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I 

Abstract 
 

Faults are heterogenous zones comprising highly complex geometries, which can be studied in 

detail from field outcrops. The internal complexity of a fault zone is however difficult to 

interpret from seismic images, due to resolution and illumination limitations of the data. To 

improve the seismic interpretation of subsurface structures, synthetic seismic can be simulated 

from outcrop-derived geological models. Such seismic modeling reveals the potential seismic 

expression of structural and stratigraphic features observed in the field. In this study, a 2D 

Point-Spread Function based modeling approach is applied to investigate the seismic 

expression of the Maghlaq Fault, Malta, which is a carbonate-hosted normal fault zone 

comprising complex hanging wall geometries. Geological models of the fault zone are created 

based on both geological interpretations of virtual outcrop models of the hanging wall of the 

fault as well as conceptual extrapolations. The geological models are divided into 

lithostratigraphic units, which are further assigned realistic elastic properties (i.e. seismic 

velocities and density) in order to create reflectivity models. Pre-stack Depth Migration images 

are simulated from the seismic modeling, predicting the seismic characteristics of the Maghlaq 

Fault. The study further analyzes the effects of various geophysical survey parameters on the 

seismic images, by systematically varying each individual parameter, such as the dominant 

frequency, level of noise, angle of maximum illumination, incident angle and wavelet type.  

 

The resulting 2D seismic sections generated in this study show that the seismic expression of 

the Maghlaq Fault differs to some extent for the four different geological models, due to the 

significant variation in hanging wall geometry of the four geological input models. 

Nevertheless, some consistent seismic characteristics are found in all seismic images, regardless 

of the variation in structural and stratigraphic input. Furthermore, the obtained results from the 

sensitivity analyses highlight the geophysical parameter dependency of both the detectability 

and the seismic expression of the fault zone. The dominant frequency, noise level and angle of 

maximum illumination are the parameters which have the greatest impact on the seismic images 

of the Maghlaq Fault zone. This thesis is a contribution to improve the understanding of seismic 

imaging of normal fault zones within carbonates, which hopefully can aid seismic interpretation 

of similar structures in the subsurface. 
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1 Introduction 
 

This study is one of two MSc theses investigating the seismic expression of the hanging wall 

geometry of a carbonate-hosted, large-scale normal fault zone on southwest Malta, by 

generating 2D synthetic seismic from field outcrops. The main focus of the present thesis is the 

effects of various geophysical parameters on the seismic expression of the fault zone, whereas 

the main focus of the sister project (Prestegård, 2020) is the impact of various geometrical 

complexities and properties of the fault zone on the synthetic seismic. 

 

 Background and rationale 
 

Faults are internally heterogenous zones that have major impact on fluid flow properties in the 

subsurface. Detailed outcrop studies of variations in properties and internal geometries of a 

fault zone have improved the understanding of the complexity of faults (Caine et al., 1996; 

Bonson et al., 2007; Childs et al., 2009; Botter et al., 2014). However, interpreting these features 

in detail from seismic data is difficult due to resolution and illumination limitations. Although 

many of the internal structures of fault zones are of sub-seismic scales, seismic data are still a 

key tool for studying and understanding faults in the subsurface. Generating synthetic seismic 

data of outcrop analogues can improve seismic interpretation of structures in the subsurface. 

 

Synthetic seismic is generated through seismic modeling, which is a method that enables 

comparison between detailed geological observations from outcrops and their potential 

signature in seismic (Falivene et al., 2010). Additionally, seismic modeling provides 

information on survey parameter effects, as well as potential pitfalls related to seismic 

interpretation (Lecomte et al., 2015; Anell et al., 2016). Synthetic seismic generated from 

outcrop analogues and conceptual models have previously been studied by several authors (e.g. 

Falivene et al., 2010; Botter et al., 2014; Osagiede et al., 2014; Lecomte et al., 2015; Anell et 

al., 2016; Frery et al., 2016; Eide et al., 2018; Lubrano-Lavadera et al., 2018; Rabbel et al., 

2018; Grippa et al., 2019; Wrona et al., 2019), but few studies address seismic modeling of 

normal fault zones within carbonate successions. In this thesis, synthetic seismic generated 

from virtual outcrop models of the carbonate-dominated extensional fault zone of the Maghlaq 

Fault is studied in detail. Moreover, sensitivity analyses involving different geophysical survey 

parameters are carried out in order to investigate their effects on the simulated 2D seismic. 
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The following workflow was applied to obtain 2D synthetic seismic images of the Maghlaq 

Fault: 1) creation of virtual outcrop models from photogrammetric mapping of the outcropping 

hanging wall, 2) construction of geological models based on interpretations of the virtual 

outcrop models, 3) assignment of elastic properties to the geological models, 4) generation of 

synthetic seismic images by the use of 2D Point-Spread Function-based convolution modeling, 

and 5) variation of geophysical parameters. Controlling the geophysical survey parameters 

demonstrates how the seismic expression of the Maghlaq Fault changes as a result of various 

dominant frequencies, levels of noise, maximum illumination angles, incident angles and 

wavelet types. The resulting synthetic seismic images can help predict the level of structural 

and stratigraphic details which potentially will be resolved in 2D seismic. This could aid the 

seismic interpretation of fault zones in similar geological settings in the subsurface.  

 

 Aims and objectives 
 

The main aims of this study are to improve the understanding of seismic imaging of carbonate-

hosted normal fault zones and to investigate the impact of geophysical parameters on faults in 

seismic. These primary aims are achieved through a case study of the carbonate-bearing, 

extensional Maghlaq Fault with the following objectives:  

• Create realistic geological models of the Maghlaq Fault zone based on virtual outcrop 

models of its hanging wall.  

• Predict the 2D seismic expression and detectability of the fault zone by generating 2D 

synthetic seismic images.  

• Through sensitivity analyses on these images, determine the effects of geophysical 

parameters, i.e. dominant frequency, level of noise, angle of maximum illumination, 

incident angle and wavelet type, on the seismic expression of the fault. 

 

 Study area 
 

The study area is located on the southwestern coast of Malta, which is the largest island of the 

Maltese archipelago (Fig. 1.1). The archipelago is situated in the Central Mediterranean, 90 km 

south of Sicily and 300 km east of Tunisia. The Maltese Islands, which rise up to 253 m above 

sea level, form the northern flank of the Pelagian Platform – a shallow shelf platform  

connecting Europe and Africa (Illies, 1981; Pedley, 1989; Bonson et al., 2007; Micallef et al., 

2013). The Oligocene-Miocene carbonate succession of Malta is cut by two main sets of 

extensional faults, oriented ENE-WSW and ESE-WNW. The Maghlaq Fault, which is 
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considered as the northernmost extent of the Pantelleria Rift System, is the only major fault on 

Malta trending ESE-WNW (Bonson et al., 2007). The coastline in the southwest of Malta 

provides excellent outcrops of the Maghlaq Fault’s slip surface and hanging wall geometries. 

The hanging wall frequently crops out for a total of 2.5 km along the 4 km long exposure of the 

fault, forming great targets for outcrop mapping. Key outcrops in this study are the following: 

1) Ix-Xaqqa, 2) Ras Hanzir, 3) Il-Miqtub, and 4) In-Neffiet (Fig. 1.1c).  

 

 

Figure 1.1: a) Location of the Maltese archipelago in the Central Mediterranean. b) The Maltese Islands, pointing 

out the study area along the Maghlaq Fault on the southwestern coast of Malta. c) Overview of the study area and 

key outcrops of the hanging wall of the fault. Satellite photos from Google Earth (2020).  
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2 Geological Setting 
 

This chapter introduces the geological framework of the study area in terms of tectonic 

evolution, with focus on the Maltese Graben System within the Pantelleria Rift System. 

Furthermore, an overview of the stratigraphic framework of the carbonate-dominated 

succession on the Maltese Archipelago is provided. 

 

 Regional Tectonic setting 

 

2.1.1 Tectonic evolution of the Mediterranean 

 

The present-day geological configuration of the Mediterranean domain is a result of a 

tectonically complex evolution including both compressional and extensional events over a 

span of time (Rosenbaum and Lister, 2002; Cavazza and Wezel, 2003; Di Bucci et al., 2010). 

The evolution of the Mediterranean region has been dominated by the opening and closing of 

the Neotethys and Paleotethys oceans and the convergence between the African and Eurasian 

plates since Late Cretaceous times (Gueguen et al., 1998; Rosenbaum et al., 2002; Cavazza and 

Wezel, 2003; Di Bucci et al., 2010). This succession of convergent and extensional events has 

resulted in a system of connected fold-and-thrust belts and related foreland and back-arc basins, 

which all vary in terms of internal architecture and timing (Cavazza and Wezel, 2003). 

 

The basins of the western to central Mediterranean are progressively younger from west to east 

– from Late Oligocene-Early Miocene in the west (Alboran Sea, Valencia Through and 

Provençal Basin), through Middle-Late Miocene eastward (Balearic and Algerian basins) and 

to Late Miocene and Plio-Pleistocene in the central part of the Mediterranean (Tyrrhenian 

Basin) (Kastens et al., 1988; Roca and Desegaulx, 1992; Gueguen et al., 1998). Two main 

orogenic belts are separating the basins of the Mediterranean – the Alpine-Betic-Dinaride 

mountain chain in the northwest and the Apennine-Maghrebide-Carpathian mountain chain in 

the east (Carminati et al., 2012). The associated extensional basins developed due to the back-

arc extension which resulted from rollback of the Adriatic slab in the eastward retreating 

Apennines-Maghrebides subduction zone (Argnani, 1990; Gueguen et al., 1998; Rosenbaum 

and Lister, 2002). 
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The eastern part of the Mediterranean domain most likely comprises Mesozoic Neotethyan 

oceanic crust, overlain by a thick sedimentary package that reaches a maximum thickness of 

12-14 km (Robertson and Dixon, 1984; Ben-Avraham et al., 2002; Rosenbaum et al., 2002; 

Carminati et al., 2012). The western Mediterranean, on the contrary, does not comprise 

Mesozoic crust, yet ophiolitic complexes can be found within the adjacent fold-and thrust belts, 

indicating the presence of older oceanic crust (Rosenbaum et al., 2002). 

  

2.1.2 The Pantelleria Rift System  

 

The Maltese Archipelago is located on the northeastern shoulder of the ESE-WNW striking 

Pantelleria Rift System, which is underlain by the Pelagian Platform (Fig. 2.1) (Reuther and 

Eisbacher, 1985). The Pelagian Platform is connecting southern Sicily to northwestern Libya 

and eastern Tunisia through a shallow shelf platform of African provenance with water depths 

of less than 400 m (Illies, 1981; Finetti, 1984; Reuther and Eisbacher, 1985; Micallef et al., 

2013). The platform consists of continental crystalline basement overlain by Meso-Cenozoic 

carbonates and volcanics (Reuther and Eisbacher, 1985). Morphology and structures can be 

used to characterize four different zones within the Pelagian Platform: (i) the Malta Plateau, (ii) 

the Malta Escarpment, (iii) the fold and thrust belt of the Apennine-Maghrebian orogen and (iv) 

the Pantelleria Rift System (Fig. 2.1a) (Micallef et al., 2013).  

 

 

Figure 2.1: The Maltese Islands are located on the northeastern shoulder of the Pantelleria Rift, on the Pelagian 

Platform, which is connecting southern Sicily and eastern Tunisia (Reuther and Eisbacher, 1985; Micallef et al., 

2013). (a) Four structural zones are characterized within the Pelagian Platform: (i) the Malta Plateau, (ii) the Malta 

Escarpment, (iii) the Apennine-Maghrebian orogen and (iv) the Pantelleria Rift System. (b) Main extensional fault 

systems comprising the structural framework of the Maltese Islands. Modified from Missenard et al. (2014) after  

(a) Bonson et al. (2007) and (b) Jongsma et al. (1987); Dart et al. (1993).  
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The Pantelleria Rift System, also known as the Strait of Silicy Rift (Finetti, 1982; Bonson et 

al., 2007), is a fault-controlled through representing the foreland of the Silician Neogene 

Apennine-Maghrebian fold and thrust belt (Argnani, 1990; Dart et al., 1993; Bonson et al., 

2007). The rift system is composed of three throughs of depths of more than 1 km: the 

Pantelleria, Linosa and Malta grabens, which are all partially filled with Plio-Quaternary 

deposits (Dart et al., 1993). An uplifted, structurally inverted volcanic belt, oriented north-

south, separates the Pantelleria Graben to the northwest from the Malta and Linosa grabens to 

the southeast (Argnani, 1990). The largely submarine rift system of Pantelleria is only exposed 

on the Maltese Islands, allowing studies of the Oligocene-Miocene syn-rift and Plio-Quaternary 

post-rift successions onshore (Reuther and Eisbacher, 1985).  

 

 The Maltese Islands 
 

2.2.1 The Maltese Graben System  

 

Uplift of the northern flank of the Pantelleria Rift System during Miocene times and onwards, 

in addition to a falling sea-level, resulted in the emergence of the Maltese Islands during early 

Messinian times (Pedley et al., 1987; Bonson et al., 2007). The entire pre- to syn-rift succession 

of the Maltese Islands is cut by two major sets of extensional faults of different ages and trends, 

constituting the Maltese Graben System (Illies, 1981; Argnani, 1990; Dart et al., 1993). This 

system is a small part of the Pantelleria Rift System and can be divided into five tectonic units: 

the North Gozo Graben, the Gozo Horst, the North Malta Graben, the Malta Horst and the 

Pantelleria Rift (Maghlaq Fault) (Fig. 2.1b) (Dart et al., 1993). The latter represents the 

youngest set of faults (Illies, 1981). 

 

The first generation of faults, forming the horst-and-graben complex on northwestern Malta, 

eastern Gozo and Comino, has a NE-SW strike (Illies, 1981). The two grabens in the Malta 

Graben Systems are approximately 14 km wide, where the North Gozo Graben is the deepest 

of the two, bounded by a northwestern fault with a displacement of 1.6 km. The Victoria Lines 

Fault is located within the North Malta Graben and crosses Malta from west to east with a NE-

SW strike (Fig. 2.1b) The Victoria Lines Fault holds the greatest displacement in the North 

Malta Graben of 195 m, however the throw generally decreases along the fault from west to 

east (Pedley et al., 1976; Dart et al., 1993). To the south of the large fault, the horst-and-graben 

structure is absent, replaced by extensive normal faulting with displacements of no more than 
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20 m (Pedley et al., 1976). The North Gozo Graben and the North Malta Graben both intersect 

the Pantelleria Rift to the west at acute angles of 66 and 32 degrees respectively (Dart et al., 

1993). The Maghlaq Fault is situated on the periphery of the Pantelleria Rift and is the only 

major fault exposed on the Islands of Malta that has a strike parallell to the Pantelleria Rift 

(Dart et al., 1993; Bonson et al., 2007). 

 

2.2.2 The Maghlaq Fault zone 

 

The Maghlaq Fault is the largest fault on the southwestern coast of the island of Malta, with a 

minimum displacement of 210 m. It is a left-stepping, ESE-WNW striking normal fault cutting 

the pre- to syn-rift carbonates and clays on Malta (Fig. 2.2) (Dart et al., 1993; Bonson et al., 

2007). The fault is well exposed along the cliffs over a distance of 4 km, and the hanging wall 

is preserved for a total distance of 2.5 km. The downthrown stratigraphic sequence is inclined 

at a high angle and can be studied in several cross sections along the coastline (Pedley et al., 

1976; Bonson et al., 2007). The seaward-facing fault surface of the Maghlaq Fault is dominated 

by smooth slickensides, with some lenses of footwall rock smeared onto the plane structure 

(Pedley et al., 1976).  

 

 

Figure 2.2: Geological map of the Maghlaq Fault, located along the southwestern coastline of the Island of Malta. 

Modified from Bonson et al. (2007).  

 

Bonson et al. (2007) describes the characteristics of the Maghlaq Fault in detail, which is 

summarized as follows: The Maghlaq Fault is an en echelon normal fault array with 1-2 km 

long fault segments which are dipping 60-75 degrees to the S/SW. The tips of the segments are 

bent, causing short sections of the fault to strike E-W or ENE-WSW and resulting in fault 

linkage. The Maghlaq Fault has a 5-40 m thick prominent damage zone of very deformed rocks, 

which separates the less deformed hanging wall from the fault scarp. Between Ix-Xaqqa and 
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Ghar Lapsi (Fig. 2.2), the strata of the hanging wall are dipping 10-20 degrees to the S. Towards 

the east, drag folding of partially lithified carbonates has resulted in a steeper dip with up to 40 

degrees to the S.  

 

 Regional stratigraphic setting  

 

The onshore Maltese stratigraphy is dominated by shallow marine carbonates and consists of 

five formations that are easily traced across the islands (Fig. 2.3) (Pedley et al., 1976; Dart et 

al., 1993). The succession on Malta is underlain by non-exposed strata of Cretaceous times 

consisting of 3000 m of limestones, marls and dolomites (Pedley et al., 1976). The onshore 

carbonate succession of the Maltese archipelago is pre- to syn-rift deposits of Oligocene-

Miocene age (Bonson et al., 2007). This includes, from oldest to youngest: pre-rift (>21 Ma) 

Lower Coralline Limestone Formation, pre-rift and early syn-rift (21-6 Ma) Globigerina 

Limestone Formation, early syn-rift Blue Clay Formation and Greensand Formation, and early 

to late syn-rift (<5 Ma) Upper Coralline Limestone Formation (Dart et al., 1993). The 

succeeding layers are post-rift (<1.5 Ma) sediments of Pliocene-Quaternary age, including 

fluvial, coastal and aeolian silts, cave deposits and tufa. Present-day deposition on the Malta 

Plateau is dominated by pelagic and hemipelagic sediments (Micallef et al., 2013). The 

characteristics of the five main carbonate formations on the Maltese Islands and the 

representative subdivision of phases, with respect to the Pantelleria rifting, are described in the 

following sections.  

 

2.3.1 Pre-rift 

 

Lower Coralline Limestone Formation 

 
The oldest succession of the islands is the Chattian Lower Coralline Limestone Formation, 

which consists of shallow marine and massive platform carbonates in form of biosparites and 

biomicrites (Pedley, 1975; Dart et al., 1993). Only the top 140 m out of the 300-1000 m thick 

succession is exposed onshore along the western coasts of Malta and Gozo (Dart et al., 1993; 

Micallef et al., 2013). This limestone formation forms the extensive and steep cliffs on the west 

coast of the archipelago and crops out nicely in cliff-sections around the Maghlaq Fault in the 

southwest of the main island. The Lower Coralline Limestone Formation is stratified, consisting 

of layers of variable thicknesses from half a meter up to 3 meters (Felix, 1973).  
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Figure 2.3: Tectono-stratigraphic log of the pre-, syn- and post-rift sedimentary successions of Oligocene-

Quaternary age of the Maltese archipelago. Modified after Dart et al. (1993).  
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The lowermost part of the exposed section is consisting of benthic foraminifer-rich yellow 

biomicrites, conformably overlain by massive, pale-grey coralline algal limestones. Patch reefs 

developed in the western parts of Malta have caused the local absence of fossils other than 

rhodolitic algal. The top 10 m of the formation is composed of coarse bioclastic limestones 

(Pedley et al., 1976). The uppermost part of the formation is marked by a scutella bed which is 

rich in Scutella subrotunda, or, where the scutella bed is absent, the top is marked by a 

chocolate-brown hardground or a bed of pebbles (Pedley, 1975; Felix, 1973). The depositional 

environment of the Lower Coralline Limestone Formation was at first a shallow marine gulf 

favoring the deposit of detrital and algal limestones. The coarser and well bedded strata above 

indicate open marine conditions including wave action (Felix, 1973; Pedley et al., 1976). 

 

Lower Globigerina Limestone Member 

 

Above the Lower Coralline Limestone Formation, a 0-20 m thick cream-coloured, fine-grained 

biomicritic sequence of the Lower Globigerina Limestone Member of Aquitanian age is located 

(Pedley et al., 1976; Micallef et al., 2013). The Lower Globigerina Limestone Member is the 

earliest member of three subdivisions of the 23-207 m thick Globigerina Limestone Formation 

(Reuther, 1984). The subdivision of the formation is based on two interbedded phosphorite 

levels (Pedley, 1975). The Globigerina Limestone Formation is well exposed all over the 

Maltese Islands with various thicknesses, and characteristically weathers to form honeycomb 

patterns (Felix, 1973; Pedley et al., 1976). The upper limit of the Lower Globigerina Limestone 

Member is marked by one of the phosphorite conglomerate beds, which is above a well-

developed hardground (Dart et al., 1993; Bonson et al., 2007). The top of the Lower Globigerina 

Limestone Member is cut by Neptunian dykes, indicating the start of the early rifting phase 

(Dart et al., 1993). The predominant planktonic lithology of the member indicates increased 

water depths during deposition (Pedley and Bennett, 1985; Dart et al., 1993).  

 

2.3.2 Early syn-rift 

 

The syn-rift successions of the Maltese islands can be subdivided into an early rifting phase and 

a late rifting phase with respect to the Pantelleria Rift System. Stratigraphic layers included in 

the early syn-rift phase are Middle and Upper Globigerina Limestone Members, Blue Clay 

Formation, Greensand Formation and the lower part of the Upper Coralline Limestone 

Formation (Pedley et al., 1976; Dart et al., 1993). Characteristically for the early syn-rift phase, 
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lasting from 21-6 Ma, are thickness variations of the strata related to minor faulting. The 

thicknesses of the syn-rift Globigerina Limestone Formation and Blue Clay Formation are 

significantly greater within the offshore Pantelleria Rift and North Gozo Graben relative to the 

equivalent interval onshore, as revealed from depth-converted seismic sections of the area (Dart 

et al., 1993; Bonson et al., 2007). 

 

Middle Globigerina Limestone Member 

 

The first part of the syn-rift succession is the 100 m thick Middle Globigerina Limestone 

Member of Burdigalian age. The lithology of the member is similar to the Lower Globigerina 

Limestone Member, and comprises white to grey, predominantly coccolithic limestone with 

local seams of pebbles, chert and lenses of clay (Felix, 1973; Pedley and Bennett, 1985). 

Similarly to the Lower Globigerina Limestone Member, this member also varies in thickness 

across the islands, and is partly to fully eroded in central Malta and eastern Gozo (Dart et al., 

1993). Bivalves and echinoids are commonly occurring in the biomicrite of Middle Globigerina 

Limestone Member (Pedley et al., 1976). The top of the Middle Globigerina Limestone 

Member is marked by the upper main phosphorite conglomerate bed, which can be traced across 

both Malta and Gozo (Pedley et al., 1976; Pedley and Bennett, 1985; Dart et al., 1993). 

 

Upper Globigerina Limestone Member 

 

The final member of the Globigerina Limestone Formation is the 14-18 m thick Upper 

Globigerina Limestone Member, consisting of a pale-grey marly biomicrite overlain by a pale-

yellow globigerinid biomicrite (Pedley et al., 1976). It is Langhian in age and the member 

contains fossils restricted to echinoids and gastropods (Pedley et al., 1976). The uppermost part 

of the member is poorly exposed along the coast of the islands. It is a transitional layer from 

marly limestone of the Globigerina Limestone Formation into clay of the Blue Clay Formation 

(Felix, 1973). Felix (1973) suggests that the presence of hardgrounds and beds of conglomerate 

in the Globigerina Limestone Formation indicates that the deposition of sediments was at or 

close to sea-level at times. He further suggests that most of the limestones of the formation were 

deposited in shallow water depths of 40-150 m, whereas the upper part of the formation seems 

to have been more open marine, which is evident from the occurrence of planktonic 

foraminifera.  
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Blue Clay Formation 

 

The Serravilian Blue Clay Formation is conformably overlying the Globigerina Limestone 

Formation. The up to 65 m thick formation is composed of slightly consolidated, blueish, 

hemipelagic clays and alternating beds of dark and light grey marls (Pedley et al., 1976; 

Micallef et al., 2013). The internal color change of the marls is caused by the carbonate content, 

which never exceeds more than 30 percent (Pedley et al., 1976). The formation is exposed on 

Gozo, Malta and possibly also at the base of the cliffs of Filfla, the island located at the western 

coast of Malta. The upper limit is characterized by an increase in the content of glauconite in 

the clay, as the Blue Clay Formation gradually transitions into the succeeding Greensand 

Formation. The clay becomes darker as the glauconite content increases, and the color changes 

from bluish-grey to greyish-green (Felix, 1973). The Blue Clay Formation was deposited in an 

open, muddy marine environment with abundant supply of terrigenous material deposited from 

suspension (Felix, 1973; Pedley et al., 1976).  

 

Greensand Formation 

 

The Tortonian Greensand Formation is only 1-12 m thick, and consists of poorly cemented, 

greenish, glauconitic biosparite and biomicrite (Pedley, 1975; Dart et al., 1993). The Greensand 

Formation is found on both Malta and Gozo. There are two types of the formation; the lower, 

more clay-rich sediment and the upper, calcareous type (Felix, 1973). There is a gradual 

transition from the top of the Greensand Formation to the base of the Upper Coralline 

Limestone Formation above due to abundant bioturbation, which indicates a shallow marine 

depositional environment (Pedley et al., 1976). 

 

Upper Coralline Limestone Formation 

 

The youngest formation on the Maltese archipelago is the Upper Coralline Limestone 

Formation, which is Late Tortonian to Messinian in age and is present all over the archipelago 

(Bonson et al., 2007). The formation is similar in lithology to the Lower Coralline Limestone 

Formation, composed of a shallow water reef complex with a maximum thickness of 162 m 

(Pedley et al., 1976; Micallef et al., 2013). The formation weathers into steep cliffs and karst 

topography such as caves and sink holes from subaerial exposure (Pedley, 1975; Pedley et al., 

1976). The sequence is mainly consisting of coralline algae that indicates a shallow marine 
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depositional environment (Felix, 1973). The Upper Coralline Limestone Formation can be 

divided into three divisions based on the time of deposition. The two earliest lithologies were 

deposited during the early syn-rift phase, whereas the youngest layer was deposited during the 

late stage of the syn-rift phase (Dart et al., 1993).  

 

Depositional phases 1 and 2 

 

Depositional phase 1 comprises brown biosparites to the west of Malta and white to cream-

colored biomicrites to the east, separated by coralline algal bioherm in between (Pedley, 1978). 

The younger depositional sequence 2 consists of coarse-grained bioclastic and oolitic 

limestones rich in coralline algae, as well as coral and algal patch reef deposits in western parts 

of the islands (Pedley et al., 1976; Dart et al., 1993). In southwestern Malta, the depositional 

sequence 2 thickens from the footwall to the hanging wall of the Maghlaq Fault from 12 to 35 

m, respectively, indicating creation of accommodation space by the growing fault (Dart et al., 

1993). 

 

2.3.3 Late syn-rift 

 

Upper Coralline Limestone Formation 

Depositional phase 3 

 

The uppermost sequence of the Upper Coralline Limestone Formation from the late syn-rift 

phase is only locally preserved, exposed in northwestern and western Malta. It consists of 

biomicrites and biosparites with a widespread oosparite at the base (Pedley, 1978). These 

deposits indicate a platform and slope environment (Bosence and Pedley, 1982). The Upper 

Coralline Limestone Formation show distinct changes in both thickness and facies across the 

Maghlaq Fault, and thus represents the main syn-faulting sequence (Bonson et al., 2007). For 

instance, across the fault close by Ras Hanzir (Fig. 2.2) to the southwest of Malta, the thickness 

of the Upper Coralline Limestone Formation’s depositional phase 3 is 30 m thicker in the 

hanging wall, than in the footwall (Dart et al., 1993). 
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Plio-Quaternary succession 

 

The Upper Coralline Limestone Formation is overlain by a succession of Plio-Quaternary age, 

consisting of marls and carbonate mudstones (Dart et al., 1993). The succession was deposited 

during the Zanclean reflooding of the central Mediterranean. Due to the significant relief of the 

area, sedimentation only occurred in the Pantelleria Rift and in the North Gozo Graben (Dart et 

al., 1993). 

 

2.3.4 Post-rift 

 

Insignificant amounts of seismic activity and no fault movement suggest that present day 

deposition occurs in the post-rift phase, although there is a diffuse transition between syn-rift 

and post-rift deposits (Jongsma et al; 1984; Dart et al., 1993). The onshore post-rift deposits are 

discontinuous and form infillings in caves and fissures (Pedley et al., 1976; Micallef et al., 

2013). Several animal bone deposits of Pleistocene age occur in caves and surface depressions. 

All these bone deposits indicate a more temperate climate than on present day Malta, and it is 

reasonable to think that a connection of land between Malta and Sicily could have been present 

at this time (Pedley et al., 1976). The youngest deposits on the islands of Quaternary age, consist 

of tufa, fluvial gravels, calcretes, cave deposits and terra rossa (Pedley, 1975; Pedley et al., 

1976).
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3 Theoretical background 

 

This chapter provides a review of the theoretical background on which this thesis builds. It is 

divided into three main parts: the first part describes the fault zone architecture, both in a general 

aspect and specific to carbonate rocks, the second part presents the seismic expression and 

interpretation of faults, and the third part outlines the theory behind seismic modeling.  

 

 Fault zone architecture  

 

Fault zones are lithologically and structurally heterogenous, comprising two primary 

architectural components: a fault core and an associated damage zone, which are surrounded 

by undeformed protolith (Fig. 3.1) (Caine et al., 1996; Shipton and Cowie, 2001; Childs et al., 

2009). The core of the fault is a zone of intense deformation, where most of the displacement 

is accommodated, consisting of one or several slip surfaces, fault rocks, i.e. fault gouge, 

breccias and cataclasites, and lenses of host or fault rock (Bastesen et al., 2009; Childs et al., 

2009; Bastesen and Braathen, 2010; Michie et al., 2014). The core is surrounded by a footwall 

and a hanging wall damage zone on each side (Bastesen et al., 2009). 

 

The damage zone is defined by Kim et al. (2004) as the volume of deformed wall rocks around 

a fault surface that results from the initiation, propagation, interaction and displacement 

accumulation along a slip surface. Discrete structures such as fractures and deformation bands 

are characteristic for the damage zone (Shipton and Cowie, 2001; Braathen et al., 2009). 

Lithology, the dip of strata relative to the slip direction of the fault and stress systems are factors 

that control the nature of a damage zone (Kim et al., 2004). The width of the damage zone 

generally increases as offset is accumulated and the fault continues to propagate (Shipton and 

Cowie, 2001, 2003; Riley et al., 2010). The development of fault zone geometries provides 

information on growth and propagation of the fault (McGrath and Davison, 1995; Kim et al., 

2004), which can further provide a better understanding of the petrophysical properties of the 

fault zone and its influence on fluid flow (Michie et al., 2014). 
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Figure 3.1: Illustration of the characteristic fault zone architecture of the Maghlaq Fault. (i) The footwall 

comprises undeformed protolith of Lower Coralline Limestone Formation. (ii) Host rock lenses of Lower Coralline 

Limestone Formation, (iii) overlapping lenses of Lower Coralline Limestone Formation and Globigerina 

Limestone Formation, (iv) breccia of Lower Coralline Limestone Formation and (v) lenses of Globigerina 

Limestone Formation are present on the fault surface. (vi) A continuous layer of Blue Clay Formation with highly 

variable thickness. (vii) A continuous hanging wall shear zone and (viii) dipping layers comprised of Upper 

Coralline Limestone Formation. Modified after Bonson et al. (2007). 

 

The internal complexity of a fault zone, e.g. juxtaposition and fault properties, is important 

when considering fluid flow, as a fault can act as a barrier, a conduit or a combination of the 

two, in the subsurface (Caine et al., 1996; Evans et al., 1997; Childs et al., 2009; Rotevatn and 

Fossen, 2011; Michie et al., 2014). The combination often includes sealing effects for across-

fault flow and conduits for along-fault flow (Rotevatn and Fossen, 2011). In terms of the 

permeability architecture of a fault zone, the core typically forms a zone of low permeability, 

whereas the damage zone forms a zone of high permeability, due to the presence of fault-related 

fractures. (Caine et al., 1996; Billi et al., 2003). A high density of vertically extensive fractures 

in the damage zone can act as important fluid flow conduits, and commonly occurs in a segment 

linkage fault such as the Maghlaq Fault (Bonson et al., 2007).  
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 Faults in carbonates 
 

The evolution and propagation of faults in carbonates occur over a wide range of scales and are 

primarily controlled by the lithofacies of the rock (Putz-Perrier and Sanderson, 2010; Michie et 

al., 2014). The strength and texture of the protolith exert strong controls on the deformation 

style and the type of fault rocks produced. Pressure solution is a deformation process that plays 

an important role during fault nucleation and growth in carbonates (Peacock et al., 1998; 

Graham et al., 2003; Bonson et al., 2007), and forms pressure solution seams, which impacts 

the distribution of slip surfaces (Willemse et al., 1997; Peacock et al., 1998). The heterogeneity 

of fault rocks in the core is largely controlled by the variation in juxtaposition of lithofacies 

along the fault surface, and may increase with greater displacement (Bastesen and Braathen, 

2010; Michie, 2015). Studies of carbonate-dominated fault zones’ internal geometry and 

distribution of deformation structures allows for a better understanding of their influence on 

fluid flow in a fault system (Caine et al., 1996; Childs et al., 1997; Bonson et al., 2007; Bastesen 

et al., 2009).  

 

Michie et al. (2014) carried out a detailed study of the relationship between the carbonate facies 

and fault zone architecture on Malta, whereby some general observations and conclusions were 

made for faults in carbonate rocks. The lithologies of the fault zones comprise Lower Coralline 

Limestone Formation overlain by a succession of Globigerina Limestone Formation. The 

Lower Coralline Limestone, which is heterogenous and grain-dominated, composed of coarse 

and rigid grains, has a high rock strength which localizes the deformation, resulting in a classic 

fault zone architecture including a core and a surrounding damage zone. Protocatalasites, 

cataclasites and breccia form in response to deformation on the grain-scale (Fig. 3.2a), and, if 

cementation occurs, they can act as barriers for fluid flow (Michie et al., 2014; Michie, 2015). 

The Globigerina Limestone, which is homogenous and micrite-dominated, is on the contrary 

weaker, as it consists of very fine particles in a micritic matrix, and will deform by intense 

through-going fracturing (Fig. 3.2b), forming networks that can create dilation breccias. Fault 

rocks created from the micrite-dominated facies can be recrystallized, which may result in the 

formation of a barrier to fluid flow (Michie et al., 2014; Michie, 2015). 
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Figure 3.2: Field examples and corresponding sketches of the deformation styles dominating two low 

displacement fault zones (11.7 m in a) and 5 m in b)) on the southwestern coast of Malta. a) The deformed grain-

dominated Lower Coralline Limestone forms chaotic breccia, whereas b) the deformed micrite-dominated 

Globigerina Limestone forms fracture networks. Modified after Michie et al. (2015).  
 

 Seismic expression and interpretation of faults 

 
In nature, most faults and some fault-related structures are too steep to be illuminated with their 

true dips in seismic (Rotevatn and Fossen, 2011; Alaei, 2012; Saffarzadeh et al., 2019). This 

issue is related to dip-limited illumination in the seismic and/or lack of contrast in acoustic 

impedance between the fault surface and the surrounding rocks. A weak, or no, contrast in 

acoustic impedance results in a weak or absent reflectivity, and hence no seismic reflection 

representing the plane structure of the fault. However, the seismic expression of a fault can be 

recognized from reflection geometries surrounding it. Faults in seismic generally show a 

distinct displacement pattern across the surface of the fault, and are commonly identified by 

discontinuous, displaced reflection events (Freeman et al., 1990; Rotevatn and Fossen, 2011). 

Furthermore, they can be identified not only from discontinuous reflectors, but also from 

seismic diffraction patterns. Diffractions are scattered waves, which are generated by geological 
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discontinuities, such as unconformities, fractures and faults (Hilterman, 1970; Landa, 2012). 

Although diffractions are essentially weaker than the reflected energy and may even be further 

weakened during seismic migration, they do give valuable indications of structural features in 

the subsurface (Khaidukov et al., 2004; Landa, 2012). Moreover, seismic data are a 

combination of seismic signals and various noise, which reduces the quality of the data (Sheriff, 

1978; Hesthammer et al., 2001). Noise appears in the seismic data as a result of several different 

sources, e.g. acquisition and processing. Faults commonly cause chaotic seismic images, which 

is related to the complexity of the structure as well as limitations to both resolution and 

illumination in the seismic (Hesthammer et al., 2001; Rotevatn and Fossen, 2011).   

 

Faults in seismic are commonly subdivided into two types: seismically resolvable faults and 

sub-seismic faults (Gauthier and Lake, 1993; Townsend et al., 1998). The resolvability and 

detectability of faults in seismic is in addition to the acoustic impedance contrast, also 

controlled by the seismic resolution and signal-to-noise ratio of the seismic (Zhang and 

Castagna, 2011; Simm and Bacon, 2014; Grippa et al., 2019). Moreover, faults in seismic are 

often interpreted as simple 2D plane surfaces, when in reality they are zones of complex 3D 

volumes with heterogenous rocks and structures (Fig. 3.3) (Botter et al., 2014). Internal 

structures within the core and damage zone of seismic-scale faults are usually below seismic 

resolution, although it is possible for small-scale structures to be detectable without being fully 

resolved. This can happen if they have higher amplitudes than the background geology. Such 

small-scale structures can have a great impact on the connectivity across faults (Childs et al., 

1997; Walsh et al., 1998). This is important information that is seldom included in a faulted 

reservoir model due to lack of time and financial recourses, resulting in less realistic fluid flow 

simulations (Townsend et al., 1998). Including geometric heterogeneity in a three-dimensional 

way when interpreting faults in seismic can have a major impact on hydrocarbon exploration 

and production, CO2-storage as well as hydrogeological and geothermal systems (Wibberley et 

al., 2008; Botter et al., 2014). 
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Figure 3.3: a) An outcrop example of a complex fault zone with several slip surfaces (left) and how it is often 

interpreted in seismic if the complexities of the core is not resolved (right). b) A plane structure of a fault in a 2D 

seismic section (left) and four different interpretations of the case (right). Modified after Botter et al. (2014). 

 

 Seismic resolution 

 

The seismic resolution decides the resolving power of the seismic data, as well as the level of 

structural and stratigraphic details that can be observed in seismic images of the subsurface 

(Herron, 2011). The resolution of a seismic dataset is determined by the dominating 

wavelength, λ, given by: 

λ =  
𝑣

𝑓
                (Eq. 3.1) 

  

where v is the seismic velocity and f is the dominant frequency. Generally, with an increase in 

depth, the frequency will decrease and the velocity increase, resulting in an overall decrease in 

the seismic resolution (Rafaelsen, 2006; Simm and Bacon, 2014). Seismic resolution in the 

vertical direction is indicated by the tuning thickness, which, as a rule of thumb, is equal to a 

quarter of the wavelength (Simm and Bacon, 2014). Despite this indication, the resolution may 

vary across a resolved area due to variations in the vertical and lateral velocity and the dominant 

frequency in the subsurface (Herron, 2011). 

 

The lateral resolution is described by the Fresnel zone, which is defined as the area of the 

wavefront from which the dominant part of the reflection originates. (Herron, 2011; Simm and 

Bacon, 2014). The size of the Fresnel zone is significant when considering lateral changes in a 

seismic profile, e.g. facies changes, channel cuts and stratigraphic wedges (Lindsey, 1989). 

Migration, the process where reflection events are reconstructed and moved to a correct lateral 
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position and vertical time or depth (Kearey and Brooks, 1991), has a focusing effect on the 

energy distributed across the Fresnel zone. The Fresnel zone effect therefore differs for pre- 

and post-migrated data (Sheriff, 1996; Thore and Juliard, 1999). Seismic objects that are 

smaller than the Fresnel zone will not be distinguished from each other on the seismic image 

(Simm and Bacon, 2014). As the seismic migration collapses the Fresnel zone, the lateral 

resolution of the seismic data increases. As illustrated in Fig. 3.4, if the data are 2D, the Fresnel 

zone is reduced in one dimension, forming an ellipse. Whereas for 3D seismic, the Fresnel zone 

shrinks to a small circle with a diameter of λ/2 (Kearey and Brooks, 1991; Sheriff, 1996; 

Rafaelsen, 2006; Herron, 2011). 

 

Figure 3.4: Seismic migration collapses the Fresnel zone in one dimension to an elliptical form for 2D seismic 

and reduces it to a small circle for 3D seismic. Modified after Simm and Bacon (2014).  

 

 Seismic modeling  
 

Seismic modeling is a way of understanding elastic wave propagation in the subsurface 

(Lecomte et al., 2016). Seismic modeling can be performed on a realistic geological model in 

order to generate synthetic seismic images, which can help bridge the gap between field 

observations and seismic interpretation. This method gives the numerical computation of 

seismic responses for an earth model by simulating elastic wave propagation in the model 

(Carcione et al., 2002; Alaei, 2012). Adequate seismic modeling techniques, suitable elastic 

properties and detailed structural input, e.g. from virtual outcrop models of field analogues, are 

necessary for realistic seismic modeling that can aid the understanding of seismic imaging of 

the subsurface (Rabbel et al., 2018).  
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Seismic modeling techniques further provide a better understanding of the resolution, scale and 

details in real seismic data (Anell et al., 2016; Rabbel et al., 2018). In addition, the synthetic 

seismic holds valuable information on potential pitfalls and limitations of seismic data, e.g. 

seismic resolution issues and illumination limitations (the ability to image dipping structures) 

(Lecomte et al., 2015; Anell et al., 2016). The evaluation and design of the geophysical 

parameters used in a seismic survey can also be improved from seismic modeling (Carcione et 

al., 2002; Anell et al., 2016). 

 

3.5.1 Main modeling approaches 

 
Three main approaches are frequently used for seismic modeling: 1D convolution modeling, 

2(3)D full-wavefield modeling and 2(3)D ray-based modeling (Lecomte et al., 2015). The 1D 

convolution modeling approach is used for horizontally stratified structures where lateral 

velocity variations are absent (Lecomte, 2008; Lecomte et al., 2015). This method is commonly 

used in seismic for, e.g., well-tie analysis in order to link the geological beds in a well to the 

corresponding seismic response (Alaei, 2012). As the geological input models to seismic 

modeling are improving, due to more detailed digital outcrop mapping, the 1D convolution 

method becomes too simplistic compared to 2(3)D modeling (Lecomte et al., 2016).  

 

The first of the two main 2(3)D modeling approaches is the full-wavefield seismic modeling, 

which is more efficient, yet resource expensive compared to the 1D convolution modeling. The 

full-wavefield method generates complete synthetic seismograms based on numerical solutions 

to the wave equation. This approach is considered an ideal seismic modeling strategy where the 

synthetic seismic data can be processed like done with real seismic data (Lecomte et al., 2015, 

2016). The second main 2(3)D modeling approach is the ray-based approach, for which the full-

wavefield is not taken into account (Carcione et al., 2002). Ray-based modeling is a flexible 

approach that allows for changes and analysis of various parameters affecting the resolution 

and illumination of the seismic data (Lecomte et al., 2015, 2016). This approach is more cost- 

and time-effective compared to the full-wavefield method and is hence applied more frequently, 

despite limitations when it comes to modeling detailed and complex target structures (Lecomte 

et al., 2015, 2016). 
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3.5.2 2(3)D PSF-based convolution modeling 

 

In this thesis, a simplified version of the ray-based modeling method has been applied. This is 

a 2(3)D convolution method, where a 2(3)D spatial pre-stack convolution operator, a so-called 

Point-Spread Function (PSF), is used to produce synthetic seismic. This method convolves the 

reflectivity input model with the PSF to generate Pre-stack Depth Migration (PSDM) seismic 

images (Lecomte et al., 2015, 2016). PSDM images are seismic images of the subsurface 

reflectivity generated in the depth domain by seismic processing (Lecomte, 2008; Lecomte et 

al., 2015). 2(3)D PSF-based convolution is a method that relies on the entire input grid of the 

model instead of dealing with one column of that grid at a time (Fig. 3.5). PSFs are, amongst 

other parameters, functions of the seismic survey, the input wavelet and the background 

velocity (Lecomte, 2008; Lecomte et al., 2015, 2016). PSF-based convolution modeling is 

beneficial due to its ability to capture detailed structures from virtual from outcrop models and 

generate more realistic seismic (Lecomte et al., 2016).  

 

 

Figure 3.5: Main steps of the 1D and 2(3)D convolution modeling approaches to generate synthetic seismic images 

of fold structures. a) Model containing the input for acoustic impedance of the folds. b) A reflectivity log is 

convolved with a wavelet to form a synthetic trace. c) The resulting synthetic seismic of the 1D convolution 

modeling, shown in the depth domain for ease of comparison between 1D and 2(3)D seismic. d) The Point-Spread 

Function (PSF) which the reflectivity input model is convolved with in order to perform 2(3)D convolution 

modeling. e) The resulting synthetic seismic with a maximum illumination angle of 45° and f) perfect illumination 

(with dips up to 90°). From Anell et al. (2016). 
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2(3)D convolution modeling should indeed be favored over 1D convolution modeling for 

geologically complex models, as it allows seismic modeling with realistic illumination and 

resolution effects (Lecomte et al., 2016). While 1D convolution modeling perfectly images 

steeply dipping reflectors, the imaging of these structures would be limited by the angle of 

maximum illumination on real 2(3)D seismic images. Which parts of a geological dipping 

feature that are imaged is determined by the illumination angle, which also constrains the lateral 

resolution (Wrona et al., 2019). The PSF-based modeling results in a blurred representation 

(resolution) of the input model, and possibly missing elements of that model (illumination), 

which mimics a PSDM image described as in the following (Lecomte, 2008).  

 

Fig. 3.6 briefly explains the steps and parameters included in the 2(3)D PSF-based convolution 

approach as given by Lecomte et al. (2015, 2016). A key feature in this approach is the 

illumination vector, ISR (Fig. 3.6a). For a given velocity model and seismic survey with a shot 

(S) and a receiver (R), an illumination vector can be generated at a reference or target point, P 

(Lecomte et al., 2015, 2016). ISR is characterized by its orientation and length, which further 

control the illumination and resolution of PSDM imaging at the target point, P (Lecomte et al., 

2016). For instance, a horizontal reflector close to the target point will only be illuminated in 

the PSDM image if a vertical ISR exists, as shown in Fig. 3.6a (Lecomte et al., 2016). Similarly, 

a reflector with a geological dip of 45° will only be illuminated in the seismic if an ISR 

perpendicular to this reflector exists.  

 

The first step in the 2(3)D PSF-based convolution modeling process is generating a PSDM filter 

by adding parameters such as an angle of maximum illumination (ISR span) (Fig. 3.6b) and a 

wavelet (Fig. 3.6c). In this thesis, a generic ISR span is used in the seismic modeling. This can 

be generated if the background velocity and survey information are unknown. The ISR is then 

defined by an average velocity (V) and an incident angle (θ), where a high velocity and/or 

incident angle results in a short illumination vector span (Lecomte et al., 2016). The difference 

between the incident angle and the illumination angle is illustrated in Fig. 3.7. 
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Figure 3.6: The parameters used for generating PSDM images from simulated PSFs. a) For a given velocity model 

and a) a seismic survey with a shot (S) and a receiver (R), an illumination vector, ISR, at a target point, P, is 

generated. b) A generic ISR span can also be generated if the velocity model and survey information are unknown. 

c) Amongst other parameters, the ISR span and a wavelet are added to generate a PSDM filter. A PSF is produced 

from the PSDM filter by Fourier transform. d) A PSDM filter and the associated PSF which correspond to a 

maximum illumination angle of 45°. Notice the cross-pattern in the PSF, representing the dip-limited illumination. 

e) A PSDM filter and the associated PSF corresponding to a perfect illumination of 90°. Modified after Lecomte 

et al. (2015). 
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The generated PSDM filter is shown to the right in Fig. 3.6d. The filter corresponds to an angle 

of maximum illumination of 45°, a Ricker wavelet with a dominant frequency of 40 Hz, an 

average velocity of 4.7 km/s and an incident angle of 0° (zero-offset). The next step in the 

process is then to simulate a PSF in the spatial domain from the PSDM filter in the wavenumber 

domain by Fourier transform. The resulting PSF is illustrated to the left in Fig. 3.6d. The limited 

ISR span appear as a cross pattern due to truncation effects from the simulated PSF (Lecomte et 

al., 2016). The PSF is accounting for resolution and illumination effects on PSDM seismic 

images for all reflectors (Lecomte et al., 2015), which hence results in more realistic synthetic 

seismic being generated. The seismic resolution induced by the PSF are about λ/4 vertically 

and λ/2 laterally for the 45° maximum illumination angle case.  

 

Another usage of the generic ISR span is defining a perfect illumination case which includes 

dips up to 90° – in other words “ideal seismic acquisition” (Lecomte et al., 2016). Fig. 3.6e 

illustrates a perfect illumination case of the PSDM filter and the corresponding PSF. Compared 

to the PSF corresponding to an angle of maximum illumination of 45°, the PSF representing 

the perfect illumination does not contain any cross-pattern effects. This is because the 

illumination is not dip-limited in this case. All reflectors will be illuminated in the resulting 

seismic when the angle of maximum illumination is 90°. The seismic resolution induced by the 

this PSF is about λ/4 both vertically and laterally. However, perfect illumination is not possible 

to obtain in real seismic. The angle of maximum illumination is seldom more than 40-50°, even 

for 3D seismic.  In this study, an ISR span defining a perfect illumination case is applied in the 

seismic modeling for the sake of comparison between ideal and realistic seismic imaging.  
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Figure 3.7: Sketches illustrating a) the incident angle (θ) of a seismic wave, and b) the illumination angle. The 

illumination vector (ISR) span decides the maximum geological dip of reflectors that will be illuminated in the 

seismic. The case in b) shows a horizontal reflector (green) and four steeper dipping reflectors (orange, purple and 

black). The reflectors which are oriented perpendicular to one of the illumination vectors will be illuminated in 

the seismic (dashed lines). However, if the geological dip of the reflector exceeds the angle of maximum 

illumination, the reflector will not be illuminated in the seismic (black lines).  
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4 Data and methodology 

 

This chapter gives an outline of the data obtained and methods applied both in the field and in 

the computer lab, in the process of going from outcrop to 2D synthetic seismic. The synthetic 

seismic images created in this thesis are built on four well-exposed cross sections of the hanging 

wall of the Maghlaq Fault, with sizes ranging from 80 m x 12 m to 250 m x 65 m. A workflow 

including each step in the process from outcrop to synthetic seismic is provided in Fig. 4.3 and 

Appendix A.  

 

 Field work 
 

The seismic images generated in this study are based on outcrop data collected on the 

southwestern coast of Malta during a 2-week-period of field work in March 2019. The primary 

data collected from the four different localities were imagery captured by an unmanned aerial 

vehicle (UAV, i.e. a drone). The imagery was collected with the aim of building virtual outcrop 

models (VOMs) from photogrammetry of each hanging wall cross section of the Maghlaq Fault. 

The VOMs were further geologically interpreted and assigned elastic properties in order to 

function as input for seismic modeling at a later stage in the process. Other data obtained in the 

field included orientation measurements of the fault surface and detailed descriptions and 

sketches of the hanging wall geometry, which aided the geological interpretation of the VOMs. 

Additionally, lithostratigraphic data were collected at In-Neffiet (Fig. 1.1c) to make a 

representative stratigraphic log of the study area. 

 

4.1.1 Stratigraphical logging 

 

The cross section of the hanging wall at In-Neffiet was logged as it is the most accessible 

outcrop to get to by foot along the Maghlaq Fault. Elsewhere along the fault, e.g. Ix-Xaqqa, 

Ras Hanzir and Il-Miqtub (Fig. 1.1c), the cross sections of the hanging wall form steep cliffs 

surrounded by the ocean, making them inaccessible for sedimentological logging. The log is 

based on the classification scheme of Dunham (1962) for carbonate rocks, as well as field 

observations, i.e. particle size, grain/matrix ratio, fossil content and thickness of the layers, 

which are further supported by previous work done on the stratigraphy (Pedley et al., 1976; 

Pedley 1987, Dart et al., 1993). Due to the lack of exposure of the lithology in the footwall of 

the Maghlaq Fault, other than an inaccessible quarry close by Ix-Xaqqa, the footwall was not 
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logged, and the lithology used in the geological models for this part is purely based on 

stratigraphic studies from Pedley et al. (1976), Dart et al. (1993) and Bonson et al. (2007). 

 

4.1.2 Outcrop mapping  

 

Photogrammetric image collection is a useful mapping tool where overlapping photographs of 

an outcrop can be automatically processed to rapidly extract the relative 3D coordinates of 

surface points that are present on the overlapping photos (Bemis et al., 2014). Photogrammetric 

techniques are time- and cost-efficient methods to visualize inaccessible outcrops as 3D models. 

The only thing required in addition to a digital camera is access to a suitable software that can 

stitch the photographs together into an outcrop model (Bemis et al., 2014). Photogrammetric 

techniques and the building of a virtual outcrop model can improve the geological 

interpretations of an outcrop when time is limited in the field and if structures are too big to 

observe extensively in the field.  

 

In this study, a DJI Mavic Pro drone was used for aerial photogrammetry to provide input data 

for building high-resolution 3D virtual outcrop models of the Maghlaq Fault. The drone was 

remotely controlled from the DJI remote-access application installed on a smartphone, which 

was attached to the controller. This made it easy to keep track of the distance to the outcrop and 

make sure the pictures gathered were significantly overlapping. A photographic overlap of 60-

80% is the ideal percentage when mapping an outcrop, to get the highest quality possible of the 

VOM (Bemis et al., 2014). This was obtained by continuously shooting photographs while 

flying the drone parallel to the outcrop with the camera pointing at a 90° angle to the cross 

section (Fig. 4.1). The shots were captured with the drone flying at a distance between 20-60 m 

from the outcrop, depending on the size of the outcrop, to include the top and the bottom of the 

cross section in the picture frame. Small-scale structural features in the damage zone, such as 

fault rocks and antithetic and synthetic faults, were photographed more closely in order to 

obtain high-resolution photographs of these structural inputs for the geological model.  
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Figure 4.1: Virtual outcrop models of the outcropping footwall (B-B’) and hanging wall (A-A’) of the Maghlaq 

Fault (MF) at Ix-Xaqqa. Satellite photo in top image from Google Earth (2019). 

 

 

 From outcrop to geological model 
 

4.2.1 Virtual outcrop models from photogrammetry 

 

A large amount of georeferenced photographic data was obtained during the period of field 

work. Following the data collection was filtering of photographs based on quality and relevance 

for the 3D model. Photographs of poor resolution, poor coverage of the outcrop or bad lightning 

were manually filtered. The remaining photos were processed in AgiSoft Photoscan to generate 

a 3D virtual outcrop model, following the workflow in Fig. 4.2. This process was repeated for 

all photogrammetrically mapped outcrops, resulting in four VOMs of the hanging wall and a 

single VOM of the footwall. 
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Figure 4.2: Workflow explaining the process for building a virtual outcrop model from photogrammetry in 

AgiSoft Photoscan. 
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4.2.2 Geological models 

 

After generating a VOM, the next step in the process included a detailed structural and 

stratigraphic interpretation of the model, which is required in order to create 2D geological 

input models for seismic modeling. Geological interpretations of the 3D outcrop models were 

firstly performed in LIME (Buckley et al., 2019) to identify main structural features and 

stratigraphic boundaries. The interpretations of the VOMs were supported by outcrop 

descriptions, external photographs and sketches gathered in the field. The stratigraphic layers 

were interpreted based on lithology, geometry, color change and degree of weathering observed 

on the model and the associated photos. The area of greatest interest was the damage zone on 

the hanging wall side of the fault, as it comprises a chaotic and complex zone containing fault 

rocks, small-scale synthetic and antithetic faults and drag folding.  

 

The geologically interpreted VOM was further projected onto a 2D panel and exported to a 

graphics editing software (e.g. Adobe Illustrator CS6 or paint.net) to fill in the geological units 

with color. A single geological model was created of the footwall of the Maghlaq Fault and 

duplicated onto the four different hanging wall models, resulting in four complete fault zone 

models. Furthermore, the fault and stratigraphy were extrapolated to create appropriate-size 

models for seismic modeling. Over- and underburden strata were added to the geological model 

based on local and regional stratigraphic information from Dart et al. (1993) (Fig. 2.3), Pedley 

et al. (1976) and Bonson et al. (2007), which provide age, thicknesses and geometry of the 

lithostratigraphy in the Malta region. 

 

4.2.3 Elastic Properties  

 

Elastic properties, i.e. seismic velocities and bulk density, determine the seismic reflection of 

rocks (Brigaud et al., 2010). These properties are highly dependent on the rock’s mineral 

composition as well as texture, porosity, pore fluid content, cementation, depth of burial and 

the equivalent temperature and pressure at this depth (Gardner et al., 1974; Castagna et al., 

1993). Big challenges are associated with building velocity models representing geology of 

great complexity (Fonseca et al., 2018). The interpreted layers in the footwall and hanging wall 

of the geological models of the Maghlaq Fault had to be assigned specific elastic properties 

according to their lithologies in order to do seismic modeling. The properties assigned to the 

models herein are presented in Table 1, and include density, P-wave and S-wave velocities. 
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The velocity models created in this study were based on P-wave velocities extracted from 

studies on seismic velocities for different lithologies, and S-wave velocities derived from 

geophysical ratios between the P-wave and S-wave velocities. The P-wave velocities for the 

carbonates, clays, sand and marls in the geological models were based on rock velocities from 

the studies of Bourbie et al. (1987) and Mavko (2017). The faulted and fractured carbonate 

rocks comprising the damage zone of the fault were given seismic velocities after the study of 

Agosta et al. (2007). The S-wave velocities assigned to the layers in the geological models were 

based on Vp/Vs-ratios, which are indicative for different lithologies. The Lower and Upper 

Coralline Limestone formations were given Vs-values based on a Vp/Vs-ratio of 1.9 for 

limestone (Miller, 1992; Castagna et al., 1993). A Vp/Vs-value of 1.7 was used for the 

Greensand Formation’s calcareous sand, after Pickett (1963) and Miller and Stewart (1990). 

For the Blue Clay Formation, a higher Vp/Vs ratio of 2.13 was applied after Castagna et al. 

(1993) and Tosaya and Nur (1982). Finally, the S-wave velocity for the post-rift marls and clays 

was based on a Vp/Vs-ratio of 1.91, after Dvorkin et al. (2001). 

 

Table 1: Input elastic properties to seismic modeling for each formation represented in the geological models of 

the Maghlaq Fault zone.  

Formation Lithology 
Vp  

(km/s) 

Vs  

(km/s) 
Vp/Vs 

Density 

(kg/dm3) 

Lower Coralline Limestone Limestone 5.5-5.8 2.9-3.05 1.9 2.67-2.71 

Globigerina Limestone Limestone 3.7-4.0 1.95-2.11 1.9 2.42-2.47 

Blue Clay Clay 1.9-2.5 0.89-1.17 2.13 2.05-2.19 

Greensand Calcareous sand 3.0 1.76 1.7 2.29 

Upper Coralline Limestone Limestone 4.7-6.0 2.47-3.16 1.9 2.57-2.73 

Plio-Quaternary succession Marls & clays 2.1-2.7 1.1-1.41 1.91 2.1-2.23 

Upper Coralline Limestone Fault rock 4.3-4.8 2.26-2.53 1.9 2.51-2.58 
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Although relationships between rock velocities and other elastic properties in carbonates are in 

general complex, there is a simple and systematic relationship between the P-wave velocity and 

the density, called Gardner’s relation (Eq. 4.1) (Gardner et al., 1974; Miller, 1992; Dey and 

Stewart, 1997). The density values used in this study were derived from Gardner’s relation. The 

equation given from this relation allows for the acoustic impedance to be estimated from 

velocity information exclusively, when measured densities are unavailable (Gardner et al., 

1974; Miller, 1992).  

 

𝜌 =  𝑎𝑉1/4                                                 (Eq. 4.1) 

 

Where   = density in g/cm3 , a = 0.31 and V = P-wave velocity in km/s (Dey and Stewart, 1997; 

Ursenbach, 2002). 

 

 From outcrop to 2D synthetic seismic 
 

In this study, a 2D PSF-based convolution modeling approach was used to generate synthetic 

seismic sections of the Maghlaq Fault. The theory behind the 2(3)D PSF-based convolution 

modeling approach was described in detail in Chapter 3.5.2. The four geological models with 

associated elastic properties were used as input models for seismic modeling in SeisRoX Pro, 

NORSAR software Suite 2019. Synthetic PSDM images were generated by using an analytical 

PSF, which contains the necessary information on geophysical parameter values. A step-by-

step explanation of the workflow going from an outcrop model to 2D synthetic seismic images 

is provided in Fig. 4.3 and in Appendix A. 
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Figure 4.3: A workflow explaining the main steps going from outcrop to 2D synthetic seismic. a) A virtual outcrop 

model of the hanging wall of the Maghlaq Fault, which the geological model is primarily based on. b) Geological 

interpretations of the outcrop model performed in LIME. Main stratigraphic and structural features are identified 

and marked. c) The interpretation is imported into a drawing software, where the units are filled with different 

colors dependent on lithology. d) The geological model of the hanging wall is merged with the footwall model, 

and under- and overburden strata are added, resulting in a complete 2D fault zone model. e) Each unit is given a 

unique gray scale color in order to be mathematically identifiable in Matlab. f) Elastic properties such as P- and 

S-wave velocities and density are added to each layer in Matlab. Four data files are generated in this process, 

which are used as input property cubes in the seismic modeling software. g) A reflectivity model is generated and 

convolved with a Point-Spread Function (PSF) which includes information on wavelet, velocity, illumination angle 

and incident angle. h) The resulting 2D synthetic seismic. 
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4.3.1 Sensitivity study  

 

To address the key scientific question of this thesis, a sensitivity study of the resulting synthetic 

seismic was conducted, investigating the effects of various geophysical parameters. This 

included the effects of various dominant frequencies, levels of noise, angles of maximum 

illumination, incident angles and wavelet types (frequency bands) on the seismic expression of 

the hanging wall geometry of the Maghlaq Fault. The ranges of values for the different 

parameters included in the sensitivity analyses are listed below. The resulting synthetic seismic 

sections from the sensitivity study are presented in Chapter 5. 

 

• Dominant frequencies (Hz):  

10, 20, 30, 40, 60, 100, 150 and 200.  

 

• Levels of noise (%): 

0, 25, 50 and 100. 

 

• Angles of maximum illumination (°): 

30, 45, 60 and 90. 

 

• Incident angles (°):  

0, 10 and 30. 

 

• Wavelet types:  

Ricker and Ormsby.  
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5 Results 
 

In this chapter, the results of both the workflow “from outcrop to 2D synthetic seismic” 

(Chapter 4.3), and the geophysical parameter sensitivity study will be presented. Firstly, the 

geological interpretations of the virtual outcrop models and the associated 2D geological 

models are addressed, followed by a presentation of the resulting 2D synthetic seismic images. 

The seismic modeling results are further divided into subchapters with respect to the 

geophysical parameter subject to sensitivity testing.  

 

 Geological interpretations of the Maghlaq Fault zone  
 

Five virtual outcrop models (VOMs) of the Maghlaq Fault are included in this study: one 

footwall model and four hanging wall models. The geological interpretations of each of the 

VOMs are the base of the geological input models for 2D seismic modeling. The VOMs were 

interpreted with the aim to identify structural fault geometries and main stratigraphic 

boundaries in the fault zone. The outcrop models are representative of the outcropping footwall 

at Ix-Xaqqa, and the hanging wall at the following localities: Ix-Xaqqa, Ras Hanzir, Il-Miqtub 

and In-Neffiet (Fig. 5.1). The hanging wall models are hereafter referred to as Model 1, Model 

2, Model 3 and Model 4, respectively (Figs. 5.3-5.6).  

 

 

Figure 5.1: Geological map showing the studied area on the southwestern coast of Malta, where the 

photogrammetrically mapped footwall and hanging wall localities of the Maghlaq Fault are marked. Modified 

after Bonson et al. (2007). 
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5.1.1 Stratigraphic interpretations  

 

The stratigraphy presented in the geological models is a combination of stratigraphic 

interpretations of the VOMs, which are unique for each model, and conceptual stratigraphic 

interpretations, which are identical for all models. The hanging wall part of the geological 

models is divided into three parts with respect to the activity of the fault: a pre-rift layer of 

Lower Coralline Limestone Formation, an early syn-rift succession consisting of Globigerina 

Limestone Formation, Blue Clay Formation and the occasionally occurring Greensand 

Formation, a late syn-rift succession of Upper Coralline Limestone Formation and an 

overburden of post-rift marls and clays. The footwall part of the geological models comprises 

a thick succession of pre-rift Lower Coralline Limestone overlain by the same overburden as 

in the hanging wall. The main stratigraphic differences from model to model are: 

 

(i) Number of stratigraphic layers included. 

(ii) Thickness variations in Globigerina Limestone and Blue Clay in Model 2, 3 and 4. 

(iii) Absence of Greensand in all models except for Model 3. 

(iv) No early syn-rift deposits present in Model 1.  

 

The stratigraphic interpretations of the VOMs are supported by the stratigraphic logs presented 

in Fig. 5.2. Fig. 5.2a illustrates the overall stratigraphy of the Maltese Islands, whereas Fig. 5.2b 

presents the log created from the stratigraphical logging performed in the field, on the sub-

vertical layers in the hanging wall of Model 4. The latter represents the lithologies, fossil 

content and units present in the VOM from In-Neffiet (Fig. 5.6a). This stratigraphic log 

includes, from bottom to top, layers of Upper Globigerina Limestone Member, Blue Clay 

Formation and Upper Coralline Limestone Formation. The thickness of Upper Coralline 

Limestone is dominating the stratigraphic log with a total of 64 m, in contrast to the 10 m thick 

Blue Clay and 2 m thick Upper Globigerina Limestone.  
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Figure 5.2: a) Lithostratigraphic log of the Maltese Islands modified after Dart et al. (1993). b) Lithostratigraphic 

log of the Maghlaq Fault’s hanging wall at In-Neffiet (Model 4). This log was created from stratigraphical logging 

performed during the period of field work on Malta. The sub-vertical layers at the locality comprise a few meters 

of Upper Globigerina Limestone Member (UGLM), 10 meters of Blue Clay Formation (BC) and a thick succession 

of Upper Coralline Limestone Formation (UCL). 

 

5.1.2 Structural interpretations 

 

The structural features in the geological models are, similarly to the stratigraphic 

interpretations, based on interpretations of the VOMs in addition to conceptual extrapolations. 

A structural simplification was established for all the geological models: the faulted limestone 

units in both the hanging wall and the footwall are bounded at the top by an unconformity. This 

unconformity forms a disconformity in Model 1 and angular unconformities in Models 2, 3 and 

4. 

 

The hanging wall geometry and the structural dips of the geological models are changing from 

west to east along the Maghlaq Fault. The VOM in Model 1 (Fig. 5.3), which is the westernmost 

outcrop in this study, comprises parallel strata that are predominantly oriented sub-horizontally, 

striking c. NW-SE, with a maximum dip of 10-20° towards S (Fig. 5.3c, right). The hanging 
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wall outcrop also consists of a chaotic zone of fault rock, including brecciated Upper Coralline 

Limestone (Fig. 5.3c, left). This zone is further cut by several small-scale antithetic normal 

faults. The VOM of the footwall of the fault, which is located close to the hanging wall of 

Model 1 (Fig. 5.1), also comprises sub-horizontal, parallel layers. Since the footwall is in 

general poorly exposed along the fault, except for at Ix-Xaqqa, no conclusions can be drawn 

for the structures in the footwall at the other hanging wall localities. As a result, the footwall 

model from Ix-Xaqqa is used in Models 2, 3 and 4 as well. 

 

Advancing eastward onto the VOM in Model 2 (Fig. 5.4), a significant increase in dip of the 

strata is noticeable. The layers of Blue Clay and Globigerina Limestone are oriented sub-

parallel to the fault’s surface, striking c. E-W, with a dip of about 60° towards S, whereas the 

Upper Coralline Limestone layers are approximately striking E-W, with a dip of c. 40° towards 

S. The folded strata are occasionally cut by small-scale antithetic reverse faults (Fig. 5.4c, 

right). Other structural features in this outcrop include host and fault rock lenses that are 

smeared onto the smooth surface of the fault (Fig. 5.4c, left). 

 

In the VOM of Model 3 (Fig. 5.5), the dip of the strata continues to increase. The layers in 

Model 3 are oriented parallel to the fault surface, which is striking c. NW-SE, with a dip of 

about 60° towards SW. The steeply dipping layers in the VOM, as illustrated in Fig. 5.5c (right), 

were interpreted to be part of a greater fault drag in the final geological model, which flattens 

out to the SW in the model. Like in the other VOMs, the layers in this model are also cut by 

some small-scale faults (Fig. 5.5c, left). 

 

Lastly, the VOM in Model 4 (Fig. 5.6), which is the easternmost outcrop in this study, consists 

of layers with a wide range of dips. The dip of the lowermost part of the succession is similar 

to the dip of the fault-parallel layers in Model 3, although the dip direction has changed between 

these two localities, from 60° SSW in Model 3 to 60° S in Model 4. Moreover, the dips of the 

stratigraphic layers become progressively steeper to the S in the VOM, resulting in sub-vertical 

to vertical layers in the middle of the geological model (Fig. 5.6c, left). Finally, in the 

southernmost part of the VOM, there are locally overturned layers (Fig. 5.6c, right), which were 

drawn as recumbent folds in the final geological model.  
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Figure 5.3: a) Virtual outcrop model with geological interpretations of the Maghlaq Fault’s hanging wall at Ix-

Xaqqa. b) The resulting geological model of Model 1. c) Close-ups of (1) a part of the damage zone, including 

small-scale faults and fault breccia of Upper Coralline Limestone Formation and (2) parallel, sub-horizontal layers 

of Upper Coralline Limestone Formation.  
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Figure 5.4: a) Virtual outcrop model with geological interpretations of the Maghlaq Fault’s hanging wall at Ras 

Hanzir. b) The resulting geological model of Model 2. c) Close-ups showing (1) the surface of the Maghlaq Fault 

(MF), a host rock lens of Lower Coralline Limestone Formation (LCLF) and the fault drag zone comprising 

Globigerina Limestone Formation (GLF), Blue Clay Formation (BCF) and Upper Coralline Limestone Formation 

(UCLF). (2) Small-scale synthetic and antithetic faults within the Upper Coralline Limestone Formation.  
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Figure 5.5: a) Virtual outcrop model with geological interpretations of the Maghlaq Fault’s hanging wall at Il-

Miqtub. b) The resulting geological model of Model 3. c) Close-ups of (1) small-scale faults, and (2) steeply 

dipping layers of Upper Coralline Limestone Formation.  
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Figure 5.6: a) Virtual outcrop model and geological interpretations of the Maghlaq Fault’s hanging wall at In-

Neffiet. b) The resulting geological model of Model 4. c) Close-ups of (1) vertical to sub-vertical layers and (2) 

locally overturned structures forming recumbent folds within the Upper Coralline Limestone Formation.  
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 Seismic modeling results 
 

The aims of this seismic modeling study are to investigate the seismic signature of a carbonate-

dominated fault zone, and to determine the effects of various geophysical parameters on the 2D 

seismic images of the fault. The 2D PSF-based convolution modeling approach applied in this 

study is a method that allows for changes and analysis of various parameters affecting the 

resolution and illumination of the seismic data (Lecomte et al., 2015, 2016). In this subchapter, 

the generated synthetic seismic sections will be presented, where the sensitivity of the seismic 

images to the following parameters has been tested: 

i) Dominant frequency 

ii) Level of noise 

iii) Angle of maximum illumination 

iv) Incident angle 

v) Type of wavelet (frequency band) 

 

The majority of the structural and stratigraphic details interpreted from the hanging wall VOMs 

are of sub-seismic scales and would not be resolved in seismic due to resolution limitations. 

However, because faults and fault zones are fractal structures (Walsh and Watterson, 1993; 

Scholz and Aviles, 2013), meaning they appear on a range of scales from mm to km, it is 

reasonable to enlarge the geological input models for seismic modeling. Accordingly, the 

geological models were conceptually upscaled five times their original size to replicate a 

seismic-scale fault zone. Furthermore, for ease of comparison between the input model and the 

resulting seismic, the synthetic seismic images in the following sections are presented alongside 

with the geological input model and the associated reflectivity model. 

 

5.2.1 Changing the dominant frequency 

 

The frequency band and spectrum of a seismic wavelet is one of the geophysical parameters 

primarily controlling the resolution of a seismic image. The frequency band should ideally 

range from very low to the highest possible frequencies. In this section, Ricker wavelet 

frequency bands of both conventional-resolution seismic data and high-resolution seismic data 

were applied. The Ricker wavelet has a narrow frequency band and is hence commonly 

described by its dominant frequency. This is further described in section 5.2.5, where seismic 

modeling with an alternative wavelet is presented. TopSeis (Vinje et al., 2017) and high-

resolution P-Cable seismic (Planke et al., 2009; Petersen et al., 2010) are examples of seismic 
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surveys delivering excellent broadband seismic imaging. TopSeis allows for imaging of 

shallow to intermediate targets (up to 3000 m) using frequencies ranging from 2.5-200 Hz 

(Vinje et al., 2017), whereas the P-Cable 3D seismic system provides imaging with frequencies 

from 20-250 Hz (Petersen et al., 2010). Accordingly, the synthetic seismic images in this thesis 

were modeled with the following as dominant frequencies for the Ricker wavelet: 10, 20, 30, 

40, 60, 100, 150 and 200 Hz. 10-30 Hz are considered to be equivalent to conventional-

resolution seismic, while 40-200 Hz are considered as the equivalent to high-resolution seismic, 

e.g. TopSeis and P-Cable seismic data.  

 

Out of the four geological models created in this thesis, Model 1 and Model 2 were used for 

seismic modeling with various dominant frequencies of the Ricker wavelet. Fig. 5.7 displays 

the effects of changing the dominant frequency of the Ricker wavelet on a range from 10-100 

Hz for synthetic seismic of Model 1. Moreover, Fig. 5.8 presents synthetic seismic of a zoomed-

in part of Model 2, modeled with Ricker wavelets with dominant frequencies on a range from 

40-200 Hz. For the sake of comparison between the seismic of different dominant frequencies, 

the maximum illumination angle was set to 45° in all cases, which corresponds to standard 

seismic illumination (Simm and Bacon, 2014; Rabbel et al., 2018). The angle of incidence was 

further set to 0° to simplify. 

 

In Fig. 5.7 all the synthetic seismic images contain a coherent, strong reflection in the upper 

part of the sections. This reflection corresponds to the reflector attached to the boundary 

between the marls and clays of the overburden and the faulted limestone formations below. 

This high amplitude results from the high contrast in acoustic impedance between the 

lithologies, as the seismic velocities and densities change from very low in the overburden, to 

very high for the faulted limestones (Table 1). In the 10 Hz Ricker wavelet case (Fig. 5.7c), the 

poor resolution causes the distinct overburden reflection to dominate the seismic image. This 

makes it hard to detect the surface and damage zone of the Maghlaq Fault. However, the 

geometry of the fault on seismic changes in response to the increased dominant frequency. As 

the dominant frequency increases, the seismic resolution improves significantly, and the 

heterogeneity within the damage zone starts to be resolved in the seismic. The seismic 

resolution is indicated by the PSF in the bottom left corner of each seismic image. In this case, 

a Ricker wavelet of at least 20 Hz (Fig. 5.7d) is necessary to resolve some of the internal 

variations in the fault zone.  
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Figure 5.7: Synthetic seismic of Model 1 with different dominant frequencies on a range from 10 - 100 Hz of 

Ricker wavelets. The PSFs indicate the 2D seismic resolution of the seismic images. The color bar shows the 

relative color scale of amplitudes where the maximum values are absolute. 

 

When the frequency is further increased to 30 Hz (Fig. 5.7e), the hanging wall geometry is 

resolved with a higher level of detail. In the 40 Hz seismic image (Fig. 5.7f), internal variations 

within the formations are easily detectable, such as the uneven layer of patch reef deposits. The 

level of details resolved in the synthetic seismic continues to increase as the frequencies become 

higher. Finally, in the seismic images of 60 Hz (Fig. 5.7g) and 100 Hz (Fig. 5.7h), almost all of 

the stratigraphic layers are resolved in the hanging wall, the footwall and the overburden. 
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Additionally, small-scale structural features, i.e. antithetic faults (as marked in Fig. 5.3c) and 

fragments of fault rock, are possible to identify in the synthetic seismic of 100 Hz.  

 

The high-resolution synthetic seismic (40-100 Hz) resolve more details from the geological 

model than conventional-resolution seismic (10-30 Hz), although not all of the stratigraphic 

layers included in the geological input model can be identified as individual layers in the high-

resolution seismic – not even for the 100 Hz case. Moreover, the surface of the fault forms a 

strong amplitude in the reflectivity model (Fig. 5.7b), yet it is not visible in the seismic. This is 

an issue related to the dip-limited illumination angle (maximum 45° in this case), which will be 

addressed in section 5.2.3. Nevertheless, the fault can be identified by the discontinuous 

reflections pointed out in Fig. 5.7g. These reflections represent the reflectors corresponding to 

layers which have been displaced by the fault. The discontinuity of the reflections is detectable 

with a frequency of minimum 30-40 Hz and becomes more distinct as the dominant frequency 

is further increased.  

 

Fault imaging in high to very high-resolution seismic data is addressed in Fig. 5.8. This figure 

illustrates the impacts of an increased dominant frequency on the seismic image of small-scale 

faults in Model 2. These faults are corresponding to the interpretation displayed to the right in 

Fig. 5.4c. The dominant frequencies applied in this case include 40, 60, 100, 150 and 200 Hz 

of Ricker wavelets. Three small-scale faults are marked in the gray-scale geological input 

model in Fig. 5.8a, where (1) represents an antithetic reverse fault with a maximum 

displacement of 4 m, (2) points out an antithetic reverse fault with a displacement of about 1 

m, and (3) represents a synthetic normal fault with a displacement of 2 m. As the seismic images 

are upscaled five times the original size of the geological input model, the actual displacements 

of the faults in the seismic are: (1) 20 m, (2) 5 m and (3) 10 m.  

 

The numbers indicating the three small-scale faults in the model are added to the seismic images 

when the corresponding faults are resolved in the synthetic seismic as the dominant frequency 

increases. In Fig. 5.8b, where a frequency of 40 Hz was used, fault (1) is detectable from the 

small offset of the positive reflection in the center of the image. When the frequency is increased 

to 60 Hz (Fig. 5.8c), the same reflection is further downthrown by the fault. As the frequency 

continuously increases and more reflectors are resolved, the offset from fault (3) appears in the 

synthetic seismic modeled with 100 Hz (Fig. 5.8d) and 150 Hz (Fig. 5.8e). Finally, the seismic 

image modeled with a dominant frequency of 200 Hz (Fig. 5.8f) provides excellent seismic 
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resolution, where all three faults are resolved and can be identified from the downthrown 

reflections. 

 

Figure 5.8: Synthetic seismic images of a close-up section of Model 2, showing three small-scale faults with 

displacements from 5-20 m (1-4 m in a) the original geological model), modeled with different dominant 

frequencies on a range from 40-200 Hz of Ricker wavelets. The geological input model is presented in gray colors 

to better visualize the structural input. This zoomed in area of Model 2 is marked in Fig. 5.14, which also provides 

a legend. The color bar shows the relative color scale of amplitudes where the maximum values are absolute. 

 

5.2.2 Adding noise 

 

Real seismic data contain a combination of signal and noise. For that reason, colored random 

noise was added to the synthetic seismic image of Model 1, following the same procedure as in 

Lubrano-Lavadera et al. (2018). The level of noise was systematically increased in the seismic 
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images to investigate the impact of noise on fault imaging. Including a noise pattern in the 

models produces synthetic seismic with more realistic seismic effects. In addition, this analysis 

illustrates the effects of interference between real seismic signals and noise.  

 

Fig. 5.9 displays the reflectivity of the geological model, the reflectivity of the input noise and 

a combination of the two. When combining these two reflectivity models, it is noticeable that 

the strong, continuous reflector, representing the formation boundary between the overburden 

and the underlying limestone fault zone, is not masked by the random noise. On the contrary, 

the rest of the reflectors in the geological model are completely masked by the reflectivity of 

the noise. Accordingly, the seismic in Fig. 5.9d, which is corresponding to the reflectivity of 

the random noise, is considered as a noise level of 100%, even though it will not mask the 

strongest reflector in the reflectivity model of Model 1.  

 

 
Figure 5.9: Reflectivity models of a) Model 1 and b) colored random noise. c) The reflectivity models in a) and 

b) combined. d) The seismic image of the input noise, corresponding to the reflectivity in b).  

 

The effect of noise on the synthetic seismic of the Maghlaq Fault is illustrated in Fig. 5.10. The 

different levels of noise that have been used in this section are the following: 0%, 25%, 50% 

and 100%, where the latter corresponds to the seismic in Fig. 5.9d. In Fig. 5.10a, the seismic 

section is displayed without noise and is thus identical to the model presented in 5.6f, which is 

modeled with a 40 Hz Ricker wavelet, an angle of maximum illumination of 45° and a vertical 

incident angle. These geophysical parameters are fixed for the other seismic images in Fig. 5.10 
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as well, in order to clearly illustrate the impact of an increased level of noise on the seismic 

signature of the fault and the associated damage zone. 

 

 

Figure 5.10: Synthetic seismic images of Model 1 where the level of random noise is systematically increased 

(0%, 25%, 50% and 100%). The geological model is presented in Fig. 5.6, and the reflectivity of Model 1 and the 

input noise, as well as the seismic of 100% noise, is presented in Fig. 5.9.  

 

The increase of noise in the seismic results in a chaotic seismic signature of the fault zone. 

Adding 25% of noise to the seismic produces an image where the internal layering in the 

footwall and hanging wall cannot be identified in detail (Fig. 5.10b). Contrarily, the damage 

zone in the center of the model, forming strong seismic reflections, remains easily detectable, 

despite the surrounding noise. In Fig. 5.10c the level of noise is increased to 50%, reducing the 

distinct seismic expression of the damage zone. Further increasing the noise to 100% results in 

a chaotic seismic image where internal structures cannot be distinguished from each other at all 

(Fig. 5.10d).  

 

5.2.3 Changing the angle of illumination 

 

The Maghlaq Fault and some of its fault-related structures, i.e. fault drag and small-scale 

antithetic and synthetic faults, have steep dips which are difficult to image in seismic. The 

detectability of these structures is determined by their reflectivity and the maximum 

illumination angle of the seismic data. In seismic modeling, the latter is defined by the span of 

the illumination vector (ISR), which is included in the PSF. The aim of this sensitivity analysis 

is to investigate the correlation between the maximum angle of illumination of the seismic 
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survey and the maximum geological dip in the fault zone that can be imaged in the seismic data. 

Models 3 and 4 were used for this analysis, as they comprise steeply dipping features with dips 

ranging from of 60-85°. 

 

Maximum illumination angles applied in this study include 30, 45, 60 and 90°, which are 

considered as low, intermediate (corresponding to a standard seismic illumination), high and 

perfect illumination, respectively. The majority of layers in the hanging wall of Model 3 are 

oriented parallel to the fault surface, which has a dip of 60° towards SSW. Consequently, these 

features are not expected to be illuminated in the seismic images generated with a dip-limited 

illumination angle of 30 and 45°. Similarly to the other sensitivity analyses, the other 

geophysical parameters in this case are fixed to simplify, including a dominant frequency of 40 

Hz Ricker wavelet and a vertical incidence.  

 

The resulting synthetic seismic of Model 3, modeled with a maximum illumination angle from 

30-90°, are presented in Fig. 5.11. The true dips of the fault and the geological units are 

represented by the geological model (Fig. 5.11a). As expected, the Maghlaq Fault shows great 

variations in seismic signature as the angle of maximum illumination increases. The primary 

changes in the seismic from the increased illumination capacity are an improved lateral 

resolution, and thus also more visible features in the fault zone. Furthermore, the geometrical 

appearance of the fault, its surface and hanging wall geometry is significantly changing.  

 

Firstly, the seismic section modeled with a low illumination of 30° does not contain the surface 

of the fault (Fig. 5.11c), although the location of the fault can be traced from the discontinuity 

in seismic reflections in the footwall. (1), (2) and (3) in the figure point out discontinuous 

reflections in the footwall that are cut off by the more steeply dipping layers in the hanging 

wall. Contrarily to the fault surface, the folded layers in the hanging wall are partly illuminated, 

although the orientation deviates from the true dip of the layers, as a consequence of the dip-

limited illumination with its impact on the lateral resolution and the specific cross-pattern. For 

instance, the seismic reflection of the reflector corresponding to the boundary between Upper 

Coralline Limestone and Greensand is highly discontinuous, forming two separate reflections, 

both marked with (4) in the figure. These two reflections would most likely not be interpreted 

as the same formation boundary due to the difference in their seismic signatures. In addition, 

interference is generated between the reflection of the very thin layer of Greensand and the 

thicker layer of Blue Clay below, increasing the likelihood of seismic misinterpretations. 
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Figure 5.11: Synthetic seismic of Model 3, showing the effect of a varying angle of maximum illumination from 

30-90°. The true geological dips of the fault and the steepest part of the folds are 60°, which are indicated in a) the 

geological model. b) shows the reflectivity model, and c)-f) display the resulting seismic images. The numbers in 

the seismic images point to features which are described in the text, whereas the black arrows point to seismic 

artefacts resulting from the dip-limited illumination.  

 

The illumination of the folded layers in the hanging wall is moderately improved with an 

increase in maximum illumination angle up to 45° (Fig. 5.11d). This intermediate illumination 

is a good approximation to standard seismic illumination. Therefore, this synthetic seismic 

image possibly illustrates more realistic seismic effects than the other illumination cases. 

Similarly to the low illumination case, the fault is not illuminated with its true dip in this case 

either, as the dip of the surface (60°) exceeds the angle of maximum illumination (45°). 
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Moreover, in the 45° maximum illumination angle case, more layers in the hanging wall are 

resolved (5) than in the 30° maximum illumination case, though still not with their true dips. 

The formation boundary between Upper Coralline Limestone and Greensand is still illuminated 

as two separate reflections in this model (4). 

 

Finally, in the synthetic seismic modeled with a high (60°) and perfect (90°) illumination (Figs. 

5.11e and f, respectively), the surface of the fault and the steeply dipping layers in the hanging 

wall are imaged with their true dips, as marked by (6) and (7). However, not all the reflectors 

in the hanging wall, corresponding to the drag folded geological layers, are detectable in the 

resulting seismic section. This is primarily a seismic resolution issue, which was addressed 

earlier in this chapter.  

 

All the seismic sections, except for the perfect illumination case, contain seismic artefacts in 

the form of cross-patterns, as pointed out with black arrows in Figs. 5.11c-e. These seismic 

artefacts are resulting from truncations effects from the dip-limited maximum illumination, 

which appear as cross-patterns when the PSDM filter is converted into a PSF (as described in 

subchapter 3.5.2). The cross-patterns for each dip-limited ISR span are indicated by the PSFs, 

and appear on the synthetic seismic from the convolution between the PSF and the reflectivity 

model. This artefact appears not only in synthetic seismic images, but also in real seismic data, 

though it might be stronger than in reality for the synthetic seismic due to the lack of noise. In 

Fig. 5.11, the cross-pattern effects are especially emphasized because of the lack of structural 

details in some parts of the model.  

 

Fig. 5.12 shows the effects of a dip-limited illumination on the synthetic seismic of a zoomed-

in part of Model 4. This part of the model is structurally interesting, comprising folded layers 

with dips ranging from 45 to 85°. The seismic section in Fig. 5.12b illustrates that the fault 

surface, the overturned layer, and the recumbent folds are not illuminated when the maximum 

illumination angle is 45°. When the illumination angle is further increased to 60° it is possible 

to identify both the surface of the fault and the locally overturned structure, as pointed out in 

Fig. 5.12c. In a perfect illumination case, as illustrated by Fig. 5.12d, the recumbent folds are 

finally illuminated. In other words, the features which are only visible in seismic when the 

illumination is perfect would not be possible to identify from real seismic data with a standard 

maximum illumination angle of 40-50°.  
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Figure 5.12: Synthetic seismic of a zoomed-in part of Model 4 (Fig. 5.6), where the maximum illumination angle 

is varied from 45°, via 60° to 90° (perfect illumination). The PSF is indicating the 2D seismic resolution and dip-

limited illumination. A Ricker wavelet of 60 Hz and vertical incidence are applied in all cases.  

 

5.2.4 Changing the angle of incidence 

 

Both the reflectivity and seismic resolution are dependent on the angle of incidence of the 

seismic ray. Consequently, the PSDM seismic images are also incident angle-dependent, 

because they result from a combination of the reflectivity and the resolution (Lecomte, 2008; 

Rabbel et al., 2018). The effect of a non-vertical incident angle is also referred to as amplitude 

versus offset/angle (AVO/AVA) (Lecomte, 2008). Fig. 5.13 illustrates the AVO/AVA effect, 

where the reflectivity of a reflector changes as a response to an increasing angle of incidence. 

The presented reflectivity is described by the acoustic impedance contrast, or change in elastic 

properties (velocity and density), between the geological layers above and below the reflector. 

The reflector in the figure below corresponds to the boundary between the marls and clays in 

the overburden and the massive limestones of the fault zone in Model 2.  
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Figure 5.13: The effect of an increased angle of incidence on the reflectivity. The reflector represented in this plot 

corresponds to the boundary between of the low-velocity marls and clays in the overburden (Vp of 2.5 km/s) and 

the high-velocity limestones below (Vp of 5.5 km/s) in Model 2.  

 

In this seismic modeling case, incident angles of 0, 10 and 30° were applied, to illustrate the 

changes in seismic resolution as a function of the angle of incidence. Fig. 5.14 presents the 

synthetic seismic of Model 2, modeled with these various incident angles. A 40 Hz Ricker 

wavelet and a maximum illumination of 45° were used for all cases. The resulting synthetic 

seismic show that the reflector geometry of the fault zone is overall very similar in all images 

despite the differences in incident angle. However, there are some minor changes in the seismic 

as a result of the varied incident angle. As the angle of incidence increases from 0° or 10° to 

30°, the seismic resolution decreases both vertically and laterally. This is recognizable from 

both the synthetic seismic images and the PSFs. When comparing the zero-offset case in Fig. 

5.14b to the 30° incident angle case in Fig. 5.14d, the lateral resolution in the zone of drag 

folding adjacent to the fault plane is to some degree poorer. The reduced resolution in the 

vertical direction is further noticeable from both the thickening and the disappearance of some 

horizontal reflections, as pointed out by black arrows in the 30° incident angle case. 
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Figure 5.14: Effects of varying the angle of incidence on the synthetic seismic of Model 2. a) Represents the 

geological model, whereas the rest of the images represents the synthetic seismic with different incident angles: 

b) 0°, c) 10°, d) 30°. The PSF is representing the 2D seismic resolution. Changes in the seismic images are pointed 

out by black arrows.  



Chapter 5  Results 

 

 58  

 

5.2.5 Choice of wavelet 

 

In this section, an alternative type of wavelet, the Ormsby wavelet, was used to generate 

synthetic seismic images of Model 4. Prior to modeling, the input wavelet has to be assigned 

specific parameters which define the shape and frequency spectrum of the wavelet (Ryan, 

1994). Ormsby wavelets are zero-phase wavelets, which have numerous small side lobes and 

are often the type of wavelets directly extracted from actual seismic after processing at well 

ties. Four frequencies, a low-cut frequency, a low-pass frequency, a high-pass frequency and a 

high-cut frequency, have to be defined to specify an Ormsby wavelet (Ryan, 1994; Micenko, 

2016). The Ricker wavelet, which has been applied in this study up till this point, is also a zero-

phase wavelet, but an ideal one often used in seismic modeling, though not that representative 

of actual seismic. It differs from the Ormsby wavelet by only containing two small side lobes 

and being defined by a single parameter, which is the dominant frequency (Ryan, 1994). The 

differences in shape and frequency spectrum of the two wavelets are presented in Fig. 5.15: the 

Ormsby wavelet has a flat frequency band around 25 Hz, which is the dominant frequency of 

the Ricker wavelet. The extra side lobes come from the sharper frequency-band cuts around 10 

Hz and 40 Hz and are similar truncation effects observed in the PSFs for limited illumination 

ranges: the sharper the transitions are, the stronger the side-lobe effect is.  

 

Three different Ormsby wavelets, defined by the following low-cut, low-pass, high-pass and 

high-cut frequencies, were applied in this study:  

(i) 5-10-40-45 Hz 

(ii) 5-10-60-90 Hz  

(iii) 2-5-100-160 Hz 

These frequencies of the Ormsby wavelet are reasonable correspondents to the following Ricker 

wavelet dominant frequencies:  

(i) 25 Hz  

(ii) 40 Hz 

(iii) 60 Hz 

 

A comparison of the resulting synthetic seismic modeled with Ormsby wavelets and the 

corresponding Ricker wavelets is presented in Fig. 5.16. Similarly to the other sensitivity 

analyses, the maximum illumination angle is 45° and the angle of incidence is 0° for all cases. 

This was done with the aim to investigate the impacts of the wavelet type on the seismic.  
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Figure 5.15: The (a) wavelet shape and (b) corresponding frequency spectrum of a 25 Hz Ricker wavelet and a 5-

10-40-45 Hz Ormsby wavelet. Modified after Ryan (1994).  
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Figure 5.16: A comparison of the resulting synthetic seismic sections modeled with Ormsby wavelets of c) 5-10-

40-45 Hz, e) 5-10-60-90 Hz and g) 2-5-100-160 Hz, and the corresponding dominant frequencies of the Ricker 

wavelet of d) 25 Hz, f) 40 Hz and 60 Hz. The black arrows point to features in the seismic that differs between the 

two wavelets.  

 

The resulting seismic images of the two different types of wavelets show little variation in the 

seismic expression of the Maghlaq Fault at the different frequencies. Nonetheless, there are 

some differences worth noting (pointed out by black arrows in Fig. 5.16), which include 

changes in: (i) seismic resolution and (ii) level of imaging noise in the seismic. In general, the 

seismic resolution is slightly better for the Ormsby wavelet’s synthetic seismic, although the 

differences are not very distinct. Small changes in vertical and lateral seismic resolution are 

noticeable in the middle of the seismic images, for the reflectors representing the very drag 

folded layers closest to the fault surface (Fig. 5.16 c versus d). The small variation in vertical 
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resolution is also noticeable from the reflections in the footwall (Fig. 5.16 g versus h). The other 

difference between the seismic images is the increase of noise from the Ricker wavelet to the 

Ormsby wavelet. This is controlled by the truncation effects from the simulated PSFs, which 

are different for the Ricker and Ormsby wavelets (Fig. 5.17). The PSF of the Ricker wavelet 

contains a cross-pattern, as seen in the previous modeling results, whereas the PSF of the 

Ormsby wavelet contains circular seismic artefacts in addition to the cross-pattern. The effect 

of these additional seismic artefacts for the Ormsby wavelet is particularly evident in the 

uppermost part in the synthetic seismic images of 5-10-60-90 Hz and 2-5-100-160 Hz (Figs. 

5.16 e and g).  

 

 

Figure 5.17: PSF of a) the 5-10-60-90 Hz Ormsby wavelet, and b) the corresponding Ricker wavelet of 40 Hz. 

Notice the difference in seismic artefacts between the two PSFs. The Ormsby wavelet generates a cross-pattern 

and circular artefacts, whereas the Ricker wavelet only generates a cross-pattern from the dip-limited illumination 

(here 45°).  
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6 Discussion   
 

This thesis presents a synthetic workflow including 2D seismic modeling of outcrop-based 

geological models of the Maghlaq Fault zone. The resulting seismic images will be discussed 

in this chapter. Firstly, the importance of seismic modeling of outcrop analogues, and how this 

can aid seismic interpretation, will be addressed. Then, based on the aims of this study, two 

main questions will be discussed: (i) what is the seismic expression of the Maghlaq Fault zone? 

And (ii) what effect does each individual geophysical parameter have on the seismic images of 

the fault zone? Finally, the reliability of the geological models and the associated elastic 

properties are taken into consideration.  

 

 Outcrop-based seismic modeling and applications to seismic interpretation 
 

Studying outcrop analogues is a key tool for improving the understanding of subsurface 

reservoirs, i.e. their geometries, structures, lithologies and associated potential for fluid flow 

(Pringle et al., 2006; Howell et al., 2014). Outcrop analogues provide valuable information on 

seismic and sub-seismic features in 3D, which can be compared to subsurface systems of similar 

geological settings studied in seismic (Pringle et al., 2006). Simulating synthetic seismic 

sections of outcrop-based geological models predicts the seismic response of stratigraphic and 

structural features from the outcrop. The synthetic seismic images reveal the level of details 

from the geological input model which can be identified in actual seismic data. Fig. 6.1 

illustrates the details imaged in seismic of the damage zone of the Maghlaq Fault. The 

information from the outcrop and the synthetic seismic image combined can aid seismic 

interpretation of subsurface reservoirs by providing a link between onshore and offshore data 

(Anell et al., 2016). Not only can this potentially lead to more confident interpretations (Bond 

et al., 2007; Alcalde et al., 2017), but it can also improve the understanding of limitations in 

seismic datasets as well as the potential pitfalls when interpreting the data (Anell et al., 2016).  
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Figure 6.1: a) The virtual outcrop model of the hanging wall in Model 1. b) A close-up of the damage zone. c) 

Geological interpretations of structures and lithological layers within the zone. d) The corresponding reflectivity 

model, upscaled five times the original size of the geological model. e) Resulting synthetic seismic images at 

different dominant frequencies of the Ricker wavelet.   

 

The Maghlaq Fault is indeed a good outcrop analogue to carbonate reservoirs hosting spatially 

heterogenous normal fault zones. The fault zone comprises great internal variety both 

structurally and lithologically (Bonson et al., 2007). Additionally, it forms excellent 3D outcrop 
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exposures over a large area, making it a suitable analogue to subsurface reservoirs (Pringle et 

al., 2006). Seismic modeling of the Maghlaq Fault zone can help seismic interpretation of fault 

zones with similar rock properties and acoustic impedance contrasts (Table 1) (Falivene et al., 

2010). Furthermore, the resulting synthetic seismic images reveal the detectability of the fault 

zone as function of various geophysical survey parameters. The effects of the varied parameters 

on the seismic signature of the fault zone also provide valuable information on survey 

parameters. This can be useful for designing seismic surveys for similar geological settings in 

the subsurface (Anell et al., 2016; Saffarzadeh et al., 2019). 

 

Several other authors have previously presented synthetic workflows investigating the 2D 

seismic characterization of various geological features in outcrop analogues or conceptual 

geological models. Amongst others, these studies include seismic images of fault zones (Botter 

et al., 2014; Osagiede et al., 2014; Frery et al., 2016; Lubrano-Lavadera et al., 2018), folds 

(Lecomte et al., 2015), growth faults (Anell et al., 2016), igneous intrusions (Eide et al., 2018; 

Rabbel et al., 2018; Grippa et al., 2019) and shear zones (Wrona et al., 2019). The majority of 

these studies also perform sensitivity analyses, testing the impact of various geophysical 

parameters on the seismic expression and detectability of the geological features.  

 

 Seismic expression of the Maghlaq Fault 
 

The resulting 2D seismic images of the Maghlaq Fault present the seismic signature of the fault 

zone. Due to the variation in hanging wall geometry in the four different geological models, the 

seismic expression slightly differs from model to model. However, some consistent seismic 

characteristics of the fault zone are recognizable in all synthetic seismic images, as pointed out 

by the numbers in Fig. 6.2:   

(1) Chaotic seismic reflection patterns close to the surface of the fault (representing the 

damage zone in Model 1 and vertical fault drag in Models 2, 3 and 4). 

(2) Multiple weak reflections in the hanging wall of the fault (representing the internal 

layering of the Upper Coralline Limestone Formation). 

(3) Discontinuous reflections in the footwall (indicating the location of the fault). 

(4) A coherent, strong reflection in the uppermost part of the models (representing the 

formation boundary between the overburden and the faulted limestones). 
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Other seismic characteristics of the Maghlaq Fault zone, which are varying for the different 

models, are:  

(5) Numerous, sub-horizontal reflections in the hanging wall of Model 1 (Fig. 6.2a). 

(6) Multiple inclined reflections (with dips ranging between 40 and 85°) in the hanging wall 

of Models 2, 3 and 4 (Figs. 6.2b-d).  

 

 

Figure 6.2: Seismic images created from the geological models of the Maghlaq Fault, representing the seismic 

expression of the normal fault zone. All four seismic images were generated with a 40 Hz Ricker wavelet, a 

maximum illumination angle of 45° and vertical incidence. The numbers point to seismic characteristics of the 

Maghlaq Fault zone, which are referred to in the text. a) Model 1 from Ix-Xaqqa, b) Model 2 from Ras Hanzir, c) 

Model 3 from Il-Miqtub and d) Model 4 from In-Neffiet.  

 

The seismic expression of the carbonate fault zone is the result of a combination of the 

reflectivity of complex geological features and the impact of the geophysical parameters. 

Townsend et al. (1998) presents the seismic characterization of a fault as offset of reflection 

events in addition to a change in dip of the surrounding strata, as a result of fault-related 

deformation. These characteristics correspond well to the findings of the seismic signature of 

the Maghlaq Fault (numbers (3) and (6) in Fig. 6.2). The offset reflections allow for recognizing 

the continuity of the fault surface. Moreover, the chaotic reflection pattern surrounding the 

surface, including the folded strata, are supporting the interpretation of the fault’s existence and 

its location. However, in real seismic data, deformation of surrounding strata might be masked 

due to noise (Botter et al., 2017).  
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 Effects of changing the geophysical parameters 
 

The results of the sensitivity analyses presented in this study provide information on the survey 

parameters and their individual effect on the seismic expression of the Maghlaq Fault. This 

information is especially important for investigating the seismic response of structural and 

stratigraphic details that are near the limit of seismic resolution. The effects on the seismic 

images of the fault zone from each parameter that has been tested in this study are discussed 

and compared to relevant studies in the following sections. 

 

6.3.1 Effects of dominant frequency  

 

The synthetic seismic images generated at different dominant frequencies of Ricker wavelets 

(10, 20, 30, 40, 60, 100, 150 and 200 Hz) demonstrate the effects of an improved seismic 

resolution on the seismic expression of the Maghlaq Fault (Figs. 5.7 and 5.8). This sensitivity 

testing reveals the most suitable dominant frequency of the Ricker wavelet for imaging the 

internal heterogeneities, i.e. structures and stratigraphy, of the fault zone. Firstly, the details of 

the hanging wall geometry are poorly imaged at the low dominant frequencies of 10 and 20 Hz 

(Figs. 5.7c and d). The reflections in these seismic images are continuous both vertically and 

laterally, making it difficult to identify the fault, its damage zone and to distinguish the 

lithological layers from each other. 

 

The general trend for the seismic images is that the damage zone and hanging wall geometry 

are easily detectable at dominant frequencies of 30-40 Hz or more. These findings correspond 

well to the results obtained from the frequency impact analysis of Botter et al. (2014). In their 

study, the normal fault zone and the layers within the zone are also difficult to interpret at low 

frequencies (10-20 Hz Ricker wavelets), and easily identified at higher frequencies (30-40 Hz 

Ricker wavelets). Similar results are presented by Anell et al. (2016), where synthetic seismic 

images of growth faults, with offsets of around 50-100 m, have been generated. The change in 

dominant frequency illustrates limited changes in detectability of the faults from 10-20 Hz, but 

significant improvements at 30 Hz (Anell et al., 2016). 

 

In addition to the frequency, the seismic resolution is also controlled by the seismic velocities 

of the rocks in the geological model (Rafaelsen, 2006; Herron, 2011). The synthetic data 

generated in this study include average P-wave velocities from 4.7-5.1 km/s. The very high-

velocity limestones (Upper and Lower Coralline Limestone formations) in the foot and hanging 
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wall of the fault, when combined with a low dominant frequency of the input Ricker wavelet, 

result in poor imaging of the fault zone. For a dominant frequency of 30 Hz and a tuning 

thickness of a quarter of the wavelength, this suggests a theoretical vertical resolution of about 

39 - 42.5 m (Eq. 3.1), meaning that features of thicknesses below this will not be imaged as 

separate reflections in the seismic. 

 

Some of the thinnest layers in the hanging wall of the upscaled version of Model 1 are less than 

15 m in thickness. To resolve the tightly spaced reflectors representing these layers, a dominant 

frequency of 80 Hz or more is required (Fig. 5.7h). These findings differ from the observations 

made in the study of seismic expressions of sill intrusions presented by Rabbel et al. (2018). In 

their study, a dominant frequency of 40 Hz Ricker wavelet is needed to resolve individual sills 

of thicknesses from 10-15 m as separate reflections (Rabbel et al., 2018). The large difference 

in required dominant frequency (80 Hz versus 40 Hz) for imaging approximately the same 

thicknesses can be explained by the difference in average velocity of the rocks included in the 

velocity models. A lower average seismic velocity of the geological input results in a shorter 

wavelength (Eq. 3.1), and thus an improved seismic resolution.  

 

A frequency band centered at 80 Hz, as required for imaging the thinnest layers in Model 1, is 

however difficult to obtain in conventional-resolution seismic. Broadband seismic, such as 

TopSeis (Vinje et al., 2017) or P-cable seismic (Petersen et al., 2010), is therefore required in 

order to provide a wide enough frequency band to produce high-resolution images. However, 

in seismic acquisition, the effect of absorption in the earth is higher for high frequencies than 

low frequencies and hence the signal penetration is generally poorer for the high frequencies 

(ten Kroode et al., 2013).  

 

Identifying small-scale internal heterogeneities in the seismic images of the Maghlaq Fault, i.e. 

fragmented fault rock (Fig. 5.7h) and small-scale faults (Fig. 5.8), requires a very high 

resolution as well. The synthetic seismic presented in this study demonstrate that a dominant 

frequency of at least 100 Hz is necessary to properly image these small-scale structures. 

Although a sufficiently high resolution is difficult to obtain in seismic data from high velocity 

lithologies, the small-scale structures that are visible at high dominant frequencies are of great 

importance to reservoir fluid flow. When considering the fluid flow properties of a fault zone, 

it can be crucial to include such structures because they can either form conduits or barriers for 

subsurface fluid flow (Rotevatn and Fossen, 2011). 
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6.3.2 Noise effects 

 

The signal-to-noise ratio of the seismic is, amongst other parameters, determining the limit of 

detectability of structures in seismic (Zhang and Castagna, 2011; Simm and Bacon, 2014). The 

PSF-based convolution method (Lecomte et al., 2015, 2016) provides ideal seismic processing, 

generating synthetic seismic images with zero noise (Botter et al., 2017), except for imaging 

noise from the side lobes of the PSF. This simulates seismic responses of the fault zone where 

the main factors controlling the seismic expression are the reflectivity model and the 

geophysical survey parameters. To produce a more realistic seismic image, the level of colored 

random noise was systematically increased as part of the sensitivity testing (Fig. 5.10). The 

results showed that already at 25% noise, the Maghlaq Fault zone becomes difficult to detect 

in detail in the synthetic seismic. In the presence of 50% noise or more, the heterogeneities 

within the fault zone become almost non-detectable. 

 

Wrona et al. (2019) present the synthetic seismic signature of shear zones and investigate how 

it varies with an increasing level of random noise. Similarly to the present study, the results of 

this testing show that steeply dipping features are non-detectable at high noise levels (50% or 

more). However, this is not only a result of the features being masked by the added noise, but 

also due to illumination limitations. Another study supporting the findings of the noise level 

testing is the seismic modeling study of Lubrano-Lavadera et al. (2018). In their study, random 

noise is added to seismic images of normal fault zones. The results demonstrate the interference 

between seismic signals and noise, and how this disturbs the seismic signature of the fault zone 

(Lubrano-Lavadera et al., 2018).  

 

The imaging noise occurring in the synthetic seismic of the Maghlaq Fault includes cross-

patterns. The cross-pattern effects are particularly evident in the seismic images of the Maghlaq 

Fault due to lack of noise, and lack of structural and stratigraphic details in some parts of the 

model, i.e. the footwall and underburden strata. It is important to mention that this is not an 

artefact of the PSF-based convolution method exclusively, but also an effect in real seismic 

data. However, because a simplified version of the seismic modeling method is applied in this 

thesis (analytical PSDM filter), the cross-pattern effect might be stronger than in reality (I 

Lecomte 2020, pers. comm., 12 May). Nevertheless, these imaging artefacts can potentially 

result in misinterpretations of the fault’s presence, exact location and geometry, which can be 

crucial to the viability of an exploration prospect (Freeman et al., 1990). 
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6.3.3 Effects of dip-limited illumination  

 

Seismic imaging of the steeply dipping features within the Maghlaq Fault zone is highly 

dependent on the angle of maximum illumination of the seismic survey. Although many of the 

steeply dipping features are represented by strong reflectors in all four reflectivity models 

presented in this study, they are not visible on all seismic images due to a dip-limited 

illumination. For instance, the reflectors representing the fault surface and fault-related folds in 

Model 3 (Fig. 5.11), as well as the overturned structures and recumbent folds in Model 4 (Fig. 

5.12), are not imaged in the seismic generated with an angle of maximum illumination of 45°. 

This is because their geological dips (ranging from 60 to 85°) exceed the illumination vector 

span of maximum 45° in dip. Contrarily, when the angle of maximum illumination is 60°, the 

reflectors in Model 3 are very well imaged (Fig. 5.10e). The structures in Model 4, on the other 

hand, require an almost perfect illumination (90°) to be imaged with their true geological dips 

(Fig. 5.11d).  

 

Although the steeply dipping features are easiest to detect when the illumination is perfect, it is 

still possible to identify similar geometries at lower maximum illumination angles. These 

observations correspond to what Anell et al. (2016) found for the synthetic seismic signature of 

growth faults. The synthetic seismic was modeled with maximum illumination angles from 20-

90° and frequencies from 10-30 Hz. The results demonstrated that a higher angle of illumination 

and higher frequencies significantly improve the level of detail imaged in seismic. 

Nevertheless, the faults in their synthetic seismic still generated an appreciable expression 

which were somehow similar in all models, regardless of the illumination angle and frequency 

(Anell et al., 2016).  

 

Fig. 6.3 illustrates the synthetic seismic images of Models 3 and 4, generated with an angle of 

maximum illumination of 45°, superimposed with the corresponding geological input models. 

The geological models are presented in gray scale to better visualize the structural input. The 

superposition highlights the absence of seismic responses of the steeply dipping reflectors, 

which is due to the dip-limited illumination. In Model 3 (Fig. 6.3a), neither the fault surface nor 

the fault-related folds are imaged, whereas the formation boundary between Upper Coralline 

Limestone Formation (UCLF) and Blue Clay/Greensand formations (BCF/GSF) is 

discontinuous and illuminated with an apparent dip. In Model 4 (Fig. 6.3b), neither the fault 

surface, the steeply dipping layers, the overturned structures nor the upper fold limb of the 
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recumbent fold are illuminated at a maximum illumination angle of 45°. A low angle of 

maximum illumination further leads to a low lateral resolution, which makes it impossible to 

perfectly image the steeply dipping features. 

 

Figure 6.3: Seismic images generated with an angle of maximum illumination of 45°, superimposed with the 

corresponding geological input model of a) Model 3 and b) Model 4. The black arrows point to geological features 

in the geological models which are not illuminated in the synthetic seismic.  
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Other outcrop-based seismic modeling studies show similar results of seismic imaging with a 

dip-limited illumination. This includes limitations to illuminating near vertical or oblique dikes, 

presented by Eide et al. (2018), and limited illumination of shear zones with steep dips, 

presented by Wrona et al. (2019). These findings represent a potential pitfall in interpretation 

of seismic with a low angle of maximum illumination. The dip-limited illumination increases 

the likelihood of seismic misinterpretations of steeply dipping features, their existence, exact 

location, and orientation. 

 

 

6.3.4 Effects of non-vertical incidence  

 

Both the reflectivity model and the corresponding seismic are affected by the incident angle of 

the incoming seismic waves. The resolution of the seismic decreases with an increasing incident 

angle, as demonstrated by both the PSFs and the resulting seismic images (Fig. 5.13). The 

results of this sensitivity analysis show that the changes in resolution are limited when 

increasing the incident angle from 0 to 10° (Figs. 5.13b and c), whereas the resolution capacity 

decreases when further increasing the incident angle to 30° (Fig. 5.13d). However, the effect of 

the change in resolution in response to an increasing incident angle are in this case insignificant 

to the general seismic expression of the Maghlaq Fault.  

 

The incident angles applied in this sensitivity analysis are not very wide, due to the high contrast 

in velocity between the marls and clays of the overburden and the limestones comprising the 

fault zone. The high velocity contrast limits the range of incident angles which can be applied 

in the sensitivity testing before the data becomes distorted in the seismic image (Jones, 2013). 

If the velocity contrast would have been smaller, seismic modeling could have been performed 

with significantly wider incident angles, which potentially could have a bigger impact on the 

seismic imaging of the fault. The effect of a large offset on the seismic image of folded 

structures is presented by Lecomte et al. (2015), which compares the effects of a zero-offset 

case with a large offset case. The seismic imaging of the folds in the large offset case is 

significantly poorer, with a decreased illumination and resolution (Lecomte et al., 2015). This 

result is similar to the result of the incident angle testing of the present study, even though the 

changes in resolution were not as distinctive.  
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6.3.5 Frequency-band effects 

 

The last part of the sensitivity study in this thesis compares the impact of two different wavelets 

(Ricker and Ormsby) and their corresponding frequency bands on the synthetic seismic (Fig. 

5.16). Prior to generating synthetic seismic images, a wavelet type and specific parameters to 

define the wavelet’s shape and frequency spectrum have to be decided (Ryan, 1994). The 

comparison of the resulting seismic images illustrates advantages and disadvantages related to 

both wavelets. Firstly, the seismic resolution is slightly better in the synthetic seismic generated 

with an Ormsby wavelet, compared to the images generated with a Ricker wavelet. This can be 

observed from the small lateral and vertical changes between the synthetic seismic images, as 

well as from the comparison between the PSFs of the two wavelet types (Fig. 5.17). However, 

these differences are insignificant to the general seismic expression of the fault zone.  

 

On the contrary, a change of great significance between the seismic images of the two wavelet 

types is the difference in generated noise. The synthetic seismic simulated with an Ormsby 

wavelet contains more seismic artefacts than the seismic simulated with a Ricker wavelet. The 

increased level of noise with the Ormsby wavelet results from truncation effects of the 

frequency spectrum yielding multiple side lobes around the main peak (Fig. 5.15a). The 

additional seismic artefacts produced from the multiple side lobes of the Ormsby wavelet lead 

to an increased number of reflections in the generated seismic. Fig. 6.4 compares the seismic 

wiggle traces of the 40 Hz Ricker wavelet and the 5-10-60-90 Hz Ormsby wavelet synthetic 

seismic. The synthetic seismic traces present a small part of the seismic section of Model 4, as 

pointed out in Figs. 5.16e and f. The wiggle trace of the Ormsby wavelet seismic includes two 

extra reflections which does not appear in the wiggle trace of the Ricker wavelet seismic (Figs. 

6.4c and d). The extra seismic artefacts increase the likelihood of misinterpreting these 

reflections as corresponding to actual reflectors, instead of noise resulting from truncation 

effects. Consequently, the results of the frequency-band testing implicate that the Ricker 

wavelet might be more suitable for seismic modeling. 
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Figure 6.4: Superposition of wiggle traces from the seismic section of Model 4 (Figs. 5.16e and f). The first two 

plots show the reflectivity superimposed with the corresponding seismic wiggle trace generated with a) a 40 Hz 

Ricker wavelet and b) a 5-10-40-45 Hz Ormsby wavelet. The two last plots display the seismic wiggle traces in a) 

and b) superimposed. In c) the Ricker wavelet seismic is the overlying wiggle trace, whereas in d) the Ormsby 

wavelet seismic is the overlying wiggle trace.  

 

  

6.3.6 Summary of geophysical parameter effects 

 

The results of the sensitivity study reveal which geophysical parameters that have the largest 

impact on the seismic signature of the Maghlaq Fault zone. These include the dominant 

frequency, angle of maximum illumination and level of noise. The sensitivity testing further 

gives an idea of which geophysical parameters that are most appropriate for better visualizing 

the fault zone and its internal heterogeneities in seismic. To ideally image the fault’s surface, 

damage zone and steeply dipping hanging wall geometry, the analytical PSDM filter of the 

convolution method has to include: (i) a Ricker wavelet with a dominant frequency of at least 

30 Hz, (ii) a maximum illumination angle of 60°, although geometries in the hanging wall are 

still recognizable at a maximum illumination angle of 45°, and (iii) an incident angle between 

0° and 30°. Lastly, (iv) the level of noise must be no more than 25%. However, these values 

might not be attainable in actual cases, with an overburden geology and a realistic seismic 

survey.  

 

 Uncertainties related to the geological modeling 
 

6.4.1 Limitations to geological interpretations 

 

The quality and reliability of the synthetic seismic images are a combination of geological 

model building and seismic modeling (Alaei, 2012). In other words, the creation of the 
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geological model is equally important as the generation of synthetic seismic. Creating virtual 

outcrop models from photogrammetry is a time- and cost-efficient method which can acquire 

digital models of highly detailed geological input. Even though it is an excellent tool that can 

expand the field season and possibly improve the geological interpretations, there are some 

challenges associated with interpreting virtual outcrop models. This includes bad and shifting 

light and weather conditions (e.g. Fig. 5.4c), as well as the challenge of interpreting 3D 

structures as 2D cross sections. Faults and the surrounding damage zones are complex 3D 

volumes that should ideally not be interpreted as 2D structures, because their geometries, 

distribution of rocks and petrophysical properties affect the connectivity within a reservoir in 

3D (Botter et al., 2014). Creating 2D geological models further limits the seismic modeling to 

only simulate 2D seismic sections, although the modeling method itself is not limited to 2D. 

However, this study opens the door for creating 3D geological models based on the same virtual 

outcrop models, and therefore also generation of 3D synthetic seismic of the Maghlaq Fault.  

 

The Maghlaq Fault is indeed a spatially heterogenous zone of complex architecture in terms of 

structures and rock content. When generating models of such a large-scale fault, it is 

challenging to extract and include all levels of detail which are present in the complexity of the 

core and damage zone. Adding microscale structures such as foliation, fractures, cataclasite and 

breccia in the large-scale model would create a more realistic representation of the Maghlaq 

Fault. However, it was not possible to identify these small-scale features from the VOMs, which 

the geological models were built upon. Moreover, microscale structures are well below the limit 

of seismic resolution, and the absence of these features in the structural input is therefore 

considered negligible in this case.  

 

The geological models are a combination of interpretations of the VOMs and conceptual 

extrapolations and interpretations. Using real geology from VOMs as the base for the structural 

and lithological input reduces simplifications in the models. In addition, the structural features 

and the lithostratigraphy in the models are supported by field studies conducted by several other 

authors (Pedley et al., 1976; Dart et al., 1993; Bonson et al., 2007), which further reduces the 

uncertainties in the models. That being said, the models are still subject to uncertainty, as there 

are limitations to all geological interpretations and extrapolations. This includes uncertainties 

regarding the thicknesses of stratigraphic layers, extrapolation of the folding, unconformities, 

and the choice of overburden lithology. Nonetheless, if the geological models of the Maghlaq 

Fault are not exact representations of the fault zone, at least they are realistic approximations.  
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6.4.2 Limitations to elastic properties 

 

The geological models must be assigned elastic properties (Vp, Vs and density) in order to 

perform seismic modeling. Retrieving realistic values for faulted, deformed and brecciated 

carbonates are difficult without physical rock property measurements of each of the geological 

units. The units that were included in the geological models were treated as homogenous and 

continuous components for the sake of simplification. However, in nature these rock units are 

highly variable and internally varying both laterally and vertically in terms of elastic properties. 

Including all different types of structures and fault rock mentioned above (foliation, fractures, 

cataclasite and breccia) would require numerous realistic values of elastic properties, which 

ideally should be extracted from physical measurements of the rocks. In the absence of physical 

measurements of the geological units in the fault zone, the four geological models were 

assigned purely conceptual elastic properties of values derived from literature studies (Pickett, 

1963; Tosaya and Nur, 1982; Bourbie et al., 1987; Miller and Stewart, 1990; Miller, 1992; 

Castagna et al., 1993; Dvorkin et al., 2001; Agosta et al., 2007; Mavko, 2017).  

 

The elastic properties play a significant role in seismic modeling as they define the reflectivity 

model. The hard and massive limestones (Upper and Lower Coralline Limestone) were 

assigned very high seismic velocities (Vp of 4.7-6.0 km/s). The marly biomicrite and 

coccolithic limestone (Globigerina Limestone) were given intermediate seismic velocities (Vp 

of 3.7-4.0 km/s), and the soft clay (Blue Clay), calcareous sand (Greensand), and marls (post-

rift marls and clays) were assigned low seismic velocities (Vp of 1.9-3.0 km/s). As expected, 

this resulted in high contrasts in acoustic impedance between:  

 

(i) The intermediate-velocity layer of Globigerina Limestone and the low-velocity 

layer of Blue Clay, in Models 2, 3 and 4. 

(ii) The low-velocity layer of Blue Clay/Greensand and the high-velocity layer of Upper 

Coralline Limestone, in Models 2, 3, and 4.  

(iii) The smeared layers of Globigerina Limestone and Blue Clay and the fault surface 

of Lower Coralline Limestone, in Models 2, 3 and 4.  

(iv) The high-velocity layers of Upper and Lower Coralline Limestone and the low-

velocity layer of post-rift marls and clays in the overburden, in all four models.  
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The latter constitutes the highest contrast in acoustic impedance, which thereupon corresponds 

to the highest amplitude of the reflections in the seismic images. Contrarily, the layers of Upper 

Coralline Limestone, which comprise the hanging wall geometry of the Maghlaq Fault, do not 

have a high contrast in acoustic impedance. This is due to the very similar values of elastic 

properties of the layers within the formation. Consequently, this results in weaker amplitudes 

of the reflections representing the hanging wall, which again leads to the interesting structural 

features, i.e. steeply dipping layers and small-scale faults, being poorly imaged in the seismic.  

 

Despite the limitations to the geological models and associated elastic properties, the seismic 

images generated in this thesis give an idea of how geologically complex hanging wall 

structures in carbonates are imaged in 2D seismic data. The seismic reflection geometry of the 

fault zone architecture in a specific geological setting, like the carbonate-dominated Maghlaq 

Fault, can give implications on how similar geometries would be imaged in real seismic data. 

This is a benefit of using real geology from VOMs as an input for seismic modeling. It also 

allows for an analysis on both the resolvability of small-scale structures and the illumination of 

steeply dipping features in fault zones, related to the different geophysical parameters applied. 

Insights from this study can help bridge the gap between field observations and seismic 

interpretation.  
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7 Conclusion and further work 
 

 Concluding remarks 
 
This thesis presents synthetic 2D seismic images generated from geological models of a 

carbonate-hosted normal fault zone, which are based on virtual outcrop models of the hanging 

wall of the Maghlaq Fault, Malta. Sensitivity testing of various geophysical parameters were 

performed on the resulting synthetic seismic to investigate their impact on the seismic 

expression of the fault zone. The presented results and discussion have led to the following 

conclusions of this thesis:  

 

1. Outcrop analogues such as the Maghlaq Fault provide important information on both 

seismic and sub-seismic structural and stratigraphic features, which is comparable to 

subsurface systems of similar geological settings.  

2. Realistic seismic modeling of detailed geological models, based on high-resolution 

virtual outcrop models, is a key tool for bridging the gap between geological field 

observations and interpretation of subsurface structures in seismic.  

3. The seismic expression of the Maghlaq Fault is differing to some degree for the four 

different geological models, due to the significant variation in hanging wall geometry 

from east to west along the fault. Nevertheless, some seismic characteristics are 

consistent for all seismic images, regardless of the geological input model. The fault 

zone can generally be identified in seismic from: (1) chaotic seismic reflections close to 

the fault plane, (2) multiple, weak reflections in the hanging wall, (3) discontinuous 

reflections in the footwall, and (4) a strong, highly continuous reflection in the upper 

part of the model.  

4. The results of the geophysical parameter sensitivity study revealed that the dominant 

frequency, the level of noise and the illumination angle are the parameters that have the 

greatest impact on the seismic images. 

5. A fault zone within carbonates, like the Maghlaq Fault, is easily detectable in seismic 

at a dominant frequency of 30 Hz or more (Ricker wavelet), a noise level of less than 

25%, a maximum illumination angle of 60° and an incident angle between 0 and 30°. 

However, the general seismic characteristics of the fault are still recognizable at less 

ideal parameter values.  



Chapter 7  Conclusions and further work 

 

 78  

 

6. Internal heterogeneities and fault-related structures, such as steeply dipping features, 

small-scale faults (5-20 m displacement) and geological layers of thicknesses of less 

than 15 m, require ideal values of the geophysical parameters, i.e. a dominant frequency 

of 80 Hz and an angle of maximum illumination between 60 and 90°, to be perfectly 

imaged. Such structures are thus unlikely to be imaged in actual seismic data using 

standard acquisition parameters. This illustrates the difficulties related to both seismic 

imaging and interpretation of details in fault zones. 

7. The findings of this study may however help to improve the seismic interpretation of 

carbonate-hosted fault zones, as well as to increase the understanding of geophysical 

parameter dependency of seismic images. 

 

 Suggestions for further work 
 

This thesis is a contribution to improve the understanding of seismic imaging of normal fault 

zones within carbonates. To reduce the uncertainties related to the input geological models and 

possibly improve and extend this study, the following ideas are suggested for future work: 

 

• Perform seismic modeling with elastic properties (Vp, Vs and density) derived from 

physical rock property measurements of the geological formations comprising the 

Maghlaq Fault zone.  

• Alternatively, compare the synthetic seismic images of the high velocity case of the 

present thesis to synthetic seismic generated from intermediate or low velocity cases.  

• Include a higher degree of heterogeneity of rock properties within the individual units 

of the fault zone.  

• Compare the generated synthetic seismic to real seismic data of subsurface carbonate 

fault zones.  

• Create 3D geological models from the virtual outcrop models to generate 3D synthetic 

seismic of the Maghlaq Fault
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Appendix A 
 

Workflow: from outcrop to 2D synthetic seismic  
 

1. Import the 3D virtual outcrop model from AgiSoft Photoscan to LIME. 

 

 

2. Identify and mark the main stratigraphic boundaries and structural features by using the 

lines tool. 
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3. Project the interpretations onto a 2D panel parallel to the outcrop by using the panels 

tool. 

 

 

4. Export the panel as an image file (.PNG).  
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5. Import the 2D panel into a graphics editing software (e.g. Adobe Illustrator). 

 

 

6. Fill each interpreted unit in the model with different colors. 

7. Merge the geological model of the footwall with the hanging wall model to create a 

complete fault zone model. 

8. Extrapolate the geological layers with respect to the geometry of the fault and add an 

over- and underburden in order to form a realistic subsurface model. 
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9. Make sure the layer boundaries are sharp with no blank space in between. This is to 

avoid unidentified colors in the figure that can make the exported model inadequate at 

a later stage when using Matlab.  

10. Convert the model into grey scale colors, which can be mathematically identified by 

Matlab. 
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11. Turn off the anti-aliasing function in the drawing software prior to exporting the model 

as a 32-bit PNG image file. 

 
 

12. Each unit filled with a grey scale color in the 2D model is hereafter referred to as a 

“block”. The different blocks are assigned elastic properties (Vp, Vs and density), which 

are needed for generating seismic reflections. 

13. Matlab and Seislab 3.02 are used to link the blocks within the geological model to the 

associated elastic properties. In this process, four SEG-Y-files are created from the 

PNG-files; “block”, “rho”, “Vp” and “Vs”, that can be read by SeisRoX Pro – NORSAR 

Software Suite 2019.  
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The next steps are performed in SeisRoX: 

14. Create a new project with a 2D grid size that fits the input model. 

15. Import the four SEGY-files to SeisRoX as property cubes in the objects pan and use 

them to build a 3D target model.  
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16. Generate synthetic Ricker wavelets of different frequencies. These will be used to 

simulate synthetic seismic at a later stage in the workflow.   

17.  

 

 

 

 

 

 

 

 

 

 

 



   Appendix A 

 

 92  

 

18. Create a PSDM analytical filter in the wavelet workflow in the workflow pan, to allow 

multi wavelet selection in order to perform modeling with different frequencies. 

19. Select the 3D target model created in (15) as the target model for the modeling.  

 

 

20. Open the Target Parameter settings by double clicking on the PSDM Target. Set the 

grid type to 2D (XZ), with the center of X and Z at half of the width and length of the 

target model’s size. Y is 0 for the 2D grid. Set the sampling to 0.001 km.  
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21. Decide values for the average velocity and the angle of maximum illumination within 

the Analytical PSDM Filter (1).  

22. Select one or several wavelets (as generated in 16) under Wavelet – Multi selection (2) 

and specify the incident angle within the PSDM simulation parameters (3). 

23. Toggle on the PSF, the reflectivity and the PSDM filter under Technical Parameters (4) 

in order to generate the associated parameters with the resulting seismic.  

24. Save the workflow (5) and click run (6). 
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25. View the generated seismic with the associated PSF and the reflectivity model in a 2D 

viewer.  

 


