of current
variance by CPP suggested that NMDA receptor channel gating
contributed to the membrane noise both in the baseline condi-
tion and in the presence of TBOA, which is further investigated
below.

When A17 amacrine cells were tested in the same way with
TBOA (50 uM), the effect on membrane noise was very different
from AIl amacrines and consistent with our original hypothesis.
For the A17 illustrated in Figure 2G, the membrane noise in-
creased from 9.8 pA~? in the baseline condition to 26 pAZ in the
presence of TBOA. When we added CPP to block NMDA recep-
tors (in the maintained presence of TBOA), the membrane noise
was reduced to 2.0 pA 2. For A17 amacrine cells tested in this way,
adding TBOA increased the membrane noise from 12.0 = 3.4
pA®to 28.7 = 3.0 pA* (p = 0.006, adjusted p value, one-way
ANOVA, followed by Holm-Sidak’s multiple-comparisons test)
and adding CPP reduced the noise to 1.89 = 0.06 pA* (p = 0.002,
adjusted p value, one-way ANOVA, followed by Holm-Sidak’s
multiple-comparisons test; n = 3 cells; Fig. 2G). These results
suggested that, when glutamate transport was blocked with
TBOA, increased extracellular glutamate enhanced the activation
and gating of NMDA receptors on A17 amacrines, leading to an
increase of membrane noise.

The reduced membrane noise of AIl amacrine cells in the
presence of TBOA was surprising. Closer inspection of the raw
data, however, suggested that the effect of TBOA was more subtle
than indicated by the overall reduction of current variance. As
can be seen by the current traces illustrated in Figure 2F, TBOA
did strongly reduce the low-frequency noise, but this was accom-
panied by an increase in higher-frequency noise. This higher-
frequency noise was virtually eliminated following addition of
CPP, suggesting that it corresponded to NMDA receptor channel
gating. We explored this by analyzing the spectral density of the
current noise in the same four AIl amacrine cells (Fig. 2F), both
in control and in the presence of TBOA. We found that TBOA
reduced the spectral density of frequencies ~<10 Hz but in-
creased the spectral density of frequencies ~>10 Hz (Fig. 3A). To
quantify this result, we measured the spectral density at 3.9 Hz
and 39 Hz for each cell in both control and TBOA. Both the
observed decrease (at 3.9 Hz) and the observed increase (at 39
Hz) of the spectral density was statistically significant (p = 0.020
and p = 0.021, respectively, ratio ¢ test, two-tailed; Fig. 3B, C). At
this time, we cannot explain the cellular or molecular mecha-
nisms that result in the reduction of variance of membrane noise
in AIl amacrines exposed to TBOA, but they may involve trans-
synaptic effects and transmission through electrical synapses
(Veruki and Hartveit, 2002a,b). Regardless of any accompanying
changes in membrane noise, we decided to investigate directly
whether blocking glutamate uptake could evoke an increase in
NMDA receptor-mediated current in AIl amacrine cells.

The following experiments were performed with normal
Mg>* in the extracellular solution. To alleviate the Mg?™-
dependent voltage block of NMDA receptor channels, we applied
voltage ramps (from 50 to —90 mV at 200 mV/s) and measured
the average current in a window between 35 and 45 mV of the I-V
curve obtained after subtracting a linear leak component calcu-
lated by fitting a straight line to the current measured between
—90 and —60 mV (see Materials and Methods). To block
depolarization-evoked activation of voltage-gated K™ channels
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Figure3. Frequency-dependent effect of TBOA on membrane noise in All amacrine cells. 4,
Power density spectra obtained from the current noise in an All in the control condition (black
line), during application of TBOA (50 m; red line), and during combined application of TBOA
(50 um) + CPP (20 pum; gray line). Note the crossing of the control and TBOA spectra at ~10 Hz.
B, Spectral density measured at 3.9 Hz for All amacrine cells (n = 4) in control (without TBOA
and CPP; left bar), in the presence of TBOA and in the presence of TBOA+ CPP. Here and in C, the
data are from the same cells as illustrated in Figure 2F. €, Spectral density measured at 39 Hz n
control (without TBOA and CPP; left bar), in the presence of TBOA and in the presence of
TBOA -+ CPP. Statistical comparisons between averages: *p << 0.05.

that would interfere with the measurements, the pipette solution
contained Cs* and TEA (see Materials and Methods). In addi-
tion, the extracellular solution contained TEA (20 mMm) and 3,4-
DAP (0.1 mm) to block voltage-gated K™ channels faster and
more effectively.

If application of TBOA evokes an increased activation of
NMDA receptors, it should be revealed as an increase of the cur-
rent measured in the averaging window between 35 and 45 mV.
For the AIl amacrine cell illustrated in Figure 4A, we applied
voltage ramps approximately every 4 s. During the first period of
~5 min, the current response (measured in the averaging win-
dow) decreased markedly, corresponding to a gradually increas-
ing block of voltage-gated K™ currents mediated by diffusion
into the cell of Cs * and TEA from the pipette solution. After this
period, we switched to the extracellular solution with TEA and
3,4-DAP and observed that the current response continued to
decrease, reflecting increased block of voltage-gated K* chan-
nels, before stabilizing at a relatively constant plateau (Fig. 4A).
When TBOA (50 uM) was added to the bath solution, the current
response increased by ~60 pA (from 30 to 90 pA; Fig. 4A). When
TBOA was washed out, the current decreased approximately to
the level before TBOA was applied. For quantitative analysis, we
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used this more stable period as the control condition. The I-V
curves illustrated in Figure 4B correspond to leak-subtracted cur-
rents evoked by voltage ramps applied at two time points during
the recording in Figure 4A: during application of TBOA (1;
“TBOA”) and after washout of TBOA (2; “Control”). The differ-
ence between the two I-V curves corresponds to the I-V curve of
the net current evoked by TBOA (Fig. 4C) and displays a voltage
dependence similar to that expected for a current mediated by
NMDA receptors. For AIl amacrine cells tested in this way,
TBOA increased the current from a control level of 18.3 = 3.8 pA
to 54.7 = 8.8 pA (p = 0.0033, paired ¢ test; n = 6 cells; Fig. 4D).

If this TBOA-evoked current was mediated by activation of
NMDA receptors, it should be blocked by CPP. For the cell illus-
trated in Figure 4E, the response stabilized to a relatively constant
level after ~10 min. When we applied TBOA (50 um) and CPP
(20 uMm) together, there was no obvious change in the current
response (Fig. 4E). Following washout of CPP, TBOA applied
alone evoked an increase in response of ~45 pA. This was fol-
lowed by a slow reversal when TBOA was washed out at the end of
the recording period (Fig. 4E). For AIl amacrine cells tested in
this way, the response increased from an average of 41.1 = 6.6 pA
in the presence of TBOA and CPP to an average of 80 * 20 pA in
the presence of TBOA alone after washout of CPP (p = 0.0263,
adjusted p value, one-way ANOVA, followed by Holm-Sidak’s
multiple-comparisons test; n = 6 cells; Fig. 4F). These results
suggest that CPP can block the effect of TBOA on the voltage
ramp-evoked current, supporting the hypothesis that the in-
crease of current evoked by TBOA is mediated by activation of
NMDA receptors.

Whereas the addition of TEA and 3,4-DAP to the extracellular
solution was useful in the sense that it led to a faster and more
effective block of voltage-gated K™ currents (compared with Cs ™
and TEA only in the pipette solution), it could overestimate the
effect of TBOA because block of voltage-gated K™ channels in
bipolar cells could lead to depolarization, increased excitability,
and increased release of glutamate. Indeed, when we recorded
from AIl amacrine cells and switched to a bath solution with TEA
and 3,4-DAP, we observed a strong increase in bursting synaptic
input occurring at a frequency of ~0.5 Hz (data not shown).
Although increased release of glutamate does not invalidate the
observed effect of TBOA as such, we performed control experi-
ments where we examined the effect of TBOA using our standard
bath solution without TEA and 3,4-DAP.

For the AIT amacrine cell illustrated in Figure 4G, the voltage
ramp-evoked response decreased slowly in the control condition
and became relatively stable after ~15 min. When we added a
combination of TBOA (50 uMm) and CPP (20 uMm) to the bath
solution, there was no change in the response (Fig. 4G). At ~25
min, CPP was washed out and TBOA was applied alone. This led
to a clear increase of the response that slowly decreased back to
the baseline when TBOA was washed out (Fig. 4G). We tested a
total of four AIl amacrine cells in this condition (coapplication of
TBOA and CPP followed by application of TBOA alone) and two
cells with the opposite order of application (i.e., first TBOA alone,
followed by coapplication of TBOA and CPP). The average cur-
rent during coapplication of TBOA and CPP was 130.7 = 7.8 pA,
compared with an average current of 182 = 22 pA when TBOA
was applied alone (p = 0.0215, adjusted p value, one-way
ANOVA, followed by Holm-Sidak’s multiple-comparisons test;
n = 6 cells; Fig. 4H ).

The above results suggested that blocking glutamate trans-
porters with TBOA can increase activation of NMDA receptors,
both during baseline conditions of release and when release pre-
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Figure4. Blocking glutamate uptake evokes a conductance with J-shaped /-V relationship

in All amacrine cells. A, Current activated in an All increases when glutamate uptake is blocked
by bath application of TBOA (50 wum; indicated by continuous horizontal line above data points).
Here, and in E, G, and /, each data point corresponds to current activated by a voltage-ramp
stimulus (50 mV to —90 mV; 200 mV/s; repeated at 1 Hz) and measured by averaging the
current between 35 and 45 mV in the resulting /-V/ relationship. Linear leak current was sub-
tracted by first fitting a straight line to the /- relationship between —90 and 60 mV and then
subtracting the resulting function from the ramp current over the whole range of the voltage
ramp. Here, and in £, G, and I, the extracellular solution contained 1mmMg® . During the early
period of recording, the response is dominated by depolarization-evoked K * currents that are
gradually suppressed by Cs * and TEA in the pipette solution (07 min). At ~7 min recording
time, TEA (20 mwm) and 3,4-DAP (0.1 mm) are added to the extracellular bath (broken horizontal
line), leading to additional suppression of depolarization-evoked K ™ currents and a stable
response plateau of ~30 pA (20 — 40 min). Note the increase of depolarization-evoked current
during application of TBOA and reduction after washout of TBOA. Numbers (1, red; 2, black)
correspond to time points of /-V/ traces displayed in B. B, Individual /-V relationships (after
linear leak subtraction) obtained by voltage-ramp stimuli applied during application of TBOA (1,
red) and after washout of TBOA (2, black). C, /-V relationship of net TBOA-evoked current
obtained by subtracting /-V relationships in left panel (“TBOA”-“Control”). Note the J-shaped
|-V relationship. D, Membrane current measured (as in A) in All amacrine cells (n = 6 cells) in
control and in the presence of TBOA. Here and below, for each cell, current responses were
averaged over 5 min in each condition. E, Current activated in an All amacrine cell increases
when glutamate uptake is blocked by bath application of TBOA (50 wm; indicated by thick,
broken, horizontal line above data points), but not when TBOA is applied in the presence of CPP
(20 um; indicated by continuous horizontal line above data points). Depolarization-evoked K *
currents blocked by Cs ™ and TEA in the pipette solution and by TEA (20 m) and 3,4-DAP (0.1
mw) in the extracellular solution (from the start of the recording; thin, broken, horizontal line
above data points). Note the increase of depolarization-evoked current during application of
TBOA alone, but not when TBOA was applied with CPP. F, Membrane current measured (asin E)
in All amacrine cells (n = 6 cells) in control, in the presence of TBOA and CPP, and
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sumably is enhanced by increasing the general excitability after
blocking voltage-gated K™ channels with TEA and 3,4-DAP in
the bath solution. For some AIl amacrine cells, we could detect
activation of NMDA receptors under our baseline conditions not
only by observing CPP-sensitive membrane noise (see above; Fig.
2A,C), but also by observing a tonic current that was revealed by
depolarization. For the AIl amacrine cell illustrated in Figure 41,
the current evoked by voltage ramps was suppressed when CPP
(20 uMm) was added to the bath solution. When CPP was washed
out, the voltage ramp-evoked current reversed to the level mea-
sured before adding CPP (Fig. 4I). For AIl amacrines tested in
this way, the average current in the control condition was 102.1 =
8.7 pA; and in the presence of CPP, it decreased to 71.4 == 5.9 pA
(p =0.000015, paired t test; n = 14 cells; Fig. 4] ). Together, these
experiments directly demonstrate that increased ambient gluta-
mate, evoked by blocking transporter activity, leads to an increase
in NMDA receptor-mediated currents in AIl amacrine cells.

Single-channel properties determined by stationary noise
analysis of NMDA-evoked currents

We previously determined that the somas of AIl and A17 ama-
crine cells lack detectable NMDA receptor responses (Zhou et al.,
2016), limiting the possibilities for a more detailed investigation
of the biophysical properties of these receptors by using outside-
out or nucleated patches. Here, instead, we used stationary noise
analysis of NMDA-evoked responses in whole-cell recordings of
AII amacrine cells to elucidate single-channel properties of the
NMDA receptor channels. Even for the relatively small AIT ama-
crine cells, however, it is expected that channel gating noise gen-
erated in distal dendrites will be distorted by electrotonic filtering
(Zandt et al., 2018); thus, no attempt was made to perform a
similar analysis for A17 amacrine cells, which have much longer
processes (Fig. 1E).

For these whole-cell recordings, we used a Cs "~ and TEA-
based intracellular solution to block potential activation of K™
channels activated by Ca** influx through the NMDA receptors,
similar to what has been observed for olfactory bulb granule cells
(Isaacson and Murphy, 2001). We first established a control con-
dition by switching to a bath solution containing TTX, strych-
nine, bicuculline, and CNQX. Next, we changed to a Mg>*-free
extracellular solution (containing the above blockers); and
~5—10 min later, we added 50 um NMDA and 200 M D-serine to
the bath solution. For the majority of AIl amacrine cells tested (8
of 9 cells), bath application of NMDA evoked a slowly developing
inward current. The inward current was accompanied by a

<«

in the presence of TBOA alone. G, Current activated in an All amacrine cell increases when
glutamate uptake is blocked by bath application of TBOA (50 wum; indicated by broken, horizon-
tal line above data points), but not when TBOA is applied in the presence of the NMDA receptor
antagonist CPP (20 wm; indicated by continuous, horizontal line above data points).
Depolarization-evoked K currents blocked by Cs ™ and TEA in the pipette solution, but the
extracellular solution did not contain K™ channel blockers. Note the increase of
depolarization-evoked current during application of TBOA alone, but not when TBOA was
applied with CPP. H, Membrane current measured (as in G) in All amacrine cells (n = 6
cells) in control, in the presence of TBOA+CPP, and in the presence of TBOA alone. /,
Current activated in an All amacrine cell decreases when NMDA receptors are blocked by
bath application of CPP (20 ww; indicated by horizontal line above data points).
Depolarization-evoked K * currents blocked by s * and TEA in the pipette solution, but
the extracellular solution did not contain K™ channel blockers. Note the decrease of
depolarization-evoked current during application of CPP and reversal when CPP is washed
out.J, Membrane current measured (as in /) in All amacrine cells (n = 14 cells) in control
and in the presence of CPP. Statistical comparisons between averages: n.s., No significant
difference (p > 0.05). *p < 0.05.
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Figure 5.  Stationary noise analysis of NMDA-evoked current in an All amacrine cell. A, Con-

trol recording and responses evoked by bath application of NMDA (50 wm). Traces 1-3 recorded
at successive times after application of NMDA. Note the increasing membrane current noise
during application of NMDA. B, Net power density spectrum (red markers) obtained from the
current noise evoked by 50 pum NMDA during a 20 s period including trace 3 in A. The power
spectrum for the (net) NMDA-evoked noise has been fitted (continuous curve) with a Lorentzian
function and the half-power cutoff (corner) frequency (f.) of the function is indicated by the
vertical arrow. €, Net current variance plotted against mean current for a series of different
periods (as in A) of NMDA-evoked responses in the same All amacrine cell. Each data point
corresponds to a specific time period after NMDA was added to the bath. Data points 1-3
correspond to the periods in A. The data points were obtained by power spectral density analysis
(asin B) and were fitted with a parabolic function (Eq. 4). The apparent single-channel current
(i) was 1.4 pA (corresponding to an apparent single-channel conductance of 22.6 pS) and the
number of available receptor channels () was 60.

marked increase of current noise (Fig. 5A). The noise increased in
parallel with the increase of current amplitude as the concentra-
tion of NMDA in the recording chamber increased over time. For
each epoch of continuous recording under semistationary con-
ditions (see Materials and Methods), we calculated net NMDA -
evoked noise spectra and fitted each averaged spectrum (typically
between 1.95 and 500 Hz) with one (n = 6 cells) or two (n = 2
cells) Lorentzian components. Figure 5B shows the net spectrum
and resulting curve fit for one such current epoch acquired after
~9 min of NMDA application. The half-power frequency ( f. =
18 Hz) is indicated by a vertical arrow. The corresponding time
constant (1) was 8.9 ms. For the six AIl amacrine cells that re-
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sponded to NMDA and were well fit by a single Lorentzian com-
ponent, the mean time constant for the later (“saturating”)
responses was 8.03 * 0.72 ms (range 5.5-9.6 ms). For the two
cells where an adequate fit required two Lorentzian components,
the mean time constants were as follows: 7, = 0.5 ms, 7, = 6.8 ms
(cell 1) and 7, = 2.8 ms, 7, = 12.5 ms (cell 2).

We estimated the net NMDA-evoked increase in current vari-
ance for each epoch as the integral under the sum of the Lorent-
zian function(s) fitted to each spectral density graph and plotted
the resulting variance versus the mean current. When we ob-
tained a series of epochs with slowly increasing mean current (as
the concentration of NMDA in the recording chamber in-
creased), the variance initially increased approximately linearly
with mean current, consistent with a low open probability of the
NMDA receptor channels (Fig. 5C). With increasing mean cur-
rent, the slope of the variance versus mean curve eventually de-
clined; and for the majority of cells, the variance reached a peak
followed by a slight decline (Fig. 5C). The apparent unitary cur-
rent (i) was estimated by fitting the data points with Equation 4
and the apparent unitary chord conductance (y) was calculated
asy=1/(V,, — E..,), where V_, is the voltage-clamp potential and
E.., is the reversal potential (assumed to be 0 mV) (compare
Zhou et al., 2016). For the cell illustrated in Figure 5C, y was 22.6
pS. For the AIl amacrine cells where the variance versus mean
data points spanned a range large enough to be well fitted with
Equation 4 (n = 8 cells), y was 22.6 = 1.3 pS (range 17.1-27.1
pS). The curve fitting also estimated N (the number of available
channels in each cell) to be 57.9 = 7.0 (range 38—-94), corre-
sponding to a maximum P, of 0.57 £ 0.04 (range 0.41-0.74).
These numbers must be cautiously interpreted, however, as N is
unlikely to equate the total number of NMDA receptors on an AIl
amacrine cell because many receptors will have desensitized. In
addition, it is likely that the responses were influenced by electro-
tonic low-pass filtering and attenuation in the dendritic tree.

Pharmacological evidence for GluN2B-containing NMDA
receptors in AIl amacrine cells

The subunit composition of NMDA receptors confers specific
and distinct functional properties, such as Mg>" sensitivity,
Ca’* permeability, affinity for glutamate, single-channel con-
ductance, kinetics, and pharmacology (Paoletti et al., 2013). We
took advantage of the differences in pharmacological properties
between NMDA receptors with different subunit composition
(Ogden and Traynelis, 2011). Because the majority of NMDA
receptors in the CNS are composed of either GIuN2A or GluN2B
subunits (in combination with GluN1 subunits), we started our
investigation with pharmacological agents that can differentiate
between receptors with these subunits.

We first examined the effect of ifenprodil (10 um), an NMDA
receptor antagonist with high selectivity for GluN2B-containing
receptors (Williams, 1993; Perin-Dureau et al., 2002). For the AII
cell illustrated in Figure 64, ifenprodil reduced the amplitude of
responses evoked by puffer-pipette application of NMDA (1 mM,
1 's) from ~100 pA to ~20 pA, a reduction of 80% relative to
control. When ifenprodil was washed out, the response slowly
recovered, but by the time the cell was lost after 20 min recording,
the recovery had only reached an amplitude that was ~50% of the
initial control response (Fig. 6A). Slow and incomplete recovery
from block by ifenprodil has been observed previously for other
preparations (Williams, 1993; Kew et al., 1996). For AIl amacrine
cells tested in this way, the average NMDA-evoked response in
the presence of ifenprodil (17.9 = 5.7 pA) was signficantly lower
than in the control condition (111 * 33 pA; p = 0.029, paired ¢
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test), corresponding to a suppression of
84 = 4% (n = 5 cells; Fig. 6A). Partial
recovery after washout of ifenprodil was
observed for 3 of 5 cells, with the response
amplitude reaching an average of 63 *
19% of the baseline response.

When A17 amacrine cells were tested
in the same way, ifenprodil had no effect
on the NMDA-evoked responses, as illus-
trated for the cell in Figure 6B where the
response amplitude was ~80 pA in the
control condition and ~82 pA in the pres-
ence of ifenprodil. For A17 amacrine cells,
the average NMDA-evoked response was
82 £ 10 pA in the control condition and
80 = 11 in the presence of ifenprodil (p =
0.2725, paired ¢ test), corresponding to a
change of only 3 = 2% (n = 8 cells; Fig.
6B). These results suggested that AIl ama-
crine cells express NMDA receptors that
contain the GluN2B subunit, whereas A17
amacrines do not.

To substantiate this conclusion, we
also examined the effect of Ro 25—-6981 (1
uM), a more potent derivative of ifen-
prodil that is highly specific for NMDA
receptors containing the GluN2B subunit
(Fischer et al., 1997). For the AIl amacrine
cell illustrated in Figure 6C, application of
Ro 25-6981 reduced the NMDA-evoked
response from ~110 pA to ~3 pA, corre-
sponding to an amplitude reduction of
90%. The cell was lost before Ro 25-6981
could be washed out, but partial recovery
of NMDA-evoked responses was ob-
served for AII cells in which recordings
could be maintained for at least 15 min
after we started to wash out Ro 25-6981.
For AIl amacrine cells tested with Ro 25—
6981, the average NMDA-evoked re-
sponse in the presence of Ro 25-6981
(4 = 1 pA) was significantly lower than in
the control condition (68 = 14 pA) corre-
sponding to a suppression of 93 * 2%
(n = 6 cells; p = 0.0053, paired t test; Fig.
6C). For A17 amacrine cells, application
of Ro 25-6981 did not change the
NMDA-evoked currents. For the cell il-
lustrated in Figure 6D, the response was
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Figure 6.  NMDA-evoked responses in All, but not A17, amacrines are blocked by the GluN2B-selective antagonists ifenprodil
and Ro 25—6981. 4, Left, Responses evoked by NMDA application in an All amacrine cell by pressure application of NMDA (1 m,
15) from a puffer pipette in the control condition (1) and in the presence of 10 m ifenprodil in the bath (2). In this and subsequent
figures, the duration of drug application is indicated by the horizontal bar above the current traces. Middle, Peak amplitude of
currents activated in the same All amacrine cell by application of NMDA (as to the left) at 60 s intervals. Note the suppression of
NMDA-evoked responses during addition of ifenprodil. Here and in Figures 7 and 8, numbered data points (1and 2) correspond to
responses of data traces displayed at left. Right, Peak amplitude of NMDA-evoked responses in All amacrine cells (n = 5 cells) in
control and in the presence of ifenprodil. B, Left, Responses evoked by NMDA application in an A17 amacrine cell by pressure
application of NMDA (1 mw, 1) from a puffer pipette in the control condition (1) and in the presence of 10 wmifenprodil in the bath
(2). Middle, Peak amplitude of currents activated in the same A17 amacrine cell by application of NMDA (as to the left) at 60 s
intervals. Note the lack of effect on NMDA-evoked responses during addition of ifenprodil. Right, Peak amplitude of NMDA-evoked
responses in A17 amacrine cells (1 = 8 cells) in control and in the presence of ifenprodil. , Left, Responses evoked by NMDA
applicationinan All amacrine cell by pressure application of NMDA (1 mw, 1) from a puffer pipette in the control condition (1) and
in the presence of 1 M Ro 25—6981(2) in the bath. Middle, Peak amplitude of currents activated in the same All amacrine cell by
application of NMDA (as to the left) at 60 s intervals. Note the suppression of NMDA-evoked responses during addition of Ro
25-6981. Right, Peak amplitude of NMDA-evoked responses in All amacrine cells (n = 6 cells) in control and in the presence of Ro
25—6981.D, Left, Responses evoked by NMDA application inan A17 amacrine cell by pressure application of NMDA (1 mm, 15) from
a puffer pipette in the control condition (1) and in the presence of 1 um Ro 25— 6981 (2). Middle, Peak amplitude of currents
activated in the same A17 amacrine cell by application of NMDA (as to the left) at 60 s intervals. Note the lack of effect on
NMDA-evoked responses during addition of Ro 25— 6981. Right, Peak amplitude of NMDA-evoked responsesin A17 amacrine cells
(n = 6 cells) in control and in the presence of Ro 25—6981. Statistical comparisons between averages: n.s., No significant
difference (p > 0.05). *p << 0.05.

independent, noncompetitive, high-affinity (IC;, = 20 nM) an-

~103 pA in the control condition and ~105 pA in the presence of
Ro 25-6981. For A17 amacrines, the average control response
was 102 = 15 pA and the average response in Ro 25-6981 was
110 % 17 pA corresponding to a change of only 6 * 6% (n = 6
cells; p = 0.25, paired t test; Fig. 6D). Together, these results
provided strong evidence for the presence of GluN2B subunits in
the NMDA receptors of AIl amacrine cells and suggested that
GluN2B is absent from the NMDA receptors of A17 amacrine
cells.

Pharmacological evidence for GluN2A-containing NMDA
receptors in A17 amacrine cells

To test for NMDA receptors containing the GluN2A subunit, we
examined the effect of Zn*™, which acts as a specific, voltage-

tagonist of GluN2A-containing NMDA receptors. The maximum
degree of inhibition by Zn>* that can be expected is ~60%-80%
(Paoletti et al., 2009). However, under normal experimental con-
ditions, nanomolar concentrations of Zn>* can be found as a
contamination in different chemical compounds and are suffi-
cient to block GluN2A-containing NMDA receptors, potentially
obscuring their presence (Paoletti et al., 2009). In addition, Zn**
can be colocalized with glutamate in synaptic vesicles and is core-
leased with glutamate during exocytosis (Smart et al., 1994). For
simplicity, we collectively refer to these sources as contaminating
7Zn?". To work around this complication, we used tricine to che-
late contaminating Zn>* and buffer Zn>" at a controlled level
(Paoletti et al., 2009). To investigate the potential relevance of
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Figure 7. NMDA-evoked responses in A17, but not All amacrines, are increased by chelating potentially contaminating trace
amounts of Zn2™ with tricine in the extracellular solution. NMDA-evoked responses in A17, but not All amacrines, are blocked by
the GluN2A-selective antagonist Zn*. A, Peak amplitude of currents activated in All amacrine cells (n = 9 cells) by repeated
pressure application of NMDA (1 mm, 1) from a puffer pipette at 60 s intervals, first in control and then in the presence of tricine
(10 mm). Note the lack of effect on NMDA responses after adding tricine. B, Peak amplitude of currents activated in A17 amacrine
cells (n = 13 cells) by repeated pressure application of NMDA (1 mw, 1's) from a puffer pipette at 60 s intervals, first in control and
then in the presence of tricine (10 mm). Note the increase of responses after adding tricine compared with control. €, Left,
Responses evoked by NMDA application in an All amacrine cell by pressure application of NMDA (1 mm, 1) from a puffer pipette in
the control condition (after adding 10 mm tricine; 1) and in the presence of tricine and ZnCl, (to achieve a free concentration of
In** ([Zn 2Jr]free) of 100 nw; 2). Middle, Peak amplitude of currents activated in the same All amacrine cell by application of NMDA
(as to the left) at 60 s intervals. After a brief period, the extracellular solution was supplemented with tricine to chelate potentially
contaminating trace amounts of Zn>" before adding ZnCl,. Note the lack of effect on NMDA-evoked responses by Zn?™*
([Zn 2Jr]free =100 nm). Right, Peak amplitude of NMDA-evoked responses in All amacrine cells (n = 4 cells) in tricine and with
tricine and [Zn** ];,.. = 100 nm (“Zinc"). D, Left, Responses evoked by NMDA application in an A17 amacrine cell by pressure
application of NMDA (1 mw, 1) from a puffer pipette in the control condition (after adding tricine; 1) and in the presence of tricine
and 2nCl, ([Zn* " Jyee = 10011; 2). Middle, Peak amplitude of currents activated in the same A17 amacrine cell by application of
NMDA (as to the left) at 60 s intervals. After a brief period, the extracellular solution was supplemented with tricine (10 mw) to
chelate potentially contaminating trace amounts of Zn2* before adding ZnCl,. Note the enhancement of responses after adding
tricine and suppression of responses after addition of ZnCl,. Right, Peak amplitude of NMDA-evoked responses in A17 amacrine
cells (n = 6 cells) in tricine (10 mw) and with tricine (10 mm) and [Zn 1., = 100 nut (“Zinc”). E, Left, Responses evoked by NMDA
application inan All amacrine cell by pressure application of NMDA (1 mw, 15) from a puffer pipette in the control condition (in the
presence of 10 mmtricine; 1) and in the presence of tricine and 25 nm PEAQX (2). Middle, Peak amplitude of currents activated in the
same All amacrine cell by application of NMDA (as to the left) at 60 s intervals. After a brief period, the extracellular solution was
supplemented with tricine (10 mw) to chelate potentially contaminating trace amounts of Zn > to alleviate any block of GIuN2A-
containing NMDA receptors. Note the lack of effect on NMDA-evoked responses by PEAQX. Right, Peak amplitude of NMDA-evoked
responsesin All amacrine cells (n = 5 cells) in tricine and in the presence of tricine and PEAQX (“PEAQX”). F, Left, Responses evoked
by NMDA application in an A17 amacrine cell by pressure application of NMDA (1 mm, 1's) from a puffer pipette in the control
condition (in the presence of 10 mm tricine; 1) and in the presence of tricine and PEAQX (2). Middle, Peak amplitude of currents
activatedin the same A17 amacrine cell by application of NMDA (as to the left) at 60 s intervals. After a brief period, the extracellular
solution was supplemented with tricine (10 mw) to chelate potentially contaminating trace amounts of Zn >* toalleviate any block
of GluN2A-containing NMDA receptors. Note the suppression of NMDA-evoked responses by PEAQX. Right, Peak amplitude of
NMDA-evoked responses in A17 amacrine cells (n = 5 cells) in tricine and in the presence of tricine and PEAQX (“PEAQX”).
Statistical comparisons between averages: n.s., No significant difference (p > 0.05). *p < 0.05.
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contaminating levels of Zn** under our

conditions, we recorded from both AII
and A17 amacrine cells and acquired base-
line NMDA-evoked responses (as above).
After a stable baseline had been estab-
lished, we added tricine at a concentration
of 10 mM (Paoletti et al., 2009) to chelate
any contaminating Zn**, which may have
suppressed the baseline NMDA-evoked
responses.

For AIl amacrine cells, the NMDA re-
sponses evoked in the presence of tricine
(10 mm), had an average peak amplitude
of 74 * 13 pA, not significantly different
from the responses obtained in the con-
trol condition without tricine (79 * 14
pA; n =9 cells; p = 0.1177, paired f test;
Fig. 7A). However, for A17 amacrine cells,
the average peak amplitude of NMDA re-
sponses evoked in the presence of tricine
was 92 = 11 pA, significantly larger than
the responses obtained in the control con-
dition without tricine (66.5 = 7.2 pA; n =
13 cells; p = 0.0004, paired ¢ test; Fig. 7B),
and corresponded to an increase of 39 =
6%. These effects of tricine suggested that
the NMDA receptors on A17, but not AlI,
amacrine cells were suppressed by endog-
enous or contaminating Zn>* under our
recording conditions.

To test potential effects of Zn>* di-
rectly, we recorded from both cell types
with tricine present in the control condi-
tion and then changed to an extracellular
solution with a free Zn>* concentration
([Zn**]4..) of 100 nM (see Materials and
Methods). For AIl amacrine cells, the av-
erage NMDA-evoked response in the
presence of 100 nM free Zn>" was 45.3 +
9.4 pA, not significantly different from
that in the control with tricine (44.8 = 9.4
PA, n = 4 cells; p = 0.8763, paired t test;
Fig. 7C). These results suggested that the
NMDA receptors expressed by AIl ama-
crine cells are not inhibited by nanomolar
concentrations of Zn>*, and thus are un-
likely to contain the GluN2A subunit.

When A17 amacrine cells were tested
in the same way, we found that 100 nm
Zn>" (in the extracellular solution with
10 mM tricine) markedly suppressed the
NMDA-evoked responses of these cells.
For the cell illustrated in Figure 7D, Zn>*
reduced the response to NMDA to ~30
PA, corresponding to a decrease of 50%
relative to the control with tricine. For
A17 amacrine cells tested in this way, the
average NMDA-evoked response in the
presence of 100 nM Zn*" was 36.1 + 7.1
PA, significantly lower than in the control
condition with tricine (71.9 £ 9.1 pA,n =6
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cells; p = 0.0002, paired ¢ test; Fig. 7D),
and corresponded to a reduction of 51 *=
5%. These results suggested that the
NMDA receptors expressed by A17 ama-
crine cells are inhibited by nanomolar
concentrations of Zn®", and thus are
likely to contain the GluN2A subunit.

To substantiate these results, we exam-
ined the effect of PEAQX, an antagonist
that is selective for GluN2A-containing
NMDA receptors (Frizelle et al., 2006).
We tested the effect of PEAQX (25 nM) in
the presence of tricine to eliminate the pos-
sibility that potential GluN2A-containing
NMDA receptors would already be
blocked by contaminating levels of Zn>*.
In this condition, PEAQX had no effect on
NMDA-evoked responses in AIl amacrine
cells (Fig. 7E). The average response in the
control with tricine was 98 = 16 pA, and
the average response in the presence of
PEAQX was 94 = 15 pA (n = 5 cells; p =
0.0879, paired t test; Fig. 7E).

When A17 amacrine cells were tested
with PEAQX (in the presence of tricine), the
results were very different from those ob-
tained for AIl amacrine cells. For the cell
illustrated in Figure 7F, PEAQX suppressed
the NMDA-evoked response from ~60 pA
in the control with tricine to ~36 pA after 10
min in PEAQX, corresponding to a reduc-
tion of 40%. In the presence of PEAQX, the
average NMDA-evoked response in Al7
amacrines was 55 * 12 pA, significantly
lower than in the tricine condition (84 * 14
PA; n =5 cells; p = 0.00127, paired t test;
Fig. 7F), corresponding to an average sup-
pression of 36 = 4%. Together, these results
provided strong evidence for the presence of
the GIuN2A subunit in NMDA receptors of
Al7 amacrine cells and suggested that
GluN2A is absent from the NMDA recep-
tors of AIl amacrine cells.

No evidence for expression of GluN2C
and GluN2D receptor subunits in AII
and A17 amacrine cells

The functional properties of NMDA recep-
tors containing GluN2C and/or GluN2D
subunits differ substantially from those con-
taining GluN2A and/or GluN2B subunits
(Paoletti et al., 2013). The receptor antago-
nists QNZ46 (Hansen and Traynelis, 2011)
and DQP-1105 (Acker et al., 2011) are suf-
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Figure8.  No evidence for expression of GIuN2C/GIuN2D subunits or triheteromeric GIuN1/GluN2A/GluN2B NMDA receptors in
Al or A17 amacrine cells. 4, Left, Responses evoked by NMDA application in an All amacrine cell by pressure application of NMDA
(1'mm, 15) from a puffer pipette in the control condition and in the presence of 10 m QNZ46 (2). Middle, Peak amplitude of
currents activated in the same All amacrine cell by application of NMDA (as to the left) at 60 s intervals. Note the lack of effect on
NMDA-evoked responses during addition of QNZ46 (10 um) to the bath. Right, Peak amplitude of NMDA-evoked responses in All
amacrine cells (n = 8 cells) in control and in the presence of QNZ46. B, Left, Responses evoked by NMDA application in an A17
amacrine cell by pressure application of NMDA (1 mm, 1's) from a puffer pipette in the control condition and in the presence of 10
M QNZ46 (2). Middle, Peak amplitude of currents activated in the same A17 amacrine cell by application of NMDA (as to the left)
at 60 sintervals. Note the lack of effect on NMDA-evoked responses during addition of QNZ46 (10 m) to the bath. Right, Peak amplitude
of NMDA-evoked responses in A17 amacrine cells (n = 5 cells) in control and in the presence of QNZ46. , Left, Peak amplitude of currents
activated in an All amacrine cell by pressure application of NMDA (1 mw, 15,60 sintervals). During the first recording period, tricine (10 mu)
was added to the bath to chelate potentially contaminating trace amounts of Zn>* to avoid baseline suppression of GluN2A-containing
receptors. Next, a relatively low concentration of ifenprodil (3 1um) was added to block diheteromeric GluN1/GIuN2B receptors. Finally, the
free Zn2* concentration was set to 100 nu (by adding ZnCl,) to test for the presence of potential triheteromeric GluN1/GIuN2A/GluN2B
receptors that would presumably be blocked by the combination of ifenprodil and Zn 2™ There was no additional suppression by adding
In*" . Right, Peak amplitude of NMDA-evoked responses in All amacrine cells (n = 3 cells) in the presence of tricine and ifenprodil (3 uum;
“Ifenprodil”), and in the presence of tricine, ifenprodil, and Zn>* (100 nw; “Ifenprodil + Zinc"). D, Left, Peak amplitude of currents
activatedinan A17 amacrine cell by pressure application of NMDA (1mw, 15, 60 intervals). During the first recording period, tricine (10 mu)
was added to the bath to chelate potentially contaminating trace amounts of Zn>* to avoid baseline suppression of GluN2A-containing
receptors. Next, the free Zn>* concentration was set to 100 nw (by adding ZnCl,) to block diheteromeric GluN1/GIuN2A receptors. Finally,
ifenprodil was added (3 um) to testfor block of triheteromeric GluN1/GluN2A/GIuN2B receptors by the combination ofZn * and ifenprodil.
There was no additional suppression by adding ifenprodil. Right, Peak amplitude of NMDA-evoked responses in A17 amacrine cells (n = 5
cells) in the presence of tricine and Zn 2+ (100 nm; “Zinc"), and in the presence of tricine, Zn 2* and ifenprodil (3 pum; “Zinc + Ifenprodil”).
Statistical comparisons between averages: n.s., No significant difference (p > 0.05).

There was no effect of QNZ46 (10 um) on NMDA-evoked

ficiently selective for GluN2C- and GluN2D-containing NMDA
receptors that they can be used to differentiate them from GluN2A-
and GluN2B-containing receptors. Unfortunately, there are currently
no NMDA receptor antagonists available that can adequately distin-
guish between GluN2C- and GluN2D-containing receptors. However,
there is evidence from in situ hybridization studies in adult rat retina that
GluN2C, but not GIuN2D, is expressed by subsets of amacrine cells (in
addition to GluN2A and GluN2B) (Brandstitter et al., 1994).

responses in either AIl or A17 amacrine cells (Fig. 8 A, B). For All
amacrines, the average response amplitude was 74 = 11 pA in
control and 70 = 11 pA in QNZ46 (p = 0.1295, paired t test; n =
8 cells; Fig. 8A). For A17 amacrines, the average was 79 = 12 pAin
control and 74 = 11 pA in QNZ46 (p = 0.0742, paired ¢ test; n =
5 cells; Fig. 8B). These results suggested that neither AIl nor A17
amacrine cells express GluN2C or GluN2D subunits. The results
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with QNZ46 were supported by those obtained with DQP-1105
(10 um), which also had no effect on the NMDA-evoked re-
sponses in either AIl or A17 amacrine cells. For AIl amacrines,
the average was 87 = 17 pA in control and 83 * 16 pA in DQP-
1105 (p = 0.4561, paired t test; n = 8 cells; data not shown). For
A17 amacrines, the average was 77 = 17 pA in control and 75 *
17 in DQP-1105 (p = 0.6218, paired ¢ test; n = 7 cells; data not
shown). Together, the results with GluN2C- and GluN2D-
selective antagonists strongly suggested the absence of these sub-
units from the NMDA receptors expressed by AIl and Al7
amacrine cells.

No evidence for expression of triheteromeric NMDA
receptors in AIl and A17 amacrines

The majority of NMDA receptors in the CNS contain either two
GluN2A or two GluN2B subunits in combination with two oblig-
atory GluN1 subunits (Hansen et al., 2014). However, there is
also the potential for NMDA receptors to form triheteromeric
receptors with one GluN2A and one GluN2B subunit in addition
to two GluN1 subunits, as demonstrated in the hippocampus and
forebrain (for review, see Hansen et al., 2014). The functional and
pharmacological properties of triheteromeric NMDA receptors
are a mix between the two diheteromeric receptor subtypes (Hat-
ton and Paoletti, 2005; Tovar et al., 2013). Specifically, 7Zn?" has
been demonstrated to be equally effective as an antagonist of
diheteromeric GluN2A-containing receptors and triheteromeric
GluN2A/GluN2B-containing receptors (Hatton and Paoletti,
2005). Furthermore, in recombinant expression systems, ifen-
prodil (at the low concentration of 1-3 uM) blocks triheteromeric
GluN2A/GluN2B-containing receptors, but only by ~20% (Hat-
ton and Paoletti, 2005; Hansen et al., 2014). On this background,
our results described above suggest that it is unlikely that AII
amacrine cells have a significant population of functional trihet-
eromeric receptors, as neither tricine nor nanomolar concentra-
tions of Zn>" had any effect on the NMDA-evoked currents.
Similarly, it is unlikely that A17 amacrine cells have a significant
population of functional triheteromeric receptors, as ifenprodil
had no effect on the NMDA-evoked currents in these cells.

However, if there is only a small population of triheteromeric
NMDA receptors on either cell type, responses mediated by these
receptors might be masked by the pharmacological properties of
the predominant diheteromeric receptors. Importantly, the inhi-
bition of triheteromeric receptors by ifenprodil and Zn*" is su-
peradditive (Hatton and Paoletti, 2005), meaning that the
inhibition observed when one antagonist is applied in a back-
ground of the other, is larger than if the same antagonist is ap-
plied alone. Thus, we decided to use a combination of the
antagonists ifenprodil and Zn>" to directly test for the presence
of triheteromeric receptors among the AIl and A17 NMDA re-
ceptors. For AIl amacrines, we tested the effect of Zn*" in a
background of ifenprodil; and for A17 amacrines, we tested the
effect of ifenprodil in a background of Zn>™.

For both AIl and A17 amacrine cells, we applied NMDA (1
mM, 1 s) in an extracellular solution that contained tricine (10
mM) to ensure that any potential triheteromeric GluN2A/
GluN2B receptors were not already blocked by contaminating
Zn** (Fig. 8C,D). For the AIl amacrines, we then switched to an
extracellular solution with a low concentration of ifenprodil (3
uM) to block diheteromeric GluN2B-containing receptors with-
out completely blocking potential triheteromeric GluN2A/
GluN2B-containing receptors (Hatton and Paoletti, 2005;
Hansen et al., 2014). Similar to the higher concentration of ifen-
prodil (10 uM; see above), 3 uM ifenprodil had a strong inhibitory
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effect on the NMDA-evoked responses in AIl amacrines (Fig.
8C). After obtaining a stable baseline, we switched to an extracel-
lular solution with a free Zn>* concentration of 100 nM, but the
addition of Zn*" had no additional inhibitory effect (Fig. 8C).
For AIl amacrines tested in this way, the average NMDA-evoked
current in the presence of ifenprodil was 20.1 = 3.5 pA. With
addition of 100 nM free Zn>" in a background of ifenprodil, the
NMDA response did not change, with an average of 22.2 = 4.8 pA
(p = 0.5493, paired ¢ test; n = 3 cells; Fig. 8C). Thus, it is unlikely
that AIT amacrine cells express a significant population of func-
tional triheteromeric GluN2A/GluN2B-containing receptors.

For the A17 amacrines, switching to an extracellular solution
with 100 nM free Zn>" strongly inhibited the NMDA-evoked
responses (Fig. 8D). After obtaining a stable baseline, we switched
to an extracellular solution with a low concentration of ifenprodil
(3 wm), but the addition of ifenprodil had no additional inhibi-
tory effect (Fig. 8D). For A17 amacrines tested in this way, the
average NMDA-evoked current in the presence of 100 nm free
Zn** (and tricine) was 38.5 = 8.6 pA. With the addition of
ifenprodil in a background of 100 nm free Zn*", the NMDA
response did not change, with an average of 39.4 £ 9.7 pA (p =
0.6855, paired t test; n = 5 cells; Fig. 8D). Thus, as for AIl ama-
crines, it is unlikely that A17 amacrines express a significant
population of functional triheteromeric GluN2A/GluN2B-
containing receptors.

Morphological evidence for expression of GIuN2B in AII
amacrine cells and GluN2A in A17 amacrine cells

Our pharmacological experiments strongly suggested a remark-
able complementary expression of NMDA receptors in the post-
synaptic targets of rod bipolar cells, with GluN2B-containing
receptors in All amacrine cells and GluN2A-containing receptors
in A17 amacrine cells. To examine the relationship between the
dendritic processes of these amacrine cells and NMDA receptor
subunit expression, we injected AIl and A17 amacrine cells in
retinal slices with Alexa-488, immunolabeled the slices for either
GluN2B or GluN2A, and acquired confocal image stacks.

We observed clear colocalization of GluN2B with AIL but not
A17 amacrine cells (Fig. 9). Figure 9A shows a maximum inten-
sity projection (MIP) of a confocal stack from a slice with an
injected AIIl amacrine cell and immunolabeled for GluN2B. The
labeling for GIuN2B appears punctate across the inner plexiform
layer, with higher density of punctae in the proximal part, corre-
sponding approximately to sublamina b. It is commonly assumed
that when synaptic (in contrast to extrasynaptic) receptors are
immunolabeled with fluorescent antibodies, the labeling will ap-
pear punctate, with each punctum corresponding to a cluster of
receptors in a postsynaptic density. In the case of NMDA recep-
tors, however, this cannot be assumed to be correct, as there is
evidence that extrasynaptic NMDA receptors can be organized in
a clustered fashion (Petralia et al., 2010; Papouin and Oliet,
2014). Visual inspection of single slices (in the XY plane) of the
confocal stack, with the two channels (AIl and GluN2B) overlaid,
identified multiple examples of GluN2B punctae that overlapped
with processes of the AIl amacrine cell (Fig. 9 B, C). In most cases,
colocalization between Al processes and GluN2B punctae was
detected at the arboreal dendrites (Fig. 9C), but we could also find
a few examples of GluN2B colocalized with lobular dendrites
(Fig. 9B, left). For the majority of lobular processes, however, no
colocalization could be observed despite the frequent presence of
immunolabeled punctae in close proximity to these processes
(Fig. 9B, right). Similar results were seen for a total of five AIl
amacrine cells in slices immunolabeled for GluN2B.
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For the larger dendritic trees of Al7
amacrine cells, we were only able to ac-
quire confocal image stacks, at the re-
quired resolution, of smaller portions of
the total extent of these cells. Figure 9D
shows an MIP of two adjacent confocal
stacks with an A17 in a retinal slice immu-
nolabeled for GluN2B. The confocal
stacks were stitched together as a montage
with the region of overlap running hori-
zontally along the inner plexiform layer.
In contrast to AIl amacrine cells, we were
not able to find any unequivocal examples
of GluN2B punctae that overlapped with
processes of the A17 amacrine cell when
we inspected XY slices of the confocal
stack (Fig. 9E). Similar results were seen
for a total of three A17 amacrine cells in
slices immunolabeled for GluN2B.

In parallel experiments, slices with in-
jected AIl amacrine cells were immunola-
beled for the GluN2A subunit. Figure 10A
shows an MIP of a confocal stack with an
AlIl amacrine cell and immunolabeling for
GluN2A. Similar to the labeling for
GluN2B, the labeling for GluN2A is also
punctate and is distributed across the in-
ner plexiform layer (Hartveit et al., 1994).
In contrast to the labeling for GluN2B, we
were not able to find any unequivocal ex-
amples of GluN2A punctae that over-
lapped with processes of the AIl amacrine
cell when we inspected single slices (XY)
of the confocal stack, both for lobular
dendrites (Fig. 10B) and arboreal den-

drites (Fig. 10C). While we sometimes Figure 9.
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Lobular dendrites (AII)

Arboreal dendrites (AIl)

Colocalization between All (but not A17) amacrine cells and immunolabeled punctae of the NMDA receptor subunit

identified apparent overlap in the XY
plane, inspection of the associated XZ and
YZ planes indicated that the CM for the
GluN2A punctum and the filled AII pro-
cess were further apart and that the ap-
pearance of overlap was due to the lower
resolution along the z axis. Similar results
were seen for a total of four AIl amacrine
cells in slices immunolabeled for GluN2A.

GluN2B. A, MIP of confocal image stack of retinal slice with an All amacrine cell injected with Alexa-488 (green) and immunola-
beled for GIUN2B (magenta). Scale bar, 10 m. A-C, Images from same All amacrine. B, Left, Example of colocalization (arrow-
head) of GIuN2B punctae (magenta) and All lobular dendrites (green) overlaid in a single XY confocal slice. Right, For the large
majority of All lobular dendrites, no colocalization with GIuN2B punctae could be observed, despite close proximity. Here and later,
each image was taken from a single XY confocal slice. Scale bar, 1 wm. C, Examples of colocalization (arrowheads) of GIuN2B
punctae (magenta) and All arboreal dendrites (green) overlaid in single XY confocal slices. Scale bars, 1 m. D, MIP of confocal
image stack of retinal slice with an A17 amacrine cell injected with Alexa-488 (green) and immunolabeled for GluN2B (magenta).
Scale bar, 10 wm. D, E, Images from same A17 amacrine. E, No colocalization of GIuN2B punctae (magenta) and A17 lobular
dendrites (green) overlaid in single XY confocal slices. Scale bar, 1 rm. Here and later, all images and graphs were generated from
digital data after deconvolution (for details, see Materials and Methods).

For A17 amacrine cells, however, we

observed clear colocalization with GluN2A punctae. Figure 10D
shows an MIP of a confocal stack from a portion of an injected
A17 amacrine cell in a retinal slice immunolabeled for GluN2A.
Visual inspection of single slices (XY) of the confocal stack, with
the two channels (A17 and GluN2A) overlaid, identified several
examples of GluN2A punctae that overlapped with processes of
the A17 amacrine cell (Fig. 10E). There were cases of GluN2A
punctae that overlapped at putative varicosities of the A17 (Fig.
10E, left panels), as well as GluN2A punctae that overlapped with
intervaricosity segments (Fig. 10E, right panels). Similar results
were seen for a total of three A17 amacrine cells in slices immu-
nolabeled for GluN2A.

GluN2B is colocalized with Cx36 on AIl amacrine cells
Gap junction coupling between AIl amacrine cells is mediated by
Cx36 (Feigenspan et al.,, 2001; Mills et al., 2001; Deans et al.,

2002). There is evidence that NMDA receptors are involved in
modulatory regulation of tracer coupling between AIl amacrine
cells, potentially via phosphorylation of Cx36 and a consequent
increase in the junctional conductance (Kothmann et al., 2012).
This predicts a close spatial association between Cx36-containing
gap junction plaques and NMDA receptors with GluN2B. To
investigate this, we performed double immunolabeling with an-
tibodies against GluN2B and Cx36. Figure 11A shows an MIP of
a confocal stack with an injected AITl amacrine cell in a retinal slice
immunolabeled for both GluN2B and Cx36. Consistent with pre-
vious reports (Mills et al., 2001), immunolabeled Cx36 punctae
are distributed across the inner plexiform layer, with a higher
density in sublamina b than in sublamina a (Fig. 11A). Visual
inspection of single confocal slices (XY) identified several exam-
ples of complete or partial overlap between punctae correspond-
ing to labeling for GIuN2B and Cx36 that also overlap with
processes of the AIl amacrine (Fig. 11B-E).
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Dendrites and varlcosmes (A17)

Colocalization between A17 (but not All) amacrine cells and immunolabeled punctae of the NMDA receptor subunit
GluN2A. A, MIP of confocal image stack of retinal slice with an All amacrine cell injected with Alexa-488 (green) and immunola-
beled for GIuN2A (magenta). Scale bar, 10 m. A-C, Images from same All amacrine. B, No colocalization of GIuN2A punctae
(magenta) and All lobular dendrites (green) overlaid in single XY confocal slices. Scale bars, 1 pm. €, No colocalization of GIuN2A
punctae (magenta) and All arboreal dendrites (green) overlaid in single XY confocal slices. Scale bars, 1 m. D, MIP of confocal
image stack of retinal slice with a section of processes from an A17 amacrine cell injected with Alexa-488 (green) and immunola-
beled for GluN2A (magenta). Scale bar, 3 pum. E, Examples of colocalization (arrowheads) of GIuN2A punctae (magenta) and A17
dendrites (green) overlaid insingle XY confocal slices. Scale bars, 1 um. D, E, Images from same A17 amacrine, except for E (bottom

Figure 10.

right).

For a quantitative analysis, we first applied simple threshold
segmentation to identify structures in the AIl, GluN2B, and Cx36
channels. Following segmentation, we isolated all segmented
GluN2B objects that overlapped (=50%) with structures belong-
ing to the segmented AIl amacrine cell. For the AIl amacrine cell
illustrated in Figure 11A, a total of 16 GluN2B objects overlap-
ping with AIl processes were detected (14 at the arboreals and two
at the lobulars). We used the 3D (i.e., XYZ) CM coordinates of
the GluN2B punctae overlapping with the AIl amacrine cell to
estimate the average signal in the Cx36 channel. The presence of
a GluN2B punctum, overlapping with the AIl amacrine, resulted
in alocalized signal increase above background in the Cx36 chan-
nel (Fig. 12A,C). This strongly suggested that the presence of a
GluN2B cluster associated with an AIl amacrine process predicts
the nearby presence of a Cx36 cluster corresponding to a gap
junction. We repeated the analysis for Cx36 punctae overlapping
the AIl amacrine cell. We used the 3D (i.e., XY.Z) CM coordinates
of the Cx36 punctae overlapping (=50%) with the AIl amacrine
cell to estimate the average signal in the GluN2B channel. The
presence of a Cx36 punctum, overlapping with the AIl amacrine,
resulted in a localized signal increase above background in the
GluN2B channel (Fig. 12 B,C). Similar results were obtained for
three other AIl amacrine cells in slices double immunolabeled for
GluN2B and Cx36. These results suggest that the GluN2B-
containing NMDA receptors expressed by AIl amacrine cells
could be involved in modulating the Cx36-mediated coupling of
these cells.
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Activation of NMDA receptors evokes
an increase of intracellular Ca**
both AIl and A17 amacrine cells
The large relative Ca®" permeability is a
hallmark of the NMDA receptor (Mac-
Dermott et al., 1986; Mayer and West-
brook, 1987; Mayer et al,, 1987). To
directly investigate the putative influx of
Ca’* mediated by activation of NMDA
receptors on AIl and A17 amacrine cells,
we loaded cells with the Ca®" indicator
OGB-1 (200 uM), in addition to the Ca**-
insensitive dye Alexa-594 (40 um) for
structural imaging, via diffusion from
the pipette solution during whole-cell
voltage-clamp recording. A total of six AIl
amacrine cells that were examined with
Ca’" imaging displayed stable values for
AG/R during the baseline period. All cells
displayed an electrophysiological re-
sponse to application of NMDA and a
clear NMDA-evoked increase in Ca®". An
example of an AIl amacrine cell with a
strong increase of Ca*" is shown in Figure
13A—C. Figure 13A shows an MIP from a
complete stack of the cell acquired by
structural imaging. For the focal plane
used for Ca®" imaging, a number of ROIs
were selected manually and covered loca-
tions along both arboreal and lobular
dendrites (including arboreal varicosities
and lobular appendages), as well as the
apical dendrite (Fig. 13B). For each ROI,
we calculated AG/R as a function of time.
Figure 13C shows the average AG/R time
series for ROIs at arboreal dendrites (ma-
genta; compare Fig. 13B) and at lobular/apical dendrites (green;
compare Fig. 13B). For this cell, the peak value of the average
AG/R time series was markedly larger for arboreal ROIs (105 =
13%; n = 13 ROIs) than for lobular/apical ROIs (28.3 £ 5.6%;
n = 7 ROIs; unpaired ¢ test, p = 7.2 X 10 ) (Fig. 13C). For all
AII amacrine cells tested in this way, the corresponding values
were 63 * 14% (range 11%-105%) for arboreal processes (n = 6
cells) and 26.3 * 4.8% (range 12.5%-34.7%) for lobular/apical
processes (n = 4 cells; the orientation in the slice compromised
simultaneous imaging of arboreal and lobular dendrites for two
of the six cells). For two of the four AII cells where we obtained
simultaneous measurements from ROIs along both arboreal and
lobular dendrites, the NMDA-evoked Ca*" increase (peak value
of AG/R) was significantly higher for the arboreal than for the
lobular ROIs (p = 9.7 X 10~ * for the cell not illustrated in Fig.
13). For the other two cells, there was no significant difference be-
tween the Ca*" responses in the lobular and arboreal dendrites.
Similar results with NMDA-evoked increases of intracellular
Ca*" were obtained for three A17 amacrine cells tested in the
same way. For the cell illustrated in Figure 13D-F, the peak in-
crease of Ca>" (measured as the peak AG/R value of the average
time series for 13 ROIs) was 94%. For the other two A17 cells,
the corresponding values were 37% and 120%. Because of the
relative sparsity of processes in the single focal planes used for
repeated Ca*" imaging, it was difficult to obtain simultaneous
measurements for a large number of ROIs, but we did not
observe any obvious differences between the response magni-
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Figure11.  Colocalization between All amacrine cells,immunolabeled punctae of the NMDA
receptor subunit GluN2B, and immunolabeled punctae of (x36. 4, MIP of confocal image stack
of retinal slice with an All amacrine cell injected with Alexa-488 (green) and immunolabeled for
GluN2B (magenta) and (x36 (turqoise). Scale bar, 5 m. A—E, From the same cell. BE, Left,
Examples of colocalization (arrowheads) of GIuN2B punctae, (x36 punctae, and All amacrine
arboreal processes. Middle, GIuN2B punctae displayed alone. Right, (x36 punctae displayed
alone. Scale bar: B-E, 1 um.

tudes of ROIs located at varicosities and intervaricosity
segments.

NMDA receptor activation increases GABA release from A17
amacrine cells

The increase in intracellular Ca®" following addition of NMDA
suggest that the extrasynaptic NMDA receptors could serve mul-
tiple functions on both AIl and A17 amacrine cells. Whereas
there is evidence that both AIl and A17 amacrines are homolo-
gously coupled via gap junctions (AIl: Strettoi et al., 1992; Veruki
and Hartveit, 2002a; A17: Xin and Bloomfield, 1997; Grimes et
al., 2014), it is currently unknown whether the coupling strength
between A17 amacrines is physiologically regulated, potentially
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Figure 12.  Colocalization analysis of GIUN2B- and (x36-immunolabeled punctae overlap-
ping with an All amacrine cell. A, Average signal in (x36 channel around 3D coordinates (XVZ;
(M) of all thresholded GluN2B punctae overlapping =50% with All amacrine cell, displayed as
2Dimage (in XY plane) through center of extracted volume of average signal. 4, B, Data are from
the same cell asin Figure 11. 2D images represent the same intensity range. B, Average signal in
GluN2B channel around 3D coordinates (X¥Z; CM) of all thresholded (x36 punctae overlapping
=50% with All amacrine cell, displayed as 2D image (in XY plane) through center of extracted
volume of average signal. , Overlaid linear intensity profiles (measured in arbitrary units, a.u.)
across center of 2D image in A for average (x36 signal around GIuN2B coordinates (black line)
and across center of 2D image in B for average GluN2B signal around (x36 coordinates (red line).

via a mechanism involving NMDA receptors, as for AIl ama-
crines (Kothmann et al., 2012). Instead, for A17 amacrine cells,
we focused on a potential role of NMDA receptors in the control
of GABA release in the feedback circuit from A17 amacrines to
rod bipolar cells. We recorded from rod bipolar cells in whole-cell
voltage clamp with strychnine (to block glycine receptors) and
TTX (to block release from GABAergic amacrine cells with non-
reciprocal input to rod bipolar cells) (Chavez et al., 2010) added
to the bath solution. Any responses evoked in rod bipolar cells
following application of NMDA cannot be a direct effect, as we
have previously demonstrated that rod bipolar cells do not ex-
press NMDA receptors (Zhou et al., 2016).

The rod bipolar cell illustrated in Figure 14A displayed a low
frequency of spontaneous IPSCs in the control condition (~0.1
Hz). The amplitude of the average IPSC in the control condition
was 5.6 pA (n = 9 events recorded during 90 s; Fig. 14B). When
we added NMDA (50 uMm) to the bath solution, the frequency of
IPSCs markedly increased to ~2.8 Hz (Fig. 14A). The amplitude
of the average IPSC in the presence of NMDA was 5.4 pA (n =
252 events recorded during 90 s; Fig. 14B), very similar to that in
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Figure 13.  NMDA receptor activation increases intracellular Ca® " in All and A17 amacrine cells. A, All amacrine cell filled with Alexa-

594 via patch pipette. MIP (along z axis) generated from MPE fluorescence image stack. Scale bar, 5 pum. B, Same cell as in 4, image from
single focal plane in a smaller subregion of A, generated by averaging all images of Alexa-594 fluorescence acquired during time period
displayed in C. Magenta and green circles indicate ROIs in arboreal (R0I1-R0I13) and lobular (R0I14-R0120) dendrites, respectively, used for
calculating changesin intracellularCa*. Scale bar, 5 um. €, Ca 2™ signalsin arboreal and lobular dendrites (averaged over corresponding
ROIs in B) evoked by bath application of NMDA (100 wum; marked by the continuous horizontal line above data traces). Hereand in F, Ca 2+
signal calculated as AG/R, i.e., the change in 0GB-1 (green; G) fluorescence normalized by the change in Alexa-594 (red; R) fluorescence.
Each tracerepresents the average forall corresponding arboreal (magenta) and lobular (green) ROIsin B. Shaded arearepresents +95%(l.
Here and in F, time 0 corresponds to breaking into the cell and establishing the whole-cell recording configuration. D, A17 amacrine cell
filled with Alexa-594 via patch pipette. MIP (along z axis) generated from MPE fluorescence image stack. Scale bar, 10 m. Dashed
rectangle represents the region used for Ca* imaging (in £). E, Same cell as in D, image from single focal plane, generated by averaging
allimages of Alexa-594 fluorescence acquired during time period displayed in F. Circles represent ROIs in dendritic tree, used for calculating
changes in intracellular Ca® " Scale bar, 5 m. F, Ca ™ signal in A17 dendrites (averaged over corresponding ROIs in E) evoked by bath
application of NMDA (100 puv; marked by the continuous horizontal line above data trace). Trace represents the average for all ROIs in E.
Shaded area represents =95% Cl.
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the control condition. For a total of five
rod bipolar cells, the average IPSC fre-
quency increased from 0.19 = 0.08 Hz in
the control condition to 2.14 * 0.51 Hz
during application of NMDA (p = 0.015,
paired ¢ test; Fig. 14C). There was no sta-
tistically significant difference in the am-
plitude of the average IPSC between the
control condition (5.0 = 0.3 pA) and dur-
ing application of NMDA (5.4 * 0.5 pA)
(p = 0.10, paired ¢ test; n = 4 cells; Fig.
14D). One cell did not display IPSCs in the
control condition and was excluded from
the amplitude analysis. When we repeated
the application of NMDA in the presence
of bicuculline (10 uMm) and TPMPA (50
uM) to block GABA, and GABA(. recep-
tors, respectively (in addition to strych-
nine and TTX), there were no IPSCs in the
control condition and no IPSCs were
evoked after adding NMDA (n = 3 cells;
Fig. 14E). These results suggested that the
IPSCs were mediated by ionotropic
GABA, and/or GABA_ receptors and that
NMDA receptors on Al7 amacrine cells
can contribute to release of GABA from
these cells.

Discussion

We have found that the NMDA recep-
tors expressed by the amacrine cells in
the rod bipolar cell-AII-A17 microcir-
cuit are exclusively extrasynaptic and
tonically activated by ambient gluta-
mate. In addition, their activation leads
to an increase of intracellular Ca*” in
both cell types and can drive release of
GABA from Al7 amacrines onto rod
bipolar cells. Whereas both amacrines
express diheteromeric NMDA recep-
tors, All and A17 amacrines incorporate
different and complementary GluN2
subunits. Specifically, Alls express
GluN2B-containing receptors and A17s
express GluN2A-containing receptors.
Below, we discuss the basis for these
interpretations and their functional
implications.

Identity of NMDA receptors on AIl and

A17 amacrine cells

The GluN2 subunits strongly influence
the functional properties of NMDA recep-
tors, including single-channel conductance,
open probability, affinity for glutamate and
coagonists, kinetics, Mg>* sensitivity, and
Ca’* permeability (Paoletti et al., 2013).
On this background, evidence for differ-
ential expression and involvement of
GluN2 subunits in various processes in
the developing, adult, and diseased ner-
vous system has triggered considerable in-
terest in pharmacological tools to dissect the
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Figure 14.  Activation of NMDA receptors on presumed A17 amacrine cells increases GABA-
ergicinput to rod bipolar cells. A, Continuous current recorded from a rod bipolar cell (V,,,y =
—60mV)in control condition (top) and during bath application of NMDA (50 gm; bottom). The
equilibrium potential for chloride (E.,) was ~0mV, such that responses mediated by activation
of ionotropic GABA receptors appear as inward currents when V,,;,y = —60 mV. In both con-
ditions (here and in E), the bath solution contained strychnine (300 nu; to block glycine recep-
tors) and TTX (300 nw; to block voltage-gated Na ™ channels) and the pipette solution
contained TBOA (50 wum; to block glutamate transporter activity). NMDA was added with 200
LM D-serine, to saturate the coagonist binding site, and 0 Mg2™, to alleviate the voltage-
dependent block. Note the increased frequency of IPSCs in the presence of NMDA. B, Averaged
waveforms of IPSCs in the control condition (black trace; n = 9 events detected during 90 s
recording) and in the presence of NMDA (red trace; n = 252 events detected during 90 s
recording). €, Frequency of IPSCs in rod bipolar cells (n = 5 cells) in the control condition (left
bar) and in the presence of NMDA (50 wm; right bar). D, Amplitude of average IPSCs in rod
bipolar cells (same cells as in €) in the control condition (left bar) and in the presence of NMDA
(50 pum; right bar). E, Continuous current recorded from a rod bipolar cell in control condition
(top; asin A) and during bath application of NMDA (50 um; bottom; asin ). In both conditions,
the bath solution also contained bicuculline (10 ruu; to block GABA, receptors) and TPMPA (50
Jum; to block GABA receptors). Note the absence of IPSCs both in control and during application
of NMDA. Statistical comparisons between averages: n.s., No significant difference (p > 0.05).
*p < 0.05.

contribution of specific GluN2 subunits to distinct neural functions.
Using antagonists that display strong selectivity for either GluN2A-
or GluN2B-containing receptors, we found GluN2A-containing
receptors on Al7, but not AIl amacrines, and GluN2B-
containing receptors on All, but not A17 amacrines. We found
no evidence for GIuN2C/D receptors or triheteromeric NMDA
receptors in either cell type. Whereas there is evidence for expres-
sion of the GluN3A subunit in retina (Sucher et al., 2003), the
functional properties of GluN3-containing NMDA receptors are
markedly different from GluN2A/B-containing receptors, in-
cluding very weak sensitivity to Mg>" and reduced Ca** perme-
ability (Henson et al., 2010; Pachernegg et al., 2012). NMDA
receptors in AIl and A17 amacrines display clear sensitivity to
Mg>* (Zhou et al., 2016), suggesting that it is unlikely that
GluN3-containing receptors represent a substantial fraction of the
receptors in these cells. Our pharmacological experiments
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strongly suggest the presence of diheteromeric NMDA receptors
in both amacrines, with GluN2B-containing receptors in All
amacrines and GluN2A-containing receptors in A17 amacrines.
These conclusions are further supported by immunolabeling of
GluN2A and GluN2B subunits in slices with dye-filled AIl and
A17 amacrines. GluN2B punctae were localized to the processes
of AIl amacrines, predominantly on arboreal dendrites. GluN2A
punctae were detected on the processes of A17 amacrines both at
and between varicosities. An important next step will be to extend
these results using super-resolution microscopy, potentially
combined with immunolabeling of presynaptic and postsynaptic
proteins to investigate the detailed spatial relationships between
these extrasynaptic NMDA receptors and neighboring chemical
and electrical synapses.

Functional role of GluN2A- and GluN2B-containing NMDA
receptors in AIl and A17 amacrine cells

It has been suggested that GluN2A-containing receptors primar-
ily have a synapticlocation (e.g., Dalby and Mody, 2003), whereas
GluN2B-containing receptors primarily have an extrasynaptic
location and are strategically positioned to detect extrasynaptic
spillover of glutamate (e.g., Scimemi et al., 2004). Whereas this
arrangement has been observed in some retinal ganglion cells
(Zhang and Diamond, 2009), our recordings of synaptically con-
nected pairs of rod bipolar and amacrine cells suggest that both
GluN2B- and GluN2A-containing NMDA receptors have an
extrasynaptic localization on AIl and A17 amacrine cells, re-
spectively. Additionally, our observation of CPP-sensitive
membrane noise in both amacrines suggests that endogenous
glutamate is sufficiently high to activate these NMDA recep-
tors. Extrasynaptic NMDA receptors contribute to baseline
membrane noise in other neurons, including hippocampal
pyramidal cells (Sah et al., 1989; Le Meur et al., 2007) and
retinal ganglion cells (Gottesman and Miller, 2003). Although
our estimate of the unitary conductance of the NMDA recep-
tors in AIl amacrine cells is lower than observed in single-
channel recordings of GluN2A- and GluN2B-containing
receptors in isolated membrane patches (40-50 pS) (Cull-
Candy and Leszkiewicz, 2004), it is significantly higher than
previous reports from noise analysis of neuronal whole-cell
recordings (e.g., Sah et al., 1989). This is potentially explained
by relatively less electrotonic filtering of membrane noise in
AIl amacrines, consistent with their smaller size.

Whereas synaptic NMDA receptors on ganglion cells have
been implicated in mediating light-evoked responses and neural
computations involved in contrast sensitivity, temporal coding,
and directional selectivity (Manookin et al., 2010; Jones et al.,
2012; Stafford et al., 2014; Poleg-Polsky and Diamond, 2016), the
role of NMDA receptors on amacrine cells, including the Al and
Al17, is unclear. In general, activation of extrasynaptic NMDA
receptors has been associated with neurodegenerative diseases
(Parsons and Raymond, 2014). It has been demonstrated that
amacrine cells, compared with ganglion cells, display a specific
vulnerability to NMDA excitotoxicity (Ullian et al., 2004); thus,
the extrasynaptic location of these NMDA receptors may suggest
a potential target in glutamate-associated retinal degeneration.
However, a crucial question raised by our results concerns the
functional significance of the different subunit composition
(GluN2A vs GluN2B), as opposed to a differential localization
(synaptic vs extrasynaptic), of the NMDA receptors expressed by
All and A17 amacrine cells. Reported differences between the func-
tional properties of GluN2A- and GluN2B-containing NMDA re-
ceptors may be relevant for their specific role in the network
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computations performed by AIl and A17 amacrine cells. Com-
pared with GluN2A-containing receptors, GluN2B-containing
receptors have higher macroscopic affinity for glutamate and
glycine (Kutsuwada et al., 1992), lower open probability (Er-
reger et al., 2005), and slower kinetics (Monyer et al., 1994;
Vicini et al., 1998). Whereas both subunits give rise to NMDA
receptors with high relative Ca** permeability (Monyer et al.,
1992, 1994), activation of GluN2B-containing receptors can
generate longer, slower, and potentially larger Ca®" signals
than activation of GluN2A-containing receptors (Erreger et
al., 2005). These differences have been speculated to underlie
differences in synaptic plasticity, with fast, larger-amplitude
signals inducing potentiation and slow, lower-amplitude sig-
nals inducing depression (Liu et al., 2004). Such subunit-
dependent properties, identified above for different receptors
on the same cells, might be exploited for different purposes
when the receptors are expressed by neurons with very differ-
ent morphological and functional properties, such as the AIl
and A17 amacrine cells. If the complementary content of
GluN2B and GluN2A subunits in the NMDA receptors of AIl
and A17 amacrines is important for differentially shaping the
temporal concentration profiles of Ca®" signals in specific
subcellular compartments of these two cells, the functional
role of such signals is by no means obvious.

For AII amacrines, there is evidence that the extrasynaptic
NMDA receptors could be involved in modulating the strength of
gap junction coupling between these cells (Kothmann et al.,
2012). If so, our results suggest that GluN2B-containing NMDA
receptors are involved in such modulation, as the GluN2B punc-
tae on AIl amacrines have a close spatial relationship with Cx36
punctae on these same cells. The physiological conditions that
lead to modulation of coupling strength remain to be fully ex-
plored, but there is evidence that the adaptational state of the
retina affects the extent of coupling between AIl amacrines
(Bloomfield et al., 1997). For A17 amacrines, there is evidence
that synaptic release of GABA can be directly triggered by Ca**
influx through Ca**-permeable AMPA receptors (Chévez et al.,
2006) as well as by depolarization and activation of voltage-gated
Ca** channels (Grimes et al., 2009). Our results suggest that
GluN2A-containing NMDA receptors can also contribute to the
release of GABA, but it is unknown whether NMDA receptor
activation will drive release via activation of voltage-gated Ca*"
channels or direct coupling of the Ca*" influx through the
NMDA receptors to exocytosis (or both). It is of interest that a
mechanism with direct coupling between NMDA receptor-
mediated Ca’" influx and release of GABA has been observed for
synapses between granule cells and mitral cells in the olfactory
bulb (Chen et al., 2000). In goldfish retina, the release of GABA
from amacrine cells providing reciprocal feedback to bipolar cells
can be driven by NMDA receptors, but the mechanism that cou-
ples receptor activation to release is unknown (Vigh and von
Gersdorff, 2005). For the NMDA receptors on both AIl and A17
amacrines, an important next step will be to investigate the phys-
iological conditions under which the voltage-dependent Mg>*
block is relieved. In addition, it will be important to investigate
whether potential fluctuations in the concentrations of NMDA
receptor coagonist(s) can play a role in the activation of these
receptors.

In addition to the possibility that differences in subunit
composition between NMDA receptors on AIl and A17 ama-
crines could generate temporally distinct Ca** signals and
trigger different intracellular signal transduction pathways,
the molecular differences between GluN2A and GluN2B sub-
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units as such could be of functional importance. There is evi-
dence that GluN2A and GluN2B subunits associate with
distinct proteins, including signaling enzymes (e.g., CaMKII)
and scaffolding proteins (e.g., SAP102 and PSD-95) (for re-
view, see Shipton and Paulsen, 2013). A recent immunolabel-
ing study suggested a differential distribution of CaMKII
isoforms in the inner plexiform layer, with CaMKII-6 associ-
ated with Cx36 on AIl amacrine cells and CaMKII-B associ-
ated with neuronal processes surrounding rod bipolar cell
axon terminals (Tetenborg et al., 2017). It is tempting to spec-
ulate that these processes might include those of A17 amacrine
cells. Further work will be required to elucidate the potential
importance of such channel-associated proteins for NMDA
receptor signaling in AIl and A17 amacrine cells.
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