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Abstract  

This thesis presents an integrated analysis of deformation band networks within the Jurassic Navajo and 

Moab Member aeolian sandstones in the Colorado Plateau, SE Utah. Deformation bands are sub-seismic 

structures that commonly occur as interconnected networks in fault damage zones. Associated with 

permeability reductions, where a single band commonly displays 2-4 orders of magnitude reduction 

compared to the host rock, these sub-seismic structures may represent a significant controlling factor on 

effective permeability. Knowledge about the geometry, distribution, and connectivity of deformation 

bands is therefore crucial when predicting fluid flow patterns in subsurface reservoirs. This study 

quantifies deformation band network properties in intersection damage zones and wall damage zones 

outcropped in the Paradox Basin and in the San Rafael Swell.   

A thorough topological analysis of deformation band networks was carried out to assess the 

connectivity and the characteristics of these networks. Topology is a method used for characterizing 

complex networks, here using endpoints and intersections to quantify the relationship between 

deformation bands in deformation band networks. The results show overall similar topological 

characteristics and high connectivity for deformation band networks in the two different damage zones 

with some significant observations; An increased strain can be associated with bifurcating, splaying, 

abutting, and shorter deformation bands, thus resulting in a high connectivity. Crossing deformation 

bands, however, rarely occur within a deformation band network, indicating that high strain causes 

deformation bands to overlap and link to form more connected networks. Moreover, observations 

demonstrate that short soft-linked deformation bands commonly develop within these high strain areas.  

A detailed analysis of the spatial distribution of deformation bands in clusters reveal that the 

deformation bands intensity varies along clusters. Furthermore, quantitative analysis of orientation 

spread in deformation bands suggest that intersecting damage zones are more complex as they display 

a wider range in deformation band orientation compared to wall damage zones. This study revealed no 

clear correlation between increased deformation band intensity and orientation spread. The results do, 

however, support the theory that the formation of new clusters and maturation of already established 

clusters are more or less synchronic. Further supporting the theory that established damage zones grow 

through continual formation of deformation bands within the existing damage zone and outside the 

damage zone. This is presented in a model for the sequential growth of deformation band networks with 

emphasis on topology. The findings of this study can thus be of importance for predicting fluid flow 

patterns in subsurface reservoirs.  
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1 Introduction   
1.1 Rationale  
Aeolian sandstone reservoirs can host a variety of structures that may affect fluid flow and 

subsurface reservoir performance. One such structure is deformation bands, which is a common 

type of strain localization in deformed, porous sandstones (e.g. Aydin & Johnson, 1978; 

Antonellini et al., 1994; Shipton & Cowie, 2001; Fossen et al., 2007). Deformation bands can 

occur as single bands, in clusters, or as networks (Aydin & Johnson, 1978; Schuller et al., 2013). 

The bands are known to alter the host rock properties and cause a reduction in permeability and 

porosity (e.g. Aydin & Johnson, 1978; Antonellini et al., 1994; Fossen & Bale, 2007). Several 

studies have focused upon the petrophysical properties and thickness variation of these bands 

with regards to fluid flow (e.g. Fossen & Bale, 2007; Rotevatn et al., 2013; Ballas et al., 2015). 

There is, however, a limited amount of studies that have thoroughly characterized the 

configuration and connectivity of these networks/zones, which can play a significant role in 

controlling the effective permeability in subsurface reservoirs (Rotevatn et al., 2013).  

Deformation band network properties can be quantified through topology analysis (Sanderson 

& Nixon, 2015), which is a method for quantifying the network properties of structural 

networks, and has recently gained traction (Manzocchi, 2002; Sanderson & Nixon, 2015; 

Morley & Nixon, 2016; Nyberg et al., 2018). Since there is limited knowledge about 

deformation band network properties, this study aims to quantify this by using a topological 

approach. This topological approach could lead to a better understanding of deformation band 

networks and how deformation bands grow and intersect within a network. Furthermore, it may 

add valuable insights to predictions of fluid flow in reservoirs. 

 

1.2 Aims and objectives   
The aim of this thesis is to increase the understanding of the network properties (node and 

branch topology, connectivity) of deformation band networks, with emphasis on networks 

within wall damage zones and intersection damage zones. For this purpose, a detailed study on 

deformation band networks in such damage zones was conducted on the Colorado Plateau, SE 

Utah (Fig. 1.1). The following objectives were set in order to achieve the aim stated above: 

• Obtain high resolution outcrop photos of deformation band networks in intersection 

damage zones and wall damage zones.  
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• Use topological analysis to quantify the network properties of the studied 

deformation band networks using QGIS (an open-source GIS software) and 

NetworkGT (a plugin to QGIS for the analysis of network topology; see Nyberg et 

al., 2018).  

• Quantify and discuss the variations in connectivity and topology of networks found 

in intersection damage zones and wall damage zones, and the implications thereof. 

 

1.3 Study area  
This study is focused in SE Utah (US), northwest on the Colorado Plateau (Fig. 1.1). The 

Colorado Plateau is a complex structural region that feature uplifts, depressions, faults and folds 

(e.g. Baker, 1935; Budnik, 1986; Hintze & Kowallis, 2009; Trudgill, 2011). The study was 

conducted in two different regions at the Colorado Plateau; wall damage zones were studied 

within the San Rafael Swell monocline, located approximately 30 km northwest of Green River. 

Intersection damage zones were studied at the southwestern flank of the collapsed crest of the 

Salt Valley Anticline, ca. 20 km southeast of Green River, in the Paradox Basin (Fig. 1.1). The 

studied structures are hosted in Jurassic aeolian sandstone units belonging to the Navajo 

Sandstone and Moab Member (Curtis Formation) (Fig. 2.3). The sandstones show exceptional 

exposures of deformation bands, which allow for detailed mapping of these. An elaboration on 

the geology of Utah and the key structural features of the study area are presented in the coming 

chapter (Chapter 2). 
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Figure 1.1: Inset map of Utah displaying the four main physiographic provinces and a simplified map of important 
structural elements surrounding the study area. Intersection damage zones are studied at the flank of the collapsed crest 
of the Salt Valley Anticline, while wall damage zones are studied within the San Rafael Swell. Modified from (Nuccio 
& Condon, 1996).  
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2 Geological Background  
The state of Utah is comprised of four main physiographic provinces: (1) The Basin and Range 

Province, (2) Middle Rocky Mountains, (3) The Colorado Plateau, and (4) The Colorado and 

Basin and Range transition zone (Fig. 1.1) (Eaton, 1982; Morgan & Swanberg, 1985; Hintze & 

Kowallis, 2009; Trudgill, 2011). The Colorado Plateau forms the eastern part of Utah and 

extends into Arizona, Colorado and New Mexico. The stratigraphy of the plateau comprises 

rocks of Precambrian to Paleogene age (Hintze & Kowallis, 2009).  This chapter introduces the 

geological framework and history of Utah with emphasis on the development of the Colorado 

Plateau, and key structural elements comprised in the Paradox Basin and San Rafael Swell, 

both situated in the NW Colorado Plateau (Fig. 1.1).  

 

2.1 Key tectonic elements  
A major control on the structural setting seen today in the Colorado Plateau can be dated back 

to the Palaeozoic era and the formation of the Ancestral Rockies, a series of intracratonic 

basement uplifts shaped by the collision and suturing of North America and South America-

Africa (Kluth, 1986; Hintze & Kowallis, 2009). The orogenic event resulted in a number of 

uplifted intracratonic blocks and accompanying basins (e.g. Budnik, 1986; Barbeau, 2003). The 

Uncompahgre uplift and the Paradox Basin, east on the Colorado Plateau are examples of this 

configuration (Fig. 1.1) 

 

The Paradox Basin, in which one of the study areas of this thesis is located, is an elongated, 

intracratonic basin trending dominantly northwest (Fig. 1.1). The basin boundaries are 

determined by the extent of the salt-rich Paradox Member of Mid-Pennsylvanian age, which is 

the source to extensive halokinesis (salt tectonism) in the area (Hite, 1968; Baars & Stevenson, 

1981; Hintze & Kowallis, 2009; Trudgill, 2011). Several salt walls, salt diapirs and salt-cored 

anticlines are located within the Paradox Basin (Fig. 1.1) (Hite, 1968; Doelling et al., 2002; 

Trudgill, 2011). The halokinesis initiated in mid-Pennsylvanian times, shortly after deposition 

of the Paradox Member (Hintze & Kowallis, 2009; Trudgill, 2011). Increased uplift rate of the 

Uncompahgre uplift in Late Pennsylvanian and Early Permian increased the sediment supply 

and thereby increased the loading of the underlying mobile salt, causing the gradual growth of 

salt structures. Halokinetic movement within the Paradox Basin is thus closely linked to pulses 

of uplift of the Uncompahgre uplift (Elston et al., 1962; Trudgill, 2011). Today, the anticlines 
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within the basin strike roughly northwest, parallel with the Uncompahgre uplift (Fig. 1.1) 

(Trudgill, 2011).  

 

Stevenson & Baars (1986) defined the Paradox Basin as a pull-apart basin of Pennsylvanian 

age, while more recent studies define the Paradox Basin as an immobile foreland basin, as a 

result of flexural subsidence in the footwall, influenced by loading of the uplifted crystalline 

Uncompahgre block (Barbeau, 2003; Trudgill, 2011). Later tectonic events have altered the 

basin geometry, in particular the development of the North American Cordillera, which can be 

defined as a series of overlapping orogenies formed by repeated collisions of island arc systems 

and micro continents during the Mesozoic to Paleogene (Armstrong, 1968; Dickinson, 2004; 

Hintze & Kowallis, 2009). The shape and extent of the North American Cordillera is influenced 

by the geometry of the steep subducting slab along the western margin of North America 

(Dumitru et al., 1991; Hintze & Kowallis, 2009). The subduction zone initiated as the North 

American continental plate collided with the oceanic Farallon plate in the Late Jurassic (Hintze 

& Kowallis, 2009). Throughout the Mesozoic, the dip of the subducting slab decreased, causing 

deformation to reach further inland, forming the Laramide orogeny. Basement faults were 

reactivated, and major monoclines across the Colorado Plateau formed, including the San 

Rafael Swell (Fig. 1.1) (Dickinson, 2004; Sundal et al., 2017). 

 

The San Rafael Swell, where the second study area is located, is a 120 km long and 50 km wide 

monocline located northwest of the Paradox Basin (Fig. 1.1) (Johnson & Johnson, 2000). The 

east-vergent monoclinal flexure formed during fault-propagation folding above basement-

rooted thrusts induced by the emerging Laramide orogeny in Late Cretaceous to Palaeogene 

times (e.g. Baker, 1935; Maerten, 2000; Hintze & Kowallis, 2009; Zuluaga et al., 2014; Sundal 

et al., 2017).  

 

Overall tectonic quiescence the past 50 million years was interrupted by major uplift of the 

Colorado Plateau relative to the Basin and Range Province in the Cenozoic (Morgan & 

Swanberg, 1985; Spencer, 1996). The uplift caused erosion of Late Jurassic to Holocene strata 

across the Paradox Basin (Hintze & Kowallis, 2009).  
 



Chapter 2   Geological Background 
 
 

 6 

2.2 Salt Valley Anticline: Klondike Bluffs faults  
Salt Valley Anticline is a NW-trending breached asymmetric diapiric anticline situated at the 

northeastern edge of the Paradox Basin (Fig. 2.1) (Nuccio & Condon, 1996; Doelling et al., 

2002; Trudgill, 2011). The flanks expose sedimentary rocks of Jurassic and Cretaceous age, 

such as the aeolian Entrada Sandstone and the aeolian Moab Member of the Curtis Formation 

(Elston et al., 1962; Cruikshank & Aydin, 1995; Hanke et al., 2018). The faults and deformation 

bands situated on the flanks are related to crestal collapse of salt walls (e.g. Randles et al., 

2012). Klondike Bluffs is an area located on the southwest limb of Salt Valley anticline, 

dominated by cross-cutting NE- and SW-striking normal faults (the Klondike Bluffs faults; see 

Fig 2.1). Networks of deformation bands in the damage zones associated with two fault 

intersections are studied in this area (see Chapter 5).  

Figure 2.1: Geological map of the Paradox Basin, eastern Utah, with an inset of the Salt Valley anticline in  A). Main structural 
features are included, and the areas where the Curtis Formation outcrops are shown in darker colour. Modified from Hanke et 
al. (2018). In B) is a zoom in on the Klondike Bluffs east and west study areas highlighting the main faults and the studied fault 
intersections in red. Aerial photo from Google Earth.  
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2.3 Chimney Rock Fault array: Big Hole Fault   
The Chimney Rock Fault array is located in the northeastern part of the San Rafael Swell 

(Maerten, 2000; Shipton, 1999) (Fig. 1.1 and Fig. 2.2). The array comprises sets of cross-cutting 

WSW- and WNW-striking normal faults with oppositely dipping fault pairs arranged in an 

orthorhombic geometry that accommodate N-S extension (Krantz, 1988; Shipton & Cowie, 

2001). The origin of the fault array is uncertain, but is likely related to the uplift of San Rafael 

Swell (Shipton & Cowie, 2001; Shipton et al., 2002). Shipton (1999) suggests that faulting may 

have been caused by extension parallel to the fold axis in regions of maximum plunge, possibly 

at depths between 1.5 and 3.0 km.  

 

Two distinct fault architectures are recognized in the Chimney Fault Array: (1) faults formed 

by deformation bands, and (2) faults formed by shearing of joints and splay jointing. The WSW 

striking faults initially developed by the formation of deformation bands, while joint-based 

faulting dominates fault development along WNW striking faults. The normal faults vary 

between 100 m to 6 km in length. One of the study areas in this thesis is the WSW striking Big 

Figure 2.2:  The Chimney Rock Fault Array with its characteristic cross-cutting fault sets. Located on the NE flank of the San 
Rafael Swell.  The Big Hole Fault represents the southernmost fault in the fault array. Modified from Shipton & Cowie (2001). 
For position of figure, see Fig. 1.1.   
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Hole Fault, which is the southernmost fault in the Chimney Fault Array (Fig. 2.2).  The fault is 

4.1 km long and cut the aeolian Navajo Sandstone (Krantz, 1988; Maerten, 2000; Shipton & 

Cowie, 2001; Shipton et al., 2002). More detailed structural configurations for the Big Hole 

Fault are presented in the results (Chapter 5).  

 

2. 4 Regional Stratigraphy  
The oldest rocks comprised in the Colorado Plateau geological province are granites and 

metamorphic rocks of Pre-Cambrian age exposed in the Uncompahgre uplift (Case, 1991). In 

the Paradox Basin, the exposed stratigraphic sequence comprises sedimentary rocks ranging in 

age from Carboniferous to Quaternary (Hintze & Kowallis, 2009; Trudgill, 2011). The 

sediments reflect a dominantly continental depositional environment, with the exception of 

Pennsylvanian and Cretaceous stratal units, which are of marine origin (Nuccio & Condon, 

1996; Doelling et al., 2002; Trudgill, 2011). Characteristic for the area are the Jurassic cliff-

forming sandstones outcropped in scenic rock formations. The Early Jurassic depositional 

sequence mainly consists of non-marine sandstones laid down in an arid continental basin that 

formed a depression between the Meso-Cordilleran High in central Utah and the remnants of 

the Ancestral Rockies in western Colorado (Hintze & Kowallis, 2009). The massive aeolian 

units are stratigraphically termed the Wingate, Navajo and Entrada formations (Fig. 2.3) 

(Hintze & Kowallis, 2009). This study targets the Navajo sandstone and the Moab Member of 

the Curtis Formation.  

 

2.4.1 Glen Canyon Group – Navajo Sandstone  
Early Jurassic sandstones of the Glen Canyon Group are subdivided into three formations: (1) 

the aeolian Wingate Formation, (2) the fluvial Kayenta Formation, and (3) the aeolian Navajo 

Sandstone (Fig 2.3), the latter of which is one of the key units hosting studied faults and 

deformation bands. Characteristic for the aeolian derived Navajo Sandstone are highly porous 

(20-25%) medium-grained arenite sandstones, arranged in large scale cross-beds (Freeman & 

Visher, 1975; Shipton & Cowie, 2001; Fossen et al., 2011). The colouration of the units is often 

red but varies from grey to light brown in the San Rafael Swell (Shipton & Cowie, 2001; Hintze 

& Kowallis, 2009). The sandstones were deposited in large windblown dunes in Lower to 

Middle Jurassic, when a widespread desert occupied large parts of the North American 

continent (Hintze & Kowallis, 2009). The Navajo Sandstone is overlain by the shallow marine 

Carmel Formation of the San Rafael Group (Fig. 2.3). 
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2.4.2 San Rafael Group – The Moab Member of the Curtis Formation 
The eastern extent of the San Rafael Group (Fig 2.3) is comprised of (1) the tidally deposited 

Carmel Formation (Dewey Bridge Member); (2) the aeolian Entrada Sandstone (Slick Rock 

Member), characterized by alternating dune and interdune flat deposits; and (3) the Moab 

Member of the Curtis Formation (Doelling et al., 2002; Hintze & Kowallis, 2009). The Moab 

Member (previously part of the Entrada Sandstone) is one of the key units hosting the studied 

faults and deformation bands (Doelling et al., 2002). It comprises the aeolian derived 

sandstones outcropped in Klondike Bluffs, ranging in thickness from 18-30 m. The massive, 

cliff-forming sandstones are predominantly fine to medium grained, porous (20-25%), 

calcareous, and varying in colouration from pale-orange, grey, yellowish-brown to light-grey. 

Low-angle cross-stratification and intensive jointing are commonly observed in outcrops 

(Antonellini & Ayidin, 1994; Johansen et al., 2005). The Moab Member was deposited as 

coastal sand dunes on the southern and eastern margin of the restricted Jurassic seaway (Blakey, 

1989; Crabaugh & Kocurek, 1993).  

Figure 2.3: Stratigraphic column of Triassic to Cretaceous in the northern Paradox 
Basin.  Highlighting (red) studied units, coupled with depositional environment 
and lithology. Modified from Trudgill (2011). 
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3 Theoretical background  
This chapter provides an introduction to the theory, which forms the foundation of this study.  

Before presenting the results and the methodological approach, it is important to understand the 

subsisting knowledge on deformation bands and their characteristics, and also understand the 

locus in which these commonly occur. An introduction to structural setting is thus provided in 

this chapter. The concept of topology analysis, which is the main applied methodology in this 

study, is also presented. 

 

3.1 Fault Zones 
A fault zone in the brittle domain can be subdivided into two distinct components: The fault 

core, which is a high-strain zone where most of the displacement is accommodated, and the 

enveloping low-strain zone. The latter is related to the growth and evolution of the fault and is 

more commonly termed the damage zone (e.g. Sibson, 1977; Caine et al., 1996; Peacock et al., 

2000; Childs et al., 2009). The damage zone is characterized by a number of discrete structures, 

such as joints, fractures, deformation bands, and minor faults (e.g. Caine et al., 1996; Mollema 

& Antonellini 1999; Kim et al., 2004; Rotevatn et al., 2016). The width of the damage zone is 

determined by the frequency distribution of discrete structures. Commonly, the frequency 

distribution decreases with distance away from the fault core. The area where the frequency 

distribution drops down to a minimum defines the outer boundary of the damage zone (e.g. 

Chester & Logan, 1986; Beach et al., 1999; Kim et al., 2004; Gudmundsson et al., 2010).  

The scaling relationship between fault displacement and damage zone thickness is in general 

positive (e.g. Evans, 1990; Beach et al., 1999; Fossen & Hesthammer, 2000; Shipton & Cowie, 

2003). However, plots often show a scattered distribution (Cowie & Scholz, 1992; Choi et al., 

2016). A considerable amount of studies have looked at the statistical variability and point to a 

variety of different parameters affecting the data, such as lithology, diagenesis, structural 

setting, depth of faulting, fault size, damage zone architecture, and deformation mechanisms 

(e.g. Evans, 1990; Cowie & Scholz, 1992; Fossen & Hesthammer, 2000; Berg & Skar, 2005; 

Torabi & Berg, 2011). However, the scattered distribution is still poorly understood. Choi et al. 

(2016) emphasize the importance of defining the width of the damage zone, suggesting that the 

inconsistencies may be caused by different ways of defining the width of the damage zone. 

Faults are though rarely single features, but most often sets of fault segments, which link up to 
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form more extensive fault zones (e.g. Pollard & Aydin, 1984; Biddle & Christie-Blick, 1985; 

Peacock & Sanderson, 1991; Fossen et al., 2005; Rotevatn et al., 2007; Fossen et al., 2016). 

The areas where fault segments are interacting are more complex when it comes to the rate of 

displacement, stress field, and the attributes of the resulting damage zone (Segall & Pollard, 

1980; Fossen et al., 2005). 

3.1.1 Fault interactions   
The evolution from overstepping faults to linkage involves strain accumulation and 

development of several discrete structures, such as fractures and deformation bands, commonly 

with different orientation patterns from those seen farther from fault interactions (Fossen et al., 

2005; Fossen & Rotevatn, 2016). Fault tips and fault interaction points are associated with stress 

increase and stress perturbation, which can explain the rotation of discrete structures (e.g. Segall 

& Pollard, 1980; Childs et al., 1995; Johansen et al., 2005; Fossen et al., 2005). Faults are 

commonly found in sets or networks, with faults abutting, splaying, and crossing, resulting in 

different types of damage zones (e.g. Duffy et al., 2015; Peacock et al. 2017b).  

 

3.1.2 Damage Zones and Classification  
Damage zones develop as a result of fault initiation, propagation, linkage, and displacement 

accumulation (Peacock, 2002; Shipton & Cowie, 2003; Fossen et al., 2005; Faulkner et al., 

2011). Damage zones exist at a range of different scales and still show very similar geometries 

(Kim & Sanderson, 2006; Faulkner et al., 2011). Kim et al. (2004) provide a general 

classification of damage zones, dividing these into three main zones based on their location: 

the tip damage zone, linking damage zone, and the wall damage zone. Although the 

classification is based on a study of strike-slip faults it can be further extended to normal and 

reverse faults (Kim et al., 2004). Peacock et al. (2017a) suggest interaction damage zones as a 

broader term for linkage damage zones and further subdivide interaction damage zones in 

approaching- and intersecting damage zones (Fig. 3.1).  



Chapter 3   Theoretical  Background 
 
 

 12 

 

The approaching damage zone is the area of deformation caused by two or more faults that 

kinematically interact, without intersecting, whereas an intersection damage zone encompasses 

the deformation around the intersection point of two or more faults (Fig.3.1) (Peacock et al., 

2017b). An intersection point is where a fault cross-cut, abuts or displace an older fault 

(Horsfield, 1980; Fossen et al., 2005). However, it is important to consider the 3D geometry of 

an interaction damage zone, as an approaching damage zone seen in outcrop can possibly be 

intersecting elsewhere on the fault plane (e.g. Walsh et al., 2003; Peacock et al., 2017a). It is 

further emphasised that different damage zones can overlap; a fault tip damage zone can for 

example develop into an interaction damage zone as a result of fault propagation (Kim et al., 

2004; Choi et al., 2016; Peacock et al., 2017a).  

 

The tip damage zone is the area of deformation surrounding the tip of a fault, resulting from 

higher stress concentration at the fault tip of a growing fault (e.g.  Cowie & Scholz, 1992b; 

Shipton & Cowie, 2003). A tip damage zone, also known as the process zone, evolve from fault 

initiation and propagation (e.g. Vermilye & Scholz, 1998; Kim et al., 2004).  McGrath & 

Davison (1995) document that strike-slip and thrust faults produce a more variable damage 

zone geometry compared to normal fault tip damage zones. Thus, two main types of fault tip 

Figure 3.1: Conceptual presentation of the different types of damage zones forming around faults. Terminology from Kim et 
al. (2004) and Peacock et al. (2017a).  
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damage zones can be recognized: (1) Branching fractures from the fault tip, and (2) en-echelon 

array of fractures, disconnected from the fault tip. Kim et al. (2004) propose a subdivision of 

tip damage zones based on slip mode, distinguishing between mode II and mode III tip damage 

zones, and a mixed slip mode. Mode II tip damage zones are typically asymmetrical with 

horsetail fractures, wing cracks, antithetic faults, and synthetic faults, with both contraction and 

extensional zones across the fault trace. Mode III fault tip damage zones are typically 

symmetrical with synthetic and antithetic faults (Kim et al., 2004). Choi et al. (2016) highlight 

the importance of considering the relationship between slip mode and the location of damage 

zone structures around the fault tip, as the 3D architecture of damage zone structures can bring 

forward important information about fault evolution and propagation (e.g. Childs et al., 1995). 

 
The wall damage zone is the damaged area caused by either fault propagation or increased slip 

on a fault (Peacock et al., 2017a). The wall damage zone can be situated along the whole fault 

trace and include structures, such as extensional fractures, antithetic and synthetic faults, rotated 

fault blocks, and deformation bands (Kim et al., 2004; Shipton & Cowie, 2001). A common 

internal feature for damage zones in high porosity sandstones are deformation bands (Fossen et 

al., 2007).  

 
 
3.2 Deformation bands  
Deformation bands are common structures in porous sandstones formed by localized shear 

and/or volume change in mm to cm thick tabular zones (e.g. Aydin, 1978; Antonellini et al., 

1994; Fossen & Bale, 2007; Rotevatn et al., 2016). These structural features were first described 

by Aydin (1978), and has since been extensively studied, especially in sandstones. In the past 

two decades, deformation bands formed in carbonates and volcaniclastics have gained more 

attention (e.g. Wilson et al., 2003; Evans & Bradbury, 2004; Tondi et al., 2006; Rath et al., 

2011; Cavailhes & Rotevatn, 2018). This thesis focus on deformation bands in siliciclastic 

rocks. Deformation bands in carbonates and volcaniclastics will therefore not be further 

addressed.  

Deformation bands can occur as single structures, clusters, or networks of individual bands 

(Aydin & Johnson, 1978) (Fig. 3.2). The growth from single bands to swarms of bands is 

associated with strain hardening mechanisms (Ayidin, 1978). Strain in high porosity sandstones 

is accommodated by the formation of deformation bands, whereas strain in low porosity rocks 
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is associated with extensional fractures or slip surfaces (Fossen et al., 2007).  Deformation 

bands do not develop any discrete slip surface and form relatively small offsets (mm to dm) 

compared to their length (Fossen & Hesthammer, 1997). Furthermore, the formation of these 

alter the permeability and porosity of the host rock, commonly causing a reduction in porosity 

and permeability (one to six orders of magnitude) and an increased cohesion (Fossen et al., 

2007). This place deformation bands in a separate category relative to faults and fractures, 

which commonly contribute to increased permeability and porosity (Aydin & Johnson, 1978; 

Aydin & Johnson, 1983; Antonellini et al., 1994; Fossen & Bale, 2007).  

Field observations document how faults form in or along deformation band zones (e.g. Aydin 

& Johnson, 1978; Shipton & Cowie 2001). Mair et al. (2000) studied the sequential growth of 

deformation bands in the laboratory and found evidence for an increased number of discrete 

deformation bands with increased strain. Furthermore, Shipton & Cowie (2001) noticed that 

slip surfaces in porous sandstones tend to nucleate from an area with an increasing amount of 

deformation bands, also known as the process zone. This suggests that the accumulation of 

strain will form more deformation bands, which ultimately can form a through-going slip 

surface. The deformation band process zone can be up to 100 m ahead of the fault tip, but 

depends heavily on lithology (Fossen et al., 2007); A well-sorted porous sandstone will favour 

the development of long process zones (Fig. 3.2), such as the Entrada and Navajo sandstones 

found in Southern Utah (Shipton & Cowie, 2001; Rotevatn et al., 2007). The damage zone 

widens as new deformation bands form within and outside the process zone (Schueller et al., 

2013). This is explained by strain hardening and strain softening mechanisms where strain 

hardening cause deformation to be extended into undeformed host rock (Shipton & Cowie, 

Figure 3.2: Conceptual illustration of a fault slip surface with associated damage zone, cluster zone and 
single bands in porous sandstone. From Fossen et al. (2007).  
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2003). Once a slip-surface nucleates, the mechanism shifts to strain softening (Mair et al., 2000; 

Shipton & Cowie 2001). Schueller et al., (2013) observed that the density of bands is 

independent of fault displacement and revealed a non-linear relationship between damage zone 

width and fault throw, with a corresponding power-law exponent close to 0.5. Furthermore, the 

results showed a statistically wider hangingwall damage zone compared to footwall damage 

zone (Schueller et al., 2013). The degree of clustering is also considered to be independent of 

fault displacement and should therefore be more or less similar along a fault trace (Du Bernard 

et al., 2002; Schueller et al., 2013).  

3.2.1 Mechanisms and host rock properties  
Deformation band formation is controlled both by external conditions and internal properties 

within the host rock (Fossen et al., 2018). Internal host rock properties involve the degree of 

lithification, mineralogy, grain size, sorting, and grain shape. External factors include confining 

pressure (burial depth), deviatoric stress (tectonic regime), and pore – fluid pressure (Fossen et 

al., 2007) (Fig. 3.3A). These factors may vary; e.g. The confining pressure increases with burial 

depth, while the deviatoric stress depends on the tectonic regime (Fossen et al., 2018). 

Antonellini et al. (1994) documented a temporal evolution of deformation bands at the Colorado 

Plateau, showing disaggregation bands at shallow burial depth developing into cataclastic bands 

at greater depth (Fig. 3.3B).    

In an extensional regime, the overall horizontal stress is reduced, thereby prompting a non-

cataclastic grain-flow at more shallow burial depths, whereas a compressional regime increases 

the overall mean stress and may cause cataclasis at shallower burial depths (Solvia et al., 2013).  

Figure 3.3: A) Table listing factors that influence the degree of cataclasis in deformation bands. From Fossen et al. (2018). 
B) Diagram showing how the relation between burial depth and phyllosilicate content can influence deformation band 
mechanisms. From Fossen et al. (2007)     
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Simple shear kinematics, non-cataclastic deformation, pure compaction, and dilation tend to 

materialize at shallow burial depths in unconsolidated and poorly consolidated sandstones 

(Fossen et al., 2018). In granular rocks, the stress is concentrated at grain contacts (Antonellini 

et al., 1994). Consequently, low confining stresses will favour granular flow (disaggregation 

bands), while high confining pressures will promote cataclasis (cataclastic bands). A well-

sorted host rock is likely to enhance cataclasis, as fewer grain-contact points increase the overall 

stress on each contact point (Antonellini & Pollard, 1995; Cheung et al., 2012). High fluid 

pressure, however, can counteract cataclasis and enhance the formation of disaggregation bands 

and dilational bands at greater depths (Fossen et al., 2018).   

3.2.2 Deformation Band Classification  
Deformation bands can be classified based on kinematics or by the dominant mechanism active 

during the formation (Aydin et al., 2006; Fossen et al., 2007). Based on kinematics, deformation 

bands can be divided into three end-members (Fig. 3.4): (1) Dilation bands (DSB); (2) 

compactional shear bands (CSB); (3) pure compaction bands (PCB) or a combination 

(dilational shear bands, compactional shear bands, shear enhanced compaction bands and shear 

enhanced dilation bands) (Du Bernard et al., 2002; Aydin et al., 2006; Fossen et al., 2007). CSB 

is a common type of deformation band, which forms by grain reorganization (Fossen et al., 

2007). Dilational shear bands are uncommon, but they have been observed in laboratory 

experiments and in the field (Antonellini et al., 1994; Du Bernard et al., 2002). Dilation can 

occur at an early stage of compactional shear band development (Bésuelle, 2001).  
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External and internal conditions within the host rock favours different types of deformation 

mechanisms, which will result in different petrophysical properties (Fossen et al., 2018). It is 

therefore useful to categorize deformation bands based on the dominating deformation 

mechanism: (1) Disaggregation bands (granular flow); (2) Phyllosilicate bands (Phyllosilicate 

smearing); (3) Cataclastic bands (grain fracturing); (4) Dissolution and cementation bands 

(Fossen et al., 2007).   

 

Disaggregation Bands  

Disaggregation bands develop as a result of granular flow: a process that involves grain rolling, 

grain boundary sliding, and breaking of grain bonding cement (Fig. 3.5A) (Fossen et al., 2007). 

Disaggregation processes are commonly active and dominating at shallow burial depths (<1km) 

in sands and poorly consolidated sandstones (Mandl et al., 1977; Knipe et al., 1997; Du Bernard 

et al, 2002). With greater stress, the shearing can be accompanied by grain crushing (Mandl et 

al., 1977), causing cataclasis. However, high fluid pressure can counteract cataclasis and favour 

disaggregation mechanisms at greater depths (Fossen et al., 2018).   

 

Figure 3.4:  Kinematic classification diagram for deformation bands. From Fossen et al., (2007). 
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Disaggregation bands do not involve any fracturing of grains and often appear as invisible 

bands, as only the orientation and position of the grain is altered (Fossen et al., 2007). These 

types of bands do not modify the permeability and porosity of the host rock to a large extent 

and are therefore not considered important barriers to fluid flow (Knipe et al., 1997).  

 

Phyllosilicate bands  
Phyllosilicate bands, also referred to as framework phyllosilicate bands, develop in sandstones 

with a significant amount of platy minerals (>10-15%) (Knipe et al., 1997; Fossen et al., 2007). 

Phyllosilicate bands form under the same conditions as disaggregation bands (Fig. 2.6B). 

However, the platy minerals prompt frictional boundary sliding and can therefore be considered 

a sub-group of disaggregation bands (Fig. 3.5B) (Fossen et al., 2003; Fossen et al., 2007).  The 

platy minerals in the phyllosilicate bands counteracts strain hardening and causes a smearing 

effect. Consequently, phyllosilicate bands may develop quite big offsets compared to other 

types of deformation bands (Fossen et al., 2007) 

 

The permeability reduction caused by phyllosilicate bands is dependent on the abundance, 

distribution, type, and grain size of the phyllosilicates, as well as the amount of displacement 

(Knipe, 1992). The mixing and alignment of the platy minerals normally varies within a single 

band. For this reason, the effective permeability of a single phyllosilicate band also tends to 

vary (Knipe et al., 1997; Fossen et al., 2007). Fisher & Knipe (2001) observed a reduction in 

permeability between two and five orders of magnitude in siliciclastic petroleum reservoirs in 

the North Sea.  
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Cataclastic Deformation Bands  
Cataclastic bands form as a result of grain fracturing (cataclasis) due to concentrated stress at 

grain contact points (Fig. 3.5C) (Aydin, 1978). Cataclastic deformation bands can be divided 

into a core and a transition zone (Fossen et al., 2007). The core is commonly characterized by 

grain size reduction, lack of pore space, angular grains, and a high matrix content (Fossen et 

al., 2007). The transition zone, also referred to as deformation band outer zone by Ayidin 

(1978), is characterized by compaction (granular flow) and a smaller amount of grain fracturing.  

 

The porosity of a single band is commonly reduced by up to one order of magnitude 

(Antonellini & Aydin, 1994), while the permeability on average is reduced about three orders 

of magnitude (Antonellini & Aydin, 1994; Jourde et al., 2002; Fossen et al., 2007). The 

permeability is reduced more in shear bands than in compaction bands (Ballas et al., 2015).  

Cataclastic deformation bands tend to develop smaller offsets compared to disaggregation 

bands, which might be explained by the extensive interlocking of grains, prompting strain 

Figure 3.5: Illustrative presentation of the different types of deformation bands. The classification of is based on the 
dominating deformation mechanism. From Fossen et al. (2007).  
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hardening (Fossen et al., 2007). Ballas et al. (2015) proved a correlation between grain crushing 

intensity increase and permeability decrease. Normal faults typically lead to the formation of 

cataclastic shear bands, with intense cataclasis and high permeability reductions, while 

cataclastic bands in a thrust fault regime show a more moderate decrease in permeability. 

Generally, this shows that permeability is greater reduced in shear bands than compaction bands 

(Ballas et al., 2015; Soliva et al., 2016)   

 

Cataclastic deformation bands commonly develop in, but are not restricted to sandstones at 

depths 1,5-2,5 km (Fossen et al., 2007). Cataclastic deformation bands have additionally been 

observed in unconsolidated sands in accretionary prism sediments (Ujiie et al., 2004), in 

volcaniclastics (Wilson et al., 2003) and in limestones (Rotevatn et al., 2016). Cataclastic 

deformation bands and their effect on fluid flow is well documented in geological literature and 

will be further discussed in the following subchapter (e.g. Sternlof, 2006; Fossen & Bale, 2007; 

Rotevatn et al., 2013)  

 

Studies have shown that cataclasis localization is highly dependent on the tectonic regime 

(Fossen et al., 2018). Extensional tectonics tend to prompt the formation of clusters of 

deformation bands, whereas contractional tectonics tend to result in larger distribution of bands, 

commonly forming arrays of conjugate sets (Ballas et al., 2015; Soliva et al., 2016).   

Dissolution and Cementation Bands  
The formation of dissolution and cementation bands is related to the mineral coating on the 

grains and chemical compaction or pressure solution (Fig. 3.5D). Dissolution and cementation 

mechanisms can be active both during and after deformation (Fossen et al., 2007; Ballas et al., 

2015). Clay minerals at grain boundaries typically promote dissolution (Fossen et al., 2007). 

Dissolution bands in siliciclastic rocks commonly form at shallower depths and are typically 

characterized by tightly packed quartz grains surrounded by a coarser matrix with a serrated 

and irregular grain boundary and little evidence of cataclasis (Fossen et al., 2007). Cementation 

processes are related to cataclasis and grain boundary sliding, revealing fresh reactive grain 

surfaces, which then further enhance cementation (Fossen et al., 2007).  
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3.2.3 Deformation bands and fluid flow  
Deformation bands and their effect on fluid flow in reservoirs is heavily debated in geological 

literature (e.g. Rotevatn et al., 2007; Fossen & Bale, 2007; Rotevatn et al., 2013; Ballas et al., 

2015). It is well documented that the majority of deformation bands show a reduction in 

permeability and porosity (Antonellini & Aydin, 1994; Jourde et al., 2002; Fossen & Bale, 

2007).  However, the actual impact on fluid flow is still debated; Fossen & Bale (2007) 

modelled the effect of deformation bands with respect to fluid flow. The results showed that 

deformation bands may influence flow pattern within a reservoir, implying that the overall 

effect is closely linked to the arrangement and the orientation of deformation bands (Fossen & 

Bale, 2007).   

The thickness, porosity, permeability, and the continuity of single deformation bands and 

clusters vary significantly (Fossen et al., 2007). Rotevatn et al. (2013) demonstrated with 

simulations that the thickness variations along bands overall had a negligible effect on fluid 

flow, further demonstrating that the configuration and connectivity of deformation bands are 

more important controls for the effective permeability, along with the permeability contrast 

between bands and host rock, and the mean band thickness. A damage zone comprised of 

deformation bands with low permeability contrasts will have limited or no effect on fluid flow, 

while high permeability contrast can (three orders of magnitude or more) affect the flow 

tortuosity and sweep efficiency, or act as a barrier to fluid flow (Rotevatn et al., 2009).    

 

3.3 Topology   
Topology has been used to describe complex networks in engineering, communication, and 

social sciences (e.g. Latora & Marchiori, 2002; Boccaletti et al., 2006). In the last two decades 

topology analysis has become a useful tool for characterization and visualization of fracture 

networks, as it describes the geometric relationship and connectivity between fractures within 

a network (e.g. Manzocchi, 2002; Sanderson & Nixon, 2015).  Deformation bands can occur as 

interconnected networks (Aydin & Johnson, 1978). A thorough topology analysis on 

deformation bands has not yet been conducted.  Therefore, the concept of topology analysis is 

here explained for fracture/fault networks. Nevertheless, the concept is the same.  

 

In two dimensions, a fracture network can be characterized as an arrangement of branches and 

nodes (Sanderson & Nixon, 2015). A branch is a continuous fracture that is bounded by a node 
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on each end, while nodes represent the intersection points along a fracture. Manzocchi (2002) 

defines three different types of nodes: I-, Y-, X-nodes (Fig. 2.6); An I – node (isolated tips) 

represents the point where a fracture terminates; a Y-node is the point where a fracture abuts, 

splay or cross-cut; and an X-node represents a fracture that cuts straight through another 

fracture with no offset. Nodes can further be used to distinguish three different types of branches 

(Fig. 2.6), hence: I-I branch (isolated), I-C branch (partly connected), and C-C branches (doubly 

connected) (Sanderson & Nixon, 2015).  

 

Further enhancement in software has made it easy to extract statistics of fracture networks. For 

example, triangular plots can be made from the proportions of branches and nodes. The average 

number of nodes per branch provides a measure for the connectivity (connection per branch) of 

the network. In addition, the frequency and intensity of fractures can be extracted from nodes 

(Sanderson & Nixon, 2015).  

 

Two fracture networks can have the same fracture intensity, orientation and length but show 

different topological characteristics (Sanderson & Nixon, 2015), which can result in different 

fluid flow properties. NetworkGT, a toolkit developed by Nyberg et al. (2018), can derive 

statics from fracture networks, and can generate a range of different data plots; a spatial 

distribution of clusters and blocks within a network. This clustering and block analysis can, 

together with an analysis of nodes and branches, provide valuable information about potential 

fluid flow behaviour within a fracture network (Nyberg et al., 2018), as clusters can be pathways 

and/or barriers to fluid flow (Adler & Thovert, 1999)  

Figure 3.6: Conceptual illustration a network characterized by branches and nodes. 
Terminology from Sanderson and Nixon (2015).  
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Topology has been used to describe fracture and fault networks (Huseby et al., 1997; 

Manzocchi, 2002; Sanderson & Nixon, 2015; Morley & Nixon, 2016). Fault networks will 

normally show a higher proportion of Y-nodes than X-nodes due to preservation problems; 

cross-cutting faults are often offset by the recent active fault, resulting in two Y-nodes, instead 

of one X-node. For this reason, X-nodes are mainly observed in joint and fracture arrays 

(Morley & Nixon, 2016). Manzocchi (2002) presents a triangular plot, showing deformation 

bands with a high proportion of Y-nodes. Topology can though be quantified and visualized in 

various ways, which are explained in the methodology chapter (Chapter 4).  
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4 Data and Methodology   
 

This chapter elaborates on the methods used in the data collection and -analysis in this thesis. 

Outcrop data was collected during two field campaigns in Utah in May 2019 and October 2019. 

The study-areas were selected based on the relevance and quality of the exposures, and their 

accessibility. Table 4.1 presents a summary of the applied methodologies, aims and datasets, 

which are explained in detail subsequently.     

 
Table 4.1: Summary of methods used in this study, with their aims and resolution.  

 Method Aim Dataset Resolution  

 
Fault analysis  

 

Structural mapping: 

quantification of fault 

orientation (strike/dip) and 

displacement 

 

Constrain damage zone 

extend, fault displacement  

 

 

 

Outcrop data 

Virtual outcrop 

models   

 

1-300m  

     

Deformation band 
analysis  

Circle sampling   Deformation band 

orientation, - length and 

topological attributes 

(connectivity, nodes etc.) 

 

54 circle samples 

(Fig. 5.3 and 5.7)  

cm-mm 

 Line sampling   Deformation band 

frequency distribution  

 

53 Line samples 

(Fig. 5.11 and 

5.18) 

cm-mm 

 Network grid sampling  Sample spatial variation In 

geometry and topology 

throughout deformation 

band network  

 

3 orthomosaics 

(Fig. 5.14, 5.15, 

and 5.20) 

cm-mm 

Virtual outcrop 
models 

Fault and deformation band 

analyses (digital)  

Determine type of fault 

interaction, -displacement 

and the overall orientation 

of deformation band 

clusters  

2 outcrop models 

(Fig. 5.11b,c)   

1-100m  
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4.1 Data acquisition: Fieldwork  
Three weeks of fieldwork in Utah was carried out during two field campaigns in 2019, May 

and October. Firstly, a regional understanding of the structural setting and geology of the study 

was achieved through structural mapping, mainly using Fieldmove Clino, which is a practical 

instrument for measuring structural inclinations (strike/dip) and constrain the extend and 

displacement of faults and deformation bands. The application contains a digital compass–

clinometer that stores the GPS positions of measurements and allows for attachment of photos 

and observatory notes to these. To avoid measurements error, strike/dip measurements were 

carried out with a physical compass with clinometer. For the purpose of building virtual outcrop 

models (3D models), aerial drone photos were acquired with a DJI Mavic Pro drone; with 

exception of the Klondike Bluffs region, where strict UAV restrictions prohibit drone flying. 

 

Secondly, deformation band networks, the key focus of this thesis, were studied on cm scale. 

The most fundamental data type for the study of deformation band networks in this thesis are 

high-resolution outcrop photos. Mapping of total deformation band networks can though prove 

difficult as it requires a continuously good exposure. The sampling strategy thus depend largely 

on scale, spatial extent and exposure quality.  Photos of deformation band networks were 

captured both by drone and handheld camera. Essentially, the resolution of the drone photos 

was not high enough to capture detailed deformation band networks and has therefore not been 

utilized for this purpose in the study. Aerial drone photos are though used for building outcrop 

3D models. The handheld camera photos were shot approximately 1-1.5 m above ground. To 

ensure minor orientation bias, the photos were shot perpendicular to the exposed rock surface. 

Continuous photo transects were captured in areas with laterally extensive exposure. These 

were stitched together and geometrically corrected in Agisoft Metashape, which was further 

used to build virtual outcrop 3D models. Details on data processing are elaborated in section 

4.2.  

 

In the field, photos of deformation bands were acquired in two different ways; continual photo 

transects and circle sampling. Continual photo transects were acquired in areas with extensive 

exposure. Circle sampling has been used to sample deformation band networks in areas with 

limited exposure, thus allowing for a larger areal coverage when recording general geometric- 

and topologic trends. The circle samples (Fig. 4.2a,b) are one m in diameter and placed in 

intervals of one to twenty m depending on the exposure quality and size of the field locality. 
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Sampling at constant intervals proved challenging, due to occasional poor exposure or no 

display of deformation bands. To eliminate this issue, a more selective approach was 

implemented in the systematic data acquisition: in sample areas with poor exposure, circle 

samples were placed with up to three m deviation from the planned path to ensure low bias.  

 
 

 

 

 Figure 4.1: Flowchart displaying the workflow from data acquisition to digitalisation, analysis and spatial visualization of 

deformation band networks. Photos and/or orthomosaics aquired in the field are imported to QGIS and georeferenced. 

Deformation bands are then digitised manually, and a sampling method is chosen. A geometrical- and topological analysis is 

then conducted, which provides output data and a spatial visualization of the deformation band network. The brown colour 

represents data acquired in the field, while yellow indicates data processed in Agisoft Metashape. The green colour is data 

processed in QGIS. Modified from Nyberg et al. (2018). 

Fieldwork 
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         Digitise 
Deformation Band 
         Network  

Select sampling
      strategy  
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4.2 Data processing  
Fig. 4.1 presents a detailed workflow. The first step was to process the photos acquired with 

manual photography and Unmanned Aerial Vehicles (UAVs), which represents a simple, 

efficient and low-cost method for acquiring virtual outcrop data, compared to the older Light 

Detection and Ranging (LiDAR) scan. The photos were processed in Agisoft Metashape, where 

digital photos can be shaped into 3D models and/or 2D surfaces for use in GIS applications. 

The software utilizes a photogrammetry technique called Structure from Motion (SfM), in 

which continuous movement of the drone provides depth information. The SfM algorithm 

recognizes common features in overlapping pictures and assigns a 3D coordinate to every single 

matched point. Next, a multi-view stereo algorithm is used to generate a dense cloud that fill 

the empty space surrounding the matched points (e.g. Hirschmuller, 2007; Cawood et al. 2017).  

Agisoft Metashape was primarily also used to make high resolution orthomosaics: detailed 

maps generated from several stitched and geometrically corrected photos processed with a 

given projection to achieve a uniform scale and provide high-resolution photos of deformation 

band networks (Fig. 4.4A). 

 

4.2.1 Analysis of network topology using QGIS and NetworkGT 
Photos and orthomosaics of outcrops exhibiting deformation band networks were mapped and 

digitised with QGIS, which is an open-source Geographic Information System (GIS) for 

viewing, editing and analysing geospatial data. Sampling, analysis, and spatial mapping of 

topological attributes was performed with a NetworkGT (toolbox) plugin in QGIS, developed 

by Nyberg et al. (2018).  

 

For the purpose of characterizing and describing deformation band networks, a topological and 

geometrical approach was used. A geometrical approach provides information on deformation 

band orientations (rose diagrams), lengths and intensity variations (line frequency plots) 

(Nyberg et al., 2018). The topological analysis introduced for fractures in chapter 3 can also be 

applied for deformation bands. Deformation bands can be viewed as networks of branches and 

nodes that are categorized based on their connection points and number of bifurcations. The 
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features distinguished in this study are I-nodes, Y-nodes, X-nodes, and branches.  I-node 

represents the tip of a deformation band, while a Y-node is the point where a deformation band 

splay or abut against another deformation band. When a deformation band cross-cut another 

deformation band and show no offset it is called an X-node. A branch is limited by a node in 

each end and three types are recognized: Isolated branches (I-I), partly connected branches (I-

C), and doubly connected branches (C-C) (Ortega & Marrett, 2000; Sanderson & Nixon, 2015).  

 

Three digital sampling methods were applied in this study, all provided in the NetworkGT 

toolkit: (1) circle sampling, (2) line sampling, and (3) network grid sampling.  Line sampling 

extracts data in one-dimension and is used to extract information on deformation band 

frequency by counting intersections along a line. Sampling is preferably perpendicular to the 

trend of the deformation bands to prevent under sampling (Nyberg et al., 2018). This sampling 

method provide valuable information on deformation band frequency but can be subject to 

orientation and length bias. The use of circle samples eliminates this orientation bias in the 

plane and has been utilized in areas with limited exposure (Mauldon et al., 2001). The 

topological and geometrical analysis is applied to the sampling area, which is defined by a 
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Figure 4.2: Figure demonstrating an example of the digitalization process of an acquired photo in the field and the extraction 
of topological and geometrical data from this: A) Circle sample with mapped deformation bands (black lines). B) 
Identification of topological data within the circle sample with the NetworkGT toolkit. C) Distribution of Nodes and Branches 
plotted in a ternary diagram.  
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polygon (interpretation boundary) (Fig. 4.2A). When a deformation band (branch) intersects 

with the polygon the intersection point is marked as an edge-node (E-node), and branches 

intersecting the polygon are counted as half branches (4.2B). The proportions of branches and 

nodes can be plotted in ternary plots for characterizing topology (Fig. 4.2C). The third sampling 

method, Network Grid Sampling, maps the spatial variation within a deformation band network. 

This sampling method is only applicable for areas where orthomosaics were acquired. 

NetworkGT generates a square grid with a given size within a given interpretation boundary. 

Subsamples (circle samples) are generated by assigning a centroid point and radius to every 

grid cell (Fig. 4.3). Topological and geometric variations in a deformation band network can 

then be visualized in a wide range of intensity maps (Fig 4.4D), such as 2D intensity and node 

distribution. 2D intensity refers to the sum of branches divided by the size of the sample area, 

which provides a measure of the deformation band intensity within the sample area (see Table 

4.2). A wide range of data can be extracted from combining topological and geometrical data, 

such as information regarding the average branch lengths from each sample. Connections per 

branch provides a dimensionless measure of the connectivity in a network, which ranges from 

a minimum of 0 to a maximum of 2 connections per branch (Sanderson & Nixon, 2015). 

Furthermore, the block analysis tool in NetworkGT allows for assessment of the average block 

size (areas that are fully enclosed by deformation bands) (Fig. 4.4C).  A summary of all 

parameters with formulas and abbreviations are listed in table 4.2. 
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Figure 4.3: Figure demonstrating the network grid sampling method. Every block/cell is assigned a centroid point and a given a 
radius. The network grid sample area is thus composed of several circle samples, which simplifies the visualization of changes in 
topology within a deformation band network. See figure 4.4D for an example.  

Figure 4.4: A-D Showcase the process from mapping deformation bands in QGIS, to visualization and data analysis.  A) Orthomosaic, 
composed of 103 stitched and geometrically corrected photos. B) The black lines indicate deformation bands, while the grey bounding 
polygon is the interpretation boundary/sampling area. C) The green colour highlight blocks within the deformation band network. D) 2D 
intensity map showing the intensity variation within a deformation band network, composed of grid cells with circle samples, as shown in 
Fig. 4.3.  
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Table 4.2: This table presents a summary of abbreviations  and formulas used to calculate various parameters in a digitised 
deformation band network, all provided in the NetworkGT toolkit. Modified from Nyberg et al. (2018).  

Parameter  Description                               Calculation  
Area (A)  Sample area  ! 

Number of nodes (Nn)  Number of I, Y and X nodes "! + "" +	"#  

Number of connections (Nc) Number of X and Y nodes "" +	"#  

   

Connection/branch (CB) (Connectivity)  Connections per branch (Connectivity), min = 0,  max = 2 

 

3"" 	+ 	4"$	
"%

 

Total trace length ∑( Sum of branch lengths  

 

)( 

Average branch length (BC) Average branch length  

 

∑(
"%

 

2D intensity  Intensity of deformation bands within a sample area  

 

∑(
!  

 Block analysis   

   

Number of intersecting clusters (Ki) Number of clusters that intersects the bounding polygon *& 
Number of branches (block calculation) (B) Number of branches, calculated from nodes and E nodes  "! 	+ 	"' 	+ 	3"" + 4"$

2  

Number of nodes (block calculation) (block 

calculation) (N)  

Number of I, Y, X and E nodes  "! +	"' 	+ "" +	"# 

Number of whole blocks (Wb) Whole blocks within the sample area B − 	N + *&(  

Number of half blocks (HB) Potential blocks that are only partially within the sample area  "' −	*& + 1
2  

Number of theoretical blocks (Tb) Total number of whole and half blocks 0) +	1) 

Theoretical block size  Average area of theoretical block  2)
!  
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5 Results  
Five deformation band networks have been studied in detail: three cluster zones in the wall 

damage zone of the Big Hole Fault, and two intersection damage zones in the Klondike Bluffs 

area (Table 5.1). A summary of the acquired data and applied method is presented in Table 4.1. 

The geometric and topological data and characteristics of the studied deformation band 

networks are presented and visualized below. For the full field datasets, including all 

geometrical and topological data, see Appendix II.  

 
Table 5.1: Table listing the study areas, associated stratigraphic units, the sample numbers collected in said area, and the 
utilized sampling method.  

Study areas  Stratigraphic Unit 
(Fm./Mb) 

Locality/Sample Names  Sampling method 

Klondike East (Intersection 

damage zone) 

Curtis Fm. /Moab Mb   1A – 41A Circle sampling 

Klondike West (Intersection 

damage zone)  

Curtis Fm./Moab Mb  1B – 13B Circle sampling  

Big Hole Fault cluster I  Navajo Sandstone  BC1 Network grid 

saampling+ line 

sampling  

Big Hole Fault cluster II  Navajo Sandstone  BC2  Network grid sampling + 

line sampling 

Big Hole Fault cluster III  Navajo Sandstone BC3  Network grid sampling + 

line sampling 

 

5.1 Klondike Bluffs    
Klondike Bluffs is situated on the SW limb of the Salt Valley anticline (Fig. 2.1). Structurally 

the area is dominated by cross-cutting normal faults (Fig. 5.1). The data from Klondike Bluffs 

is divided into Klondike West and East; each of these areas feature two intersecting faults (Fig. 

5.1). It is the damage zones of these intersecting faults that are the features of interest here. The 

observations from each intersection are presented individually.  

 

In both fault intersections, the aeolian Moab Member is offset by the faults. The Moab Member 

in Klondike Bluffs is a fine- to medium-grained sandstone ranging in colour from light grey to 

pale orange. The exposed cataclastic deformation band networks in the Moab Member are 

similar in characteristics to the thick deformation bands described by Fossen & Hesthammer 
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(1997) in San Rafael desert, and by Johansen et al. (2005) in the Arches area; The bands are 

commonly 1-1.5mm in thickness and tend to cluster in cm-wide zones, forming a raised relief 

in the outcrop (Fig. 5.2). The cataclastic deformation bands are generally well exposed, except 

where these are highly jointed or covered by vegetation.  

 

5.1.1 Klondike West  
Klondike West is characterised by a NW-striking normal fault, which dips c. 60° to the NE, 

intersected by a W-striking normal fault with a c. 75° N-ward dip (Fig 5.3). At the intersection 

point the displacement is approximately 10 m for the NW-striking fault and approximately 5 m 

for the abutting W-striking fault. The displacement along the NW-striking fault increases to a 

maximum displacement of c. 15 m 300 m SE of the intersection; NW of the intersection point, 

the NW-striking fault gradually decrease in displacement. The W-striking fault has a 

displacement of c. 5 m near the intersection point, gradually decreasing towards west. 

 

 

 

 

Figure 5.1: Aerial photo of Klondike Bluffs displaying the two studied fault intersections and other major faults within the 
area. The pale and light-colored outcrops expose the Moab Mb. of the Curtis Formation. The Entrada Sandstone is 
outcropped in red to brown colour. Aerial photo from Google Earth.  
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The dataset acquired in Klondike west counts 13 circle samples with approximately 15 m 

spacing and 0.5 m sample radius, placed inside and outside the area bounded by the two 

intersecting faults (Fig 5.3).  The circle samples have been analysed in accordance with the 

methods described in Chapter 4 to find geometric and topological characteristics.  

 

Geometry 

Most of the deformation bands are oriented WNW-ESE (Fig. 5.3), which is approximately 

parallel to the northwest-striking fault, with slight deviations observed in circle samples (CS) 

4B and 8B, where they trend E-W. Furthermore, a larger spread in orientations relative to other 

circle samples is observed in CS 3B, 6B, 8B, 11B, 12B (Fig 5.2). No clear correlation is 

recognised between the spread and the deformation band intensity. The highest 2D intensity is 

found within the area bounded by the two intersecting faults, with a maximum intensity of 17.2 

m-1 and 14.7 m-1 measured in CS 2B and CS 4B, respectively. The lowest 2D intensity is 

0          10          20 cm 

Figure 5.2: Example from Klondike Bluffs of deformation bands in the Moab Member showing an anastomosing 
zone of deformation bands and cm-wide cluster zones comprised of deformation bands. Notice how the bands are 
clustering in zones to form a raised relief.    
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measured in the footwall to the W-striking fault in CS 7B (3.2 m-1) and in the hangingwall to 

the NW-striking fault CS 9B (4.6 m-1).  

 

With an average branch length map (Fig. 5.6), the spatial variation in branch lengths throughout 

the damage zone is presented. Note that the average branch length derived from each circle 

sample is an average length of all branches within that sample. Overall, the branch lengths range 

from 7.7 cm (CS 7B) to 23 cm (CS 13B). There is a small tendency for inverse proportionality 

between 2D intensity and average branch length in samples 2B, 9B and 13B (Fig. 5.6). In these 

samples, it appears that high 2D intensity is associated with shorter branch lengths and vice 

versa. However, scatter plots (Fig. 5.5) of 2D intensity and branch length do not show any 

negative- or positive linear relationship.   

 

 

Figure 5.3: Overview of Klondike West, showing the studied intersection damage zone and the position of circle samples (not 

to scale). In the position of the circle samples are rose plots presenting the deformation band orientations coupled with 2D 

intensity (reflected by the circle colour). Aerial photo from Google Earth.  
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Topology  

The node and branch plots (Fig. 5.4) clearly illustrate a damage zone dominated by Y-nodes 

and doubly connected branches (C – C).  Average connections per branch for the whole damage 

zone is 1.92, which means an overall high connectivity for the deformation band network (Fig. 

5.4) (the maximum number of connections per branch being 2; see chapter 4). No correlation 

is observed between 2D intensity and connectivity (Fig. 5.5). Maximum connectivity is 

observed in CS 9B and 10B, which are fully connected, while a minimum connectivity of 1.68 

is observed in CS 1B. Consequently, CS 1B deviates from the other samples (Fig 5.4) with a 

higher proportion (37%) of I – nodes and partly connected branches (C – I branches) (43%).  

 

Intensity maps further (Fig. 5.6) demonstrate topological variations throughout the damage 

zone. The 2D- and Y-node intensities appear to correlate; increased 2D intensity coincides with 

an increase in the number of Y-nodes. Scatterplots also display a positive relationship between 

the 2D-intensity and the number of Y–nodes (Fig. 5.5). The I–node intensity is rather low in 

the hangingwall to the NW striking fault, coinciding with low 2D intensities (Fig. 5.6). Thus, 

the number of I–nodes and the 2D intensity shows a moderate positive correlation (Fig. 5.6). 

The X-node proportion is at the other end of the spectrum with no occurrence (0%) in many 

Figure 5.4: Ternary plots of node and branch distribution in Klondike East. The table contains 
information regarding the average proportion of nodes, branches and connections per branch 
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samples (Fig 5.6). The highest proportion (9%) of X-nodes is observed in CS 3B, which is 

found in the footwall to the northwest striking fault. X-nodes, however, do not appear to 

correlate strongly with the 2D intensity (Fig. 5.5).  

  

Figure 5.5: Scatterplots of 2D intensity plotted against number node types, connections/branch and branch length. A positive 
correlation is observed for 2D intensity and number of Y-nodes, and between 2D intensity and number of I-nodes. No clear 
correlation is identified for 2D intensity vs number X-nodes, branch length or connection/branch.   

0

0,5

1

1,5

2

2,5

3

3,5

0 2 4 6 8 10 12 14 16 18 20

X 
-N
od
es

2D - Intensity

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20

Y 
-N
od
es

2D Intensity 

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20

I -
N
od
es

2D - Intensity 

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

Br
an
ch
 L
en
gt
h 
(c
m
)

2D - Intensity

0

2

4

6

8

10

12

14

16

18

20

1,65 1,7 1,75 1,8 1,85 1,9 1,95 2

2D intensity vs Connection/Branch 

X-nodes vs 2D Intensity Average branch length vs 2D Intensity 

I-nodes vs 2D Intensity Y-nodes vs 2D Intensity 

Klondike West
2D
 I
nt
en
si
ty

Connection/Branch

R2 = 0.774  

r = 0.88, p < 0.001.

R2 = 0.426  

r = 0.65, p < 0.02

r = 0.47, p < 0.11 r = 0.15, p < 0.6

r = 0.15, p < 0.6

Lorem ipsum

(m
-1 )

(m-1) (m-1)

(m-1)(m-1)



Chapter 5  Results 
 

 38 

 

Figure 5.6:  Intensity maps based on values from samples CS 1B to 13B displaying the overall 
distribution of 2D intensity, and Y-,I- and X-nodes. Average branch length maps display the 
average branch length within the circle samples. Blue colours reflect low intensity and red colour 
high intensity. Note that the colourbar scale is different for each map.  
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5.1.2 Klondike East  
Klondike East is located 1 km east of Klondike west (Fig. 5.1 and 5.7). Structurally, the area is 

characterized by a WSW-striking normal fault that dips c. 70° to NW and is intersected by a 

WNW-striking normal fault with a c. 68° NNW-ward dip. The displacement along the WSW 

striking fault increases from c. 1 m displacement close to CS 1A to a maximum displacement 

of c. 12 m near the intersection point (Fig. 5.7). The WNW-striking fault has a displacement of 

c. 5 m near the intersection point, which gradually increases towards ESE to c. 10 m 

displacement near CS 10A. Overall, both faults show an increase in displacement in an easterly 

direction. The intersecting point is poorly exposed and severely fractured. The exact position is 

therefore determined by extrapolating the fault orientations.  

 

The dataset for Klondike East comprises 41 circle samples (Fig. 5.7).  Sample 1A to 10A, 11A 

to 13A and 14A to 16A were sampled with c. 20 m spacing, while the N-S transecting samples 

(17A to 24A, 25A to 30A, 31A to 37A and 38A to 41A) were picked with c. 3 m spacing.  

 

Geometry 

The majority of the deformation bands are trending between W-E and NW-SE, approximately 

parallel with the abutting WNW-striking fault. The spread of orientations within a single sample 

vary significantly. The largest orientation spread is found in CS 1A, in which some deformation 

band orientations are perpendicular to one another. It should be noted that this sample 

additionally displays a high proportion of X-Nodes – a relation that will be addressed later.  A 

similar orientation spread is observed within CS 18A and 31A, both exhibiting an intermediate 

2D intensity, while CS 1A indicate a fairly low 2D intensity (6 m-1) (Fig. 5.10). No clear 

relationship between orientation spread and intensity is observed in these samples. The 2D 

intensity generally increase with increased proximity to the fault core (Fig. 5.10). Interestingly, 

some circle samples deviate from this trend and display a fairly low 2D intensity close to the 

fault core, such as 23A (4.4 m-1). CS 22A is located c. 3 m north of CS 23A and display the 

highest 2D intensity (21.2 m-1). Both samples are located in the footwall to the WSW-striking 

fault, adjacent to the intersection point. The lowest 2D intensity is found along the WSW-

striking fault, in the transect covering the ENE part of the fault (Fig. 5.10) in samples CS 32A 

(5.9 m-1), 33A (6.2 m-1) and 34A (4 m-1).  

 

The average branch length ranges from 7.8 cm in CS 22A to 24 cm in CS 4A.  The branch 

length map (Fig. 5.10) displays an area in the footwall to the WNW striking fault with high 
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values (CS 7A, 8A, and 34A to 37A) ranging from 18 to 23 cm. In contrast, most of these 

samples show a moderate 2D intensity, with CS 7A and 34A displaying fairly low intensities. 

The tendency of inverse proportionality between 2D intensity and average branch lengths is 

further recognized in CS 3A, 4A, 16A and 22A (FIG). Scatterplots of average branch length 

and 2D intensity do not show a relationship between the two (Fig. 5.9)   

 

Topology  

The branch and node data (Fig. 5.8) reveal a damage zone dominated by Y-nodes and doubly 

connected branches (C-C branches). This combination results in a high connectivity 

deformation band network with an average connection per branch of 1.96. 27% of the samples, 

distributed across the damage zone, display the maximum connectivity degree (2). No clear 

relationship is recognised between connectivity and 2D intensity (Fig. 5.9). The lowest 

connectivity is measured in CS 36A at 1.86, which nevertheless still reflects a high connectivity 

value. Accordingly, CS 36A displays the highest proportion of I-nodes (19%) and partly 

connected branches (C-I branches) (32%).  

 

An overall low proportion of I- and X-nodes has been noted. However, the intensity maps 

display an overall correlation between increased 2D intensity and numbers of Y-, I- and X-

nodes (Fig. 5.10).  A strong positive correlation between the 2D intensity and the number of Y-

nodes is recognized (Fig. 5.9).  A moderate positive correlation is also observed for 2D intensity 

and number of I-nodes, while 2D intensity and number of X-nodes does not appear to correlate 

strongly with the 2D intensity (Fig. 5.9).  The highest concentration of I-nodes is observed west 

of the intersection point, where the largest number of I-nodes is observed within CS 22A and 

CS 21A, respectively. The majority of X-nodes are located along or in close proximity to the 

faults. The highest number of X-nodes is counted in CS 22A, which coincides with the highest 

noted 2D intensity and shortest average branch length (Fig. 5.10). Three circle samples stand 

out in regard to orientation spread of deformation bands: 1A, 18A and 31A. These samples 

accommodate cross-cutting bands. The highest proportion of X-nodes is counted in CS 34A 

with 44%, while 40% X-nodes is noted for CS 1A.   
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Figure 5.8: Ternary plots showing the node and branch distribution in Klondike East. The table contains information 
regarding the average proportion of nodes, branches and connections per branch  

Figure 5.9: Scatterplots of 2D intensity plotted against number of node types, connections/branch and branch length. A 
positive correlation is observed for 2D intensity and number of Y-nodes and I-nodes. No clear correlation is identified 
for 2D intensity vs number of X-nodes, branch length or connection/branch (connectivity).  
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Figure 5.10: Intensity maps of the Klondike East fault intersection demonstrating variations in 2D 
intensity and node types. The average branch length map display the average branch length within the 
sample area. Note the different scales in the colour bars.   
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5.2 Big Hole Fault   
The Big Hole Fault is an isolated normal fault in the Chimney Rock Fault Array (Fig.2.2). The 

fault is c. 4.1 km long, WSW-striking with a 64o N-ward dip (Fig. 5.11a). The displacement 

increases to a maximum of c. 29 m WSW of the study area, decreasing to c. 17 m near the 

studied deformation band clusters BC1 and BC2 (Fig. 5.11c,d), and down to c. 8 m 

displacement  close to BC3 (Fig. 5.11b,e) (Shipton & Cowie, 2001; Shipton et al., 2002). The 

fault offsets the Navajo Sandstone, which in the Big Hole Wash is fine to medium grained with 

a honey-brown colouration (Fig. 5.12). The damage zone is constrained to the area where the 

deformation band intensity is high (very few deformation bands occur outside this zone) (Fig. 

5.11a). It is exposed in the wash of a river, providing long continuous exposures of cataclastic 

deformation band clusters and occasional slip surfaces (Shipton et al., 2002; Shipton & Cowie, 

2003).  These deformation bands form clusters, three of which are presented in detail here (Fig. 

5.11d,e) (Shipton et al., 2002).  

 

The three sampled and analysed clusters (BC1, BC2, BC3) along the fault are all situated in the 

footwall to the Big Hole Fault. Two of the analysed clusters (BC1 and BC2) are located adjacent 

to each other, just 4 m apart (Fig. 5.11d), whereas the last cluster (BC3) is located further ENE 

along the fault (Fig. 5.11b,e). The adjacent clusters BC1 and BC2 are therefore described 

comparatively, whereas BC3 is described separately. All three clusters were sampled by using 

network grid sampling with a sampling radius of 0.25m.  



Chapter 5  Results 
 

 45 

 

Figure 5.11: Outcrop details and structural features in the Big Hole Fault study area. Each inset figure features the position of the main fault 
and labelled stratigraphic units. (A) Overview map of the wash in the north-eastern part of the Big Hole Fault with structural features, 
modified from Shipton et al. (2002). (B) Virtual outcrop model of the eastern part of the study area where BC3 is located, provided by John 
Howell. (C) Virtual outcrop model of the western part of the study area where BC1 and BC2 is located. (D) Aerial photo of the studied 
clusters BC1 and BC2 and surrounding clusters. (E) Aerial photo at an oblique angle to the studied BC3 cluster.  
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5.2.1 BC1 and BC2 clusters 
The adjacent clusters BC1 and BC2 trend approximately subparallel to the Big Hole Fault, with 

BC1 trending slightly more NE-SW than BC2, which are trending more ENE-WSW. Both 

clusters are well exposed in the wash, measuring c. 16 m in length and c. 2 m in width (Fig. 

5.11b). The clusters possibly continue further, but with parts of the area being covered with 

debris, the study is restricted to the section in the wash. Following the cluster classification 

presented by Shipton & Cowie (2001), both clusters are classified as a Class 2 cluster with 

single deformation bands, multi-strand bands, and occasional slip surfaces (Fig. 5.12). The 

deformation bands in BC1 and BC2 are varying in thickness (0.1 to 3 mm) and they typically 

cluster to form centimetre-wide zones of several deformation bands. These cluster zones are 

sometimes recognised as raised relief in outcrop (Fig. 5.12). The deformation band network 

often displays an anastomosing geometry, where these anastomosing bands tend to confine tens 

of centimetre-wide and long lenses of pristine rock (Fig. 5.12).   

 

Geometry 

BC1 and BC2 cover areas of 40 m2 and 38 m2, respectively. Both clusters display deformation 

bands with a clear ENE-WSW trend, approximately parallel to the main fault zone. The spread 

in orientation is low, ranging between WSW-ENE and E-W (Fig 5.13). Line samples (Fig. 

5.13e) demonstrate a reduction in deformation band frequency toward ENE. Although BC1 

0           5         10 cm 

N

Figure 5.12: Deformation band network exposed along the Big Hole Fault in the Navajo 
Sandstone. The deformation bands in the area typically vary in thickness (0.1- to 3 mm) and 
cluster in cm-wide zones.   
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shows an overall higher deformation band frequency than BC2, they both appear to follow the 

same trend, with a gradual deformation band intensity decreasing towards ENE (Fig. 5.13e). A 

similar trend is further recognized in 2D intensity maps, which displays an overall lower 2D 

intensity in BC2 (Fig. 5.14c and 5.15c).  

 

The average branch lengths for the two clusters are almost identical: 13 cm in BC1 and 13.7 

cm in BC2. The average branch length maps show an inverse correlation between branch 

lengths and 2D intensity (Fig. 5.14c,d and 5.15c,d). Scatterplots show that high 2D intensities 

mainly correspond to short branches. Furthermore, identified blocks demonstrate the 

compartmentalization within the clusters, where high 2D intensity is coupled with small 

compartments and short branch lengths, and vice versa (Fig. 5.14b,d and 5.15b,d). Furthermore, 

the block analysis shows an average block size of 0.01 m2 for both clusters, although the 

compartment proportion is significantly higher in BC1 (42% to 17%). Hence, larger 

compartments (1.23 m2) are observed in BC2 compared to BC1 (0,54 m2). 

 

Topology  

The compiled data (Fig. 5.14h and 5.15h) shows a dominance of Y-nodes and doubly connected 

branches, resulting in deformation band clusters with high connectivity; 1.96 for BC1 and 1.94 

for BC2. Additionally, scatterplots demonstrate that high 2D intensity corresponds to high 

connectivity (Fig. 5.16). The intensity distribution of Y-nodes displays similar trends to the 2D 

intensity (Fig. 5.14c,e and 5.15c,e). Scatterplots of the whole network grid show a strong 

positive correlation between 2D intensity and the number of Y-nodes for both BC1 and BC2 

(Fig. 5.16). The I- and X-nodes are more scattered throughout the cluster zones and are in many 

areas absent. Intensity maps indicate that the distribution of the two node types coincide with 

increased 2D intensity (Fig. 5.14c,f,g and 5.15c,f,g). Scatterplots further demonstrate a 

moderate correlation between 2D intensity and the number of I-nodes, both for BC1 and BC2 

(Fig. 5.16). X-nodes display a similar correlation for BC1 and BC2 (Fig. 5.16). The two clusters 

display only minor differences in topological characteristics; BC1 has a slightly higher 

proportion of X- and I-nodes, which in addition are wider distributed throughout the cluster 

(Fig. 5.14f,g and 5.15f,g). 
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Figure 5.13: Overview map of BC1 and BC2 deformation band networks with deformation band orientations (rose plots) and 
frequencies. A) BC1 deformation band network with line sample- and rose plot locations. B) BC1 with deformation band 
orientations (rose plots). C) BC2 deformation band network with line sample- and rose plot locations.. D) BC2 deformation 
band orientations (rose plots). E) Diagram showng the frequency distribution of deformation bands within BC1 and BC2  
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Figure 5.14: BC1: deformation band network outline and various intensity maps displaying differences and similarities in 
topological and geometrical characteristics. A) The BC1 deformation band network. B) Identified blocks within BC1. C) 2D 
intensity variation. D) Average branch length distribution. E) Number of Y-nodes. F) Number of X-nodes. G) Number of I-
nodes. H) Ternary plot of node and branch distribution. 
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Figure 5.15: BC2: deformation band network outline and various intensity maps displaying differences and similarities in 
topological and geometrical characteristics. A) The BC2 deformation band network. B) Identified blocks within BC2. C) 2D 
intensity variation. D) Average branch length distribution. E) Number of Y-nodes. F) Number of X-nodes. G) Number of I-
nodes. H) Ternary plot of node and branch distribution.  
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Figure 5.16: Data from BC1 and BC2 compiled in scatterplots of 2D intensity plotted against number of node types, 
connections/branch and branch length. A positive correlation is observed for 2D intensity and number of Y, X and I-nodes. 
High 2D intensity corresponds to high connectivity and shorter branch lengths.  
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5.2.2 BC3 cluster  
The study of BC3 is restricted to the southern end of a larger cluster zone (Fig. 5.11b,e), which 

covers an area of about 16 m2. The BC3 cluster is oriented E-W and is classified as a class 3 

cluster according to Shipton & Cowie (2001). A class 3 cluster is characterized by an 

anastomosing network of both deformation bands and slip surfaces (Fig. 5.17). The deformation 

band thickness is variable (0.1- 1.5 mm), and the bands tend to cluster in centimetre-wide zones, 

occasionally forming a raised relief in outcrop. In addition, BC3 features slip surfaces, which 

are associated with zones of parallel to sub-parallel deformation bands (Fig. 5.17 and 5.18).  

 

 

 

 

Figure 5.17: Anastomosing deformation bands within the BC3 in the Navajo Sandstone (Big Hole Fault), bounded by 
two synthetic slip surfaces. The band thickness is vary between 0.1 – 1.5 mm, and typically cluster to form cm wide 
raised relief in outcrop. The position of this photo is shown in Fig. 5.18.  
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Geometry  

Overall the deformation bands in BC3 trend more or less parallel with the Big Hole fault (Fig. 

5.18). However, rose plots display a larger spread in orientation compared to BC1 and BC2. 

The spread in orientation is fairly high in some areas where the 2D intensity and deformation 

band frequency are rather high (Fig. 5.18c and 5.20c). These high 2D intensity areas generally 

coincide with areas with developed slip surfaces (Fig. 5.20a,c). The highest 2D intensities are 

observed within the area that are bounded by the two slip surfaces, this area also displays a 

larger spread in deformation bands orientation (Fig. 5.18 and 5.20c). Furthermore, small 

compartments (5.19b) and a fairly low average branch length characterize these areas. The total 

deformation band network has an average branch length of 11.2 cm and an average 

compartment size of 0.014 m2 (Fig. 5.20b). Overall it appears that high 2D intensities coincide 

with short branches (low average branch lengths) (Fig. 5.19).  

Figure 5.18: The BC3 deformation band network with deformation band orientations and frequency: A) Deformation 
band network with line sample- and rose plot positions. B) Deformation band orientations (rose plots). C) Diagram 
showing the frequency distribution of deformation bands. 
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Topology  

BC3 is dominated by Y-nodes and doubly connected branches. X- and I-nodes constitute 

respectively 10.8% and 9.4% of the network (Fig 5.20h). The connectivity (connections per 

branch) of the deformation band network is thus high (1.93). The distribution of Y-, I- and X-

nodes follows the 2D intensity distribution (5.20c,e,f,g). A strong correlation is noted between 

2D intensity and number of Y-nodes, while there is a moderate correlation between 2D intensity 

and number of I-nodes and X-nodes (Fig. 5.19). While absent in most areas, the few areas 

containing a high X-node intensity often display an additional large spread in deformation band 

orientation, which often are in proximity to slip surfaces and/or slip surface intersections (Fig. 

5.20f).  

Figure 5.19: Data from BC1 and BC2 presented in scatterplots of 2D intensity plotted against number of node types, 
connections/branch and branch length. A positive correlation is observed for 2D intensity and number of Y, X and I-nodes. 
High 2D intensity corresponds to high connectivity and shorter branch lengths.  
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Figure 5.20:  The BC3 deformation band network and various intensity maps displaying differences and similarities in 
topological and geometrical characteristics: A) the BC3 deformation band network. B) Identified blocks within BC3. C) 2D 
intensity variation. D) Average branch length distribution. E) Number of Y-nodes. F) Number of X-nodes. G) Number of I-
nodes. H) Ternary plot of node and branch distribution 
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6 Discussion  
This chapter addresses the topological similarities, differences, and spatial variability in the 

studied damage zones (Section 6.1). The documented topological trends are used to discuss the 

evolution of a deformation band network (Section 6.2), and the topological characteristics are 

compared to those of other types of structural networks (Section 6.3). Finally, the implications 

for fluid flow (Section 6.4) and the applicability of topology in well data analysis are reflected 

upon (Section 6.5).  

 

6.1 Geometrical and topological similarities and differences between 

deformation band networks in intersection damage zones and wall damage 

zones.  
 
Deformation bands in proximity to faults and slip surfaces commonly occur as interconnected 

networks (Aydin & Johnson, 1978). In this study, a topological approach is used to characterize 

these deformation band networks, assessing their connectivity, distribution, and orientation. 

Five deformation band networks were mapped in cm to mm detail for topological 

characteristics: three clusters in wall damage zones, and two intersection damage zone 

networks, located in the San Rafael Swell and the Paradox Basin, eastern Utah, respectively. 
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Figure 6.1: Ternary diagram displaying the nodal distribution  
of all the collected topological data in this thesis. In addition, 
the deformation band observations from Manzocchi (2002) is 
shown (green).  
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All five deformation band networks demonstrate a high proportion of Y-nodes and doubly 

connected branches. The nodal distribution is more or less identical throughout the deformation 

band networks, which all display consistently high Y-node proportion (Fig. 6.1). However, 

some spatial variations in topology occur within the networks. The observed topology in the 

five deformation band networks is consistent with findings in other studies that have pointed 

out how closely spaced bands tend to bifurcate and intersect, forming hard-linked deformation 

bands (e.g. Ayidin & Johnson 1978; Fossen & Hesthammer, 1997). The high Y-node proportion 

further coincides with observations by Manzocchi (2002), who plot deformation band networks 

with a fairly high Y-node proportion (Fig. 6.1). The high Y-node proportion can be explained 

by increased strain, causing bands during growth to link and form more densely spaced bands, 

which splay or abut (Fossen & Hesthammer, 1997). This is further demonstrated with a positive 

correlation between number of Y-nodes and 2D intensity (Fig. 5.5, 5.9, 5.16, and 5.19), 

indicating that increased strain will cause bands to bifurcate and abut.   

 

The proportion of X-nodes is fairly low, corresponding well with Ayidin & Johnson (1978) 

observations that cross-cutting deformation bands (X-nodes) are rarely observed. One could 

argue that cross-cutting deformation bands will most likely offset and form two Y-nodes instead 

of one X-node. Thus, a higher proportion of Y-nodes relative to X-nodes is expected, as 

emphasised by Morley & Nixon (2016) in their study of faults. However, crossing deformation 

bands are rarely observed. For this reason, cross-cutting bands are not considered a valid 

explanation for the high Y-node proportion, but it could cause reductions in the total number 

of X-nodes. An interesting observation is the positive correlation between number of X-nodes 

and 2D intensity (Fig. 5.9, 5.16 and 5.19), which indicates that a higher amount of strain can be 

associated with more crossing deformation bands. Manzocchi (2002) plots topology of 

deformation band with a slightly higher X-node proportion than the majority of the results in 

this study (Fig. 6.1). The X-node discrepancy could be explained by a more subjective node 

and branch identification when the data resolution is low (Morley & Nixon, 2016). The data 

resolution in this study is fairly high. It is thus stressed that several deformation bands in this 

study appeared at m to cm scale to be crossing, but at mm scale some offset was usually 

revealed. This will result in a lower X-node count and may explain the higher X-node count by 

Manzocchi (2002). However, some of the data collected in Klondike deviate from the main 

trend and display a similar X-node proportion to the ones documented by Manzocchi (2002) 

(Fig 6.1). This could be explained by a possible sampling bias. The results show that X-nodes 
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mainly occur in areas associated with high strain. However, the circle samples from Klondike 

demonstrates that X-nodes can occur in low strain areas as well. Circle samples with low 2D 

intensity (low strain) coupled with presence of X-nodes will display a larger proportion of X-

nodes, which may not be representing the overall node distribution in that area. The data from 

the circle samples therefore need to be studied with care. It is further stressed that circle samples 

can indicate a high strain (2D intensity) that might not be representative for the overall 

deformation band intensity in the area. This is due to limited exposure, and the fact that clusters 

can appear both close and further away from a fault (Schueller et al., 2013).  

 

The proportion of I-nodes is overall low compared to the Y-node proportion, but generally 

higher than the X-node proportion (Fig. 6.1). Along with the other node types, number of I-

nodes is also increasing with increased 2D intensity (Fig. 5.5, 5.9, 5.16 and 5.19). It is slightly 

counterintuitive that I-node concentration is increasing with 2D intensity though, as you would 

expect low strain to be associated with less interactions and more isolated branches (Morley & 

Nixon, 2016). The longer continuous transects exhibit clusters, where the overall 2D intensity 

is fairly high, and observations interestingly show that I-nodes form in these high 2D intensity 

areas (Fig. 6.2). An explanation could be that cluster compact and thicken as shear displacement 

accumulates (Fossen et al., 2018), where the density of deformation bands numbers within the 

clusters increase as the clusters mature (Johansen & Fossen, 2008). The probability of closely 

spaced deformation bands will then increase and linking bands may form between two 

overlapping bands due to increased stress magnitudes (Schultz & Balasko, 2003). These linking 

bands can form both soft-linked and hard-linked networks (Fossen & Hesthammer, 1997), and 

can as such explain the observed trend in this study: the hard-linked deformation band 

interaction described by Fossen & Hesthammer (1997) will contribute to more Y-nodes, while 

the development of soft-linked deformation bands, such as splaying deformation bands, will 

contribute to more I-nodes (Fig. 6.2). A second explanation for why I-nodes is associated with 
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areas of high deformation band intensity is through the sampling approach used in this thesis. 

The sampling method does not cover isolated deformation bands, which is defined as bands 

that do not interfere with other bands, and where the tip points are more than 40 cm away from 

each other (Fossen and Hesthammer, 1997). The sampling strategy used in this thesis would in 

most cases not capture this trend as the circle samples are only 0.5 m in radius and preferably 

placed in areas where more than one deformation band is present (as described in methods, 

chapter 4). 

 

The high proportion of Y-nodes and doubly connected branches result in deformation band 

networks of high connectivity (connections per branch) (Sanderson & Nixon, 2015). The 

average connectivity in the studied damage zones is in the range of 1.92 and 1.96, observed in 

Klondike West and BC1, respectively. The values reflect an overall high connectivity for both 

damage zones. Moreover, the clusters along Big Hole Fault show a positive correlation between 

2D intensity and connectivity (Fig. 5.16 and 5.19), which suggests that areas with high strain 

can be expected to display high connectivity. There is, however, a discrepancy from this trend, 

where relatively low deformation band intensities cause maximum connectivity. Yet, the high 

2D intensities (20 to 40 m-1) are consistently associated with high connectivity (Fig. 5.16 and 

Figure 6.2: 2D intensity map of BC1, illustrates that high 2D intensity areas display a fairly high proportion of I-nodes, and 
some X-nodes. Both soft linked and splaying deformation bands can be identified.  
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5.19). This implies that clusters, and in general areas of high strain, typically can be associated 

with deformation band networks with high connectivity. It is stressed that this trend of high 

intensity-high connectivity is not observed in any of the intersection damage zones. The studied 

intersection damage zones display an overall lower 2D intensity compared to wall damage 

zones and could therefore explain why these trends are not observed in intersection damage 

zones. The highest 2D intensities measured in intersection damage zones is 22 m-1 (Fig. 5.10), 

while intensities up to 37 m-1 is observed within the wall damage zone clusters (Fig. 5.14c). 

One explanation for this could be the different sampling approaches, where the clusters have 

been mapped with network grid, comprised of circle samples with 0.25 m in radius, while the 

intersection damage zones have been mapped with circle samples of 0.5 m in radius. However, 

the high 2D intensity is fairly consistent along the clusters (Fig. 5.14c and 5.15c), and this 

explanation is thus not covering. Another, more likely, explanation is related to the observed 

tendency of more widely oriented deformation bands in intersection damage zones; This results 

in a more complex deformation band network, where bands link and intersect with a wider 

range of orientations, forming a more compartmentalized zone than wall damage zones that 

typically develop dense clusters with densely spaced bands (Shipton & Cowie, 2003; Fossen et 

al., 2005).  

 

The studied clusters from Big Hole Wash demonstrate that damage zones grow with a constant 

balance between the development of new deformation bands within the existing damage zone 

and new deformation bands forming outside the zone (Shipton & Cowie, 2003; Fossen et al., 

2018). This is evident by comparing the results from BC1 and BC2 (Fig. 6.3), where BC1 is 

both wider and have a larger area with high 2D intensities compared to BC2. In addition, BC1 

comprise 42% closed compartments/blocks in BC1, compared to 17% in BC2 (Fig. 5.14b and 

Fig. 5.15b). Moreover, the deformation band frequency decreases in both clusters towards ENE, 

even though the frequency is overall higher in BC1 (Fig. 6.3). These findings suggest that more 

mature clusters can be expected closer to the main fault. Furthermore, the results coincide with 

observations that clusters closest to the fault core, generally display higher intensities of 

deformation bands than the peripheral clusters (Schueller et al., 2013). This indicates the new 

clusters form peripherally, while the pre-existing clusters continue to grow and compact (more 

densely spaced bands) (Johansen & Fossen, 2008: Fossen et al., 2018).  
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Mature clusters usually host closely spaced bands, which can result in local stress perturbation 

and mechanical interaction between deformation bands, influencing the orientation and the 

geometry of the deformation bands (Fossen & Hesthammer, 1997; Johansen & Fossen, 2008). 

Results in this study show no clear correlation between the orientation of deformation bands 

and the deformation band intensity in any of the five deformation band networks. It appears 

that the spread in orientation, however, is greater in deformation band networks in intersection 

Figure 6.3: BC1 and BC2 2D intensity maps coupled with deformation band frequency. The dotted square 
highlights the are in the 2D intensity that correspond to the same area in the deformation band frequency plot. 
The deformation band frequency plot is compiled of line samples, for the line sample positions see Fig. 5.13     
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damage zones than in wall damage zones (Fig. 5.3, 5.7, 5.13). Areas exhibiting more complex 

deformation (e.g. bifurcation, linkage and bends) and wider damage zones commonly result 

from an increased stress and/or stress perturbation within the zone (e.g. Rawnsley et al., 1992; 

Aarland & Skjerven, 1998; Berg & Skar, 2005). This perturbated stress can cause a rotation in 

principal stresses, which will result in a rotation of smaller-scale discrete structures (e.g. 

Rawnsley et al., 1992; Fossen & Rotevatn, 2016). Such stress increase and stress perturbation 

occur at fault tips and at fault interaction points (e.g. Segall & Pollard, 1980; Childs et al., 1995; 

Johansen et al., 2005; Fossen et al., 2005). A likely explanation for the larger spread in 

deformation band orientation within intersection damage zones could thus be perturbed stresses 

as the two faults intersect, forming a more complex deformation band network. On a larger 

scale this implies that intersection damage zones are likely to host deformation bands with a 

larger spread in orientation, compared to single fault damage zones. A similar scenario with a 

large spread in orientation of deformation bands have been observed by Johansen et al. (2005) 

and Fossen et al. (2005) in single tip fault interactions in the Moab Member. A comparable 

trend is recognized on a smaller scale in BC3, where a large spread in deformation band 

orientation is localized in zones surrounding intersecting slip surfaces (Fig. 5.20). These areas 

additionally display high 2D intensities, which coincide with the tendency of more widely 

oriented deformation bands in areas with the highest deformation band intensity, as observed 

by Johansen & Fossen (2008). 

 

All five deformation band networks display a tendency for inverse correlation between the 

length of deformation bands (branch length) and deformation band intensity (2D intensity), 

where the highest 2D intensity correlates with short branch lengths, and vice versa. These 

findings support the theory that deformation bands grow, link, and form more densely spaced 

bands as strain increases (Fossen & Hesthammer, 1997), where increased linkage is represented 

by short deformation bands and more nodes.   

 

In summary, these topological and geometrical findings indicate that an increase in finite strain 

can be associated with bifurcating and abutting deformation bands, and deformation band 

networks with shorter bands, which again corresponds to a dense deformation band network, 

with high connectivity.  
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6.2 Sequential growth of deformation band networks  
Deformation band networks evolve and change characteristics and geometry as strain increases 

during fault displacement and damage zone widening (Shipton & Cowie, 2001). The findings 

of this study enhance our knowledge on the development and dynamics of deformation band 

networks, with emphasis on topological and geometrical characteristics. The results fit with the 

widely accepted model by Ayidin (1978) and Ayidin & Johnson (1978) where faults in porous 

sandstones nucleate from areas with densely packed deformation bands, and increased strain is 

associated with an increased number of deformation bands (e.g. Ayidin & Johnson, 1983; Mair 

et al., 2000; Shipton & Cowie, 2001; Hesthammer & Fossen, 2001; Fossen et al., 2007; Fossen 

et al., 2018).  

 

This study has not quantified variations in topology at stages of fault growth or linkage. 

However, based on the identified correlations between strain, branch lengths, connectivity, and 

node distribution a conceptual model of how the topological characteristics of a deformation 

band network change over time is suggested. Prior to slip surface or fault nucleation, 

deformation bands occur more isolated and less connected. As the strain increases over time, 

new bands develop within and outside the existing damage zone, resulting in a wider damage 

zone (Fig. 6.4a,d) (Shipton & Cowie, 2003; Schueller et al., 2013). Simultaneously, the band 

length increases, and they start to overlap. Consequently, increased stress at deformation band 

tips cause linking and splaying bands to develop (Fig. 6.4b,e) (Schultz & Balasko, 2003). As a 

result, connectivity and Y-node proportions increase (Fig. 6.4g), while branch length decreases. 

With continued stress and higher strain, interconnected slip surfaces can form within areas of 

high deformation band intensity (typically clusters), and by doing so it produces damage further 

away from the main fault (Fig. 6.4c) (Shipton & Cowie, 2003).   
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Deformation band networks in intersection damage zones generally display a larger spread in 

orientation than deformation band networks in wall damage zones (Fig. 6.4D,E,F). However, 

their topological characteristics are more or less identical. In the lights of this, one could argue 

that deformation band networks in intersection damage zones grow in similar fashion to 

deformation band networks in wall damage zones, but stress rotation occurs due to fault 

interaction causing a rotation of the deformation bands (Fig. 6.4d, e, f) (e.g. Segall & Pollard, 

1980; Childs et al., 1995; Johansen et al., 2005; Fossen et al., 2005; Fossen & Rotevatn, 2016). 

This fault interaction can also cause more bands to cross-cut pre-existing deformation bands 

(Fig. 6.4f) (Johansen et al., 2005).  

  

Figure 6.4: Illustration, showcasing the growth of a deformation band networks along a single fault (A-C) and single tip 
fault interaction (D-F). The figure illustrates how increased strain causes bands to overlap and link. A-C demonstrates the 
sequential growth of deformation band networks along a growing isolated fault. D-F) demonstrates the sequential growth 
of a deformation band network where two faults interact during simultaneous growth, which is known to produce more 
complex and extensive deformation compared to faults that interact separated in time (Fossen et al., 2005). G) The ternary 
diagram and arrows show how the topological character changes with increased strain. Notice how the topological 
characteristics are similar for the two different networks.  
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6.3 How does the topology of a deformation band network 
compare to other structural networks?  
According to Manzocchi (2002), X-nodes rarely dominate any type of structural network 

(joints, fractures and faults), though some networks are more dominated by I-nodes than Y-

nodes (e.g. Huseby et al., 1997; Manzocchi, 2002; Morley & Nixon, 2016). From observations 

in this thesis, combined with those from previous studies, it appears that deformation band 

networks display the highest Y-node proportion of any structural network. The high Y-node 

proportion might be explained by strain hardening mechanisms, which cause deformation bands 

to grow from single bands to swarms of bands (Ayidin, 1978). Dense deformation band 

networks form as a results of strain localisation during band formation and strain hardening on 

single bands (Kaproth et al., 2010). Deformation shifts between bands to accommodate bulk 

strain, which causes deformation to localise in undeformed host rock and expand the damage 

zone (Ayidin & Johnson, 1983; Mair et al., 2000; Shipton & Cowie, 2001). With increased 

strain this initiate linking of bands, which might explain why these networks have such a high 

Y-node proportion. This is different to other structural networks that typically form by strain 

softening mechanisms, such as faults that grow by crack propagation and linking in low-

porosity and nonporous rocks (Fossen et al., 2005; Fossen et al., 2007).  

 

The suggested topological evolution of deformation band networks (section 6.2), resembles the 

topological evolution of fault networks, described by Nixon et al.  (2012), where fault networks 

are shown to evolve from individual faults that grow in length and displacement and start to 

link as strain increases. Additionally, they emphasise that the connectivity of fault networks 

increases with strain. Morley & Nixon (2016) further illustrates that as strain is increasing 

within a fault network the Y-node proportion increase, similar to the trend of a deformation 

band network.   

 

6.4 Implications for fluid flow  
The majority of deformation bands show a reduction in permeability. The largest permeability 

reduction is commonly observed within cataclastic deformation bands, which is the 

deformation band type studied in this thesis (Fossen et al., 2007). The permeability reduction 

for a single band commonly ranges between two to four orders of magnitude, while a cluster 

can show reductions up to five orders of magnitude (Antonellini & Aydin, 1994; Fossen & 

Bale, 2007). The impact of this reduction on fluid flow in subsurface reservoirs is, however, an 
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ongoing subject of study. The common consensus suggests that deformation bands have 

negligible effects on reservoir performance, except for dense networks that are well connected 

and with very low permeabilities (Fossen et al., 2005; Fossen & Bale, 2007; Rotevatn et al., 

2009; Rotevatn et al., 2013; Ballas et al., 2015; Fossen et al., 2018). Nevertheless, the 

arrangement, orientation, and connectivity of deformation bands may prove an important 

controlling factor on flow pattern and reservoir sweep (Fossen & Bale, 2007; Rotevatn et al., 

2013; Fossen et al., 2018). The results from this project provide valuable insights to the 

configuration and connectivity of deformation band networks, and how these parameters vary 

between and within damage zones. 

 

Observations show deformation band networks with high connectivity reflected by abutting and 

splaying deformation bands. The results further demonstrate that increased strain causes more 

closely spaced deformation bands, higher connectivity and the development of clusters 

(Schueller et al., 2013). Fossen & Bale (2007) discuss the possibilities for fluids to divert 

around, between or through bands when the connectivity is low. It is thus reasonable to assume 

that deformation bands that exhibit high connectivity may act as baffles to fluid flow and 

channelize fluids along strike (Fossen et al., 2005). However, the actual impact on fluid flow 

depends strongly on the permeability contrast between the bands and the host rock (Rotevatn 

& Fossen, 2011; Rotevatn et al., 2013). A deformation band network featuring bands with a 

low permeability contrast relative to the host rock matrix will in most cases have negligible 

effects on fluid flow (Rotevatn & Fossen, 2011). Networks comprised of bands with a high 

permeability contrast can on the other hand exhibit significant control on fluid flow (Rotevatn 

et al., 2009; Rotevatn & Fossen, 2011). If we look at this from a reservoir production 

perspective, in a scenario where an injector and producer is placed on opposite sides of a fault, 

a wall damage zone comprised of high permeability deformation band network will favour fluid 

flow across the fault (Rotevatn et al., 2009). With lower deformation band permeability (more 

than three orders of magnitude) the wall damage zone will most likely start to channelize fluids 

along strike and increase the flow tortuosity, and as a result likely enhance the recovery (Fossen 

& Bale, 2007; Rotevatn et al., 2009; Rotevatn & Fossen, 2011). The same principles can be 

applied to deformation band networks in intersection damage zones. However, as the results 

have shown, these areas host deformation bands with larger orientation spread, complicating 

the prediction of how low permeability bands will affect the flow in these areas. Furthermore, 

it is important to note that this study is conducted on a planar 2D surface, and the overall effect 

on fluid flow depends on the three-dimensional continuity of deformation bands; apparent hard-
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linked bands observed on a planar 2D surface does not necessarily exhibit hard-linked bands in 

a three-dimensional plane, and vice versa (Fossen & Hesthammer, 1997). Considering the high 

connectivity measured throughout the damage zones, it is though likely that deformation bands 

will splay, abut and cross-cut in 3D within areas that accumulate a high amount of strain, as is 

common for cluster zones (Fossen et al., 2018). 

 

The clusters studied along the Big Hole Fault demonstrate varying thickness and intensity along 

strike, which coincide with the observations by Fossen & Bale (2007) and Torabi & Fossen 

(2009) that deformation bands and clusters exhibit rapid changes in thickness and permeability, 

both within a single band and within clusters. BC1 and BC2 illustrate such a variation, where 

both clusters display a considerably lower deformation band intensity in one end (ENE) (Fig. 

6.3). These variations might have an implication on how fluids move within the damage zone 

as the weakest point in a deformation band network may act as conduit to fluid flow (Fossen et 

al., 2007). This observation suggests that flow along a single fault likely would align parallel 

to subparallel with the fault, as the arrangement of deformation bands cause the permeability to 

be higher along strike (Fossen & Bale, 2007). However, changes in cluster thickness and 

deformation band intensity along strike can influence the flow tortuosity, where fluids 

occasionally can migrate across a cluster and subsequently move along strike (Fossen & Bale, 

2007; Schuller et al., 2013) 

 

In summary, the results show that deformation band networks in both intersection damage 

zones and wall damage zones exhibit high connectivity. Their influence on fluid flow is thus 

dependent on the petrophysical properties in the bands (Fossen et al., 2005; Rotevatn et al., 

2009). Wall damage zone deformation band networks with low permeability bands will 

potentially channelize fluids along strike. The intersection damage zone, on the other hand, is 

far more complex with deformation bands trending both parallel and oblique to the faults. These 

deformation band networks are therefore likely to act as baffles to fluid flow if the deformation 

band permeability contrast is high relative to that of the host rock. Predicting the fluid flow 

behavior is thus associated with high risk. One way of mitigating the risk would be to acquire 

core data and measure the permeability contrasts between the bands and the host rock, which 

can indicate to some degree whether the deformation band network pose a potential control on 

fluid flow. If so, fluid flow within fault intersecting damage zones is far less predictable due to 

the larger spread in orientation and resulting complexity. Consequently, care should be taken 

when placing a well in intersection damage zones, as also emphasized by Fossen et al. (2005).  
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6.5 The applicability of topology in well data analysis  
There are instances where seismic resolution is too low for mapping of e.g. faults in a reservoir, 

as in basins where salt layers obscure the reflective response. Here, well data is essential for 

structural analysis. The question rises whether the application of topological analysis on 

deformation bands from resistivity image logs or core data can enhance our ability to predict: 

(1) the complexity of a deformation band network, and by that the networks ability to direct- or 

act as a baffle to fluid flow; (2) the proximity of a well to a potential fault; and (3) the type of 

damage zone the well is set in; All factors that are crucial in mapping fluid flow patterns. As a 

well represents an arbitrarily oriented scanline through the subsurface, the 1-dimensional 

frequency distribution of deformation bands can in theory help predict if a well is moving 

towards or away from a fault. The applicability of this method is discussed by Sanderson & 

Nixon (2015) in their studies of fractures. Predicting orientations of deformation bands within 

a well is though a method of high uncertainty since the sample sizes would be too small to 

provide the required information of orientation and spread. Nevertheless, classifying node-

types is a readily applicable method in core-analysis.  The usefulness of topology in cores and 

well data to predict proximity to faults and type of damage zone is though limited, as the 

topological characteristics for wall damage zones and intersection damage zones generally are 

similar. For example, a high proportion of I-nodes and X-nodes in a core suggests a high 

intensity and thus likely an area with high strain, which could further indicate that the well is 

in proximity to a fault or a slip surface. Studies, however, show that high intensity cluster zones 

can occur similarly at a large distance from the main fault (Schueller et al, 2013). To base 

predictions solely on topological studies in well data would thus be of significant uncertainty.
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7 Conclusions and further work  
7.1 Conclusions   
This thesis characterizes deformation band networks in wall damage zones and intersection 

damage zones through a 2D-topological analysis of high-resolution outcrop photos. The studied 

rocks comprise outcrops of the Jurassic aeolian Navajo Sandstone and Moab Member in the 

Colorado Plateau, SE Utah. The main findings of the study are summarized here:  

• Deformation band networks in both intersection damage zones and wall damage zones 

are dominated by bifurcating and abutting bands, which is reflected by a high Y-node 

proportion. Crossing bands (X-nodes) rarely occur within deformation band networks, 

but when they do, it is usually in areas of high strain. In these high strain areas, isolated 

bands (I-nodes) commonly occur as short, partly connected bands, which is due to soft 

linkage and splaying of bands with increased strain. 

• Although topologically similar, the geometry and distribution of bands in intersection 

damage zones versus wall damage zones are different; intersection damage zones 

generally display deformation bands with a larger spread in orientation compared to 

wall damage zones. In addition, the clusters in wall damage zones display higher 

deformation band intensities compared to intersection damage zones.  

• Increased strain causes deformation bands to overlap and link (soft linkage and hard 

linkage) and is associated with higher deformation band connectivity. This is reflected 

in shorter deformation bands and an increased number of Y-, X- and I –nodes in the 

high strain areas.  

• The two parallel clusters BC1 and BC2 demonstrate through deformation band intensity 

patterns and deformation band frequency, that a damage zone grows through continuous 

formation of deformation bands both within the existing damage zone and outside the 

damage zone. This is evident by a comparative deformation band frequency trend 

between BC1 and BC2, where both clusters show the same frequency- and intensity 

distribution trend, suggesting that the formation of new clusters and maturation of pre-

existing clusters occur contemporaneously. This observation is in accordance with the 

damage zone growth models presented by Shipton & Cowie (2001), Shipton & Cowie 

(2003) and Schuller et al. (2013).  

• Deformation band networks with high connectivity, combined with high permeability 

contrasts, can influence the fluid flow. Predicting fluid flow patterns in subsurface 
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reservoirs along isolated normal faults is evidently simpler than predicting the fluid flow 

behaviour in intersection damage zones. This is due to the larger orientation spread of 

deformation bands in intersection damage zones. Deformation band networks along an 

isolated normal faults typically form dense elongated clusters (sub)parallel to the fault, 

channelizing fluids along strike. Intersection damage zones exhibit more complex 

orientations, and predictions for fluid flow within these areas are thus more uncertain. 

Depending on the permeability contrasts between bands and the host rock the 

intersection damage zones may act as barrier or baffle to fluid flow.  

• Quantifying node types in well data is applicable, but the value of this information is 

limited. This study demonstrates that the topological characteristics of intersection 

damage zones and wall damage zones are too similar to allow for any prediction of 

damage zones type or the wells proximity to a fault.  

  
 
7.2 Further work  
This study has focused on topological analysis of deformation band network properties in wall 

damage zones and intersections damage zones. It would be relevant to apply the same analytic 

approach to deformation band networks in other types of damage zones, as this would add 

valuable information to the presented network growth model (Fig. 6.4). Moreover, this study 

quantifies networks solely in aeolian rocks. It would be interesting to additionally investigate 

deformation band networks in carbonates and volcaniclastics to compare the network 

characteristics and look for potential trends that apply to all networks. Another relevant 

approach would be to study deformation band network properties at a range of different scales 

to search for self-similarity patterns, meaning that parts of a deformation band network may 

show the same statistical properties at different scales. Moreover, the findings in this study 

could be implemented on a larger scale for relevant fault intersection and reservoirs.    

 

Finally, a highly relevant and applicable addition would be to integrate the recorded 

deformation band intensities, connectivity, and geometries into fluid flow simulations, as this 

would lead to an enhanced understanding of the networks controlling factor on fluid flow. 
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Appendix I: A full summary of abbreviations, parameters and formulas used in topology parameters and block analysis 
calculations in NetworkGT. Modified from Nyberg et al. (2018).  

Parameter  Description                               Calculation  

Area (A)  Sample area  ! 

Number of nodes (Nn)  Number of I, Y and X nodes "! + "" +	"#  

Number of connections (Nc) Number of X and Y nodes "" +	"#  

Number of edge nodes  NE "$	 
Number of branches (NB) Calculated from nodes Total number of branches, calculated from nodes  "! 	+ 	3"" 	+ 	4"%

2  

Number of lines (NL) Total number of lines, calculated from nodes  "! 	+ 	2""	
2  

Connection/line  Connections per line  

 

2("" 	+ 	"#)	
"&

 

Connection/branch (CB) Connections per branch  

 

3"" 	+ 	4"%	
"'

 

Total trace length ∑+ Sum of branch lengths  

 
,+ 

Average line length (BL) Average line length  

 

∑+
"&

 

Average branch length (BC) Average branch length  

 

∑+
"'

 

Connecting node frequency  Frequency of connecting nodes within the sample area  

 

"(
!  

Branch frequency  Frequency of branches within the sample area 

 

"'
!  

Line frequency  Frequency of lines within sample area "&
!  

1D intensity (P10) Intensity of deformation bands within a circular sample area   

 

"$
2-. 	 ∙ 	

-
2 

2D intensity (P21) Intensity of deformation bands within a sample area  

 

∑+
!  

Dimensionless intensity (B22) Product of average branch length and intensity  

 

0)* 	 ∙ +' 

Number of branches (calculated from branches)  

 

Number of C-C, C-I and I-I  "(( +	"(! 	+ "!!  

 Block analysis   

   

Number of clusters (Kij) Number of clusters in sample area  1+, 
Number of intersecting clusters (Ki) Number of clusters that intersects the bounding polygon 1+ 
Number of branches (block calculation) (B) Number of branches, calculated from nodes and E nodes  "! 	+ 	"$ 	+ 	3"" + 4"%

2  

Number of nodes (block calculation) (block 

calculation) (N)  

Number of I, Y, X and E nodes  "! +	"$ 	+ "" +	"# 

Number of whole blocks  Whole blocks within the sample area B − 	N + 1+,  

Number of half blocks (HB) Potential blocks that are only partially within the sample area  "$ −	1+ + 1
2  

Number of theoretical blocks (Tb) Total number of whole and half blocks 6- +	7- 

Theoretical block size  Average area of theoretical block  8-
!  
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Appendix II: Geometrical and topological data  
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Circle Sample ID Area (m2) E I X Y No. Nodes No. Branches No. Lines No. Connections Connect/Line Average Line Length(m) Average Branch Length (m) Connect/Branch Branch Freq Line Freq NcFreq 2D Intensity m-1) Dimensionless Intensity C - C C - I I-I Total Trace Length (m)
1B 0,78527 11 10 2 15 27 31,5 12,5 17 2,72 0,445 0,177 1,68254 40,114 15,918 21,649 7,080 1,24961 17,5 13,5 0,5 5,560
2B 0,78527 30 7 1 71 79 112 39 72 3,69231 0,346 0,121 1,9375 142,626 49,665 91,688 17,205 2,07546 93 18,5 0,5 13,511
3B 0,78527 13 4 3 27 34 48,5 15,5 30 3,87097 0,517 0,165 1,91753 61,762 19,738 38,203 10,213 1,68898 38 10,5 0 8,020
4B 0,78527 18 10 2 54 66 90 32 56 3,5 0,360 0,128 1,88889 114,610 40,750 71,313 14,677 1,87956 73 16 1 11,525
5B 0,78527 9 1 0 16 17 24,5 8,5 16 3,76471 0,564 0,196 1,95918 31,200 10,824 20,375 6,104 1,19422 19 5,5 0 4,793
6B 0,78527 14 5 0 27 32 43 16 27 3,375 0,454 0,169 1,88372 54,758 20,375 34,383 9,250 1,5627 33 9,5 0,5 7,264
7B 0,78527 3 2 0 21 23 32,5 11,5 21 3,65217 0,220 0,078 1,93846 41,387 14,645 26,742 3,221 0,25066 29 3,5 0 2,529
8B 0,78527 14 3 0 25 28 39 14 25 3,57143 0,520 0,187 1,92308 49,665 17,828 31,836 9,268 1,72964 30 9 0 7,278
9B 0,78527 5 0 0 11 11 16,5 5,5 11 4 0,658 0,219 2 21,012 7,004 14,008 4,612 1,01226 14 2,5 0 3,622
10B 0,78527 10 0 0 20 20 30 10 20 4 0,440 0,147 2 38,203 12,734 25,469 5,602 0,82159 25 5 0 4,399
11B 0,78527 15 5 1 32 38 52,5 18,5 33 3,56757 0,470 0,166 1,90476 66,856 23,559 42,024 11,068 1,83235 41 11 0,5 8,691
12B 0,78527 8 4 1 38 43 61 21 39 3,71429 0,268 0,092 1,93443 77,680 26,742 49,665 7,172 0,66214 53 8 0 5,632
13B 0,78527 10 1 0 17 18 26 9 17 3,77778 0,674 0,233 1,96154 33,110 11,461 21,649 7,726 1,80289 20 6 0 6,067

SUMMARIZED 10,209 160 52 10 374 436 607 213 384 47,206 5,9371 2,0769 24,9316 772,984 271,245 489,004 113,200 17,762 486 118,5 3 88,892
AVERAGE 0,785 ###### 4 0,769 28,769 33,538 46,692 16,385 29,538 3,631 0,4567 0,1598 1,9178 59,4603 20,8650 37,616 8,708 1,366312308 37,3 9,1154 0,2308 6,838

Node proportion Branch proportion
Circle Sample ID I X Y Circle Sample IDC - C C - I I-I
1B 0,37037 0,074 0,56 1B 0,55555556 0,42857143 0,01587302
2B 0,08861 0,013 0,9 2B 0,83035714 0,16517857 0,00446429
3B 0,11765 0,088 0,79 3B 0,78350515 0,21649485 0
4B 0,15152 0,03 0,82 4B 0,81111111 0,17777778 0,01111111
5B 0,05882 0 0,94 5B 0,7755102 0,2244898 0
6B 0,15625 0 0,84 6B 0,76744186 0,22093023 0,01162791
7B 0,08696 0 0,91 7B 0,89230769 0,10769231 0
8B 0,10714 0 0,89 8B 0,76923077 0,23076923 0
9B 0 0 1 9B 0,84848485 0,15151515 0
10B 0 0 1 10B 0,83333333 0,16666667 0
11B 0,13158 0,026 0,84 11B 0,78095238 0,20952381 0,00952381
12B 0,09302 0,023 0,88 12B 0,86885246 0,13114754 0
13B 0,05556 0 0,94 13B 0,76923077 0,23076923 0

Geometrical and topological data from Klondike West, derived with NetworkGT. For circle sample position, see Fig. 5.3.  
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Circle sample Area (m2) E I X Y U No. NodesNo. BranchesNo. Lines No. Connections Connect/Line Average Line Length(m) Average Branch Length (m) Connect/Branch Branch Freq Line Freq NcFreq 2D Intensity(m-1) Dimensionless Intensity C - C C - I I - I Total Trace Length
1A 0,78527 10 1 8 11 0 20 33 6 19 6,33333 0,788 0,143 1,9697 42,02382 7,64069 24,19553 6,02305 0,86325 27 6 0 4,72971
2A 0,78527 24 2 10 62 0 74 114 32 72 4,5 0,394 0,111 1,98246 145,17319 40,75037 91,68833 16,05238 1,77498 102 12 0 12,60543
3A 0,78527 13 1 0 26 0 27 39,5 13,5 26 3,85185 0,646 0,221 1,97468 50,30124 17,19156 33,10967 11,10025 2,44955 32 7,5 0 8,71668
4A 0,78527 16 1 1 23 0 25 37 12 24 4 0,739 0,240 1,97297 47,11761 15,28139 30,56278 11,29504 2,70765 29 8 0 8,86965
5A 0,78527 22 5 2 43 0 50 71 24 45 3,75 0,503 0,170 1,92958 90,41488 30,56278 57,30521 15,36398 2,61076 56 15 0 12,06486
6A 0,78527 16 0 1 54 0 55 83 27 55 4,07407 0,295 0,096 2 105,69627 34,38312 70,0397 10,13006 0,97088 75 8 0 7,95482
7A 0,78527 7 1 2 12 0 15 22,5 6,5 14 4,30769 0,647 0,187 1,95556 28,6526 8,27742 17,82829 5,35345 1,00024 18 4,5 0 4,2039
8A 0,78527 13 3 5 20 0 28 41,5 11,5 25 4,34783 0,682 0,189 1,92771 52,84813 14,64466 31,83623 9,9847 1,88643 32 9,5 0 7,84067
9A 0,78527 14 0 7 26 0 33 53 13 33 5,07692 0,540 0,132 2 67,4928 16,55484 42,02382 8,94234 1,1848 46 7 0 7,02214
10A 0,78527 17 0 0 43 0 43 64,5 21,5 43 4 0,494 0,165 2 82,13746 27,37915 54,75831 13,51198 2,22278 56 8,5 0 10,61054
11A 0,78527 22 1 0 29 0 30 44 15 29 3,86667 0,569 0,194 1,97727 56,03176 19,10174 36,93002 10,86525 2,10691 35 9 0 8,53214
12A 0,78527 11 3 1 18 0 22 30,5 10,5 19 3,61905 0,496 0,171 1,90164 38,84019 13,37121 24,19553 6,63867 1,1347 24 6 0,5 5,21314
13A 0,78527 6 0 0 18 0 18 27 9 18 4 0,360 0,120 2 34,38312 11,46104 22,92208 4,12984 0,49604 24 3 0 3,24303
14A 0,78527 18 3 1 35 0 39 56 19 36 3,78947 0,438 0,148 1,94643 71,31314 24,19553 45,84416 10,58873 1,57224 44 12 0 8,315
15A 0,78527 5 2 0 15 0 17 23,5 8,5 15 3,52941 0,428 0,155 1,91489 29,92605 10,82432 19,10174 4,63773 0,71872 19 4,5 0 3,64187
16A 0,78527 8 3 0 25 0 28 39 14 25 3,57143 0,278 0,100 1,92308 49,66451 17,82829 31,83623 4,95894 0,49514 32 7 0 3,8941
17A 0,78527 28 6 1 108 0 115 167 57 109 3,82456 0,253 0,086 1,96407 212,66598 72,58659 138,80594 18,33646 1,581 148 19 0 14,39905
18A 0,78527 12 5 5 49 0 59 86 27 54 4 0,252 0,079 1,94186 109,51661 34,38312 68,76625 8,65795 0,68446 76 9,5 0,5 6,79882
19A 0,78527 16 3 0 55 0 58 84 29 55 3,7931 0,311 0,107 1,96429 106,96972 36,93002 70,0397 11,46895 1,22966 75 8,5 0,5 9,00621
20A 0,78527 32 8 3 76 0 87 124 42 79 3,7619 0,311 0,105 1,93548 157,90768 53,48486 100,60247 16,6439 1,75431 102 21,5 0,5 13,06994
21A 0,78527 29 10 3 75 0 88 123,5 42,5 78 3,67059 0,290 0,100 1,91903 157,27095 54,12158 99,32902 15,69506 1,56631 100 23,5 0 12,32485
22A 0,78527 21 10 14 119 0 143 211,5 64,5 133 4,12403 0,258 0,079 1,95272 269,33447 82,13746 169,36872 21,21039 1,67034 191 20,5 0 16,65586
23A 0,78527 4 1 0 13 0 14 20 7 13 3,71429 0,489 0,171 1,95 25,46898 8,91414 16,55484 4,36046 0,74654 17 3 0 3,42413
24A 0,78527 15 0 1 51 0 52 78,5 25,5 52 4,07843 0,367 0,119 2 99,96575 32,47295 66,21935 11,91773 1,42081 71 7,5 0 9,35862
25A 0,78527 12 4 0 36 0 40 56 20 36 3,6 0,357 0,128 1,92857 71,31314 25,46898 45,84416 9,09865 1,16087 47 9 0 7,14488
26A 0,78527 14 1 1 83 0 85 127 42 84 4 0,266 0,088 1,99213 161,72802 53,48486 106,96972 14,23527 1,25299 120 6,5 0,5 11,17852
27A 0,78527 9 1 0 18 0 19 27,5 9,5 18 3,78947 0,390 0,135 1,96364 35,01985 12,09777 22,92208 4,71789 0,6356 22 5,5 0 3,70482
28A 0,78527 26 10 3 86 0 99 140 48 89 3,70833 0,263 0,090 1,92857 178,28286 61,12555 113,33696 16,06184 1,44704 120 19 1 12,61286
29A 0,78527 10 1 0 25 0 26 38 13 25 3,84615 0,539 0,184 1,97368 48,39106 16,55484 31,83623 8,92225 1,64507 32 6 0 7,00637
30A 0,78527 21 0 1 73 0 74 111,5 36,5 74 4,05479 0,311 0,102 2 141,98956 46,48089 94,23523 14,4552 1,47161 101 10,5 0 11,35122
31A 0,78527 21 0 3 59 0 62 94,5 29,5 62 4,20339 0,347 0,108 2 120,34093 37,56675 78,95384 13,02202 1,4091 84 10,5 0 10,22579
32A 0,78527 9 1 1 30 0 32 47,5 15,5 31 4 0,297 0,097 1,97895 60,48883 19,73846 39,47692 5,86055 0,56781 44 3,5 0 4,60211
33A 0,78527 6 0 0 38 0 38 57 19 38 4 0,258 0,086 2 72,58659 24,19553 48,39106 6,24254 0,53687 54 3 0 4,90207
34A 0,78527 4 0 4 8 0 9 14 4 9 4,5 0,803 0,229 2 17,82829 5,0938 11,46104 4,08929 0,93797 12 2 0 3,2112
35A 0,78527 14 0 0 18 0 18 27 9 18 4 0,729 0,243 2 34,38312 11,46104 22,92208 8,35698 2,03121 20 7 0 6,56248
36A 0,78527 19 5 5 16 0 26 36,5 10,5 21 4 0,807 0,232 1,86301 46,48089 13,37121 26,74243 10,7971 2,50807 24 11,5 1 8,47863
37A 0,78527 19 1 1 32 0 34 50,5 16,5 33 4 0,556 0,182 1,9802 64,30917 21,01191 42,02382 11,68775 2,12417 41 9,5 0 8,95131
38A 0,78527 21 1 1 32 0 34 50,5 16,5 33 4 0,546 0,178 1,9802 64,30917 21,01191 42,02382 11,46252 2,04309 40 10,5 0 9,00116
39A 0,78527 16 2 2 22 0 26 38 12 24 4 0,632 0,200 1,94737 48,39106 15,28139 30,56278 9,66067 1,92863 28 10 0 7,58623
40A 0,78527 22 0 1 40 0 41 62 20 41 4,1 0,537 0,173 2 78,95384 25,46898 52,21141 13,68626 2,37245 52 10 0 10,74739
41A 0,78527 6 1 3 17 0 21 32 9 20 4,44444 0,529 0,149 1,96875 40,75037 11,46104 25,46898 6,06551 0,90282 28 4 0 4,76305
Total 32,19607 628 97 91 1639 0 1824 2683 868 1727 165,831 18,995 5,992 80,508 3416,664 1105,354 2199,246 426,290 59,824 2300 378,5 4,5 334,525
Average 0,78527 15,32 2,4 2,22 40 0 44,49 65,439 21,171 42,122 4,045 0,463 0,146 1,964 83,333 26,960 53,640 10,397 1,459 56,098 9,232 0,110 8,159

Geometrical and topological data from Klondike East, derived with NetworkGT. For circle sample position see Fig. 5.7 
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Node and branch proportions from Klondike East 
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BC1
CircumferenceArea (m2)E I X Y No. NodesNo. BranchesNo. Lines No. ConnectionsConnect/LineAverage Line Length (m) Average Branch Length (m) Connect/Branch Branch Freq Line Freq NcFreq 1D Intensity 2D Intensity (m-1) Dimensionless IntensityC - C C - I I - I Total Trace Length (m)

77,78141 35,831 341 180 70 2987 3237 4710,5 1583,5 3057 3,86107 0,38921 0,13084 1,96179 131,46432 44,19356 85,31715 0 17,20065 2,25051 4399,5 306 5 616,3167

Block analysis 
Average block size 0,011 m2
min 1,26E-06 m2
max 0,7 m2
Block proportion 42 %

BC2
CircumferenceArea (m2)E I X Y No. NodesNo. BranchesNo. Lines No. ConnectionsConnect/LineAverage Line Length (m) Average Branch Length (m) Connect/Branch Branch Freq Line Freq NcFreq 1D Intensity 2D Intensity (m-1) Dimensionless IntensityC - C C - I I - I Total Trace Length (m)

71,41839 40,4182 40 127 34 1235 1396 1984 681 1269 3,72687 0,402 0,13798 1,93599 49,08686 16,84887 31,39679 0 6,77324 0,9346 1850,5 125,5 8 273,76178

Block analysis 
Average block size 0,011 m2
min 1,04E-05 m2
max 1,23 m2
Block proportion 17 %

BC3
CircumferenceArea (m2)E I X Y No. NodesNo. BranchesNo. Lines No. ConnectionsConnect/LineAverage Line Length (m) Average Branch Length (m) Connect/Branch Branch Freq Line Freq NcFreq 1D Intensity 2D Intensity (m-1) Dimensionless IntensityC - C C - I I - I Total Trace Length (m)

37,64876 15,9403 114 112 128 950 1190 1737 531 1078 4,06026 0,36672 0,11211 1,93552 108,969 33,31177 67,62728 0 12,21609 1,3695 1576 158 3 194,72829

Block analysis 
Average block size 0,014 m2
min 1,11E-07 m2
max 0,54 m2
Block proportion 45 %

Geometrical and topological data from BC1, BC2 and BC3, derived with NetworkGT.  


